TPTP Problem File: KRS099+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS099+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : DL Test: heinsohn3c.1
% Version : Especial.
% English : Tbox tests from [HK+94]
% Refs : [HK+94] Heinsohn et al. (1994), An Empirical Analysis of Termi
% : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : inconsistent_description-logic-Manifest109 [Bec03]
% Status : Unsatisfiable
% Rating : 0.00 v3.1.0
% Syntax : Number of formulae : 16 ( 1 unt; 0 def)
% Number of atoms : 55 ( 15 equ)
% Maximal formula atoms : 15 ( 3 avg)
% Number of connectives : 45 ( 6 ~; 1 |; 21 &)
% ( 2 <=>; 15 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 10 ( 9 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 35 ( 32 !; 3 ?)
% SPC : FOF_UNS_RFO_SEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
% : Tests incoherency caused by number restrictions and role hierarchy
%------------------------------------------------------------------------------
fof(cUnsatisfiable_substitution_1,axiom,
! [A,B] :
( ( A = B
& cUnsatisfiable(A) )
=> cUnsatisfiable(B) ) ).
fof(ca_substitution_1,axiom,
! [A,B] :
( ( A = B
& ca(A) )
=> ca(B) ) ).
fof(cc_substitution_1,axiom,
! [A,B] :
( ( A = B
& cc(A) )
=> cc(B) ) ).
fof(cd_substitution_1,axiom,
! [A,B] :
( ( A = B
& cd(A) )
=> cd(B) ) ).
fof(cowlNothing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlNothing(A) )
=> cowlNothing(B) ) ).
fof(cowlThing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlThing(A) )
=> cowlThing(B) ) ).
fof(rtt_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rtt(A,C) )
=> rtt(B,C) ) ).
fof(rtt_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rtt(C,A) )
=> rtt(C,B) ) ).
fof(xsd_integer_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_integer(A) )
=> xsd_integer(B) ) ).
fof(xsd_string_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_string(A) )
=> xsd_string(B) ) ).
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Equality cUnsatisfiable
fof(axiom_2,axiom,
! [X] :
( cUnsatisfiable(X)
<=> ( ? [Y0,Y1,Y2] :
( rtt(X,Y0)
& rtt(X,Y1)
& rtt(X,Y2)
& Y0 != Y1
& Y0 != Y2
& Y1 != Y2 )
& ! [Y] :
( rtt(X,Y)
=> ca(Y) )
& ! [Y0,Y1] :
( ( rtt(X,Y0)
& rtt(X,Y1) )
=> Y0 = Y1 )
& ! [Y0,Y1] :
( ( rtt(X,Y0)
& rtt(X,Y1) )
=> Y0 = Y1 ) ) ) ).
%----Super ca
fof(axiom_3,axiom,
! [X] :
( ca(X)
=> ( cd(X)
| cc(X) ) ) ).
%----Super cc
fof(axiom_4,axiom,
! [X] :
( cc(X)
=> ~ cd(X) ) ).
%----i2003_11_14_17_20_29215
fof(axiom_5,axiom,
cUnsatisfiable(i2003_11_14_17_20_29215) ).
%------------------------------------------------------------------------------