TPTP Problem File: KRS114+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS114+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : DL Test: t12.1
% Version : Especial.
% English :
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : inconsistent_description-logic-Manifest615 [Bec03]
% Status : Unsatisfiable
% Rating : 0.00 v3.1.0
% Syntax : Number of formulae : 34 ( 1 unt; 0 def)
% Number of atoms : 98 ( 23 equ)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 68 ( 4 ~; 0 |; 30 &)
% ( 10 <=>; 24 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 18 ( 17 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 76 ( 69 !; 7 ?)
% SPC : FOF_UNS_RFO_SEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
fof(cUnsatisfiable_substitution_1,axiom,
! [A,B] :
( ( A = B
& cUnsatisfiable(A) )
=> cUnsatisfiable(B) ) ).
fof(ca_Ax3_substitution_1,axiom,
! [A,B] :
( ( A = B
& ca_Ax3(A) )
=> ca_Ax3(B) ) ).
fof(ca_Ax4_substitution_1,axiom,
! [A,B] :
( ( A = B
& ca_Ax4(A) )
=> ca_Ax4(B) ) ).
fof(ca_Vx5_substitution_1,axiom,
! [A,B] :
( ( A = B
& ca_Vx5(A) )
=> ca_Vx5(B) ) ).
fof(cowlNothing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlNothing(A) )
=> cowlNothing(B) ) ).
fof(cowlThing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlThing(A) )
=> cowlThing(B) ) ).
fof(cp_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp(A) )
=> cp(B) ) ).
fof(cpxcomp_substitution_1,axiom,
! [A,B] :
( ( A = B
& cpxcomp(A) )
=> cpxcomp(B) ) ).
fof(cq_substitution_1,axiom,
! [A,B] :
( ( A = B
& cq(A) )
=> cq(B) ) ).
fof(cqxcomp_substitution_1,axiom,
! [A,B] :
( ( A = B
& cqxcomp(A) )
=> cqxcomp(B) ) ).
fof(ra_Px1_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& ra_Px1(A,C) )
=> ra_Px1(B,C) ) ).
fof(ra_Px1_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& ra_Px1(C,A) )
=> ra_Px1(C,B) ) ).
fof(ra_Px2_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& ra_Px2(A,C) )
=> ra_Px2(B,C) ) ).
fof(ra_Px2_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& ra_Px2(C,A) )
=> ra_Px2(C,B) ) ).
fof(rinvR_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rinvR(A,C) )
=> rinvR(B,C) ) ).
fof(rinvR_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rinvR(C,A) )
=> rinvR(C,B) ) ).
fof(rr_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rr(A,C) )
=> rr(B,C) ) ).
fof(rr_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rr(C,A) )
=> rr(C,B) ) ).
fof(rs_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rs(A,C) )
=> rs(B,C) ) ).
fof(rs_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rs(C,A) )
=> rs(C,B) ) ).
fof(xsd_integer_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_integer(A) )
=> xsd_integer(B) ) ).
fof(xsd_string_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_string(A) )
=> xsd_string(B) ) ).
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Equality cUnsatisfiable
fof(axiom_2,axiom,
! [X] :
( cUnsatisfiable(X)
<=> ( ? [Y] :
( rr(X,Y)
& ca_Ax4(Y) )
& ? [Y] :
( rs(X,Y)
& ca_Ax3(Y) ) ) ) ).
%----Equality cp
fof(axiom_3,axiom,
! [X] :
( cp(X)
<=> ~ ? [Y] : ra_Px1(X,Y) ) ).
%----Equality cpxcomp
fof(axiom_4,axiom,
! [X] :
( cpxcomp(X)
<=> ? [Y0] : ra_Px1(X,Y0) ) ).
%----Equality cq
fof(axiom_5,axiom,
! [X] :
( cq(X)
<=> ? [Y0] : ra_Px2(X,Y0) ) ).
%----Equality cqxcomp
fof(axiom_6,axiom,
! [X] :
( cqxcomp(X)
<=> ~ ? [Y] : ra_Px2(X,Y) ) ).
%----Equality ca_Ax3
fof(axiom_7,axiom,
! [X] :
( ca_Ax3(X)
<=> ( cqxcomp(X)
& cpxcomp(X) ) ) ).
%----Equality ca_Ax4
fof(axiom_8,axiom,
! [X] :
( ca_Ax4(X)
<=> ( ! [Y0,Y1] :
( ( rinvR(X,Y0)
& rinvR(X,Y1) )
=> Y0 = Y1 )
& ? [Y] :
( rinvR(X,Y)
& ca_Vx5(Y) ) ) ) ).
%----Equality ca_Vx5
fof(axiom_9,axiom,
! [X] :
( ca_Vx5(X)
<=> ! [Y] :
( rs(X,Y)
=> cp(Y) ) ) ).
%----Inverse: rinvR
fof(axiom_10,axiom,
! [X,Y] :
( rinvR(X,Y)
<=> rr(Y,X) ) ).
%----i2003_11_14_17_21_262
fof(axiom_11,axiom,
cUnsatisfiable(i2003_11_14_17_21_262) ).
%------------------------------------------------------------------------------