TPTP Problem File: KRS078+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS078+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : DL Test: t12.1
% Version : Especial.
% English :
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : inconsistent_description-logic-Manifest015 [Bec03]
% Status : Unsatisfiable
% Rating : 0.00 v3.1.0
% Syntax : Number of formulae : 18 ( 1 unt; 0 def)
% Number of atoms : 57 ( 14 equ)
% Maximal formula atoms : 11 ( 3 avg)
% Number of connectives : 43 ( 4 ~; 0 |; 21 &)
% ( 3 <=>; 15 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 11 ( 10 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 43 ( 40 !; 3 ?)
% SPC : FOF_UNS_RFO_SEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
fof(cUnsatisfiable_substitution_1,axiom,
! [A,B] :
( ( A = B
& cUnsatisfiable(A) )
=> cUnsatisfiable(B) ) ).
fof(cowlNothing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlNothing(A) )
=> cowlNothing(B) ) ).
fof(cowlThing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlThing(A) )
=> cowlThing(B) ) ).
fof(cp_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp(A) )
=> cp(B) ) ).
fof(cq_substitution_1,axiom,
! [A,B] :
( ( A = B
& cq(A) )
=> cq(B) ) ).
fof(rinvR_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rinvR(A,C) )
=> rinvR(B,C) ) ).
fof(rinvR_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rinvR(C,A) )
=> rinvR(C,B) ) ).
fof(rr_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rr(A,C) )
=> rr(B,C) ) ).
fof(rr_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rr(C,A) )
=> rr(C,B) ) ).
fof(rs_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rs(A,C) )
=> rs(B,C) ) ).
fof(rs_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rs(C,A) )
=> rs(C,B) ) ).
fof(xsd_integer_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_integer(A) )
=> xsd_integer(B) ) ).
fof(xsd_string_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_string(A) )
=> xsd_string(B) ) ).
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Equality cUnsatisfiable
fof(axiom_2,axiom,
! [X] :
( cUnsatisfiable(X)
<=> ( ? [Y] :
( rr(X,Y)
& ? [Z] :
( rinvR(Y,Z)
& ! [W] :
( rs(Z,W)
=> cp(W) ) )
& ! [Z0,Z1] :
( ( rinvR(Y,Z0)
& rinvR(Y,Z1) )
=> Z0 = Z1 ) )
& ? [Y] :
( rs(X,Y)
& ~ cq(Y)
& ~ cp(Y) ) ) ) ).
%----Inverse: rinvR
fof(axiom_3,axiom,
! [X,Y] :
( rinvR(X,Y)
<=> rr(Y,X) ) ).
%----i2003_11_14_17_19_13721
fof(axiom_4,axiom,
cUnsatisfiable(i2003_11_14_17_19_13721) ).
%------------------------------------------------------------------------------