TPTP Problem File: KLE157-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KLE157-10 : TPTP v9.0.0. Released v7.3.0.
% Domain : Puzzles
% Problem : Semicommuation law of finite iteration
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 1.00 v7.3.0
% Syntax : Number of clauses : 24 ( 24 unt; 0 nHn; 2 RR)
% Number of literals : 24 ( 24 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 13 ( 13 usr; 5 con; 0-4 aty)
% Number of variables : 45 ( 4 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from KLE157+1 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq3(A,A,B,C) = B ).
cnf(ifeq_axiom_001,axiom,
ifeq2(A,A,B,C) = B ).
cnf(ifeq_axiom_002,axiom,
ifeq(A,A,B,C) = B ).
cnf(additive_commutativity,axiom,
addition(A,B) = addition(B,A) ).
cnf(additive_associativity,axiom,
addition(A,addition(B,C)) = addition(addition(A,B),C) ).
cnf(additive_identity,axiom,
addition(A,zero) = A ).
cnf(idempotence,axiom,
addition(A,A) = A ).
cnf(multiplicative_associativity,axiom,
multiplication(A,multiplication(B,C)) = multiplication(multiplication(A,B),C) ).
cnf(multiplicative_right_identity,axiom,
multiplication(A,one) = A ).
cnf(multiplicative_left_identity,axiom,
multiplication(one,A) = A ).
cnf(distributivity1,axiom,
multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)) ).
cnf(distributivity2,axiom,
multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)) ).
cnf(left_annihilation,axiom,
multiplication(zero,A) = zero ).
cnf(star_unfold1,axiom,
addition(one,multiplication(A,star(A))) = star(A) ).
cnf(star_unfold2,axiom,
addition(one,multiplication(star(A),A)) = star(A) ).
cnf(star_induction1,axiom,
ifeq(leq(addition(multiplication(A,C),B),C),true,leq(multiplication(star(A),B),C),true) = true ).
cnf(star_induction2,axiom,
ifeq(leq(addition(multiplication(C,A),B),C),true,leq(multiplication(B,star(A)),C),true) = true ).
cnf(infty_unfold1,axiom,
strong_iteration(A) = addition(multiplication(A,strong_iteration(A)),one) ).
cnf(infty_coinduction,axiom,
ifeq(leq(C,addition(multiplication(A,C),B)),true,leq(C,multiplication(strong_iteration(A),B)),true) = true ).
cnf(isolation,axiom,
strong_iteration(A) = addition(star(A),multiplication(strong_iteration(A),zero)) ).
cnf(order_1,axiom,
ifeq2(leq(A,B),true,addition(A,B),B) = B ).
cnf(order,axiom,
ifeq3(addition(A,B),B,leq(A,B),true) = true ).
cnf(goals,negated_conjecture,
leq(multiplication(sK2_goals_X0,sK1_goals_X1),multiplication(sK1_goals_X1,sK2_goals_X0)) = true ).
cnf(goals_1,negated_conjecture,
strong_iteration(addition(sK1_goals_X1,sK2_goals_X0)) != multiplication(strong_iteration(sK1_goals_X1),strong_iteration(sK2_goals_X0)) ).
%------------------------------------------------------------------------------