TPTP Problem File: KLE161+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KLE161+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Kleene Algebra (Demonic Refinement Algebra)
% Problem : Data refinement
% Version : [Hoe08] axioms.
% English : The first hypothesis says that b cannot loop infinitely. The
% second hypothesis says that a is data refined by aa w.r.t. upward
% simulation z. By the third hypothesis, 1 is data refined by b.
% The fourth and fifth condition expresses the standard data
% refinement of initialisations and finalisations.
% Refs : [BvW98] Back & von Wright (998), Refinement Calculus: A System
% : [vW02] von Wright (2002), From Kleene Algebra to Refinement A
% : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source : [Hoe08]
% Names :
% Status : Theorem
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 19 ( 14 unt; 0 def)
% Number of atoms : 28 ( 16 equ)
% Maximal formula atoms : 6 ( 1 avg)
% Number of connectives : 9 ( 0 ~; 0 |; 4 &)
% ( 1 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 4 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 2 con; 0-2 aty)
% Number of variables : 42 ( 42 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%---Include axioms for demonic refinement algebra
include('Axioms/KLE004+0.ax').
%------------------------------------------------------------------------------
fof(goals,conjecture,
! [X0,X1,X2,X3,X4,X5,X6,X7] :
( ( strong_iteration(X7) = star(X7)
& leq(multiplication(X0,X6),multiplication(X5,X0))
& leq(multiplication(X0,X7),X0)
& leq(X2,multiplication(X1,X0))
& leq(multiplication(X0,X4),X3) )
=> leq(multiplication(X2,multiplication(strong_iteration(addition(X6,X7)),X4)),multiplication(X1,multiplication(strong_iteration(X5),X3))) ) ).
%------------------------------------------------------------------------------