TPTP Problem File: KRS006-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : KRS006-1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Knowledge Representation
% Problem : Paramasivam problem T-Box 2b
% Version : Especial.
% English : Inconsistent concept definition with disjoint concepts.
% Refs : [PP95] Paramasivam & Plaisted (1995), Automated Deduction Tec
% Source : [PP95]
% Names : Problem 2(b) [PP95]
% Status : Satisfiable
% Rating : 0.00 v3.1.0, 0.14 v2.7.0, 0.00 v2.1.0
% Syntax : Number of clauses : 27 ( 5 unt; 5 nHn; 23 RR)
% Number of literals : 59 ( 0 equ; 28 neg)
% Maximal clause size : 6 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 9 ( 9 usr; 0 prp; 1-2 aty)
% Number of functors : 9 ( 9 usr; 1 con; 0-1 aty)
% Number of variables : 30 ( 0 sgn)
% SPC : CNF_SAT_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
cnf(clause_1,negated_conjecture,
e(exist) ).
cnf(clause_2,negated_conjecture,
r1most(exist) ).
cnf(clause_3,negated_conjecture,
r(exist,u4r1(exist)) ).
cnf(clause_4,negated_conjecture,
d(u4r2(exist)) ).
cnf(clause_5,negated_conjecture,
c(u4r1(exist)) ).
cnf(clause_6,axiom,
( s2least(X1)
| ~ c(X1) ) ).
cnf(clause_7,axiom,
( c(X1)
| ~ s2least(X1) ) ).
cnf(clause_8,axiom,
( ~ s2least(X1)
| ~ equalish(u1r2(X1),u1r1(X1)) ) ).
cnf(clause_9,axiom,
( s(X1,u1r1(X1))
| ~ s2least(X1) ) ).
cnf(clause_10,axiom,
( s(X1,u1r2(X1))
| ~ s2least(X1) ) ).
cnf(clause_11,axiom,
( s2least(X1)
| equalish(X3,X2)
| ~ s(X1,X3)
| ~ s(X1,X2) ) ).
cnf(clause_12,axiom,
( s1most(X1)
| ~ d(X1) ) ).
cnf(clause_13,axiom,
( d(X1)
| ~ s1most(X1) ) ).
cnf(clause_14,axiom,
( equalish(X3,X2)
| ~ s1most(X1)
| ~ s(X1,X3)
| ~ s(X1,X2) ) ).
cnf(clause_15,axiom,
( s1most(X1)
| ~ equalish(u3r2(X1),u3r1(X1)) ) ).
cnf(clause_16,axiom,
( s1most(X1)
| s(X1,u3r1(X1)) ) ).
cnf(clause_17,axiom,
( s1most(X1)
| s(X1,u3r2(X1)) ) ).
cnf(clause_18,axiom,
( d(u4r2(X1))
| ~ e(X1) ) ).
cnf(clause_19,axiom,
( r(X1,u4r2(X1))
| ~ e(X1) ) ).
cnf(clause_20,axiom,
( c(u4r1(X1))
| ~ e(X1) ) ).
cnf(clause_21,axiom,
( r(X1,u4r1(X1))
| ~ e(X1) ) ).
cnf(clause_22,axiom,
( r1most(X1)
| ~ e(X1) ) ).
cnf(clause_23,axiom,
( e(X1)
| ~ r1most(X1)
| ~ r(X1,X2)
| ~ c(X2)
| ~ r(X1,X3)
| ~ d(X3) ) ).
cnf(clause_24,axiom,
( equalish(X3,X2)
| ~ r1most(X1)
| ~ r(X1,X3)
| ~ r(X1,X2) ) ).
cnf(clause_25,axiom,
( r1most(X1)
| ~ equalish(u5r2(X1),u5r1(X1)) ) ).
cnf(clause_26,axiom,
( r1most(X1)
| r(X1,u5r1(X1)) ) ).
cnf(clause_27,axiom,
( r1most(X1)
| r(X1,u5r2(X1)) ) ).
%--------------------------------------------------------------------------