TPTP Problem File: KRS098+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS098+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : DL Test: heinsohn3.2
% Version : Especial.
% English : Tbox tests from [HK+94]
% Refs : [HK+94] Heinsohn et al. (1994), An Empirical Analysis of Termi
% : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : inconsistent_description-logic-Manifest108 [Bec03]
% Status : Unsatisfiable
% Rating : 0.20 v9.0.0, 0.14 v8.2.0, 0.00 v3.1.0
% Syntax : Number of formulae : 39 ( 1 unt; 0 def)
% Number of atoms : 123 ( 29 equ)
% Maximal formula atoms : 22 ( 3 avg)
% Number of connectives : 91 ( 7 ~; 1 |; 46 &)
% ( 3 <=>; 34 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 18 ( 17 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 99 ( 91 !; 8 ?)
% SPC : FOF_UNS_RFO_SEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
% : Tests incoherency caused by number restrictions and role hierarchy
%------------------------------------------------------------------------------
fof(cUnsatisfiable_substitution_1,axiom,
! [A,B] :
( ( A = B
& cUnsatisfiable(A) )
=> cUnsatisfiable(B) ) ).
fof(ca_substitution_1,axiom,
! [A,B] :
( ( A = B
& ca(A) )
=> ca(B) ) ).
fof(cc_substitution_1,axiom,
! [A,B] :
( ( A = B
& cc(A) )
=> cc(B) ) ).
fof(cd_substitution_1,axiom,
! [A,B] :
( ( A = B
& cd(A) )
=> cd(B) ) ).
fof(ce_substitution_1,axiom,
! [A,B] :
( ( A = B
& ce(A) )
=> ce(B) ) ).
fof(cowlNothing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlNothing(A) )
=> cowlNothing(B) ) ).
fof(cowlThing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlThing(A) )
=> cowlThing(B) ) ).
fof(rr_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rr(A,C) )
=> rr(B,C) ) ).
fof(rr_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rr(C,A) )
=> rr(C,B) ) ).
fof(rr1_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rr1(A,C) )
=> rr1(B,C) ) ).
fof(rr1_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rr1(C,A) )
=> rr1(C,B) ) ).
fof(rr2_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rr2(A,C) )
=> rr2(B,C) ) ).
fof(rr2_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rr2(C,A) )
=> rr2(C,B) ) ).
fof(rr3_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rr3(A,C) )
=> rr3(B,C) ) ).
fof(rr3_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rr3(C,A) )
=> rr3(C,B) ) ).
fof(rt1_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rt1(A,C) )
=> rt1(B,C) ) ).
fof(rt1_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rt1(C,A) )
=> rt1(C,B) ) ).
fof(rt2_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rt2(A,C) )
=> rt2(B,C) ) ).
fof(rt2_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rt2(C,A) )
=> rt2(C,B) ) ).
fof(rt3_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rt3(A,C) )
=> rt3(B,C) ) ).
fof(rt3_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rt3(C,A) )
=> rt3(C,B) ) ).
fof(rtt_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rtt(A,C) )
=> rtt(B,C) ) ).
fof(rtt_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rtt(C,A) )
=> rtt(C,B) ) ).
fof(xsd_integer_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_integer(A) )
=> xsd_integer(B) ) ).
fof(xsd_string_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_string(A) )
=> xsd_string(B) ) ).
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Equality cUnsatisfiable
fof(axiom_2,axiom,
! [X] :
( cUnsatisfiable(X)
<=> ( ? [Y] :
( rr3(X,Y)
& ? [Z] :
( rt3(Y,Z)
& ce(Z) )
& ! [Z0,Z1] :
( ( rtt(Y,Z0)
& rtt(Y,Z1) )
=> Z0 = Z1 ) )
& ? [Y] :
( rr2(X,Y)
& ! [Z0,Z1] :
( ( rtt(Y,Z0)
& rtt(Y,Z1) )
=> Z0 = Z1 )
& ? [Z] :
( rt2(Y,Z)
& cd(Z) ) )
& ~ ? [Y0,Y1] :
( rr(X,Y0)
& rr(X,Y1)
& Y0 != Y1 )
& ? [Y] :
( rr1(X,Y)
& ! [Z0,Z1] :
( ( rtt(Y,Z0)
& rtt(Y,Z1) )
=> Z0 = Z1 )
& ? [Z] :
( rt1(Y,Z)
& cc(Z) ) ) ) ) ).
%----Equality ca
fof(axiom_3,axiom,
! [X] :
( ca(X)
<=> ( cc(X)
| cd(X) ) ) ).
%----i2003_11_14_17_20_25524
fof(axiom_4,axiom,
cUnsatisfiable(i2003_11_14_17_20_25524) ).
fof(axiom_5,axiom,
! [X] :
~ ( cc(X)
& cd(X) ) ).
fof(axiom_6,axiom,
! [X] :
~ ( ce(X)
& cc(X) ) ).
fof(axiom_7,axiom,
! [X] :
~ ( ce(X)
& cd(X) ) ).
fof(axiom_8,axiom,
! [X,Y] :
( rr1(X,Y)
=> rr(X,Y) ) ).
fof(axiom_9,axiom,
! [X,Y] :
( rr2(X,Y)
=> rr(X,Y) ) ).
fof(axiom_10,axiom,
! [X,Y] :
( rt1(X,Y)
=> rtt(X,Y) ) ).
fof(axiom_11,axiom,
! [X,Y] :
( rt2(X,Y)
=> rtt(X,Y) ) ).
fof(axiom_12,axiom,
! [X,Y] :
( rr3(X,Y)
=> rr(X,Y) ) ).
fof(axiom_13,axiom,
! [X,Y] :
( rt3(X,Y)
=> rtt(X,Y) ) ).
%------------------------------------------------------------------------------