TPTP Problem File: KRS005-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : KRS005-1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Knowledge Representation
% Problem : Paramasivam problem T-Box 2a
% Version : Especial.
% English : Inconsistent concept definition; e exists.
% Refs : [PP95] Paramasivam & Plaisted (1995), Automated Deduction Tec
% Source : [PP95]
% Names : Problem 2(a) [PP95]
% Status : Satisfiable
% Rating : 0.00 v3.1.0, 0.14 v2.7.0, 0.00 v2.2.1, 0.25 v2.2.0, 0.33 v2.1.0
% Syntax : Number of clauses : 8 ( 1 unt; 2 nHn; 8 RR)
% Number of literals : 24 ( 0 equ; 14 neg)
% Maximal clause size : 6 ( 3 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 14 ( 0 sgn)
% SPC : CNF_SAT_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
cnf(clause_1,negated_conjecture,
e(exist) ).
cnf(clause_2,axiom,
( equalish(X5,u0r4(X1))
| ~ e(X1)
| ~ r(X1,X5) ) ).
cnf(clause_3,axiom,
( r(X1,u0r4(X1))
| ~ e(X1) ) ).
cnf(clause_4,axiom,
( ~ e(X1)
| ~ equalish(u0r3(X1),u0r2(X1)) ) ).
cnf(clause_5,axiom,
( r(X1,u0r2(X1))
| ~ e(X1) ) ).
cnf(clause_6,axiom,
( r(X1,u0r3(X1))
| ~ e(X1) ) ).
cnf(clause_7,axiom,
( e(X1)
| equalish(X3,X2)
| ~ r(X1,X3)
| ~ r(X1,X2)
| ~ r(X1,X4)
| ~ equalish(u0r1(X4,X1),X4) ) ).
cnf(clause_8,axiom,
( e(X1)
| equalish(X3,X2)
| r(X1,u0r1(X4,X1))
| ~ r(X1,X3)
| ~ r(X1,X2)
| ~ r(X1,X4) ) ).
%--------------------------------------------------------------------------