TPTP Problem File: KRS032+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS032+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : DL Test: t3.1
% Version : Especial.
% English :
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : consistent_description-logic-Manifest018 [Bec03]
% Status : Satisfiable
% Rating : 0.00 v6.1.0, 0.20 v6.0.0, 0.00 v3.4.0, 0.20 v3.3.0, 0.00 v3.1.0
% Syntax : Number of formulae : 21 ( 1 unt; 0 def)
% Number of atoms : 84 ( 19 equ)
% Maximal formula atoms : 26 ( 4 avg)
% Number of connectives : 69 ( 6 ~; 11 |; 32 &)
% ( 2 <=>; 18 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 13 ( 12 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 45 ( 39 !; 6 ?)
% SPC : FOF_SAT_RFO_SEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
% : There are 90 possible partitions in the satisfiable case
%------------------------------------------------------------------------------
fof(cSatisfiable_substitution_1,axiom,
! [A,B] :
( ( A = B
& cSatisfiable(A) )
=> cSatisfiable(B) ) ).
fof(cowlNothing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlNothing(A) )
=> cowlNothing(B) ) ).
fof(cowlThing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlThing(A) )
=> cowlThing(B) ) ).
fof(cp_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp(A) )
=> cp(B) ) ).
fof(cp1_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp1(A) )
=> cp1(B) ) ).
fof(cp2_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp2(A) )
=> cp2(B) ) ).
fof(cp3_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp3(A) )
=> cp3(B) ) ).
fof(cp4_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp4(A) )
=> cp4(B) ) ).
fof(cp5_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp5(A) )
=> cp5(B) ) ).
fof(rr_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rr(A,C) )
=> rr(B,C) ) ).
fof(rr_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rr(C,A) )
=> rr(C,B) ) ).
fof(xsd_integer_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_integer(A) )
=> xsd_integer(B) ) ).
fof(xsd_string_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_string(A) )
=> xsd_string(B) ) ).
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Equality cSatisfiable
fof(axiom_2,axiom,
! [X] :
( cSatisfiable(X)
<=> ( ? [Y] :
( rr(X,Y)
& cp3(Y) )
& ! [Y0,Y1,Y2,Y3] :
( ( rr(X,Y0)
& rr(X,Y1)
& rr(X,Y2)
& rr(X,Y3) )
=> ( Y0 = Y1
| Y0 = Y2
| Y0 = Y3
| Y1 = Y2
| Y1 = Y3
| Y2 = Y3 ) )
& ? [Y] :
( rr(X,Y)
& cp3(Y)
& cp(Y) )
& ? [Y] :
( rr(X,Y)
& cp2(Y) )
& ? [Y] :
( rr(X,Y)
& cp2(Y)
& cp(Y) )
& ? [Y] :
( rr(X,Y)
& cp(Y)
& cp1(Y) )
& ? [Y] :
( rr(X,Y)
& cp1(Y) ) ) ) ).
%----Super cp1
fof(axiom_3,axiom,
! [X] :
( cp1(X)
=> ~ ( cp4(X)
| cp3(X)
| cp5(X)
| cp2(X) ) ) ).
%----Super cp2
fof(axiom_4,axiom,
! [X] :
( cp2(X)
=> ~ ( cp4(X)
| cp3(X)
| cp5(X) ) ) ).
%----Super cp3
fof(axiom_5,axiom,
! [X] :
( cp3(X)
=> ~ ( cp4(X)
| cp5(X) ) ) ).
%----Super cp4
fof(axiom_6,axiom,
! [X] :
( cp4(X)
=> ~ cp5(X) ) ).
%----i2003_11_14_17_15_33836
fof(axiom_7,axiom,
cSatisfiable(i2003_11_14_17_15_33836) ).
%------------------------------------------------------------------------------