TPTP Problem File: ITP283^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP283^1 : TPTP v9.0.0. Released v8.1.0.
% Domain : Interactive Theorem Proving
% Problem : Sledgehammer problem VEBT_BuildupMemImp 00582_027779
% Version : [Des22] axioms.
% English :
% Refs : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
% : [Des22] Desharnais (2022), Email to Geoff Sutcliffe
% Source : [Des22]
% Names : 0093_VEBT_BuildupMemImp_00582_027779 [Des22]
% Status : Theorem
% Rating : 1.00 v8.1.0
% Syntax : Number of formulae : 11116 (5797 unt; 875 typ; 0 def)
% Number of atoms : 29148 (13072 equ; 0 cnn)
% Maximal formula atoms : 71 ( 2 avg)
% Number of connectives : 132509 (2645 ~; 465 |;1848 &;116500 @)
% ( 0 <=>;11051 =>; 0 <=; 0 <~>)
% Maximal formula depth : 39 ( 6 avg)
% Number of types : 60 ( 59 usr)
% Number of type conns : 4061 (4061 >; 0 *; 0 +; 0 <<)
% Number of symbols : 819 ( 816 usr; 42 con; 0-8 aty)
% Number of variables : 26584 (2418 ^;23403 !; 763 ?;26584 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% from the van Emde Boas Trees session in the Archive of Formal
% proofs -
% www.isa-afp.org/browser_info/current/AFP/Van_Emde_Boas_Trees
% 2022-02-18 18:42:46.527
%------------------------------------------------------------------------------
% Could-be-implicit typings (59)
thf(ty_n_t__itself_It__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J_J_J_J_J,type,
itself8794530163899892676l_num1: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
produc8923325533196201883nteger: $tType ).
thf(ty_n_t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
option4927543243414619207at_nat: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
produc9072475918466114483BT_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
set_Pr958786334691620121nt_int: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_It__VEBT____Definitions__OVEBT_J_J,type,
set_list_VEBT_VEBT: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_It__Code____Numeral__Ointeger_J_J,type,
set_li6976499617229504675nteger: $tType ).
thf(ty_n_t__Set__Oset_It__Set__Oset_It__Code____Numeral__Ointeger_J_J,type,
set_set_Code_integer: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
product_prod_num_num: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J,type,
product_prod_nat_num: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
product_prod_nat_nat: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
product_prod_int_int: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_It__Complex__Ocomplex_J_J,type,
set_list_complex: $tType ).
thf(ty_n_t__Set__Oset_It__Set__Oset_It__Complex__Ocomplex_J_J,type,
set_set_complex: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_It__Real__Oreal_J_J,type,
set_list_real: $tType ).
thf(ty_n_t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
list_VEBT_VEBT: $tType ).
thf(ty_n_t__Heap____Time____Monad__OHeap_It__Nat__Onat_J,type,
heap_Time_Heap_nat: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
set_list_nat: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_It__Int__Oint_J_J,type,
set_list_int: $tType ).
thf(ty_n_t__List__Olist_It__Code____Numeral__Ointeger_J,type,
list_Code_integer: $tType ).
thf(ty_n_t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
set_VEBT_VEBT: $tType ).
thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
set_set_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J,type,
set_set_int: $tType ).
thf(ty_n_t__Set__Oset_It__Code____Numeral__Ointeger_J,type,
set_Code_integer: $tType ).
thf(ty_n_t__itself_It__Numeral____Type__Onum1_J,type,
itself_Numeral_num1: $tType ).
thf(ty_n_t__itself_It__Numeral____Type__Onum0_J,type,
itself_Numeral_num0: $tType ).
thf(ty_n_t__List__Olist_It__Complex__Ocomplex_J,type,
list_complex: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_I_Eo_J_J,type,
set_list_o: $tType ).
thf(ty_n_t__Set__Oset_It__Complex__Ocomplex_J,type,
set_complex: $tType ).
thf(ty_n_t__Filter__Ofilter_It__Real__Oreal_J,type,
filter_real: $tType ).
thf(ty_n_t__itself_It__Enum__Ofinite____3_J,type,
itself_finite_3: $tType ).
thf(ty_n_t__itself_It__Enum__Ofinite____2_J,type,
itself_finite_2: $tType ).
thf(ty_n_t__itself_It__Enum__Ofinite____1_J,type,
itself_finite_1: $tType ).
thf(ty_n_t__Option__Ooption_It__Num__Onum_J,type,
option_num: $tType ).
thf(ty_n_t__Option__Ooption_It__Nat__Onat_J,type,
option_nat: $tType ).
thf(ty_n_t__Filter__Ofilter_It__Nat__Onat_J,type,
filter_nat: $tType ).
thf(ty_n_t__Filter__Ofilter_It__Int__Oint_J,type,
filter_int: $tType ).
thf(ty_n_t__Set__Oset_It__String__Ochar_J,type,
set_char: $tType ).
thf(ty_n_t__List__Olist_It__Real__Oreal_J,type,
list_real: $tType ).
thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
set_real: $tType ).
thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
list_nat: $tType ).
thf(ty_n_t__List__Olist_It__Int__Oint_J,type,
list_int: $tType ).
thf(ty_n_t__VEBT____Definitions__OVEBT,type,
vEBT_VEBT: $tType ).
thf(ty_n_t__Set__Oset_It__Rat__Orat_J,type,
set_rat: $tType ).
thf(ty_n_t__Set__Oset_It__Num__Onum_J,type,
set_num: $tType ).
thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
set_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
set_int: $tType ).
thf(ty_n_t__Code____Numeral__Ointeger,type,
code_integer: $tType ).
thf(ty_n_t__Extended____Nat__Oenat,type,
extended_enat: $tType ).
thf(ty_n_t__List__Olist_I_Eo_J,type,
list_o: $tType ).
thf(ty_n_t__Complex__Ocomplex,type,
complex: $tType ).
thf(ty_n_t__Set__Oset_I_Eo_J,type,
set_o: $tType ).
thf(ty_n_t__Uint32__Ouint32,type,
uint32: $tType ).
thf(ty_n_t__String__Ochar,type,
char: $tType ).
thf(ty_n_t__Real__Oreal,type,
real: $tType ).
thf(ty_n_t__Rat__Orat,type,
rat: $tType ).
thf(ty_n_t__Num__Onum,type,
num: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_t__Int__Oint,type,
int: $tType ).
% Explicit typings (816)
thf(sy_c_Archimedean__Field_Oceiling_001t__Rat__Orat,type,
archim2889992004027027881ng_rat: rat > int ).
thf(sy_c_Archimedean__Field_Oceiling_001t__Real__Oreal,type,
archim7802044766580827645g_real: real > int ).
thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor_001t__Rat__Orat,type,
archim3151403230148437115or_rat: rat > int ).
thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor_001t__Real__Oreal,type,
archim6058952711729229775r_real: real > int ).
thf(sy_c_Archimedean__Field_Oround_001t__Rat__Orat,type,
archim7778729529865785530nd_rat: rat > int ).
thf(sy_c_Archimedean__Field_Oround_001t__Real__Oreal,type,
archim8280529875227126926d_real: real > int ).
thf(sy_c_Binomial_Obinomial,type,
binomial: nat > nat > nat ).
thf(sy_c_Binomial_Ogbinomial_001t__Complex__Ocomplex,type,
gbinomial_complex: complex > nat > complex ).
thf(sy_c_Binomial_Ogbinomial_001t__Int__Oint,type,
gbinomial_int: int > nat > int ).
thf(sy_c_Binomial_Ogbinomial_001t__Nat__Onat,type,
gbinomial_nat: nat > nat > nat ).
thf(sy_c_Binomial_Ogbinomial_001t__Rat__Orat,type,
gbinomial_rat: rat > nat > rat ).
thf(sy_c_Binomial_Ogbinomial_001t__Real__Oreal,type,
gbinomial_real: real > nat > real ).
thf(sy_c_Bit__Comprehension_Obit__comprehension__class_Oset__bits_001t__Int__Oint,type,
bit_bi6516823479961619367ts_int: ( nat > $o ) > int ).
thf(sy_c_Bit__Comprehension_Owf__set__bits__int,type,
bit_wf_set_bits_int: ( nat > $o ) > $o ).
thf(sy_c_Bit__Operations_Oand__int__rel,type,
bit_and_int_rel: product_prod_int_int > product_prod_int_int > $o ).
thf(sy_c_Bit__Operations_Oand__not__num,type,
bit_and_not_num: num > num > option_num ).
thf(sy_c_Bit__Operations_Oconcat__bit,type,
bit_concat_bit: nat > int > int > int ).
thf(sy_c_Bit__Operations_Oor__not__num__neg,type,
bit_or_not_num_neg: num > num > num ).
thf(sy_c_Bit__Operations_Oring__bit__operations__class_Onot_001t__Code____Numeral__Ointeger,type,
bit_ri7632146776885996613nteger: code_integer > code_integer ).
thf(sy_c_Bit__Operations_Oring__bit__operations__class_Onot_001t__Int__Oint,type,
bit_ri7919022796975470100ot_int: int > int ).
thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit_001t__Code____Numeral__Ointeger,type,
bit_ri6519982836138164636nteger: nat > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit_001t__Int__Oint,type,
bit_ri631733984087533419it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Code____Numeral__Ointeger,type,
bit_se3949692690581998587nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Int__Oint,type,
bit_se725231765392027082nd_int: int > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Nat__Onat,type,
bit_se727722235901077358nd_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Code____Numeral__Ointeger,type,
bit_se3928097537394005634nteger: nat > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Int__Oint,type,
bit_se8568078237143864401it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Nat__Onat,type,
bit_se8570568707652914677it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Code____Numeral__Ointeger,type,
bit_se1345352211410354436nteger: nat > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Int__Oint,type,
bit_se2159334234014336723it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Nat__Onat,type,
bit_se2161824704523386999it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Int__Oint,type,
bit_se2000444600071755411sk_int: nat > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Nat__Onat,type,
bit_se2002935070580805687sk_nat: nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Code____Numeral__Ointeger,type,
bit_se1080825931792720795nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Int__Oint,type,
bit_se1409905431419307370or_int: int > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Nat__Onat,type,
bit_se1412395901928357646or_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Code____Numeral__Ointeger,type,
bit_se7788150548672797655nteger: nat > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Int__Oint,type,
bit_se545348938243370406it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Nat__Onat,type,
bit_se547839408752420682it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Code____Numeral__Ointeger,type,
bit_se2793503036327961859nteger: nat > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Int__Oint,type,
bit_se7879613467334960850it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Nat__Onat,type,
bit_se7882103937844011126it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Int__Oint,type,
bit_se2923211474154528505it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Nat__Onat,type,
bit_se2925701944663578781it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Code____Numeral__Ointeger,type,
bit_se8260200283734997820nteger: nat > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Int__Oint,type,
bit_se4203085406695923979it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Nat__Onat,type,
bit_se4205575877204974255it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Code____Numeral__Ointeger,type,
bit_se3222712562003087583nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Int__Oint,type,
bit_se6526347334894502574or_int: int > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Nat__Onat,type,
bit_se6528837805403552850or_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Code____Numeral__Ointeger,type,
bit_se9216721137139052372nteger: code_integer > nat > $o ).
thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Int__Oint,type,
bit_se1146084159140164899it_int: int > nat > $o ).
thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Nat__Onat,type,
bit_se1148574629649215175it_nat: nat > nat > $o ).
thf(sy_c_Bit__Operations_Otake__bit__num,type,
bit_take_bit_num: nat > num > option_num ).
thf(sy_c_Bit__Shifts__Infix__Syntax_Osemiring__bit__operations__class_Oshiftl_001t__Nat__Onat,type,
bit_Sh3965577149348748681tl_nat: nat > nat > nat ).
thf(sy_c_Bit__Shifts__Infix__Syntax_Osemiring__bit__operations__class_Oshiftr_001t__Nat__Onat,type,
bit_Sh2154871086232339855tr_nat: nat > nat > nat ).
thf(sy_c_Bits__Integer_OBit__integer,type,
bits_Bit_integer: code_integer > $o > code_integer ).
thf(sy_c_Bits__Integer_Obin__last__integer,type,
bits_b8758750999018896077nteger: code_integer > $o ).
thf(sy_c_Bits__Integer_Obin__rest__integer,type,
bits_b2549910563261871055nteger: code_integer > code_integer ).
thf(sy_c_Code__Numeral_Odup,type,
code_dup: code_integer > code_integer ).
thf(sy_c_Code__Numeral_Ointeger_Ointeger__of__int,type,
code_integer_of_int: int > code_integer ).
thf(sy_c_Code__Target__Int_Onegative,type,
code_Target_negative: num > int ).
thf(sy_c_Code__Target__Nat_Oint__of__nat,type,
code_T6385005292777649522of_nat: nat > int ).
thf(sy_c_Complex_OArg,type,
arg: complex > real ).
thf(sy_c_Complex_Ocis,type,
cis: real > complex ).
thf(sy_c_Complex_Ocomplex_OComplex,type,
complex2: real > real > complex ).
thf(sy_c_Complex_Ocsqrt,type,
csqrt: complex > complex ).
thf(sy_c_Complex_Oimaginary__unit,type,
imaginary_unit: complex ).
thf(sy_c_Deriv_Odifferentiable_001t__Real__Oreal_001t__Real__Oreal,type,
differ6690327859849518006l_real: ( real > real ) > filter_real > $o ).
thf(sy_c_Deriv_Ohas__derivative_001t__Real__Oreal_001t__Real__Oreal,type,
has_de1759254742604945161l_real: ( real > real ) > ( real > real ) > filter_real > $o ).
thf(sy_c_Deriv_Ohas__field__derivative_001t__Real__Oreal,type,
has_fi5821293074295781190e_real: ( real > real ) > real > filter_real > $o ).
thf(sy_c_Divides_Oadjust__div,type,
adjust_div: product_prod_int_int > int ).
thf(sy_c_Divides_Odivmod__nat,type,
divmod_nat: nat > nat > product_prod_nat_nat ).
thf(sy_c_Divides_Oeucl__rel__int,type,
eucl_rel_int: int > int > product_prod_int_int > $o ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Int__Oint,type,
unique5052692396658037445od_int: num > num > product_prod_int_int ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Nat__Onat,type,
unique5055182867167087721od_nat: num > num > product_prod_nat_nat ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Code____Numeral__Ointeger,type,
unique4921790084139445826nteger: num > produc8923325533196201883nteger > produc8923325533196201883nteger ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Int__Oint,type,
unique5024387138958732305ep_int: num > product_prod_int_int > product_prod_int_int ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Nat__Onat,type,
unique5026877609467782581ep_nat: num > product_prod_nat_nat > product_prod_nat_nat ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Code____Numeral__Ointeger,type,
comm_s8582702949713902594nteger: code_integer > nat > code_integer ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Complex__Ocomplex,type,
comm_s2602460028002588243omplex: complex > nat > complex ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Int__Oint,type,
comm_s4660882817536571857er_int: int > nat > int ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Nat__Onat,type,
comm_s4663373288045622133er_nat: nat > nat > nat ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Rat__Orat,type,
comm_s4028243227959126397er_rat: rat > nat > rat ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Real__Oreal,type,
comm_s7457072308508201937r_real: real > nat > real ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Code____Numeral__Ointeger,type,
semiri3624122377584611663nteger: nat > code_integer ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Complex__Ocomplex,type,
semiri5044797733671781792omplex: nat > complex ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Int__Oint,type,
semiri1406184849735516958ct_int: nat > int ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Nat__Onat,type,
semiri1408675320244567234ct_nat: nat > nat ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Rat__Orat,type,
semiri773545260158071498ct_rat: nat > rat ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Real__Oreal,type,
semiri2265585572941072030t_real: nat > real ).
thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Complex__Ocomplex,type,
invers8013647133539491842omplex: complex > complex ).
thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Rat__Orat,type,
inverse_inverse_rat: rat > rat ).
thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Real__Oreal,type,
inverse_inverse_real: real > real ).
thf(sy_c_Filter_Oat__bot_001t__Real__Oreal,type,
at_bot_real: filter_real ).
thf(sy_c_Filter_Oat__top_001t__Int__Oint,type,
at_top_int: filter_int ).
thf(sy_c_Filter_Oat__top_001t__Nat__Onat,type,
at_top_nat: filter_nat ).
thf(sy_c_Filter_Oat__top_001t__Real__Oreal,type,
at_top_real: filter_real ).
thf(sy_c_Filter_Oeventually_001t__Nat__Onat,type,
eventually_nat: ( nat > $o ) > filter_nat > $o ).
thf(sy_c_Filter_Oeventually_001t__Real__Oreal,type,
eventually_real: ( real > $o ) > filter_real > $o ).
thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Int__Oint,type,
filterlim_nat_int: ( nat > int ) > filter_int > filter_nat > $o ).
thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Nat__Onat,type,
filterlim_nat_nat: ( nat > nat ) > filter_nat > filter_nat > $o ).
thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Real__Oreal,type,
filterlim_nat_real: ( nat > real ) > filter_real > filter_nat > $o ).
thf(sy_c_Filter_Ofilterlim_001t__Real__Oreal_001t__Real__Oreal,type,
filterlim_real_real: ( real > real ) > filter_real > filter_real > $o ).
thf(sy_c_Finite__Set_Ofinite_001_Eo,type,
finite_finite_o: set_o > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Code____Numeral__Ointeger,type,
finite6017078050557962740nteger: set_Code_integer > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Complex__Ocomplex,type,
finite3207457112153483333omplex: set_complex > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Int__Oint,type,
finite_finite_int: set_int > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_I_Eo_J,type,
finite_finite_list_o: set_list_o > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Code____Numeral__Ointeger_J,type,
finite1283093830868386564nteger: set_li6976499617229504675nteger > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Complex__Ocomplex_J,type,
finite8712137658972009173omplex: set_list_complex > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Int__Oint_J,type,
finite3922522038869484883st_int: set_list_int > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Nat__Onat_J,type,
finite8100373058378681591st_nat: set_list_nat > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Real__Oreal_J,type,
finite306553202115118035t_real: set_list_real > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
finite3004134309566078307T_VEBT: set_list_VEBT_VEBT > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Nat__Onat,type,
finite_finite_nat: set_nat > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Num__Onum,type,
finite_finite_num: set_num > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
finite2998713641127702882nt_int: set_Pr958786334691620121nt_int > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Rat__Orat,type,
finite_finite_rat: set_rat > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Real__Oreal,type,
finite_finite_real: set_real > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Code____Numeral__Ointeger_J,type,
finite6931041176100689706nteger: set_set_Code_integer > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Complex__Ocomplex_J,type,
finite6551019134538273531omplex: set_set_complex > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Int__Oint_J,type,
finite6197958912794628473et_int: set_set_int > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Nat__Onat_J,type,
finite1152437895449049373et_nat: set_set_nat > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__VEBT____Definitions__OVEBT,type,
finite5795047828879050333T_VEBT: set_VEBT_VEBT > $o ).
thf(sy_c_Fun_Obij__betw_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
bij_be1856998921033663316omplex: ( complex > complex ) > set_complex > set_complex > $o ).
thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__Complex__Ocomplex,type,
bij_betw_nat_complex: ( nat > complex ) > set_nat > set_complex > $o ).
thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__Nat__Onat,type,
bij_betw_nat_nat: ( nat > nat ) > set_nat > set_nat > $o ).
thf(sy_c_Fun_Ocomp_001t__Int__Oint_001t__Int__Oint_001t__Num__Onum,type,
comp_int_int_num: ( int > int ) > ( num > int ) > num > int ).
thf(sy_c_Fun_Ocomp_001t__Nat__Onat_001_Eo_001t__Nat__Onat,type,
comp_nat_o_nat: ( nat > $o ) > ( nat > nat ) > nat > $o ).
thf(sy_c_Fun_Ocomp_001t__Nat__Onat_001t__Nat__Onat_001t__Nat__Onat,type,
comp_nat_nat_nat: ( nat > nat ) > ( nat > nat ) > nat > nat ).
thf(sy_c_Fun_Ocomp_001t__Nat__Onat_001t__Real__Oreal_001t__Nat__Onat,type,
comp_nat_real_nat: ( nat > real ) > ( nat > nat ) > nat > real ).
thf(sy_c_Fun_Oinj__on_001t__Nat__Onat_001t__Nat__Onat,type,
inj_on_nat_nat: ( nat > nat ) > set_nat > $o ).
thf(sy_c_Fun_Oinj__on_001t__Nat__Onat_001t__String__Ochar,type,
inj_on_nat_char: ( nat > char ) > set_nat > $o ).
thf(sy_c_Fun_Oinj__on_001t__Real__Oreal_001t__Real__Oreal,type,
inj_on_real_real: ( real > real ) > set_real > $o ).
thf(sy_c_Fun_Oinj__on_001t__Set__Oset_It__Nat__Onat_J_001t__Nat__Onat,type,
inj_on_set_nat_nat: ( set_nat > nat ) > set_set_nat > $o ).
thf(sy_c_Fun_Othe__inv__into_001t__Real__Oreal_001t__Real__Oreal,type,
the_in5290026491893676941l_real: set_real > ( real > real ) > real > real ).
thf(sy_c_Generic__set__bit_Oset__bit__class_Oset__bit_001t__Code____Numeral__Ointeger,type,
generi2397576812484419408nteger: code_integer > nat > $o > code_integer ).
thf(sy_c_Generic__set__bit_Oset__bit__class_Oset__bit_001t__Int__Oint,type,
generi8991105624351003935it_int: int > nat > $o > int ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Code____Numeral__Ointeger,type,
abs_abs_Code_integer: code_integer > code_integer ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Complex__Ocomplex,type,
abs_abs_complex: complex > complex ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Int__Oint,type,
abs_abs_int: int > int ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Rat__Orat,type,
abs_abs_rat: rat > rat ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Real__Oreal,type,
abs_abs_real: real > real ).
thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Complex__Ocomplex_M_Eo_J,type,
minus_8727706125548526216plex_o: ( complex > $o ) > ( complex > $o ) > complex > $o ).
thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Int__Oint_M_Eo_J,type,
minus_minus_int_o: ( int > $o ) > ( int > $o ) > int > $o ).
thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Nat__Onat_M_Eo_J,type,
minus_minus_nat_o: ( nat > $o ) > ( nat > $o ) > nat > $o ).
thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_M_Eo_J,type,
minus_711738161318947805_int_o: ( product_prod_int_int > $o ) > ( product_prod_int_int > $o ) > product_prod_int_int > $o ).
thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Real__Oreal_M_Eo_J,type,
minus_minus_real_o: ( real > $o ) > ( real > $o ) > real > $o ).
thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Set__Oset_It__Nat__Onat_J_M_Eo_J,type,
minus_6910147592129066416_nat_o: ( set_nat > $o ) > ( set_nat > $o ) > set_nat > $o ).
thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
minus_2794559001203777698VEBT_o: ( vEBT_VEBT > $o ) > ( vEBT_VEBT > $o ) > vEBT_VEBT > $o ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Code____Numeral__Ointeger,type,
minus_8373710615458151222nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Complex__Ocomplex,type,
minus_minus_complex: complex > complex > complex ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Extended____Nat__Oenat,type,
minus_3235023915231533773d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
minus_minus_int: int > int > int ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
minus_minus_nat: nat > nat > nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Rat__Orat,type,
minus_minus_rat: rat > rat > rat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
minus_minus_real: real > real > real ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Code____Numeral__Ointeger_J,type,
minus_2355218937544613996nteger: set_Code_integer > set_Code_integer > set_Code_integer ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Complex__Ocomplex_J,type,
minus_811609699411566653omplex: set_complex > set_complex > set_complex ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Int__Oint_J,type,
minus_minus_set_int: set_int > set_int > set_int ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Nat__Onat_J,type,
minus_minus_set_nat: set_nat > set_nat > set_nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
minus_1052850069191792384nt_int: set_Pr958786334691620121nt_int > set_Pr958786334691620121nt_int > set_Pr958786334691620121nt_int ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Real__Oreal_J,type,
minus_minus_set_real: set_real > set_real > set_real ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
minus_2163939370556025621et_nat: set_set_nat > set_set_nat > set_set_nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
minus_5127226145743854075T_VEBT: set_VEBT_VEBT > set_VEBT_VEBT > set_VEBT_VEBT ).
thf(sy_c_Groups_Oone__class_Oone_001t__Code____Numeral__Ointeger,type,
one_one_Code_integer: code_integer ).
thf(sy_c_Groups_Oone__class_Oone_001t__Complex__Ocomplex,type,
one_one_complex: complex ).
thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nat__Oenat,type,
one_on7984719198319812577d_enat: extended_enat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
one_one_int: int ).
thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
one_one_nat: nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Rat__Orat,type,
one_one_rat: rat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
one_one_real: real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Code____Numeral__Ointeger,type,
plus_p5714425477246183910nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Complex__Ocomplex,type,
plus_plus_complex: complex > complex > complex ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nat__Oenat,type,
plus_p3455044024723400733d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
plus_plus_int: int > int > int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
plus_plus_num: num > num > num ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Rat__Orat,type,
plus_plus_rat: rat > rat > rat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
plus_plus_real: real > real > real ).
thf(sy_c_Groups_Osgn__class_Osgn_001t__Code____Numeral__Ointeger,type,
sgn_sgn_Code_integer: code_integer > code_integer ).
thf(sy_c_Groups_Osgn__class_Osgn_001t__Complex__Ocomplex,type,
sgn_sgn_complex: complex > complex ).
thf(sy_c_Groups_Osgn__class_Osgn_001t__Int__Oint,type,
sgn_sgn_int: int > int ).
thf(sy_c_Groups_Osgn__class_Osgn_001t__Rat__Orat,type,
sgn_sgn_rat: rat > rat ).
thf(sy_c_Groups_Osgn__class_Osgn_001t__Real__Oreal,type,
sgn_sgn_real: real > real ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Code____Numeral__Ointeger,type,
times_3573771949741848930nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Complex__Ocomplex,type,
times_times_complex: complex > complex > complex ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Extended____Nat__Oenat,type,
times_7803423173614009249d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
times_times_int: int > int > int ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
times_times_nat: nat > nat > nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Num__Onum,type,
times_times_num: num > num > num ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Rat__Orat,type,
times_times_rat: rat > rat > rat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
times_times_real: real > real > real ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Complex__Ocomplex_M_Eo_J,type,
uminus1680532995456772888plex_o: ( complex > $o ) > complex > $o ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Int__Oint_M_Eo_J,type,
uminus_uminus_int_o: ( int > $o ) > int > $o ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Nat__Onat_M_Eo_J,type,
uminus_uminus_nat_o: ( nat > $o ) > nat > $o ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_M_Eo_J,type,
uminus7117520113953359693_int_o: ( product_prod_int_int > $o ) > product_prod_int_int > $o ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Real__Oreal_M_Eo_J,type,
uminus_uminus_real_o: ( real > $o ) > real > $o ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Set__Oset_It__Nat__Onat_J_M_Eo_J,type,
uminus6401447641752708672_nat_o: ( set_nat > $o ) > set_nat > $o ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
uminus2746543603091002386VEBT_o: ( vEBT_VEBT > $o ) > vEBT_VEBT > $o ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Code____Numeral__Ointeger,type,
uminus1351360451143612070nteger: code_integer > code_integer ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Complex__Ocomplex,type,
uminus1482373934393186551omplex: complex > complex ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
uminus_uminus_int: int > int ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Rat__Orat,type,
uminus_uminus_rat: rat > rat ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
uminus_uminus_real: real > real ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Complex__Ocomplex_J,type,
uminus8566677241136511917omplex: set_complex > set_complex ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Int__Oint_J,type,
uminus1532241313380277803et_int: set_int > set_int ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Nat__Onat_J,type,
uminus5710092332889474511et_nat: set_nat > set_nat ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
uminus6221592323253981072nt_int: set_Pr958786334691620121nt_int > set_Pr958786334691620121nt_int ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Real__Oreal_J,type,
uminus612125837232591019t_real: set_real > set_real ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
uminus613421341184616069et_nat: set_set_nat > set_set_nat ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
uminus8041839845116263051T_VEBT: set_VEBT_VEBT > set_VEBT_VEBT ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Code____Numeral__Ointeger,type,
zero_z3403309356797280102nteger: code_integer ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Complex__Ocomplex,type,
zero_zero_complex: complex ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nat__Oenat,type,
zero_z5237406670263579293d_enat: extended_enat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
zero_zero_int: int ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Rat__Orat,type,
zero_zero_rat: rat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
zero_zero_real: real ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Code____Numeral__Ointeger_001t__Complex__Ocomplex,type,
groups8024822376189712711omplex: ( code_integer > complex ) > set_Code_integer > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Code____Numeral__Ointeger_001t__Int__Oint,type,
groups7234854612051535045er_int: ( code_integer > int ) > set_Code_integer > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Code____Numeral__Ointeger_001t__Nat__Onat,type,
groups7237345082560585321er_nat: ( code_integer > nat ) > set_Code_integer > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Code____Numeral__Ointeger_001t__Rat__Orat,type,
groups6602215022474089585er_rat: ( code_integer > rat ) > set_Code_integer > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Code____Numeral__Ointeger_001t__Real__Oreal,type,
groups1270011288395367621r_real: ( code_integer > real ) > set_Code_integer > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
groups7754918857620584856omplex: ( complex > complex ) > set_complex > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Int__Oint,type,
groups5690904116761175830ex_int: ( complex > int ) > set_complex > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Nat__Onat,type,
groups5693394587270226106ex_nat: ( complex > nat ) > set_complex > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Rat__Orat,type,
groups5058264527183730370ex_rat: ( complex > rat ) > set_complex > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Real__Oreal,type,
groups5808333547571424918x_real: ( complex > real ) > set_complex > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Code____Numeral__Ointeger,type,
groups7873554091576472773nteger: ( int > code_integer ) > set_int > code_integer ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Complex__Ocomplex,type,
groups3049146728041665814omplex: ( int > complex ) > set_int > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Int__Oint,type,
groups4538972089207619220nt_int: ( int > int ) > set_int > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Nat__Onat,type,
groups4541462559716669496nt_nat: ( int > nat ) > set_int > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Rat__Orat,type,
groups3906332499630173760nt_rat: ( int > rat ) > set_int > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Real__Oreal,type,
groups8778361861064173332t_real: ( int > real ) > set_int > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Code____Numeral__Ointeger,type,
groups7501900531339628137nteger: ( nat > code_integer ) > set_nat > code_integer ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Complex__Ocomplex,type,
groups2073611262835488442omplex: ( nat > complex ) > set_nat > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Int__Oint,type,
groups3539618377306564664at_int: ( nat > int ) > set_nat > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Nat__Onat,type,
groups3542108847815614940at_nat: ( nat > nat ) > set_nat > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Rat__Orat,type,
groups2906978787729119204at_rat: ( nat > rat ) > set_nat > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Real__Oreal,type,
groups6591440286371151544t_real: ( nat > real ) > set_nat > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Code____Numeral__Ointeger,type,
groups7713935264441627589nteger: ( real > code_integer ) > set_real > code_integer ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Complex__Ocomplex,type,
groups5754745047067104278omplex: ( real > complex ) > set_real > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Int__Oint,type,
groups1932886352136224148al_int: ( real > int ) > set_real > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Nat__Onat,type,
groups1935376822645274424al_nat: ( real > nat ) > set_real > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Rat__Orat,type,
groups1300246762558778688al_rat: ( real > rat ) > set_real > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Real__Oreal,type,
groups8097168146408367636l_real: ( real > real ) > set_real > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__VEBT____Definitions__OVEBT_001t__Code____Numeral__Ointeger,type,
groups5748017345553531991nteger: ( vEBT_VEBT > code_integer ) > set_VEBT_VEBT > code_integer ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__VEBT____Definitions__OVEBT_001t__Complex__Ocomplex,type,
groups1794756597179926696omplex: ( vEBT_VEBT > complex ) > set_VEBT_VEBT > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__VEBT____Definitions__OVEBT_001t__Int__Oint,type,
groups769130701875090982BT_int: ( vEBT_VEBT > int ) > set_VEBT_VEBT > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
groups771621172384141258BT_nat: ( vEBT_VEBT > nat ) > set_VEBT_VEBT > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__VEBT____Definitions__OVEBT_001t__Rat__Orat,type,
groups136491112297645522BT_rat: ( vEBT_VEBT > rat ) > set_VEBT_VEBT > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__VEBT____Definitions__OVEBT_001t__Real__Oreal,type,
groups2240296850493347238T_real: ( vEBT_VEBT > real ) > set_VEBT_VEBT > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Code____Numeral__Ointeger_001t__Complex__Ocomplex,type,
groups862514429393162674omplex: ( code_integer > complex ) > set_Code_integer > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Code____Numeral__Ointeger_001t__Int__Oint,type,
groups3188404863801439024er_int: ( code_integer > int ) > set_Code_integer > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Code____Numeral__Ointeger_001t__Nat__Onat,type,
groups3190895334310489300er_nat: ( code_integer > nat ) > set_Code_integer > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Code____Numeral__Ointeger_001t__Rat__Orat,type,
groups2555765274223993564er_rat: ( code_integer > rat ) > set_Code_integer > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Code____Numeral__Ointeger_001t__Real__Oreal,type,
groups9004974159866482096r_real: ( code_integer > real ) > set_Code_integer > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
groups3708469109370488835omplex: ( complex > complex ) > set_complex > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Complex__Ocomplex_001t__Int__Oint,type,
groups858564598930262913ex_int: ( complex > int ) > set_complex > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Complex__Ocomplex_001t__Nat__Onat,type,
groups861055069439313189ex_nat: ( complex > nat ) > set_complex > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Complex__Ocomplex_001t__Rat__Orat,type,
groups225925009352817453ex_rat: ( complex > rat ) > set_complex > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Complex__Ocomplex_001t__Real__Oreal,type,
groups766887009212190081x_real: ( complex > real ) > set_complex > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Complex__Ocomplex,type,
groups7440179247065528705omplex: ( int > complex ) > set_int > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Int__Oint,type,
groups1705073143266064639nt_int: ( int > int ) > set_int > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Nat__Onat,type,
groups1707563613775114915nt_nat: ( int > nat ) > set_int > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Rat__Orat,type,
groups1072433553688619179nt_rat: ( int > rat ) > set_int > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Real__Oreal,type,
groups2316167850115554303t_real: ( int > real ) > set_int > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Code____Numeral__Ointeger,type,
groups3455450783089532116nteger: ( nat > code_integer ) > set_nat > code_integer ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Complex__Ocomplex,type,
groups6464643781859351333omplex: ( nat > complex ) > set_nat > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Int__Oint,type,
groups705719431365010083at_int: ( nat > int ) > set_nat > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Nat__Onat,type,
groups708209901874060359at_nat: ( nat > nat ) > set_nat > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Rat__Orat,type,
groups73079841787564623at_rat: ( nat > rat ) > set_nat > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Real__Oreal,type,
groups129246275422532515t_real: ( nat > real ) > set_nat > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Real__Oreal_001t__Complex__Ocomplex,type,
groups713298508707869441omplex: ( real > complex ) > set_real > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Real__Oreal_001t__Int__Oint,type,
groups4694064378042380927al_int: ( real > int ) > set_real > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Real__Oreal_001t__Nat__Onat,type,
groups4696554848551431203al_nat: ( real > nat ) > set_real > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Real__Oreal_001t__Rat__Orat,type,
groups4061424788464935467al_rat: ( real > rat ) > set_real > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Real__Oreal_001t__Real__Oreal,type,
groups1681761925125756287l_real: ( real > real ) > set_real > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__VEBT____Definitions__OVEBT_001t__Complex__Ocomplex,type,
groups127312072573709053omplex: ( vEBT_VEBT > complex ) > set_VEBT_VEBT > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__VEBT____Definitions__OVEBT_001t__Int__Oint,type,
groups6359315924273963643BT_int: ( vEBT_VEBT > int ) > set_VEBT_VEBT > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
groups6361806394783013919BT_nat: ( vEBT_VEBT > nat ) > set_VEBT_VEBT > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__VEBT____Definitions__OVEBT_001t__Rat__Orat,type,
groups5726676334696518183BT_rat: ( vEBT_VEBT > rat ) > set_VEBT_VEBT > rat ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__VEBT____Definitions__OVEBT_001t__Real__Oreal,type,
groups2703838992350267259T_real: ( vEBT_VEBT > real ) > set_VEBT_VEBT > real ).
thf(sy_c_Groups__List_Ocomm__semiring__0__class_Ohorner__sum_001_Eo_001t__Int__Oint,type,
groups9116527308978886569_o_int: ( $o > int ) > int > list_o > int ).
thf(sy_c_HOL_OThe_001t__Int__Oint,type,
the_int: ( int > $o ) > int ).
thf(sy_c_HOL_OThe_001t__Real__Oreal,type,
the_real: ( real > $o ) > real ).
thf(sy_c_HOL_Oundefined_001_062_I_062_It__Code____Numeral__Ointeger_Mt__Uint32__Ouint32_J_M_062_It__Code____Numeral__Ointeger_Mt__Uint32__Ouint32_J_J,type,
undefi2040150642751712519uint32: ( code_integer > uint32 ) > code_integer > uint32 ).
thf(sy_c_Heap__Time__Monad_Oreturn_001t__Nat__Onat,type,
heap_Time_return_nat: nat > heap_Time_Heap_nat ).
thf(sy_c_If_001t__Code____Numeral__Ointeger,type,
if_Code_integer: $o > code_integer > code_integer > code_integer ).
thf(sy_c_If_001t__Complex__Ocomplex,type,
if_complex: $o > complex > complex > complex ).
thf(sy_c_If_001t__Int__Oint,type,
if_int: $o > int > int > int ).
thf(sy_c_If_001t__List__Olist_It__Int__Oint_J,type,
if_list_int: $o > list_int > list_int > list_int ).
thf(sy_c_If_001t__List__Olist_It__Nat__Onat_J,type,
if_list_nat: $o > list_nat > list_nat > list_nat ).
thf(sy_c_If_001t__Nat__Onat,type,
if_nat: $o > nat > nat > nat ).
thf(sy_c_If_001t__Option__Ooption_It__Nat__Onat_J,type,
if_option_nat: $o > option_nat > option_nat > option_nat ).
thf(sy_c_If_001t__Option__Ooption_It__Num__Onum_J,type,
if_option_num: $o > option_num > option_num > option_num ).
thf(sy_c_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
if_Pro6119634080678213985nteger: $o > produc8923325533196201883nteger > produc8923325533196201883nteger > produc8923325533196201883nteger ).
thf(sy_c_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
if_Pro3027730157355071871nt_int: $o > product_prod_int_int > product_prod_int_int > product_prod_int_int ).
thf(sy_c_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
if_Pro6206227464963214023at_nat: $o > product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ).
thf(sy_c_If_001t__Rat__Orat,type,
if_rat: $o > rat > rat > rat ).
thf(sy_c_If_001t__Real__Oreal,type,
if_real: $o > real > real > real ).
thf(sy_c_If_001t__Set__Oset_It__Int__Oint_J,type,
if_set_int: $o > set_int > set_int > set_int ).
thf(sy_c_If_001t__Uint32__Ouint32,type,
if_uint32: $o > uint32 > uint32 > uint32 ).
thf(sy_c_If_001t__VEBT____Definitions__OVEBT,type,
if_VEBT_VEBT: $o > vEBT_VEBT > vEBT_VEBT > vEBT_VEBT ).
thf(sy_c_Int_Oint__ge__less__than,type,
int_ge_less_than: int > set_Pr958786334691620121nt_int ).
thf(sy_c_Int_Oint__ge__less__than2,type,
int_ge_less_than2: int > set_Pr958786334691620121nt_int ).
thf(sy_c_Int_Onat,type,
nat2: int > nat ).
thf(sy_c_Int_Oring__1__class_OInts_001t__Real__Oreal,type,
ring_1_Ints_real: set_real ).
thf(sy_c_Int_Oring__1__class_Oof__int_001t__Code____Numeral__Ointeger,type,
ring_18347121197199848620nteger: int > code_integer ).
thf(sy_c_Int_Oring__1__class_Oof__int_001t__Complex__Ocomplex,type,
ring_17405671764205052669omplex: int > complex ).
thf(sy_c_Int_Oring__1__class_Oof__int_001t__Int__Oint,type,
ring_1_of_int_int: int > int ).
thf(sy_c_Int_Oring__1__class_Oof__int_001t__Rat__Orat,type,
ring_1_of_int_rat: int > rat ).
thf(sy_c_Int_Oring__1__class_Oof__int_001t__Real__Oreal,type,
ring_1_of_int_real: int > real ).
thf(sy_c_Lattices__Big_Olinorder__class_OMax_001t__Int__Oint,type,
lattic8263393255366662781ax_int: set_int > int ).
thf(sy_c_Lattices__Big_Olinorder__class_OMax_001t__Nat__Onat,type,
lattic8265883725875713057ax_nat: set_nat > nat ).
thf(sy_c_Least__significant__bit_Olsb__class_Olsb_001t__Code____Numeral__Ointeger,type,
least_7544222001954398261nteger: code_integer > $o ).
thf(sy_c_Least__significant__bit_Olsb__class_Olsb_001t__Int__Oint,type,
least_4859182151741483524sb_int: int > $o ).
thf(sy_c_Limits_OBfun_001t__Nat__Onat_001t__Real__Oreal,type,
bfun_nat_real: ( nat > real ) > filter_nat > $o ).
thf(sy_c_Limits_Oat__infinity_001t__Real__Oreal,type,
at_infinity_real: filter_real ).
thf(sy_c_List_Oappend_001_Eo,type,
append_o: list_o > list_o > list_o ).
thf(sy_c_List_Oappend_001t__Int__Oint,type,
append_int: list_int > list_int > list_int ).
thf(sy_c_List_Oappend_001t__Nat__Onat,type,
append_nat: list_nat > list_nat > list_nat ).
thf(sy_c_List_Ofilter_001t__Nat__Onat,type,
filter_nat2: ( nat > $o ) > list_nat > list_nat ).
thf(sy_c_List_Ofoldr_001_Eo_001t__Nat__Onat,type,
foldr_o_nat: ( $o > nat > nat ) > list_o > nat > nat ).
thf(sy_c_List_Ofoldr_001t__Int__Oint_001t__Nat__Onat,type,
foldr_int_nat: ( int > nat > nat ) > list_int > nat > nat ).
thf(sy_c_List_Ofoldr_001t__Nat__Onat_001t__Nat__Onat,type,
foldr_nat_nat: ( nat > nat > nat ) > list_nat > nat > nat ).
thf(sy_c_List_Ofoldr_001t__Real__Oreal_001t__Nat__Onat,type,
foldr_real_nat: ( real > nat > nat ) > list_real > nat > nat ).
thf(sy_c_List_Ofoldr_001t__Real__Oreal_001t__Real__Oreal,type,
foldr_real_real: ( real > real > real ) > list_real > real > real ).
thf(sy_c_List_Olinorder__class_Osort__key_001t__Nat__Onat_001t__Nat__Onat,type,
linord738340561235409698at_nat: ( nat > nat ) > list_nat > list_nat ).
thf(sy_c_List_Olinorder__class_Osorted__list__of__set_001t__Nat__Onat,type,
linord2614967742042102400et_nat: set_nat > list_nat ).
thf(sy_c_List_Olist_OCons_001_Eo,type,
cons_o: $o > list_o > list_o ).
thf(sy_c_List_Olist_OCons_001t__Int__Oint,type,
cons_int: int > list_int > list_int ).
thf(sy_c_List_Olist_OCons_001t__Nat__Onat,type,
cons_nat: nat > list_nat > list_nat ).
thf(sy_c_List_Olist_ONil_001_Eo,type,
nil_o: list_o ).
thf(sy_c_List_Olist_ONil_001t__Int__Oint,type,
nil_int: list_int ).
thf(sy_c_List_Olist_ONil_001t__Nat__Onat,type,
nil_nat: list_nat ).
thf(sy_c_List_Olist_Omap_001_Eo_001t__Nat__Onat,type,
map_o_nat: ( $o > nat ) > list_o > list_nat ).
thf(sy_c_List_Olist_Omap_001_Eo_001t__Real__Oreal,type,
map_o_real: ( $o > real ) > list_o > list_real ).
thf(sy_c_List_Olist_Omap_001_Eo_001t__VEBT____Definitions__OVEBT,type,
map_o_VEBT_VEBT: ( $o > vEBT_VEBT ) > list_o > list_VEBT_VEBT ).
thf(sy_c_List_Olist_Omap_001t__Int__Oint_001t__Nat__Onat,type,
map_int_nat: ( int > nat ) > list_int > list_nat ).
thf(sy_c_List_Olist_Omap_001t__Int__Oint_001t__Real__Oreal,type,
map_int_real: ( int > real ) > list_int > list_real ).
thf(sy_c_List_Olist_Omap_001t__Int__Oint_001t__VEBT____Definitions__OVEBT,type,
map_int_VEBT_VEBT: ( int > vEBT_VEBT ) > list_int > list_VEBT_VEBT ).
thf(sy_c_List_Olist_Omap_001t__Nat__Onat_001_Eo,type,
map_nat_o: ( nat > $o ) > list_nat > list_o ).
thf(sy_c_List_Olist_Omap_001t__Nat__Onat_001t__Nat__Onat,type,
map_nat_nat: ( nat > nat ) > list_nat > list_nat ).
thf(sy_c_List_Olist_Omap_001t__Nat__Onat_001t__Real__Oreal,type,
map_nat_real: ( nat > real ) > list_nat > list_real ).
thf(sy_c_List_Olist_Omap_001t__Nat__Onat_001t__VEBT____Definitions__OVEBT,type,
map_nat_VEBT_VEBT: ( nat > vEBT_VEBT ) > list_nat > list_VEBT_VEBT ).
thf(sy_c_List_Olist_Omap_001t__Real__Oreal_001t__Nat__Onat,type,
map_real_nat: ( real > nat ) > list_real > list_nat ).
thf(sy_c_List_Olist_Omap_001t__Real__Oreal_001t__Real__Oreal,type,
map_real_real: ( real > real ) > list_real > list_real ).
thf(sy_c_List_Olist_Omap_001t__Real__Oreal_001t__VEBT____Definitions__OVEBT,type,
map_real_VEBT_VEBT: ( real > vEBT_VEBT ) > list_real > list_VEBT_VEBT ).
thf(sy_c_List_Olist_Omap_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
map_VEBT_VEBT_nat: ( vEBT_VEBT > nat ) > list_VEBT_VEBT > list_nat ).
thf(sy_c_List_Olist_Omap_001t__VEBT____Definitions__OVEBT_001t__Real__Oreal,type,
map_VEBT_VEBT_real: ( vEBT_VEBT > real ) > list_VEBT_VEBT > list_real ).
thf(sy_c_List_Olist_Omap_001t__VEBT____Definitions__OVEBT_001t__VEBT____Definitions__OVEBT,type,
map_VE8901447254227204932T_VEBT: ( vEBT_VEBT > vEBT_VEBT ) > list_VEBT_VEBT > list_VEBT_VEBT ).
thf(sy_c_List_Olist_Oset_001_Eo,type,
set_o2: list_o > set_o ).
thf(sy_c_List_Olist_Oset_001t__Code____Numeral__Ointeger,type,
set_Code_integer2: list_Code_integer > set_Code_integer ).
thf(sy_c_List_Olist_Oset_001t__Complex__Ocomplex,type,
set_complex2: list_complex > set_complex ).
thf(sy_c_List_Olist_Oset_001t__Int__Oint,type,
set_int2: list_int > set_int ).
