TPTP Problem File: KLE156+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KLE156+2 : TPTP v9.0.0. Released v4.0.0.
% Domain : Kleene Algebra (Demonic Refinement Algebra)
% Problem : Semicommuation law of finite iteration
% Version : [Hoe08] axioms.
% English : If x semicommutes over y every finite sequence of x's and y's can
% be rearranged to a finite sequence of x's followed by finite
% sequence of y's.
% Refs : [vW02] von Wright (2002), From Kleene Algebra to Refinement A
% : [Coh00] Cohen (2000), Separation and Reduction
% : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source : [Hoe08]
% Names :
% Status : Theorem
% Rating : 0.97 v9.0.0, 1.00 v6.3.0, 0.96 v6.2.0, 1.00 v4.0.0
% Syntax : Number of formulae : 19 ( 14 unt; 0 def)
% Number of atoms : 25 ( 15 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 6 ( 0 ~; 0 |; 1 &)
% ( 1 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 2 con; 0-2 aty)
% Number of variables : 36 ( 36 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%---Include axioms for demonic refinement algebra
include('Axioms/KLE004+0.ax').
%------------------------------------------------------------------------------
fof(goals,conjecture,
! [X0,X1] :
( ( leq(multiplication(X0,X1),multiplication(X1,X0))
=> leq(star(addition(X1,X0)),multiplication(star(X1),star(X0))) )
& leq(multiplication(star(X1),star(X0)),star(addition(X1,X0))) ) ).
%------------------------------------------------------------------------------