TPTP Problem File: KRS090+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS090+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : A pattern comes up a lot in more complex ontologies
% Version : Especial.
% English : This kind of pattern comes up a lot in more complex ontologies.
% Failure to cope with this kind of pattern is one of the reasons
% that many reasoners have been unable to cope with such ontologies.
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : inconsistent_description-logic-Manifest040 [Bec03]
% Status : Unsatisfiable
% Rating : 0.00 v6.4.0, 0.25 v6.3.0, 0.00 v3.1.0
% Syntax : Number of formulae : 9 ( 1 unt; 0 def)
% Number of atoms : 90 ( 0 equ)
% Maximal formula atoms : 65 ( 10 avg)
% Number of connectives : 87 ( 6 ~; 36 |; 37 &)
% ( 1 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 35 ( 8 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 77 ( 77 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 10 ( 9 !; 1 ?)
% SPC : FOF_UNS_RFO_NEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Super cC1
fof(axiom_2,axiom,
! [X] :
( cC1(X)
=> ( ( cB5(X)
| cA5(X) )
& ( cB13(X)
| cA13(X) )
& ( cA1(X)
| cB1(X) )
& ( cA27(X)
| cB27(X) )
& ( cA4(X)
| cB4(X) )
& ( cB12(X)
| cA12(X) )
& ( cB30(X)
| cA30(X) )
& ( cA20(X)
| cB20(X) )
& ( cB14(X)
| cA14(X) )
& ( cB28(X)
| cA28(X) )
& ( cA3(X)
| cB3(X) )
& ( cB7(X)
| cA7(X) )
& ( cB21(X)
| cA21(X) )
& ( cB22(X)
| cA22(X) )
& ( cB17(X)
| cA17(X) )
& ( cB11(X)
| cA11(X) )
& ( cB19(X)
| cA19(X) )
& ( cA8(X)
| cB8(X) )
& ( cA26(X)
| cB26(X) )
& ( cA25(X)
| cB25(X) )
& ( cA29(X)
| cB29(X) )
& ( cB23(X)
| cA23(X) )
& ( cB18(X)
| cA18(X) )
& ( cB10(X)
| cA10(X) )
& ( cB2(X)
| cA2(X) )
& ( cA16(X)
| cB16(X) )
& ( cB0(X)
| cA0(X) )
& ( cB31(X)
| cA31(X) )
& ( cB9(X)
| cA9(X) )
& ( cB6(X)
| cA6(X) )
& ( cB24(X)
| cA24(X) )
& ( cB15(X)
| cA15(X) ) ) ) ).
%----Super cC2
fof(axiom_3,axiom,
! [X] :
( cC2(X)
=> ( ( ~ cB(X)
| cA(X) )
& ( cB(X)
| cA(X) ) ) ) ).
%----Super cC3
fof(axiom_4,axiom,
! [X] :
( cC3(X)
=> ( ( ~ cB(X)
| ~ cA(X) )
& ( cB(X)
| ~ cA(X) ) ) ) ).
%----Super cC4
fof(axiom_5,axiom,
! [X] :
( cC4(X)
=> ? [Y] :
( rR(X,Y)
& cC2(Y) ) ) ).
%----Super cC5
fof(axiom_6,axiom,
! [X] :
( cC5(X)
=> ! [Y] :
( rR(X,Y)
=> cC3(Y) ) ) ).
%----Super cTEST
fof(axiom_7,axiom,
! [X] :
( cTEST(X)
=> ( cC4(X)
& cC1(X)
& cC5(X) ) ) ).
%----i2003_11_14_17_19_57994
fof(axiom_8,axiom,
cTEST(i2003_11_14_17_19_57994) ).
%------------------------------------------------------------------------------