TPTP Problem File: KRS020+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS020+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : The union of two classes can be defined using OWL Lite
% Version : Especial.
% English : The union of two classes can be defined using OWL Lite
% restrictions, and owl:intersectionOf.
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : consistent_I5.2-Manifest005 [Bec03]
% Status : Satisfiable
% Rating : 0.00 v4.1.0, 0.25 v4.0.1, 0.00 v3.1.0
% Syntax : Number of formulae : 11 ( 0 unt; 0 def)
% Number of atoms : 29 ( 0 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 21 ( 3 ~; 0 |; 5 &)
% ( 8 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 15 ( 15 usr; 0 prp; 1-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 19 ( 14 !; 5 ?)
% SPC : FOF_SAT_RFO_NEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Equality cA
fof(axiom_2,axiom,
! [X] :
( cA(X)
<=> ? [Y] :
( rq(X,Y)
& cowlThing(Y) ) ) ).
%----Equality cAorB
fof(axiom_3,axiom,
! [X] :
( cAorB(X)
<=> ? [Y] :
( rs(X,Y)
& cowlThing(Y) ) ) ).
%----Equality cB
fof(axiom_4,axiom,
! [X] :
( cB(X)
<=> ? [Y] :
( rr(X,Y)
& cowlThing(Y) ) ) ).
%----Super cNothing
fof(axiom_5,axiom,
! [X] :
( cNothing(X)
=> ~ ? [Y] : rp(X,Y) ) ).
%----Super cNothing
fof(axiom_6,axiom,
! [X] :
( cNothing(X)
=> ? [Y0] : rp(X,Y0) ) ).
%----Equality cnotA
fof(axiom_7,axiom,
! [X] :
( cnotA(X)
<=> ! [Y] :
( rq(X,Y)
=> cNothing(Y) ) ) ).
%----Equality cnotAorB
fof(axiom_8,axiom,
! [X] :
( cnotAorB(X)
<=> ! [Y] :
( rs(X,Y)
=> cNothing(Y) ) ) ).
%----Equality cnotAorB
fof(axiom_9,axiom,
! [X] :
( cnotAorB(X)
<=> ( cnotB(X)
& cnotA(X) ) ) ).
%----Equality cnotB
fof(axiom_10,axiom,
! [X] :
( cnotB(X)
<=> ! [Y] :
( rr(X,Y)
=> cNothing(Y) ) ) ).
%------------------------------------------------------------------------------