thf(sy_c_List_Olist_Oset_001t__Nat__Onat,type,
set_nat2: list_nat > set_nat ).
thf(sy_c_List_Olist_Oset_001t__Real__Oreal,type,
set_real2: list_real > set_real ).
thf(sy_c_List_Olist_Oset_001t__VEBT____Definitions__OVEBT,type,
set_VEBT_VEBT2: list_VEBT_VEBT > set_VEBT_VEBT ).
thf(sy_c_List_Olist_Osize__list_001t__VEBT____Definitions__OVEBT,type,
size_list_VEBT_VEBT: ( vEBT_VEBT > nat ) > list_VEBT_VEBT > nat ).
thf(sy_c_List_Olist__update_001t__VEBT____Definitions__OVEBT,type,
list_u1324408373059187874T_VEBT: list_VEBT_VEBT > nat > vEBT_VEBT > list_VEBT_VEBT ).
thf(sy_c_List_Onth_001_Eo,type,
nth_o: list_o > nat > $o ).
thf(sy_c_List_Onth_001t__Int__Oint,type,
nth_int: list_int > nat > int ).
thf(sy_c_List_Onth_001t__Nat__Onat,type,
nth_nat: list_nat > nat > nat ).
thf(sy_c_List_Onth_001t__Real__Oreal,type,
nth_real: list_real > nat > real ).
thf(sy_c_List_Onth_001t__VEBT____Definitions__OVEBT,type,
nth_VEBT_VEBT: list_VEBT_VEBT > nat > vEBT_VEBT ).
thf(sy_c_List_Oreplicate_001_Eo,type,
replicate_o: nat > $o > list_o ).
thf(sy_c_List_Oreplicate_001t__Int__Oint,type,
replicate_int: nat > int > list_int ).
thf(sy_c_List_Oreplicate_001t__Nat__Onat,type,
replicate_nat: nat > nat > list_nat ).
thf(sy_c_List_Oreplicate_001t__Real__Oreal,type,
replicate_real: nat > real > list_real ).
thf(sy_c_List_Oreplicate_001t__VEBT____Definitions__OVEBT,type,
replicate_VEBT_VEBT: nat > vEBT_VEBT > list_VEBT_VEBT ).
thf(sy_c_List_Oupt,type,
upt: nat > nat > list_nat ).
thf(sy_c_List_Oupto,type,
upto: int > int > list_int ).
thf(sy_c_List_Oupto__aux,type,
upto_aux: int > int > list_int > list_int ).
thf(sy_c_List_Oupto__rel,type,
upto_rel: product_prod_int_int > product_prod_int_int > $o ).
thf(sy_c_Nat_OSuc,type,
suc: nat > nat ).
thf(sy_c_Nat_Onat_Ocase__nat_001_Eo,type,
case_nat_o: $o > ( nat > $o ) > nat > $o ).
thf(sy_c_Nat_Onat_Ocase__nat_001t__Nat__Onat,type,
case_nat_nat: nat > ( nat > nat ) > nat > nat ).
thf(sy_c_Nat_Onat_Ocase__nat_001t__Option__Ooption_It__Num__Onum_J,type,
case_nat_option_num: option_num > ( nat > option_num ) > nat > option_num ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Code____Numeral__Ointeger,type,
semiri4939895301339042750nteger: nat > code_integer ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Complex__Ocomplex,type,
semiri8010041392384452111omplex: nat > complex ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
semiri1314217659103216013at_int: nat > int ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
semiri1316708129612266289at_nat: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Rat__Orat,type,
semiri681578069525770553at_rat: nat > rat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
semiri5074537144036343181t_real: nat > real ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Complex__Ocomplex,type,
semiri2816024913162550771omplex: ( complex > complex ) > nat > complex > complex ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Int__Oint,type,
semiri8420488043553186161ux_int: ( int > int ) > nat > int > int ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Nat__Onat,type,
semiri8422978514062236437ux_nat: ( nat > nat ) > nat > nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Rat__Orat,type,
semiri7787848453975740701ux_rat: ( rat > rat ) > nat > rat > rat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Real__Oreal,type,
semiri7260567687927622513x_real: ( real > real ) > nat > real > real ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_I_Eo_J,type,
size_size_list_o: list_o > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Code____Numeral__Ointeger_J,type,
size_s3445333598471063425nteger: list_Code_integer > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Complex__Ocomplex_J,type,
size_s3451745648224563538omplex: list_complex > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Int__Oint_J,type,
size_size_list_int: list_int > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Nat__Onat_J,type,
size_size_list_nat: list_nat > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Real__Oreal_J,type,
size_size_list_real: list_real > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
size_s6755466524823107622T_VEBT: list_VEBT_VEBT > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__Num__Onum,type,
size_size_num: num > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__String__Ochar,type,
size_size_char: char > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__Uint32__Ouint32,type,
size_size_uint32: uint32 > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__VEBT____Definitions__OVEBT,type,
size_size_VEBT_VEBT: vEBT_VEBT > nat ).
thf(sy_c_Nat__Bijection_Oset__decode,type,
nat_set_decode: nat > set_nat ).
thf(sy_c_Nat__Bijection_Oset__encode,type,
nat_set_encode: set_nat > nat ).
thf(sy_c_Nat__Bijection_Otriangle,type,
nat_triangle: nat > nat ).
thf(sy_c_NthRoot_Oroot,type,
root: nat > real > real ).
thf(sy_c_NthRoot_Osqrt,type,
sqrt: real > real ).
thf(sy_c_Num_OBitM,type,
bitM: num > num ).
thf(sy_c_Num_Oinc,type,
inc: num > num ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Code____Numeral__Ointeger,type,
neg_nu8804712462038260780nteger: code_integer > code_integer ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Complex__Ocomplex,type,
neg_nu7009210354673126013omplex: complex > complex ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Int__Oint,type,
neg_numeral_dbl_int: int > int ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Rat__Orat,type,
neg_numeral_dbl_rat: rat > rat ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Real__Oreal,type,
neg_numeral_dbl_real: real > real ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Code____Numeral__Ointeger,type,
neg_nu7757733837767384882nteger: code_integer > code_integer ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Complex__Ocomplex,type,
neg_nu6511756317524482435omplex: complex > complex ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Int__Oint,type,
neg_nu3811975205180677377ec_int: int > int ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Rat__Orat,type,
neg_nu3179335615603231917ec_rat: rat > rat ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Real__Oreal,type,
neg_nu6075765906172075777c_real: real > real ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Code____Numeral__Ointeger,type,
neg_nu5831290666863070958nteger: code_integer > code_integer ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Complex__Ocomplex,type,
neg_nu8557863876264182079omplex: complex > complex ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Int__Oint,type,
neg_nu5851722552734809277nc_int: int > int ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Rat__Orat,type,
neg_nu5219082963157363817nc_rat: rat > rat ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Real__Oreal,type,
neg_nu8295874005876285629c_real: real > real ).
thf(sy_c_Num_Onum_OBit0,type,
bit0: num > num ).
thf(sy_c_Num_Onum_OBit1,type,
bit1: num > num ).
thf(sy_c_Num_Onum_OOne,type,
one: num ).
thf(sy_c_Num_Onum_Ocase__num_001t__Option__Ooption_It__Num__Onum_J,type,
case_num_option_num: option_num > ( num > option_num ) > ( num > option_num ) > num > option_num ).
thf(sy_c_Num_Onum_Osize__num,type,
size_num: num > nat ).
thf(sy_c_Num_Onum__of__nat,type,
num_of_nat: nat > num ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Code____Numeral__Ointeger,type,
numera6620942414471956472nteger: num > code_integer ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Complex__Ocomplex,type,
numera6690914467698888265omplex: num > complex ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nat__Oenat,type,
numera1916890842035813515d_enat: num > extended_enat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
numeral_numeral_int: num > int ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
numeral_numeral_nat: num > nat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Rat__Orat,type,
numeral_numeral_rat: num > rat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Real__Oreal,type,
numeral_numeral_real: num > real ).
thf(sy_c_Num_Opow,type,
pow: num > num > num ).
thf(sy_c_Num_Opred__numeral,type,
pred_numeral: num > nat ).
thf(sy_c_Option_Ooption_ONone_001t__Nat__Onat,type,
none_nat: option_nat ).
thf(sy_c_Option_Ooption_ONone_001t__Num__Onum,type,
none_num: option_num ).
thf(sy_c_Option_Ooption_ONone_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
none_P5556105721700978146at_nat: option4927543243414619207at_nat ).
thf(sy_c_Option_Ooption_OSome_001t__Nat__Onat,type,
some_nat: nat > option_nat ).
thf(sy_c_Option_Ooption_OSome_001t__Num__Onum,type,
some_num: num > option_num ).
thf(sy_c_Option_Ooption_OSome_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
some_P7363390416028606310at_nat: product_prod_nat_nat > option4927543243414619207at_nat ).
thf(sy_c_Option_Ooption_Ocase__option_001_Eo_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
case_o184042715313410164at_nat: $o > ( product_prod_nat_nat > $o ) > option4927543243414619207at_nat > $o ).
thf(sy_c_Option_Ooption_Ocase__option_001t__Int__Oint_001t__Num__Onum,type,
case_option_int_num: int > ( num > int ) > option_num > int ).
thf(sy_c_Option_Ooption_Ocase__option_001t__Num__Onum_001t__Num__Onum,type,
case_option_num_num: num > ( num > num ) > option_num > num ).
thf(sy_c_Option_Ooption_Ocase__option_001t__Option__Ooption_It__Num__Onum_J_001t__Num__Onum,type,
case_o6005452278849405969um_num: option_num > ( num > option_num ) > option_num > option_num ).
thf(sy_c_Option_Ooption_Othe_001t__Nat__Onat,type,
the_nat: option_nat > nat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Extended____Nat__Oenat,type,
bot_bo4199563552545308370d_enat: extended_enat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
bot_bot_nat: nat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Int__Oint_J,type,
bot_bot_set_int: set_int ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
bot_bot_set_nat: set_nat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Real__Oreal_J,type,
bot_bot_set_real: set_real ).
thf(sy_c_Orderings_Oord__class_OLeast_001t__Nat__Onat,type,
ord_Least_nat: ( nat > $o ) > nat ).
thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Int__Oint_M_Eo_J,type,
ord_less_int_o: ( int > $o ) > ( int > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Nat__Onat_M_Eo_J,type,
ord_less_nat_o: ( nat > $o ) > ( nat > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Real__Oreal_M_Eo_J,type,
ord_less_real_o: ( real > $o ) > ( real > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001_062_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
ord_less_VEBT_VEBT_o: ( vEBT_VEBT > $o ) > ( vEBT_VEBT > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Code____Numeral__Ointeger,type,
ord_le6747313008572928689nteger: code_integer > code_integer > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nat__Oenat,type,
ord_le72135733267957522d_enat: extended_enat > extended_enat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
ord_less_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
ord_less_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
ord_less_num: num > num > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Rat__Orat,type,
ord_less_rat: rat > rat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
ord_less_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Code____Numeral__Ointeger_J,type,
ord_le1307284697595431911nteger: set_Code_integer > set_Code_integer > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Complex__Ocomplex_J,type,
ord_less_set_complex: set_complex > set_complex > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Int__Oint_J,type,
ord_less_set_int: set_int > set_int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
ord_less_set_nat: set_nat > set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Num__Onum_J,type,
ord_less_set_num: set_num > set_num > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Rat__Orat_J,type,
ord_less_set_rat: set_rat > set_rat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Real__Oreal_J,type,
ord_less_set_real: set_real > set_real > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
ord_less_set_set_nat: set_set_nat > set_set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
ord_le3480810397992357184T_VEBT: set_VEBT_VEBT > set_VEBT_VEBT > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__String__Ochar,type,
ord_less_char: char > char > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Int__Oint_M_Eo_J,type,
ord_less_eq_int_o: ( int > $o ) > ( int > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Nat__Onat_M_Eo_J,type,
ord_less_eq_nat_o: ( nat > $o ) > ( nat > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Real__Oreal_M_Eo_J,type,
ord_less_eq_real_o: ( real > $o ) > ( real > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
ord_le418104280809901481VEBT_o: ( vEBT_VEBT > $o ) > ( vEBT_VEBT > $o ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Code____Numeral__Ointeger,type,
ord_le3102999989581377725nteger: code_integer > code_integer > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nat__Oenat,type,
ord_le2932123472753598470d_enat: extended_enat > extended_enat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Filter__Ofilter_It__Nat__Onat_J,type,
ord_le2510731241096832064er_nat: filter_nat > filter_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
ord_less_eq_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
ord_less_eq_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Num__Onum,type,
ord_less_eq_num: num > num > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Rat__Orat,type,
ord_less_eq_rat: rat > rat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
ord_less_eq_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_Eo_J,type,
ord_less_eq_set_o: set_o > set_o > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Code____Numeral__Ointeger_J,type,
ord_le7084787975880047091nteger: set_Code_integer > set_Code_integer > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Complex__Ocomplex_J,type,
ord_le211207098394363844omplex: set_complex > set_complex > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Int__Oint_J,type,
ord_less_eq_set_int: set_int > set_int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
ord_less_eq_set_nat: set_nat > set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Num__Onum_J,type,
ord_less_eq_set_num: set_num > set_num > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
ord_le2843351958646193337nt_int: set_Pr958786334691620121nt_int > set_Pr958786334691620121nt_int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Rat__Orat_J,type,
ord_less_eq_set_rat: set_rat > set_rat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Real__Oreal_J,type,
ord_less_eq_set_real: set_real > set_real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
ord_le6893508408891458716et_nat: set_set_nat > set_set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
ord_le4337996190870823476T_VEBT: set_VEBT_VEBT > set_VEBT_VEBT > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__String__Ochar,type,
ord_less_eq_char: char > char > $o ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Extended____Nat__Oenat,type,
ord_ma741700101516333627d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Int__Oint,type,
ord_max_int: int > int > int ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Nat__Onat,type,
ord_max_nat: nat > nat > nat ).
thf(sy_c_Orderings_Oord__class_Omin_001t__Extended____Nat__Oenat,type,
ord_mi8085742599997312461d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Orderings_Oord__class_Omin_001t__Nat__Onat,type,
ord_min_nat: nat > nat > nat ).
thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Nat__Onat,type,
order_Greatest_nat: ( nat > $o ) > nat ).
thf(sy_c_Orderings_Oorder__class_Oantimono_001t__Nat__Onat_001t__Real__Oreal,type,
order_9091379641038594480t_real: ( nat > real ) > $o ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Int__Oint_J,type,
top_top_set_int: set_int ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Nat__Onat_J,type,
top_top_set_nat: set_nat ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Real__Oreal_J,type,
top_top_set_real: set_real ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__String__Ochar_J,type,
top_top_set_char: set_char ).
thf(sy_c_Power_Opower__class_Opower_001t__Code____Numeral__Ointeger,type,
power_8256067586552552935nteger: code_integer > nat > code_integer ).
thf(sy_c_Power_Opower__class_Opower_001t__Complex__Ocomplex,type,
power_power_complex: complex > nat > complex ).
thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
power_power_int: int > nat > int ).
thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
power_power_nat: nat > nat > nat ).
thf(sy_c_Power_Opower__class_Opower_001t__Rat__Orat,type,
power_power_rat: rat > nat > rat ).
thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
power_power_real: real > nat > real ).
thf(sy_c_Product__Type_OPair_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
produc1086072967326762835nteger: code_integer > code_integer > produc8923325533196201883nteger ).
thf(sy_c_Product__Type_OPair_001t__Int__Oint_001t__Int__Oint,type,
product_Pair_int_int: int > int > product_prod_int_int ).
thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Nat__Onat,type,
product_Pair_nat_nat: nat > nat > product_prod_nat_nat ).
thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Num__Onum,type,
product_Pair_nat_num: nat > num > product_prod_nat_num ).
thf(sy_c_Product__Type_OPair_001t__Num__Onum_001t__Num__Onum,type,
product_Pair_num_num: num > num > product_prod_num_num ).
thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
produc738532404422230701BT_nat: vEBT_VEBT > nat > produc9072475918466114483BT_nat ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
produc6916734918728496179nteger: ( code_integer > code_integer > produc8923325533196201883nteger ) > produc8923325533196201883nteger > produc8923325533196201883nteger ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001_Eo,type,
produc4947309494688390418_int_o: ( int > int > $o ) > product_prod_int_int > $o ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001t__Int__Oint,type,
produc8211389475949308722nt_int: ( int > int > int ) > product_prod_int_int > int ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
produc4245557441103728435nt_int: ( int > int > product_prod_int_int ) > product_prod_int_int > product_prod_int_int ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_Eo,type,
produc6081775807080527818_nat_o: ( nat > nat > $o ) > product_prod_nat_nat > $o ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
produc2626176000494625587at_nat: ( nat > nat > product_prod_nat_nat ) > product_prod_nat_nat > product_prod_nat_nat ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Num__Onum_001t__Option__Ooption_It__Num__Onum_J,type,
produc478579273971653890on_num: ( nat > num > option_num ) > product_prod_nat_num > option_num ).
thf(sy_c_Pure_Otype_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J_J_J_J,type,
type_N8448461349408098053l_num1: itself8794530163899892676l_num1 ).
thf(sy_c_Rat_OFrct,type,
frct: product_prod_int_int > rat ).
thf(sy_c_Rat_Onormalize,type,
normalize: product_prod_int_int > product_prod_int_int ).
thf(sy_c_Rat_Oof__int,type,
of_int: int > rat ).
thf(sy_c_Rat_Oquotient__of,type,
quotient_of: rat > product_prod_int_int ).
thf(sy_c_Real__Vector__Spaces_Obounded__linear_001t__Real__Oreal_001t__Real__Oreal,type,
real_V5970128139526366754l_real: ( real > real ) > $o ).
thf(sy_c_Real__Vector__Spaces_Onorm__class_Onorm_001t__Complex__Ocomplex,type,
real_V1022390504157884413omplex: complex > real ).
thf(sy_c_Real__Vector__Spaces_Onorm__class_Onorm_001t__Real__Oreal,type,
real_V7735802525324610683m_real: real > real ).
thf(sy_c_Real__Vector__Spaces_Oof__real_001t__Complex__Ocomplex,type,
real_V4546457046886955230omplex: real > complex ).
thf(sy_c_Real__Vector__Spaces_Oof__real_001t__Real__Oreal,type,
real_V1803761363581548252l_real: real > real ).
thf(sy_c_Real__Vector__Spaces_OscaleR__class_OscaleR_001t__Complex__Ocomplex,type,
real_V2046097035970521341omplex: real > complex > complex ).
thf(sy_c_Real__Vector__Spaces_OscaleR__class_OscaleR_001t__Real__Oreal,type,
real_V1485227260804924795R_real: real > real > real ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Code____Numeral__Ointeger,type,
divide6298287555418463151nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Complex__Ocomplex,type,
divide1717551699836669952omplex: complex > complex > complex ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
divide_divide_int: int > int > int ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
divide_divide_nat: nat > nat > nat ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Rat__Orat,type,
divide_divide_rat: rat > rat > rat ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
divide_divide_real: real > real > real ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Code____Numeral__Ointeger,type,
dvd_dvd_Code_integer: code_integer > code_integer > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Complex__Ocomplex,type,
dvd_dvd_complex: complex > complex > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Int__Oint,type,
dvd_dvd_int: int > int > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Nat__Onat,type,
dvd_dvd_nat: nat > nat > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Rat__Orat,type,
dvd_dvd_rat: rat > rat > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Real__Oreal,type,
dvd_dvd_real: real > real > $o ).
thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Code____Numeral__Ointeger,type,
modulo364778990260209775nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Int__Oint,type,
modulo_modulo_int: int > int > int ).
thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Nat__Onat,type,
modulo_modulo_nat: nat > nat > nat ).
thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Code____Numeral__Ointeger,type,
zero_n356916108424825756nteger: $o > code_integer ).
thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Int__Oint,type,
zero_n2684676970156552555ol_int: $o > int ).
thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Nat__Onat,type,
zero_n2687167440665602831ol_nat: $o > nat ).
thf(sy_c_Series_Osuminf_001t__Complex__Ocomplex,type,
suminf_complex: ( nat > complex ) > complex ).
thf(sy_c_Series_Osuminf_001t__Int__Oint,type,
suminf_int: ( nat > int ) > int ).
thf(sy_c_Series_Osuminf_001t__Nat__Onat,type,
suminf_nat: ( nat > nat ) > nat ).
thf(sy_c_Series_Osuminf_001t__Real__Oreal,type,
suminf_real: ( nat > real ) > real ).
thf(sy_c_Series_Osummable_001t__Complex__Ocomplex,type,
summable_complex: ( nat > complex ) > $o ).
thf(sy_c_Series_Osummable_001t__Int__Oint,type,
summable_int: ( nat > int ) > $o ).
thf(sy_c_Series_Osummable_001t__Nat__Onat,type,
summable_nat: ( nat > nat ) > $o ).
thf(sy_c_Series_Osummable_001t__Real__Oreal,type,
summable_real: ( nat > real ) > $o ).
thf(sy_c_Series_Osums_001t__Complex__Ocomplex,type,
sums_complex: ( nat > complex ) > complex > $o ).
thf(sy_c_Series_Osums_001t__Int__Oint,type,
sums_int: ( nat > int ) > int > $o ).
thf(sy_c_Series_Osums_001t__Nat__Onat,type,
sums_nat: ( nat > nat ) > nat > $o ).
thf(sy_c_Series_Osums_001t__Real__Oreal,type,
sums_real: ( nat > real ) > real > $o ).
thf(sy_c_Set_OCollect_001t__Code____Numeral__Ointeger,type,
collect_Code_integer: ( code_integer > $o ) > set_Code_integer ).
thf(sy_c_Set_OCollect_001t__Complex__Ocomplex,type,
collect_complex: ( complex > $o ) > set_complex ).
thf(sy_c_Set_OCollect_001t__Int__Oint,type,
collect_int: ( int > $o ) > set_int ).
thf(sy_c_Set_OCollect_001t__List__Olist_I_Eo_J,type,
collect_list_o: ( list_o > $o ) > set_list_o ).
thf(sy_c_Set_OCollect_001t__List__Olist_It__Code____Numeral__Ointeger_J,type,
collec3483841146883906114nteger: ( list_Code_integer > $o ) > set_li6976499617229504675nteger ).
thf(sy_c_Set_OCollect_001t__List__Olist_It__Complex__Ocomplex_J,type,
collect_list_complex: ( list_complex > $o ) > set_list_complex ).
thf(sy_c_Set_OCollect_001t__List__Olist_It__Int__Oint_J,type,
collect_list_int: ( list_int > $o ) > set_list_int ).
thf(sy_c_Set_OCollect_001t__List__Olist_It__Nat__Onat_J,type,
collect_list_nat: ( list_nat > $o ) > set_list_nat ).
thf(sy_c_Set_OCollect_001t__List__Olist_It__Real__Oreal_J,type,
collect_list_real: ( list_real > $o ) > set_list_real ).
thf(sy_c_Set_OCollect_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
collec5608196760682091941T_VEBT: ( list_VEBT_VEBT > $o ) > set_list_VEBT_VEBT ).
thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
collect_nat: ( nat > $o ) > set_nat ).
thf(sy_c_Set_OCollect_001t__Num__Onum,type,
collect_num: ( num > $o ) > set_num ).
thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
collec213857154873943460nt_int: ( product_prod_int_int > $o ) > set_Pr958786334691620121nt_int ).
thf(sy_c_Set_OCollect_001t__Rat__Orat,type,
collect_rat: ( rat > $o ) > set_rat ).
thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
collect_real: ( real > $o ) > set_real ).
thf(sy_c_Set_OCollect_001t__Set__Oset_It__Code____Numeral__Ointeger_J,type,
collec574505750873337192nteger: ( set_Code_integer > $o ) > set_set_Code_integer ).
thf(sy_c_Set_OCollect_001t__Set__Oset_It__Complex__Ocomplex_J,type,
collect_set_complex: ( set_complex > $o ) > set_set_complex ).
thf(sy_c_Set_OCollect_001t__Set__Oset_It__Int__Oint_J,type,
collect_set_int: ( set_int > $o ) > set_set_int ).
thf(sy_c_Set_OCollect_001t__Set__Oset_It__Nat__Onat_J,type,
collect_set_nat: ( set_nat > $o ) > set_set_nat ).
thf(sy_c_Set_OCollect_001t__VEBT____Definitions__OVEBT,type,
collect_VEBT_VEBT: ( vEBT_VEBT > $o ) > set_VEBT_VEBT ).
thf(sy_c_Set_Oimage_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
image_4470545334726330049nteger: ( code_integer > code_integer ) > set_Code_integer > set_Code_integer ).
thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Int__Oint,type,
image_int_int: ( int > int ) > set_int > set_int ).
thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Int__Oint,type,
image_nat_int: ( nat > int ) > set_nat > set_int ).
thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Nat__Onat,type,
image_nat_nat: ( nat > nat ) > set_nat > set_nat ).
thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__String__Ochar,type,
image_nat_char: ( nat > char ) > set_nat > set_char ).
thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Real__Oreal,type,
image_real_real: ( real > real ) > set_real > set_real ).
thf(sy_c_Set_Oimage_001t__String__Ochar_001t__Nat__Onat,type,
image_char_nat: ( char > nat ) > set_char > set_nat ).
thf(sy_c_Set_Oimage_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
image_VEBT_VEBT_nat: ( vEBT_VEBT > nat ) > set_VEBT_VEBT > set_nat ).
thf(sy_c_Set_Oinsert_001t__Int__Oint,type,
insert_int: int > set_int > set_int ).
thf(sy_c_Set_Oinsert_001t__Nat__Onat,type,
insert_nat: nat > set_nat > set_nat ).
thf(sy_c_Set_Oinsert_001t__Real__Oreal,type,
insert_real: real > set_real > set_real ).
thf(sy_c_Set_Oinsert_001t__VEBT____Definitions__OVEBT,type,
insert_VEBT_VEBT: vEBT_VEBT > set_VEBT_VEBT > set_VEBT_VEBT ).
thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Complex__Ocomplex,type,
set_fo1517530859248394432omplex: ( nat > complex > complex ) > nat > nat > complex > complex ).
thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Int__Oint,type,
set_fo2581907887559384638at_int: ( nat > int > int ) > nat > nat > int > int ).
thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Nat__Onat,type,
set_fo2584398358068434914at_nat: ( nat > nat > nat ) > nat > nat > nat > nat ).
thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Rat__Orat,type,
set_fo1949268297981939178at_rat: ( nat > rat > rat ) > nat > nat > rat > rat ).
thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Real__Oreal,type,
set_fo3111899725591712190t_real: ( nat > real > real ) > nat > nat > real > real ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Code____Numeral__Ointeger,type,
set_or189985376899183464nteger: code_integer > code_integer > set_Code_integer ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Int__Oint,type,
set_or1266510415728281911st_int: int > int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Nat__Onat,type,
set_or1269000886237332187st_nat: nat > nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Num__Onum,type,
set_or7049704709247886629st_num: num > num > set_num ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Rat__Orat,type,
set_or633870826150836451st_rat: rat > rat > set_rat ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Real__Oreal,type,
set_or1222579329274155063t_real: real > real > set_real ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Set__Oset_It__Nat__Onat_J,type,
set_or4548717258645045905et_nat: set_nat > set_nat > set_set_nat ).
thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Code____Numeral__Ointeger,type,
set_or8404916559141939852nteger: code_integer > code_integer > set_Code_integer ).
thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Int__Oint,type,
set_or4662586982721622107an_int: int > int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Nat__Onat,type,
set_or4665077453230672383an_nat: nat > nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OatLeast_001t__Nat__Onat,type,
set_ord_atLeast_nat: nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OatLeast_001t__Real__Oreal,type,
set_ord_atLeast_real: real > set_real ).
thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Code____Numeral__Ointeger,type,
set_or9101266186257409494nteger: code_integer > set_Code_integer ).
thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Int__Oint,type,
set_ord_atMost_int: int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Nat__Onat,type,
set_ord_atMost_nat: nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Num__Onum,type,
set_ord_atMost_num: num > set_num ).
thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Rat__Orat,type,
set_ord_atMost_rat: rat > set_rat ).
thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Real__Oreal,type,
set_ord_atMost_real: real > set_real ).
thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Set__Oset_It__Nat__Onat_J,type,
set_or4236626031148496127et_nat: set_nat > set_set_nat ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost_001t__Code____Numeral__Ointeger,type,
set_or2715278749043346189nteger: code_integer > code_integer > set_Code_integer ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost_001t__Int__Oint,type,
set_or6656581121297822940st_int: int > int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost_001t__Nat__Onat,type,
set_or6659071591806873216st_nat: nat > nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Code____Numeral__Ointeger,type,
set_or4266950643985792945nteger: code_integer > code_integer > set_Code_integer ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Int__Oint,type,
set_or5832277885323065728an_int: int > int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Nat__Onat,type,
set_or5834768355832116004an_nat: nat > nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Real__Oreal,type,
set_or1633881224788618240n_real: real > real > set_real ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001t__Nat__Onat,type,
set_or1210151606488870762an_nat: nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001t__Real__Oreal,type,
set_or5849166863359141190n_real: real > set_real ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Int__Oint,type,
set_ord_lessThan_int: int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Nat__Onat,type,
set_ord_lessThan_nat: nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Num__Onum,type,
set_ord_lessThan_num: num > set_num ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Rat__Orat,type,
set_ord_lessThan_rat: rat > set_rat ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Real__Oreal,type,
set_or5984915006950818249n_real: real > set_real ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Set__Oset_It__Nat__Onat_J,type,
set_or890127255671739683et_nat: set_nat > set_set_nat ).
thf(sy_c_Signed__Division_Osigned__division__class_Osigned__divide_001t__Int__Oint,type,
signed6714573509424544716de_int: int > int > int ).
thf(sy_c_Signed__Division_Osigned__division__class_Osigned__modulo_001t__Int__Oint,type,
signed6292675348222524329lo_int: int > int > int ).
thf(sy_c_String_Oascii__of,type,
ascii_of: char > char ).
thf(sy_c_String_Ochar_OChar,type,
char2: $o > $o > $o > $o > $o > $o > $o > $o > char ).
thf(sy_c_String_Ochar_Osize__char,type,
size_char: char > nat ).
thf(sy_c_String_Ocomm__semiring__1__class_Oof__char_001t__Nat__Onat,type,
comm_s629917340098488124ar_nat: char > nat ).
thf(sy_c_String_Ointeger__of__char,type,
integer_of_char: char > code_integer ).
thf(sy_c_String_Ounique__euclidean__semiring__with__bit__operations__class_Ochar__of_001t__Nat__Onat,type,
unique3096191561947761185of_nat: nat > char ).
thf(sy_c_Topological__Spaces_Ocontinuous_001t__Real__Oreal_001t__Real__Oreal,type,
topolo4422821103128117721l_real: filter_real > ( real > real ) > $o ).
thf(sy_c_Topological__Spaces_Ocontinuous__on_001t__Real__Oreal_001t__Real__Oreal,type,
topolo5044208981011980120l_real: set_real > ( real > real ) > $o ).
thf(sy_c_Topological__Spaces_Omonoseq_001t__Code____Numeral__Ointeger,type,
topolo2919662092509805066nteger: ( nat > code_integer ) > $o ).
thf(sy_c_Topological__Spaces_Omonoseq_001t__Int__Oint,type,
topolo4899668324122417113eq_int: ( nat > int ) > $o ).
thf(sy_c_Topological__Spaces_Omonoseq_001t__Nat__Onat,type,
topolo4902158794631467389eq_nat: ( nat > nat ) > $o ).
thf(sy_c_Topological__Spaces_Omonoseq_001t__Num__Onum,type,
topolo1459490580787246023eq_num: ( nat > num ) > $o ).
thf(sy_c_Topological__Spaces_Omonoseq_001t__Rat__Orat,type,
topolo4267028734544971653eq_rat: ( nat > rat ) > $o ).
thf(sy_c_Topological__Spaces_Omonoseq_001t__Real__Oreal,type,
topolo6980174941875973593q_real: ( nat > real ) > $o ).
thf(sy_c_Topological__Spaces_Omonoseq_001t__Set__Oset_It__Nat__Onat_J,type,
topolo7278393974255667507et_nat: ( nat > set_nat ) > $o ).
thf(sy_c_Topological__Spaces_Otopological__space__class_Oat__within_001t__Real__Oreal,type,
topolo2177554685111907308n_real: real > set_real > filter_real ).
thf(sy_c_Topological__Spaces_Otopological__space__class_Onhds_001t__Real__Oreal,type,
topolo2815343760600316023s_real: real > filter_real ).
thf(sy_c_Topological__Spaces_Ouniform__space__class_OCauchy_001t__Real__Oreal,type,
topolo4055970368930404560y_real: ( nat > real ) > $o ).
thf(sy_c_Transcendental_Oarccos,type,
arccos: real > real ).
thf(sy_c_Transcendental_Oarcosh_001t__Real__Oreal,type,
arcosh_real: real > real ).
thf(sy_c_Transcendental_Oarcsin,type,
arcsin: real > real ).
thf(sy_c_Transcendental_Oarctan,type,
arctan: real > real ).
thf(sy_c_Transcendental_Oarsinh_001t__Real__Oreal,type,
arsinh_real: real > real ).
thf(sy_c_Transcendental_Oartanh_001t__Real__Oreal,type,
artanh_real: real > real ).
thf(sy_c_Transcendental_Ocos_001t__Complex__Ocomplex,type,
cos_complex: complex > complex ).
thf(sy_c_Transcendental_Ocos_001t__Real__Oreal,type,
cos_real: real > real ).
thf(sy_c_Transcendental_Ocos__coeff,type,
cos_coeff: nat > real ).
thf(sy_c_Transcendental_Ocosh_001t__Real__Oreal,type,
cosh_real: real > real ).
thf(sy_c_Transcendental_Ocot_001t__Real__Oreal,type,
cot_real: real > real ).
thf(sy_c_Transcendental_Odiffs_001t__Code____Numeral__Ointeger,type,
diffs_Code_integer: ( nat > code_integer ) > nat > code_integer ).
thf(sy_c_Transcendental_Odiffs_001t__Complex__Ocomplex,type,
diffs_complex: ( nat > complex ) > nat > complex ).
thf(sy_c_Transcendental_Odiffs_001t__Int__Oint,type,
diffs_int: ( nat > int ) > nat > int ).
thf(sy_c_Transcendental_Odiffs_001t__Rat__Orat,type,
diffs_rat: ( nat > rat ) > nat > rat ).
thf(sy_c_Transcendental_Odiffs_001t__Real__Oreal,type,
diffs_real: ( nat > real ) > nat > real ).
thf(sy_c_Transcendental_Oexp_001t__Complex__Ocomplex,type,
exp_complex: complex > complex ).
thf(sy_c_Transcendental_Oexp_001t__Real__Oreal,type,
exp_real: real > real ).
thf(sy_c_Transcendental_Oln__class_Oln_001t__Real__Oreal,type,
ln_ln_real: real > real ).
thf(sy_c_Transcendental_Olog,type,
log: real > real > real ).
thf(sy_c_Transcendental_Opi,type,
pi: real ).
thf(sy_c_Transcendental_Opowr_001t__Real__Oreal,type,
powr_real: real > real > real ).
thf(sy_c_Transcendental_Osin_001t__Complex__Ocomplex,type,
sin_complex: complex > complex ).
thf(sy_c_Transcendental_Osin_001t__Real__Oreal,type,
sin_real: real > real ).
thf(sy_c_Transcendental_Osin__coeff,type,
sin_coeff: nat > real ).
thf(sy_c_Transcendental_Osinh_001t__Real__Oreal,type,
sinh_real: real > real ).
thf(sy_c_Transcendental_Otan_001t__Complex__Ocomplex,type,
tan_complex: complex > complex ).
thf(sy_c_Transcendental_Otan_001t__Real__Oreal,type,
tan_real: real > real ).
thf(sy_c_Transcendental_Otanh_001t__Complex__Ocomplex,type,
tanh_complex: complex > complex ).
thf(sy_c_Transcendental_Otanh_001t__Real__Oreal,type,
tanh_real: real > real ).
thf(sy_c_Type__Length_Olen0__class_Olen__of_001t__Enum__Ofinite____1,type,
type_l31302759751748491nite_1: itself_finite_1 > nat ).
thf(sy_c_Type__Length_Olen0__class_Olen__of_001t__Enum__Ofinite____2,type,
type_l31302759751748492nite_2: itself_finite_2 > nat ).
thf(sy_c_Type__Length_Olen0__class_Olen__of_001t__Enum__Ofinite____3,type,
type_l31302759751748493nite_3: itself_finite_3 > nat ).
thf(sy_c_Type__Length_Olen0__class_Olen__of_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J_J_J_J,type,
type_l796852477590012082l_num1: itself8794530163899892676l_num1 > nat ).
thf(sy_c_Type__Length_Olen0__class_Olen__of_001t__Numeral____Type__Onum0,type,
type_l4264026598287037464l_num0: itself_Numeral_num0 > nat ).
thf(sy_c_Type__Length_Olen0__class_Olen__of_001t__Numeral____Type__Onum1,type,
type_l4264026598287037465l_num1: itself_Numeral_num1 > nat ).
thf(sy_c_Uint32_OUint32,type,
uint322: code_integer > uint32 ).
thf(sy_c_Uint32_OUint32__signed,type,
uint32_signed: code_integer > uint32 ).
thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t,type,
vEBT_T_i_n_s_e_r_t: vEBT_VEBT > nat > nat ).
thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_H,type,
vEBT_T_i_n_s_e_r_t2: vEBT_VEBT > nat > nat ).
thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_H__rel,type,
vEBT_T5076183648494686801_t_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t__rel,type,
vEBT_T9217963907923527482_t_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062m_092_060_094sub_062a_092_060_094sub_062x_092_060_094sub_062t,type,
vEBT_T_m_a_x_t: vEBT_VEBT > nat ).
thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062m_092_060_094sub_062a_092_060_094sub_062x_092_060_094sub_062t__rel,type,
vEBT_T_m_a_x_t_rel: vEBT_VEBT > vEBT_VEBT > $o ).
thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r,type,
vEBT_T_m_e_m_b_e_r: vEBT_VEBT > nat > nat ).
thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H,type,
vEBT_T_m_e_m_b_e_r2: vEBT_VEBT > nat > nat ).
thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H__rel,type,
vEBT_T8099345112685741742_r_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r__rel,type,
vEBT_T5837161174952499735_r_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062m_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062N_092_060_094sub_062u_092_060_094sub_062l_092_060_094sub_062l,type,
vEBT_T_m_i_n_N_u_l_l: vEBT_VEBT > nat ).
thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062m_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062N_092_060_094sub_062u_092_060_094sub_062l_092_060_094sub_062l__rel,type,
vEBT_T5462971552011256508_l_rel: vEBT_VEBT > vEBT_VEBT > $o ).
thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062m_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062t,type,
vEBT_T_m_i_n_t: vEBT_VEBT > nat ).
thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062m_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062t__rel,type,
vEBT_T_m_i_n_t_rel: vEBT_VEBT > vEBT_VEBT > $o ).
thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d,type,
vEBT_T_p_r_e_d: vEBT_VEBT > nat > nat ).
thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_H,type,
vEBT_T_p_r_e_d2: vEBT_VEBT > nat > nat ).
thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_H__rel,type,
vEBT_T_p_r_e_d_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d__rel,type,
vEBT_T_p_r_e_d_rel2: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c,type,
vEBT_T_s_u_c_c: vEBT_VEBT > nat > nat ).
thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_H,type,
vEBT_T_s_u_c_c2: vEBT_VEBT > nat > nat ).
thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_H__rel,type,
vEBT_T_s_u_c_c_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c__rel,type,
vEBT_T_s_u_c_c_rel2: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__BuildupMemImp_OVEBT__internal_OT__vebt__buildupi,type,
vEBT_V441764108873111860ildupi: nat > nat ).
thf(sy_c_VEBT__BuildupMemImp_OVEBT__internal_OT__vebt__buildupi_H,type,
vEBT_V9176841429113362141ildupi: nat > int ).
thf(sy_c_VEBT__BuildupMemImp_OVEBT__internal_OT__vebt__buildupi_H__rel,type,
vEBT_V3352910403632780892pi_rel: nat > nat > $o ).
thf(sy_c_VEBT__BuildupMemImp_OVEBT__internal_OT__vebt__buildupi__rel,type,
vEBT_V2957053500504383685pi_rel: nat > nat > $o ).
thf(sy_c_VEBT__BuildupMemImp_OVEBT__internal_OTb,type,
vEBT_VEBT_Tb: nat > int ).
thf(sy_c_VEBT__BuildupMemImp_OVEBT__internal_OTb_H,type,
vEBT_VEBT_Tb2: nat > nat ).
thf(sy_c_VEBT__BuildupMemImp_OVEBT__internal_OTb_H__rel,type,
vEBT_VEBT_Tb_rel: nat > nat > $o ).
thf(sy_c_VEBT__BuildupMemImp_OVEBT__internal_OTb__rel,type,
vEBT_VEBT_Tb_rel2: nat > nat > $o ).
thf(sy_c_VEBT__BuildupMemImp_OVEBT__internal_Ohighi,type,
vEBT_VEBT_highi: nat > nat > heap_Time_Heap_nat ).
thf(sy_c_VEBT__BuildupMemImp_OVEBT__internal_Olowi,type,
vEBT_VEBT_lowi: nat > nat > heap_Time_Heap_nat ).
thf(sy_c_VEBT__Definitions_OVEBT_OLeaf,type,
vEBT_Leaf: $o > $o > vEBT_VEBT ).
thf(sy_c_VEBT__Definitions_OVEBT_ONode,type,
vEBT_Node: option4927543243414619207at_nat > nat > list_VEBT_VEBT > vEBT_VEBT > vEBT_VEBT ).
thf(sy_c_VEBT__Definitions_OVEBT_Osize__VEBT,type,
vEBT_size_VEBT: vEBT_VEBT > nat ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Oboth__member__options,type,
vEBT_V8194947554948674370ptions: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Ohigh,type,
vEBT_VEBT_high: nat > nat > nat ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Oin__children,type,
vEBT_V5917875025757280293ildren: nat > list_VEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Olow,type,
vEBT_VEBT_low: nat > nat > nat ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima,type,
vEBT_VEBT_membermima: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima__rel,type,
vEBT_V4351362008482014158ma_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member,type,
vEBT_V5719532721284313246member: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member__rel,type,
vEBT_V5765760719290551771er_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Ovalid_H,type,
vEBT_VEBT_valid: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Ovalid_H__rel,type,
vEBT_VEBT_valid_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Definitions_Oinvar__vebt,type,
vEBT_invar_vebt: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_Oset__vebt,type,
vEBT_set_vebt: vEBT_VEBT > set_nat ).
thf(sy_c_VEBT__Definitions_Ovebt__buildup,type,
vEBT_vebt_buildup: nat > vEBT_VEBT ).
thf(sy_c_VEBT__Definitions_Ovebt__buildup__rel,type,
vEBT_v4011308405150292612up_rel: nat > nat > $o ).
thf(sy_c_VEBT__DeleteBounds_OT_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e,type,
vEBT_T_d_e_l_e_t_e: vEBT_VEBT > nat > nat ).
thf(sy_c_VEBT__DeleteBounds_OT_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e__rel,type,
vEBT_T8441311223069195367_e_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__DeleteBounds_OVEBT__internal_OT_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_H,type,
vEBT_V1232361888498592333_e_t_e: vEBT_VEBT > nat > nat ).
thf(sy_c_VEBT__DeleteBounds_OVEBT__internal_OT_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_H__rel,type,
vEBT_V6368547301243506412_e_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Delete_Ovebt__delete,type,
vEBT_vebt_delete: vEBT_VEBT > nat > vEBT_VEBT ).
thf(sy_c_VEBT__Delete_Ovebt__delete__rel,type,
vEBT_vebt_delete_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Height_OVEBT__internal_Oheight,type,
vEBT_VEBT_height: vEBT_VEBT > nat ).
thf(sy_c_VEBT__Height_OVEBT__internal_Oheight__rel,type,
vEBT_VEBT_height_rel: vEBT_VEBT > vEBT_VEBT > $o ).
thf(sy_c_VEBT__Insert_Ovebt__insert,type,
vEBT_vebt_insert: vEBT_VEBT > nat > vEBT_VEBT ).
thf(sy_c_VEBT__Insert_Ovebt__insert__rel,type,
vEBT_vebt_insert_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Member_OVEBT__internal_Obit__concat,type,
vEBT_VEBT_bit_concat: nat > nat > nat > nat ).
thf(sy_c_VEBT__Member_OVEBT__internal_OminNull,type,
vEBT_VEBT_minNull: vEBT_VEBT > $o ).
thf(sy_c_VEBT__Member_OVEBT__internal_OminNull__rel,type,
vEBT_V6963167321098673237ll_rel: vEBT_VEBT > vEBT_VEBT > $o ).
thf(sy_c_VEBT__Member_OVEBT__internal_Oset__vebt_H,type,
vEBT_VEBT_set_vebt: vEBT_VEBT > set_nat ).
thf(sy_c_VEBT__Member_Ovebt__member,type,
vEBT_vebt_member: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Member_Ovebt__member__rel,type,
vEBT_vebt_member_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Oadd,type,
vEBT_VEBT_add: option_nat > option_nat > option_nat ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Ogreater,type,
vEBT_VEBT_greater: option_nat > option_nat > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Oless,type,
vEBT_VEBT_less: option_nat > option_nat > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Olesseq,type,
vEBT_VEBT_lesseq: option_nat > option_nat > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Omax__in__set,type,
vEBT_VEBT_max_in_set: set_nat > nat > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Omin__in__set,type,
vEBT_VEBT_min_in_set: set_nat > nat > $o ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Omul,type,
vEBT_VEBT_mul: option_nat > option_nat > option_nat ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift_001t__Nat__Onat,type,
vEBT_V4262088993061758097ft_nat: ( nat > nat > nat ) > option_nat > option_nat > option_nat ).
thf(sy_c_VEBT__MinMax_OVEBT__internal_Opower,type,
vEBT_VEBT_power: option_nat > option_nat > option_nat ).
thf(sy_c_VEBT__MinMax_Ovebt__maxt,type,
vEBT_vebt_maxt: vEBT_VEBT > option_nat ).
thf(sy_c_VEBT__MinMax_Ovebt__maxt__rel,type,
vEBT_vebt_maxt_rel: vEBT_VEBT > vEBT_VEBT > $o ).
thf(sy_c_VEBT__MinMax_Ovebt__mint,type,
vEBT_vebt_mint: vEBT_VEBT > option_nat ).
thf(sy_c_VEBT__MinMax_Ovebt__mint__rel,type,
vEBT_vebt_mint_rel: vEBT_VEBT > vEBT_VEBT > $o ).
thf(sy_c_VEBT__Pred_Ois__pred__in__set,type,
vEBT_is_pred_in_set: set_nat > nat > nat > $o ).
thf(sy_c_VEBT__Pred_Ovebt__pred,type,
vEBT_vebt_pred: vEBT_VEBT > nat > option_nat ).
thf(sy_c_VEBT__Pred_Ovebt__pred__rel,type,
vEBT_vebt_pred_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Space_OVEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d,type,
vEBT_V8646137997579335489_i_l_d: nat > nat ).
thf(sy_c_VEBT__Space_OVEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_092_060_094sub_062u_092_060_094sub_062p,type,
vEBT_V8346862874174094_d_u_p: nat > nat ).
thf(sy_c_VEBT__Space_OVEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_092_060_094sub_062u_092_060_094sub_062p__rel,type,
vEBT_V1247956027447740395_p_rel: nat > nat > $o ).
thf(sy_c_VEBT__Space_OVEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d__rel,type,
vEBT_V5144397997797733112_d_rel: nat > nat > $o ).
thf(sy_c_VEBT__Space_OVEBT__internal_Ocnt,type,
vEBT_VEBT_cnt: vEBT_VEBT > real ).
thf(sy_c_VEBT__Space_OVEBT__internal_Ocnt_H,type,
vEBT_VEBT_cnt2: vEBT_VEBT > nat ).
thf(sy_c_VEBT__Space_OVEBT__internal_Ocnt_H__rel,type,
vEBT_VEBT_cnt_rel: vEBT_VEBT > vEBT_VEBT > $o ).
thf(sy_c_VEBT__Space_OVEBT__internal_Ocnt__rel,type,
vEBT_VEBT_cnt_rel2: vEBT_VEBT > vEBT_VEBT > $o ).
thf(sy_c_VEBT__Space_OVEBT__internal_Ospace,type,
vEBT_VEBT_space: vEBT_VEBT > nat ).
thf(sy_c_VEBT__Space_OVEBT__internal_Ospace_H,type,
vEBT_VEBT_space2: vEBT_VEBT > nat ).
thf(sy_c_VEBT__Space_OVEBT__internal_Ospace_H__rel,type,
vEBT_VEBT_space_rel: vEBT_VEBT > vEBT_VEBT > $o ).
thf(sy_c_VEBT__Space_OVEBT__internal_Ospace__rel,type,
vEBT_VEBT_space_rel2: vEBT_VEBT > vEBT_VEBT > $o ).
thf(sy_c_VEBT__Succ_Ois__succ__in__set,type,
vEBT_is_succ_in_set: set_nat > nat > nat > $o ).
thf(sy_c_VEBT__Succ_Ovebt__succ,type,
vEBT_vebt_succ: vEBT_VEBT > nat > option_nat ).
thf(sy_c_VEBT__Succ_Ovebt__succ__rel,type,
vEBT_vebt_succ_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__Nat__Onat,type,
accp_nat: ( nat > nat > $o ) > nat > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
accp_P1096762738010456898nt_int: ( product_prod_int_int > product_prod_int_int > $o ) > product_prod_int_int > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
accp_P2887432264394892906BT_nat: ( produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ) > produc9072475918466114483BT_nat > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__VEBT____Definitions__OVEBT,type,
accp_VEBT_VEBT: ( vEBT_VEBT > vEBT_VEBT > $o ) > vEBT_VEBT > $o ).
thf(sy_c_fChoice_001t__Real__Oreal,type,
fChoice_real: ( real > $o ) > real ).
thf(sy_c_member_001_Eo,type,
member_o: $o > set_o > $o ).
thf(sy_c_member_001t__Code____Numeral__Ointeger,type,
member_Code_integer: code_integer > set_Code_integer > $o ).
thf(sy_c_member_001t__Complex__Ocomplex,type,
member_complex: complex > set_complex > $o ).
thf(sy_c_member_001t__Int__Oint,type,
member_int: int > set_int > $o ).
thf(sy_c_member_001t__Nat__Onat,type,
member_nat: nat > set_nat > $o ).
thf(sy_c_member_001t__Num__Onum,type,
member_num: num > set_num > $o ).
thf(sy_c_member_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
member5262025264175285858nt_int: product_prod_int_int > set_Pr958786334691620121nt_int > $o ).
thf(sy_c_member_001t__Rat__Orat,type,
member_rat: rat > set_rat > $o ).
thf(sy_c_member_001t__Real__Oreal,type,
member_real: real > set_real > $o ).
thf(sy_c_member_001t__Set__Oset_It__Nat__Onat_J,type,
member_set_nat: set_nat > set_set_nat > $o ).
thf(sy_c_member_001t__VEBT____Definitions__OVEBT,type,
member_VEBT_VEBT: vEBT_VEBT > set_VEBT_VEBT > $o ).
thf(sy_v_na____,type,
na: nat ).
