TPTP Problem File: ITP416^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP416^1 : TPTP v9.2.1. Released v9.2.0.
% Domain : Interactive Theorem Proving
% Problem : ROCQ axioms right
% Version : Especial.
% English :
% Refs : [RRB23] Rothgang et al. (2023), Theorem Proving in Dependently
% : [Rot25] Rothgang (2025), Email to Geoff Sutcliffe
% : [RK+25] Ranalter et al. (2025), The Dependently Typed Higher-O
% Source : [Rot25]
% Names : ROCQ/fin_r.p [Rot25]
% Status : Theorem
% Rating : ? v9.2.0
% Syntax : Number of formulae : 15 ( 4 unt; 8 typ; 0 def)
% Number of atoms : 6 ( 6 equ; 0 cnn)
% Maximal formula atoms : 2 ( 0 avg)
% Number of connectives : 80 ( 0 ~; 0 |; 2 &; 74 @)
% ( 0 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 5 avg)
% Number of types : 2 ( 1 usr)
% Number of type decls : 8 ( 0 !>P; 5 !>D)
% Number of type conns : 8 ( 8 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 7 usr; 1 con; 0-3 aty)
% Number of variables : 30 ( 0 ^; 24 !; 0 ?; 30 :)
% ( 6 !>; 0 ?*; 0 @-; 0 @+)
% SPC : DH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
nat: $tType ).
thf(zero_type,type,
zero: nat ).
thf(suc_type,type,
suc: nat > nat ).
thf(plus_type,type,
plus: nat > nat > nat ).
thf(plus_suc,axiom,
! [X: nat,Y: nat] :
( ( plus @ ( suc @ X ) @ Y )
= ( suc @ ( plus @ X @ Y ) ) ) ).
thf(plus_zero,axiom,
! [X: nat] :
( ( plus @ X @ zero )
= X ) ).
thf(fin_type,type,
fin: nat > $tType ).
thf(f1_type,type,
f1:
!>[A: nat] : ( fin @ ( suc @ A ) ) ).
thf(fs_type,type,
fs:
!>[A: nat] : ( ( fin @ A ) > ( fin @ ( suc @ A ) ) ) ).
thf(fin_case,axiom,
! [P: !>[N: nat] : ( ( fin @ ( suc @ N ) ) > $o )] :
( ( ! [N: nat] : ( P @ N @ ( f1 @ N ) )
& ! [N: nat,F: fin @ N] : ( P @ N @ ( fs @ N @ F ) ) )
=> ! [N: nat,F: fin @ ( suc @ N )] : ( P @ N @ F ) ) ).
thf(fin_rec,axiom,
! [P: !>[N: nat] : ( ( fin @ ( suc @ N ) ) > $o )] :
( ( ! [N: nat] : ( P @ N @ ( f1 @ N ) )
& ! [N: nat,F: fin @ ( suc @ N )] :
( ( P @ N @ F )
=> ( P @ ( suc @ N ) @ ( fs @ ( suc @ N ) @ F ) ) ) )
=> ! [N: nat,F: fin @ ( suc @ N )] : ( P @ N @ F ) ) ).
thf(r_type,type,
r:
!>[A: nat,B: nat] : ( ( fin @ A ) > ( fin @ ( plus @ A @ B ) ) ) ).
thf(r_0,axiom,
! [M: nat,F: fin @ M] :
( ( r @ M @ zero @ F )
= F ) ).
thf(r_s,axiom,
! [M: nat,N: nat,F: fin @ M] :
( ( r @ M @ ( suc @ N ) @ F )
= ( fs @ ( plus @ M @ N ) @ ( r @ M @ N @ F ) ) ) ).
thf(r_inj,conjecture,
! [M: nat,N: nat,P: fin @ M,Q: fin @ M] :
( ( ( r @ M @ N @ P )
= ( r @ M @ N @ Q ) )
=> ( P = Q ) ) ).
%------------------------------------------------------------------------------