TPTP Problem File: KLE109+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KLE109+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Kleene Algebra (Modal Semirings)
% Problem : Forward diamonds and backward boxes satisfy a cancellation law
% Version : [Hoe08] axioms.
% English :
% Refs : [DMS04] Desharnais et al. (2004), Termination in Modal Kleene
% : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source : [Hoe08]
% Names :
% Status : Theorem
% Rating : 0.67 v9.0.0, 0.75 v7.4.0, 0.73 v7.3.0, 0.76 v7.2.0, 0.79 v7.1.0, 0.74 v7.0.0, 0.80 v6.4.0, 0.77 v6.3.0, 0.75 v6.2.0, 0.84 v6.1.0, 0.93 v6.0.0, 0.91 v5.5.0, 0.93 v5.2.0, 0.90 v5.0.0, 0.92 v4.1.0, 0.91 v4.0.1, 0.87 v4.0.0
% Syntax : Number of formulae : 27 ( 26 unt; 0 def)
% Number of atoms : 28 ( 27 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 1 ( 0 ~; 0 |; 0 &)
% ( 1 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 3 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 14 ( 14 usr; 2 con; 0-2 aty)
% Number of variables : 45 ( 45 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Equational encoding
%------------------------------------------------------------------------------
%---Include axioms for modal semiring
include('Axioms/KLE001+0.ax').
%---Include axioms for Boolean domain/codomain
include('Axioms/KLE001+4.ax').
%---Include axioms for diamond and boxes
include('Axioms/KLE001+6.ax').
%------------------------------------------------------------------------------
fof(goals,conjecture,
! [X0,X1] : addition(forward_diamond(X0,backward_box(X0,domain(X1))),domain(X1)) = domain(X1) ).
%------------------------------------------------------------------------------