% Relevant facts (10206)
thf(fact_0_False,axiom,
~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ).
% False
thf(fact_1_max__in__set__def,axiom,
( vEBT_VEBT_max_in_set
= ( ^ [Xs: set_nat,X: nat] :
( ( member_nat @ X @ Xs )
& ! [Y: nat] :
( ( member_nat @ Y @ Xs )
=> ( ord_less_eq_nat @ Y @ X ) ) ) ) ) ).
% max_in_set_def
thf(fact_2_min__in__set__def,axiom,
( vEBT_VEBT_min_in_set
= ( ^ [Xs: set_nat,X: nat] :
( ( member_nat @ X @ Xs )
& ! [Y: nat] :
( ( member_nat @ Y @ Xs )
=> ( ord_less_eq_nat @ X @ Y ) ) ) ) ) ).
% min_in_set_def
thf(fact_3__C3_OIH_C_I4_J,axiom,
! [X2: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ na ) ) )
=> ( ( X2
= ( divide_divide_nat @ ( suc @ ( suc @ na ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_nat @ ( vEBT_VEBT_Tb2 @ ( suc @ X2 ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ one ) ) ) @ ( vEBT_VEBT_cnt2 @ ( vEBT_vebt_buildup @ ( suc @ X2 ) ) ) ) ) ) ) ).
% "3.IH"(4)
thf(fact_4__C3_OIH_C_I3_J,axiom,
! [X2: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ na ) ) )
=> ( ( X2
= ( divide_divide_nat @ ( suc @ ( suc @ na ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_nat @ ( vEBT_VEBT_Tb2 @ X2 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ one ) ) ) @ ( vEBT_VEBT_cnt2 @ ( vEBT_vebt_buildup @ X2 ) ) ) ) ) ) ).
% "3.IH"(3)
thf(fact_5__C3_OIH_C_I1_J,axiom,
! [X2: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ na ) ) )
=> ( ( X2
= ( divide_divide_nat @ ( suc @ ( suc @ na ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_nat @ ( vEBT_VEBT_Tb2 @ X2 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ one ) ) ) @ ( vEBT_VEBT_cnt2 @ ( vEBT_vebt_buildup @ X2 ) ) ) ) ) ) ).
% "3.IH"(1)
thf(fact_6_vebt__buildup__bound,axiom,
! [U: nat,N: nat] :
( ( U
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ord_less_eq_nat @ ( vEBT_V8346862874174094_d_u_p @ N ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ one ) ) ) ) ) @ U ) ) ) ).
% vebt_buildup_bound
thf(fact_7_odd__Suc__div__two,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% odd_Suc_div_two
thf(fact_8_even__Suc__div__two,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% even_Suc_div_two
thf(fact_9__C0_C,axiom,
ord_less_eq_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ one ) ) ) @ ( vEBT_VEBT_Tb2 @ ( suc @ ( suc @ ( divide_divide_nat @ na @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( times_times_nat @ ( vEBT_VEBT_Tb2 @ ( suc @ ( divide_divide_nat @ na @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ ( divide_divide_nat @ na @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ one ) ) ) @ ( vEBT_VEBT_cnt2 @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ na ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ na ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ na ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ na ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% "0"
thf(fact_10_even__Suc,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N ) )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% even_Suc
thf(fact_11_even__Suc__Suc__iff,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ N ) ) )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% even_Suc_Suc_iff
thf(fact_12_div2__Suc__Suc,axiom,
! [M: nat] :
( ( divide_divide_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( suc @ ( divide_divide_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% div2_Suc_Suc
thf(fact_13_vebt__buildup_Osimps_I3_J,axiom,
! [Va: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( ( vEBT_vebt_buildup @ ( suc @ ( suc @ Va ) ) )
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( ( vEBT_vebt_buildup @ ( suc @ ( suc @ Va ) ) )
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% vebt_buildup.simps(3)
thf(fact_14_even__mult__iff,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ A @ B ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
| ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_mult_iff
thf(fact_15_even__mult__iff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( times_times_int @ A @ B ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
| ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_mult_iff
thf(fact_16_divide__le__eq__numeral1_I1_J,axiom,
! [B: real,W: num,A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A )
= ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) ) ).
% divide_le_eq_numeral1(1)
thf(fact_17_divide__le__eq__numeral1_I1_J,axiom,
! [B: rat,W: num,A: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) @ A )
= ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) ) ).
% divide_le_eq_numeral1(1)
thf(fact_18_le__divide__eq__numeral1_I1_J,axiom,
! [A: real,B: real,W: num] :
( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
= ( ord_less_eq_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) @ B ) ) ).
% le_divide_eq_numeral1(1)
thf(fact_19_le__divide__eq__numeral1_I1_J,axiom,
! [A: rat,B: rat,W: num] :
( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
= ( ord_less_eq_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) @ B ) ) ).
% le_divide_eq_numeral1(1)
thf(fact_20_dvd__div__mult__self,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( times_times_nat @ ( divide_divide_nat @ B @ A ) @ A )
= B ) ) ).
% dvd_div_mult_self
thf(fact_21_dvd__div__mult__self,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( times_times_int @ ( divide_divide_int @ B @ A ) @ A )
= B ) ) ).
% dvd_div_mult_self
thf(fact_22_even__odd__cases,axiom,
! [X2: nat] :
( ! [N2: nat] :
( X2
!= ( plus_plus_nat @ N2 @ N2 ) )
=> ~ ! [N2: nat] :
( X2
!= ( plus_plus_nat @ N2 @ ( suc @ N2 ) ) ) ) ).
% even_odd_cases
thf(fact_23_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numera6690914467698888265omplex @ M )
= ( numera6690914467698888265omplex @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_24_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_real @ M )
= ( numeral_numeral_real @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_25_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_rat @ M )
= ( numeral_numeral_rat @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_26_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_nat @ M )
= ( numeral_numeral_nat @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_27_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_int @ M )
= ( numeral_numeral_int @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_28_VEBT_Oinject_I1_J,axiom,
! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT,Y11: option4927543243414619207at_nat,Y12: nat,Y13: list_VEBT_VEBT,Y14: vEBT_VEBT] :
( ( ( vEBT_Node @ X11 @ X12 @ X13 @ X14 )
= ( vEBT_Node @ Y11 @ Y12 @ Y13 @ Y14 ) )
= ( ( X11 = Y11 )
& ( X12 = Y12 )
& ( X13 = Y13 )
& ( X14 = Y14 ) ) ) ).
% VEBT.inject(1)
thf(fact_29_pow__sum,axiom,
! [A: nat,B: nat] :
( ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ).
% pow_sum
thf(fact_30_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_31_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_32_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_33_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_34_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) )
= ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_35_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_36_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
= ( numeral_numeral_rat @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_37_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_38_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_39_add__numeral__left,axiom,
! [V: num,W: num,Z: complex] :
( ( plus_plus_complex @ ( numera6690914467698888265omplex @ V ) @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ W ) @ Z ) )
= ( plus_plus_complex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_40_add__numeral__left,axiom,
! [V: num,W: num,Z: real] :
( ( plus_plus_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ ( numeral_numeral_real @ W ) @ Z ) )
= ( plus_plus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_41_add__numeral__left,axiom,
! [V: num,W: num,Z: rat] :
( ( plus_plus_rat @ ( numeral_numeral_rat @ V ) @ ( plus_plus_rat @ ( numeral_numeral_rat @ W ) @ Z ) )
= ( plus_plus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_42_add__numeral__left,axiom,
! [V: num,W: num,Z: nat] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_43_add__numeral__left,axiom,
! [V: num,W: num,Z: int] :
( ( plus_plus_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ ( numeral_numeral_int @ W ) @ Z ) )
= ( plus_plus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_44_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ Z ) )
= ( times_times_complex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_45_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Z ) )
= ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_46_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ Z ) )
= ( times_times_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_47_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( times_times_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
= ( times_times_nat @ ( numeral_numeral_nat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_48_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Z ) )
= ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_49_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) )
= ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_50_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_51_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
= ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_52_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_53_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_54_num__double,axiom,
! [N: num] :
( ( times_times_num @ ( bit0 @ one ) @ N )
= ( bit0 @ N ) ) ).
% num_double
thf(fact_55_dvd__add__triv__right__iff,axiom,
! [A: real,B: real] :
( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ A ) )
= ( dvd_dvd_real @ A @ B ) ) ).
% dvd_add_triv_right_iff
thf(fact_56_dvd__add__triv__right__iff,axiom,
! [A: rat,B: rat] :
( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ A ) )
= ( dvd_dvd_rat @ A @ B ) ) ).
% dvd_add_triv_right_iff
thf(fact_57_dvd__add__triv__right__iff,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( dvd_dvd_nat @ A @ B ) ) ).
% dvd_add_triv_right_iff
thf(fact_58_dvd__add__triv__right__iff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ A ) )
= ( dvd_dvd_int @ A @ B ) ) ).
% dvd_add_triv_right_iff
thf(fact_59_dvd__add__triv__left__iff,axiom,
! [A: real,B: real] :
( ( dvd_dvd_real @ A @ ( plus_plus_real @ A @ B ) )
= ( dvd_dvd_real @ A @ B ) ) ).
% dvd_add_triv_left_iff
thf(fact_60_dvd__add__triv__left__iff,axiom,
! [A: rat,B: rat] :
( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ A @ B ) )
= ( dvd_dvd_rat @ A @ B ) ) ).
% dvd_add_triv_left_iff
thf(fact_61_dvd__add__triv__left__iff,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( dvd_dvd_nat @ A @ B ) ) ).
% dvd_add_triv_left_iff
thf(fact_62_dvd__add__triv__left__iff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ ( plus_plus_int @ A @ B ) )
= ( dvd_dvd_int @ A @ B ) ) ).
% dvd_add_triv_left_iff
thf(fact_63_div__dvd__div,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ A @ C )
=> ( ( dvd_dvd_nat @ ( divide_divide_nat @ B @ A ) @ ( divide_divide_nat @ C @ A ) )
= ( dvd_dvd_nat @ B @ C ) ) ) ) ).
% div_dvd_div
thf(fact_64_div__dvd__div,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ A @ C )
=> ( ( dvd_dvd_int @ ( divide_divide_int @ B @ A ) @ ( divide_divide_int @ C @ A ) )
= ( dvd_dvd_int @ B @ C ) ) ) ) ).
% div_dvd_div
thf(fact_65_bit__concat__def,axiom,
( vEBT_VEBT_bit_concat
= ( ^ [H: nat,L: nat,D: nat] : ( plus_plus_nat @ ( times_times_nat @ H @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ D ) ) @ L ) ) ) ).
% bit_concat_def
thf(fact_66_distrib__right__numeral,axiom,
! [A: complex,B: complex,V: num] :
( ( times_times_complex @ ( plus_plus_complex @ A @ B ) @ ( numera6690914467698888265omplex @ V ) )
= ( plus_plus_complex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ B @ ( numera6690914467698888265omplex @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_67_distrib__right__numeral,axiom,
! [A: real,B: real,V: num] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
= ( plus_plus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_68_distrib__right__numeral,axiom,
! [A: rat,B: rat,V: num] :
( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ ( numeral_numeral_rat @ V ) )
= ( plus_plus_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ B @ ( numeral_numeral_rat @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_69_distrib__right__numeral,axiom,
! [A: nat,B: nat,V: num] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ ( numeral_numeral_nat @ V ) )
= ( plus_plus_nat @ ( times_times_nat @ A @ ( numeral_numeral_nat @ V ) ) @ ( times_times_nat @ B @ ( numeral_numeral_nat @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_70_distrib__right__numeral,axiom,
! [A: int,B: int,V: num] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
= ( plus_plus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_71_distrib__left__numeral,axiom,
! [V: num,B: complex,C: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( plus_plus_complex @ B @ C ) )
= ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ B ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_72_distrib__left__numeral,axiom,
! [V: num,B: real,C: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_73_distrib__left__numeral,axiom,
! [V: num,B: rat,C: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( plus_plus_rat @ B @ C ) )
= ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ B ) @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_74_distrib__left__numeral,axiom,
! [V: num,B: nat,C: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ B ) @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_75_distrib__left__numeral,axiom,
! [V: num,B: int,C: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_76_dvd__add__times__triv__right__iff,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ ( times_times_real @ C @ A ) ) )
= ( dvd_dvd_real @ A @ B ) ) ).
% dvd_add_times_triv_right_iff
thf(fact_77_dvd__add__times__triv__right__iff,axiom,
! [A: rat,B: rat,C: rat] :
( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ ( times_times_rat @ C @ A ) ) )
= ( dvd_dvd_rat @ A @ B ) ) ).
% dvd_add_times_triv_right_iff
thf(fact_78_dvd__add__times__triv__right__iff,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ ( times_times_nat @ C @ A ) ) )
= ( dvd_dvd_nat @ A @ B ) ) ).
% dvd_add_times_triv_right_iff
thf(fact_79_dvd__add__times__triv__right__iff,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ ( times_times_int @ C @ A ) ) )
= ( dvd_dvd_int @ A @ B ) ) ).
% dvd_add_times_triv_right_iff
thf(fact_80_dvd__add__times__triv__left__iff,axiom,
! [A: real,C: real,B: real] :
( ( dvd_dvd_real @ A @ ( plus_plus_real @ ( times_times_real @ C @ A ) @ B ) )
= ( dvd_dvd_real @ A @ B ) ) ).
% dvd_add_times_triv_left_iff
thf(fact_81_dvd__add__times__triv__left__iff,axiom,
! [A: rat,C: rat,B: rat] :
( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ ( times_times_rat @ C @ A ) @ B ) )
= ( dvd_dvd_rat @ A @ B ) ) ).
% dvd_add_times_triv_left_iff
thf(fact_82_dvd__add__times__triv__left__iff,axiom,
! [A: nat,C: nat,B: nat] :
( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ ( times_times_nat @ C @ A ) @ B ) )
= ( dvd_dvd_nat @ A @ B ) ) ).
% dvd_add_times_triv_left_iff
thf(fact_83_dvd__add__times__triv__left__iff,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ A @ ( plus_plus_int @ ( times_times_int @ C @ A ) @ B ) )
= ( dvd_dvd_int @ A @ B ) ) ).
% dvd_add_times_triv_left_iff
thf(fact_84_div__add,axiom,
! [C: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ C @ A )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ) ).
% div_add
thf(fact_85_div__add,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ A )
=> ( ( dvd_dvd_int @ C @ B )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).
% div_add
thf(fact_86_dvd__mult__div__cancel,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ A ) )
= B ) ) ).
% dvd_mult_div_cancel
thf(fact_87_dvd__mult__div__cancel,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( times_times_int @ A @ ( divide_divide_int @ B @ A ) )
= B ) ) ).
% dvd_mult_div_cancel
thf(fact_88_even__add,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_add
thf(fact_89_even__add,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_add
thf(fact_90_odd__add,axiom,
! [A: nat,B: nat] :
( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) )
= ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
!= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ) ).
% odd_add
thf(fact_91_odd__add,axiom,
! [A: int,B: int] :
( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) )
= ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
!= ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ) ).
% odd_add
thf(fact_92_add__2__eq__Suc_H,axiom,
! [N: nat] :
( ( plus_plus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( suc @ ( suc @ N ) ) ) ).
% add_2_eq_Suc'
thf(fact_93_add__2__eq__Suc,axiom,
! [N: nat] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
= ( suc @ ( suc @ N ) ) ) ).
% add_2_eq_Suc
thf(fact_94_add__self__div__2,axiom,
! [M: nat] :
( ( divide_divide_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= M ) ).
% add_self_div_2
thf(fact_95_Suc__div__eq__add3__div__numeral,axiom,
! [M: nat,V: num] :
( ( divide_divide_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral_nat @ V ) )
= ( divide_divide_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ ( numeral_numeral_nat @ V ) ) ) ).
% Suc_div_eq_add3_div_numeral
thf(fact_96_mem__Collect__eq,axiom,
! [A: real,P: real > $o] :
( ( member_real @ A @ ( collect_real @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_97_mem__Collect__eq,axiom,
! [A: vEBT_VEBT,P: vEBT_VEBT > $o] :
( ( member_VEBT_VEBT @ A @ ( collect_VEBT_VEBT @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_98_mem__Collect__eq,axiom,
! [A: nat,P: nat > $o] :
( ( member_nat @ A @ ( collect_nat @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_99_mem__Collect__eq,axiom,
! [A: int,P: int > $o] :
( ( member_int @ A @ ( collect_int @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_100_mem__Collect__eq,axiom,
! [A: complex,P: complex > $o] :
( ( member_complex @ A @ ( collect_complex @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_101_mem__Collect__eq,axiom,
! [A: product_prod_int_int,P: product_prod_int_int > $o] :
( ( member5262025264175285858nt_int @ A @ ( collec213857154873943460nt_int @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_102_mem__Collect__eq,axiom,
! [A: set_nat,P: set_nat > $o] :
( ( member_set_nat @ A @ ( collect_set_nat @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_103_Collect__mem__eq,axiom,
! [A2: set_real] :
( ( collect_real
@ ^ [X: real] : ( member_real @ X @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_104_Collect__mem__eq,axiom,
! [A2: set_VEBT_VEBT] :
( ( collect_VEBT_VEBT
@ ^ [X: vEBT_VEBT] : ( member_VEBT_VEBT @ X @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_105_Collect__mem__eq,axiom,
! [A2: set_nat] :
( ( collect_nat
@ ^ [X: nat] : ( member_nat @ X @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_106_Collect__mem__eq,axiom,
! [A2: set_int] :
( ( collect_int
@ ^ [X: int] : ( member_int @ X @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_107_Collect__mem__eq,axiom,
! [A2: set_complex] :
( ( collect_complex
@ ^ [X: complex] : ( member_complex @ X @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_108_Collect__mem__eq,axiom,
! [A2: set_Pr958786334691620121nt_int] :
( ( collec213857154873943460nt_int
@ ^ [X: product_prod_int_int] : ( member5262025264175285858nt_int @ X @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_109_Collect__mem__eq,axiom,
! [A2: set_set_nat] :
( ( collect_set_nat
@ ^ [X: set_nat] : ( member_set_nat @ X @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_110_Collect__cong,axiom,
! [P: nat > $o,Q: nat > $o] :
( ! [X3: nat] :
( ( P @ X3 )
= ( Q @ X3 ) )
=> ( ( collect_nat @ P )
= ( collect_nat @ Q ) ) ) ).
% Collect_cong
thf(fact_111_Collect__cong,axiom,
! [P: int > $o,Q: int > $o] :
( ! [X3: int] :
( ( P @ X3 )
= ( Q @ X3 ) )
=> ( ( collect_int @ P )
= ( collect_int @ Q ) ) ) ).
% Collect_cong
thf(fact_112_Collect__cong,axiom,
! [P: complex > $o,Q: complex > $o] :
( ! [X3: complex] :
( ( P @ X3 )
= ( Q @ X3 ) )
=> ( ( collect_complex @ P )
= ( collect_complex @ Q ) ) ) ).
% Collect_cong
thf(fact_113_Collect__cong,axiom,
! [P: product_prod_int_int > $o,Q: product_prod_int_int > $o] :
( ! [X3: product_prod_int_int] :
( ( P @ X3 )
= ( Q @ X3 ) )
=> ( ( collec213857154873943460nt_int @ P )
= ( collec213857154873943460nt_int @ Q ) ) ) ).
% Collect_cong
thf(fact_114_Collect__cong,axiom,
! [P: set_nat > $o,Q: set_nat > $o] :
( ! [X3: set_nat] :
( ( P @ X3 )
= ( Q @ X3 ) )
=> ( ( collect_set_nat @ P )
= ( collect_set_nat @ Q ) ) ) ).
% Collect_cong
thf(fact_115_div__Suc__eq__div__add3,axiom,
! [M: nat,N: nat] :
( ( divide_divide_nat @ M @ ( suc @ ( suc @ ( suc @ N ) ) ) )
= ( divide_divide_nat @ M @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N ) ) ) ).
% div_Suc_eq_div_add3
thf(fact_116_is__num__normalize_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_117_is__num__normalize_I1_J,axiom,
! [A: rat,B: rat,C: rat] :
( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_118_is__num__normalize_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_119_combine__common__factor,axiom,
! [A: real,E: real,B: real,C: real] :
( ( plus_plus_real @ ( times_times_real @ A @ E ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ C ) )
= ( plus_plus_real @ ( times_times_real @ ( plus_plus_real @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_120_combine__common__factor,axiom,
! [A: rat,E: rat,B: rat,C: rat] :
( ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ C ) )
= ( plus_plus_rat @ ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_121_combine__common__factor,axiom,
! [A: nat,E: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( times_times_nat @ A @ E ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E ) @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_122_combine__common__factor,axiom,
! [A: int,E: int,B: int,C: int] :
( ( plus_plus_int @ ( times_times_int @ A @ E ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ C ) )
= ( plus_plus_int @ ( times_times_int @ ( plus_plus_int @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_123_distrib__right,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% distrib_right
thf(fact_124_distrib__right,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).
% distrib_right
thf(fact_125_distrib__right,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).
% distrib_right
thf(fact_126_distrib__right,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% distrib_right
thf(fact_127_distrib__left,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% distrib_left
thf(fact_128_distrib__left,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ A @ ( plus_plus_rat @ B @ C ) )
= ( plus_plus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).
% distrib_left
thf(fact_129_distrib__left,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ A @ ( plus_plus_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).
% distrib_left
thf(fact_130_distrib__left,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% distrib_left
thf(fact_131_comm__semiring__class_Odistrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_132_comm__semiring__class_Odistrib,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_133_comm__semiring__class_Odistrib,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_134_comm__semiring__class_Odistrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_135_ring__class_Oring__distribs_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_136_ring__class_Oring__distribs_I1_J,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ A @ ( plus_plus_rat @ B @ C ) )
= ( plus_plus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_137_ring__class_Oring__distribs_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_138_ring__class_Oring__distribs_I2_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_139_ring__class_Oring__distribs_I2_J,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_140_ring__class_Oring__distribs_I2_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_141_le__num__One__iff,axiom,
! [X2: num] :
( ( ord_less_eq_num @ X2 @ one )
= ( X2 = one ) ) ).
% le_num_One_iff
thf(fact_142_dvd__add__right__iff,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ A @ B )
=> ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) )
= ( dvd_dvd_real @ A @ C ) ) ) ).
% dvd_add_right_iff
thf(fact_143_dvd__add__right__iff,axiom,
! [A: rat,B: rat,C: rat] :
( ( dvd_dvd_rat @ A @ B )
=> ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) )
= ( dvd_dvd_rat @ A @ C ) ) ) ).
% dvd_add_right_iff
thf(fact_144_dvd__add__right__iff,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% dvd_add_right_iff
thf(fact_145_dvd__add__right__iff,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% dvd_add_right_iff
thf(fact_146_dvd__add__left__iff,axiom,
! [A: real,C: real,B: real] :
( ( dvd_dvd_real @ A @ C )
=> ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) )
= ( dvd_dvd_real @ A @ B ) ) ) ).
% dvd_add_left_iff
thf(fact_147_dvd__add__left__iff,axiom,
! [A: rat,C: rat,B: rat] :
( ( dvd_dvd_rat @ A @ C )
=> ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) )
= ( dvd_dvd_rat @ A @ B ) ) ) ).
% dvd_add_left_iff
thf(fact_148_dvd__add__left__iff,axiom,
! [A: nat,C: nat,B: nat] :
( ( dvd_dvd_nat @ A @ C )
=> ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) )
= ( dvd_dvd_nat @ A @ B ) ) ) ).
% dvd_add_left_iff
thf(fact_149_dvd__add__left__iff,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ A @ C )
=> ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) )
= ( dvd_dvd_int @ A @ B ) ) ) ).
% dvd_add_left_iff
thf(fact_150_dvd__add,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ A @ B )
=> ( ( dvd_dvd_real @ A @ C )
=> ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) ) ) ) ).
% dvd_add
thf(fact_151_dvd__add,axiom,
! [A: rat,B: rat,C: rat] :
( ( dvd_dvd_rat @ A @ B )
=> ( ( dvd_dvd_rat @ A @ C )
=> ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ) ).
% dvd_add
thf(fact_152_dvd__add,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ A @ C )
=> ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ) ).
% dvd_add
thf(fact_153_dvd__add,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ A @ C )
=> ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) ) ) ) ).
% dvd_add
thf(fact_154_subset__divisors__dvd,axiom,
! [A: complex,B: complex] :
( ( ord_le211207098394363844omplex
@ ( collect_complex
@ ^ [C2: complex] : ( dvd_dvd_complex @ C2 @ A ) )
@ ( collect_complex
@ ^ [C2: complex] : ( dvd_dvd_complex @ C2 @ B ) ) )
= ( dvd_dvd_complex @ A @ B ) ) ).
% subset_divisors_dvd
thf(fact_155_subset__divisors__dvd,axiom,
! [A: int,B: int] :
( ( ord_less_eq_set_int
@ ( collect_int
@ ^ [C2: int] : ( dvd_dvd_int @ C2 @ A ) )
@ ( collect_int
@ ^ [C2: int] : ( dvd_dvd_int @ C2 @ B ) ) )
= ( dvd_dvd_int @ A @ B ) ) ).
% subset_divisors_dvd
thf(fact_156_subset__divisors__dvd,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_set_nat
@ ( collect_nat
@ ^ [C2: nat] : ( dvd_dvd_nat @ C2 @ A ) )
@ ( collect_nat
@ ^ [C2: nat] : ( dvd_dvd_nat @ C2 @ B ) ) )
= ( dvd_dvd_nat @ A @ B ) ) ).
% subset_divisors_dvd
thf(fact_157_numeral__Bit0,axiom,
! [N: num] :
( ( numera6690914467698888265omplex @ ( bit0 @ N ) )
= ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) ) ).
% numeral_Bit0
thf(fact_158_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_real @ ( bit0 @ N ) )
= ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) ) ).
% numeral_Bit0
thf(fact_159_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_rat @ ( bit0 @ N ) )
= ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ ( numeral_numeral_rat @ N ) ) ) ).
% numeral_Bit0
thf(fact_160_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_nat @ ( bit0 @ N ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) ) ).
% numeral_Bit0
thf(fact_161_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_int @ ( bit0 @ N ) )
= ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) ) ).
% numeral_Bit0
thf(fact_162_div__mult2__numeral__eq,axiom,
! [A: nat,K: num,L2: num] :
( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ L2 ) )
= ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ K @ L2 ) ) ) ) ).
% div_mult2_numeral_eq
thf(fact_163_div__mult2__numeral__eq,axiom,
! [A: int,K: num,L2: num] :
( ( divide_divide_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ L2 ) )
= ( divide_divide_int @ A @ ( numeral_numeral_int @ ( times_times_num @ K @ L2 ) ) ) ) ).
% div_mult2_numeral_eq
thf(fact_164_div__plus__div__distrib__dvd__right,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ).
% div_plus_div_distrib_dvd_right
thf(fact_165_div__plus__div__distrib__dvd__right,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ).
% div_plus_div_distrib_dvd_right
thf(fact_166_div__plus__div__distrib__dvd__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ C @ A )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ).
% div_plus_div_distrib_dvd_left
thf(fact_167_div__plus__div__distrib__dvd__left,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ A )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ).
% div_plus_div_distrib_dvd_left
thf(fact_168_numeral__code_I2_J,axiom,
! [N: num] :
( ( numera6690914467698888265omplex @ ( bit0 @ N ) )
= ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) ) ).
% numeral_code(2)
thf(fact_169_numeral__code_I2_J,axiom,
! [N: num] :
( ( numeral_numeral_real @ ( bit0 @ N ) )
= ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) ) ).
% numeral_code(2)
thf(fact_170_numeral__code_I2_J,axiom,
! [N: num] :
( ( numeral_numeral_rat @ ( bit0 @ N ) )
= ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ ( numeral_numeral_rat @ N ) ) ) ).
% numeral_code(2)
thf(fact_171_numeral__code_I2_J,axiom,
! [N: num] :
( ( numeral_numeral_nat @ ( bit0 @ N ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) ) ).
% numeral_code(2)
thf(fact_172_numeral__code_I2_J,axiom,
! [N: num] :
( ( numeral_numeral_int @ ( bit0 @ N ) )
= ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) ) ).
% numeral_code(2)
thf(fact_173_left__add__twice,axiom,
! [A: complex,B: complex] :
( ( plus_plus_complex @ A @ ( plus_plus_complex @ A @ B ) )
= ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_174_left__add__twice,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ A @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_175_left__add__twice,axiom,
! [A: rat,B: rat] :
( ( plus_plus_rat @ A @ ( plus_plus_rat @ A @ B ) )
= ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_176_left__add__twice,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_177_left__add__twice,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ A @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_178_mult__2__right,axiom,
! [Z: complex] :
( ( times_times_complex @ Z @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) )
= ( plus_plus_complex @ Z @ Z ) ) ).
% mult_2_right
thf(fact_179_mult__2__right,axiom,
! [Z: real] :
( ( times_times_real @ Z @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
= ( plus_plus_real @ Z @ Z ) ) ).
% mult_2_right
thf(fact_180_mult__2__right,axiom,
! [Z: rat] :
( ( times_times_rat @ Z @ ( numeral_numeral_rat @ ( bit0 @ one ) ) )
= ( plus_plus_rat @ Z @ Z ) ) ).
% mult_2_right
thf(fact_181_mult__2__right,axiom,
! [Z: nat] :
( ( times_times_nat @ Z @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_nat @ Z @ Z ) ) ).
% mult_2_right
thf(fact_182_mult__2__right,axiom,
! [Z: int] :
( ( times_times_int @ Z @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( plus_plus_int @ Z @ Z ) ) ).
% mult_2_right
thf(fact_183_mult__2,axiom,
! [Z: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_complex @ Z @ Z ) ) ).
% mult_2
thf(fact_184_mult__2,axiom,
! [Z: real] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_real @ Z @ Z ) ) ).
% mult_2
thf(fact_185_mult__2,axiom,
! [Z: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_rat @ Z @ Z ) ) ).
% mult_2
thf(fact_186_mult__2,axiom,
! [Z: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_nat @ Z @ Z ) ) ).
% mult_2
thf(fact_187_mult__2,axiom,
! [Z: int] :
( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_int @ Z @ Z ) ) ).
% mult_2
thf(fact_188_odd__even__add,axiom,
! [A: nat,B: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% odd_even_add
thf(fact_189_odd__even__add,axiom,
! [A: int,B: int] :
( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B )
=> ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) ) ) ).
% odd_even_add
thf(fact_190_Suc3__eq__add__3,axiom,
! [N: nat] :
( ( suc @ ( suc @ ( suc @ N ) ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N ) ) ).
% Suc3_eq_add_3
thf(fact_191_dvd__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ B @ C )
=> ( dvd_dvd_nat @ A @ C ) ) ) ).
% dvd_trans
thf(fact_192_dvd__trans,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ B @ C )
=> ( dvd_dvd_int @ A @ C ) ) ) ).
% dvd_trans
thf(fact_193_dvd__refl,axiom,
! [A: nat] : ( dvd_dvd_nat @ A @ A ) ).
% dvd_refl
thf(fact_194_dvd__refl,axiom,
! [A: int] : ( dvd_dvd_int @ A @ A ) ).
% dvd_refl
thf(fact_195_Suc__div__eq__add3__div,axiom,
! [M: nat,N: nat] :
( ( divide_divide_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N )
= ( divide_divide_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ N ) ) ).
% Suc_div_eq_add3_div
thf(fact_196_dvd__triv__right,axiom,
! [A: real,B: real] : ( dvd_dvd_real @ A @ ( times_times_real @ B @ A ) ) ).
% dvd_triv_right
thf(fact_197_dvd__triv__right,axiom,
! [A: rat,B: rat] : ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ A ) ) ).
% dvd_triv_right
thf(fact_198_dvd__triv__right,axiom,
! [A: nat,B: nat] : ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ A ) ) ).
% dvd_triv_right
thf(fact_199_dvd__triv__right,axiom,
! [A: int,B: int] : ( dvd_dvd_int @ A @ ( times_times_int @ B @ A ) ) ).
% dvd_triv_right
thf(fact_200_dvd__mult__right,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ ( times_times_real @ A @ B ) @ C )
=> ( dvd_dvd_real @ B @ C ) ) ).
% dvd_mult_right
thf(fact_201_dvd__mult__right,axiom,
! [A: rat,B: rat,C: rat] :
( ( dvd_dvd_rat @ ( times_times_rat @ A @ B ) @ C )
=> ( dvd_dvd_rat @ B @ C ) ) ).
% dvd_mult_right
thf(fact_202_dvd__mult__right,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
=> ( dvd_dvd_nat @ B @ C ) ) ).
% dvd_mult_right
thf(fact_203_dvd__mult__right,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
=> ( dvd_dvd_int @ B @ C ) ) ).
% dvd_mult_right
thf(fact_204_mult__dvd__mono,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( dvd_dvd_real @ A @ B )
=> ( ( dvd_dvd_real @ C @ D2 )
=> ( dvd_dvd_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) ) ) ).
% mult_dvd_mono
thf(fact_205_mult__dvd__mono,axiom,
! [A: rat,B: rat,C: rat,D2: rat] :
( ( dvd_dvd_rat @ A @ B )
=> ( ( dvd_dvd_rat @ C @ D2 )
=> ( dvd_dvd_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D2 ) ) ) ) ).
% mult_dvd_mono
thf(fact_206_mult__dvd__mono,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ C @ D2 )
=> ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ).
% mult_dvd_mono
thf(fact_207_mult__dvd__mono,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ C @ D2 )
=> ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ).
% mult_dvd_mono
thf(fact_208_dvd__triv__left,axiom,
! [A: real,B: real] : ( dvd_dvd_real @ A @ ( times_times_real @ A @ B ) ) ).
% dvd_triv_left
thf(fact_209_dvd__triv__left,axiom,
! [A: rat,B: rat] : ( dvd_dvd_rat @ A @ ( times_times_rat @ A @ B ) ) ).
% dvd_triv_left
thf(fact_210_dvd__triv__left,axiom,
! [A: nat,B: nat] : ( dvd_dvd_nat @ A @ ( times_times_nat @ A @ B ) ) ).
% dvd_triv_left
thf(fact_211_dvd__triv__left,axiom,
! [A: int,B: int] : ( dvd_dvd_int @ A @ ( times_times_int @ A @ B ) ) ).
% dvd_triv_left
thf(fact_212_dvd__mult__left,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ ( times_times_real @ A @ B ) @ C )
=> ( dvd_dvd_real @ A @ C ) ) ).
% dvd_mult_left
thf(fact_213_dvd__mult__left,axiom,
! [A: rat,B: rat,C: rat] :
( ( dvd_dvd_rat @ ( times_times_rat @ A @ B ) @ C )
=> ( dvd_dvd_rat @ A @ C ) ) ).
% dvd_mult_left
thf(fact_214_dvd__mult__left,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
=> ( dvd_dvd_nat @ A @ C ) ) ).
% dvd_mult_left
thf(fact_215_dvd__mult__left,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
=> ( dvd_dvd_int @ A @ C ) ) ).
% dvd_mult_left
thf(fact_216_dvd__mult2,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ A @ B )
=> ( dvd_dvd_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_217_dvd__mult2,axiom,
! [A: rat,B: rat,C: rat] :
( ( dvd_dvd_rat @ A @ B )
=> ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_218_dvd__mult2,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_219_dvd__mult2,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ B )
=> ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_220_dvd__mult,axiom,
! [A: real,C: real,B: real] :
( ( dvd_dvd_real @ A @ C )
=> ( dvd_dvd_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% dvd_mult
thf(fact_221_dvd__mult,axiom,
! [A: rat,C: rat,B: rat] :
( ( dvd_dvd_rat @ A @ C )
=> ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).
% dvd_mult
thf(fact_222_dvd__mult,axiom,
! [A: nat,C: nat,B: nat] :
( ( dvd_dvd_nat @ A @ C )
=> ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% dvd_mult
thf(fact_223_dvd__mult,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ A @ C )
=> ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% dvd_mult
thf(fact_224_dvd__def,axiom,
( dvd_dvd_real
= ( ^ [B2: real,A3: real] :
? [K2: real] :
( A3
= ( times_times_real @ B2 @ K2 ) ) ) ) ).
% dvd_def
thf(fact_225_dvd__def,axiom,
( dvd_dvd_rat
= ( ^ [B2: rat,A3: rat] :
? [K2: rat] :
( A3
= ( times_times_rat @ B2 @ K2 ) ) ) ) ).
% dvd_def
thf(fact_226_dvd__def,axiom,
( dvd_dvd_nat
= ( ^ [B2: nat,A3: nat] :
? [K2: nat] :
( A3
= ( times_times_nat @ B2 @ K2 ) ) ) ) ).
% dvd_def
thf(fact_227_dvd__def,axiom,
( dvd_dvd_int
= ( ^ [B2: int,A3: int] :
? [K2: int] :
( A3
= ( times_times_int @ B2 @ K2 ) ) ) ) ).
% dvd_def
thf(fact_228_dvdI,axiom,
! [A: real,B: real,K: real] :
( ( A
= ( times_times_real @ B @ K ) )
=> ( dvd_dvd_real @ B @ A ) ) ).
% dvdI
thf(fact_229_dvdI,axiom,
! [A: rat,B: rat,K: rat] :
( ( A
= ( times_times_rat @ B @ K ) )
=> ( dvd_dvd_rat @ B @ A ) ) ).
% dvdI
thf(fact_230_dvdI,axiom,
! [A: nat,B: nat,K: nat] :
( ( A
= ( times_times_nat @ B @ K ) )
=> ( dvd_dvd_nat @ B @ A ) ) ).
% dvdI
thf(fact_231_dvdI,axiom,
! [A: int,B: int,K: int] :
( ( A
= ( times_times_int @ B @ K ) )
=> ( dvd_dvd_int @ B @ A ) ) ).
% dvdI
thf(fact_232_dvdE,axiom,
! [B: real,A: real] :
( ( dvd_dvd_real @ B @ A )
=> ~ ! [K3: real] :
( A
!= ( times_times_real @ B @ K3 ) ) ) ).
% dvdE
thf(fact_233_dvdE,axiom,
! [B: rat,A: rat] :
( ( dvd_dvd_rat @ B @ A )
=> ~ ! [K3: rat] :
( A
!= ( times_times_rat @ B @ K3 ) ) ) ).
% dvdE
thf(fact_234_dvdE,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ A )
=> ~ ! [K3: nat] :
( A
!= ( times_times_nat @ B @ K3 ) ) ) ).
% dvdE
thf(fact_235_dvdE,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ A )
=> ~ ! [K3: int] :
( A
!= ( times_times_int @ B @ K3 ) ) ) ).
% dvdE
thf(fact_236_div__div__div__same,axiom,
! [D2: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ D2 @ B )
=> ( ( dvd_dvd_nat @ B @ A )
=> ( ( divide_divide_nat @ ( divide_divide_nat @ A @ D2 ) @ ( divide_divide_nat @ B @ D2 ) )
= ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_div_div_same
thf(fact_237_div__div__div__same,axiom,
! [D2: int,B: int,A: int] :
( ( dvd_dvd_int @ D2 @ B )
=> ( ( dvd_dvd_int @ B @ A )
=> ( ( divide_divide_int @ ( divide_divide_int @ A @ D2 ) @ ( divide_divide_int @ B @ D2 ) )
= ( divide_divide_int @ A @ B ) ) ) ) ).
% div_div_div_same
thf(fact_238_dvd__div__eq__cancel,axiom,
! [A: complex,C: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ A @ C )
= ( divide1717551699836669952omplex @ B @ C ) )
=> ( ( dvd_dvd_complex @ C @ A )
=> ( ( dvd_dvd_complex @ C @ B )
=> ( A = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_239_dvd__div__eq__cancel,axiom,
! [A: real,C: real,B: real] :
( ( ( divide_divide_real @ A @ C )
= ( divide_divide_real @ B @ C ) )
=> ( ( dvd_dvd_real @ C @ A )
=> ( ( dvd_dvd_real @ C @ B )
=> ( A = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_240_dvd__div__eq__cancel,axiom,
! [A: rat,C: rat,B: rat] :
( ( ( divide_divide_rat @ A @ C )
= ( divide_divide_rat @ B @ C ) )
=> ( ( dvd_dvd_rat @ C @ A )
=> ( ( dvd_dvd_rat @ C @ B )
=> ( A = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_241_dvd__div__eq__cancel,axiom,
! [A: nat,C: nat,B: nat] :
( ( ( divide_divide_nat @ A @ C )
= ( divide_divide_nat @ B @ C ) )
=> ( ( dvd_dvd_nat @ C @ A )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( A = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_242_dvd__div__eq__cancel,axiom,
! [A: int,C: int,B: int] :
( ( ( divide_divide_int @ A @ C )
= ( divide_divide_int @ B @ C ) )
=> ( ( dvd_dvd_int @ C @ A )
=> ( ( dvd_dvd_int @ C @ B )
=> ( A = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_243_dvd__div__eq__iff,axiom,
! [C: complex,A: complex,B: complex] :
( ( dvd_dvd_complex @ C @ A )
=> ( ( dvd_dvd_complex @ C @ B )
=> ( ( ( divide1717551699836669952omplex @ A @ C )
= ( divide1717551699836669952omplex @ B @ C ) )
= ( A = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_244_dvd__div__eq__iff,axiom,
! [C: real,A: real,B: real] :
( ( dvd_dvd_real @ C @ A )
=> ( ( dvd_dvd_real @ C @ B )
=> ( ( ( divide_divide_real @ A @ C )
= ( divide_divide_real @ B @ C ) )
= ( A = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_245_dvd__div__eq__iff,axiom,
! [C: rat,A: rat,B: rat] :
( ( dvd_dvd_rat @ C @ A )
=> ( ( dvd_dvd_rat @ C @ B )
=> ( ( ( divide_divide_rat @ A @ C )
= ( divide_divide_rat @ B @ C ) )
= ( A = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_246_dvd__div__eq__iff,axiom,
! [C: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ C @ A )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( ( ( divide_divide_nat @ A @ C )
= ( divide_divide_nat @ B @ C ) )
= ( A = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_247_dvd__div__eq__iff,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ A )
=> ( ( dvd_dvd_int @ C @ B )
=> ( ( ( divide_divide_int @ A @ C )
= ( divide_divide_int @ B @ C ) )
= ( A = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_248_div__le__dividend,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ M ) ).
% div_le_dividend
thf(fact_249_div__le__mono,axiom,
! [M: nat,N: nat,K: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( divide_divide_nat @ M @ K ) @ ( divide_divide_nat @ N @ K ) ) ) ).
% div_le_mono
thf(fact_250_div__mult2__eq,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( divide_divide_nat @ M @ ( times_times_nat @ N @ Q2 ) )
= ( divide_divide_nat @ ( divide_divide_nat @ M @ N ) @ Q2 ) ) ).
% div_mult2_eq
thf(fact_251_mult__numeral__1__right,axiom,
! [A: complex] :
( ( times_times_complex @ A @ ( numera6690914467698888265omplex @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_252_mult__numeral__1__right,axiom,
! [A: real] :
( ( times_times_real @ A @ ( numeral_numeral_real @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_253_mult__numeral__1__right,axiom,
! [A: rat] :
( ( times_times_rat @ A @ ( numeral_numeral_rat @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_254_mult__numeral__1__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ ( numeral_numeral_nat @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_255_mult__numeral__1__right,axiom,
! [A: int] :
( ( times_times_int @ A @ ( numeral_numeral_int @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_256_mult__numeral__1,axiom,
! [A: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_257_mult__numeral__1,axiom,
! [A: real] :
( ( times_times_real @ ( numeral_numeral_real @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_258_mult__numeral__1,axiom,
! [A: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_259_mult__numeral__1,axiom,
! [A: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_260_mult__numeral__1,axiom,
! [A: int] :
( ( times_times_int @ ( numeral_numeral_int @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_261_divide__numeral__1,axiom,
! [A: complex] :
( ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ one ) )
= A ) ).
