TPTP Problem File: KRS108+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS108+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : DL Test: t1.3
% Version : Especial.
% English :
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : inconsistent_description-logic-Manifest608 [Bec03]
% Status : Unsatisfiable
% Rating : 0.00 v3.1.0
% Syntax : Number of formulae : 66 ( 1 unt; 0 def)
% Number of atoms : 182 ( 40 equ)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 125 ( 9 ~; 0 |; 51 &)
% ( 21 <=>; 44 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 31 ( 30 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 141 ( 125 !; 16 ?)
% SPC : FOF_UNS_RFO_SEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
fof(cUnsatisfiable_substitution_1,axiom,
! [A,B] :
( ( A = B
& cUnsatisfiable(A) )
=> cUnsatisfiable(B) ) ).
fof(ca_Ax14_substitution_1,axiom,
! [A,B] :
( ( A = B
& ca_Ax14(A) )
=> ca_Ax14(B) ) ).
fof(ca_Cx1_substitution_1,axiom,
! [A,B] :
( ( A = B
& ca_Cx1(A) )
=> ca_Cx1(B) ) ).
fof(ca_Cx1xcomp_substitution_1,axiom,
! [A,B] :
( ( A = B
& ca_Cx1xcomp(A) )
=> ca_Cx1xcomp(B) ) ).
fof(ca_Cx2_substitution_1,axiom,
! [A,B] :
( ( A = B
& ca_Cx2(A) )
=> ca_Cx2(B) ) ).
fof(ca_Cx2xcomp_substitution_1,axiom,
! [A,B] :
( ( A = B
& ca_Cx2xcomp(A) )
=> ca_Cx2xcomp(B) ) ).
fof(ca_Cx3_substitution_1,axiom,
! [A,B] :
( ( A = B
& ca_Cx3(A) )
=> ca_Cx3(B) ) ).
fof(ca_Cx3xcomp_substitution_1,axiom,
! [A,B] :
( ( A = B
& ca_Cx3xcomp(A) )
=> ca_Cx3xcomp(B) ) ).
fof(cowlNothing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlNothing(A) )
=> cowlNothing(B) ) ).
fof(cowlThing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlThing(A) )
=> cowlThing(B) ) ).
fof(cp1_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp1(A) )
=> cp1(B) ) ).
fof(cp2_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp2(A) )
=> cp2(B) ) ).
fof(cp2xcomp_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp2xcomp(A) )
=> cp2xcomp(B) ) ).
fof(cp3_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp3(A) )
=> cp3(B) ) ).
fof(cp3xcomp_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp3xcomp(A) )
=> cp3xcomp(B) ) ).
fof(cp4_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp4(A) )
=> cp4(B) ) ).
fof(cp4xcomp_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp4xcomp(A) )
=> cp4xcomp(B) ) ).
fof(cp5_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp5(A) )
=> cp5(B) ) ).
fof(cp5xcomp_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp5xcomp(A) )
=> cp5xcomp(B) ) ).
fof(ra_Px1_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& ra_Px1(A,C) )
=> ra_Px1(B,C) ) ).
fof(ra_Px1_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& ra_Px1(C,A) )
=> ra_Px1(C,B) ) ).
fof(ra_Px2_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& ra_Px2(A,C) )
=> ra_Px2(B,C) ) ).
fof(ra_Px2_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& ra_Px2(C,A) )
=> ra_Px2(C,B) ) ).
fof(ra_Px3_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& ra_Px3(A,C) )
=> ra_Px3(B,C) ) ).
fof(ra_Px3_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& ra_Px3(C,A) )
=> ra_Px3(C,B) ) ).
fof(ra_Px4_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& ra_Px4(A,C) )
=> ra_Px4(B,C) ) ).
fof(ra_Px4_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& ra_Px4(C,A) )
=> ra_Px4(C,B) ) ).
fof(ra_Px5_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& ra_Px5(A,C) )
=> ra_Px5(B,C) ) ).
fof(ra_Px5_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& ra_Px5(C,A) )
=> ra_Px5(C,B) ) ).
fof(ra_Px6_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& ra_Px6(A,C) )
=> ra_Px6(B,C) ) ).
fof(ra_Px6_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& ra_Px6(C,A) )
=> ra_Px6(C,B) ) ).
fof(ra_Px7_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& ra_Px7(A,C) )
=> ra_Px7(B,C) ) ).
fof(ra_Px7_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& ra_Px7(C,A) )
=> ra_Px7(C,B) ) ).
fof(rinvR_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rinvR(A,C) )
=> rinvR(B,C) ) ).
fof(rinvR_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rinvR(C,A) )
=> rinvR(C,B) ) ).
fof(rr_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rr(A,C) )
=> rr(B,C) ) ).
fof(rr_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rr(C,A) )
=> rr(C,B) ) ).
fof(xsd_integer_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_integer(A) )
=> xsd_integer(B) ) ).
fof(xsd_string_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_string(A) )
=> xsd_string(B) ) ).
