TPTP Problem File: KRS116+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS116+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : DL Test: t4.1 Dynamic blocking example
% Version : Especial.
% English :
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : inconsistent_description-logic-Manifest623 [Bec03]
% Status : Unsatisfiable
% Rating : 0.00 v6.4.0, 0.25 v6.3.0, 0.00 v3.1.0
% Syntax : Number of formulae : 18 ( 1 unt; 0 def)
% Number of atoms : 54 ( 0 equ)
% Maximal formula atoms : 13 ( 3 avg)
% Number of connectives : 39 ( 3 ~; 0 |; 12 &)
% ( 13 <=>; 11 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 21 ( 21 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 37 ( 30 !; 7 ?)
% SPC : FOF_UNS_RFO_NEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Super cUnsatisfiable
fof(axiom_2,axiom,
! [X] :
( cUnsatisfiable(X)
=> ca(X) ) ).
%----Super cUnsatisfiable
fof(axiom_3,axiom,
! [X] :
( cUnsatisfiable(X)
=> ? [Y] :
( rs(X,Y)
& ca_Ax2(Y) ) ) ).
%----Equality ca
fof(axiom_4,axiom,
! [X] :
( ca(X)
<=> ~ ? [Y] : ra_Px1(X,Y) ) ).
%----Equality caxcomp
fof(axiom_5,axiom,
! [X] :
( caxcomp(X)
<=> ? [Y0] : ra_Px1(X,Y0) ) ).
%----Equality cc
fof(axiom_6,axiom,
! [X] :
( cc(X)
<=> ! [Y] :
( rinvR(X,Y)
=> ca_Vx7(Y) ) ) ).
%----Equality ca_Ax2
fof(axiom_7,axiom,
! [X] :
( ca_Ax2(X)
<=> ( ! [Y] :
( rp(X,Y)
=> ca_Vx3(Y) )
& ! [Y] :
( rp(X,Y)
=> ca_Vx5(Y) )
& ! [Y] :
( rr(X,Y)
=> cc(Y) )
& ? [Y] :
( rr(X,Y)
& cowlThing(Y) )
& ? [Y] :
( rp(X,Y)
& cowlThing(Y) )
& ! [Y] :
( rp(X,Y)
=> ca_Vx4(Y) ) ) ) ).
%----Equality ca_Vx3
fof(axiom_8,axiom,
! [X] :
( ca_Vx3(X)
<=> ? [Y] :
( rr(X,Y)
& cowlThing(Y) ) ) ).
%----Equality ca_Vx4
fof(axiom_9,axiom,
! [X] :
( ca_Vx4(X)
<=> ? [Y] :
( rp(X,Y)
& cowlThing(Y) ) ) ).
%----Equality ca_Vx5
fof(axiom_10,axiom,
! [X] :
( ca_Vx5(X)
<=> ! [Y] :
( rr(X,Y)
=> cc(Y) ) ) ).
%----Equality ca_Vx6
fof(axiom_11,axiom,
! [X] :
( ca_Vx6(X)
<=> ! [Y] :
( rinvS(X,Y)
=> caxcomp(Y) ) ) ).
%----Equality ca_Vx7
fof(axiom_12,axiom,
! [X] :
( ca_Vx7(X)
<=> ! [Y] :
( rinvP(X,Y)
=> ca_Vx6(Y) ) ) ).
%----Inverse: rinvP
fof(axiom_13,axiom,
! [X,Y] :
( rinvP(X,Y)
<=> rp(Y,X) ) ).
%----Inverse: rinvR
fof(axiom_14,axiom,
! [X,Y] :
( rinvR(X,Y)
<=> rr(Y,X) ) ).
%----Inverse: rinvS
fof(axiom_15,axiom,
! [X,Y] :
( rinvS(X,Y)
<=> rs(Y,X) ) ).
%----Transitive: rp
fof(axiom_16,axiom,
! [X,Y,Z] :
( ( rp(X,Y)
& rp(Y,Z) )
=> rp(X,Z) ) ).
%----i2003_11_14_17_21_33997
fof(axiom_17,axiom,
cUnsatisfiable(i2003_11_14_17_21_33997) ).
%------------------------------------------------------------------------------