% divide_numeral_1
thf(fact_262_divide__numeral__1,axiom,
! [A: real] :
( ( divide_divide_real @ A @ ( numeral_numeral_real @ one ) )
= A ) ).
% divide_numeral_1
thf(fact_263_divide__numeral__1,axiom,
! [A: rat] :
( ( divide_divide_rat @ A @ ( numeral_numeral_rat @ one ) )
= A ) ).
% divide_numeral_1
thf(fact_264_num_Oexhaust,axiom,
! [Y2: num] :
( ( Y2 != one )
=> ( ! [X22: num] :
( Y2
!= ( bit0 @ X22 ) )
=> ~ ! [X32: num] :
( Y2
!= ( bit1 @ X32 ) ) ) ) ).
% num.exhaust
thf(fact_265_div__mult__div__if__dvd,axiom,
! [B: nat,A: nat,D2: nat,C: nat] :
( ( dvd_dvd_nat @ B @ A )
=> ( ( dvd_dvd_nat @ D2 @ C )
=> ( ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ ( divide_divide_nat @ C @ D2 ) )
= ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ).
% div_mult_div_if_dvd
thf(fact_266_div__mult__div__if__dvd,axiom,
! [B: int,A: int,D2: int,C: int] :
( ( dvd_dvd_int @ B @ A )
=> ( ( dvd_dvd_int @ D2 @ C )
=> ( ( times_times_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ C @ D2 ) )
= ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ).
% div_mult_div_if_dvd
thf(fact_267_dvd__mult__imp__div,axiom,
! [A: nat,C: nat,B: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ B )
=> ( dvd_dvd_nat @ A @ ( divide_divide_nat @ B @ C ) ) ) ).
% dvd_mult_imp_div
thf(fact_268_dvd__mult__imp__div,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ B )
=> ( dvd_dvd_int @ A @ ( divide_divide_int @ B @ C ) ) ) ).
% dvd_mult_imp_div
thf(fact_269_dvd__div__mult2__eq,axiom,
! [B: nat,C: nat,A: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ B @ C ) @ A )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ).
% dvd_div_mult2_eq
thf(fact_270_dvd__div__mult2__eq,axiom,
! [B: int,C: int,A: int] :
( ( dvd_dvd_int @ ( times_times_int @ B @ C ) @ A )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).
% dvd_div_mult2_eq
thf(fact_271_div__div__eq__right,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( dvd_dvd_nat @ B @ A )
=> ( ( divide_divide_nat @ A @ ( divide_divide_nat @ B @ C ) )
= ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).
% div_div_eq_right
thf(fact_272_div__div__eq__right,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( dvd_dvd_int @ B @ A )
=> ( ( divide_divide_int @ A @ ( divide_divide_int @ B @ C ) )
= ( times_times_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).
% div_div_eq_right
thf(fact_273_div__mult__swap,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) )
= ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C ) ) ) ).
% div_mult_swap
thf(fact_274_div__mult__swap,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( times_times_int @ A @ ( divide_divide_int @ B @ C ) )
= ( divide_divide_int @ ( times_times_int @ A @ B ) @ C ) ) ) ).
% div_mult_swap
thf(fact_275_dvd__div__mult,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( times_times_nat @ ( divide_divide_nat @ B @ C ) @ A )
= ( divide_divide_nat @ ( times_times_nat @ B @ A ) @ C ) ) ) ).
% dvd_div_mult
thf(fact_276_dvd__div__mult,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( times_times_int @ ( divide_divide_int @ B @ C ) @ A )
= ( divide_divide_int @ ( times_times_int @ B @ A ) @ C ) ) ) ).
% dvd_div_mult
thf(fact_277_Suc__div__le__mono,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ ( divide_divide_nat @ ( suc @ M ) @ N ) ) ).
% Suc_div_le_mono
thf(fact_278_VEBT__internal_OTb_H_Osimps_I3_J,axiom,
! [N: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( vEBT_VEBT_Tb2 @ ( suc @ ( suc @ N ) ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ one ) ) ) @ ( vEBT_VEBT_Tb2 @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( times_times_nat @ ( vEBT_VEBT_Tb2 @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( vEBT_VEBT_Tb2 @ ( suc @ ( suc @ N ) ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ one ) ) ) @ ( vEBT_VEBT_Tb2 @ ( suc @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( times_times_nat @ ( vEBT_VEBT_Tb2 @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.Tb'.simps(3)
thf(fact_279_times__div__less__eq__dividend,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) @ M ) ).
% times_div_less_eq_dividend
thf(fact_280_div__times__less__eq__dividend,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) @ M ) ).
% div_times_less_eq_dividend
thf(fact_281_numeral__Bit0__div__2,axiom,
! [N: num] :
( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numeral_numeral_nat @ N ) ) ).
% numeral_Bit0_div_2
thf(fact_282_numeral__Bit0__div__2,axiom,
! [N: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( numeral_numeral_int @ N ) ) ).
% numeral_Bit0_div_2
thf(fact_283_even__numeral,axiom,
! [N: num] : ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bit0 @ N ) ) ) ).
% even_numeral
thf(fact_284_even__numeral,axiom,
! [N: num] : ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ).
% even_numeral
thf(fact_285_eval__nat__numeral_I3_J,axiom,
! [N: num] :
( ( numeral_numeral_nat @ ( bit1 @ N ) )
= ( suc @ ( numeral_numeral_nat @ ( bit0 @ N ) ) ) ) ).
% eval_nat_numeral(3)
thf(fact_286_evenE,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ~ ! [B3: nat] :
( A
!= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B3 ) ) ) ).
% evenE
thf(fact_287_evenE,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ~ ! [B3: int] :
( A
!= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B3 ) ) ) ).
% evenE
thf(fact_288_numeral__Bit1__div__2,axiom,
! [N: num] :
( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numeral_numeral_nat @ N ) ) ).
% numeral_Bit1_div_2
thf(fact_289_numeral__Bit1__div__2,axiom,
! [N: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( numeral_numeral_int @ N ) ) ).
% numeral_Bit1_div_2
thf(fact_290_odd__numeral,axiom,
! [N: num] :
~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bit1 @ N ) ) ) ).
% odd_numeral
thf(fact_291_odd__numeral,axiom,
! [N: num] :
~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ).
% odd_numeral
thf(fact_292_double__not__eq__Suc__double,axiom,
! [M: nat,N: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
!= ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% double_not_eq_Suc_double
thf(fact_293_Suc__double__not__eq__double,axiom,
! [M: nat,N: nat] :
( ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
!= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% Suc_double_not_eq_double
thf(fact_294_even__two__times__div__two,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= A ) ) ).
% even_two_times_div_two
thf(fact_295_even__two__times__div__two,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
= A ) ) ).
% even_two_times_div_two
thf(fact_296_power__mono__odd,axiom,
! [N: nat,A: real,B: real] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).
% power_mono_odd
thf(fact_297_power__mono__odd,axiom,
! [N: nat,A: code_integer,B: code_integer] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_le3102999989581377725nteger @ A @ B )
=> ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( power_8256067586552552935nteger @ B @ N ) ) ) ) ).
% power_mono_odd
thf(fact_298_power__mono__odd,axiom,
! [N: nat,A: rat,B: rat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ).
% power_mono_odd
thf(fact_299_power__mono__odd,axiom,
! [N: nat,A: int,B: int] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).
% power_mono_odd
thf(fact_300_sum__squares__bound,axiom,
! [X2: real,Y2: real] : ( ord_less_eq_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) @ Y2 ) @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_squares_bound
thf(fact_301_sum__squares__bound,axiom,
! [X2: rat,Y2: rat] : ( ord_less_eq_rat @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X2 ) @ Y2 ) @ ( plus_plus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_squares_bound
thf(fact_302_mult__Suc__right,axiom,
! [M: nat,N: nat] :
( ( times_times_nat @ M @ ( suc @ N ) )
= ( plus_plus_nat @ M @ ( times_times_nat @ M @ N ) ) ) ).
% mult_Suc_right
thf(fact_303_power__odd__eq,axiom,
! [A: complex,N: nat] :
( ( power_power_complex @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( times_times_complex @ A @ ( power_power_complex @ ( power_power_complex @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_304_power__odd__eq,axiom,
! [A: code_integer,N: nat] :
( ( power_8256067586552552935nteger @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_305_power__odd__eq,axiom,
! [A: real,N: nat] :
( ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( times_times_real @ A @ ( power_power_real @ ( power_power_real @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_306_power__odd__eq,axiom,
! [A: rat,N: nat] :
( ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( times_times_rat @ A @ ( power_power_rat @ ( power_power_rat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_307_power__odd__eq,axiom,
! [A: nat,N: nat] :
( ( power_power_nat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( times_times_nat @ A @ ( power_power_nat @ ( power_power_nat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_308_power__odd__eq,axiom,
! [A: int,N: nat] :
( ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( times_times_int @ A @ ( power_power_int @ ( power_power_int @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_309_power2__sum,axiom,
! [X2: code_integer,Y2: code_integer] :
( ( power_8256067586552552935nteger @ ( plus_p5714425477246183910nteger @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_3573771949741848930nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ X2 ) @ Y2 ) ) ) ).
% power2_sum
thf(fact_310_power2__sum,axiom,
! [X2: complex,Y2: complex] :
( ( power_power_complex @ ( plus_plus_complex @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_complex @ ( plus_plus_complex @ ( power_power_complex @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X2 ) @ Y2 ) ) ) ).
% power2_sum
thf(fact_311_power2__sum,axiom,
! [X2: real,Y2: real] :
( ( power_power_real @ ( plus_plus_real @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) @ Y2 ) ) ) ).
% power2_sum
thf(fact_312_power2__sum,axiom,
! [X2: rat,Y2: rat] :
( ( power_power_rat @ ( plus_plus_rat @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_rat @ ( plus_plus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X2 ) @ Y2 ) ) ) ).
% power2_sum
thf(fact_313_power2__sum,axiom,
! [X2: nat,Y2: nat] :
( ( power_power_nat @ ( plus_plus_nat @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( power_power_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X2 ) @ Y2 ) ) ) ).
% power2_sum
thf(fact_314_power2__sum,axiom,
! [X2: int,Y2: int] :
( ( power_power_int @ ( plus_plus_int @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_int @ ( plus_plus_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X2 ) @ Y2 ) ) ) ).
% power2_sum
thf(fact_315_dvd__power__iff__le,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ( ( dvd_dvd_nat @ ( power_power_nat @ K @ M ) @ ( power_power_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ).
% dvd_power_iff_le
thf(fact_316_div__exp__eq,axiom,
! [A: code_integer,M: nat,N: nat] :
( ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
= ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).
% div_exp_eq
thf(fact_317_div__exp__eq,axiom,
! [A: nat,M: nat,N: nat] :
( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).
% div_exp_eq
thf(fact_318_div__exp__eq,axiom,
! [A: int,M: nat,N: nat] :
( ( divide_divide_int @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).
% div_exp_eq
thf(fact_319_nat__add__left__cancel__le,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% nat_add_left_cancel_le
thf(fact_320_div2__even__ext__nat,axiom,
! [X2: nat,Y2: nat] :
( ( ( divide_divide_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X2 )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Y2 ) )
=> ( X2 = Y2 ) ) ) ).
% div2_even_ext_nat
thf(fact_321_enat__ord__number_I1_J,axiom,
! [M: num,N: num] :
( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).
% enat_ord_number(1)
thf(fact_322_power2__nat__le__imp__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% power2_nat_le_imp_le
thf(fact_323_power2__nat__le__eq__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% power2_nat_le_eq_le
thf(fact_324_self__le__ge2__pow,axiom,
! [K: nat,M: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ( ord_less_eq_nat @ M @ ( power_power_nat @ K @ M ) ) ) ).
% self_le_ge2_pow
thf(fact_325_nat_Oinject,axiom,
! [X23: nat,Y22: nat] :
( ( ( suc @ X23 )
= ( suc @ Y22 ) )
= ( X23 = Y22 ) ) ).
% nat.inject
thf(fact_326_old_Onat_Oinject,axiom,
! [Nat: nat,Nat2: nat] :
( ( ( suc @ Nat )
= ( suc @ Nat2 ) )
= ( Nat = Nat2 ) ) ).
% old.nat.inject
thf(fact_327_add__Suc__right,axiom,
! [M: nat,N: nat] :
( ( plus_plus_nat @ M @ ( suc @ N ) )
= ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).
% add_Suc_right
thf(fact_328_Suc__le__mono,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
= ( ord_less_eq_nat @ N @ M ) ) ).
% Suc_le_mono
thf(fact_329_power__mult__numeral,axiom,
! [A: nat,M: num,N: num] :
( ( power_power_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_power_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_330_power__mult__numeral,axiom,
! [A: real,M: num,N: num] :
( ( power_power_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_331_power__mult__numeral,axiom,
! [A: int,M: num,N: num] :
( ( power_power_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_332_power__mult__numeral,axiom,
! [A: complex,M: num,N: num] :
( ( power_power_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_power_complex @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_333_power__mult__numeral,axiom,
! [A: code_integer,M: num,N: num] :
( ( power_8256067586552552935nteger @ ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_334_Suc__numeral,axiom,
! [N: num] :
( ( suc @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).
% Suc_numeral
thf(fact_335_power__add__numeral,axiom,
! [A: complex,M: num,N: num] :
( ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_complex @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_complex @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_336_power__add__numeral,axiom,
! [A: code_integer,M: num,N: num] :
( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_337_power__add__numeral,axiom,
! [A: real,M: num,N: num] :
( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_real @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_338_power__add__numeral,axiom,
! [A: rat,M: num,N: num] :
( ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_rat @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_rat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_339_power__add__numeral,axiom,
! [A: nat,M: num,N: num] :
( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_340_power__add__numeral,axiom,
! [A: int,M: num,N: num] :
( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_int @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_341_power__add__numeral2,axiom,
! [A: complex,M: num,N: num,B: complex] :
( ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_342_power__add__numeral2,axiom,
! [A: code_integer,M: num,N: num,B: code_integer] :
( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_343_power__add__numeral2,axiom,
! [A: real,M: num,N: num,B: real] :
( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_344_power__add__numeral2,axiom,
! [A: rat,M: num,N: num,B: rat] :
( ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_345_power__add__numeral2,axiom,
! [A: nat,M: num,N: num,B: nat] :
( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_346_power__add__numeral2,axiom,
! [A: int,M: num,N: num,B: int] :
( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_347_L2__set__mult__ineq__lemma,axiom,
! [A: real,C: real,B: real,D2: real] : ( ord_less_eq_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_real @ A @ C ) ) @ ( times_times_real @ B @ D2 ) ) @ ( plus_plus_real @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ D2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ C @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% L2_set_mult_ineq_lemma
thf(fact_348_add__One__commute,axiom,
! [N: num] :
( ( plus_plus_num @ one @ N )
= ( plus_plus_num @ N @ one ) ) ).
% add_One_commute
thf(fact_349_four__x__squared,axiom,
! [X2: real] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% four_x_squared
thf(fact_350_Suc__inject,axiom,
! [X2: nat,Y2: nat] :
( ( ( suc @ X2 )
= ( suc @ Y2 ) )
=> ( X2 = Y2 ) ) ).
% Suc_inject
thf(fact_351_n__not__Suc__n,axiom,
! [N: nat] :
( N
!= ( suc @ N ) ) ).
% n_not_Suc_n
thf(fact_352_le__refl,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).
% le_refl
thf(fact_353_le__trans,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ J @ K )
=> ( ord_less_eq_nat @ I @ K ) ) ) ).
% le_trans
thf(fact_354_eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( M = N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% eq_imp_le
thf(fact_355_le__antisym,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( M = N ) ) ) ).
% le_antisym
thf(fact_356_nat__le__linear,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
| ( ord_less_eq_nat @ N @ M ) ) ).
% nat_le_linear
thf(fact_357_Nat_Oex__has__greatest__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y3: nat] :
( ( P @ Y3 )
=> ( ord_less_eq_nat @ Y3 @ B ) )
=> ? [X3: nat] :
( ( P @ X3 )
& ! [Y4: nat] :
( ( P @ Y4 )
=> ( ord_less_eq_nat @ Y4 @ X3 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_358_dvd__antisym,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ M @ N )
=> ( ( dvd_dvd_nat @ N @ M )
=> ( M = N ) ) ) ).
% dvd_antisym
thf(fact_359_Suc__nat__number__of__add,axiom,
! [V: num,N: nat] :
( ( suc @ ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ N ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ one ) ) @ N ) ) ).
% Suc_nat_number_of_add
thf(fact_360_power__commutes,axiom,
! [A: complex,N: nat] :
( ( times_times_complex @ ( power_power_complex @ A @ N ) @ A )
= ( times_times_complex @ A @ ( power_power_complex @ A @ N ) ) ) ).
% power_commutes
thf(fact_361_power__commutes,axiom,
! [A: code_integer,N: nat] :
( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ A @ N ) @ A )
= ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).
% power_commutes
thf(fact_362_power__commutes,axiom,
! [A: real,N: nat] :
( ( times_times_real @ ( power_power_real @ A @ N ) @ A )
= ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).
% power_commutes
thf(fact_363_power__commutes,axiom,
! [A: rat,N: nat] :
( ( times_times_rat @ ( power_power_rat @ A @ N ) @ A )
= ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ).
% power_commutes
thf(fact_364_power__commutes,axiom,
! [A: nat,N: nat] :
( ( times_times_nat @ ( power_power_nat @ A @ N ) @ A )
= ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).
% power_commutes
thf(fact_365_power__commutes,axiom,
! [A: int,N: nat] :
( ( times_times_int @ ( power_power_int @ A @ N ) @ A )
= ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).
% power_commutes
thf(fact_366_power__mult__distrib,axiom,
! [A: complex,B: complex,N: nat] :
( ( power_power_complex @ ( times_times_complex @ A @ B ) @ N )
= ( times_times_complex @ ( power_power_complex @ A @ N ) @ ( power_power_complex @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_367_power__mult__distrib,axiom,
! [A: code_integer,B: code_integer,N: nat] :
( ( power_8256067586552552935nteger @ ( times_3573771949741848930nteger @ A @ B ) @ N )
= ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( power_8256067586552552935nteger @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_368_power__mult__distrib,axiom,
! [A: real,B: real,N: nat] :
( ( power_power_real @ ( times_times_real @ A @ B ) @ N )
= ( times_times_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_369_power__mult__distrib,axiom,
! [A: rat,B: rat,N: nat] :
( ( power_power_rat @ ( times_times_rat @ A @ B ) @ N )
= ( times_times_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_370_power__mult__distrib,axiom,
! [A: nat,B: nat,N: nat] :
( ( power_power_nat @ ( times_times_nat @ A @ B ) @ N )
= ( times_times_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_371_power__mult__distrib,axiom,
! [A: int,B: int,N: nat] :
( ( power_power_int @ ( times_times_int @ A @ B ) @ N )
= ( times_times_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_372_power__commuting__commutes,axiom,
! [X2: complex,Y2: complex,N: nat] :
( ( ( times_times_complex @ X2 @ Y2 )
= ( times_times_complex @ Y2 @ X2 ) )
=> ( ( times_times_complex @ ( power_power_complex @ X2 @ N ) @ Y2 )
= ( times_times_complex @ Y2 @ ( power_power_complex @ X2 @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_373_power__commuting__commutes,axiom,
! [X2: code_integer,Y2: code_integer,N: nat] :
( ( ( times_3573771949741848930nteger @ X2 @ Y2 )
= ( times_3573771949741848930nteger @ Y2 @ X2 ) )
=> ( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ X2 @ N ) @ Y2 )
= ( times_3573771949741848930nteger @ Y2 @ ( power_8256067586552552935nteger @ X2 @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_374_power__commuting__commutes,axiom,
! [X2: real,Y2: real,N: nat] :
( ( ( times_times_real @ X2 @ Y2 )
= ( times_times_real @ Y2 @ X2 ) )
=> ( ( times_times_real @ ( power_power_real @ X2 @ N ) @ Y2 )
= ( times_times_real @ Y2 @ ( power_power_real @ X2 @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_375_power__commuting__commutes,axiom,
! [X2: rat,Y2: rat,N: nat] :
( ( ( times_times_rat @ X2 @ Y2 )
= ( times_times_rat @ Y2 @ X2 ) )
=> ( ( times_times_rat @ ( power_power_rat @ X2 @ N ) @ Y2 )
= ( times_times_rat @ Y2 @ ( power_power_rat @ X2 @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_376_power__commuting__commutes,axiom,
! [X2: nat,Y2: nat,N: nat] :
( ( ( times_times_nat @ X2 @ Y2 )
= ( times_times_nat @ Y2 @ X2 ) )
=> ( ( times_times_nat @ ( power_power_nat @ X2 @ N ) @ Y2 )
= ( times_times_nat @ Y2 @ ( power_power_nat @ X2 @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_377_power__commuting__commutes,axiom,
! [X2: int,Y2: int,N: nat] :
( ( ( times_times_int @ X2 @ Y2 )
= ( times_times_int @ Y2 @ X2 ) )
=> ( ( times_times_int @ ( power_power_int @ X2 @ N ) @ Y2 )
= ( times_times_int @ Y2 @ ( power_power_int @ X2 @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_378_power__divide,axiom,
! [A: complex,B: complex,N: nat] :
( ( power_power_complex @ ( divide1717551699836669952omplex @ A @ B ) @ N )
= ( divide1717551699836669952omplex @ ( power_power_complex @ A @ N ) @ ( power_power_complex @ B @ N ) ) ) ).
% power_divide
thf(fact_379_power__divide,axiom,
! [A: real,B: real,N: nat] :
( ( power_power_real @ ( divide_divide_real @ A @ B ) @ N )
= ( divide_divide_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).
% power_divide
thf(fact_380_power__divide,axiom,
! [A: rat,B: rat,N: nat] :
( ( power_power_rat @ ( divide_divide_rat @ A @ B ) @ N )
= ( divide_divide_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ).
% power_divide
thf(fact_381_nat__arith_Osuc1,axiom,
! [A2: nat,K: nat,A: nat] :
( ( A2
= ( plus_plus_nat @ K @ A ) )
=> ( ( suc @ A2 )
= ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).
% nat_arith.suc1
thf(fact_382_add__Suc,axiom,
! [M: nat,N: nat] :
( ( plus_plus_nat @ ( suc @ M ) @ N )
= ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).
% add_Suc
thf(fact_383_add__Suc__shift,axiom,
! [M: nat,N: nat] :
( ( plus_plus_nat @ ( suc @ M ) @ N )
= ( plus_plus_nat @ M @ ( suc @ N ) ) ) ).
% add_Suc_shift
thf(fact_384_Suc__leD,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% Suc_leD
thf(fact_385_le__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less_eq_nat @ M @ N )
=> ( M
= ( suc @ N ) ) ) ) ).
% le_SucE
thf(fact_386_le__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).
% le_SucI
thf(fact_387_Suc__le__D,axiom,
! [N: nat,M2: nat] :
( ( ord_less_eq_nat @ ( suc @ N ) @ M2 )
=> ? [M3: nat] :
( M2
= ( suc @ M3 ) ) ) ).
% Suc_le_D
thf(fact_388_le__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
= ( ( ord_less_eq_nat @ M @ N )
| ( M
= ( suc @ N ) ) ) ) ).
% le_Suc_eq
thf(fact_389_Suc__n__not__le__n,axiom,
! [N: nat] :
~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).
% Suc_n_not_le_n
thf(fact_390_not__less__eq__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less_eq_nat @ M @ N ) )
= ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).
% not_less_eq_eq
thf(fact_391_full__nat__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ! [M4: nat] :
( ( ord_less_eq_nat @ ( suc @ M4 ) @ N2 )
=> ( P @ M4 ) )
=> ( P @ N2 ) )
=> ( P @ N ) ) ).
% full_nat_induct
thf(fact_392_nat__induct__at__least,axiom,
! [M: nat,N: nat,P: nat > $o] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( P @ M )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct_at_least
thf(fact_393_transitive__stepwise__le,axiom,
! [M: nat,N: nat,R: nat > nat > $o] :
( ( ord_less_eq_nat @ M @ N )
=> ( ! [X3: nat] : ( R @ X3 @ X3 )
=> ( ! [X3: nat,Y3: nat,Z2: nat] :
( ( R @ X3 @ Y3 )
=> ( ( R @ Y3 @ Z2 )
=> ( R @ X3 @ Z2 ) ) )
=> ( ! [N2: nat] : ( R @ N2 @ ( suc @ N2 ) )
=> ( R @ M @ N ) ) ) ) ) ).
% transitive_stepwise_le
thf(fact_394_dvd__power__same,axiom,
! [X2: nat,Y2: nat,N: nat] :
( ( dvd_dvd_nat @ X2 @ Y2 )
=> ( dvd_dvd_nat @ ( power_power_nat @ X2 @ N ) @ ( power_power_nat @ Y2 @ N ) ) ) ).
% dvd_power_same
thf(fact_395_dvd__power__same,axiom,
! [X2: real,Y2: real,N: nat] :
( ( dvd_dvd_real @ X2 @ Y2 )
=> ( dvd_dvd_real @ ( power_power_real @ X2 @ N ) @ ( power_power_real @ Y2 @ N ) ) ) ).
% dvd_power_same
thf(fact_396_dvd__power__same,axiom,
! [X2: int,Y2: int,N: nat] :
( ( dvd_dvd_int @ X2 @ Y2 )
=> ( dvd_dvd_int @ ( power_power_int @ X2 @ N ) @ ( power_power_int @ Y2 @ N ) ) ) ).
% dvd_power_same
thf(fact_397_dvd__power__same,axiom,
! [X2: complex,Y2: complex,N: nat] :
( ( dvd_dvd_complex @ X2 @ Y2 )
=> ( dvd_dvd_complex @ ( power_power_complex @ X2 @ N ) @ ( power_power_complex @ Y2 @ N ) ) ) ).
% dvd_power_same
thf(fact_398_dvd__power__same,axiom,
! [X2: code_integer,Y2: code_integer,N: nat] :
( ( dvd_dvd_Code_integer @ X2 @ Y2 )
=> ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X2 @ N ) @ ( power_8256067586552552935nteger @ Y2 @ N ) ) ) ).
% dvd_power_same
thf(fact_399_Suc__mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ ( suc @ K ) @ M )
= ( times_times_nat @ ( suc @ K ) @ N ) )
= ( M = N ) ) ).
% Suc_mult_cancel1
thf(fact_400_add__leE,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ~ ( ( ord_less_eq_nat @ M @ N )
=> ~ ( ord_less_eq_nat @ K @ N ) ) ) ).
% add_leE
thf(fact_401_le__add1,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).
% le_add1
thf(fact_402_le__add2,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).
% le_add2
thf(fact_403_add__leD1,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% add_leD1
thf(fact_404_add__leD2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ K @ N ) ) ).
% add_leD2
thf(fact_405_le__Suc__ex,axiom,
! [K: nat,L2: nat] :
( ( ord_less_eq_nat @ K @ L2 )
=> ? [N2: nat] :
( L2
= ( plus_plus_nat @ K @ N2 ) ) ) ).
% le_Suc_ex
thf(fact_406_add__le__mono,axiom,
! [I: nat,J: nat,K: nat,L2: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L2 )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ) ).
% add_le_mono
thf(fact_407_add__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_le_mono1
thf(fact_408_trans__le__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_le_add1
thf(fact_409_trans__le__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_le_add2
thf(fact_410_nat__le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [M5: nat,N3: nat] :
? [K2: nat] :
( N3
= ( plus_plus_nat @ M5 @ K2 ) ) ) ) ).
% nat_le_iff_add
thf(fact_411_power__mult,axiom,
! [A: nat,M: nat,N: nat] :
( ( power_power_nat @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_nat @ ( power_power_nat @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_412_power__mult,axiom,
! [A: real,M: nat,N: nat] :
( ( power_power_real @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_real @ ( power_power_real @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_413_power__mult,axiom,
! [A: int,M: nat,N: nat] :
( ( power_power_int @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_int @ ( power_power_int @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_414_power__mult,axiom,
! [A: complex,M: nat,N: nat] :
( ( power_power_complex @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_complex @ ( power_power_complex @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_415_power__mult,axiom,
! [A: code_integer,M: nat,N: nat] :
( ( power_8256067586552552935nteger @ A @ ( times_times_nat @ M @ N ) )
= ( power_8256067586552552935nteger @ ( power_8256067586552552935nteger @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_416_add__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
= ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% add_mult_distrib
thf(fact_417_add__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% add_mult_distrib2
thf(fact_418_le__cube,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).
% le_cube
thf(fact_419_le__square,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).
% le_square
thf(fact_420_mult__le__mono,axiom,
! [I: nat,J: nat,K: nat,L2: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L2 )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L2 ) ) ) ) ).
% mult_le_mono
thf(fact_421_mult__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).
% mult_le_mono1
thf(fact_422_mult__le__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).
% mult_le_mono2
thf(fact_423_power__Suc,axiom,
! [A: complex,N: nat] :
( ( power_power_complex @ A @ ( suc @ N ) )
= ( times_times_complex @ A @ ( power_power_complex @ A @ N ) ) ) ).
% power_Suc
thf(fact_424_power__Suc,axiom,
! [A: code_integer,N: nat] :
( ( power_8256067586552552935nteger @ A @ ( suc @ N ) )
= ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).
% power_Suc
thf(fact_425_power__Suc,axiom,
! [A: real,N: nat] :
( ( power_power_real @ A @ ( suc @ N ) )
= ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).
% power_Suc
thf(fact_426_power__Suc,axiom,
! [A: rat,N: nat] :
( ( power_power_rat @ A @ ( suc @ N ) )
= ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ).
% power_Suc
thf(fact_427_power__Suc,axiom,
! [A: nat,N: nat] :
( ( power_power_nat @ A @ ( suc @ N ) )
= ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).
% power_Suc
thf(fact_428_power__Suc,axiom,
! [A: int,N: nat] :
( ( power_power_int @ A @ ( suc @ N ) )
= ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).
% power_Suc
thf(fact_429_power__Suc2,axiom,
! [A: complex,N: nat] :
( ( power_power_complex @ A @ ( suc @ N ) )
= ( times_times_complex @ ( power_power_complex @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_430_power__Suc2,axiom,
! [A: code_integer,N: nat] :
( ( power_8256067586552552935nteger @ A @ ( suc @ N ) )
= ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_431_power__Suc2,axiom,
! [A: real,N: nat] :
( ( power_power_real @ A @ ( suc @ N ) )
= ( times_times_real @ ( power_power_real @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_432_power__Suc2,axiom,
! [A: rat,N: nat] :
( ( power_power_rat @ A @ ( suc @ N ) )
= ( times_times_rat @ ( power_power_rat @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_433_power__Suc2,axiom,
! [A: nat,N: nat] :
( ( power_power_nat @ A @ ( suc @ N ) )
= ( times_times_nat @ ( power_power_nat @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_434_power__Suc2,axiom,
! [A: int,N: nat] :
( ( power_power_int @ A @ ( suc @ N ) )
= ( times_times_int @ ( power_power_int @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_435_lift__Suc__mono__le,axiom,
! [F: nat > set_nat,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_eq_set_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_set_nat @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_436_lift__Suc__mono__le,axiom,
! [F: nat > rat,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_eq_rat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_rat @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_437_lift__Suc__mono__le,axiom,
! [F: nat > num,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_eq_num @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_num @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_438_lift__Suc__mono__le,axiom,
! [F: nat > nat,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_eq_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_nat @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_439_lift__Suc__mono__le,axiom,
! [F: nat > int,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_eq_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_int @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_440_lift__Suc__antimono__le,axiom,
! [F: nat > set_nat,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_eq_set_nat @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_set_nat @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_441_lift__Suc__antimono__le,axiom,
! [F: nat > rat,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_eq_rat @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_rat @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_442_lift__Suc__antimono__le,axiom,
! [F: nat > num,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_eq_num @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_num @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_443_lift__Suc__antimono__le,axiom,
! [F: nat > nat,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_nat @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_444_lift__Suc__antimono__le,axiom,
! [F: nat > int,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_eq_int @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_int @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_445_power__add,axiom,
! [A: complex,M: nat,N: nat] :
( ( power_power_complex @ A @ ( plus_plus_nat @ M @ N ) )
= ( times_times_complex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N ) ) ) ).
% power_add
thf(fact_446_power__add,axiom,
! [A: code_integer,M: nat,N: nat] :
( ( power_8256067586552552935nteger @ A @ ( plus_plus_nat @ M @ N ) )
= ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ A @ M ) @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).
% power_add
thf(fact_447_power__add,axiom,
! [A: real,M: nat,N: nat] :
( ( power_power_real @ A @ ( plus_plus_nat @ M @ N ) )
= ( times_times_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ).
% power_add
thf(fact_448_power__add,axiom,
! [A: rat,M: nat,N: nat] :
( ( power_power_rat @ A @ ( plus_plus_nat @ M @ N ) )
= ( times_times_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) ) ) ).
% power_add
thf(fact_449_power__add,axiom,
! [A: nat,M: nat,N: nat] :
( ( power_power_nat @ A @ ( plus_plus_nat @ M @ N ) )
= ( times_times_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ).
% power_add
thf(fact_450_power__add,axiom,
! [A: int,M: nat,N: nat] :
( ( power_power_int @ A @ ( plus_plus_nat @ M @ N ) )
= ( times_times_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ).
% power_add
thf(fact_451_div__power,axiom,
! [B: code_integer,A: code_integer,N: nat] :
( ( dvd_dvd_Code_integer @ B @ A )
=> ( ( power_8256067586552552935nteger @ ( divide6298287555418463151nteger @ A @ B ) @ N )
= ( divide6298287555418463151nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( power_8256067586552552935nteger @ B @ N ) ) ) ) ).
% div_power
thf(fact_452_div__power,axiom,
! [B: nat,A: nat,N: nat] :
( ( dvd_dvd_nat @ B @ A )
=> ( ( power_power_nat @ ( divide_divide_nat @ A @ B ) @ N )
= ( divide_divide_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ).
% div_power
thf(fact_453_div__power,axiom,
! [B: int,A: int,N: nat] :
( ( dvd_dvd_int @ B @ A )
=> ( ( power_power_int @ ( divide_divide_int @ A @ B ) @ N )
= ( divide_divide_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).
% div_power
thf(fact_454_dvd__power__le,axiom,
! [X2: nat,Y2: nat,N: nat,M: nat] :
( ( dvd_dvd_nat @ X2 @ Y2 )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_nat @ ( power_power_nat @ X2 @ N ) @ ( power_power_nat @ Y2 @ M ) ) ) ) ).
% dvd_power_le
thf(fact_455_dvd__power__le,axiom,
! [X2: real,Y2: real,N: nat,M: nat] :
( ( dvd_dvd_real @ X2 @ Y2 )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_real @ ( power_power_real @ X2 @ N ) @ ( power_power_real @ Y2 @ M ) ) ) ) ).
% dvd_power_le
thf(fact_456_dvd__power__le,axiom,
! [X2: int,Y2: int,N: nat,M: nat] :
( ( dvd_dvd_int @ X2 @ Y2 )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_int @ ( power_power_int @ X2 @ N ) @ ( power_power_int @ Y2 @ M ) ) ) ) ).
% dvd_power_le
thf(fact_457_dvd__power__le,axiom,
! [X2: complex,Y2: complex,N: nat,M: nat] :
( ( dvd_dvd_complex @ X2 @ Y2 )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_complex @ ( power_power_complex @ X2 @ N ) @ ( power_power_complex @ Y2 @ M ) ) ) ) ).
% dvd_power_le
thf(fact_458_dvd__power__le,axiom,
! [X2: code_integer,Y2: code_integer,N: nat,M: nat] :
( ( dvd_dvd_Code_integer @ X2 @ Y2 )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X2 @ N ) @ ( power_8256067586552552935nteger @ Y2 @ M ) ) ) ) ).
% dvd_power_le
thf(fact_459_power__le__dvd,axiom,
! [A: nat,N: nat,B: nat,M: nat] :
( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ B )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_nat @ ( power_power_nat @ A @ M ) @ B ) ) ) ).
% power_le_dvd
thf(fact_460_power__le__dvd,axiom,
! [A: real,N: nat,B: real,M: nat] :
( ( dvd_dvd_real @ ( power_power_real @ A @ N ) @ B )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_real @ ( power_power_real @ A @ M ) @ B ) ) ) ).
% power_le_dvd
thf(fact_461_power__le__dvd,axiom,
! [A: int,N: nat,B: int,M: nat] :
( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ B )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_int @ ( power_power_int @ A @ M ) @ B ) ) ) ).
% power_le_dvd
thf(fact_462_power__le__dvd,axiom,
! [A: complex,N: nat,B: complex,M: nat] :
( ( dvd_dvd_complex @ ( power_power_complex @ A @ N ) @ B )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_complex @ ( power_power_complex @ A @ M ) @ B ) ) ) ).
% power_le_dvd
thf(fact_463_power__le__dvd,axiom,
! [A: code_integer,N: nat,B: code_integer,M: nat] :
( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) @ B )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ M ) @ B ) ) ) ).
% power_le_dvd
thf(fact_464_le__imp__power__dvd,axiom,
! [M: nat,N: nat,A: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ).
% le_imp_power_dvd
thf(fact_465_le__imp__power__dvd,axiom,
! [M: nat,N: nat,A: real] :
( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ).
% le_imp_power_dvd
thf(fact_466_le__imp__power__dvd,axiom,
! [M: nat,N: nat,A: int] :
( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ).
% le_imp_power_dvd
thf(fact_467_le__imp__power__dvd,axiom,
! [M: nat,N: nat,A: complex] :
( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_complex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N ) ) ) ).
% le_imp_power_dvd
thf(fact_468_le__imp__power__dvd,axiom,
! [M: nat,N: nat,A: code_integer] :
( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ M ) @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).
% le_imp_power_dvd
thf(fact_469_mult__Suc,axiom,
! [M: nat,N: nat] :
( ( times_times_nat @ ( suc @ M ) @ N )
= ( plus_plus_nat @ N @ ( times_times_nat @ M @ N ) ) ) ).
% mult_Suc
thf(fact_470_Suc__mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% Suc_mult_le_cancel1
thf(fact_471_power__numeral__even,axiom,
! [Z: complex,W: num] :
( ( power_power_complex @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
= ( times_times_complex @ ( power_power_complex @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_complex @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_even
thf(fact_472_power__numeral__even,axiom,
! [Z: code_integer,W: num] :
( ( power_8256067586552552935nteger @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
= ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_8256067586552552935nteger @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_even
thf(fact_473_power__numeral__even,axiom,
! [Z: real,W: num] :
( ( power_power_real @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
= ( times_times_real @ ( power_power_real @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_real @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_even
thf(fact_474_power__numeral__even,axiom,
! [Z: rat,W: num] :
( ( power_power_rat @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
= ( times_times_rat @ ( power_power_rat @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_rat @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_even
thf(fact_475_power__numeral__even,axiom,
! [Z: nat,W: num] :
( ( power_power_nat @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
= ( times_times_nat @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_even
thf(fact_476_power__numeral__even,axiom,
! [Z: int,W: num] :
( ( power_power_int @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
= ( times_times_int @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_even
thf(fact_477_power__numeral__odd,axiom,
! [Z: complex,W: num] :
( ( power_power_complex @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
= ( times_times_complex @ ( times_times_complex @ Z @ ( power_power_complex @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_complex @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_odd
thf(fact_478_power__numeral__odd,axiom,
! [Z: code_integer,W: num] :
( ( power_8256067586552552935nteger @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
= ( times_3573771949741848930nteger @ ( times_3573771949741848930nteger @ Z @ ( power_8256067586552552935nteger @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_8256067586552552935nteger @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_odd
thf(fact_479_power__numeral__odd,axiom,
! [Z: real,W: num] :
( ( power_power_real @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
= ( times_times_real @ ( times_times_real @ Z @ ( power_power_real @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_real @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_odd
thf(fact_480_power__numeral__odd,axiom,
! [Z: rat,W: num] :
( ( power_power_rat @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
= ( times_times_rat @ ( times_times_rat @ Z @ ( power_power_rat @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_rat @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_odd
thf(fact_481_power__numeral__odd,axiom,
! [Z: nat,W: num] :
( ( power_power_nat @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
= ( times_times_nat @ ( times_times_nat @ Z @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_odd
thf(fact_482_power__numeral__odd,axiom,
! [Z: int,W: num] :
( ( power_power_int @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
= ( times_times_int @ ( times_times_int @ Z @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_odd
thf(fact_483_power4__eq__xxxx,axiom,
! [X2: complex] :
( ( power_power_complex @ X2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_complex @ ( times_times_complex @ ( times_times_complex @ X2 @ X2 ) @ X2 ) @ X2 ) ) ).
% power4_eq_xxxx
thf(fact_484_power4__eq__xxxx,axiom,
! [X2: code_integer] :
( ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_3573771949741848930nteger @ ( times_3573771949741848930nteger @ ( times_3573771949741848930nteger @ X2 @ X2 ) @ X2 ) @ X2 ) ) ).
% power4_eq_xxxx
thf(fact_485_power4__eq__xxxx,axiom,
! [X2: real] :
( ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_real @ ( times_times_real @ ( times_times_real @ X2 @ X2 ) @ X2 ) @ X2 ) ) ).
% power4_eq_xxxx
thf(fact_486_power4__eq__xxxx,axiom,
! [X2: rat] :
( ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_rat @ ( times_times_rat @ ( times_times_rat @ X2 @ X2 ) @ X2 ) @ X2 ) ) ).
% power4_eq_xxxx
thf(fact_487_power4__eq__xxxx,axiom,
! [X2: nat] :
( ( power_power_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_nat @ ( times_times_nat @ ( times_times_nat @ X2 @ X2 ) @ X2 ) @ X2 ) ) ).
% power4_eq_xxxx
thf(fact_488_power4__eq__xxxx,axiom,
! [X2: int] :
( ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_int @ ( times_times_int @ ( times_times_int @ X2 @ X2 ) @ X2 ) @ X2 ) ) ).
% power4_eq_xxxx
thf(fact_489_power2__eq__square,axiom,
! [A: complex] :
( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_complex @ A @ A ) ) ).
% power2_eq_square
thf(fact_490_power2__eq__square,axiom,
! [A: code_integer] :
( ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_3573771949741848930nteger @ A @ A ) ) ).
% power2_eq_square
thf(fact_491_power2__eq__square,axiom,
! [A: real] :
( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_real @ A @ A ) ) ).
% power2_eq_square
thf(fact_492_power2__eq__square,axiom,
! [A: rat] :
( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_rat @ A @ A ) ) ).
% power2_eq_square
thf(fact_493_power2__eq__square,axiom,
! [A: nat] :
( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_nat @ A @ A ) ) ).
% power2_eq_square
thf(fact_494_power2__eq__square,axiom,
! [A: int] :
( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_int @ A @ A ) ) ).
% power2_eq_square
thf(fact_495_bit__eq__rec,axiom,
( ( ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 ) )
= ( ^ [A3: nat,B2: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A3 )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B2 ) )
& ( ( divide_divide_nat @ A3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ B2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% bit_eq_rec
thf(fact_496_bit__eq__rec,axiom,
( ( ^ [Y5: int,Z3: int] : ( Y5 = Z3 ) )
= ( ^ [A3: int,B2: int] :
( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A3 )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B2 ) )
& ( ( divide_divide_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( divide_divide_int @ B2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).
% bit_eq_rec
thf(fact_497_power3__eq__cube,axiom,
! [A: complex] :
( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
= ( times_times_complex @ ( times_times_complex @ A @ A ) @ A ) ) ).
% power3_eq_cube
thf(fact_498_power3__eq__cube,axiom,
! [A: code_integer] :
( ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
= ( times_3573771949741848930nteger @ ( times_3573771949741848930nteger @ A @ A ) @ A ) ) ).
% power3_eq_cube
thf(fact_499_power3__eq__cube,axiom,
! [A: real] :
( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
= ( times_times_real @ ( times_times_real @ A @ A ) @ A ) ) ).
% power3_eq_cube
thf(fact_500_power3__eq__cube,axiom,
! [A: rat] :
( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
= ( times_times_rat @ ( times_times_rat @ A @ A ) @ A ) ) ).
% power3_eq_cube
thf(fact_501_power3__eq__cube,axiom,
! [A: nat] :
( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
= ( times_times_nat @ ( times_times_nat @ A @ A ) @ A ) ) ).
% power3_eq_cube
thf(fact_502_power3__eq__cube,axiom,
! [A: int] :
( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
= ( times_times_int @ ( times_times_int @ A @ A ) @ A ) ) ).
% power3_eq_cube
thf(fact_503_power__even__eq,axiom,
! [A: nat,N: nat] :
( ( power_power_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_nat @ ( power_power_nat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_504_power__even__eq,axiom,
! [A: real,N: nat] :
( ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_real @ ( power_power_real @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_505_power__even__eq,axiom,
! [A: int,N: nat] :
( ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_int @ ( power_power_int @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_506_power__even__eq,axiom,
! [A: complex,N: nat] :
( ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_complex @ ( power_power_complex @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_507_power__even__eq,axiom,
! [A: code_integer,N: nat] :
( ( power_8256067586552552935nteger @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_8256067586552552935nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_508_semiring__norm_I16_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( bit1 @ ( plus_plus_num @ ( plus_plus_num @ M @ N ) @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ) ).
% semiring_norm(16)
thf(fact_509_semiring__norm_I10_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( bit0 @ ( plus_plus_num @ ( plus_plus_num @ M @ N ) @ one ) ) ) ).
% semiring_norm(10)
thf(fact_510_semiring__norm_I8_J,axiom,
! [M: num] :
( ( plus_plus_num @ ( bit1 @ M ) @ one )
= ( bit0 @ ( plus_plus_num @ M @ one ) ) ) ).
% semiring_norm(8)
thf(fact_511_semiring__norm_I5_J,axiom,
! [M: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ one )
= ( bit1 @ M ) ) ).
% semiring_norm(5)
thf(fact_512_semiring__norm_I4_J,axiom,
! [N: num] :
( ( plus_plus_num @ one @ ( bit1 @ N ) )
= ( bit0 @ ( plus_plus_num @ N @ one ) ) ) ).
% semiring_norm(4)
thf(fact_513_semiring__norm_I3_J,axiom,
! [N: num] :
( ( plus_plus_num @ one @ ( bit0 @ N ) )
= ( bit1 @ N ) ) ).
% semiring_norm(3)
thf(fact_514_count__buildup,axiom,
! [N: nat] : ( ord_less_eq_real @ ( vEBT_VEBT_cnt @ ( vEBT_vebt_buildup @ N ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ) ).
% count_buildup
thf(fact_515_semiring__norm_I70_J,axiom,
! [M: num] :
~ ( ord_less_eq_num @ ( bit1 @ M ) @ one ) ).
% semiring_norm(70)
thf(fact_516_semiring__norm_I72_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% semiring_norm(72)
thf(fact_517_semiring__norm_I69_J,axiom,
! [M: num] :
~ ( ord_less_eq_num @ ( bit0 @ M ) @ one ) ).
% semiring_norm(69)
thf(fact_518_semiring__norm_I15_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( times_times_num @ ( bit1 @ M ) @ N ) ) ) ).
