TPTP Problem File: KLE125+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KLE125+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Kleene Algebra (Modal with Divergence)
% Problem : Quasicommutation theorem
% Version : [Hoe08] axioms.
% English : If x quasicommutes over y, then x+y terminates if x and y
% individually do.
% Refs : [BD86] Bachmair & Dershowitz (1986), Commutation, Transformat
% : [Str07] Struth (2007), Reasoning Automatically about Terminati
% : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source : [Hoe08]
% Names :
% Status : Theorem
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 29 ( 26 unt; 0 def)
% Number of atoms : 33 ( 32 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 4 ( 0 ~; 0 |; 0 &)
% ( 2 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 16 ( 16 usr; 2 con; 0-2 aty)
% Number of variables : 49 ( 49 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : An abstract version of a theorem in [BD86].
% : Equational encoding
%------------------------------------------------------------------------------
%---Include axioms for modal Kleene algebra with divergence
include('Axioms/KLE001+0.ax').
%---Include axioms for Boolean domain/codomain
include('Axioms/KLE001+4.ax').
%---Include axioms for diamond and boxes
include('Axioms/KLE001+6.ax').
%---Include axioms for divergence
include('Axioms/KLE001+7.ax').
%------------------------------------------------------------------------------
fof(goals,conjecture,
! [X0,X1] :
( addition(multiplication(X0,X1),multiplication(X1,star(addition(X1,X0)))) = multiplication(X1,star(addition(X1,X0)))
=> ( divergence(addition(X1,X0)) = zero
<=> addition(divergence(X1),divergence(X0)) = zero ) ) ).
%------------------------------------------------------------------------------