TPTP Problem File: KRS045+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS045+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : DL Test: t2.1
% Version : Especial.
% English :
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : consistent_description-logic-Manifest616 [Bec03]
% Status : Satisfiable
% Rating : 0.00 v6.1.0, 0.20 v6.0.0, 0.00 v3.1.0
% Syntax : Number of formulae : 27 ( 1 unt; 0 def)
% Number of atoms : 76 ( 18 equ)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 52 ( 3 ~; 0 |; 22 &)
% ( 4 <=>; 23 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 13 ( 12 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 60 ( 56 !; 4 ?)
% SPC : FOF_SAT_RFO_SEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
fof(cSatisfiable_substitution_1,axiom,
! [A,B] :
( ( A = B
& cSatisfiable(A) )
=> cSatisfiable(B) ) ).
fof(cowlNothing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlNothing(A) )
=> cowlNothing(B) ) ).
fof(cowlThing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlThing(A) )
=> cowlThing(B) ) ).
fof(cp1_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp1(A) )
=> cp1(B) ) ).
fof(cp2_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp2(A) )
=> cp2(B) ) ).
fof(cp2xcomp_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp2xcomp(A) )
=> cp2xcomp(B) ) ).
fof(ra_Px1_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& ra_Px1(A,C) )
=> ra_Px1(B,C) ) ).
fof(ra_Px1_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& ra_Px1(C,A) )
=> ra_Px1(C,B) ) ).
fof(rf1_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rf1(A,C) )
=> rf1(B,C) ) ).
fof(rf1_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rf1(C,A) )
=> rf1(C,B) ) ).
fof(rf2_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rf2(A,C) )
=> rf2(B,C) ) ).
fof(rf2_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rf2(C,A) )
=> rf2(C,B) ) ).
fof(rr_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rr(A,C) )
=> rr(B,C) ) ).
fof(rr_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rr(C,A) )
=> rr(C,B) ) ).
fof(xsd_integer_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_integer(A) )
=> xsd_integer(B) ) ).
fof(xsd_string_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_string(A) )
=> xsd_string(B) ) ).
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Equality cSatisfiable
fof(axiom_2,axiom,
! [X] :
( cSatisfiable(X)
<=> ( ? [Y] :
( rf2(X,Y)
& cp2(Y) )
& ? [Y] :
( rf1(X,Y)
& cp1(Y) ) ) ) ).
%----Super cp1
fof(axiom_3,axiom,
! [X] :
( cp1(X)
=> cp2xcomp(X) ) ).
%----Equality cp2
fof(axiom_4,axiom,
! [X] :
( cp2(X)
<=> ~ ? [Y] : ra_Px1(X,Y) ) ).
%----Equality cp2xcomp
fof(axiom_5,axiom,
! [X] :
( cp2xcomp(X)
<=> ? [Y0] : ra_Px1(X,Y0) ) ).
%----Super cowlThing
fof(axiom_6,axiom,
! [X] :
( cowlThing(X)
=> ! [Y0,Y1] :
( ( rf1(X,Y0)
& rf1(X,Y1) )
=> Y0 = Y1 ) ) ).
%----Super cowlThing
fof(axiom_7,axiom,
! [X] :
( cowlThing(X)
=> ! [Y0,Y1] :
( ( rf2(X,Y0)
& rf2(X,Y1) )
=> Y0 = Y1 ) ) ).
%----i2003_11_14_17_16_21280
fof(axiom_8,axiom,
cSatisfiable(i2003_11_14_17_16_21280) ).
fof(axiom_9,axiom,
! [X,Y] :
( rr(X,Y)
=> rf1(X,Y) ) ).
fof(axiom_10,axiom,
! [X,Y] :
( rr(X,Y)
=> rf2(X,Y) ) ).
%------------------------------------------------------------------------------