% semiring_norm(15)
thf(fact_519_semiring__norm_I14_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( bit0 @ ( times_times_num @ M @ ( bit1 @ N ) ) ) ) ).
% semiring_norm(14)
thf(fact_520_semiring__norm_I87_J,axiom,
! [M: num,N: num] :
( ( ( bit0 @ M )
= ( bit0 @ N ) )
= ( M = N ) ) ).
% semiring_norm(87)
thf(fact_521_semiring__norm_I90_J,axiom,
! [M: num,N: num] :
( ( ( bit1 @ M )
= ( bit1 @ N ) )
= ( M = N ) ) ).
% semiring_norm(90)
thf(fact_522_real__divide__square__eq,axiom,
! [R2: real,A: real] :
( ( divide_divide_real @ ( times_times_real @ R2 @ A ) @ ( times_times_real @ R2 @ R2 ) )
= ( divide_divide_real @ A @ R2 ) ) ).
% real_divide_square_eq
thf(fact_523_semiring__norm_I83_J,axiom,
! [N: num] :
( one
!= ( bit0 @ N ) ) ).
% semiring_norm(83)
thf(fact_524_semiring__norm_I85_J,axiom,
! [M: num] :
( ( bit0 @ M )
!= one ) ).
% semiring_norm(85)
thf(fact_525_semiring__norm_I88_J,axiom,
! [M: num,N: num] :
( ( bit0 @ M )
!= ( bit1 @ N ) ) ).
% semiring_norm(88)
thf(fact_526_semiring__norm_I89_J,axiom,
! [M: num,N: num] :
( ( bit1 @ M )
!= ( bit0 @ N ) ) ).
% semiring_norm(89)
thf(fact_527_semiring__norm_I84_J,axiom,
! [N: num] :
( one
!= ( bit1 @ N ) ) ).
% semiring_norm(84)
thf(fact_528_semiring__norm_I86_J,axiom,
! [M: num] :
( ( bit1 @ M )
!= one ) ).
% semiring_norm(86)
thf(fact_529_semiring__norm_I6_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( plus_plus_num @ M @ N ) ) ) ).
% semiring_norm(6)
thf(fact_530_semiring__norm_I13_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ).
% semiring_norm(13)
thf(fact_531_semiring__norm_I11_J,axiom,
! [M: num] :
( ( times_times_num @ M @ one )
= M ) ).
% semiring_norm(11)
thf(fact_532_semiring__norm_I12_J,axiom,
! [N: num] :
( ( times_times_num @ one @ N )
= N ) ).
% semiring_norm(12)
thf(fact_533_semiring__norm_I71_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% semiring_norm(71)
thf(fact_534_semiring__norm_I68_J,axiom,
! [N: num] : ( ord_less_eq_num @ one @ N ) ).
% semiring_norm(68)
thf(fact_535_semiring__norm_I73_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% semiring_norm(73)
thf(fact_536_semiring__norm_I2_J,axiom,
( ( plus_plus_num @ one @ one )
= ( bit0 @ one ) ) ).
% semiring_norm(2)
thf(fact_537_semiring__norm_I7_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( bit1 @ ( plus_plus_num @ M @ N ) ) ) ).
% semiring_norm(7)
thf(fact_538_semiring__norm_I9_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( bit1 @ ( plus_plus_num @ M @ N ) ) ) ).
% semiring_norm(9)
thf(fact_539_left__add__mult__distrib,axiom,
! [I: nat,U: nat,J: nat,K: nat] :
( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I @ J ) @ U ) @ K ) ) ).
% left_add_mult_distrib
thf(fact_540_t__buildup__cnt,axiom,
! [N: nat] : ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_V8346862874174094_d_u_p @ N ) ) @ ( times_times_real @ ( vEBT_VEBT_cnt @ ( vEBT_vebt_buildup @ N ) ) @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ ( bit1 @ one ) ) ) ) ) ) ).
% t_buildup_cnt
thf(fact_541_count__buildup_H,axiom,
! [N: nat] : ( ord_less_eq_real @ ( vEBT_VEBT_cnt @ ( vEBT_vebt_buildup @ N ) ) @ ( semiri5074537144036343181t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% count_buildup'
thf(fact_542_zdiv__numeral__Bit1,axiom,
! [V: num,W: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit1 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
= ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).
% zdiv_numeral_Bit1
thf(fact_543_times__divide__eq__right,axiom,
! [A: complex,B: complex,C: complex] :
( ( times_times_complex @ A @ ( divide1717551699836669952omplex @ B @ C ) )
= ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ C ) ) ).
% times_divide_eq_right
thf(fact_544_times__divide__eq__right,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( divide_divide_real @ B @ C ) )
= ( divide_divide_real @ ( times_times_real @ A @ B ) @ C ) ) ).
% times_divide_eq_right
thf(fact_545_times__divide__eq__right,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ C ) ) ).
% times_divide_eq_right
thf(fact_546_divide__divide__eq__right,axiom,
! [A: complex,B: complex,C: complex] :
( ( divide1717551699836669952omplex @ A @ ( divide1717551699836669952omplex @ B @ C ) )
= ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ B ) ) ).
% divide_divide_eq_right
thf(fact_547_divide__divide__eq__right,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ A @ ( divide_divide_real @ B @ C ) )
= ( divide_divide_real @ ( times_times_real @ A @ C ) @ B ) ) ).
% divide_divide_eq_right
thf(fact_548_divide__divide__eq__right,axiom,
! [A: rat,B: rat,C: rat] :
( ( divide_divide_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ B ) ) ).
% divide_divide_eq_right
thf(fact_549_divide__divide__eq__left,axiom,
! [A: complex,B: complex,C: complex] :
( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ A @ B ) @ C )
= ( divide1717551699836669952omplex @ A @ ( times_times_complex @ B @ C ) ) ) ).
% divide_divide_eq_left
thf(fact_550_divide__divide__eq__left,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
= ( divide_divide_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% divide_divide_eq_left
thf(fact_551_divide__divide__eq__left,axiom,
! [A: rat,B: rat,C: rat] :
( ( divide_divide_rat @ ( divide_divide_rat @ A @ B ) @ C )
= ( divide_divide_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).
% divide_divide_eq_left
thf(fact_552_times__divide__eq__left,axiom,
! [B: complex,C: complex,A: complex] :
( ( times_times_complex @ ( divide1717551699836669952omplex @ B @ C ) @ A )
= ( divide1717551699836669952omplex @ ( times_times_complex @ B @ A ) @ C ) ) ).
% times_divide_eq_left
thf(fact_553_times__divide__eq__left,axiom,
! [B: real,C: real,A: real] :
( ( times_times_real @ ( divide_divide_real @ B @ C ) @ A )
= ( divide_divide_real @ ( times_times_real @ B @ A ) @ C ) ) ).
% times_divide_eq_left
thf(fact_554_times__divide__eq__left,axiom,
! [B: rat,C: rat,A: rat] :
( ( times_times_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( divide_divide_rat @ ( times_times_rat @ B @ A ) @ C ) ) ).
% times_divide_eq_left
thf(fact_555_field__sum__of__halves,axiom,
! [X2: real] :
( ( plus_plus_real @ ( divide_divide_real @ X2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( divide_divide_real @ X2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= X2 ) ).
% field_sum_of_halves
thf(fact_556_field__sum__of__halves,axiom,
! [X2: rat] :
( ( plus_plus_rat @ ( divide_divide_rat @ X2 @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( divide_divide_rat @ X2 @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
= X2 ) ).
% field_sum_of_halves
thf(fact_557_add__le__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_558_add__le__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
= ( ord_less_eq_rat @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_559_add__le__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_560_add__le__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_561_add__le__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_562_add__le__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
= ( ord_less_eq_rat @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_563_add__le__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_564_add__le__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_565_buildup__nothing__in__leaf,axiom,
! [N: nat,X2: nat] :
~ ( vEBT_V5719532721284313246member @ ( vEBT_vebt_buildup @ N ) @ X2 ) ).
% buildup_nothing_in_leaf
thf(fact_566_cnt__cnt__eq,axiom,
( vEBT_VEBT_cnt
= ( ^ [T: vEBT_VEBT] : ( semiri5074537144036343181t_real @ ( vEBT_VEBT_cnt2 @ T ) ) ) ) ).
% cnt_cnt_eq
thf(fact_567_add__right__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_568_add__right__cancel,axiom,
! [B: rat,A: rat,C: rat] :
( ( ( plus_plus_rat @ B @ A )
= ( plus_plus_rat @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_569_add__right__cancel,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_570_add__right__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_571_add__left__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_572_add__left__cancel,axiom,
! [A: rat,B: rat,C: rat] :
( ( ( plus_plus_rat @ A @ B )
= ( plus_plus_rat @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_573_add__left__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_574_add__left__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_575_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= ( semiri5074537144036343181t_real @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_576_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= ( semiri1314217659103216013at_int @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_577_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri1316708129612266289at_nat @ M )
= ( semiri1316708129612266289at_nat @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_578_of__nat__numeral,axiom,
! [N: num] :
( ( semiri8010041392384452111omplex @ ( numeral_numeral_nat @ N ) )
= ( numera6690914467698888265omplex @ N ) ) ).
% of_nat_numeral
thf(fact_579_of__nat__numeral,axiom,
! [N: num] :
( ( semiri681578069525770553at_rat @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_rat @ N ) ) ).
% of_nat_numeral
thf(fact_580_of__nat__numeral,axiom,
! [N: num] :
( ( semiri5074537144036343181t_real @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_real @ N ) ) ).
% of_nat_numeral
thf(fact_581_of__nat__numeral,axiom,
! [N: num] :
( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_int @ N ) ) ).
% of_nat_numeral
thf(fact_582_of__nat__numeral,axiom,
! [N: num] :
( ( semiri1316708129612266289at_nat @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ N ) ) ).
% of_nat_numeral
thf(fact_583_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_584_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_585_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_586_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_587_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri681578069525770553at_rat @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) ) ).
% of_nat_add
thf(fact_588_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% of_nat_add
thf(fact_589_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_add
thf(fact_590_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% of_nat_add
thf(fact_591_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri681578069525770553at_rat @ ( times_times_nat @ M @ N ) )
= ( times_times_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) ) ).
% of_nat_mult
thf(fact_592_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( times_times_nat @ M @ N ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% of_nat_mult
thf(fact_593_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ M @ N ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_mult
thf(fact_594_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M @ N ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% of_nat_mult
thf(fact_595_semiring__1__class_Oof__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri8010041392384452111omplex @ ( power_power_nat @ M @ N ) )
= ( power_power_complex @ ( semiri8010041392384452111omplex @ M ) @ N ) ) ).
% semiring_1_class.of_nat_power
thf(fact_596_semiring__1__class_Oof__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri4939895301339042750nteger @ ( power_power_nat @ M @ N ) )
= ( power_8256067586552552935nteger @ ( semiri4939895301339042750nteger @ M ) @ N ) ) ).
% semiring_1_class.of_nat_power
thf(fact_597_semiring__1__class_Oof__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( power_power_nat @ M @ N ) )
= ( power_power_real @ ( semiri5074537144036343181t_real @ M ) @ N ) ) ).
% semiring_1_class.of_nat_power
thf(fact_598_semiring__1__class_Oof__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( power_power_nat @ M @ N ) )
= ( power_power_int @ ( semiri1314217659103216013at_int @ M ) @ N ) ) ).
% semiring_1_class.of_nat_power
thf(fact_599_semiring__1__class_Oof__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( power_power_nat @ M @ N ) )
= ( power_power_nat @ ( semiri1316708129612266289at_nat @ M ) @ N ) ) ).
% semiring_1_class.of_nat_power
thf(fact_600_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X2: nat] :
( ( ( power_power_complex @ ( semiri8010041392384452111omplex @ B ) @ W )
= ( semiri8010041392384452111omplex @ X2 ) )
= ( ( power_power_nat @ B @ W )
= X2 ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_601_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X2: nat] :
( ( ( power_8256067586552552935nteger @ ( semiri4939895301339042750nteger @ B ) @ W )
= ( semiri4939895301339042750nteger @ X2 ) )
= ( ( power_power_nat @ B @ W )
= X2 ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_602_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X2: nat] :
( ( ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W )
= ( semiri5074537144036343181t_real @ X2 ) )
= ( ( power_power_nat @ B @ W )
= X2 ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_603_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X2: nat] :
( ( ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W )
= ( semiri1314217659103216013at_int @ X2 ) )
= ( ( power_power_nat @ B @ W )
= X2 ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_604_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X2: nat] :
( ( ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W )
= ( semiri1316708129612266289at_nat @ X2 ) )
= ( ( power_power_nat @ B @ W )
= X2 ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_605_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X2: nat,B: nat,W: nat] :
( ( ( semiri8010041392384452111omplex @ X2 )
= ( power_power_complex @ ( semiri8010041392384452111omplex @ B ) @ W ) )
= ( X2
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_606_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X2: nat,B: nat,W: nat] :
( ( ( semiri4939895301339042750nteger @ X2 )
= ( power_8256067586552552935nteger @ ( semiri4939895301339042750nteger @ B ) @ W ) )
= ( X2
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_607_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X2: nat,B: nat,W: nat] :
( ( ( semiri5074537144036343181t_real @ X2 )
= ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
= ( X2
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_608_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X2: nat,B: nat,W: nat] :
( ( ( semiri1314217659103216013at_int @ X2 )
= ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
= ( X2
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_609_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X2: nat,B: nat,W: nat] :
( ( ( semiri1316708129612266289at_nat @ X2 )
= ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
= ( X2
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_610_zdiv__numeral__Bit0,axiom,
! [V: num,W: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
= ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).
% zdiv_numeral_Bit0
thf(fact_611_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X2: num,N: nat,Y2: nat] :
( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ X2 ) @ N )
= ( semiri4939895301339042750nteger @ Y2 ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N )
= Y2 ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_612_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X2: num,N: nat,Y2: nat] :
( ( ( power_power_complex @ ( numera6690914467698888265omplex @ X2 ) @ N )
= ( semiri8010041392384452111omplex @ Y2 ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N )
= Y2 ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_613_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X2: num,N: nat,Y2: nat] :
( ( ( power_power_rat @ ( numeral_numeral_rat @ X2 ) @ N )
= ( semiri681578069525770553at_rat @ Y2 ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N )
= Y2 ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_614_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X2: num,N: nat,Y2: nat] :
( ( ( power_power_real @ ( numeral_numeral_real @ X2 ) @ N )
= ( semiri5074537144036343181t_real @ Y2 ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N )
= Y2 ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_615_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X2: num,N: nat,Y2: nat] :
( ( ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N )
= ( semiri1314217659103216013at_int @ Y2 ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N )
= Y2 ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_616_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X2: num,N: nat,Y2: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N )
= ( semiri1316708129612266289at_nat @ Y2 ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N )
= Y2 ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_617_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y2: nat,X2: num,N: nat] :
( ( ( semiri4939895301339042750nteger @ Y2 )
= ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ X2 ) @ N ) )
= ( Y2
= ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_618_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y2: nat,X2: num,N: nat] :
( ( ( semiri8010041392384452111omplex @ Y2 )
= ( power_power_complex @ ( numera6690914467698888265omplex @ X2 ) @ N ) )
= ( Y2
= ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_619_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y2: nat,X2: num,N: nat] :
( ( ( semiri681578069525770553at_rat @ Y2 )
= ( power_power_rat @ ( numeral_numeral_rat @ X2 ) @ N ) )
= ( Y2
= ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_620_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y2: nat,X2: num,N: nat] :
( ( ( semiri5074537144036343181t_real @ Y2 )
= ( power_power_real @ ( numeral_numeral_real @ X2 ) @ N ) )
= ( Y2
= ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_621_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y2: nat,X2: num,N: nat] :
( ( ( semiri1314217659103216013at_int @ Y2 )
= ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) )
= ( Y2
= ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_622_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y2: nat,X2: num,N: nat] :
( ( ( semiri1316708129612266289at_nat @ Y2 )
= ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N ) )
= ( Y2
= ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_623_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X2: nat] :
( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ ( semiri4939895301339042750nteger @ B ) @ W ) @ ( semiri4939895301339042750nteger @ X2 ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X2 ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_624_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X2: nat] :
( ( ord_less_eq_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) @ ( semiri5074537144036343181t_real @ X2 ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X2 ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_625_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X2: nat] :
( ( ord_less_eq_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) @ ( semiri681578069525770553at_rat @ X2 ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X2 ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_626_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X2: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X2 ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X2 ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_627_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X2: nat] :
( ( ord_less_eq_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X2 ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X2 ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_628_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X2: nat,B: nat,W: nat] :
( ( ord_le3102999989581377725nteger @ ( semiri4939895301339042750nteger @ X2 ) @ ( power_8256067586552552935nteger @ ( semiri4939895301339042750nteger @ B ) @ W ) )
= ( ord_less_eq_nat @ X2 @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_629_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X2: nat,B: nat,W: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X2 ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
= ( ord_less_eq_nat @ X2 @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_630_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X2: nat,B: nat,W: nat] :
( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ X2 ) @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) )
= ( ord_less_eq_nat @ X2 @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_631_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X2: nat,B: nat,W: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X2 ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
= ( ord_less_eq_nat @ X2 @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_632_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X2: nat,B: nat,W: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X2 ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
= ( ord_less_eq_nat @ X2 @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_633_numeral__le__real__of__nat__iff,axiom,
! [N: num,M: nat] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ ( semiri5074537144036343181t_real @ M ) )
= ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ M ) ) ).
% numeral_le_real_of_nat_iff
thf(fact_634_numeral__power__le__of__nat__cancel__iff,axiom,
! [I: num,N: nat,X2: nat] :
( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ I ) @ N ) @ ( semiri4939895301339042750nteger @ X2 ) )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X2 ) ) ).
% numeral_power_le_of_nat_cancel_iff
thf(fact_635_numeral__power__le__of__nat__cancel__iff,axiom,
! [I: num,N: nat,X2: nat] :
( ( ord_less_eq_real @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N ) @ ( semiri5074537144036343181t_real @ X2 ) )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X2 ) ) ).
% numeral_power_le_of_nat_cancel_iff
thf(fact_636_numeral__power__le__of__nat__cancel__iff,axiom,
! [I: num,N: nat,X2: nat] :
( ( ord_less_eq_rat @ ( power_power_rat @ ( numeral_numeral_rat @ I ) @ N ) @ ( semiri681578069525770553at_rat @ X2 ) )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X2 ) ) ).
% numeral_power_le_of_nat_cancel_iff
thf(fact_637_numeral__power__le__of__nat__cancel__iff,axiom,
! [I: num,N: nat,X2: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ ( semiri1316708129612266289at_nat @ X2 ) )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X2 ) ) ).
% numeral_power_le_of_nat_cancel_iff
thf(fact_638_numeral__power__le__of__nat__cancel__iff,axiom,
! [I: num,N: nat,X2: nat] :
( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) @ ( semiri1314217659103216013at_int @ X2 ) )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X2 ) ) ).
% numeral_power_le_of_nat_cancel_iff
thf(fact_639_of__nat__le__numeral__power__cancel__iff,axiom,
! [X2: nat,I: num,N: nat] :
( ( ord_le3102999989581377725nteger @ ( semiri4939895301339042750nteger @ X2 ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ I ) @ N ) )
= ( ord_less_eq_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).
% of_nat_le_numeral_power_cancel_iff
thf(fact_640_of__nat__le__numeral__power__cancel__iff,axiom,
! [X2: nat,I: num,N: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X2 ) @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N ) )
= ( ord_less_eq_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).
% of_nat_le_numeral_power_cancel_iff
thf(fact_641_of__nat__le__numeral__power__cancel__iff,axiom,
! [X2: nat,I: num,N: nat] :
( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ X2 ) @ ( power_power_rat @ ( numeral_numeral_rat @ I ) @ N ) )
= ( ord_less_eq_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).
% of_nat_le_numeral_power_cancel_iff
thf(fact_642_of__nat__le__numeral__power__cancel__iff,axiom,
! [X2: nat,I: num,N: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X2 ) @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) )
= ( ord_less_eq_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).
% of_nat_le_numeral_power_cancel_iff
thf(fact_643_of__nat__le__numeral__power__cancel__iff,axiom,
! [X2: nat,I: num,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X2 ) @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) )
= ( ord_less_eq_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).
% of_nat_le_numeral_power_cancel_iff
thf(fact_644_even__of__nat,axiom,
! [N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( semiri1314217659103216013at_int @ N ) )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% even_of_nat
thf(fact_645_even__of__nat,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% even_of_nat
thf(fact_646_mult__of__nat__commute,axiom,
! [X2: nat,Y2: rat] :
( ( times_times_rat @ ( semiri681578069525770553at_rat @ X2 ) @ Y2 )
= ( times_times_rat @ Y2 @ ( semiri681578069525770553at_rat @ X2 ) ) ) ).
% mult_of_nat_commute
thf(fact_647_mult__of__nat__commute,axiom,
! [X2: nat,Y2: real] :
( ( times_times_real @ ( semiri5074537144036343181t_real @ X2 ) @ Y2 )
= ( times_times_real @ Y2 @ ( semiri5074537144036343181t_real @ X2 ) ) ) ).
% mult_of_nat_commute
thf(fact_648_mult__of__nat__commute,axiom,
! [X2: nat,Y2: int] :
( ( times_times_int @ ( semiri1314217659103216013at_int @ X2 ) @ Y2 )
= ( times_times_int @ Y2 @ ( semiri1314217659103216013at_int @ X2 ) ) ) ).
% mult_of_nat_commute
thf(fact_649_mult__of__nat__commute,axiom,
! [X2: nat,Y2: nat] :
( ( times_times_nat @ ( semiri1316708129612266289at_nat @ X2 ) @ Y2 )
= ( times_times_nat @ Y2 @ ( semiri1316708129612266289at_nat @ X2 ) ) ) ).
% mult_of_nat_commute
thf(fact_650_real__of__nat__div4,axiom,
! [N: nat,X2: nat] : ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X2 ) ) @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X2 ) ) ) ).
% real_of_nat_div4
thf(fact_651_real__of__nat__div,axiom,
! [D2: nat,N: nat] :
( ( dvd_dvd_nat @ D2 @ N )
=> ( ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ D2 ) )
= ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ D2 ) ) ) ) ).
% real_of_nat_div
thf(fact_652_div__mult2__eq_H,axiom,
! [A: int,M: nat,N: nat] :
( ( divide_divide_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ ( semiri1314217659103216013at_int @ M ) ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% div_mult2_eq'
thf(fact_653_div__mult2__eq_H,axiom,
! [A: nat,M: nat,N: nat] :
( ( divide_divide_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) )
= ( divide_divide_nat @ ( divide_divide_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% div_mult2_eq'
thf(fact_654_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ I ) @ ( semiri5074537144036343181t_real @ J ) ) ) ).
% of_nat_mono
thf(fact_655_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ I ) @ ( semiri681578069525770553at_rat @ J ) ) ) ).
% of_nat_mono
thf(fact_656_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).
% of_nat_mono
thf(fact_657_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J ) ) ) ).
% of_nat_mono
thf(fact_658_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) )
= ( divide_divide_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_659_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( divide_divide_nat @ M @ N ) )
= ( divide_divide_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_660_of__nat__dvd__iff,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( dvd_dvd_nat @ M @ N ) ) ).
% of_nat_dvd_iff
thf(fact_661_of__nat__dvd__iff,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( dvd_dvd_nat @ M @ N ) ) ).
% of_nat_dvd_iff
thf(fact_662_add__right__imp__eq,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_663_add__right__imp__eq,axiom,
! [B: rat,A: rat,C: rat] :
( ( ( plus_plus_rat @ B @ A )
= ( plus_plus_rat @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_664_add__right__imp__eq,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_665_add__right__imp__eq,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_666_add__left__imp__eq,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_667_add__left__imp__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ( plus_plus_rat @ A @ B )
= ( plus_plus_rat @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_668_add__left__imp__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_669_add__left__imp__eq,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_670_ab__semigroup__add__class_Oadd_Oleft__commute,axiom,
! [B: real,A: real,C: real] :
( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C ) )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% ab_semigroup_add_class.add.left_commute
thf(fact_671_ab__semigroup__add__class_Oadd_Oleft__commute,axiom,
! [B: rat,A: rat,C: rat] :
( ( plus_plus_rat @ B @ ( plus_plus_rat @ A @ C ) )
= ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).
% ab_semigroup_add_class.add.left_commute
thf(fact_672_ab__semigroup__add__class_Oadd_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% ab_semigroup_add_class.add.left_commute
thf(fact_673_ab__semigroup__add__class_Oadd_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% ab_semigroup_add_class.add.left_commute
thf(fact_674_ab__semigroup__add__class_Oadd_Ocommute,axiom,
( plus_plus_real
= ( ^ [A3: real,B2: real] : ( plus_plus_real @ B2 @ A3 ) ) ) ).
% ab_semigroup_add_class.add.commute
thf(fact_675_ab__semigroup__add__class_Oadd_Ocommute,axiom,
( plus_plus_rat
= ( ^ [A3: rat,B2: rat] : ( plus_plus_rat @ B2 @ A3 ) ) ) ).
% ab_semigroup_add_class.add.commute
thf(fact_676_ab__semigroup__add__class_Oadd_Ocommute,axiom,
( plus_plus_nat
= ( ^ [A3: nat,B2: nat] : ( plus_plus_nat @ B2 @ A3 ) ) ) ).
% ab_semigroup_add_class.add.commute
thf(fact_677_ab__semigroup__add__class_Oadd_Ocommute,axiom,
( plus_plus_int
= ( ^ [A3: int,B2: int] : ( plus_plus_int @ B2 @ A3 ) ) ) ).
% ab_semigroup_add_class.add.commute
thf(fact_678_add_Oright__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_679_add_Oright__cancel,axiom,
! [B: rat,A: rat,C: rat] :
( ( ( plus_plus_rat @ B @ A )
= ( plus_plus_rat @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_680_add_Oright__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_681_add_Oleft__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_682_add_Oleft__cancel,axiom,
! [A: rat,B: rat,C: rat] :
( ( ( plus_plus_rat @ A @ B )
= ( plus_plus_rat @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_683_add_Oleft__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_684_add_Oassoc,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% add.assoc
thf(fact_685_add_Oassoc,axiom,
! [A: rat,B: rat,C: rat] :
( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).
% add.assoc
thf(fact_686_add_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.assoc
thf(fact_687_add_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% add.assoc
thf(fact_688_group__cancel_Oadd2,axiom,
! [B4: real,K: real,B: real,A: real] :
( ( B4
= ( plus_plus_real @ K @ B ) )
=> ( ( plus_plus_real @ A @ B4 )
= ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_689_group__cancel_Oadd2,axiom,
! [B4: rat,K: rat,B: rat,A: rat] :
( ( B4
= ( plus_plus_rat @ K @ B ) )
=> ( ( plus_plus_rat @ A @ B4 )
= ( plus_plus_rat @ K @ ( plus_plus_rat @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_690_group__cancel_Oadd2,axiom,
! [B4: nat,K: nat,B: nat,A: nat] :
( ( B4
= ( plus_plus_nat @ K @ B ) )
=> ( ( plus_plus_nat @ A @ B4 )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_691_group__cancel_Oadd2,axiom,
! [B4: int,K: int,B: int,A: int] :
( ( B4
= ( plus_plus_int @ K @ B ) )
=> ( ( plus_plus_int @ A @ B4 )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_692_group__cancel_Oadd1,axiom,
! [A2: real,K: real,A: real,B: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( plus_plus_real @ A2 @ B )
= ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_693_group__cancel_Oadd1,axiom,
! [A2: rat,K: rat,A: rat,B: rat] :
( ( A2
= ( plus_plus_rat @ K @ A ) )
=> ( ( plus_plus_rat @ A2 @ B )
= ( plus_plus_rat @ K @ ( plus_plus_rat @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_694_group__cancel_Oadd1,axiom,
! [A2: nat,K: nat,A: nat,B: nat] :
( ( A2
= ( plus_plus_nat @ K @ A ) )
=> ( ( plus_plus_nat @ A2 @ B )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_695_group__cancel_Oadd1,axiom,
! [A2: int,K: int,A: int,B: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( plus_plus_int @ A2 @ B )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_696_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: real,J: real,K: real,L2: real] :
( ( ( I = J )
& ( K = L2 ) )
=> ( ( plus_plus_real @ I @ K )
= ( plus_plus_real @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_697_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: rat,J: rat,K: rat,L2: rat] :
( ( ( I = J )
& ( K = L2 ) )
=> ( ( plus_plus_rat @ I @ K )
= ( plus_plus_rat @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_698_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: nat,J: nat,K: nat,L2: nat] :
( ( ( I = J )
& ( K = L2 ) )
=> ( ( plus_plus_nat @ I @ K )
= ( plus_plus_nat @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_699_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: int,J: int,K: int,L2: int] :
( ( ( I = J )
& ( K = L2 ) )
=> ( ( plus_plus_int @ I @ K )
= ( plus_plus_int @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_700_mult_Oassoc,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% mult.assoc
thf(fact_701_mult_Oassoc,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ ( times_times_rat @ A @ B ) @ C )
= ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).
% mult.assoc
thf(fact_702_mult_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.assoc
thf(fact_703_mult_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% mult.assoc
thf(fact_704_ab__semigroup__mult__class_Omult_Ocommute,axiom,
( times_times_real
= ( ^ [A3: real,B2: real] : ( times_times_real @ B2 @ A3 ) ) ) ).
% ab_semigroup_mult_class.mult.commute
thf(fact_705_ab__semigroup__mult__class_Omult_Ocommute,axiom,
( times_times_rat
= ( ^ [A3: rat,B2: rat] : ( times_times_rat @ B2 @ A3 ) ) ) ).
% ab_semigroup_mult_class.mult.commute
thf(fact_706_ab__semigroup__mult__class_Omult_Ocommute,axiom,
( times_times_nat
= ( ^ [A3: nat,B2: nat] : ( times_times_nat @ B2 @ A3 ) ) ) ).
% ab_semigroup_mult_class.mult.commute
thf(fact_707_ab__semigroup__mult__class_Omult_Ocommute,axiom,
( times_times_int
= ( ^ [A3: int,B2: int] : ( times_times_int @ B2 @ A3 ) ) ) ).
% ab_semigroup_mult_class.mult.commute
thf(fact_708_ab__semigroup__mult__class_Omult_Oleft__commute,axiom,
! [B: real,A: real,C: real] :
( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult.left_commute
thf(fact_709_ab__semigroup__mult__class_Omult_Oleft__commute,axiom,
! [B: rat,A: rat,C: rat] :
( ( times_times_rat @ B @ ( times_times_rat @ A @ C ) )
= ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult.left_commute
thf(fact_710_ab__semigroup__mult__class_Omult_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult.left_commute
thf(fact_711_ab__semigroup__mult__class_Omult_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult.left_commute
thf(fact_712_complete__real,axiom,
! [S: set_real] :
( ? [X4: real] : ( member_real @ X4 @ S )
=> ( ? [Z4: real] :
! [X3: real] :
( ( member_real @ X3 @ S )
=> ( ord_less_eq_real @ X3 @ Z4 ) )
=> ? [Y3: real] :
( ! [X4: real] :
( ( member_real @ X4 @ S )
=> ( ord_less_eq_real @ X4 @ Y3 ) )
& ! [Z4: real] :
( ! [X3: real] :
( ( member_real @ X3 @ S )
=> ( ord_less_eq_real @ X3 @ Z4 ) )
=> ( ord_less_eq_real @ Y3 @ Z4 ) ) ) ) ) ).
% complete_real
thf(fact_713_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: real,J: real,K: real,L2: real] :
( ( ( ord_less_eq_real @ I @ J )
& ( K = L2 ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_714_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: rat,J: rat,K: rat,L2: rat] :
( ( ( ord_less_eq_rat @ I @ J )
& ( K = L2 ) )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_715_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: nat,J: nat,K: nat,L2: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( K = L2 ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_716_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: int,J: int,K: int,L2: int] :
( ( ( ord_less_eq_int @ I @ J )
& ( K = L2 ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_717_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: real,J: real,K: real,L2: real] :
( ( ( I = J )
& ( ord_less_eq_real @ K @ L2 ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_718_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: rat,J: rat,K: rat,L2: rat] :
( ( ( I = J )
& ( ord_less_eq_rat @ K @ L2 ) )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_719_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: nat,J: nat,K: nat,L2: nat] :
( ( ( I = J )
& ( ord_less_eq_nat @ K @ L2 ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_720_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: int,J: int,K: int,L2: int] :
( ( ( I = J )
& ( ord_less_eq_int @ K @ L2 ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_721_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: real,J: real,K: real,L2: real] :
( ( ( ord_less_eq_real @ I @ J )
& ( ord_less_eq_real @ K @ L2 ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_722_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: rat,J: rat,K: rat,L2: rat] :
( ( ( ord_less_eq_rat @ I @ J )
& ( ord_less_eq_rat @ K @ L2 ) )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_723_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: nat,J: nat,K: nat,L2: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( ord_less_eq_nat @ K @ L2 ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_724_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: int,J: int,K: int,L2: int] :
( ( ( ord_less_eq_int @ I @ J )
& ( ord_less_eq_int @ K @ L2 ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_725_add__mono,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D2 )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D2 ) ) ) ) ).
% add_mono
thf(fact_726_add__mono,axiom,
! [A: rat,B: rat,C: rat,D2: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ D2 )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D2 ) ) ) ) ).
% add_mono
thf(fact_727_add__mono,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D2 )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D2 ) ) ) ) ).
% add_mono
thf(fact_728_add__mono,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D2 )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D2 ) ) ) ) ).
% add_mono
thf(fact_729_add__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).
% add_left_mono
thf(fact_730_add__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) ) ) ).
% add_left_mono
thf(fact_731_add__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).
% add_left_mono
thf(fact_732_add__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).
% add_left_mono
thf(fact_733_less__eqE,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ~ ! [C3: nat] :
( B
!= ( plus_plus_nat @ A @ C3 ) ) ) ).
% less_eqE
thf(fact_734_add__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).
% add_right_mono
thf(fact_735_add__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) ) ) ).
% add_right_mono
thf(fact_736_add__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).
% add_right_mono
thf(fact_737_add__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).
% add_right_mono
thf(fact_738_le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B2: nat] :
? [C2: nat] :
( B2
= ( plus_plus_nat @ A3 @ C2 ) ) ) ) ).
% le_iff_add
thf(fact_739_add__le__imp__le__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
=> ( ord_less_eq_real @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_740_add__le__imp__le__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
=> ( ord_less_eq_rat @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_741_add__le__imp__le__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_742_add__le__imp__le__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_743_add__le__imp__le__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
=> ( ord_less_eq_real @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_744_add__le__imp__le__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
=> ( ord_less_eq_rat @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_745_add__le__imp__le__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_746_add__le__imp__le__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_747_add__divide__distrib,axiom,
! [A: complex,B: complex,C: complex] :
( ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ B ) @ C )
= ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ C ) @ ( divide1717551699836669952omplex @ B @ C ) ) ) ).
% add_divide_distrib
thf(fact_748_add__divide__distrib,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).
% add_divide_distrib
thf(fact_749_add__divide__distrib,axiom,
! [A: rat,B: rat,C: rat] :
( ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ).
% add_divide_distrib
thf(fact_750_times__divide__times__eq,axiom,
! [X2: complex,Y2: complex,Z: complex,W: complex] :
( ( times_times_complex @ ( divide1717551699836669952omplex @ X2 @ Y2 ) @ ( divide1717551699836669952omplex @ Z @ W ) )
= ( divide1717551699836669952omplex @ ( times_times_complex @ X2 @ Z ) @ ( times_times_complex @ Y2 @ W ) ) ) ).
% times_divide_times_eq
thf(fact_751_times__divide__times__eq,axiom,
! [X2: real,Y2: real,Z: real,W: real] :
( ( times_times_real @ ( divide_divide_real @ X2 @ Y2 ) @ ( divide_divide_real @ Z @ W ) )
= ( divide_divide_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ Y2 @ W ) ) ) ).
% times_divide_times_eq
thf(fact_752_times__divide__times__eq,axiom,
! [X2: rat,Y2: rat,Z: rat,W: rat] :
( ( times_times_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ ( divide_divide_rat @ Z @ W ) )
= ( divide_divide_rat @ ( times_times_rat @ X2 @ Z ) @ ( times_times_rat @ Y2 @ W ) ) ) ).
% times_divide_times_eq
thf(fact_753_divide__divide__times__eq,axiom,
! [X2: complex,Y2: complex,Z: complex,W: complex] :
( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ X2 @ Y2 ) @ ( divide1717551699836669952omplex @ Z @ W ) )
= ( divide1717551699836669952omplex @ ( times_times_complex @ X2 @ W ) @ ( times_times_complex @ Y2 @ Z ) ) ) ).
% divide_divide_times_eq
thf(fact_754_divide__divide__times__eq,axiom,
! [X2: real,Y2: real,Z: real,W: real] :
( ( divide_divide_real @ ( divide_divide_real @ X2 @ Y2 ) @ ( divide_divide_real @ Z @ W ) )
= ( divide_divide_real @ ( times_times_real @ X2 @ W ) @ ( times_times_real @ Y2 @ Z ) ) ) ).
% divide_divide_times_eq
thf(fact_755_divide__divide__times__eq,axiom,
! [X2: rat,Y2: rat,Z: rat,W: rat] :
( ( divide_divide_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ ( divide_divide_rat @ Z @ W ) )
= ( divide_divide_rat @ ( times_times_rat @ X2 @ W ) @ ( times_times_rat @ Y2 @ Z ) ) ) ).
% divide_divide_times_eq
thf(fact_756_divide__divide__eq__left_H,axiom,
! [A: complex,B: complex,C: complex] :
( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ A @ B ) @ C )
= ( divide1717551699836669952omplex @ A @ ( times_times_complex @ C @ B ) ) ) ).
% divide_divide_eq_left'
thf(fact_757_divide__divide__eq__left_H,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
= ( divide_divide_real @ A @ ( times_times_real @ C @ B ) ) ) ).
% divide_divide_eq_left'
thf(fact_758_divide__divide__eq__left_H,axiom,
! [A: rat,B: rat,C: rat] :
( ( divide_divide_rat @ ( divide_divide_rat @ A @ B ) @ C )
= ( divide_divide_rat @ A @ ( times_times_rat @ C @ B ) ) ) ).
% divide_divide_eq_left'
thf(fact_759_space__cnt,axiom,
! [T2: vEBT_VEBT] : ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_VEBT_space2 @ T2 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) @ ( vEBT_VEBT_cnt @ T2 ) ) ) ).
% space_cnt
thf(fact_760_t__build__cnt,axiom,
! [N: nat] : ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_V8646137997579335489_i_l_d @ N ) ) @ ( times_times_real @ ( vEBT_VEBT_cnt @ ( vEBT_vebt_buildup @ N ) ) @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ ( bit1 @ one ) ) ) ) ) ) ).
% t_build_cnt
thf(fact_761_two__realpow__ge__two,axiom,
! [N: nat] :
( ( ord_less_eq_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) )
=> ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ) ).
% two_realpow_ge_two
thf(fact_762_VEBT__internal_OTb_H_Oelims,axiom,
! [X2: nat,Y2: nat] :
( ( ( vEBT_VEBT_Tb2 @ X2 )
= Y2 )
=> ( ( ( X2 = zero_zero_nat )
=> ( Y2
!= ( numeral_numeral_nat @ ( bit1 @ one ) ) ) )
=> ( ( ( X2
= ( suc @ zero_zero_nat ) )
=> ( Y2
!= ( numeral_numeral_nat @ ( bit1 @ one ) ) ) )
=> ~ ! [N2: nat] :
( ( X2
= ( suc @ ( suc @ N2 ) ) )
=> ~ ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( Y2
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ one ) ) ) @ ( vEBT_VEBT_Tb2 @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( times_times_nat @ ( vEBT_VEBT_Tb2 @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( Y2
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ one ) ) ) @ ( vEBT_VEBT_Tb2 @ ( suc @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( times_times_nat @ ( vEBT_VEBT_Tb2 @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.Tb'.elims
thf(fact_763_triangle__def,axiom,
( nat_triangle
= ( ^ [N3: nat] : ( divide_divide_nat @ ( times_times_nat @ N3 @ ( suc @ N3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% triangle_def
thf(fact_764_VEBT__internal_OT__vebt__buildupi_Osimps_I3_J,axiom,
! [N: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( vEBT_V441764108873111860ildupi @ ( suc @ ( suc @ N ) ) )
= ( suc @ ( suc @ ( suc @ ( plus_plus_nat @ ( vEBT_V441764108873111860ildupi @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( vEBT_V441764108873111860ildupi @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( vEBT_V441764108873111860ildupi @ ( suc @ ( suc @ N ) ) )
= ( suc @ ( suc @ ( suc @ ( plus_plus_nat @ ( vEBT_V441764108873111860ildupi @ ( suc @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( vEBT_V441764108873111860ildupi @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.T_vebt_buildupi.simps(3)
thf(fact_765_VEBT__internal_OT__vebt__buildupi_H_Osimps_I3_J,axiom,
! [N: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( vEBT_V9176841429113362141ildupi @ ( suc @ ( suc @ N ) ) )
= ( plus_plus_int @ ( numeral_numeral_int @ ( bit1 @ one ) ) @ ( plus_plus_int @ ( vEBT_V9176841429113362141ildupi @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( times_times_int @ ( vEBT_V9176841429113362141ildupi @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( vEBT_V9176841429113362141ildupi @ ( suc @ ( suc @ N ) ) )
= ( plus_plus_int @ ( numeral_numeral_int @ ( bit1 @ one ) ) @ ( plus_plus_int @ ( vEBT_V9176841429113362141ildupi @ ( suc @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( vEBT_V9176841429113362141ildupi @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.T_vebt_buildupi'.simps(3)
thf(fact_766_high__def,axiom,
( vEBT_VEBT_high
= ( ^ [X: nat,N3: nat] : ( divide_divide_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).
% high_def
thf(fact_767_VEBT__internal_OTb_Osimps_I3_J,axiom,
! [N: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( vEBT_VEBT_Tb @ ( suc @ ( suc @ N ) ) )
= ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ ( bit1 @ ( bit0 @ one ) ) ) @ ( vEBT_VEBT_Tb @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( times_times_int @ ( vEBT_VEBT_Tb @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( vEBT_VEBT_Tb @ ( suc @ ( suc @ N ) ) )
= ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ ( bit1 @ ( bit0 @ one ) ) ) @ ( vEBT_VEBT_Tb @ ( suc @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( times_times_int @ ( vEBT_VEBT_Tb @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.Tb.simps(3)
thf(fact_768_bezout__add__nat,axiom,
! [A: nat,B: nat] :
? [D3: nat,X3: nat,Y3: nat] :
( ( dvd_dvd_nat @ D3 @ A )
& ( dvd_dvd_nat @ D3 @ B )
& ( ( ( times_times_nat @ A @ X3 )
= ( plus_plus_nat @ ( times_times_nat @ B @ Y3 ) @ D3 ) )
| ( ( times_times_nat @ B @ X3 )
= ( plus_plus_nat @ ( times_times_nat @ A @ Y3 ) @ D3 ) ) ) ) ).
% bezout_add_nat
thf(fact_769_bezout__lemma__nat,axiom,
! [D2: nat,A: nat,B: nat,X2: nat,Y2: nat] :
( ( dvd_dvd_nat @ D2 @ A )
=> ( ( dvd_dvd_nat @ D2 @ B )
=> ( ( ( ( times_times_nat @ A @ X2 )
= ( plus_plus_nat @ ( times_times_nat @ B @ Y2 ) @ D2 ) )
| ( ( times_times_nat @ B @ X2 )
= ( plus_plus_nat @ ( times_times_nat @ A @ Y2 ) @ D2 ) ) )
=> ? [X3: nat,Y3: nat] :
( ( dvd_dvd_nat @ D2 @ A )
& ( dvd_dvd_nat @ D2 @ ( plus_plus_nat @ A @ B ) )
& ( ( ( times_times_nat @ A @ X3 )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ Y3 ) @ D2 ) )
| ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ X3 )
= ( plus_plus_nat @ ( times_times_nat @ A @ Y3 ) @ D2 ) ) ) ) ) ) ) ).
% bezout_lemma_nat
thf(fact_770_Tb__Tb_H,axiom,
( vEBT_VEBT_Tb
= ( ^ [T: nat] : ( semiri1314217659103216013at_int @ ( vEBT_VEBT_Tb2 @ T ) ) ) ) ).
% Tb_Tb'
thf(fact_771_Tbuildupi__buildupi_H,axiom,
! [N: nat] :
( ( semiri1314217659103216013at_int @ ( vEBT_V441764108873111860ildupi @ N ) )
= ( vEBT_V9176841429113362141ildupi @ N ) ) ).
% Tbuildupi_buildupi'
thf(fact_772_le__zero__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_zero_eq
thf(fact_773_add_Oright__neutral,axiom,
! [A: complex] :
( ( plus_plus_complex @ A @ zero_zero_complex )
= A ) ).
% add.right_neutral
thf(fact_774_add_Oright__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% add.right_neutral
thf(fact_775_add_Oright__neutral,axiom,
! [A: rat] :
( ( plus_plus_rat @ A @ zero_zero_rat )
= A ) ).
% add.right_neutral
thf(fact_776_add_Oright__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% add.right_neutral
thf(fact_777_add_Oright__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% add.right_neutral
thf(fact_778_double__zero__sym,axiom,
! [A: real] :
( ( zero_zero_real
= ( plus_plus_real @ A @ A ) )
= ( A = zero_zero_real ) ) ).
% double_zero_sym
thf(fact_779_double__zero__sym,axiom,
! [A: rat] :
( ( zero_zero_rat
= ( plus_plus_rat @ A @ A ) )
= ( A = zero_zero_rat ) ) ).
% double_zero_sym
thf(fact_780_double__zero__sym,axiom,
! [A: int] :
( ( zero_zero_int
= ( plus_plus_int @ A @ A ) )
= ( A = zero_zero_int ) ) ).
% double_zero_sym
thf(fact_781_add__cancel__left__left,axiom,
! [B: complex,A: complex] :
( ( ( plus_plus_complex @ B @ A )
= A )
= ( B = zero_zero_complex ) ) ).
% add_cancel_left_left
thf(fact_782_add__cancel__left__left,axiom,
! [B: real,A: real] :
( ( ( plus_plus_real @ B @ A )
= A )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_left
thf(fact_783_add__cancel__left__left,axiom,
! [B: rat,A: rat] :
( ( ( plus_plus_rat @ B @ A )
= A )
= ( B = zero_zero_rat ) ) ).
% add_cancel_left_left
thf(fact_784_add__cancel__left__left,axiom,
! [B: nat,A: nat] :
( ( ( plus_plus_nat @ B @ A )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_left
thf(fact_785_add__cancel__left__left,axiom,
! [B: int,A: int] :
( ( ( plus_plus_int @ B @ A )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_left
thf(fact_786_add__cancel__left__right,axiom,
! [A: complex,B: complex] :
( ( ( plus_plus_complex @ A @ B )
= A )
= ( B = zero_zero_complex ) ) ).
% add_cancel_left_right
thf(fact_787_add__cancel__left__right,axiom,
! [A: real,B: real] :
( ( ( plus_plus_real @ A @ B )
= A )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_right
thf(fact_788_add__cancel__left__right,axiom,
! [A: rat,B: rat] :
( ( ( plus_plus_rat @ A @ B )
= A )
= ( B = zero_zero_rat ) ) ).
