TPTP Problem File: KRS044+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS044+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : DL Test: t10.1
% Version : Especial.
% English :
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : consistent_description-logic-Manifest609 [Bec03]
% Status : Satisfiable
% Rating : 0.00 v6.1.0, 0.20 v6.0.0, 0.00 v3.1.0
% Syntax : Number of formulae : 35 ( 1 unt; 0 def)
% Number of atoms : 96 ( 24 equ)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 64 ( 3 ~; 0 |; 28 &)
% ( 7 <=>; 26 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 15 ( 14 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 84 ( 80 !; 4 ?)
% SPC : FOF_SAT_RFO_SEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
fof(cSatisfiable_substitution_1,axiom,
! [A,B] :
( ( A = B
& cSatisfiable(A) )
=> cSatisfiable(B) ) ).
fof(cowlNothing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlNothing(A) )
=> cowlNothing(B) ) ).
fof(cowlThing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlThing(A) )
=> cowlThing(B) ) ).
fof(cp_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp(A) )
=> cp(B) ) ).
fof(cpxcomp_substitution_1,axiom,
! [A,B] :
( ( A = B
& cpxcomp(A) )
=> cpxcomp(B) ) ).
fof(ra_Px1_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& ra_Px1(A,C) )
=> ra_Px1(B,C) ) ).
fof(ra_Px1_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& ra_Px1(C,A) )
=> ra_Px1(C,B) ) ).
fof(rf_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rf(A,C) )
=> rf(B,C) ) ).
fof(rf_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rf(C,A) )
=> rf(C,B) ) ).
fof(rf1_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rf1(A,C) )
=> rf1(B,C) ) ).
fof(rf1_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rf1(C,A) )
=> rf1(C,B) ) ).
fof(rinvF_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rinvF(A,C) )
=> rinvF(B,C) ) ).
fof(rinvF_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rinvF(C,A) )
=> rinvF(C,B) ) ).
fof(rinvF1_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rinvF1(A,C) )
=> rinvF1(B,C) ) ).
fof(rinvF1_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rinvF1(C,A) )
=> rinvF1(C,B) ) ).
fof(rinvS_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rinvS(A,C) )
=> rinvS(B,C) ) ).
fof(rinvS_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rinvS(C,A) )
=> rinvS(C,B) ) ).
fof(rs_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rs(A,C) )
=> rs(B,C) ) ).
fof(rs_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rs(C,A) )
=> rs(C,B) ) ).
fof(xsd_integer_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_integer(A) )
=> xsd_integer(B) ) ).
fof(xsd_string_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_string(A) )
=> xsd_string(B) ) ).
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Equality cSatisfiable
fof(axiom_2,axiom,
! [X] :
( cSatisfiable(X)
<=> ( ? [Y] :
( rf(X,Y)
& cp(Y) )
& ? [Y] :
( rf1(X,Y)
& cpxcomp(Y) ) ) ) ).
%----Equality cp
fof(axiom_3,axiom,
! [X] :
( cp(X)
<=> ~ ? [Y] : ra_Px1(X,Y) ) ).
%----Equality cpxcomp
fof(axiom_4,axiom,
! [X] :
( cpxcomp(X)
<=> ? [Y0] : ra_Px1(X,Y0) ) ).
%----Functional: rf
fof(axiom_5,axiom,
! [X,Y,Z] :
( ( rf(X,Y)
& rf(X,Z) )
=> Y = Z ) ).
%----Functional: rf1
fof(axiom_6,axiom,
! [X,Y,Z] :
( ( rf1(X,Y)
& rf1(X,Z) )
=> Y = Z ) ).
%----Inverse: rinvF
fof(axiom_7,axiom,
! [X,Y] :
( rinvF(X,Y)
<=> rf(Y,X) ) ).
%----Inverse: rinvF1
fof(axiom_8,axiom,
! [X,Y] :
( rinvF1(X,Y)
<=> rf1(Y,X) ) ).
%----Inverse: rinvS
fof(axiom_9,axiom,
! [X,Y] :
( rinvS(X,Y)
<=> rs(Y,X) ) ).
%----Functional: rs
fof(axiom_10,axiom,
! [X,Y,Z] :
( ( rs(X,Y)
& rs(X,Z) )
=> Y = Z ) ).
%----i2003_11_14_17_16_1832
fof(axiom_11,axiom,
cSatisfiable(i2003_11_14_17_16_1832) ).
fof(axiom_12,axiom,
! [X,Y] :
( rs(X,Y)
=> rf(X,Y) ) ).
fof(axiom_13,axiom,
! [X,Y] :
( rs(X,Y)
=> rf1(X,Y) ) ).
%------------------------------------------------------------------------------