TPTP Problem File: KRS117+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS117+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : DL Test: t6.1 Double blocking example
% Version : Especial.
% English :
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : inconsistent_description-logic-Manifest626 [Bec03]
% Status : Unsatisfiable
% Rating : 0.00 v3.1.0
% Syntax : Number of formulae : 32 ( 1 unt; 0 def)
% Number of atoms : 92 ( 20 equ)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 63 ( 3 ~; 0 |; 28 &)
% ( 8 <=>; 24 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 15 ( 14 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 73 ( 68 !; 5 ?)
% SPC : FOF_UNS_RFO_SEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
% : The concept should be incoherent but needs double blocking
%------------------------------------------------------------------------------
fof(cUnsatisfiable_substitution_1,axiom,
! [A,B] :
( ( A = B
& cUnsatisfiable(A) )
=> cUnsatisfiable(B) ) ).
fof(ca_Vx3_substitution_1,axiom,
! [A,B] :
( ( A = B
& ca_Vx3(A) )
=> ca_Vx3(B) ) ).
fof(cc_substitution_1,axiom,
! [A,B] :
( ( A = B
& cc(A) )
=> cc(B) ) ).
fof(ccxcomp_substitution_1,axiom,
! [A,B] :
( ( A = B
& ccxcomp(A) )
=> ccxcomp(B) ) ).
fof(cd_substitution_1,axiom,
! [A,B] :
( ( A = B
& cd(A) )
=> cd(B) ) ).
fof(cowlNothing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlNothing(A) )
=> cowlNothing(B) ) ).
fof(cowlThing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlThing(A) )
=> cowlThing(B) ) ).
fof(ra_Px1_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& ra_Px1(A,C) )
=> ra_Px1(B,C) ) ).
fof(ra_Px1_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& ra_Px1(C,A) )
=> ra_Px1(C,B) ) ).
fof(rf_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rf(A,C) )
=> rf(B,C) ) ).
fof(rf_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rf(C,A) )
=> rf(C,B) ) ).
fof(rinvF_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rinvF(A,C) )
=> rinvF(B,C) ) ).
fof(rinvF_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rinvF(C,A) )
=> rinvF(C,B) ) ).
fof(rinvR_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rinvR(A,C) )
=> rinvR(B,C) ) ).
fof(rinvR_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rinvR(C,A) )
=> rinvR(C,B) ) ).
fof(rr_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rr(A,C) )
=> rr(B,C) ) ).
fof(rr_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rr(C,A) )
=> rr(C,B) ) ).
fof(xsd_integer_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_integer(A) )
=> xsd_integer(B) ) ).
fof(xsd_string_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_string(A) )
=> xsd_string(B) ) ).
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Equality cUnsatisfiable
fof(axiom_2,axiom,
! [X] :
( cUnsatisfiable(X)
<=> ( ccxcomp(X)
& ! [Y] :
( rinvR(X,Y)
=> ca_Vx3(Y) )
& ? [Y] :
( rinvF(X,Y)
& cd(Y) ) ) ) ).
%----Equality cc
fof(axiom_3,axiom,
! [X] :
( cc(X)
<=> ~ ? [Y] : ra_Px1(X,Y) ) ).
%----Equality ccxcomp
fof(axiom_4,axiom,
! [X] :
( ccxcomp(X)
<=> ? [Y0] : ra_Px1(X,Y0) ) ).
%----Equality cd
fof(axiom_5,axiom,
! [X] :
( cd(X)
<=> ( ? [Y] :
( rf(X,Y)
& ccxcomp(Y) )
& cc(X) ) ) ).
%----Equality ca_Vx3
fof(axiom_6,axiom,
! [X] :
( ca_Vx3(X)
<=> ? [Y] :
( rinvF(X,Y)
& cd(Y) ) ) ).
%----Super cowlThing
fof(axiom_7,axiom,
! [X] :
( cowlThing(X)
=> ! [Y0,Y1] :
( ( rf(X,Y0)
& rf(X,Y1) )
=> Y0 = Y1 ) ) ).
%----Inverse: rinvF
fof(axiom_8,axiom,
! [X,Y] :
( rinvF(X,Y)
<=> rf(Y,X) ) ).
%----Inverse: rinvR
fof(axiom_9,axiom,
! [X,Y] :
( rinvR(X,Y)
<=> rr(Y,X) ) ).
%----Transitive: rr
fof(axiom_10,axiom,
! [X,Y,Z] :
( ( rr(X,Y)
& rr(Y,Z) )
=> rr(X,Z) ) ).
%----i2003_11_14_17_21_37349
fof(axiom_11,axiom,
cUnsatisfiable(i2003_11_14_17_21_37349) ).
fof(axiom_12,axiom,
! [X,Y] :
( rf(X,Y)
=> rr(X,Y) ) ).
%------------------------------------------------------------------------------