TPTP Problem File: KRS050+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS050+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : DL Test: t8.1
% Version : Especial.
% English :
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : consistent_description-logic-Manifest634 [Bec03]
% Status : Satisfiable
% Rating : 0.00 v5.4.0, 0.14 v5.2.0, 0.00 v4.1.0, 0.25 v4.0.1, 0.00 v3.1.0
% Syntax : Number of formulae : 11 ( 1 unt; 0 def)
% Number of atoms : 28 ( 0 equ)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 20 ( 3 ~; 0 |; 4 &)
% ( 9 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 4 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 15 ( 15 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 19 ( 15 !; 4 ?)
% SPC : FOF_SAT_RFO_NEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Equality cSatisfiable
fof(axiom_2,axiom,
! [X] :
( cSatisfiable(X)
<=> ( ? [Y] :
( rr(X,Y)
& ca_Vx4(Y) )
& ? [Y] :
( rr(X,Y)
& ca_Vx5(Y) ) ) ) ).
%----Equality cp
fof(axiom_3,axiom,
! [X] :
( cp(X)
<=> ~ ? [Y] : ra_Px1(X,Y) ) ).
%----Equality cpxcomp
fof(axiom_4,axiom,
! [X] :
( cpxcomp(X)
<=> ? [Y0] : ra_Px1(X,Y0) ) ).
%----Equality ca_Vx2
fof(axiom_5,axiom,
! [X] :
( ca_Vx2(X)
<=> ! [Y] :
( rr1(X,Y)
=> cp(Y) ) ) ).
%----Equality ca_Vx3
fof(axiom_6,axiom,
! [X] :
( ca_Vx3(X)
<=> ! [Y] :
( rr1(X,Y)
=> cpxcomp(Y) ) ) ).
%----Equality ca_Vx4
fof(axiom_7,axiom,
! [X] :
( ca_Vx4(X)
<=> ! [Y] :
( rinvR(X,Y)
=> ca_Vx2(Y) ) ) ).
%----Equality ca_Vx5
fof(axiom_8,axiom,
! [X] :
( ca_Vx5(X)
<=> ! [Y] :
( rinvR(X,Y)
=> ca_Vx3(Y) ) ) ).
%----Inverse: rinvR
fof(axiom_9,axiom,
! [X,Y] :
( rinvR(X,Y)
<=> rr(Y,X) ) ).
%----i2003_11_14_17_16_39209
fof(axiom_10,axiom,
cSatisfiable(i2003_11_14_17_16_39209) ).
%------------------------------------------------------------------------------