% add_cancel_left_right
thf(fact_789_add__cancel__left__right,axiom,
! [A: nat,B: nat] :
( ( ( plus_plus_nat @ A @ B )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_right
thf(fact_790_add__cancel__left__right,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_right
thf(fact_791_add__cancel__right__left,axiom,
! [A: complex,B: complex] :
( ( A
= ( plus_plus_complex @ B @ A ) )
= ( B = zero_zero_complex ) ) ).
% add_cancel_right_left
thf(fact_792_add__cancel__right__left,axiom,
! [A: real,B: real] :
( ( A
= ( plus_plus_real @ B @ A ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_left
thf(fact_793_add__cancel__right__left,axiom,
! [A: rat,B: rat] :
( ( A
= ( plus_plus_rat @ B @ A ) )
= ( B = zero_zero_rat ) ) ).
% add_cancel_right_left
thf(fact_794_add__cancel__right__left,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ B @ A ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_left
thf(fact_795_add__cancel__right__left,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ B @ A ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_left
thf(fact_796_add__cancel__right__right,axiom,
! [A: complex,B: complex] :
( ( A
= ( plus_plus_complex @ A @ B ) )
= ( B = zero_zero_complex ) ) ).
% add_cancel_right_right
thf(fact_797_add__cancel__right__right,axiom,
! [A: real,B: real] :
( ( A
= ( plus_plus_real @ A @ B ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_right
thf(fact_798_add__cancel__right__right,axiom,
! [A: rat,B: rat] :
( ( A
= ( plus_plus_rat @ A @ B ) )
= ( B = zero_zero_rat ) ) ).
% add_cancel_right_right
thf(fact_799_add__cancel__right__right,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ A @ B ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_right
thf(fact_800_add__cancel__right__right,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ A @ B ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_right
thf(fact_801_add__eq__0__iff__both__eq__0,axiom,
! [X2: nat,Y2: nat] :
( ( ( plus_plus_nat @ X2 @ Y2 )
= zero_zero_nat )
= ( ( X2 = zero_zero_nat )
& ( Y2 = zero_zero_nat ) ) ) ).
% add_eq_0_iff_both_eq_0
thf(fact_802_zero__eq__add__iff__both__eq__0,axiom,
! [X2: nat,Y2: nat] :
( ( zero_zero_nat
= ( plus_plus_nat @ X2 @ Y2 ) )
= ( ( X2 = zero_zero_nat )
& ( Y2 = zero_zero_nat ) ) ) ).
% zero_eq_add_iff_both_eq_0
thf(fact_803_add__0,axiom,
! [A: complex] :
( ( plus_plus_complex @ zero_zero_complex @ A )
= A ) ).
% add_0
thf(fact_804_add__0,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% add_0
thf(fact_805_add__0,axiom,
! [A: rat] :
( ( plus_plus_rat @ zero_zero_rat @ A )
= A ) ).
% add_0
thf(fact_806_add__0,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% add_0
thf(fact_807_add__0,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add_0
thf(fact_808_mult__cancel__right,axiom,
! [A: complex,C: complex,B: complex] :
( ( ( times_times_complex @ A @ C )
= ( times_times_complex @ B @ C ) )
= ( ( C = zero_zero_complex )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_809_mult__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_810_mult__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ( times_times_rat @ A @ C )
= ( times_times_rat @ B @ C ) )
= ( ( C = zero_zero_rat )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_811_mult__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_812_mult__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_813_mult__cancel__left,axiom,
! [C: complex,A: complex,B: complex] :
( ( ( times_times_complex @ C @ A )
= ( times_times_complex @ C @ B ) )
= ( ( C = zero_zero_complex )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_814_mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_815_mult__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ( times_times_rat @ C @ A )
= ( times_times_rat @ C @ B ) )
= ( ( C = zero_zero_rat )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_816_mult__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_817_mult__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_818_mult__eq__0__iff,axiom,
! [A: complex,B: complex] :
( ( ( times_times_complex @ A @ B )
= zero_zero_complex )
= ( ( A = zero_zero_complex )
| ( B = zero_zero_complex ) ) ) ).
% mult_eq_0_iff
thf(fact_819_mult__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% mult_eq_0_iff
thf(fact_820_mult__eq__0__iff,axiom,
! [A: rat,B: rat] :
( ( ( times_times_rat @ A @ B )
= zero_zero_rat )
= ( ( A = zero_zero_rat )
| ( B = zero_zero_rat ) ) ) ).
% mult_eq_0_iff
thf(fact_821_mult__eq__0__iff,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% mult_eq_0_iff
thf(fact_822_mult__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
= ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% mult_eq_0_iff
thf(fact_823_mult__zero__right,axiom,
! [A: complex] :
( ( times_times_complex @ A @ zero_zero_complex )
= zero_zero_complex ) ).
% mult_zero_right
thf(fact_824_mult__zero__right,axiom,
! [A: real] :
( ( times_times_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% mult_zero_right
thf(fact_825_mult__zero__right,axiom,
! [A: rat] :
( ( times_times_rat @ A @ zero_zero_rat )
= zero_zero_rat ) ).
% mult_zero_right
thf(fact_826_mult__zero__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_zero_right
thf(fact_827_mult__zero__right,axiom,
! [A: int] :
( ( times_times_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% mult_zero_right
thf(fact_828_mult__zero__left,axiom,
! [A: complex] :
( ( times_times_complex @ zero_zero_complex @ A )
= zero_zero_complex ) ).
% mult_zero_left
thf(fact_829_mult__zero__left,axiom,
! [A: real] :
( ( times_times_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% mult_zero_left
thf(fact_830_mult__zero__left,axiom,
! [A: rat] :
( ( times_times_rat @ zero_zero_rat @ A )
= zero_zero_rat ) ).
% mult_zero_left
thf(fact_831_mult__zero__left,axiom,
! [A: nat] :
( ( times_times_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% mult_zero_left
thf(fact_832_mult__zero__left,axiom,
! [A: int] :
( ( times_times_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% mult_zero_left
thf(fact_833_div__by__0,axiom,
! [A: complex] :
( ( divide1717551699836669952omplex @ A @ zero_zero_complex )
= zero_zero_complex ) ).
% div_by_0
thf(fact_834_div__by__0,axiom,
! [A: real] :
( ( divide_divide_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% div_by_0
thf(fact_835_div__by__0,axiom,
! [A: rat] :
( ( divide_divide_rat @ A @ zero_zero_rat )
= zero_zero_rat ) ).
% div_by_0
thf(fact_836_div__by__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% div_by_0
thf(fact_837_div__by__0,axiom,
! [A: int] :
( ( divide_divide_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% div_by_0
thf(fact_838_div__0,axiom,
! [A: complex] :
( ( divide1717551699836669952omplex @ zero_zero_complex @ A )
= zero_zero_complex ) ).
% div_0
thf(fact_839_div__0,axiom,
! [A: real] :
( ( divide_divide_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% div_0
thf(fact_840_div__0,axiom,
! [A: rat] :
( ( divide_divide_rat @ zero_zero_rat @ A )
= zero_zero_rat ) ).
% div_0
thf(fact_841_div__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% div_0
thf(fact_842_div__0,axiom,
! [A: int] :
( ( divide_divide_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% div_0
thf(fact_843_bits__div__by__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% bits_div_by_0
thf(fact_844_bits__div__by__0,axiom,
! [A: int] :
( ( divide_divide_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% bits_div_by_0
thf(fact_845_bits__div__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% bits_div_0
thf(fact_846_bits__div__0,axiom,
! [A: int] :
( ( divide_divide_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% bits_div_0
thf(fact_847_division__ring__divide__zero,axiom,
! [A: complex] :
( ( divide1717551699836669952omplex @ A @ zero_zero_complex )
= zero_zero_complex ) ).
% division_ring_divide_zero
thf(fact_848_division__ring__divide__zero,axiom,
! [A: real] :
( ( divide_divide_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% division_ring_divide_zero
thf(fact_849_division__ring__divide__zero,axiom,
! [A: rat] :
( ( divide_divide_rat @ A @ zero_zero_rat )
= zero_zero_rat ) ).
% division_ring_divide_zero
thf(fact_850_divide__cancel__right,axiom,
! [A: complex,C: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ A @ C )
= ( divide1717551699836669952omplex @ B @ C ) )
= ( ( C = zero_zero_complex )
| ( A = B ) ) ) ).
% divide_cancel_right
thf(fact_851_divide__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ( divide_divide_real @ A @ C )
= ( divide_divide_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% divide_cancel_right
thf(fact_852_divide__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ( divide_divide_rat @ A @ C )
= ( divide_divide_rat @ B @ C ) )
= ( ( C = zero_zero_rat )
| ( A = B ) ) ) ).
% divide_cancel_right
thf(fact_853_divide__cancel__left,axiom,
! [C: complex,A: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ C @ A )
= ( divide1717551699836669952omplex @ C @ B ) )
= ( ( C = zero_zero_complex )
| ( A = B ) ) ) ).
% divide_cancel_left
thf(fact_854_divide__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ( divide_divide_real @ C @ A )
= ( divide_divide_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% divide_cancel_left
thf(fact_855_divide__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ( divide_divide_rat @ C @ A )
= ( divide_divide_rat @ C @ B ) )
= ( ( C = zero_zero_rat )
| ( A = B ) ) ) ).
% divide_cancel_left
thf(fact_856_divide__eq__0__iff,axiom,
! [A: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ A @ B )
= zero_zero_complex )
= ( ( A = zero_zero_complex )
| ( B = zero_zero_complex ) ) ) ).
% divide_eq_0_iff
thf(fact_857_divide__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( divide_divide_real @ A @ B )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divide_eq_0_iff
thf(fact_858_divide__eq__0__iff,axiom,
! [A: rat,B: rat] :
( ( ( divide_divide_rat @ A @ B )
= zero_zero_rat )
= ( ( A = zero_zero_rat )
| ( B = zero_zero_rat ) ) ) ).
% divide_eq_0_iff
thf(fact_859_mult__1,axiom,
! [A: complex] :
( ( times_times_complex @ one_one_complex @ A )
= A ) ).
% mult_1
thf(fact_860_mult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% mult_1
thf(fact_861_mult__1,axiom,
! [A: rat] :
( ( times_times_rat @ one_one_rat @ A )
= A ) ).
% mult_1
thf(fact_862_mult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% mult_1
thf(fact_863_mult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% mult_1
thf(fact_864_mult_Oright__neutral,axiom,
! [A: complex] :
( ( times_times_complex @ A @ one_one_complex )
= A ) ).
% mult.right_neutral
thf(fact_865_mult_Oright__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.right_neutral
thf(fact_866_mult_Oright__neutral,axiom,
! [A: rat] :
( ( times_times_rat @ A @ one_one_rat )
= A ) ).
% mult.right_neutral
thf(fact_867_mult_Oright__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.right_neutral
thf(fact_868_mult_Oright__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.right_neutral
thf(fact_869_div__by__1,axiom,
! [A: complex] :
( ( divide1717551699836669952omplex @ A @ one_one_complex )
= A ) ).
% div_by_1
thf(fact_870_div__by__1,axiom,
! [A: real] :
( ( divide_divide_real @ A @ one_one_real )
= A ) ).
% div_by_1
thf(fact_871_div__by__1,axiom,
! [A: rat] :
( ( divide_divide_rat @ A @ one_one_rat )
= A ) ).
% div_by_1
thf(fact_872_div__by__1,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ one_one_nat )
= A ) ).
% div_by_1
thf(fact_873_div__by__1,axiom,
! [A: int] :
( ( divide_divide_int @ A @ one_one_int )
= A ) ).
% div_by_1
thf(fact_874_bits__div__by__1,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ one_one_nat )
= A ) ).
% bits_div_by_1
thf(fact_875_bits__div__by__1,axiom,
! [A: int] :
( ( divide_divide_int @ A @ one_one_int )
= A ) ).
% bits_div_by_1
thf(fact_876_power__one,axiom,
! [N: nat] :
( ( power_power_rat @ one_one_rat @ N )
= one_one_rat ) ).
% power_one
thf(fact_877_power__one,axiom,
! [N: nat] :
( ( power_power_nat @ one_one_nat @ N )
= one_one_nat ) ).
% power_one
thf(fact_878_power__one,axiom,
! [N: nat] :
( ( power_power_real @ one_one_real @ N )
= one_one_real ) ).
% power_one
thf(fact_879_power__one,axiom,
! [N: nat] :
( ( power_power_int @ one_one_int @ N )
= one_one_int ) ).
% power_one
thf(fact_880_power__one,axiom,
! [N: nat] :
( ( power_power_complex @ one_one_complex @ N )
= one_one_complex ) ).
% power_one
thf(fact_881_power__one,axiom,
! [N: nat] :
( ( power_8256067586552552935nteger @ one_one_Code_integer @ N )
= one_one_Code_integer ) ).
% power_one
thf(fact_882_dvd__0__left__iff,axiom,
! [A: complex] :
( ( dvd_dvd_complex @ zero_zero_complex @ A )
= ( A = zero_zero_complex ) ) ).
% dvd_0_left_iff
thf(fact_883_dvd__0__left__iff,axiom,
! [A: real] :
( ( dvd_dvd_real @ zero_zero_real @ A )
= ( A = zero_zero_real ) ) ).
% dvd_0_left_iff
thf(fact_884_dvd__0__left__iff,axiom,
! [A: rat] :
( ( dvd_dvd_rat @ zero_zero_rat @ A )
= ( A = zero_zero_rat ) ) ).
% dvd_0_left_iff
thf(fact_885_dvd__0__left__iff,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A )
= ( A = zero_zero_nat ) ) ).
% dvd_0_left_iff
thf(fact_886_dvd__0__left__iff,axiom,
! [A: int] :
( ( dvd_dvd_int @ zero_zero_int @ A )
= ( A = zero_zero_int ) ) ).
% dvd_0_left_iff
thf(fact_887_dvd__0__right,axiom,
! [A: complex] : ( dvd_dvd_complex @ A @ zero_zero_complex ) ).
% dvd_0_right
thf(fact_888_dvd__0__right,axiom,
! [A: real] : ( dvd_dvd_real @ A @ zero_zero_real ) ).
% dvd_0_right
thf(fact_889_dvd__0__right,axiom,
! [A: rat] : ( dvd_dvd_rat @ A @ zero_zero_rat ) ).
% dvd_0_right
thf(fact_890_dvd__0__right,axiom,
! [A: nat] : ( dvd_dvd_nat @ A @ zero_zero_nat ) ).
% dvd_0_right
thf(fact_891_dvd__0__right,axiom,
! [A: int] : ( dvd_dvd_int @ A @ zero_zero_int ) ).
% dvd_0_right
thf(fact_892_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri8010041392384452111omplex @ N )
= one_one_complex )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_893_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri681578069525770553at_rat @ N )
= one_one_rat )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_894_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri5074537144036343181t_real @ N )
= one_one_real )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_895_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri1314217659103216013at_int @ N )
= one_one_int )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_896_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri1316708129612266289at_nat @ N )
= one_one_nat )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_897_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_complex
= ( semiri8010041392384452111omplex @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_898_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_rat
= ( semiri681578069525770553at_rat @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_899_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_real
= ( semiri5074537144036343181t_real @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_900_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_int
= ( semiri1314217659103216013at_int @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_901_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_nat
= ( semiri1316708129612266289at_nat @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_902_of__nat__1,axiom,
( ( semiri8010041392384452111omplex @ one_one_nat )
= one_one_complex ) ).
% of_nat_1
thf(fact_903_of__nat__1,axiom,
( ( semiri681578069525770553at_rat @ one_one_nat )
= one_one_rat ) ).
% of_nat_1
thf(fact_904_of__nat__1,axiom,
( ( semiri5074537144036343181t_real @ one_one_nat )
= one_one_real ) ).
% of_nat_1
thf(fact_905_of__nat__1,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% of_nat_1
thf(fact_906_of__nat__1,axiom,
( ( semiri1316708129612266289at_nat @ one_one_nat )
= one_one_nat ) ).
% of_nat_1
thf(fact_907_add__is__0,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
& ( N = zero_zero_nat ) ) ) ).
% add_is_0
thf(fact_908_Nat_Oadd__0__right,axiom,
! [M: nat] :
( ( plus_plus_nat @ M @ zero_zero_nat )
= M ) ).
% Nat.add_0_right
thf(fact_909_le0,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% le0
thf(fact_910_bot__nat__0_Oextremum,axiom,
! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).
% bot_nat_0.extremum
thf(fact_911_mult__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ( times_times_nat @ M @ K )
= ( times_times_nat @ N @ K ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel2
thf(fact_912_mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel1
thf(fact_913_mult__0__right,axiom,
! [M: nat] :
( ( times_times_nat @ M @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_0_right
thf(fact_914_mult__is__0,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
| ( N = zero_zero_nat ) ) ) ).
% mult_is_0
thf(fact_915_triangle__0,axiom,
( ( nat_triangle @ zero_zero_nat )
= zero_zero_nat ) ).
% triangle_0
thf(fact_916_add__le__same__cancel1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ B @ A ) @ B )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% add_le_same_cancel1
thf(fact_917_add__le__same__cancel1,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ B @ A ) @ B )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% add_le_same_cancel1
thf(fact_918_add__le__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel1
thf(fact_919_add__le__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel1
thf(fact_920_add__le__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ B )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% add_le_same_cancel2
thf(fact_921_add__le__same__cancel2,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ B )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% add_le_same_cancel2
thf(fact_922_add__le__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel2
thf(fact_923_add__le__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel2
thf(fact_924_le__add__same__cancel1,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( plus_plus_real @ A @ B ) )
= ( ord_less_eq_real @ zero_zero_real @ B ) ) ).
% le_add_same_cancel1
thf(fact_925_le__add__same__cancel1,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ ( plus_plus_rat @ A @ B ) )
= ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ).
% le_add_same_cancel1
thf(fact_926_le__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel1
thf(fact_927_le__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel1
thf(fact_928_le__add__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( plus_plus_real @ B @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ B ) ) ).
% le_add_same_cancel2
thf(fact_929_le__add__same__cancel2,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ ( plus_plus_rat @ B @ A ) )
= ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ).
% le_add_same_cancel2
thf(fact_930_le__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel2
thf(fact_931_le__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel2
thf(fact_932_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_933_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ A ) @ zero_zero_rat )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_934_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_935_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_936_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ A ) )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_937_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_938_sum__squares__eq__zero__iff,axiom,
! [X2: real,Y2: real] :
( ( ( plus_plus_real @ ( times_times_real @ X2 @ X2 ) @ ( times_times_real @ Y2 @ Y2 ) )
= zero_zero_real )
= ( ( X2 = zero_zero_real )
& ( Y2 = zero_zero_real ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_939_sum__squares__eq__zero__iff,axiom,
! [X2: rat,Y2: rat] :
( ( ( plus_plus_rat @ ( times_times_rat @ X2 @ X2 ) @ ( times_times_rat @ Y2 @ Y2 ) )
= zero_zero_rat )
= ( ( X2 = zero_zero_rat )
& ( Y2 = zero_zero_rat ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_940_sum__squares__eq__zero__iff,axiom,
! [X2: int,Y2: int] :
( ( ( plus_plus_int @ ( times_times_int @ X2 @ X2 ) @ ( times_times_int @ Y2 @ Y2 ) )
= zero_zero_int )
= ( ( X2 = zero_zero_int )
& ( Y2 = zero_zero_int ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_941_mult__cancel__left1,axiom,
! [C: complex,B: complex] :
( ( C
= ( times_times_complex @ C @ B ) )
= ( ( C = zero_zero_complex )
| ( B = one_one_complex ) ) ) ).
% mult_cancel_left1
thf(fact_942_mult__cancel__left1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_left1
thf(fact_943_mult__cancel__left1,axiom,
! [C: rat,B: rat] :
( ( C
= ( times_times_rat @ C @ B ) )
= ( ( C = zero_zero_rat )
| ( B = one_one_rat ) ) ) ).
% mult_cancel_left1
thf(fact_944_mult__cancel__left1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_left1
thf(fact_945_mult__cancel__left2,axiom,
! [C: complex,A: complex] :
( ( ( times_times_complex @ C @ A )
= C )
= ( ( C = zero_zero_complex )
| ( A = one_one_complex ) ) ) ).
% mult_cancel_left2
thf(fact_946_mult__cancel__left2,axiom,
! [C: real,A: real] :
( ( ( times_times_real @ C @ A )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_left2
thf(fact_947_mult__cancel__left2,axiom,
! [C: rat,A: rat] :
( ( ( times_times_rat @ C @ A )
= C )
= ( ( C = zero_zero_rat )
| ( A = one_one_rat ) ) ) ).
% mult_cancel_left2
thf(fact_948_mult__cancel__left2,axiom,
! [C: int,A: int] :
( ( ( times_times_int @ C @ A )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_left2
thf(fact_949_mult__cancel__right1,axiom,
! [C: complex,B: complex] :
( ( C
= ( times_times_complex @ B @ C ) )
= ( ( C = zero_zero_complex )
| ( B = one_one_complex ) ) ) ).
% mult_cancel_right1
thf(fact_950_mult__cancel__right1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_right1
thf(fact_951_mult__cancel__right1,axiom,
! [C: rat,B: rat] :
( ( C
= ( times_times_rat @ B @ C ) )
= ( ( C = zero_zero_rat )
| ( B = one_one_rat ) ) ) ).
% mult_cancel_right1
thf(fact_952_mult__cancel__right1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_right1
thf(fact_953_mult__cancel__right2,axiom,
! [A: complex,C: complex] :
( ( ( times_times_complex @ A @ C )
= C )
= ( ( C = zero_zero_complex )
| ( A = one_one_complex ) ) ) ).
% mult_cancel_right2
thf(fact_954_mult__cancel__right2,axiom,
! [A: real,C: real] :
( ( ( times_times_real @ A @ C )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_right2
thf(fact_955_mult__cancel__right2,axiom,
! [A: rat,C: rat] :
( ( ( times_times_rat @ A @ C )
= C )
= ( ( C = zero_zero_rat )
| ( A = one_one_rat ) ) ) ).
% mult_cancel_right2
thf(fact_956_mult__cancel__right2,axiom,
! [A: int,C: int] :
( ( ( times_times_int @ A @ C )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_right2
thf(fact_957_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_complex
= ( numera6690914467698888265omplex @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_958_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_real
= ( numeral_numeral_real @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_959_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_rat
= ( numeral_numeral_rat @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_960_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_nat
= ( numeral_numeral_nat @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_961_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_int
= ( numeral_numeral_int @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_962_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numera6690914467698888265omplex @ N )
= one_one_complex )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_963_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_real @ N )
= one_one_real )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_964_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_rat @ N )
= one_one_rat )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_965_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_nat @ N )
= one_one_nat )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_966_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_int @ N )
= one_one_int )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_967_div__self,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ A )
= one_one_complex ) ) ).
% div_self
thf(fact_968_div__self,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ).
% div_self
thf(fact_969_div__self,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( divide_divide_rat @ A @ A )
= one_one_rat ) ) ).
% div_self
thf(fact_970_div__self,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
=> ( ( divide_divide_nat @ A @ A )
= one_one_nat ) ) ).
% div_self
thf(fact_971_div__self,axiom,
! [A: int] :
( ( A != zero_zero_int )
=> ( ( divide_divide_int @ A @ A )
= one_one_int ) ) ).
% div_self
thf(fact_972_zero__eq__1__divide__iff,axiom,
! [A: real] :
( ( zero_zero_real
= ( divide_divide_real @ one_one_real @ A ) )
= ( A = zero_zero_real ) ) ).
% zero_eq_1_divide_iff
thf(fact_973_zero__eq__1__divide__iff,axiom,
! [A: rat] :
( ( zero_zero_rat
= ( divide_divide_rat @ one_one_rat @ A ) )
= ( A = zero_zero_rat ) ) ).
% zero_eq_1_divide_iff
thf(fact_974_one__divide__eq__0__iff,axiom,
! [A: real] :
( ( ( divide_divide_real @ one_one_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% one_divide_eq_0_iff
thf(fact_975_one__divide__eq__0__iff,axiom,
! [A: rat] :
( ( ( divide_divide_rat @ one_one_rat @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% one_divide_eq_0_iff
thf(fact_976_eq__divide__eq__1,axiom,
! [B: real,A: real] :
( ( one_one_real
= ( divide_divide_real @ B @ A ) )
= ( ( A != zero_zero_real )
& ( A = B ) ) ) ).
% eq_divide_eq_1
thf(fact_977_eq__divide__eq__1,axiom,
! [B: rat,A: rat] :
( ( one_one_rat
= ( divide_divide_rat @ B @ A ) )
= ( ( A != zero_zero_rat )
& ( A = B ) ) ) ).
% eq_divide_eq_1
thf(fact_978_divide__eq__eq__1,axiom,
! [B: real,A: real] :
( ( ( divide_divide_real @ B @ A )
= one_one_real )
= ( ( A != zero_zero_real )
& ( A = B ) ) ) ).
% divide_eq_eq_1
thf(fact_979_divide__eq__eq__1,axiom,
! [B: rat,A: rat] :
( ( ( divide_divide_rat @ B @ A )
= one_one_rat )
= ( ( A != zero_zero_rat )
& ( A = B ) ) ) ).
% divide_eq_eq_1
thf(fact_980_divide__self__if,axiom,
! [A: complex] :
( ( ( A = zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ A )
= zero_zero_complex ) )
& ( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ A )
= one_one_complex ) ) ) ).
% divide_self_if
thf(fact_981_divide__self__if,axiom,
! [A: real] :
( ( ( A = zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= zero_zero_real ) )
& ( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ) ).
% divide_self_if
thf(fact_982_divide__self__if,axiom,
! [A: rat] :
( ( ( A = zero_zero_rat )
=> ( ( divide_divide_rat @ A @ A )
= zero_zero_rat ) )
& ( ( A != zero_zero_rat )
=> ( ( divide_divide_rat @ A @ A )
= one_one_rat ) ) ) ).
% divide_self_if
thf(fact_983_divide__self,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ A )
= one_one_complex ) ) ).
% divide_self
thf(fact_984_divide__self,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ).
% divide_self
thf(fact_985_divide__self,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( divide_divide_rat @ A @ A )
= one_one_rat ) ) ).
% divide_self
thf(fact_986_one__eq__divide__iff,axiom,
! [A: complex,B: complex] :
( ( one_one_complex
= ( divide1717551699836669952omplex @ A @ B ) )
= ( ( B != zero_zero_complex )
& ( A = B ) ) ) ).
% one_eq_divide_iff
thf(fact_987_one__eq__divide__iff,axiom,
! [A: real,B: real] :
( ( one_one_real
= ( divide_divide_real @ A @ B ) )
= ( ( B != zero_zero_real )
& ( A = B ) ) ) ).
% one_eq_divide_iff
thf(fact_988_one__eq__divide__iff,axiom,
! [A: rat,B: rat] :
( ( one_one_rat
= ( divide_divide_rat @ A @ B ) )
= ( ( B != zero_zero_rat )
& ( A = B ) ) ) ).
% one_eq_divide_iff
thf(fact_989_divide__eq__1__iff,axiom,
! [A: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ A @ B )
= one_one_complex )
= ( ( B != zero_zero_complex )
& ( A = B ) ) ) ).
% divide_eq_1_iff
thf(fact_990_divide__eq__1__iff,axiom,
! [A: real,B: real] :
( ( ( divide_divide_real @ A @ B )
= one_one_real )
= ( ( B != zero_zero_real )
& ( A = B ) ) ) ).
% divide_eq_1_iff
thf(fact_991_divide__eq__1__iff,axiom,
! [A: rat,B: rat] :
( ( ( divide_divide_rat @ A @ B )
= one_one_rat )
= ( ( B != zero_zero_rat )
& ( A = B ) ) ) ).
% divide_eq_1_iff
thf(fact_992_div__mult__mult1__if,axiom,
! [C: nat,A: nat,B: nat] :
( ( ( C = zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
= zero_zero_nat ) )
& ( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
= ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_mult1_if
thf(fact_993_div__mult__mult1__if,axiom,
! [C: int,A: int,B: int] :
( ( ( C = zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= zero_zero_int ) )
& ( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_mult1_if
thf(fact_994_div__mult__mult2,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ A @ B ) ) ) ).
% div_mult_mult2
thf(fact_995_div__mult__mult2,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ A @ B ) ) ) ).
% div_mult_mult2
thf(fact_996_div__mult__mult1,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
= ( divide_divide_nat @ A @ B ) ) ) ).
% div_mult_mult1
thf(fact_997_div__mult__mult1,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( divide_divide_int @ A @ B ) ) ) ).
% div_mult_mult1
thf(fact_998_nonzero__mult__div__cancel__right,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_999_nonzero__mult__div__cancel__right,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_1000_nonzero__mult__div__cancel__right,axiom,
! [B: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_1001_nonzero__mult__div__cancel__right,axiom,
! [B: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_1002_nonzero__mult__div__cancel__right,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_1003_nonzero__mult__div__cancel__left,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_1004_nonzero__mult__div__cancel__left,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_1005_nonzero__mult__div__cancel__left,axiom,
! [A: rat,B: rat] :
( ( A != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_1006_nonzero__mult__div__cancel__left,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_1007_nonzero__mult__div__cancel__left,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_1008_nonzero__mult__divide__mult__cancel__right2,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ C @ B ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right2
thf(fact_1009_nonzero__mult__divide__mult__cancel__right2,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right2
thf(fact_1010_nonzero__mult__divide__mult__cancel__right2,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ C @ B ) )
= ( divide_divide_rat @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right2
thf(fact_1011_nonzero__mult__divide__mult__cancel__right,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ B @ C ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right
thf(fact_1012_nonzero__mult__divide__mult__cancel__right,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right
thf(fact_1013_nonzero__mult__divide__mult__cancel__right,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
= ( divide_divide_rat @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right
thf(fact_1014_nonzero__mult__divide__mult__cancel__left2,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ B @ C ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left2
thf(fact_1015_nonzero__mult__divide__mult__cancel__left2,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ B @ C ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left2
thf(fact_1016_nonzero__mult__divide__mult__cancel__left2,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ B @ C ) )
= ( divide_divide_rat @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left2
thf(fact_1017_nonzero__mult__divide__mult__cancel__left,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left
thf(fact_1018_nonzero__mult__divide__mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left
thf(fact_1019_nonzero__mult__divide__mult__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( divide_divide_rat @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left
thf(fact_1020_mult__divide__mult__cancel__left__if,axiom,
! [C: complex,A: complex,B: complex] :
( ( ( C = zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
= zero_zero_complex ) )
& ( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).
% mult_divide_mult_cancel_left_if
thf(fact_1021_mult__divide__mult__cancel__left__if,axiom,
! [C: real,A: real,B: real] :
( ( ( C = zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= zero_zero_real ) )
& ( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ) ).
% mult_divide_mult_cancel_left_if
thf(fact_1022_mult__divide__mult__cancel__left__if,axiom,
! [C: rat,A: rat,B: rat] :
( ( ( C = zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= zero_zero_rat ) )
& ( ( C != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( divide_divide_rat @ A @ B ) ) ) ) ).
% mult_divide_mult_cancel_left_if
thf(fact_1023_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_rat @ zero_zero_rat @ ( suc @ N ) )
= zero_zero_rat ) ).
% power_0_Suc
thf(fact_1024_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_nat @ zero_zero_nat @ ( suc @ N ) )
= zero_zero_nat ) ).
% power_0_Suc
thf(fact_1025_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_real @ zero_zero_real @ ( suc @ N ) )
= zero_zero_real ) ).
% power_0_Suc
thf(fact_1026_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_int @ zero_zero_int @ ( suc @ N ) )
= zero_zero_int ) ).
% power_0_Suc
thf(fact_1027_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_complex @ zero_zero_complex @ ( suc @ N ) )
= zero_zero_complex ) ).
% power_0_Suc
thf(fact_1028_power__0__Suc,axiom,
! [N: nat] :
( ( power_8256067586552552935nteger @ zero_z3403309356797280102nteger @ ( suc @ N ) )
= zero_z3403309356797280102nteger ) ).
% power_0_Suc
thf(fact_1029_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_rat @ zero_zero_rat @ ( numeral_numeral_nat @ K ) )
= zero_zero_rat ) ).
% power_zero_numeral
thf(fact_1030_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ K ) )
= zero_zero_nat ) ).
% power_zero_numeral
thf(fact_1031_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ K ) )
= zero_zero_real ) ).
% power_zero_numeral
thf(fact_1032_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ K ) )
= zero_zero_int ) ).
% power_zero_numeral
thf(fact_1033_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_complex @ zero_zero_complex @ ( numeral_numeral_nat @ K ) )
= zero_zero_complex ) ).
% power_zero_numeral
thf(fact_1034_power__zero__numeral,axiom,
! [K: num] :
( ( power_8256067586552552935nteger @ zero_z3403309356797280102nteger @ ( numeral_numeral_nat @ K ) )
= zero_z3403309356797280102nteger ) ).
% power_zero_numeral
thf(fact_1035_dvd__times__right__cancel__iff,axiom,
! [A: nat,B: nat,C: nat] :
( ( A != zero_zero_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) )
= ( dvd_dvd_nat @ B @ C ) ) ) ).
% dvd_times_right_cancel_iff
thf(fact_1036_dvd__times__right__cancel__iff,axiom,
! [A: int,B: int,C: int] :
( ( A != zero_zero_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) )
= ( dvd_dvd_int @ B @ C ) ) ) ).
% dvd_times_right_cancel_iff
thf(fact_1037_dvd__times__left__cancel__iff,axiom,
! [A: nat,B: nat,C: nat] :
( ( A != zero_zero_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) )
= ( dvd_dvd_nat @ B @ C ) ) ) ).
% dvd_times_left_cancel_iff
thf(fact_1038_dvd__times__left__cancel__iff,axiom,
! [A: int,B: int,C: int] :
( ( A != zero_zero_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) )
= ( dvd_dvd_int @ B @ C ) ) ) ).
% dvd_times_left_cancel_iff
thf(fact_1039_dvd__mult__cancel__right,axiom,
! [A: complex,C: complex,B: complex] :
( ( dvd_dvd_complex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ B @ C ) )
= ( ( C = zero_zero_complex )
| ( dvd_dvd_complex @ A @ B ) ) ) ).
% dvd_mult_cancel_right
thf(fact_1040_dvd__mult__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( dvd_dvd_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( dvd_dvd_real @ A @ B ) ) ) ).
% dvd_mult_cancel_right
thf(fact_1041_dvd__mult__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( dvd_dvd_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
= ( ( C = zero_zero_rat )
| ( dvd_dvd_rat @ A @ B ) ) ) ).
% dvd_mult_cancel_right
thf(fact_1042_dvd__mult__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( dvd_dvd_int @ A @ B ) ) ) ).
% dvd_mult_cancel_right
thf(fact_1043_dvd__mult__cancel__left,axiom,
! [C: complex,A: complex,B: complex] :
( ( dvd_dvd_complex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
= ( ( C = zero_zero_complex )
| ( dvd_dvd_complex @ A @ B ) ) ) ).
% dvd_mult_cancel_left
thf(fact_1044_dvd__mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( dvd_dvd_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( dvd_dvd_real @ A @ B ) ) ) ).
% dvd_mult_cancel_left
thf(fact_1045_dvd__mult__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( dvd_dvd_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ( C = zero_zero_rat )
| ( dvd_dvd_rat @ A @ B ) ) ) ).
% dvd_mult_cancel_left
thf(fact_1046_dvd__mult__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( dvd_dvd_int @ A @ B ) ) ) ).
% dvd_mult_cancel_left
thf(fact_1047_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri8010041392384452111omplex @ M )
= zero_zero_complex )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_1048_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri681578069525770553at_rat @ M )
= zero_zero_rat )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_1049_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= zero_zero_real )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_1050_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= zero_zero_int )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_1051_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri1316708129612266289at_nat @ M )
= zero_zero_nat )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_1052_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_complex
= ( semiri8010041392384452111omplex @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_1053_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_rat
= ( semiri681578069525770553at_rat @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_1054_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_real
= ( semiri5074537144036343181t_real @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_1055_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_int
= ( semiri1314217659103216013at_int @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_1056_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_nat
= ( semiri1316708129612266289at_nat @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_1057_semiring__1__class_Oof__nat__0,axiom,
( ( semiri8010041392384452111omplex @ zero_zero_nat )
= zero_zero_complex ) ).
% semiring_1_class.of_nat_0
thf(fact_1058_semiring__1__class_Oof__nat__0,axiom,
( ( semiri681578069525770553at_rat @ zero_zero_nat )
= zero_zero_rat ) ).
% semiring_1_class.of_nat_0
thf(fact_1059_semiring__1__class_Oof__nat__0,axiom,
( ( semiri5074537144036343181t_real @ zero_zero_nat )
= zero_zero_real ) ).
% semiring_1_class.of_nat_0
thf(fact_1060_semiring__1__class_Oof__nat__0,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% semiring_1_class.of_nat_0
thf(fact_1061_semiring__1__class_Oof__nat__0,axiom,
( ( semiri1316708129612266289at_nat @ zero_zero_nat )
= zero_zero_nat ) ).
% semiring_1_class.of_nat_0
thf(fact_1062_unit__prod,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ).
% unit_prod
thf(fact_1063_unit__prod,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ).
% unit_prod
thf(fact_1064_power__Suc0__right,axiom,
! [A: nat] :
( ( power_power_nat @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_1065_power__Suc0__right,axiom,
! [A: real] :
( ( power_power_real @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_1066_power__Suc0__right,axiom,
! [A: int] :
( ( power_power_int @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_1067_power__Suc0__right,axiom,
! [A: complex] :
( ( power_power_complex @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_1068_power__Suc0__right,axiom,
! [A: code_integer] :
( ( power_8256067586552552935nteger @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_1069_unit__div__1__div__1,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( divide_divide_nat @ one_one_nat @ ( divide_divide_nat @ one_one_nat @ A ) )
= A ) ) ).
% unit_div_1_div_1
thf(fact_1070_unit__div__1__div__1,axiom,
! [A: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( divide_divide_int @ one_one_int @ ( divide_divide_int @ one_one_int @ A ) )
= A ) ) ).
% unit_div_1_div_1
thf(fact_1071_unit__div__1__unit,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( dvd_dvd_nat @ ( divide_divide_nat @ one_one_nat @ A ) @ one_one_nat ) ) ).
% unit_div_1_unit
thf(fact_1072_unit__div__1__unit,axiom,
! [A: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( dvd_dvd_int @ ( divide_divide_int @ one_one_int @ A ) @ one_one_int ) ) ).
% unit_div_1_unit
thf(fact_1073_unit__div,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).
% unit_div
thf(fact_1074_unit__div,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).
% unit_div
thf(fact_1075_div__by__Suc__0,axiom,
! [M: nat] :
( ( divide_divide_nat @ M @ ( suc @ zero_zero_nat ) )
= M ) ).
% div_by_Suc_0
thf(fact_1076_one__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ( suc @ zero_zero_nat )
= ( times_times_nat @ M @ N ) )
= ( ( M
= ( suc @ zero_zero_nat ) )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% one_eq_mult_iff
thf(fact_1077_mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= ( suc @ zero_zero_nat ) )
= ( ( M
= ( suc @ zero_zero_nat ) )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% mult_eq_1_iff
thf(fact_1078_nat__power__eq__Suc__0__iff,axiom,
! [X2: nat,M: nat] :
( ( ( power_power_nat @ X2 @ M )
= ( suc @ zero_zero_nat ) )
= ( ( M = zero_zero_nat )
| ( X2
= ( suc @ zero_zero_nat ) ) ) ) ).
% nat_power_eq_Suc_0_iff
thf(fact_1079_power__Suc__0,axiom,
! [N: nat] :
( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N )
= ( suc @ zero_zero_nat ) ) ).
% power_Suc_0
thf(fact_1080_dvd__1__iff__1,axiom,
! [M: nat] :
( ( dvd_dvd_nat @ M @ ( suc @ zero_zero_nat ) )
= ( M
= ( suc @ zero_zero_nat ) ) ) ).
% dvd_1_iff_1
thf(fact_1081_dvd__1__left,axiom,
! [K: nat] : ( dvd_dvd_nat @ ( suc @ zero_zero_nat ) @ K ) ).
% dvd_1_left
thf(fact_1082_nat__mult__div__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( K = zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= zero_zero_nat ) )
& ( ( K != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( divide_divide_nat @ M @ N ) ) ) ) ).
% nat_mult_div_cancel_disj
thf(fact_1083_nat__mult__dvd__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( K = zero_zero_nat )
| ( dvd_dvd_nat @ M @ N ) ) ) ).
% nat_mult_dvd_cancel_disj
thf(fact_1084_triangle__Suc,axiom,
! [N: nat] :
( ( nat_triangle @ ( suc @ N ) )
= ( plus_plus_nat @ ( nat_triangle @ N ) @ ( suc @ N ) ) ) ).
% triangle_Suc
thf(fact_1085_zero__le__divide__1__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% zero_le_divide_1_iff
thf(fact_1086_zero__le__divide__1__iff,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ one_one_rat @ A ) )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% zero_le_divide_1_iff
thf(fact_1087_divide__le__0__1__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% divide_le_0_1_iff
thf(fact_1088_divide__le__0__1__iff,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ zero_zero_rat )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% divide_le_0_1_iff
thf(fact_1089_eq__divide__eq__numeral1_I1_J,axiom,
! [A: complex,B: complex,W: num] :
( ( A
= ( divide1717551699836669952omplex @ B @ ( numera6690914467698888265omplex @ W ) ) )
= ( ( ( ( numera6690914467698888265omplex @ W )
!= zero_zero_complex )
=> ( ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) )
= B ) )
& ( ( ( numera6690914467698888265omplex @ W )
= zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% eq_divide_eq_numeral1(1)
thf(fact_1090_eq__divide__eq__numeral1_I1_J,axiom,
! [A: real,B: real,W: num] :
( ( A
= ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
= ( ( ( ( numeral_numeral_real @ W )
!= zero_zero_real )
=> ( ( times_times_real @ A @ ( numeral_numeral_real @ W ) )
= B ) )
& ( ( ( numeral_numeral_real @ W )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral1(1)
thf(fact_1091_eq__divide__eq__numeral1_I1_J,axiom,
! [A: rat,B: rat,W: num] :
( ( A
= ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
= ( ( ( ( numeral_numeral_rat @ W )
!= zero_zero_rat )
=> ( ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) )
= B ) )
& ( ( ( numeral_numeral_rat @ W )
= zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% eq_divide_eq_numeral1(1)
thf(fact_1092_divide__eq__eq__numeral1_I1_J,axiom,
! [B: complex,W: num,A: complex] :
( ( ( divide1717551699836669952omplex @ B @ ( numera6690914467698888265omplex @ W ) )
= A )
= ( ( ( ( numera6690914467698888265omplex @ W )
!= zero_zero_complex )
=> ( B
= ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) ) ) )
& ( ( ( numera6690914467698888265omplex @ W )
= zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% divide_eq_eq_numeral1(1)
thf(fact_1093_divide__eq__eq__numeral1_I1_J,axiom,
! [B: real,W: num,A: real] :
( ( ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) )
= A )
= ( ( ( ( numeral_numeral_real @ W )
!= zero_zero_real )
=> ( B
= ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) )
& ( ( ( numeral_numeral_real @ W )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral1(1)
thf(fact_1094_divide__eq__eq__numeral1_I1_J,axiom,
! [B: rat,W: num,A: rat] :
( ( ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) )
= A )
= ( ( ( ( numeral_numeral_rat @ W )
!= zero_zero_rat )
=> ( B
= ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) )
& ( ( ( numeral_numeral_rat @ W )
= zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% divide_eq_eq_numeral1(1)
thf(fact_1095_div__mult__self4,axiom,
! [B: nat,C: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_self4
thf(fact_1096_div__mult__self4,axiom,
! [B: int,C: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_self4
thf(fact_1097_div__mult__self3,axiom,
! [B: nat,C: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_self3
thf(fact_1098_div__mult__self3,axiom,
! [B: int,C: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_self3
thf(fact_1099_div__mult__self2,axiom,
! [B: nat,A: nat,C: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_self2
thf(fact_1100_div__mult__self2,axiom,
! [B: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ B @ C ) ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_self2
thf(fact_1101_div__mult__self1,axiom,
! [B: nat,A: nat,C: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_self1
thf(fact_1102_div__mult__self1,axiom,
! [B: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ C @ B ) ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_self1
thf(fact_1103_nonzero__divide__mult__cancel__right,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ B @ ( times_times_complex @ A @ B ) )
= ( divide1717551699836669952omplex @ one_one_complex @ A ) ) ) ).
% nonzero_divide_mult_cancel_right
thf(fact_1104_nonzero__divide__mult__cancel__right,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( divide_divide_real @ B @ ( times_times_real @ A @ B ) )
= ( divide_divide_real @ one_one_real @ A ) ) ) ).
% nonzero_divide_mult_cancel_right
thf(fact_1105_nonzero__divide__mult__cancel__right,axiom,
! [B: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( divide_divide_rat @ B @ ( times_times_rat @ A @ B ) )
= ( divide_divide_rat @ one_one_rat @ A ) ) ) ).
% nonzero_divide_mult_cancel_right
thf(fact_1106_nonzero__divide__mult__cancel__left,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ ( times_times_complex @ A @ B ) )
= ( divide1717551699836669952omplex @ one_one_complex @ B ) ) ) ).
% nonzero_divide_mult_cancel_left
thf(fact_1107_nonzero__divide__mult__cancel__left,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ ( times_times_real @ A @ B ) )
= ( divide_divide_real @ one_one_real @ B ) ) ) ).
% nonzero_divide_mult_cancel_left
thf(fact_1108_nonzero__divide__mult__cancel__left,axiom,
! [A: rat,B: rat] :
( ( A != zero_zero_rat )
=> ( ( divide_divide_rat @ A @ ( times_times_rat @ A @ B ) )
= ( divide_divide_rat @ one_one_rat @ B ) ) ) ).
% nonzero_divide_mult_cancel_left
thf(fact_1109_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_1110_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ M ) @ zero_zero_rat )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_1111_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_1112_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_1113_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri8010041392384452111omplex @ ( suc @ M ) )
= ( plus_plus_complex @ one_one_complex @ ( semiri8010041392384452111omplex @ M ) ) ) ).
% of_nat_Suc
thf(fact_1114_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri681578069525770553at_rat @ ( suc @ M ) )
= ( plus_plus_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ M ) ) ) ).
% of_nat_Suc
thf(fact_1115_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri5074537144036343181t_real @ ( suc @ M ) )
= ( plus_plus_real @ one_one_real @ ( semiri5074537144036343181t_real @ M ) ) ) ).
% of_nat_Suc
thf(fact_1116_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ M ) )
= ( plus_plus_int @ one_one_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).
% of_nat_Suc
thf(fact_1117_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri1316708129612266289at_nat @ ( suc @ M ) )
= ( plus_plus_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ M ) ) ) ).
% of_nat_Suc
thf(fact_1118_unit__div__mult__self,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( times_times_nat @ ( divide_divide_nat @ B @ A ) @ A )
= B ) ) ).
% unit_div_mult_self
thf(fact_1119_unit__div__mult__self,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( times_times_int @ ( divide_divide_int @ B @ A ) @ A )
= B ) ) ).
% unit_div_mult_self
thf(fact_1120_unit__mult__div__div,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( times_times_nat @ B @ ( divide_divide_nat @ one_one_nat @ A ) )
= ( divide_divide_nat @ B @ A ) ) ) ).
% unit_mult_div_div
thf(fact_1121_unit__mult__div__div,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( times_times_int @ B @ ( divide_divide_int @ one_one_int @ A ) )
= ( divide_divide_int @ B @ A ) ) ) ).
