TPTP Problem File: KLE087+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KLE087+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Kleene Algebra (Domain Semirings)
% Problem : Domain is additive
% Version : [Hoe08] axioms.
% English :
% Refs : [DS08] Desharnais & Struth (2008), Modal Semirings Revisited
% : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source : [Hoe08]
% Names :
% Status : Theorem
% Rating : 0.82 v9.0.0, 0.83 v8.2.0, 0.81 v7.5.0, 0.84 v7.4.0, 0.83 v7.3.0, 0.90 v7.2.0, 0.93 v7.1.0, 0.96 v7.0.0, 0.90 v6.4.0, 0.88 v6.3.0, 0.83 v6.2.0, 0.88 v6.1.0, 0.90 v6.0.0, 0.91 v5.5.0, 0.93 v5.3.0, 0.89 v5.2.0, 0.85 v5.1.0, 0.90 v5.0.0, 0.92 v4.1.0, 0.91 v4.0.0
% Syntax : Number of formulae : 21 ( 20 unt; 0 def)
% Number of atoms : 22 ( 21 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 1 ( 0 ~; 0 |; 0 &)
% ( 1 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 3 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 2 con; 0-2 aty)
% Number of variables : 34 ( 34 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Needed to show that two axiomatisations of Boolean domain
% semirings are equivalent.
% : Equational encoding
%------------------------------------------------------------------------------
%---Include axioms for domain semiring (Boolean test algebra)
include('Axioms/KLE001+0.ax').
%---Include axioms for Boolean domain/codomain
include('Axioms/KLE001+4.ax').
%------------------------------------------------------------------------------
fof(goals,conjecture,
! [X0,X1] : domain(addition(X0,X1)) = addition(domain(X0),domain(X1)) ).
%------------------------------------------------------------------------------