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Equality cUnsatisfiable
fof(axiom_2,axiom,
! [X] :
( cUnsatisfiable(X)
<=> ( ? [Y] :
( rinvR(X,Y)
& ca_Ax14(Y) )
& cp2(X) ) ) ).
%----Super cp1
fof(axiom_3,axiom,
! [X] :
( cp1(X)
=> ca_Cx1(X) ) ).
%----Equality cp2
fof(axiom_4,axiom,
! [X] :
( cp2(X)
<=> ? [Y0] : ra_Px5(X,Y0) ) ).
%----Super cp2
fof(axiom_5,axiom,
! [X] :
( cp2(X)
=> ca_Cx2(X) ) ).
%----Equality cp2xcomp
fof(axiom_6,axiom,
! [X] :
( cp2xcomp(X)
<=> ~ ? [Y] : ra_Px5(X,Y) ) ).
%----Equality cp3
fof(axiom_7,axiom,
! [X] :
( cp3(X)
<=> ? [Y0] : ra_Px6(X,Y0) ) ).
%----Super cp3
fof(axiom_8,axiom,
! [X] :
( cp3(X)
=> ca_Cx3(X) ) ).
%----Equality cp3xcomp
fof(axiom_9,axiom,
! [X] :
( cp3xcomp(X)
<=> ~ ? [Y] : ra_Px6(X,Y) ) ).
%----Equality cp4
fof(axiom_10,axiom,
! [X] :
( cp4(X)
<=> ~ ? [Y] : ra_Px7(X,Y) ) ).
%----Super cp4
fof(axiom_11,axiom,
! [X] :
( cp4(X)
=> cp5xcomp(X) ) ).
%----Equality cp4xcomp
fof(axiom_12,axiom,
! [X] :
( cp4xcomp(X)
<=> ? [Y0] : ra_Px7(X,Y0) ) ).
%----Equality cp5
fof(axiom_13,axiom,
! [X] :
( cp5(X)
<=> ~ ? [Y] : ra_Px4(X,Y) ) ).
%----Equality cp5xcomp
fof(axiom_14,axiom,
! [X] :
( cp5xcomp(X)
<=> ? [Y0] : ra_Px4(X,Y0) ) ).
%----Equality ca_Ax14
fof(axiom_15,axiom,
! [X] :
( ca_Ax14(X)
<=> ( ? [Y] :
( rr(X,Y)
& cp1(Y) )
& ! [Y0,Y1] :
( ( rr(X,Y0)
& rr(X,Y1) )
=> Y0 = Y1 ) ) ) ).
%----Equality ca_Cx1
fof(axiom_16,axiom,
! [X] :
( ca_Cx1(X)
<=> ( cp2xcomp(X)
& cp5xcomp(X)
& cp3xcomp(X)
& cp4xcomp(X) ) ) ).
%----Equality ca_Cx1
fof(axiom_17,axiom,
! [X] :
( ca_Cx1(X)
<=> ? [Y0] : ra_Px1(X,Y0) ) ).
%----Equality ca_Cx1xcomp
fof(axiom_18,axiom,
! [X] :
( ca_Cx1xcomp(X)
<=> ~ ? [Y] : ra_Px1(X,Y) ) ).
%----Equality ca_Cx2
fof(axiom_19,axiom,
! [X] :
( ca_Cx2(X)
<=> ( cp5xcomp(X)
& cp3xcomp(X)
& cp4xcomp(X) ) ) ).
%----Equality ca_Cx2
fof(axiom_20,axiom,
! [X] :
( ca_Cx2(X)
<=> ~ ? [Y] : ra_Px2(X,Y) ) ).
%----Equality ca_Cx2xcomp
fof(axiom_21,axiom,
! [X] :
( ca_Cx2xcomp(X)
<=> ? [Y0] : ra_Px2(X,Y0) ) ).
%----Equality ca_Cx3
fof(axiom_22,axiom,
! [X] :
( ca_Cx3(X)
<=> ~ ? [Y] : ra_Px3(X,Y) ) ).
%----Equality ca_Cx3
fof(axiom_23,axiom,
! [X] :
( ca_Cx3(X)
<=> ( cp5xcomp(X)
& cp4xcomp(X) ) ) ).
%----Equality ca_Cx3xcomp
fof(axiom_24,axiom,
! [X] :
( ca_Cx3xcomp(X)
<=> ? [Y0] : ra_Px3(X,Y0) ) ).
%----Inverse: rinvR
fof(axiom_25,axiom,
! [X,Y] :
( rinvR(X,Y)
<=> rr(Y,X) ) ).
%----i2003_11_14_17_21_04740
fof(axiom_26,axiom,
cUnsatisfiable(i2003_11_14_17_21_04740) ).
%------------------------------------------------------------------------------