% unit_mult_div_div
thf(fact_1122_one__le__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) )
= ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
& ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N ) ) ) ).
% one_le_mult_iff
thf(fact_1123_one__add__one,axiom,
( ( plus_plus_complex @ one_one_complex @ one_one_complex )
= ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_1124_one__add__one,axiom,
( ( plus_plus_real @ one_one_real @ one_one_real )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_1125_one__add__one,axiom,
( ( plus_plus_rat @ one_one_rat @ one_one_rat )
= ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_1126_one__add__one,axiom,
( ( plus_plus_nat @ one_one_nat @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_1127_one__add__one,axiom,
( ( plus_plus_int @ one_one_int @ one_one_int )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_1128_zero__eq__power2,axiom,
! [A: rat] :
( ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% zero_eq_power2
thf(fact_1129_zero__eq__power2,axiom,
! [A: nat] :
( ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% zero_eq_power2
thf(fact_1130_zero__eq__power2,axiom,
! [A: real] :
( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% zero_eq_power2
thf(fact_1131_zero__eq__power2,axiom,
! [A: int] :
( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% zero_eq_power2
thf(fact_1132_zero__eq__power2,axiom,
! [A: complex] :
( ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_complex )
= ( A = zero_zero_complex ) ) ).
% zero_eq_power2
thf(fact_1133_zero__eq__power2,axiom,
! [A: code_integer] :
( ( ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_z3403309356797280102nteger )
= ( A = zero_z3403309356797280102nteger ) ) ).
% zero_eq_power2
thf(fact_1134_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ N ) )
= ( numera6690914467698888265omplex @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_1135_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_1136_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_rat @ one_one_rat @ ( numeral_numeral_rat @ N ) )
= ( numeral_numeral_rat @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_1137_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_1138_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_1139_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ one_one_complex )
= ( numera6690914467698888265omplex @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_1140_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_real @ ( numeral_numeral_real @ N ) @ one_one_real )
= ( numeral_numeral_real @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_1141_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ one_one_rat )
= ( numeral_numeral_rat @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_1142_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
= ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_1143_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_int @ ( numeral_numeral_int @ N ) @ one_one_int )
= ( numeral_numeral_int @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_1144_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ one_one_real )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_1145_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_rat @ ( numeral_numeral_rat @ N ) @ one_one_rat )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_1146_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_1147_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ one_one_int )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_1148_one__div__two__eq__zero,axiom,
( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% one_div_two_eq_zero
thf(fact_1149_one__div__two__eq__zero,axiom,
( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% one_div_two_eq_zero
thf(fact_1150_bits__1__div__2,axiom,
( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% bits_1_div_2
thf(fact_1151_bits__1__div__2,axiom,
( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% bits_1_div_2
thf(fact_1152_power2__eq__iff__nonneg,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X2 = Y2 ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_1153_power2__eq__iff__nonneg,axiom,
! [X2: code_integer,Y2: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X2 )
=> ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ Y2 )
=> ( ( ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_8256067586552552935nteger @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X2 = Y2 ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_1154_power2__eq__iff__nonneg,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
=> ( ( ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X2 = Y2 ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_1155_power2__eq__iff__nonneg,axiom,
! [X2: nat,Y2: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ X2 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y2 )
=> ( ( ( power_power_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_nat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X2 = Y2 ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_1156_power2__eq__iff__nonneg,axiom,
! [X2: int,Y2: int] :
( ( ord_less_eq_int @ zero_zero_int @ X2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
=> ( ( ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X2 = Y2 ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_1157_power2__less__eq__zero__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real )
= ( A = zero_zero_real ) ) ).
% power2_less_eq_zero_iff
thf(fact_1158_power2__less__eq__zero__iff,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_z3403309356797280102nteger )
= ( A = zero_z3403309356797280102nteger ) ) ).
% power2_less_eq_zero_iff
thf(fact_1159_power2__less__eq__zero__iff,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% power2_less_eq_zero_iff
thf(fact_1160_power2__less__eq__zero__iff,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int )
= ( A = zero_zero_int ) ) ).
% power2_less_eq_zero_iff
thf(fact_1161_sum__power2__eq__zero__iff,axiom,
! [X2: rat,Y2: rat] :
( ( ( plus_plus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_rat )
= ( ( X2 = zero_zero_rat )
& ( Y2 = zero_zero_rat ) ) ) ).
% sum_power2_eq_zero_iff
thf(fact_1162_sum__power2__eq__zero__iff,axiom,
! [X2: real,Y2: real] :
( ( ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_real )
= ( ( X2 = zero_zero_real )
& ( Y2 = zero_zero_real ) ) ) ).
% sum_power2_eq_zero_iff
thf(fact_1163_sum__power2__eq__zero__iff,axiom,
! [X2: int,Y2: int] :
( ( ( plus_plus_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_int )
= ( ( X2 = zero_zero_int )
& ( Y2 = zero_zero_int ) ) ) ).
% sum_power2_eq_zero_iff
thf(fact_1164_sum__power2__eq__zero__iff,axiom,
! [X2: code_integer,Y2: code_integer] :
( ( ( plus_p5714425477246183910nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_z3403309356797280102nteger )
= ( ( X2 = zero_z3403309356797280102nteger )
& ( Y2 = zero_z3403309356797280102nteger ) ) ) ).
% sum_power2_eq_zero_iff
thf(fact_1165_even__plus__one__iff,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ one_one_nat ) )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).
% even_plus_one_iff
thf(fact_1166_even__plus__one__iff,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ one_one_int ) )
= ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).
% even_plus_one_iff
thf(fact_1167_even__succ__div__two,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_two
thf(fact_1168_even__succ__div__two,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_two
thf(fact_1169_odd__succ__div__two,axiom,
! [A: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ).
% odd_succ_div_two
thf(fact_1170_odd__succ__div__two,axiom,
! [A: int] :
( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( plus_plus_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).
% odd_succ_div_two
thf(fact_1171_even__succ__div__2,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_2
thf(fact_1172_even__succ__div__2,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_2
thf(fact_1173_zero__le__power__eq__numeral,axiom,
! [A: real,W: num] :
( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ).
% zero_le_power_eq_numeral
thf(fact_1174_zero__le__power__eq__numeral,axiom,
! [A: code_integer,W: num] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ W ) ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ) ) ).
% zero_le_power_eq_numeral
thf(fact_1175_zero__le__power__eq__numeral,axiom,
! [A: rat,W: num] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ).
% zero_le_power_eq_numeral
thf(fact_1176_zero__le__power__eq__numeral,axiom,
! [A: int,W: num] :
( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ) ).
% zero_le_power_eq_numeral
thf(fact_1177_odd__two__times__div__two__succ,axiom,
! [A: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_nat )
= A ) ) ).
% odd_two_times_div_two_succ
thf(fact_1178_odd__two__times__div__two__succ,axiom,
! [A: int] :
( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ one_one_int )
= A ) ) ).
% odd_two_times_div_two_succ
thf(fact_1179_zero__reorient,axiom,
! [X2: complex] :
( ( zero_zero_complex = X2 )
= ( X2 = zero_zero_complex ) ) ).
% zero_reorient
thf(fact_1180_zero__reorient,axiom,
! [X2: real] :
( ( zero_zero_real = X2 )
= ( X2 = zero_zero_real ) ) ).
% zero_reorient
thf(fact_1181_zero__reorient,axiom,
! [X2: rat] :
( ( zero_zero_rat = X2 )
= ( X2 = zero_zero_rat ) ) ).
% zero_reorient
thf(fact_1182_zero__reorient,axiom,
! [X2: nat] :
( ( zero_zero_nat = X2 )
= ( X2 = zero_zero_nat ) ) ).
% zero_reorient
thf(fact_1183_zero__reorient,axiom,
! [X2: int] :
( ( zero_zero_int = X2 )
= ( X2 = zero_zero_int ) ) ).
% zero_reorient
thf(fact_1184_one__reorient,axiom,
! [X2: complex] :
( ( one_one_complex = X2 )
= ( X2 = one_one_complex ) ) ).
% one_reorient
thf(fact_1185_one__reorient,axiom,
! [X2: real] :
( ( one_one_real = X2 )
= ( X2 = one_one_real ) ) ).
% one_reorient
thf(fact_1186_one__reorient,axiom,
! [X2: rat] :
( ( one_one_rat = X2 )
= ( X2 = one_one_rat ) ) ).
% one_reorient
thf(fact_1187_one__reorient,axiom,
! [X2: nat] :
( ( one_one_nat = X2 )
= ( X2 = one_one_nat ) ) ).
% one_reorient
thf(fact_1188_one__reorient,axiom,
! [X2: int] :
( ( one_one_int = X2 )
= ( X2 = one_one_int ) ) ).
% one_reorient
thf(fact_1189_zero__neq__one,axiom,
zero_zero_complex != one_one_complex ).
% zero_neq_one
thf(fact_1190_zero__neq__one,axiom,
zero_zero_real != one_one_real ).
% zero_neq_one
thf(fact_1191_zero__neq__one,axiom,
zero_zero_rat != one_one_rat ).
% zero_neq_one
thf(fact_1192_zero__neq__one,axiom,
zero_zero_nat != one_one_nat ).
% zero_neq_one
thf(fact_1193_zero__neq__one,axiom,
zero_zero_int != one_one_int ).
% zero_neq_one
thf(fact_1194_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_rat @ zero_zero_rat @ N )
= one_one_rat ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_rat @ zero_zero_rat @ N )
= zero_zero_rat ) ) ) ).
% power_0_left
thf(fact_1195_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= one_one_nat ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ) ) ).
% power_0_left
thf(fact_1196_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_real @ zero_zero_real @ N )
= one_one_real ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_real @ zero_zero_real @ N )
= zero_zero_real ) ) ) ).
% power_0_left
thf(fact_1197_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N )
= one_one_int ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N )
= zero_zero_int ) ) ) ).
% power_0_left
thf(fact_1198_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_complex @ zero_zero_complex @ N )
= one_one_complex ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_complex @ zero_zero_complex @ N )
= zero_zero_complex ) ) ) ).
% power_0_left
thf(fact_1199_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_8256067586552552935nteger @ zero_z3403309356797280102nteger @ N )
= one_one_Code_integer ) )
& ( ( N != zero_zero_nat )
=> ( ( power_8256067586552552935nteger @ zero_z3403309356797280102nteger @ N )
= zero_z3403309356797280102nteger ) ) ) ).
% power_0_left
thf(fact_1200_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_real @ zero_zero_real @ one_one_real ).
% zero_less_one_class.zero_le_one
thf(fact_1201_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_rat @ zero_zero_rat @ one_one_rat ).
% zero_less_one_class.zero_le_one
thf(fact_1202_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one_class.zero_le_one
thf(fact_1203_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_int @ zero_zero_int @ one_one_int ).
% zero_less_one_class.zero_le_one
thf(fact_1204_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_real @ zero_zero_real @ one_one_real ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_1205_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_rat @ zero_zero_rat @ one_one_rat ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_1206_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_1207_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_int @ zero_zero_int @ one_one_int ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_1208_not__one__le__zero,axiom,
~ ( ord_less_eq_real @ one_one_real @ zero_zero_real ) ).
% not_one_le_zero
thf(fact_1209_not__one__le__zero,axiom,
~ ( ord_less_eq_rat @ one_one_rat @ zero_zero_rat ) ).
% not_one_le_zero
thf(fact_1210_not__one__le__zero,axiom,
~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_le_zero
thf(fact_1211_not__one__le__zero,axiom,
~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).
% not_one_le_zero
thf(fact_1212_right__inverse__eq,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( ( divide1717551699836669952omplex @ A @ B )
= one_one_complex )
= ( A = B ) ) ) ).
% right_inverse_eq
thf(fact_1213_right__inverse__eq,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( ( divide_divide_real @ A @ B )
= one_one_real )
= ( A = B ) ) ) ).
% right_inverse_eq
thf(fact_1214_right__inverse__eq,axiom,
! [B: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( ( divide_divide_rat @ A @ B )
= one_one_rat )
= ( A = B ) ) ) ).
% right_inverse_eq
thf(fact_1215_power__0,axiom,
! [A: rat] :
( ( power_power_rat @ A @ zero_zero_nat )
= one_one_rat ) ).
% power_0
thf(fact_1216_power__0,axiom,
! [A: nat] :
( ( power_power_nat @ A @ zero_zero_nat )
= one_one_nat ) ).
% power_0
thf(fact_1217_power__0,axiom,
! [A: real] :
( ( power_power_real @ A @ zero_zero_nat )
= one_one_real ) ).
% power_0
thf(fact_1218_power__0,axiom,
! [A: int] :
( ( power_power_int @ A @ zero_zero_nat )
= one_one_int ) ).
% power_0
thf(fact_1219_power__0,axiom,
! [A: complex] :
( ( power_power_complex @ A @ zero_zero_nat )
= one_one_complex ) ).
% power_0
thf(fact_1220_power__0,axiom,
! [A: code_integer] :
( ( power_8256067586552552935nteger @ A @ zero_zero_nat )
= one_one_Code_integer ) ).
% power_0
thf(fact_1221_not__is__unit__0,axiom,
~ ( dvd_dvd_nat @ zero_zero_nat @ one_one_nat ) ).
% not_is_unit_0
thf(fact_1222_not__is__unit__0,axiom,
~ ( dvd_dvd_int @ zero_zero_int @ one_one_int ) ).
% not_is_unit_0
thf(fact_1223_VEBT__internal_OT__vebt__buildupi_Osimps_I1_J,axiom,
( ( vEBT_V441764108873111860ildupi @ zero_zero_nat )
= ( suc @ zero_zero_nat ) ) ).
% VEBT_internal.T_vebt_buildupi.simps(1)
thf(fact_1224_VEBT__internal_OT__vebt__buildupi_Osimps_I2_J,axiom,
( ( vEBT_V441764108873111860ildupi @ ( suc @ zero_zero_nat ) )
= ( suc @ zero_zero_nat ) ) ).
% VEBT_internal.T_vebt_buildupi.simps(2)
thf(fact_1225_Euclid__induct,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A4: nat,B3: nat] :
( ( P @ A4 @ B3 )
= ( P @ B3 @ A4 ) )
=> ( ! [A4: nat] : ( P @ A4 @ zero_zero_nat )
=> ( ! [A4: nat,B3: nat] :
( ( P @ A4 @ B3 )
=> ( P @ A4 @ ( plus_plus_nat @ A4 @ B3 ) ) )
=> ( P @ A @ B ) ) ) ) ).
% Euclid_induct
thf(fact_1226_gcd__nat_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A )
=> ( A = zero_zero_nat ) ) ).
% gcd_nat.extremum_uniqueI
thf(fact_1227_gcd__nat_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ( dvd_dvd_nat @ A @ zero_zero_nat )
& ( A != zero_zero_nat ) ) ) ).
% gcd_nat.not_eq_extremum
thf(fact_1228_gcd__nat_Oextremum__unique,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A )
= ( A = zero_zero_nat ) ) ).
% gcd_nat.extremum_unique
thf(fact_1229_gcd__nat_Oextremum__strict,axiom,
! [A: nat] :
~ ( ( dvd_dvd_nat @ zero_zero_nat @ A )
& ( zero_zero_nat != A ) ) ).
% gcd_nat.extremum_strict
thf(fact_1230_gcd__nat_Oextremum,axiom,
! [A: nat] : ( dvd_dvd_nat @ A @ zero_zero_nat ) ).
% gcd_nat.extremum
thf(fact_1231_mult__left__le,axiom,
! [C: real,A: real] :
( ( ord_less_eq_real @ C @ one_one_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ A ) ) ) ).
% mult_left_le
thf(fact_1232_mult__left__le,axiom,
! [C: rat,A: rat] :
( ( ord_less_eq_rat @ C @ one_one_rat )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ A ) ) ) ).
% mult_left_le
thf(fact_1233_mult__left__le,axiom,
! [C: nat,A: nat] :
( ( ord_less_eq_nat @ C @ one_one_nat )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ A ) ) ) ).
% mult_left_le
thf(fact_1234_mult__left__le,axiom,
! [C: int,A: int] :
( ( ord_less_eq_int @ C @ one_one_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ A ) ) ) ).
% mult_left_le
thf(fact_1235_mult__le__one,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ one_one_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_eq_real @ B @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ one_one_real ) ) ) ) ).
% mult_le_one
thf(fact_1236_mult__le__one,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ one_one_rat )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ( ord_less_eq_rat @ B @ one_one_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ one_one_rat ) ) ) ) ).
% mult_le_one
thf(fact_1237_mult__le__one,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ B @ one_one_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ) ).
% mult_le_one
thf(fact_1238_mult__le__one,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ one_one_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ B @ one_one_int )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ) ).
% mult_le_one
thf(fact_1239_mult__right__le__one__le,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ X2 @ Y2 ) @ X2 ) ) ) ) ).
% mult_right_le_one_le
thf(fact_1240_mult__right__le__one__le,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
=> ( ( ord_less_eq_rat @ Y2 @ one_one_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ X2 @ Y2 ) @ X2 ) ) ) ) ).
% mult_right_le_one_le
thf(fact_1241_mult__right__le__one__le,axiom,
! [X2: int,Y2: int] :
( ( ord_less_eq_int @ zero_zero_int @ X2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
=> ( ( ord_less_eq_int @ Y2 @ one_one_int )
=> ( ord_less_eq_int @ ( times_times_int @ X2 @ Y2 ) @ X2 ) ) ) ) ).
% mult_right_le_one_le
thf(fact_1242_mult__left__le__one__le,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ Y2 @ X2 ) @ X2 ) ) ) ) ).
% mult_left_le_one_le
thf(fact_1243_mult__left__le__one__le,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
=> ( ( ord_less_eq_rat @ Y2 @ one_one_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ Y2 @ X2 ) @ X2 ) ) ) ) ).
% mult_left_le_one_le
thf(fact_1244_mult__left__le__one__le,axiom,
! [X2: int,Y2: int] :
( ( ord_less_eq_int @ zero_zero_int @ X2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
=> ( ( ord_less_eq_int @ Y2 @ one_one_int )
=> ( ord_less_eq_int @ ( times_times_int @ Y2 @ X2 ) @ X2 ) ) ) ) ).
% mult_left_le_one_le
thf(fact_1245_power__le__one,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ one_one_real ) ) ) ).
% power_le_one
thf(fact_1246_power__le__one,axiom,
! [A: code_integer,N: nat] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( ord_le3102999989581377725nteger @ A @ one_one_Code_integer )
=> ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ A @ N ) @ one_one_Code_integer ) ) ) ).
% power_le_one
thf(fact_1247_power__le__one,axiom,
! [A: rat,N: nat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ A @ one_one_rat )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ one_one_rat ) ) ) ).
% power_le_one
thf(fact_1248_power__le__one,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ one_one_nat ) ) ) ).
% power_le_one
thf(fact_1249_power__le__one,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ one_one_int ) ) ) ).
% power_le_one
thf(fact_1250_div__add__self1,axiom,
! [B: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).
% div_add_self1
thf(fact_1251_div__add__self1,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ B @ A ) @ B )
= ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).
% div_add_self1
thf(fact_1252_div__add__self2,axiom,
! [B: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).
% div_add_self2
thf(fact_1253_div__add__self2,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ B )
= ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).
% div_add_self2
thf(fact_1254_unit__dvdE,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ~ ( ( A != zero_zero_nat )
=> ! [C3: nat] :
( B
!= ( times_times_nat @ A @ C3 ) ) ) ) ).
% unit_dvdE
thf(fact_1255_unit__dvdE,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ~ ( ( A != zero_zero_int )
=> ! [C3: int] :
( B
!= ( times_times_int @ A @ C3 ) ) ) ) ).
% unit_dvdE
thf(fact_1256_unit__div__eq__0__iff,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( ( divide_divide_nat @ A @ B )
= zero_zero_nat )
= ( A = zero_zero_nat ) ) ) ).
% unit_div_eq_0_iff
thf(fact_1257_unit__div__eq__0__iff,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( ( divide_divide_int @ A @ B )
= zero_zero_int )
= ( A = zero_zero_int ) ) ) ).
% unit_div_eq_0_iff
thf(fact_1258_is__unit__power__iff,axiom,
! [A: nat,N: nat] :
( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ one_one_nat )
= ( ( dvd_dvd_nat @ A @ one_one_nat )
| ( N = zero_zero_nat ) ) ) ).
% is_unit_power_iff
thf(fact_1259_is__unit__power__iff,axiom,
! [A: int,N: nat] :
( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ one_one_int )
= ( ( dvd_dvd_int @ A @ one_one_int )
| ( N = zero_zero_nat ) ) ) ).
% is_unit_power_iff
thf(fact_1260_is__unit__power__iff,axiom,
! [A: code_integer,N: nat] :
( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) @ one_one_Code_integer )
= ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
| ( N = zero_zero_nat ) ) ) ).
% is_unit_power_iff
thf(fact_1261_le__numeral__extra_I4_J,axiom,
ord_less_eq_real @ one_one_real @ one_one_real ).
% le_numeral_extra(4)
thf(fact_1262_le__numeral__extra_I4_J,axiom,
ord_less_eq_rat @ one_one_rat @ one_one_rat ).
% le_numeral_extra(4)
thf(fact_1263_le__numeral__extra_I4_J,axiom,
ord_less_eq_nat @ one_one_nat @ one_one_nat ).
% le_numeral_extra(4)
thf(fact_1264_le__numeral__extra_I4_J,axiom,
ord_less_eq_int @ one_one_int @ one_one_int ).
% le_numeral_extra(4)
thf(fact_1265_mult_Ocomm__neutral,axiom,
! [A: complex] :
( ( times_times_complex @ A @ one_one_complex )
= A ) ).
% mult.comm_neutral
thf(fact_1266_mult_Ocomm__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.comm_neutral
thf(fact_1267_mult_Ocomm__neutral,axiom,
! [A: rat] :
( ( times_times_rat @ A @ one_one_rat )
= A ) ).
% mult.comm_neutral
thf(fact_1268_mult_Ocomm__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.comm_neutral
thf(fact_1269_mult_Ocomm__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.comm_neutral
thf(fact_1270_comm__monoid__mult__class_Omult__1,axiom,
! [A: complex] :
( ( times_times_complex @ one_one_complex @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_1271_comm__monoid__mult__class_Omult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_1272_comm__monoid__mult__class_Omult__1,axiom,
! [A: rat] :
( ( times_times_rat @ one_one_rat @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_1273_comm__monoid__mult__class_Omult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_1274_comm__monoid__mult__class_Omult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_1275_le__numeral__extra_I3_J,axiom,
ord_less_eq_real @ zero_zero_real @ zero_zero_real ).
% le_numeral_extra(3)
thf(fact_1276_le__numeral__extra_I3_J,axiom,
ord_less_eq_rat @ zero_zero_rat @ zero_zero_rat ).
% le_numeral_extra(3)
thf(fact_1277_le__numeral__extra_I3_J,axiom,
ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).
% le_numeral_extra(3)
thf(fact_1278_le__numeral__extra_I3_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% le_numeral_extra(3)
thf(fact_1279_zero__le,axiom,
! [X2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X2 ) ).
% zero_le
thf(fact_1280_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_complex
!= ( numera6690914467698888265omplex @ N ) ) ).
% zero_neq_numeral
thf(fact_1281_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_real
!= ( numeral_numeral_real @ N ) ) ).
% zero_neq_numeral
thf(fact_1282_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_rat
!= ( numeral_numeral_rat @ N ) ) ).
% zero_neq_numeral
thf(fact_1283_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_nat
!= ( numeral_numeral_nat @ N ) ) ).
% zero_neq_numeral
thf(fact_1284_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_int
!= ( numeral_numeral_int @ N ) ) ).
% zero_neq_numeral
thf(fact_1285_comm__monoid__add__class_Oadd__0,axiom,
! [A: complex] :
( ( plus_plus_complex @ zero_zero_complex @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_1286_comm__monoid__add__class_Oadd__0,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_1287_comm__monoid__add__class_Oadd__0,axiom,
! [A: rat] :
( ( plus_plus_rat @ zero_zero_rat @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_1288_comm__monoid__add__class_Oadd__0,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_1289_comm__monoid__add__class_Oadd__0,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_1290_add_Ocomm__neutral,axiom,
! [A: complex] :
( ( plus_plus_complex @ A @ zero_zero_complex )
= A ) ).
% add.comm_neutral
thf(fact_1291_add_Ocomm__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% add.comm_neutral
thf(fact_1292_add_Ocomm__neutral,axiom,
! [A: rat] :
( ( plus_plus_rat @ A @ zero_zero_rat )
= A ) ).
% add.comm_neutral
thf(fact_1293_add_Ocomm__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% add.comm_neutral
thf(fact_1294_add_Ocomm__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% add.comm_neutral
thf(fact_1295_add_Ogroup__left__neutral,axiom,
! [A: complex] :
( ( plus_plus_complex @ zero_zero_complex @ A )
= A ) ).
% add.group_left_neutral
thf(fact_1296_add_Ogroup__left__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% add.group_left_neutral
thf(fact_1297_add_Ogroup__left__neutral,axiom,
! [A: rat] :
( ( plus_plus_rat @ zero_zero_rat @ A )
= A ) ).
% add.group_left_neutral
thf(fact_1298_add_Ogroup__left__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add.group_left_neutral
thf(fact_1299_mult__right__cancel,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( ( times_times_complex @ A @ C )
= ( times_times_complex @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_1300_mult__right__cancel,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_1301_mult__right__cancel,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( ( times_times_rat @ A @ C )
= ( times_times_rat @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_1302_mult__right__cancel,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_1303_mult__right__cancel,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_1304_mult__left__cancel,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( ( times_times_complex @ C @ A )
= ( times_times_complex @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_1305_mult__left__cancel,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_1306_mult__left__cancel,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( ( times_times_rat @ C @ A )
= ( times_times_rat @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_1307_mult__left__cancel,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_1308_mult__left__cancel,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_1309_no__zero__divisors,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( B != zero_zero_complex )
=> ( ( times_times_complex @ A @ B )
!= zero_zero_complex ) ) ) ).
% no_zero_divisors
thf(fact_1310_no__zero__divisors,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( B != zero_zero_real )
=> ( ( times_times_real @ A @ B )
!= zero_zero_real ) ) ) ).
% no_zero_divisors
thf(fact_1311_no__zero__divisors,axiom,
! [A: rat,B: rat] :
( ( A != zero_zero_rat )
=> ( ( B != zero_zero_rat )
=> ( ( times_times_rat @ A @ B )
!= zero_zero_rat ) ) ) ).
% no_zero_divisors
thf(fact_1312_no__zero__divisors,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( B != zero_zero_nat )
=> ( ( times_times_nat @ A @ B )
!= zero_zero_nat ) ) ) ).
% no_zero_divisors
thf(fact_1313_no__zero__divisors,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( B != zero_zero_int )
=> ( ( times_times_int @ A @ B )
!= zero_zero_int ) ) ) ).
% no_zero_divisors
thf(fact_1314_divisors__zero,axiom,
! [A: complex,B: complex] :
( ( ( times_times_complex @ A @ B )
= zero_zero_complex )
=> ( ( A = zero_zero_complex )
| ( B = zero_zero_complex ) ) ) ).
% divisors_zero
thf(fact_1315_divisors__zero,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
=> ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divisors_zero
thf(fact_1316_divisors__zero,axiom,
! [A: rat,B: rat] :
( ( ( times_times_rat @ A @ B )
= zero_zero_rat )
=> ( ( A = zero_zero_rat )
| ( B = zero_zero_rat ) ) ) ).
% divisors_zero
thf(fact_1317_divisors__zero,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
=> ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% divisors_zero
thf(fact_1318_divisors__zero,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
=> ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% divisors_zero
thf(fact_1319_mult__not__zero,axiom,
! [A: complex,B: complex] :
( ( ( times_times_complex @ A @ B )
!= zero_zero_complex )
=> ( ( A != zero_zero_complex )
& ( B != zero_zero_complex ) ) ) ).
% mult_not_zero
thf(fact_1320_mult__not__zero,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
!= zero_zero_real )
=> ( ( A != zero_zero_real )
& ( B != zero_zero_real ) ) ) ).
% mult_not_zero
thf(fact_1321_mult__not__zero,axiom,
! [A: rat,B: rat] :
( ( ( times_times_rat @ A @ B )
!= zero_zero_rat )
=> ( ( A != zero_zero_rat )
& ( B != zero_zero_rat ) ) ) ).
% mult_not_zero
thf(fact_1322_mult__not__zero,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
!= zero_zero_nat )
=> ( ( A != zero_zero_nat )
& ( B != zero_zero_nat ) ) ) ).
% mult_not_zero
thf(fact_1323_mult__not__zero,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
!= zero_zero_int )
=> ( ( A != zero_zero_int )
& ( B != zero_zero_int ) ) ) ).
% mult_not_zero
thf(fact_1324_dvd__unit__imp__unit,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ A @ one_one_nat ) ) ) ).
% dvd_unit_imp_unit
thf(fact_1325_dvd__unit__imp__unit,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ A @ one_one_int ) ) ) ).
% dvd_unit_imp_unit
thf(fact_1326_unit__imp__dvd,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ B @ A ) ) ).
% unit_imp_dvd
thf(fact_1327_unit__imp__dvd,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ B @ A ) ) ).
% unit_imp_dvd
thf(fact_1328_one__dvd,axiom,
! [A: complex] : ( dvd_dvd_complex @ one_one_complex @ A ) ).
% one_dvd
thf(fact_1329_one__dvd,axiom,
! [A: real] : ( dvd_dvd_real @ one_one_real @ A ) ).
% one_dvd
thf(fact_1330_one__dvd,axiom,
! [A: rat] : ( dvd_dvd_rat @ one_one_rat @ A ) ).
% one_dvd
thf(fact_1331_one__dvd,axiom,
! [A: nat] : ( dvd_dvd_nat @ one_one_nat @ A ) ).
% one_dvd
thf(fact_1332_one__dvd,axiom,
! [A: int] : ( dvd_dvd_int @ one_one_int @ A ) ).
% one_dvd
thf(fact_1333_semiring__1__no__zero__divisors__class_Opower__not__zero,axiom,
! [A: rat,N: nat] :
( ( A != zero_zero_rat )
=> ( ( power_power_rat @ A @ N )
!= zero_zero_rat ) ) ).
% semiring_1_no_zero_divisors_class.power_not_zero
thf(fact_1334_semiring__1__no__zero__divisors__class_Opower__not__zero,axiom,
! [A: nat,N: nat] :
( ( A != zero_zero_nat )
=> ( ( power_power_nat @ A @ N )
!= zero_zero_nat ) ) ).
% semiring_1_no_zero_divisors_class.power_not_zero
thf(fact_1335_semiring__1__no__zero__divisors__class_Opower__not__zero,axiom,
! [A: real,N: nat] :
( ( A != zero_zero_real )
=> ( ( power_power_real @ A @ N )
!= zero_zero_real ) ) ).
% semiring_1_no_zero_divisors_class.power_not_zero
thf(fact_1336_semiring__1__no__zero__divisors__class_Opower__not__zero,axiom,
! [A: int,N: nat] :
( ( A != zero_zero_int )
=> ( ( power_power_int @ A @ N )
!= zero_zero_int ) ) ).
% semiring_1_no_zero_divisors_class.power_not_zero
thf(fact_1337_semiring__1__no__zero__divisors__class_Opower__not__zero,axiom,
! [A: complex,N: nat] :
( ( A != zero_zero_complex )
=> ( ( power_power_complex @ A @ N )
!= zero_zero_complex ) ) ).
% semiring_1_no_zero_divisors_class.power_not_zero
thf(fact_1338_semiring__1__no__zero__divisors__class_Opower__not__zero,axiom,
! [A: code_integer,N: nat] :
( ( A != zero_z3403309356797280102nteger )
=> ( ( power_8256067586552552935nteger @ A @ N )
!= zero_z3403309356797280102nteger ) ) ).
% semiring_1_no_zero_divisors_class.power_not_zero
thf(fact_1339_not0__implies__Suc,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ? [M3: nat] :
( N
= ( suc @ M3 ) ) ) ).
% not0_implies_Suc
thf(fact_1340_Zero__not__Suc,axiom,
! [M: nat] :
( zero_zero_nat
!= ( suc @ M ) ) ).
% Zero_not_Suc
thf(fact_1341_Zero__neq__Suc,axiom,
! [M: nat] :
( zero_zero_nat
!= ( suc @ M ) ) ).
% Zero_neq_Suc
thf(fact_1342_Suc__neq__Zero,axiom,
! [M: nat] :
( ( suc @ M )
!= zero_zero_nat ) ).
% Suc_neq_Zero
thf(fact_1343_zero__induct,axiom,
! [P: nat > $o,K: nat] :
( ( P @ K )
=> ( ! [N2: nat] :
( ( P @ ( suc @ N2 ) )
=> ( P @ N2 ) )
=> ( P @ zero_zero_nat ) ) ) ).
% zero_induct
thf(fact_1344_diff__induct,axiom,
! [P: nat > nat > $o,M: nat,N: nat] :
( ! [X3: nat] : ( P @ X3 @ zero_zero_nat )
=> ( ! [Y3: nat] : ( P @ zero_zero_nat @ ( suc @ Y3 ) )
=> ( ! [X3: nat,Y3: nat] :
( ( P @ X3 @ Y3 )
=> ( P @ ( suc @ X3 ) @ ( suc @ Y3 ) ) )
=> ( P @ M @ N ) ) ) ) ).
% diff_induct
thf(fact_1345_nat__induct,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N2: nat] :
( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) )
=> ( P @ N ) ) ) ).
% nat_induct
thf(fact_1346_list__decode_Ocases,axiom,
! [X2: nat] :
( ( X2 != zero_zero_nat )
=> ~ ! [N2: nat] :
( X2
!= ( suc @ N2 ) ) ) ).
% list_decode.cases
thf(fact_1347_old_Onat_Oexhaust,axiom,
! [Y2: nat] :
( ( Y2 != zero_zero_nat )
=> ~ ! [Nat3: nat] :
( Y2
!= ( suc @ Nat3 ) ) ) ).
% old.nat.exhaust
thf(fact_1348_nat_OdiscI,axiom,
! [Nat: nat,X23: nat] :
( ( Nat
= ( suc @ X23 ) )
=> ( Nat != zero_zero_nat ) ) ).
% nat.discI
thf(fact_1349_old_Onat_Odistinct_I1_J,axiom,
! [Nat2: nat] :
( zero_zero_nat
!= ( suc @ Nat2 ) ) ).
% old.nat.distinct(1)
thf(fact_1350_old_Onat_Odistinct_I2_J,axiom,
! [Nat2: nat] :
( ( suc @ Nat2 )
!= zero_zero_nat ) ).
% old.nat.distinct(2)
thf(fact_1351_nat_Odistinct_I1_J,axiom,
! [X23: nat] :
( zero_zero_nat
!= ( suc @ X23 ) ) ).
% nat.distinct(1)
thf(fact_1352_dvd__0__left,axiom,
! [A: complex] :
( ( dvd_dvd_complex @ zero_zero_complex @ A )
=> ( A = zero_zero_complex ) ) ).
% dvd_0_left
thf(fact_1353_dvd__0__left,axiom,
! [A: real] :
( ( dvd_dvd_real @ zero_zero_real @ A )
=> ( A = zero_zero_real ) ) ).
% dvd_0_left
thf(fact_1354_dvd__0__left,axiom,
! [A: rat] :
( ( dvd_dvd_rat @ zero_zero_rat @ A )
=> ( A = zero_zero_rat ) ) ).
% dvd_0_left
thf(fact_1355_dvd__0__left,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A )
=> ( A = zero_zero_nat ) ) ).
% dvd_0_left
thf(fact_1356_dvd__0__left,axiom,
! [A: int] :
( ( dvd_dvd_int @ zero_zero_int @ A )
=> ( A = zero_zero_int ) ) ).
% dvd_0_left
thf(fact_1357_dvd__field__iff,axiom,
( dvd_dvd_complex
= ( ^ [A3: complex,B2: complex] :
( ( A3 = zero_zero_complex )
=> ( B2 = zero_zero_complex ) ) ) ) ).
% dvd_field_iff
thf(fact_1358_dvd__field__iff,axiom,
( dvd_dvd_real
= ( ^ [A3: real,B2: real] :
( ( A3 = zero_zero_real )
=> ( B2 = zero_zero_real ) ) ) ) ).
% dvd_field_iff
thf(fact_1359_dvd__field__iff,axiom,
( dvd_dvd_rat
= ( ^ [A3: rat,B2: rat] :
( ( A3 = zero_zero_rat )
=> ( B2 = zero_zero_rat ) ) ) ) ).
% dvd_field_iff
thf(fact_1360_plus__nat_Oadd__0,axiom,
! [N: nat] :
( ( plus_plus_nat @ zero_zero_nat @ N )
= N ) ).
% plus_nat.add_0
thf(fact_1361_add__eq__self__zero,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= M )
=> ( N = zero_zero_nat ) ) ).
% add_eq_self_zero
thf(fact_1362_le__0__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_0_eq
thf(fact_1363_bot__nat__0_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_1364_bot__nat__0_Oextremum__unique,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_unique
thf(fact_1365_less__eq__nat_Osimps_I1_J,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% less_eq_nat.simps(1)
thf(fact_1366_nat__mult__eq__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( K = zero_zero_nat )
| ( M = N ) ) ) ).
% nat_mult_eq_cancel_disj
thf(fact_1367_mult__0,axiom,
! [N: nat] :
( ( times_times_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% mult_0
thf(fact_1368_convex__bound__le,axiom,
! [X2: real,A: real,Y2: real,U: real,V: real] :
( ( ord_less_eq_real @ X2 @ A )
=> ( ( ord_less_eq_real @ Y2 @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ U )
=> ( ( ord_less_eq_real @ zero_zero_real @ V )
=> ( ( ( plus_plus_real @ U @ V )
= one_one_real )
=> ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ U @ X2 ) @ ( times_times_real @ V @ Y2 ) ) @ A ) ) ) ) ) ) ).
% convex_bound_le
thf(fact_1369_convex__bound__le,axiom,
! [X2: rat,A: rat,Y2: rat,U: rat,V: rat] :
( ( ord_less_eq_rat @ X2 @ A )
=> ( ( ord_less_eq_rat @ Y2 @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ U )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ V )
=> ( ( ( plus_plus_rat @ U @ V )
= one_one_rat )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ U @ X2 ) @ ( times_times_rat @ V @ Y2 ) ) @ A ) ) ) ) ) ) ).
% convex_bound_le
thf(fact_1370_convex__bound__le,axiom,
! [X2: int,A: int,Y2: int,U: int,V: int] :
( ( ord_less_eq_int @ X2 @ A )
=> ( ( ord_less_eq_int @ Y2 @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ U )
=> ( ( ord_less_eq_int @ zero_zero_int @ V )
=> ( ( ( plus_plus_int @ U @ V )
= one_one_int )
=> ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ U @ X2 ) @ ( times_times_int @ V @ Y2 ) ) @ A ) ) ) ) ) ) ).
% convex_bound_le
thf(fact_1371_power__Suc__le__self,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_1372_power__Suc__le__self,axiom,
! [A: code_integer,N: nat] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( ord_le3102999989581377725nteger @ A @ one_one_Code_integer )
=> ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ A @ ( suc @ N ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_1373_power__Suc__le__self,axiom,
! [A: rat,N: nat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ A @ one_one_rat )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ ( suc @ N ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_1374_power__Suc__le__self,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_1375_power__Suc__le__self,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_1376_power__decreasing,axiom,
! [N: nat,N5: nat,A: real] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N5 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_1377_power__decreasing,axiom,
! [N: nat,N5: nat,A: code_integer] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( ord_le3102999989581377725nteger @ A @ one_one_Code_integer )
=> ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ A @ N5 ) @ ( power_8256067586552552935nteger @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_1378_power__decreasing,axiom,
! [N: nat,N5: nat,A: rat] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ A @ one_one_rat )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ N5 ) @ ( power_power_rat @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_1379_power__decreasing,axiom,
! [N: nat,N5: nat,A: nat] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N5 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_1380_power__decreasing,axiom,
! [N: nat,N5: nat,A: int] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N5 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_1381_is__unit__div__mult__cancel__right,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ A ) )
= ( divide_divide_nat @ one_one_nat @ B ) ) ) ) ).
% is_unit_div_mult_cancel_right
thf(fact_1382_is__unit__div__mult__cancel__right,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ A ) )
= ( divide_divide_int @ one_one_int @ B ) ) ) ) ).
% is_unit_div_mult_cancel_right
thf(fact_1383_is__unit__div__mult__cancel__left,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ A @ B ) )
= ( divide_divide_nat @ one_one_nat @ B ) ) ) ) ).
% is_unit_div_mult_cancel_left
thf(fact_1384_is__unit__div__mult__cancel__left,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( divide_divide_int @ A @ ( times_times_int @ A @ B ) )
= ( divide_divide_int @ one_one_int @ B ) ) ) ) ).
% is_unit_div_mult_cancel_left
thf(fact_1385_is__unitE,axiom,
! [A: nat,C: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ~ ( ( A != zero_zero_nat )
=> ! [B3: nat] :
( ( B3 != zero_zero_nat )
=> ( ( dvd_dvd_nat @ B3 @ one_one_nat )
=> ( ( ( divide_divide_nat @ one_one_nat @ A )
= B3 )
=> ( ( ( divide_divide_nat @ one_one_nat @ B3 )
= A )
=> ( ( ( times_times_nat @ A @ B3 )
= one_one_nat )
=> ( ( divide_divide_nat @ C @ A )
!= ( times_times_nat @ C @ B3 ) ) ) ) ) ) ) ) ) ).
% is_unitE
thf(fact_1386_is__unitE,axiom,
! [A: int,C: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ~ ( ( A != zero_zero_int )
=> ! [B3: int] :
( ( B3 != zero_zero_int )
=> ( ( dvd_dvd_int @ B3 @ one_one_int )
=> ( ( ( divide_divide_int @ one_one_int @ A )
= B3 )
=> ( ( ( divide_divide_int @ one_one_int @ B3 )
= A )
=> ( ( ( times_times_int @ A @ B3 )
= one_one_int )
=> ( ( divide_divide_int @ C @ A )
!= ( times_times_int @ C @ B3 ) ) ) ) ) ) ) ) ) ).
% is_unitE
thf(fact_1387_dvd__power__iff,axiom,
! [X2: nat,M: nat,N: nat] :
( ( X2 != zero_zero_nat )
=> ( ( dvd_dvd_nat @ ( power_power_nat @ X2 @ M ) @ ( power_power_nat @ X2 @ N ) )
= ( ( dvd_dvd_nat @ X2 @ one_one_nat )
| ( ord_less_eq_nat @ M @ N ) ) ) ) ).
% dvd_power_iff
thf(fact_1388_dvd__power__iff,axiom,
! [X2: int,M: nat,N: nat] :
( ( X2 != zero_zero_int )
=> ( ( dvd_dvd_int @ ( power_power_int @ X2 @ M ) @ ( power_power_int @ X2 @ N ) )
= ( ( dvd_dvd_int @ X2 @ one_one_int )
| ( ord_less_eq_nat @ M @ N ) ) ) ) ).
% dvd_power_iff
thf(fact_1389_dvd__power__iff,axiom,
! [X2: code_integer,M: nat,N: nat] :
( ( X2 != zero_z3403309356797280102nteger )
=> ( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X2 @ M ) @ ( power_8256067586552552935nteger @ X2 @ N ) )
= ( ( dvd_dvd_Code_integer @ X2 @ one_one_Code_integer )
| ( ord_less_eq_nat @ M @ N ) ) ) ) ).
% dvd_power_iff
thf(fact_1390_lambda__one,axiom,
( ( ^ [X: complex] : X )
= ( times_times_complex @ one_one_complex ) ) ).
% lambda_one
thf(fact_1391_lambda__one,axiom,
( ( ^ [X: real] : X )
= ( times_times_real @ one_one_real ) ) ).
% lambda_one
thf(fact_1392_lambda__one,axiom,
( ( ^ [X: rat] : X )
= ( times_times_rat @ one_one_rat ) ) ).
% lambda_one
thf(fact_1393_lambda__one,axiom,
( ( ^ [X: nat] : X )
= ( times_times_nat @ one_one_nat ) ) ).
% lambda_one
thf(fact_1394_lambda__one,axiom,
( ( ^ [X: int] : X )
= ( times_times_int @ one_one_int ) ) ).
% lambda_one
thf(fact_1395_lambda__zero,axiom,
( ( ^ [H: complex] : zero_zero_complex )
= ( times_times_complex @ zero_zero_complex ) ) ).
% lambda_zero
thf(fact_1396_lambda__zero,axiom,
( ( ^ [H: real] : zero_zero_real )
= ( times_times_real @ zero_zero_real ) ) ).
% lambda_zero
thf(fact_1397_lambda__zero,axiom,
( ( ^ [H: rat] : zero_zero_rat )
= ( times_times_rat @ zero_zero_rat ) ) ).
% lambda_zero
thf(fact_1398_lambda__zero,axiom,
( ( ^ [H: nat] : zero_zero_nat )
= ( times_times_nat @ zero_zero_nat ) ) ).
% lambda_zero
thf(fact_1399_lambda__zero,axiom,
( ( ^ [H: int] : zero_zero_int )
= ( times_times_int @ zero_zero_int ) ) ).
% lambda_zero
thf(fact_1400_VEBT__internal_OTb_Osimps_I1_J,axiom,
( ( vEBT_VEBT_Tb @ zero_zero_nat )
= ( numeral_numeral_int @ ( bit1 @ one ) ) ) ).
% VEBT_internal.Tb.simps(1)
thf(fact_1401_inverse__of__nat__le,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( N != zero_zero_nat )
=> ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M ) ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% inverse_of_nat_le
thf(fact_1402_inverse__of__nat__le,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( N != zero_zero_nat )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ M ) ) @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ N ) ) ) ) ) ).
% inverse_of_nat_le
thf(fact_1403_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_real @ one_one_real @ ( numeral_numeral_real @ N ) ) ).
% one_le_numeral
thf(fact_1404_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_rat @ one_one_rat @ ( numeral_numeral_rat @ N ) ) ).
% one_le_numeral
thf(fact_1405_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) ) ).
% one_le_numeral
thf(fact_1406_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_int @ one_one_int @ ( numeral_numeral_int @ N ) ) ).
% one_le_numeral
thf(fact_1407_one__plus__numeral__commute,axiom,
! [X2: num] :
( ( plus_plus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ X2 ) )
= ( plus_plus_complex @ ( numera6690914467698888265omplex @ X2 ) @ one_one_complex ) ) ).
% one_plus_numeral_commute
thf(fact_1408_one__plus__numeral__commute,axiom,
! [X2: num] :
( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ X2 ) )
= ( plus_plus_real @ ( numeral_numeral_real @ X2 ) @ one_one_real ) ) ).
% one_plus_numeral_commute
thf(fact_1409_one__plus__numeral__commute,axiom,
! [X2: num] :
( ( plus_plus_rat @ one_one_rat @ ( numeral_numeral_rat @ X2 ) )
= ( plus_plus_rat @ ( numeral_numeral_rat @ X2 ) @ one_one_rat ) ) ).
% one_plus_numeral_commute
thf(fact_1410_one__plus__numeral__commute,axiom,
! [X2: num] :
( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ X2 ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ X2 ) @ one_one_nat ) ) ).
