TPTP Problem File: KLE133+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KLE133+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Kleene Algebra (Modal with Divergence)
% Problem : Loeb's formula and wellfoundedness
% Version : [Hoe08] axioms.
% English : Every diamond transitive wellfounded element satisfies Loeb's
% formula.
% Refs : [DS08] Desharnais & Struth (2008), Modal Semirings Revisited
% : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source : [Hoe08]
% Names :
% Status : Theorem
% Rating : 0.39 v9.0.0, 0.42 v8.2.0, 0.39 v8.1.0, 0.42 v7.5.0, 0.50 v7.4.0, 0.33 v7.3.0, 0.41 v7.2.0, 0.45 v7.1.0, 0.39 v7.0.0, 0.37 v6.4.0, 0.38 v6.3.0, 0.33 v6.2.0, 0.44 v6.1.0, 0.53 v6.0.0, 0.52 v5.5.0, 0.59 v5.4.0, 0.61 v5.3.0, 0.67 v5.2.0, 0.55 v5.1.0, 0.57 v5.0.0, 0.50 v4.1.0, 0.48 v4.0.1, 0.52 v4.0.0
% Syntax : Number of formulae : 29 ( 26 unt; 0 def)
% Number of atoms : 33 ( 32 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 4 ( 0 ~; 0 |; 1 &)
% ( 1 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 16 ( 16 usr; 2 con; 0-2 aty)
% Number of variables : 51 ( 51 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : This is the other direction of a modal correspondence proof.
% : Equational encoding
%------------------------------------------------------------------------------
%---Include axioms for modal Kleene algebra with divergence
include('Axioms/KLE001+0.ax').
%---Include axioms for Boolean domain/codomain
include('Axioms/KLE001+4.ax').
%---Include axioms for diamond and boxes
include('Axioms/KLE001+6.ax').
%---Include axioms for divergence
include('Axioms/KLE001+7.ax').
%------------------------------------------------------------------------------
fof(goals,conjecture,
! [X0] :
( ( ! [X1] : addition(domain(X1),forward_diamond(star(X0),domain_difference(domain(X1),forward_diamond(X0,domain(X1))))) = forward_diamond(star(X0),domain_difference(domain(X1),forward_diamond(X0,domain(X1))))
& ! [X2] : forward_diamond(X0,forward_diamond(X0,domain(X2))) = forward_diamond(X0,domain(X2)) )
=> ! [X3] : addition(forward_diamond(X0,domain(X3)),forward_diamond(star(X0),domain_difference(domain(X3),forward_diamond(X0,domain(X3))))) = forward_diamond(star(X0),domain_difference(domain(X3),forward_diamond(X0,domain(X3)))) ) ).
%------------------------------------------------------------------------------