TPTP Problem File: ITP417^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP417^1 : TPTP v9.2.1. Released v9.2.0.
% Domain : Interactive Theorem Proving
% Problem : ROCQ axioms left right
% Version : Especial.
% English :
% Refs : [RRB23] Rothgang et al. (2023), Theorem Proving in Dependently
% : [Rot25] Rothgang (2025), Email to Geoff Sutcliffe
% : [RK+25] Ranalter et al. (2025), The Dependently Typed Higher-O
% Source : [Rot25]
% Names : ROCQ/fin_lr.p [Rot25]
% Status : Theorem
% Rating : ? v9.2.0
% Syntax : Number of formulae : 18 ( 7 unt; 9 typ; 0 def)
% Number of atoms : 7 ( 7 equ; 0 cnn)
% Maximal formula atoms : 1 ( 0 avg)
% Number of connectives : 104 ( 0 ~; 0 |; 2 &; 99 @)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 5 avg)
% Number of types : 2 ( 1 usr)
% Number of type decls : 9 ( 0 !>P; 6 !>D)
% Number of type conns : 9 ( 9 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 1 con; 0-3 aty)
% Number of variables : 37 ( 0 ^; 29 !; 0 ?; 37 :)
% ( 8 !>; 0 ?*; 0 @-; 0 @+)
% SPC : DH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
nat: $tType ).
thf(zero_type,type,
zero: nat ).
thf(suc_type,type,
suc: nat > nat ).
thf(plus_type,type,
plus: nat > nat > nat ).
thf(plus_suc,axiom,
! [X: nat,Y: nat] :
( ( plus @ ( suc @ X ) @ Y )
= ( suc @ ( plus @ X @ Y ) ) ) ).
thf(plus_zero,axiom,
! [X: nat] :
( ( plus @ X @ zero )
= X ) ).
thf(fin_type,type,
fin: nat > $tType ).
thf(f1_type,type,
f1:
!>[A: nat] : ( fin @ ( suc @ A ) ) ).
thf(fs_type,type,
fs:
!>[A: nat] : ( ( fin @ A ) > ( fin @ ( suc @ A ) ) ) ).
thf(fin_case,axiom,
! [P: !>[N: nat] : ( ( fin @ ( suc @ N ) ) > $o )] :
( ( ! [N: nat] : ( P @ N @ ( f1 @ N ) )
& ! [N: nat,F: fin @ N] : ( P @ N @ ( fs @ N @ F ) ) )
=> ! [N: nat,F: fin @ ( suc @ N )] : ( P @ N @ F ) ) ).
thf(fin_rec,axiom,
! [P: !>[N: nat] : ( ( fin @ ( suc @ N ) ) > $o )] :
( ( ! [N: nat] : ( P @ N @ ( f1 @ N ) )
& ! [N: nat,F: fin @ ( suc @ N )] :
( ( P @ N @ F )
=> ( P @ ( suc @ N ) @ ( fs @ ( suc @ N ) @ F ) ) ) )
=> ! [N: nat,F: fin @ ( suc @ N )] : ( P @ N @ F ) ) ).
thf(l_type,type,
l:
!>[A: nat,B: nat] : ( ( fin @ A ) > ( fin @ ( plus @ A @ B ) ) ) ).
thf(l_f1,axiom,
! [M: nat,N: nat] :
( ( l @ ( suc @ M ) @ N @ ( f1 @ M ) )
= ( f1 @ ( plus @ M @ N ) ) ) ).
thf(l_fs,axiom,
! [M: nat,N: nat,P: fin @ M] :
( ( l @ M @ N @ ( fs @ M @ P ) )
= ( fs @ ( plus @ M @ N ) @ ( l @ M @ N @ P ) ) ) ).
thf(r_type,type,
r:
!>[A: nat,B: nat] : ( ( fin @ A ) > ( fin @ ( plus @ A @ B ) ) ) ).
thf(r_0,axiom,
! [M: nat,F: fin @ M] :
( ( r @ M @ zero @ F )
= F ) ).
thf(r_s,axiom,
! [M: nat,N: nat,F: fin @ M] :
( ( r @ M @ ( suc @ N ) @ F )
= ( fs @ ( plus @ M @ N ) @ ( r @ M @ N @ F ) ) ) ).
thf(l_r_neq,conjecture,
! [M: nat,N: nat,P: fin @ N,Q: fin @ M] :
( ( l @ N @ M @ P )
= ( r @ M @ N @ Q ) ) ).
%------------------------------------------------------------------------------