TPTP Problem File: KRS143+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS143+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : An owl:cardinality constraint is simply shorthand
% Version : Especial.
% English : An owl:cardinality constraint is simply shorthand for a pair of
% owl:minCardinality and owl:maxCardinality constraints.
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : positive_cardinality-Manifest002 [Bec03]
% Status : Theorem
% Rating : 0.03 v7.2.0, 0.00 v6.4.0, 0.04 v6.3.0, 0.00 v6.1.0, 0.03 v6.0.0, 0.04 v5.4.0, 0.07 v5.3.0, 0.15 v5.2.0, 0.00 v4.1.0, 0.04 v4.0.1, 0.09 v4.0.0, 0.08 v3.7.0, 0.00 v3.2.0, 0.11 v3.1.0
% Syntax : Number of formulae : 12 ( 0 unt; 0 def)
% Number of atoms : 40 ( 9 equ)
% Maximal formula atoms : 9 ( 3 avg)
% Number of connectives : 32 ( 4 ~; 0 |; 14 &)
% ( 2 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 6 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 7 ( 6 usr; 0 prp; 1-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 29 ( 27 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
fof(cc_substitution_1,axiom,
! [A,B] :
( ( A = B
& cc(A) )
=> cc(B) ) ).
fof(cowlNothing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlNothing(A) )
=> cowlNothing(B) ) ).
fof(cowlThing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlThing(A) )
=> cowlThing(B) ) ).
fof(rp_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rp(A,C) )
=> rp(B,C) ) ).
fof(rp_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rp(C,A) )
=> rp(C,B) ) ).
fof(xsd_integer_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_integer(A) )
=> xsd_integer(B) ) ).
fof(xsd_string_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_string(A) )
=> xsd_string(B) ) ).
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Super cc
fof(axiom_2,axiom,
! [X] :
( cc(X)
=> ? [Y0] : rp(X,Y0) ) ).
%----Super cc
fof(axiom_3,axiom,
! [X] :
( cc(X)
=> ! [Y0,Y1] :
( ( rp(X,Y0)
& rp(X,Y1) )
=> Y0 = Y1 ) ) ).
%----Thing and Nothing
%----String and Integer disjoint
%----Super cc
fof(the_axiom,conjecture,
( ! [X] :
( cowlThing(X)
& ~ cowlNothing(X) )
& ! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) )
& ! [X] :
( cc(X)
=> ( ? [Y0] : rp(X,Y0)
& ! [Y0,Y1] :
( ( rp(X,Y0)
& rp(X,Y1) )
=> Y0 = Y1 ) ) ) ) ).
%------------------------------------------------------------------------------