TPTP Problem File: KRS057+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS057+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : A possible mapping of the EquivalentClasses axiom
% Version : Especial.
% English : A possible mapping of the EquivalentClasses axiom, which is
% connected but without a Hamiltonian path.
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : consistent_equivalentClass-Manifest009 [Bec03]
% Status : Satisfiable
% Rating : 0.00 v7.3.0, 0.67 v7.1.0, 0.00 v3.1.0
% Syntax : Number of formulae : 11 ( 1 unt; 0 def)
% Number of atoms : 38 ( 10 equ)
% Maximal formula atoms : 12 ( 3 avg)
% Number of connectives : 32 ( 5 ~; 0 |; 13 &)
% ( 7 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 17 ( 17 !; 0 ?)
% SPC : FOF_SAT_EPR_SEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
fof(cB_substitution_1,axiom,
! [A,B] :
( ( A = B
& cB(A) )
=> cB(B) ) ).
fof(cC_substitution_1,axiom,
! [A,B] :
( ( A = B
& cC(A) )
=> cC(B) ) ).
fof(cD_substitution_1,axiom,
! [A,B] :
( ( A = B
& cD(A) )
=> cD(B) ) ).
fof(cowlNothing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlNothing(A) )
=> cowlNothing(B) ) ).
fof(cowlThing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlThing(A) )
=> cowlThing(B) ) ).
fof(xsd_integer_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_integer(A) )
=> xsd_integer(B) ) ).
fof(xsd_string_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_string(A) )
=> xsd_string(B) ) ).
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----iA
fof(axiom_2,axiom,
cowlThing(iA) ).
fof(axiom_3,axiom,
! [X] :
( ( cB(X)
<=> cC(X) )
& ( cB(X)
<=> X = iA )
& ( cB(X)
<=> ~ cD(X) )
& ( cC(X)
<=> X = iA )
& ( cC(X)
<=> ~ cD(X) )
& ( X = iA
<=> ~ cD(X) ) ) ).
%------------------------------------------------------------------------------