TPTP Problem File: KRS034+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS034+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : DL Test: t3a.2
% Version : Especial.
% English :
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : consistent_description-logic-Manifest021 [Bec03]
% Status : Satisfiable
% Rating : 0.00 v7.1.0, 0.25 v7.0.0, 0.00 v6.4.0, 0.20 v6.3.0, 0.40 v6.2.0, 0.33 v6.1.0, 0.40 v6.0.0, 0.25 v5.5.0, 0.33 v5.3.0, 0.00 v4.1.0, 0.33 v4.0.1, 0.25 v3.7.0, 0.00 v3.4.0, 0.40 v3.3.0, 0.00 v3.1.0
% Syntax : Number of formulae : 21 ( 1 unt; 0 def)
% Number of atoms : 105 ( 28 equ)
% Maximal formula atoms : 47 ( 5 avg)
% Number of connectives : 90 ( 6 ~; 20 |; 44 &)
% ( 2 <=>; 18 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 6 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 13 ( 12 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 51 ( 41 !; 10 ?)
% SPC : FOF_SAT_RFO_SEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
% : There are 7,770 possible partitions in the unsatisfiable case
%------------------------------------------------------------------------------
fof(cSatisfiable_substitution_1,axiom,
! [A,B] :
( ( A = B
& cSatisfiable(A) )
=> cSatisfiable(B) ) ).
fof(cowlNothing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlNothing(A) )
=> cowlNothing(B) ) ).
fof(cowlThing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlThing(A) )
=> cowlThing(B) ) ).
fof(cp_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp(A) )
=> cp(B) ) ).
fof(cp1_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp1(A) )
=> cp1(B) ) ).
fof(cp2_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp2(A) )
=> cp2(B) ) ).
fof(cp3_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp3(A) )
=> cp3(B) ) ).
fof(cp4_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp4(A) )
=> cp4(B) ) ).
fof(cp5_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp5(A) )
=> cp5(B) ) ).
fof(rr_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rr(A,C) )
=> rr(B,C) ) ).
fof(rr_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rr(C,A) )
=> rr(C,B) ) ).
fof(xsd_integer_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_integer(A) )
=> xsd_integer(B) ) ).
fof(xsd_string_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_string(A) )
=> xsd_string(B) ) ).
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Equality cSatisfiable
fof(axiom_2,axiom,
! [X] :
( cSatisfiable(X)
<=> ( ? [Y] :
( rr(X,Y)
& cp(Y)
& cp3(Y) )
& ? [Y] :
( rr(X,Y)
& cp1(Y) )
& ? [Y] :
( rr(X,Y)
& cp5(Y) )
& ? [Y] :
( rr(X,Y)
& cp(Y)
& cp1(Y) )
& ? [Y] :
( rr(X,Y)
& cp3(Y) )
& ? [Y] :
( rr(X,Y)
& cp2(Y) )
& ? [Y] :
( rr(X,Y)
& cp(Y)
& cp2(Y) )
& ? [Y] :
( rr(X,Y)
& cp(Y)
& cp5(Y) )
& ! [Y0,Y1,Y2,Y3,Y4,Y5] :
( ( rr(X,Y0)
& rr(X,Y1)
& rr(X,Y2)
& rr(X,Y3)
& rr(X,Y4)
& rr(X,Y5) )
=> ( Y0 = Y1
| Y0 = Y2
| Y0 = Y3
| Y0 = Y4
| Y0 = Y5
| Y1 = Y2
| Y1 = Y3
| Y1 = Y4
| Y1 = Y5
| Y2 = Y3
| Y2 = Y4
| Y2 = Y5
| Y3 = Y4
| Y3 = Y5
| Y4 = Y5 ) )
& ? [Y] :
( rr(X,Y)
& cp4(Y) )
& ? [Y] :
( rr(X,Y)
& cp(Y)
& cp4(Y) ) ) ) ).
%----Super cp1
fof(axiom_3,axiom,
! [X] :
( cp1(X)
=> ~ ( cp3(X)
| cp5(X)
| cp2(X)
| cp4(X) ) ) ).
%----Super cp2
fof(axiom_4,axiom,
! [X] :
( cp2(X)
=> ~ ( cp3(X)
| cp5(X)
| cp4(X) ) ) ).
%----Super cp3
fof(axiom_5,axiom,
! [X] :
( cp3(X)
=> ~ ( cp5(X)
| cp4(X) ) ) ).
%----Super cp4
fof(axiom_6,axiom,
! [X] :
( cp4(X)
=> ~ cp5(X) ) ).
%----i2003_11_14_17_15_408
fof(axiom_7,axiom,
cSatisfiable(i2003_11_14_17_15_408) ).
%------------------------------------------------------------------------------