TPTP Problem File: KRS107+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS107+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : DL Test: fact4.1
% Version : Especial.
% English :
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : inconsistent_description-logic-Manifest604 [Bec03]
% Status : Unsatisfiable
% Rating : 0.40 v9.0.0, 0.29 v8.2.0, 0.00 v3.1.0
% Syntax : Number of formulae : 53 ( 1 unt; 0 def)
% Number of atoms : 148 ( 37 equ)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 98 ( 3 ~; 0 |; 44 &)
% ( 6 <=>; 45 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 22 ( 21 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 129 ( 124 !; 5 ?)
% SPC : FOF_UNS_RFO_SEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
fof(cUnsatisfiable_substitution_1,axiom,
! [A,B] :
( ( A = B
& cUnsatisfiable(A) )
=> cUnsatisfiable(B) ) ).
fof(ca_Ax2_substitution_1,axiom,
! [A,B] :
( ( A = B
& ca_Ax2(A) )
=> ca_Ax2(B) ) ).
fof(ca_Cx1_substitution_1,axiom,
! [A,B] :
( ( A = B
& ca_Cx1(A) )
=> ca_Cx1(B) ) ).
fof(ca_Cx1xcomp_substitution_1,axiom,
! [A,B] :
( ( A = B
& ca_Cx1xcomp(A) )
=> ca_Cx1xcomp(B) ) ).
fof(cc1_substitution_1,axiom,
! [A,B] :
( ( A = B
& cc1(A) )
=> cc1(B) ) ).
fof(cc2_substitution_1,axiom,
! [A,B] :
( ( A = B
& cc2(A) )
=> cc2(B) ) ).
fof(cowlNothing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlNothing(A) )
=> cowlNothing(B) ) ).
fof(cowlThing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlThing(A) )
=> cowlThing(B) ) ).
fof(ra_Px1_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& ra_Px1(A,C) )
=> ra_Px1(B,C) ) ).
fof(ra_Px1_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& ra_Px1(C,A) )
=> ra_Px1(C,B) ) ).
fof(rrx_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rrx(A,C) )
=> rrx(B,C) ) ).
fof(rrx_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rrx(C,A) )
=> rrx(C,B) ) ).
fof(rrx1_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rrx1(A,C) )
=> rrx1(B,C) ) ).
fof(rrx1_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rrx1(C,A) )
=> rrx1(C,B) ) ).
fof(rrx1a_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rrx1a(A,C) )
=> rrx1a(B,C) ) ).
fof(rrx1a_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rrx1a(C,A) )
=> rrx1a(C,B) ) ).
fof(rrx2_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rrx2(A,C) )
=> rrx2(B,C) ) ).
fof(rrx2_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rrx2(C,A) )
=> rrx2(C,B) ) ).
fof(rrx2a_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rrx2a(A,C) )
=> rrx2a(B,C) ) ).
fof(rrx2a_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rrx2a(C,A) )
=> rrx2a(C,B) ) ).
fof(rrx3_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rrx3(A,C) )
=> rrx3(B,C) ) ).
fof(rrx3_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rrx3(C,A) )
=> rrx3(C,B) ) ).
fof(rrx3a_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rrx3a(A,C) )
=> rrx3a(B,C) ) ).
fof(rrx3a_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rrx3a(C,A) )
=> rrx3a(C,B) ) ).
fof(rrx4_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rrx4(A,C) )
=> rrx4(B,C) ) ).
fof(rrx4_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rrx4(C,A) )
=> rrx4(C,B) ) ).
fof(rrx4a_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rrx4a(A,C) )
=> rrx4a(B,C) ) ).
fof(rrx4a_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rrx4a(C,A) )
=> rrx4a(C,B) ) ).
fof(rrxa_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rrxa(A,C) )
=> rrxa(B,C) ) ).
fof(rrxa_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rrxa(C,A) )
=> rrxa(C,B) ) ).
fof(xsd_integer_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_integer(A) )
=> xsd_integer(B) ) ).
fof(xsd_string_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_string(A) )
=> xsd_string(B) ) ).
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Equality cUnsatisfiable
fof(axiom_2,axiom,
! [X] :
( cUnsatisfiable(X)
<=> ( ? [Y] :
( rrx3(X,Y)
& cc1(Y) )
& ? [Y] :
( rrx4(X,Y)
& cc2(Y) )
& ca_Cx1(X) ) ) ).
%----Equality ca_Ax2
fof(axiom_3,axiom,
! [X] :
( ca_Ax2(X)
<=> ( cc2(X)
& cc1(X) ) ) ).
%----Equality ca_Cx1
fof(axiom_4,axiom,
! [X] :
( ca_Cx1(X)
<=> ? [Y0] : ra_Px1(X,Y0) ) ).
%----Equality ca_Cx1xcomp
fof(axiom_5,axiom,
! [X] :
( ca_Cx1xcomp(X)
<=> ? [Y] :
( rrx3(X,Y)
& ca_Ax2(Y) ) ) ).
%----Equality ca_Cx1xcomp
fof(axiom_6,axiom,
! [X] :
( ca_Cx1xcomp(X)
<=> ~ ? [Y] : ra_Px1(X,Y) ) ).
%----Functional: rrx
fof(axiom_7,axiom,
! [X,Y,Z] :
( ( rrx(X,Y)
& rrx(X,Z) )
=> Y = Z ) ).
%----Functional: rrx3
fof(axiom_8,axiom,
! [X,Y,Z] :
( ( rrx3(X,Y)
& rrx3(X,Z) )
=> Y = Z ) ).
%----Functional: rrx3a
fof(axiom_9,axiom,
! [X,Y,Z] :
( ( rrx3a(X,Y)
& rrx3a(X,Z) )
=> Y = Z ) ).
%----Functional: rrx4
fof(axiom_10,axiom,
! [X,Y,Z] :
( ( rrx4(X,Y)
& rrx4(X,Z) )
=> Y = Z ) ).
%----Functional: rrx4a
fof(axiom_11,axiom,
! [X,Y,Z] :
( ( rrx4a(X,Y)
& rrx4a(X,Z) )
=> Y = Z ) ).
%----i2003_11_14_17_21_01226
fof(axiom_12,axiom,
cUnsatisfiable(i2003_11_14_17_21_01226) ).
fof(axiom_13,axiom,
! [X,Y] :
( rrx3(X,Y)
=> rrx1(X,Y) ) ).
fof(axiom_14,axiom,
! [X,Y] :
( rrx3a(X,Y)
=> rrxa(X,Y) ) ).
fof(axiom_15,axiom,
! [X,Y] :
( rrx4a(X,Y)
=> rrxa(X,Y) ) ).
fof(axiom_16,axiom,
! [X,Y] :
( rrx4(X,Y)
=> rrx2(X,Y) ) ).
fof(axiom_17,axiom,
! [X,Y] :
( rrx4(X,Y)
=> rrx(X,Y) ) ).
fof(axiom_18,axiom,
! [X,Y] :
( rrx3a(X,Y)
=> rrx1a(X,Y) ) ).
fof(axiom_19,axiom,
! [X,Y] :
( rrx4a(X,Y)
=> rrx2a(X,Y) ) ).
fof(axiom_20,axiom,
! [X,Y] :
( rrx3(X,Y)
=> rrx(X,Y) ) ).
%------------------------------------------------------------------------------