TPTP Problem File: KRS131+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS131+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : The complement of a class can be defined
% Version : Especial.
% English : The complement of a class can be defined using OWL Lite
% restrictions.
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : positive_I5.2-Manifest004 [Bec03]
% Status : Theorem
% Rating : 0.13 v9.0.0, 0.00 v8.2.0, 0.07 v8.1.0, 0.00 v6.3.0, 0.08 v6.2.0, 0.00 v6.1.0, 0.04 v6.0.0, 0.25 v5.5.0, 0.12 v5.4.0, 0.13 v5.2.0, 0.07 v5.0.0, 0.05 v4.1.0, 0.06 v4.0.1, 0.05 v3.7.0, 0.33 v3.5.0, 0.12 v3.4.0, 0.08 v3.3.0, 0.00 v3.2.0, 0.22 v3.1.0
% Syntax : Number of formulae : 7 ( 0 unt; 0 def)
% Number of atoms : 20 ( 0 equ)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 19 ( 6 ~; 0 |; 5 &)
% ( 5 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 9 ( 9 usr; 0 prp; 1-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 13 ( 10 !; 3 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Equality cA
fof(axiom_2,axiom,
! [X] :
( cA(X)
<=> ? [Y] :
( rq(X,Y)
& cowlThing(Y) ) ) ).
%----Super cNothing
fof(axiom_3,axiom,
! [X] :
( cNothing(X)
=> ~ ? [Y] : rp(X,Y) ) ).
%----Super cNothing
fof(axiom_4,axiom,
! [X] :
( cNothing(X)
=> ? [Y0] : rp(X,Y0) ) ).
%----Equality cnotA
fof(axiom_5,axiom,
! [X] :
( cnotA(X)
<=> ! [Y] :
( rq(X,Y)
=> cNothing(Y) ) ) ).
%----Thing and Nothing
%----String and Integer disjoint
%----Equality cnotA
fof(the_axiom,conjecture,
( ! [X] :
( cowlThing(X)
& ~ cowlNothing(X) )
& ! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) )
& ! [X] :
( cnotA(X)
<=> ~ cA(X) ) ) ).
%------------------------------------------------------------------------------