TPTP Problem File: KRS140+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS140+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : Test illustrating extensional semantics of owl:TransitiveProperty
% Version : Especial.
% English :
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : positive_TransitiveProperty-Manifest002 [Bec03]
% Status : Theorem
% Rating : 0.00 v6.1.0, 0.17 v6.0.0, 0.00 v5.5.0, 0.11 v5.4.0, 0.00 v5.3.0, 0.09 v5.2.0, 0.00 v4.1.0, 0.04 v4.0.1, 0.09 v4.0.0, 0.12 v3.7.0, 0.00 v3.1.0
% Syntax : Number of formulae : 15 ( 4 unt; 0 def)
% Number of atoms : 40 ( 8 equ)
% Maximal formula atoms : 9 ( 2 avg)
% Number of connectives : 29 ( 4 ~; 1 |; 13 &)
% ( 2 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 4 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 6 ( 5 usr; 0 prp; 1-2 aty)
% Number of functors : 2 ( 2 usr; 2 con; 0-0 aty)
% Number of variables : 26 ( 25 !; 1 ?)
% SPC : FOF_THM_EPR_SEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
fof(cowlNothing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlNothing(A) )
=> cowlNothing(B) ) ).
fof(cowlThing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlThing(A) )
=> cowlThing(B) ) ).
fof(rsymProp_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rsymProp(A,C) )
=> rsymProp(B,C) ) ).
fof(rsymProp_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rsymProp(C,A) )
=> rsymProp(C,B) ) ).
fof(xsd_integer_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_integer(A) )
=> xsd_integer(B) ) ).
fof(xsd_string_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_string(A) )
=> xsd_string(B) ) ).
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Range: rsymProp
fof(axiom_2,axiom,
! [X,Y] :
( rsymProp(X,Y)
=> ( Y = ia
| Y = ib ) ) ).
%----Symmetric: rsymProp
fof(axiom_3,axiom,
! [X,Y] :
( rsymProp(X,Y)
=> rsymProp(Y,X) ) ).
%----ia
fof(axiom_4,axiom,
cowlThing(ia) ).
fof(axiom_5,axiom,
rsymProp(ia,ia) ).
%----ib
fof(axiom_6,axiom,
cowlThing(ib) ).
fof(axiom_7,axiom,
rsymProp(ib,ib) ).
%----Thing and Nothing
%----String and Integer disjoint
%----Transitive: rsymProp
%----ia
fof(the_axiom,conjecture,
( ! [X] :
( cowlThing(X)
& ~ cowlNothing(X) )
& ! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) )
& ! [X,Y,Z] :
( ( rsymProp(X,Y)
& rsymProp(Y,Z) )
=> rsymProp(X,Z) )
& ? [X] :
( rsymProp(ia,X)
& cowlThing(X) ) ) ).
%------------------------------------------------------------------------------