TPTP Problem File: KLE042+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KLE042+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Kleene Algebra
% Problem : Star sliding
% Version : [Hoe08] axioms.
% English : Two ways of grouping an alternation of x's and y's that starts
% and ends with x.
% Refs : [Koz94] Kozen (1994), A Completeness Theorem for Kleene Algebr
% : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source : [Hoe08]
% Names :
% Status : Theorem
% Rating : 0.85 v9.0.0, 0.89 v8.2.0, 0.92 v8.1.0, 0.94 v7.5.0, 0.97 v7.4.0, 0.93 v7.1.0, 0.91 v7.0.0, 0.90 v6.4.0, 0.92 v6.2.0, 1.00 v4.0.0
% Syntax : Number of formulae : 17 ( 14 unt; 0 def)
% Number of atoms : 20 ( 13 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 3 ( 0 ~; 0 |; 0 &)
% ( 1 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 32 ( 32 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Equational encoding
%------------------------------------------------------------------------------
%---Include axioms for Kleene algebra
include('Axioms/KLE002+0.ax').
%------------------------------------------------------------------------------
fof(goals,conjecture,
! [X0,X1] : multiplication(star(multiplication(X0,X1)),X0) = multiplication(X0,star(multiplication(X1,X0))) ).
%------------------------------------------------------------------------------