TPTP Problem File: KRS089+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS089+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : A test for the interaction of one-of and inverse
% Version : Especial.
% English : A test for the interaction of one-of and inverse using the idea
% of a spy point. Everything is related to the spy via the property
% p and we know that the spy has at most two invP successors, thus
% limiting the cardinality of the domain to being at most 2.
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : inconsistent_description-logic-Manifest035 [Bec03]
% Status : Unsatisfiable
% Rating : 0.20 v9.0.0, 0.14 v8.2.0, 0.00 v3.7.0, 0.33 v3.3.0, 0.00 v3.1.0
% Syntax : Number of formulae : 19 ( 2 unt; 0 def)
% Number of atoms : 57 ( 18 equ)
% Maximal formula atoms : 7 ( 3 avg)
% Number of connectives : 43 ( 5 ~; 2 |; 20 &)
% ( 2 <=>; 14 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 9 ( 8 usr; 0 prp; 1-2 aty)
% Number of functors : 2 ( 2 usr; 2 con; 0-0 aty)
% Number of variables : 41 ( 37 !; 4 ?)
% SPC : FOF_UNS_RFO_SEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
fof(cUnsatisfiable_substitution_1,axiom,
! [A,B] :
( ( A = B
& cUnsatisfiable(A) )
=> cUnsatisfiable(B) ) ).
fof(cowlNothing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlNothing(A) )
=> cowlNothing(B) ) ).
fof(cowlThing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlThing(A) )
=> cowlThing(B) ) ).
fof(rinvP_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rinvP(A,C) )
=> rinvP(B,C) ) ).
fof(rinvP_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rinvP(C,A) )
=> rinvP(C,B) ) ).
fof(rp_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rp(A,C) )
=> rp(B,C) ) ).
fof(rp_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rp(C,A) )
=> rp(C,B) ) ).
fof(rr_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rr(A,C) )
=> rr(B,C) ) ).
fof(rr_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rr(C,A) )
=> rr(C,B) ) ).
fof(xsd_integer_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_integer(A) )
=> xsd_integer(B) ) ).
fof(xsd_string_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_string(A) )
=> xsd_string(B) ) ).
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Super cUnsatisfiable
fof(axiom_2,axiom,
! [X] :
( cUnsatisfiable(X)
=> ? [Y0,Y1,Y2] :
( rr(X,Y0)
& rr(X,Y1)
& rr(X,Y2)
& Y0 != Y1
& Y0 != Y2
& Y1 != Y2 ) ) ).
%----Super cowlThing
fof(axiom_3,axiom,
! [X] :
( cowlThing(X)
=> ? [Y] :
( rp(X,Y)
& Y = ispy ) ) ).
%----Inverse: rp
fof(axiom_4,axiom,
! [X,Y] :
( rp(X,Y)
<=> rinvP(Y,X) ) ).
%----ispy
fof(axiom_5,axiom,
! [X0,X1,X2] :
( ( rinvP(ispy,X0)
& rinvP(ispy,X1)
& rinvP(ispy,X2) )
=> ( X0 = X1
| X0 = X2
| X1 = X2 ) ) ).
%----ispy
fof(axiom_6,axiom,
cowlThing(ispy) ).
%----i2003_11_14_17_19_53168
fof(axiom_7,axiom,
cUnsatisfiable(i2003_11_14_17_19_53168) ).
%------------------------------------------------------------------------------