TPTP Problem File: KLE123+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KLE123+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Kleene Algebra (Modal)
% Problem : Validity of while rule
% Version : [Hoe08] axioms.
% English : The while rule of Hoare logic is valid with respect to the Kleene
% algebra semantics.
% Refs : [DMS04] Desharnais et al. (2004), Termination in Modal Kleene
% : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source : [Hoe08]
% Names :
% Status : Theorem
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 32 ( 28 unt; 0 def)
% Number of atoms : 36 ( 29 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 4 ( 0 ~; 0 |; 0 &)
% ( 1 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 16 ( 16 usr; 2 con; 0-2 aty)
% Number of variables : 56 ( 56 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Equational encoding
%------------------------------------------------------------------------------
%---Include axioms for modal Kleene algebra
include('Axioms/KLE002+0.ax').
%---Include axioms for Boolean domain/codomain
include('Axioms/KLE001+4.ax').
%---Include axioms for diamond and boxes
include('Axioms/KLE001+6.ax').
%------------------------------------------------------------------------------
fof(while_do_definition,axiom,
! [X0,X1] : while_do(X1,X0) = multiplication(star(multiplication(domain(X1),X0)),antidomain(X1)) ).
fof(goals,conjecture,
! [X0,X1,X2] :
( addition(backward_diamond(X0,multiplication(domain(X1),domain(X2))),domain(X2)) = domain(X2)
=> addition(backward_diamond(while_do(X1,X0),domain(X2)),domain(X2)) = domain(X2) ) ).
%------------------------------------------------------------------------------