TPTP Problem File: KLE082+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KLE082+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Kleene Algebra (Domain Semirings)
% Problem : Antidomain is local with respect to multiplication
% Version : [Hoe08] axioms.
% English :
% Refs : [DS08] Desharnais & Struth (2008), Modal Semirings Revisited
% : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source : [Hoe08]
% Names :
% Status : Theorem
% Rating : 0.45 v9.0.0, 0.39 v8.2.0, 0.44 v8.1.0, 0.39 v7.5.0, 0.47 v7.4.0, 0.30 v7.3.0, 0.38 v7.2.0, 0.41 v7.1.0, 0.35 v7.0.0, 0.40 v6.4.0, 0.38 v6.2.0, 0.48 v6.1.0, 0.63 v6.0.0, 0.57 v5.5.0, 0.63 v5.4.0, 0.64 v5.3.0, 0.67 v5.2.0, 0.55 v5.1.0, 0.57 v5.0.0, 0.54 v4.1.0, 0.52 v4.0.1, 0.57 v4.0.0
% Syntax : Number of formulae : 18 ( 16 unt; 0 def)
% Number of atoms : 21 ( 20 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 3 ( 0 ~; 0 |; 1 &)
% ( 1 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 3 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 2 con; 0-2 aty)
% Number of variables : 31 ( 31 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Needed to show that two axiomatisations of Boolean domain
% semirings are equivalent.
% : Equational encoding
%------------------------------------------------------------------------------
%---Include axioms for domain semiring
include('Axioms/KLE001+0.ax').
%---Include axioms for domain
include('Axioms/KLE001+5.ax').
%------------------------------------------------------------------------------
fof(goals,conjecture,
! [X0,X1] :
( ! [X2] :
( addition(domain(X2),antidomain(X2)) = one
& multiplication(domain(X2),antidomain(X2)) = zero )
=> addition(antidomain(multiplication(X0,X1)),antidomain(multiplication(X0,domain(X1)))) = antidomain(multiplication(X0,domain(X1))) ) ).
%------------------------------------------------------------------------------