TPTP Problem File: KLE162+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KLE162+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Kleene Algebra (Demonic Refinement Algebra)
% Problem : Part 1 of Back's atomicity refinement theorem
% Version : [Hoe08] axioms.
% English : Back's atomicity refinement theore is proved up to the
% reconstruction of concurrecy.
% Refs : [Bac89] Back (1989), A Method for Refining Atomicity in Parall
% : [vW02] von Wright (2002), From Kleene Algebra to Refinement A
% : [HS07] Hoefner & Struth (2007), Automated Reasoning in Kleene
% : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source : [Hoe08]
% Names :
% Status : Theorem
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 19 ( 14 unt; 0 def)
% Number of atoms : 31 ( 17 equ)
% Maximal formula atoms : 9 ( 1 avg)
% Number of connectives : 12 ( 0 ~; 0 |; 7 &)
% ( 1 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 4 avg)
% Maximal term depth : 7 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 2 con; 0-2 aty)
% Number of variables : 40 ( 40 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%---Include axioms for demonic refinement algebra
include('Axioms/KLE004+0.ax').
%------------------------------------------------------------------------------
fof(goals,conjecture,
! [X0,X1,X2,X3,X4,X5] :
( ( leq(X0,multiplication(X3,X0))
& leq(multiplication(X4,X1),multiplication(X1,X4))
& leq(multiplication(addition(X0,addition(X4,X1)),X2),multiplication(X2,addition(X0,addition(X4,X1))))
& leq(multiplication(X4,X3),multiplication(X3,X4))
& star(X4) = strong_iteration(X4)
& leq(multiplication(X3,X2),multiplication(X2,X3))
& multiplication(X3,X1) = zero
& leq(X5,multiplication(X5,X3)) )
=> leq(multiplication(X5,multiplication(strong_iteration(addition(addition(X0,addition(X4,X1)),X2)),X3)),multiplication(multiplication(X5,multiplication(strong_iteration(X2),X3)),multiplication(multiplication(strong_iteration(X4),X3),strong_iteration(multiplication(multiplication(X0,strong_iteration(X1)),multiplication(X3,strong_iteration(X4))))))) ) ).
%------------------------------------------------------------------------------