TPTP Problem File: KRS123+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS123+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : DL Test: heinsohn1.1
% Version : Especial.
% English : Tbox tests from [HK+94]
% Refs : [HK+94] Heinsohn et al. (1994), An Empirical Analysis of Termi
% : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : inconsistent_description-logic-Manifest641 [Bec03]
% Status : Unsatisfiable
% Rating : 0.00 v6.4.0, 0.25 v6.3.0, 0.00 v6.2.0, 0.25 v6.1.0, 0.00 v3.1.0
% Syntax : Number of formulae : 13 ( 1 unt; 0 def)
% Number of atoms : 26 ( 0 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 17 ( 4 ~; 0 |; 2 &)
% ( 6 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 4 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 15 ( 15 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 16 ( 12 !; 4 ?)
% SPC : FOF_UNS_RFO_NEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
% : Tests incoherency caused by disjoint concept
%------------------------------------------------------------------------------
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Equality cUnsatisfiable
fof(axiom_2,axiom,
! [X] :
( cUnsatisfiable(X)
<=> ( cc(X)
& cd(X) ) ) ).
%----Super cc
fof(axiom_3,axiom,
! [X] :
( cc(X)
=> cdxcomp(X) ) ).
%----Super cc1
fof(axiom_4,axiom,
! [X] :
( cc1(X)
=> cd1xcomp(X) ) ).
%----Super cc1
fof(axiom_5,axiom,
! [X] :
( cc1(X)
=> cd1(X) ) ).
%----Equality cd
fof(axiom_6,axiom,
! [X] :
( cd(X)
<=> ~ ? [Y] : ra_Px1(X,Y) ) ).
%----Equality cdxcomp
fof(axiom_7,axiom,
! [X] :
( cdxcomp(X)
<=> ? [Y0] : ra_Px1(X,Y0) ) ).
%----Equality cd1
fof(axiom_8,axiom,
! [X] :
( cd1(X)
<=> ? [Y0] : ra_Px2(X,Y0) ) ).
%----Equality cd1xcomp
fof(axiom_9,axiom,
! [X] :
( cd1xcomp(X)
<=> ~ ? [Y] : ra_Px2(X,Y) ) ).
%----Super ce3
fof(axiom_10,axiom,
! [X] :
( ce3(X)
=> cc(X) ) ).
%----Super cf
fof(axiom_11,axiom,
! [X] :
( cf(X)
=> cd(X) ) ).
%----i2003_11_14_17_22_02803
fof(axiom_12,axiom,
cUnsatisfiable(i2003_11_14_17_22_02803) ).
%------------------------------------------------------------------------------