TPTP Problem File: KRS138+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS138+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : Extensional semantics of owl:SymmetricProperty
% Version : Especial.
% English : Test illustrating extensional semantics of owl:SymmetricProperty.
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : positive_SymmetricProperty-Manifest002 [Bec03]
% Status : Theorem
% Rating : 0.00 v5.3.0, 0.09 v5.2.0, 0.00 v4.1.0, 0.13 v4.0.1, 0.17 v4.0.0, 0.21 v3.7.0, 0.00 v3.2.0, 0.11 v3.1.0
% Syntax : Number of formulae : 18 ( 5 unt; 0 def)
% Number of atoms : 52 ( 13 equ)
% Maximal formula atoms : 14 ( 2 avg)
% Number of connectives : 38 ( 4 ~; 3 |; 17 &)
% ( 3 <=>; 11 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 4 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 7 ( 6 usr; 0 prp; 1-2 aty)
% Number of functors : 3 ( 3 usr; 3 con; 0-0 aty)
% Number of variables : 30 ( 30 !; 0 ?)
% SPC : FOF_THM_EPR_SEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
fof(cA_substitution_1,axiom,
! [A,B] :
( ( A = B
& cA(A) )
=> cA(B) ) ).
fof(cowlNothing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlNothing(A) )
=> cowlNothing(B) ) ).
fof(cowlThing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlThing(A) )
=> cowlThing(B) ) ).
fof(requalityOnA_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& requalityOnA(A,C) )
=> requalityOnA(B,C) ) ).
fof(requalityOnA_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& requalityOnA(C,A) )
=> requalityOnA(C,B) ) ).
fof(xsd_integer_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_integer(A) )
=> xsd_integer(B) ) ).
fof(xsd_string_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_string(A) )
=> xsd_string(B) ) ).
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Enumeration cA
fof(axiom_2,axiom,
! [X] :
( cA(X)
<=> ( X = ib
| X = ia ) ) ).
%----InverseFunctional: requalityOnA
fof(axiom_3,axiom,
! [X,Y,Z] :
( ( requalityOnA(Y,X)
& requalityOnA(Z,X) )
=> Y = Z ) ).
%----Range: requalityOnA
fof(axiom_4,axiom,
! [X,Y] :
( requalityOnA(X,Y)
=> cA(Y) ) ).
%----ia
fof(axiom_5,axiom,
cowlThing(ia) ).
fof(axiom_6,axiom,
requalityOnA(ia,ia) ).
%----ib
fof(axiom_7,axiom,
cowlThing(ib) ).
fof(axiom_8,axiom,
requalityOnA(ib,ib) ).
%----ic
fof(axiom_9,axiom,
cowlThing(ic) ).
%----Thing and Nothing
%----String and Integer disjoint
%----Domain: requalityOnA
%----Symmetric: requalityOnA
%----ia
%----ib
%----ic
fof(the_axiom,conjecture,
( ! [X] :
( cowlThing(X)
& ~ cowlNothing(X) )
& ! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) )
& ! [X,Y] :
( requalityOnA(X,Y)
=> ( X = ia
| X = ib
| X = ic ) )
& ! [X,Y] :
( requalityOnA(X,Y)
=> requalityOnA(Y,X) )
& cowlThing(ia)
& requalityOnA(ia,ia)
& cowlThing(ib)
& cowlThing(ic) ) ).
%------------------------------------------------------------------------------