% one_plus_numeral_commute
thf(fact_1411_one__plus__numeral__commute,axiom,
! [X2: num] :
( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ X2 ) )
= ( plus_plus_int @ ( numeral_numeral_int @ X2 ) @ one_one_int ) ) ).
% one_plus_numeral_commute
thf(fact_1412_numeral__One,axiom,
( ( numera6690914467698888265omplex @ one )
= one_one_complex ) ).
% numeral_One
thf(fact_1413_numeral__One,axiom,
( ( numeral_numeral_real @ one )
= one_one_real ) ).
% numeral_One
thf(fact_1414_numeral__One,axiom,
( ( numeral_numeral_rat @ one )
= one_one_rat ) ).
% numeral_One
thf(fact_1415_numeral__One,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numeral_One
thf(fact_1416_numeral__One,axiom,
( ( numeral_numeral_int @ one )
= one_one_int ) ).
% numeral_One
thf(fact_1417_one__le__power,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ one_one_real @ A )
=> ( ord_less_eq_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).
% one_le_power
thf(fact_1418_one__le__power,axiom,
! [A: code_integer,N: nat] :
( ( ord_le3102999989581377725nteger @ one_one_Code_integer @ A )
=> ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).
% one_le_power
thf(fact_1419_one__le__power,axiom,
! [A: rat,N: nat] :
( ( ord_less_eq_rat @ one_one_rat @ A )
=> ( ord_less_eq_rat @ one_one_rat @ ( power_power_rat @ A @ N ) ) ) ).
% one_le_power
thf(fact_1420_one__le__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ord_less_eq_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ).
% one_le_power
thf(fact_1421_one__le__power,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ one_one_int @ A )
=> ( ord_less_eq_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ).
% one_le_power
thf(fact_1422_zdiv__int,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ A @ B ) )
= ( divide_divide_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% zdiv_int
thf(fact_1423_left__right__inverse__power,axiom,
! [X2: complex,Y2: complex,N: nat] :
( ( ( times_times_complex @ X2 @ Y2 )
= one_one_complex )
=> ( ( times_times_complex @ ( power_power_complex @ X2 @ N ) @ ( power_power_complex @ Y2 @ N ) )
= one_one_complex ) ) ).
% left_right_inverse_power
thf(fact_1424_left__right__inverse__power,axiom,
! [X2: code_integer,Y2: code_integer,N: nat] :
( ( ( times_3573771949741848930nteger @ X2 @ Y2 )
= one_one_Code_integer )
=> ( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ X2 @ N ) @ ( power_8256067586552552935nteger @ Y2 @ N ) )
= one_one_Code_integer ) ) ).
% left_right_inverse_power
thf(fact_1425_left__right__inverse__power,axiom,
! [X2: real,Y2: real,N: nat] :
( ( ( times_times_real @ X2 @ Y2 )
= one_one_real )
=> ( ( times_times_real @ ( power_power_real @ X2 @ N ) @ ( power_power_real @ Y2 @ N ) )
= one_one_real ) ) ).
% left_right_inverse_power
thf(fact_1426_left__right__inverse__power,axiom,
! [X2: rat,Y2: rat,N: nat] :
( ( ( times_times_rat @ X2 @ Y2 )
= one_one_rat )
=> ( ( times_times_rat @ ( power_power_rat @ X2 @ N ) @ ( power_power_rat @ Y2 @ N ) )
= one_one_rat ) ) ).
% left_right_inverse_power
thf(fact_1427_left__right__inverse__power,axiom,
! [X2: nat,Y2: nat,N: nat] :
( ( ( times_times_nat @ X2 @ Y2 )
= one_one_nat )
=> ( ( times_times_nat @ ( power_power_nat @ X2 @ N ) @ ( power_power_nat @ Y2 @ N ) )
= one_one_nat ) ) ).
% left_right_inverse_power
thf(fact_1428_left__right__inverse__power,axiom,
! [X2: int,Y2: int,N: nat] :
( ( ( times_times_int @ X2 @ Y2 )
= one_one_int )
=> ( ( times_times_int @ ( power_power_int @ X2 @ N ) @ ( power_power_int @ Y2 @ N ) )
= one_one_int ) ) ).
% left_right_inverse_power
thf(fact_1429_not__numeral__le__zero,axiom,
! [N: num] :
~ ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ zero_zero_real ) ).
% not_numeral_le_zero
thf(fact_1430_not__numeral__le__zero,axiom,
! [N: num] :
~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ N ) @ zero_zero_rat ) ).
% not_numeral_le_zero
thf(fact_1431_not__numeral__le__zero,axiom,
! [N: num] :
~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).
% not_numeral_le_zero
thf(fact_1432_not__numeral__le__zero,axiom,
! [N: num] :
~ ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).
% not_numeral_le_zero
thf(fact_1433_zero__le__numeral,axiom,
! [N: num] : ( ord_less_eq_real @ zero_zero_real @ ( numeral_numeral_real @ N ) ) ).
% zero_le_numeral
thf(fact_1434_zero__le__numeral,axiom,
! [N: num] : ( ord_less_eq_rat @ zero_zero_rat @ ( numeral_numeral_rat @ N ) ) ).
% zero_le_numeral
thf(fact_1435_zero__le__numeral,axiom,
! [N: num] : ( ord_less_eq_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).
% zero_le_numeral
thf(fact_1436_zero__le__numeral,axiom,
! [N: num] : ( ord_less_eq_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).
% zero_le_numeral
thf(fact_1437_power__one__over,axiom,
! [A: complex,N: nat] :
( ( power_power_complex @ ( divide1717551699836669952omplex @ one_one_complex @ A ) @ N )
= ( divide1717551699836669952omplex @ one_one_complex @ ( power_power_complex @ A @ N ) ) ) ).
% power_one_over
thf(fact_1438_power__one__over,axiom,
! [A: real,N: nat] :
( ( power_power_real @ ( divide_divide_real @ one_one_real @ A ) @ N )
= ( divide_divide_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).
% power_one_over
thf(fact_1439_power__one__over,axiom,
! [A: rat,N: nat] :
( ( power_power_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ N )
= ( divide_divide_rat @ one_one_rat @ ( power_power_rat @ A @ N ) ) ) ).
% power_one_over
thf(fact_1440_add__decreasing,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_1441_add__decreasing,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ C @ B )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_1442_add__decreasing,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_1443_add__decreasing,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_1444_add__increasing,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_1445_add__increasing,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ord_less_eq_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_1446_add__increasing,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_1447_add__increasing,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_1448_add__decreasing2,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_1449_add__decreasing2,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_1450_add__decreasing2,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ C @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_1451_add__decreasing2,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_1452_add__increasing2,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ B @ A )
=> ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_1453_add__increasing2,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ( ord_less_eq_rat @ B @ A )
=> ( ord_less_eq_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_1454_add__increasing2,axiom,
! [C: nat,B: nat,A: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ( ord_less_eq_nat @ B @ A )
=> ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_1455_add__increasing2,axiom,
! [C: int,B: int,A: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( ord_less_eq_int @ B @ A )
=> ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_1456_add__nonneg__nonneg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_1457_add__nonneg__nonneg,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_1458_add__nonneg__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_1459_add__nonneg__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_1460_add__nonpos__nonpos,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_nonpos_nonpos
thf(fact_1461_add__nonpos__nonpos,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ B @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% add_nonpos_nonpos
thf(fact_1462_add__nonpos__nonpos,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_nonpos_nonpos
thf(fact_1463_add__nonpos__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_nonpos_nonpos
thf(fact_1464_add__nonneg__eq__0__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( ( plus_plus_real @ X2 @ Y2 )
= zero_zero_real )
= ( ( X2 = zero_zero_real )
& ( Y2 = zero_zero_real ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_1465_add__nonneg__eq__0__iff,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
=> ( ( ( plus_plus_rat @ X2 @ Y2 )
= zero_zero_rat )
= ( ( X2 = zero_zero_rat )
& ( Y2 = zero_zero_rat ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_1466_add__nonneg__eq__0__iff,axiom,
! [X2: nat,Y2: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ X2 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y2 )
=> ( ( ( plus_plus_nat @ X2 @ Y2 )
= zero_zero_nat )
= ( ( X2 = zero_zero_nat )
& ( Y2 = zero_zero_nat ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_1467_add__nonneg__eq__0__iff,axiom,
! [X2: int,Y2: int] :
( ( ord_less_eq_int @ zero_zero_int @ X2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
=> ( ( ( plus_plus_int @ X2 @ Y2 )
= zero_zero_int )
= ( ( X2 = zero_zero_int )
& ( Y2 = zero_zero_int ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_1468_add__nonpos__eq__0__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ X2 @ zero_zero_real )
=> ( ( ord_less_eq_real @ Y2 @ zero_zero_real )
=> ( ( ( plus_plus_real @ X2 @ Y2 )
= zero_zero_real )
= ( ( X2 = zero_zero_real )
& ( Y2 = zero_zero_real ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_1469_add__nonpos__eq__0__iff,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_eq_rat @ X2 @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ Y2 @ zero_zero_rat )
=> ( ( ( plus_plus_rat @ X2 @ Y2 )
= zero_zero_rat )
= ( ( X2 = zero_zero_rat )
& ( Y2 = zero_zero_rat ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_1470_add__nonpos__eq__0__iff,axiom,
! [X2: nat,Y2: nat] :
( ( ord_less_eq_nat @ X2 @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ Y2 @ zero_zero_nat )
=> ( ( ( plus_plus_nat @ X2 @ Y2 )
= zero_zero_nat )
= ( ( X2 = zero_zero_nat )
& ( Y2 = zero_zero_nat ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_1471_add__nonpos__eq__0__iff,axiom,
! [X2: int,Y2: int] :
( ( ord_less_eq_int @ X2 @ zero_zero_int )
=> ( ( ord_less_eq_int @ Y2 @ zero_zero_int )
=> ( ( ( plus_plus_int @ X2 @ Y2 )
= zero_zero_int )
= ( ( X2 = zero_zero_int )
& ( Y2 = zero_zero_int ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_1472_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_1473_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_1474_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_1475_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_1476_zero__le__mult__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ zero_zero_real @ B ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).
% zero_le_mult_iff
thf(fact_1477_zero__le__mult__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) ) ) ) ).
% zero_le_mult_iff
thf(fact_1478_zero__le__mult__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ zero_zero_int @ B ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ B @ zero_zero_int ) ) ) ) ).
% zero_le_mult_iff
thf(fact_1479_mult__nonneg__nonpos2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_1480_mult__nonneg__nonpos2,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ B @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ B @ A ) @ zero_zero_rat ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_1481_mult__nonneg__nonpos2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_1482_mult__nonneg__nonpos2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_1483_mult__nonpos__nonneg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_nonpos_nonneg
thf(fact_1484_mult__nonpos__nonneg,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% mult_nonpos_nonneg
thf(fact_1485_mult__nonpos__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_nonpos_nonneg
thf(fact_1486_mult__nonpos__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_nonpos_nonneg
thf(fact_1487_mult__nonneg__nonpos,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_nonneg_nonpos
thf(fact_1488_mult__nonneg__nonpos,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ B @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% mult_nonneg_nonpos
thf(fact_1489_mult__nonneg__nonpos,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_nonneg_nonpos
thf(fact_1490_mult__nonneg__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_nonneg_nonpos
thf(fact_1491_mult__nonneg__nonneg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_1492_mult__nonneg__nonneg,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_1493_mult__nonneg__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_1494_mult__nonneg__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_1495_split__mult__neg__le,axiom,
! [A: real,B: real] :
( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ zero_zero_real ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ B ) ) )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ).
% split_mult_neg_le
thf(fact_1496_split__mult__neg__le,axiom,
! [A: rat,B: rat] :
( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) ) )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ).
% split_mult_neg_le
thf(fact_1497_split__mult__neg__le,axiom,
! [A: nat,B: nat] :
( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A )
& ( ord_less_eq_nat @ B @ zero_zero_nat ) )
| ( ( ord_less_eq_nat @ A @ zero_zero_nat )
& ( ord_less_eq_nat @ zero_zero_nat @ B ) ) )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ).
% split_mult_neg_le
thf(fact_1498_split__mult__neg__le,axiom,
! [A: int,B: int] :
( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ B @ zero_zero_int ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ zero_zero_int @ B ) ) )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ).
% split_mult_neg_le
thf(fact_1499_mult__le__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ zero_zero_real ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).
% mult_le_0_iff
thf(fact_1500_mult__le__0__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ) ) ).
% mult_le_0_iff
thf(fact_1501_mult__le__0__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
= ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ B @ zero_zero_int ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ zero_zero_int @ B ) ) ) ) ).
% mult_le_0_iff
thf(fact_1502_mult__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_right_mono
thf(fact_1503_mult__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).
% mult_right_mono
thf(fact_1504_mult__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).
% mult_right_mono
thf(fact_1505_mult__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_right_mono
thf(fact_1506_mult__right__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_right_mono_neg
thf(fact_1507_mult__right__mono__neg,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).
% mult_right_mono_neg
thf(fact_1508_mult__right__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_right_mono_neg
thf(fact_1509_mult__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_1510_mult__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_1511_mult__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_1512_mult__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_1513_mult__nonpos__nonpos,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_nonpos_nonpos
thf(fact_1514_mult__nonpos__nonpos,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ B @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).
% mult_nonpos_nonpos
thf(fact_1515_mult__nonpos__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_nonpos_nonpos
thf(fact_1516_mult__left__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_left_mono_neg
thf(fact_1517_mult__left__mono__neg,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% mult_left_mono_neg
thf(fact_1518_mult__left__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_left_mono_neg
thf(fact_1519_split__mult__pos__le,axiom,
! [A: real,B: real] :
( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ zero_zero_real @ B ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ zero_zero_real ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ).
% split_mult_pos_le
thf(fact_1520_split__mult__pos__le,axiom,
! [A: rat,B: rat] :
( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ).
% split_mult_pos_le
thf(fact_1521_split__mult__pos__le,axiom,
! [A: int,B: int] :
( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ zero_zero_int @ B ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ B @ zero_zero_int ) ) )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).
% split_mult_pos_le
thf(fact_1522_zero__le__square,axiom,
! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ A ) ) ).
% zero_le_square
thf(fact_1523_zero__le__square,axiom,
! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ A ) ) ).
% zero_le_square
thf(fact_1524_zero__le__square,axiom,
! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ A ) ) ).
% zero_le_square
thf(fact_1525_mult__mono_H,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) ) ) ) ) ).
% mult_mono'
thf(fact_1526_mult__mono_H,axiom,
! [A: rat,B: rat,C: rat,D2: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ D2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D2 ) ) ) ) ) ) ).
% mult_mono'
thf(fact_1527_mult__mono_H,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D2 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).
% mult_mono'
thf(fact_1528_mult__mono_H,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ) ).
% mult_mono'
thf(fact_1529_mult__mono,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) ) ) ) ) ).
% mult_mono
thf(fact_1530_mult__mono,axiom,
! [A: rat,B: rat,C: rat,D2: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ D2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D2 ) ) ) ) ) ) ).
% mult_mono
thf(fact_1531_mult__mono,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D2 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).
% mult_mono
thf(fact_1532_mult__mono,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ) ).
% mult_mono
thf(fact_1533_unit__mult__right__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( ( times_times_nat @ B @ A )
= ( times_times_nat @ C @ A ) )
= ( B = C ) ) ) ).
% unit_mult_right_cancel
thf(fact_1534_unit__mult__right__cancel,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( ( times_times_int @ B @ A )
= ( times_times_int @ C @ A ) )
= ( B = C ) ) ) ).
% unit_mult_right_cancel
thf(fact_1535_unit__mult__left__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( ( times_times_nat @ A @ B )
= ( times_times_nat @ A @ C ) )
= ( B = C ) ) ) ).
% unit_mult_left_cancel
thf(fact_1536_unit__mult__left__cancel,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( ( times_times_int @ A @ B )
= ( times_times_int @ A @ C ) )
= ( B = C ) ) ) ).
% unit_mult_left_cancel
thf(fact_1537_mult__unit__dvd__iff_H,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
= ( dvd_dvd_nat @ B @ C ) ) ) ).
% mult_unit_dvd_iff'
thf(fact_1538_mult__unit__dvd__iff_H,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
= ( dvd_dvd_int @ B @ C ) ) ) ).
% mult_unit_dvd_iff'
thf(fact_1539_dvd__mult__unit__iff_H,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% dvd_mult_unit_iff'
thf(fact_1540_dvd__mult__unit__iff_H,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% dvd_mult_unit_iff'
thf(fact_1541_mult__unit__dvd__iff,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% mult_unit_dvd_iff
thf(fact_1542_mult__unit__dvd__iff,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% mult_unit_dvd_iff
thf(fact_1543_dvd__mult__unit__iff,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ A @ ( times_times_nat @ C @ B ) )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% dvd_mult_unit_iff
thf(fact_1544_dvd__mult__unit__iff,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ A @ ( times_times_int @ C @ B ) )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% dvd_mult_unit_iff
thf(fact_1545_is__unit__mult__iff,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ one_one_nat )
= ( ( dvd_dvd_nat @ A @ one_one_nat )
& ( dvd_dvd_nat @ B @ one_one_nat ) ) ) ).
% is_unit_mult_iff
thf(fact_1546_is__unit__mult__iff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ one_one_int )
= ( ( dvd_dvd_int @ A @ one_one_int )
& ( dvd_dvd_int @ B @ one_one_int ) ) ) ).
% is_unit_mult_iff
thf(fact_1547_divide__right__mono__neg,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( divide_divide_real @ A @ C ) ) ) ) ).
% divide_right_mono_neg
thf(fact_1548_divide__right__mono__neg,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( divide_divide_rat @ A @ C ) ) ) ) ).
% divide_right_mono_neg
thf(fact_1549_divide__nonpos__nonpos,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ X2 @ zero_zero_real )
=> ( ( ord_less_eq_real @ Y2 @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X2 @ Y2 ) ) ) ) ).
% divide_nonpos_nonpos
thf(fact_1550_divide__nonpos__nonpos,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_eq_rat @ X2 @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ Y2 @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X2 @ Y2 ) ) ) ) ).
% divide_nonpos_nonpos
thf(fact_1551_divide__nonpos__nonneg,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ X2 @ zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ord_less_eq_real @ ( divide_divide_real @ X2 @ Y2 ) @ zero_zero_real ) ) ) ).
% divide_nonpos_nonneg
thf(fact_1552_divide__nonpos__nonneg,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_eq_rat @ X2 @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ zero_zero_rat ) ) ) ).
% divide_nonpos_nonneg
thf(fact_1553_divide__nonneg__nonpos,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ Y2 @ zero_zero_real )
=> ( ord_less_eq_real @ ( divide_divide_real @ X2 @ Y2 ) @ zero_zero_real ) ) ) ).
% divide_nonneg_nonpos
thf(fact_1554_divide__nonneg__nonpos,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
=> ( ( ord_less_eq_rat @ Y2 @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ zero_zero_rat ) ) ) ).
% divide_nonneg_nonpos
thf(fact_1555_divide__nonneg__nonneg,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X2 @ Y2 ) ) ) ) ).
% divide_nonneg_nonneg
thf(fact_1556_divide__nonneg__nonneg,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X2 @ Y2 ) ) ) ) ).
% divide_nonneg_nonneg
thf(fact_1557_zero__le__divide__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ zero_zero_real @ B ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).
% zero_le_divide_iff
thf(fact_1558_zero__le__divide__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ B ) )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) ) ) ) ).
% zero_le_divide_iff
thf(fact_1559_divide__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_right_mono
thf(fact_1560_divide__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).
% divide_right_mono
thf(fact_1561_divide__le__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ zero_zero_real ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).
% divide_le_0_iff
thf(fact_1562_divide__le__0__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ B ) @ zero_zero_rat )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ) ) ).
% divide_le_0_iff
thf(fact_1563_dvd__div__unit__iff,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ A @ ( divide_divide_nat @ C @ B ) )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% dvd_div_unit_iff
thf(fact_1564_dvd__div__unit__iff,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ A @ ( divide_divide_int @ C @ B ) )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% dvd_div_unit_iff
thf(fact_1565_div__unit__dvd__iff,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ C )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% div_unit_dvd_iff
thf(fact_1566_div__unit__dvd__iff,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ C )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% div_unit_dvd_iff
thf(fact_1567_unit__div__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( ( divide_divide_nat @ B @ A )
= ( divide_divide_nat @ C @ A ) )
= ( B = C ) ) ) ).
% unit_div_cancel
thf(fact_1568_unit__div__cancel,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( ( divide_divide_int @ B @ A )
= ( divide_divide_int @ C @ A ) )
= ( B = C ) ) ) ).
% unit_div_cancel
thf(fact_1569_zero__le__power,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).
% zero_le_power
thf(fact_1570_zero__le__power,axiom,
! [A: code_integer,N: nat] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).
% zero_le_power
thf(fact_1571_zero__le__power,axiom,
! [A: rat,N: nat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) ) ) ).
% zero_le_power
thf(fact_1572_zero__le__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).
% zero_le_power
thf(fact_1573_zero__le__power,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).
% zero_le_power
thf(fact_1574_power__mono,axiom,
! [A: real,B: real,N: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).
% power_mono
thf(fact_1575_power__mono,axiom,
! [A: code_integer,B: code_integer,N: nat] :
( ( ord_le3102999989581377725nteger @ A @ B )
=> ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( power_8256067586552552935nteger @ B @ N ) ) ) ) ).
% power_mono
thf(fact_1576_power__mono,axiom,
! [A: rat,B: rat,N: nat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ).
% power_mono
thf(fact_1577_power__mono,axiom,
! [A: nat,B: nat,N: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ).
% power_mono
thf(fact_1578_power__mono,axiom,
! [A: int,B: int,N: nat] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).
% power_mono
thf(fact_1579_nonzero__eq__divide__eq,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( A
= ( divide1717551699836669952omplex @ B @ C ) )
= ( ( times_times_complex @ A @ C )
= B ) ) ) ).
% nonzero_eq_divide_eq
thf(fact_1580_nonzero__eq__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( A
= ( divide_divide_real @ B @ C ) )
= ( ( times_times_real @ A @ C )
= B ) ) ) ).
% nonzero_eq_divide_eq
thf(fact_1581_nonzero__eq__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( A
= ( divide_divide_rat @ B @ C ) )
= ( ( times_times_rat @ A @ C )
= B ) ) ) ).
% nonzero_eq_divide_eq
thf(fact_1582_nonzero__divide__eq__eq,axiom,
! [C: complex,B: complex,A: complex] :
( ( C != zero_zero_complex )
=> ( ( ( divide1717551699836669952omplex @ B @ C )
= A )
= ( B
= ( times_times_complex @ A @ C ) ) ) ) ).
% nonzero_divide_eq_eq
thf(fact_1583_nonzero__divide__eq__eq,axiom,
! [C: real,B: real,A: real] :
( ( C != zero_zero_real )
=> ( ( ( divide_divide_real @ B @ C )
= A )
= ( B
= ( times_times_real @ A @ C ) ) ) ) ).
% nonzero_divide_eq_eq
thf(fact_1584_nonzero__divide__eq__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( C != zero_zero_rat )
=> ( ( ( divide_divide_rat @ B @ C )
= A )
= ( B
= ( times_times_rat @ A @ C ) ) ) ) ).
% nonzero_divide_eq_eq
thf(fact_1585_eq__divide__imp,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( ( times_times_complex @ A @ C )
= B )
=> ( A
= ( divide1717551699836669952omplex @ B @ C ) ) ) ) ).
% eq_divide_imp
thf(fact_1586_eq__divide__imp,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ A @ C )
= B )
=> ( A
= ( divide_divide_real @ B @ C ) ) ) ) ).
% eq_divide_imp
thf(fact_1587_eq__divide__imp,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( ( times_times_rat @ A @ C )
= B )
=> ( A
= ( divide_divide_rat @ B @ C ) ) ) ) ).
% eq_divide_imp
thf(fact_1588_divide__eq__imp,axiom,
! [C: complex,B: complex,A: complex] :
( ( C != zero_zero_complex )
=> ( ( B
= ( times_times_complex @ A @ C ) )
=> ( ( divide1717551699836669952omplex @ B @ C )
= A ) ) ) ).
% divide_eq_imp
thf(fact_1589_divide__eq__imp,axiom,
! [C: real,B: real,A: real] :
( ( C != zero_zero_real )
=> ( ( B
= ( times_times_real @ A @ C ) )
=> ( ( divide_divide_real @ B @ C )
= A ) ) ) ).
% divide_eq_imp
thf(fact_1590_divide__eq__imp,axiom,
! [C: rat,B: rat,A: rat] :
( ( C != zero_zero_rat )
=> ( ( B
= ( times_times_rat @ A @ C ) )
=> ( ( divide_divide_rat @ B @ C )
= A ) ) ) ).
% divide_eq_imp
thf(fact_1591_eq__divide__eq,axiom,
! [A: complex,B: complex,C: complex] :
( ( A
= ( divide1717551699836669952omplex @ B @ C ) )
= ( ( ( C != zero_zero_complex )
=> ( ( times_times_complex @ A @ C )
= B ) )
& ( ( C = zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% eq_divide_eq
thf(fact_1592_eq__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( A
= ( divide_divide_real @ B @ C ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ A @ C )
= B ) )
& ( ( C = zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_divide_eq
thf(fact_1593_eq__divide__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( A
= ( divide_divide_rat @ B @ C ) )
= ( ( ( C != zero_zero_rat )
=> ( ( times_times_rat @ A @ C )
= B ) )
& ( ( C = zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% eq_divide_eq
thf(fact_1594_divide__eq__eq,axiom,
! [B: complex,C: complex,A: complex] :
( ( ( divide1717551699836669952omplex @ B @ C )
= A )
= ( ( ( C != zero_zero_complex )
=> ( B
= ( times_times_complex @ A @ C ) ) )
& ( ( C = zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% divide_eq_eq
thf(fact_1595_divide__eq__eq,axiom,
! [B: real,C: real,A: real] :
( ( ( divide_divide_real @ B @ C )
= A )
= ( ( ( C != zero_zero_real )
=> ( B
= ( times_times_real @ A @ C ) ) )
& ( ( C = zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% divide_eq_eq
thf(fact_1596_divide__eq__eq,axiom,
! [B: rat,C: rat,A: rat] :
( ( ( divide_divide_rat @ B @ C )
= A )
= ( ( ( C != zero_zero_rat )
=> ( B
= ( times_times_rat @ A @ C ) ) )
& ( ( C = zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% divide_eq_eq
thf(fact_1597_frac__eq__eq,axiom,
! [Y2: complex,Z: complex,X2: complex,W: complex] :
( ( Y2 != zero_zero_complex )
=> ( ( Z != zero_zero_complex )
=> ( ( ( divide1717551699836669952omplex @ X2 @ Y2 )
= ( divide1717551699836669952omplex @ W @ Z ) )
= ( ( times_times_complex @ X2 @ Z )
= ( times_times_complex @ W @ Y2 ) ) ) ) ) ).
% frac_eq_eq
thf(fact_1598_frac__eq__eq,axiom,
! [Y2: real,Z: real,X2: real,W: real] :
( ( Y2 != zero_zero_real )
=> ( ( Z != zero_zero_real )
=> ( ( ( divide_divide_real @ X2 @ Y2 )
= ( divide_divide_real @ W @ Z ) )
= ( ( times_times_real @ X2 @ Z )
= ( times_times_real @ W @ Y2 ) ) ) ) ) ).
% frac_eq_eq
thf(fact_1599_frac__eq__eq,axiom,
! [Y2: rat,Z: rat,X2: rat,W: rat] :
( ( Y2 != zero_zero_rat )
=> ( ( Z != zero_zero_rat )
=> ( ( ( divide_divide_rat @ X2 @ Y2 )
= ( divide_divide_rat @ W @ Z ) )
= ( ( times_times_rat @ X2 @ Z )
= ( times_times_rat @ W @ Y2 ) ) ) ) ) ).
% frac_eq_eq
thf(fact_1600_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) ) ).
% of_nat_0_le_iff
thf(fact_1601_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( semiri681578069525770553at_rat @ N ) ) ).
% of_nat_0_le_iff
thf(fact_1602_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) ) ).
% of_nat_0_le_iff
thf(fact_1603_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) ) ).
% of_nat_0_le_iff
thf(fact_1604_semiring__char__0__class_Oof__nat__neq__0,axiom,
! [N: nat] :
( ( semiri8010041392384452111omplex @ ( suc @ N ) )
!= zero_zero_complex ) ).
% semiring_char_0_class.of_nat_neq_0
thf(fact_1605_semiring__char__0__class_Oof__nat__neq__0,axiom,
! [N: nat] :
( ( semiri681578069525770553at_rat @ ( suc @ N ) )
!= zero_zero_rat ) ).
% semiring_char_0_class.of_nat_neq_0
thf(fact_1606_semiring__char__0__class_Oof__nat__neq__0,axiom,
! [N: nat] :
( ( semiri5074537144036343181t_real @ ( suc @ N ) )
!= zero_zero_real ) ).
% semiring_char_0_class.of_nat_neq_0
thf(fact_1607_semiring__char__0__class_Oof__nat__neq__0,axiom,
! [N: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ N ) )
!= zero_zero_int ) ).
% semiring_char_0_class.of_nat_neq_0
thf(fact_1608_semiring__char__0__class_Oof__nat__neq__0,axiom,
! [N: nat] :
( ( semiri1316708129612266289at_nat @ ( suc @ N ) )
!= zero_zero_nat ) ).
% semiring_char_0_class.of_nat_neq_0
thf(fact_1609_dvd__div__eq__0__iff,axiom,
! [B: complex,A: complex] :
( ( dvd_dvd_complex @ B @ A )
=> ( ( ( divide1717551699836669952omplex @ A @ B )
= zero_zero_complex )
= ( A = zero_zero_complex ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_1610_dvd__div__eq__0__iff,axiom,
! [B: real,A: real] :
( ( dvd_dvd_real @ B @ A )
=> ( ( ( divide_divide_real @ A @ B )
= zero_zero_real )
= ( A = zero_zero_real ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_1611_dvd__div__eq__0__iff,axiom,
! [B: rat,A: rat] :
( ( dvd_dvd_rat @ B @ A )
=> ( ( ( divide_divide_rat @ A @ B )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_1612_dvd__div__eq__0__iff,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ A )
=> ( ( ( divide_divide_nat @ A @ B )
= zero_zero_nat )
= ( A = zero_zero_nat ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_1613_dvd__div__eq__0__iff,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ A )
=> ( ( ( divide_divide_int @ A @ B )
= zero_zero_int )
= ( A = zero_zero_int ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_1614_bezout__add__strong__nat,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ? [D3: nat,X3: nat,Y3: nat] :
( ( dvd_dvd_nat @ D3 @ A )
& ( dvd_dvd_nat @ D3 @ B )
& ( ( times_times_nat @ A @ X3 )
= ( plus_plus_nat @ ( times_times_nat @ B @ Y3 ) @ D3 ) ) ) ) ).
% bezout_add_strong_nat
thf(fact_1615_add__is__1,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= ( suc @ zero_zero_nat ) )
= ( ( ( M
= ( suc @ zero_zero_nat ) )
& ( N = zero_zero_nat ) )
| ( ( M = zero_zero_nat )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% add_is_1
thf(fact_1616_one__is__add,axiom,
! [M: nat,N: nat] :
( ( ( suc @ zero_zero_nat )
= ( plus_plus_nat @ M @ N ) )
= ( ( ( M
= ( suc @ zero_zero_nat ) )
& ( N = zero_zero_nat ) )
| ( ( M = zero_zero_nat )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% one_is_add
thf(fact_1617_VEBT__internal_OTb_Osimps_I2_J,axiom,
( ( vEBT_VEBT_Tb @ ( suc @ zero_zero_nat ) )
= ( numeral_numeral_int @ ( bit1 @ one ) ) ) ).
% VEBT_internal.Tb.simps(2)
thf(fact_1618_VEBT__internal_Onaive__member_Osimps_I2_J,axiom,
! [Uu: option4927543243414619207at_nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT,Ux: nat] :
~ ( vEBT_V5719532721284313246member @ ( vEBT_Node @ Uu @ zero_zero_nat @ Uv @ Uw ) @ Ux ) ).
% VEBT_internal.naive_member.simps(2)
thf(fact_1619_numeral__Bit1,axiom,
! [N: num] :
( ( numera6690914467698888265omplex @ ( bit1 @ N ) )
= ( plus_plus_complex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) @ one_one_complex ) ) ).
% numeral_Bit1
thf(fact_1620_numeral__Bit1,axiom,
! [N: num] :
( ( numeral_numeral_real @ ( bit1 @ N ) )
= ( plus_plus_real @ ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) @ one_one_real ) ) ).
% numeral_Bit1
thf(fact_1621_numeral__Bit1,axiom,
! [N: num] :
( ( numeral_numeral_rat @ ( bit1 @ N ) )
= ( plus_plus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ ( numeral_numeral_rat @ N ) ) @ one_one_rat ) ) ).
% numeral_Bit1
thf(fact_1622_numeral__Bit1,axiom,
! [N: num] :
( ( numeral_numeral_nat @ ( bit1 @ N ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) @ one_one_nat ) ) ).
% numeral_Bit1
thf(fact_1623_numeral__Bit1,axiom,
! [N: num] :
( ( numeral_numeral_int @ ( bit1 @ N ) )
= ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) @ one_one_int ) ) ).
% numeral_Bit1
thf(fact_1624_power__increasing,axiom,
! [N: nat,N5: nat,A: real] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_real @ one_one_real @ A )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_1625_power__increasing,axiom,
! [N: nat,N5: nat,A: code_integer] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_le3102999989581377725nteger @ one_one_Code_integer @ A )
=> ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( power_8256067586552552935nteger @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_1626_power__increasing,axiom,
! [N: nat,N5: nat,A: rat] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_rat @ one_one_rat @ A )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_1627_power__increasing,axiom,
! [N: nat,N5: nat,A: nat] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_1628_power__increasing,axiom,
! [N: nat,N5: nat,A: int] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_int @ one_one_int @ A )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_1629_is__unit__div__mult2__eq,axiom,
! [B: nat,C: nat,A: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ C @ one_one_nat )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).
% is_unit_div_mult2_eq
thf(fact_1630_is__unit__div__mult2__eq,axiom,
! [B: int,C: int,A: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ C @ one_one_int )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).
% is_unit_div_mult2_eq
thf(fact_1631_unit__div__mult__swap,axiom,
! [C: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ C @ one_one_nat )
=> ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) )
= ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C ) ) ) ).
% unit_div_mult_swap
thf(fact_1632_unit__div__mult__swap,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ one_one_int )
=> ( ( times_times_int @ A @ ( divide_divide_int @ B @ C ) )
= ( divide_divide_int @ ( times_times_int @ A @ B ) @ C ) ) ) ).
% unit_div_mult_swap
thf(fact_1633_unit__div__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ C )
= ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ B ) ) ) ).
% unit_div_commute
thf(fact_1634_unit__div__commute,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( times_times_int @ ( divide_divide_int @ A @ B ) @ C )
= ( divide_divide_int @ ( times_times_int @ A @ C ) @ B ) ) ) ).
% unit_div_commute
thf(fact_1635_div__mult__unit2,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ one_one_nat )
=> ( ( dvd_dvd_nat @ B @ A )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).
% div_mult_unit2
thf(fact_1636_div__mult__unit2,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ one_one_int )
=> ( ( dvd_dvd_int @ B @ A )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).
% div_mult_unit2
thf(fact_1637_unit__eq__div2,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( A
= ( divide_divide_nat @ C @ B ) )
= ( ( times_times_nat @ A @ B )
= C ) ) ) ).
% unit_eq_div2
thf(fact_1638_unit__eq__div2,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( A
= ( divide_divide_int @ C @ B ) )
= ( ( times_times_int @ A @ B )
= C ) ) ) ).
% unit_eq_div2
thf(fact_1639_unit__eq__div1,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( ( divide_divide_nat @ A @ B )
= C )
= ( A
= ( times_times_nat @ C @ B ) ) ) ) ).
% unit_eq_div1
thf(fact_1640_unit__eq__div1,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( ( divide_divide_int @ A @ B )
= C )
= ( A
= ( times_times_int @ C @ B ) ) ) ) ).
% unit_eq_div1
thf(fact_1641_sum__squares__ge__zero,axiom,
! [X2: real,Y2: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X2 @ X2 ) @ ( times_times_real @ Y2 @ Y2 ) ) ) ).
% sum_squares_ge_zero
thf(fact_1642_sum__squares__ge__zero,axiom,
! [X2: rat,Y2: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ ( times_times_rat @ X2 @ X2 ) @ ( times_times_rat @ Y2 @ Y2 ) ) ) ).
% sum_squares_ge_zero
thf(fact_1643_sum__squares__ge__zero,axiom,
! [X2: int,Y2: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X2 @ X2 ) @ ( times_times_int @ Y2 @ Y2 ) ) ) ).
% sum_squares_ge_zero
thf(fact_1644_sum__squares__le__zero__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ X2 @ X2 ) @ ( times_times_real @ Y2 @ Y2 ) ) @ zero_zero_real )
= ( ( X2 = zero_zero_real )
& ( Y2 = zero_zero_real ) ) ) ).
% sum_squares_le_zero_iff
thf(fact_1645_sum__squares__le__zero__iff,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ X2 @ X2 ) @ ( times_times_rat @ Y2 @ Y2 ) ) @ zero_zero_rat )
= ( ( X2 = zero_zero_rat )
& ( Y2 = zero_zero_rat ) ) ) ).
% sum_squares_le_zero_iff
thf(fact_1646_sum__squares__le__zero__iff,axiom,
! [X2: int,Y2: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ X2 @ X2 ) @ ( times_times_int @ Y2 @ Y2 ) ) @ zero_zero_int )
= ( ( X2 = zero_zero_int )
& ( Y2 = zero_zero_int ) ) ) ).
% sum_squares_le_zero_iff
thf(fact_1647_unique__euclidean__semiring__numeral__class_Odiv__mult2__eq,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ).
% unique_euclidean_semiring_numeral_class.div_mult2_eq
thf(fact_1648_unique__euclidean__semiring__numeral__class_Odiv__mult2__eq,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).
% unique_euclidean_semiring_numeral_class.div_mult2_eq
thf(fact_1649_eq__divide__eq__numeral_I1_J,axiom,
! [W: num,B: complex,C: complex] :
( ( ( numera6690914467698888265omplex @ W )
= ( divide1717551699836669952omplex @ B @ C ) )
= ( ( ( C != zero_zero_complex )
=> ( ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ C )
= B ) )
& ( ( C = zero_zero_complex )
=> ( ( numera6690914467698888265omplex @ W )
= zero_zero_complex ) ) ) ) ).
% eq_divide_eq_numeral(1)
thf(fact_1650_eq__divide__eq__numeral_I1_J,axiom,
! [W: num,B: real,C: real] :
( ( ( numeral_numeral_real @ W )
= ( divide_divide_real @ B @ C ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ ( numeral_numeral_real @ W ) @ C )
= B ) )
& ( ( C = zero_zero_real )
=> ( ( numeral_numeral_real @ W )
= zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral(1)
thf(fact_1651_eq__divide__eq__numeral_I1_J,axiom,
! [W: num,B: rat,C: rat] :
( ( ( numeral_numeral_rat @ W )
= ( divide_divide_rat @ B @ C ) )
= ( ( ( C != zero_zero_rat )
=> ( ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C )
= B ) )
& ( ( C = zero_zero_rat )
=> ( ( numeral_numeral_rat @ W )
= zero_zero_rat ) ) ) ) ).
% eq_divide_eq_numeral(1)
thf(fact_1652_divide__eq__eq__numeral_I1_J,axiom,
! [B: complex,C: complex,W: num] :
( ( ( divide1717551699836669952omplex @ B @ C )
= ( numera6690914467698888265omplex @ W ) )
= ( ( ( C != zero_zero_complex )
=> ( B
= ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ C ) ) )
& ( ( C = zero_zero_complex )
=> ( ( numera6690914467698888265omplex @ W )
= zero_zero_complex ) ) ) ) ).
% divide_eq_eq_numeral(1)
thf(fact_1653_divide__eq__eq__numeral_I1_J,axiom,
! [B: real,C: real,W: num] :
( ( ( divide_divide_real @ B @ C )
= ( numeral_numeral_real @ W ) )
= ( ( ( C != zero_zero_real )
=> ( B
= ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ( C = zero_zero_real )
=> ( ( numeral_numeral_real @ W )
= zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral(1)
thf(fact_1654_divide__eq__eq__numeral_I1_J,axiom,
! [B: rat,C: rat,W: num] :
( ( ( divide_divide_rat @ B @ C )
= ( numeral_numeral_rat @ W ) )
= ( ( ( C != zero_zero_rat )
=> ( B
= ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
& ( ( C = zero_zero_rat )
=> ( ( numeral_numeral_rat @ W )
= zero_zero_rat ) ) ) ) ).
% divide_eq_eq_numeral(1)
thf(fact_1655_power__le__imp__le__base,axiom,
! [A: real,N: nat,B: real] :
( ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ ( power_power_real @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_1656_power__le__imp__le__base,axiom,
! [A: code_integer,N: nat,B: code_integer] :
( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ A @ ( suc @ N ) ) @ ( power_8256067586552552935nteger @ B @ ( suc @ N ) ) )
=> ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
=> ( ord_le3102999989581377725nteger @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_1657_power__le__imp__le__base,axiom,
! [A: rat,N: nat,B: rat] :
( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( suc @ N ) ) @ ( power_power_rat @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_eq_rat @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_1658_power__le__imp__le__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ ( power_power_nat @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_1659_power__le__imp__le__base,axiom,
! [A: int,N: nat,B: int] :
( ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N ) ) @ ( power_power_int @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_1660_power__inject__base,axiom,
! [A: real,N: nat,B: real] :
( ( ( power_power_real @ A @ ( suc @ N ) )
= ( power_power_real @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_1661_power__inject__base,axiom,
! [A: code_integer,N: nat,B: code_integer] :
( ( ( power_8256067586552552935nteger @ A @ ( suc @ N ) )
= ( power_8256067586552552935nteger @ B @ ( suc @ N ) ) )
=> ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_1662_power__inject__base,axiom,
! [A: rat,N: nat,B: rat] :
( ( ( power_power_rat @ A @ ( suc @ N ) )
= ( power_power_rat @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_1663_power__inject__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ( power_power_nat @ A @ ( suc @ N ) )
= ( power_power_nat @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_1664_power__inject__base,axiom,
! [A: int,N: nat,B: int] :
( ( ( power_power_int @ A @ ( suc @ N ) )
= ( power_power_int @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_1665_divide__add__eq__iff,axiom,
! [Z: complex,X2: complex,Y2: complex] :
( ( Z != zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X2 @ Z ) @ Y2 )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ X2 @ ( times_times_complex @ Y2 @ Z ) ) @ Z ) ) ) ).
% divide_add_eq_iff
thf(fact_1666_divide__add__eq__iff,axiom,
! [Z: real,X2: real,Y2: real] :
( ( Z != zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ X2 @ Z ) @ Y2 )
= ( divide_divide_real @ ( plus_plus_real @ X2 @ ( times_times_real @ Y2 @ Z ) ) @ Z ) ) ) ).
% divide_add_eq_iff
thf(fact_1667_divide__add__eq__iff,axiom,
! [Z: rat,X2: rat,Y2: rat] :
( ( Z != zero_zero_rat )
=> ( ( plus_plus_rat @ ( divide_divide_rat @ X2 @ Z ) @ Y2 )
= ( divide_divide_rat @ ( plus_plus_rat @ X2 @ ( times_times_rat @ Y2 @ Z ) ) @ Z ) ) ) ).
% divide_add_eq_iff
thf(fact_1668_add__divide__eq__iff,axiom,
! [Z: complex,X2: complex,Y2: complex] :
( ( Z != zero_zero_complex )
=> ( ( plus_plus_complex @ X2 @ ( divide1717551699836669952omplex @ Y2 @ Z ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ X2 @ Z ) @ Y2 ) @ Z ) ) ) ).
% add_divide_eq_iff
thf(fact_1669_add__divide__eq__iff,axiom,
! [Z: real,X2: real,Y2: real] :
( ( Z != zero_zero_real )
=> ( ( plus_plus_real @ X2 @ ( divide_divide_real @ Y2 @ Z ) )
= ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X2 @ Z ) @ Y2 ) @ Z ) ) ) ).
% add_divide_eq_iff
thf(fact_1670_add__divide__eq__iff,axiom,
! [Z: rat,X2: rat,Y2: rat] :
( ( Z != zero_zero_rat )
=> ( ( plus_plus_rat @ X2 @ ( divide_divide_rat @ Y2 @ Z ) )
= ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ X2 @ Z ) @ Y2 ) @ Z ) ) ) ).
% add_divide_eq_iff
thf(fact_1671_add__num__frac,axiom,
! [Y2: complex,Z: complex,X2: complex] :
( ( Y2 != zero_zero_complex )
=> ( ( plus_plus_complex @ Z @ ( divide1717551699836669952omplex @ X2 @ Y2 ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ X2 @ ( times_times_complex @ Z @ Y2 ) ) @ Y2 ) ) ) ).
% add_num_frac
thf(fact_1672_add__num__frac,axiom,
! [Y2: real,Z: real,X2: real] :
( ( Y2 != zero_zero_real )
=> ( ( plus_plus_real @ Z @ ( divide_divide_real @ X2 @ Y2 ) )
= ( divide_divide_real @ ( plus_plus_real @ X2 @ ( times_times_real @ Z @ Y2 ) ) @ Y2 ) ) ) ).
% add_num_frac
thf(fact_1673_add__num__frac,axiom,
! [Y2: rat,Z: rat,X2: rat] :
( ( Y2 != zero_zero_rat )
=> ( ( plus_plus_rat @ Z @ ( divide_divide_rat @ X2 @ Y2 ) )
= ( divide_divide_rat @ ( plus_plus_rat @ X2 @ ( times_times_rat @ Z @ Y2 ) ) @ Y2 ) ) ) ).
% add_num_frac
thf(fact_1674_add__frac__num,axiom,
! [Y2: complex,X2: complex,Z: complex] :
( ( Y2 != zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X2 @ Y2 ) @ Z )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ X2 @ ( times_times_complex @ Z @ Y2 ) ) @ Y2 ) ) ) ).
% add_frac_num
thf(fact_1675_add__frac__num,axiom,
! [Y2: real,X2: real,Z: real] :
( ( Y2 != zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ X2 @ Y2 ) @ Z )
= ( divide_divide_real @ ( plus_plus_real @ X2 @ ( times_times_real @ Z @ Y2 ) ) @ Y2 ) ) ) ).
% add_frac_num
thf(fact_1676_add__frac__num,axiom,
! [Y2: rat,X2: rat,Z: rat] :
( ( Y2 != zero_zero_rat )
=> ( ( plus_plus_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ Z )
= ( divide_divide_rat @ ( plus_plus_rat @ X2 @ ( times_times_rat @ Z @ Y2 ) ) @ Y2 ) ) ) ).
% add_frac_num
thf(fact_1677_add__frac__eq,axiom,
! [Y2: complex,Z: complex,X2: complex,W: complex] :
( ( Y2 != zero_zero_complex )
=> ( ( Z != zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X2 @ Y2 ) @ ( divide1717551699836669952omplex @ W @ Z ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ X2 @ Z ) @ ( times_times_complex @ W @ Y2 ) ) @ ( times_times_complex @ Y2 @ Z ) ) ) ) ) ).
% add_frac_eq
thf(fact_1678_add__frac__eq,axiom,
! [Y2: real,Z: real,X2: real,W: real] :
( ( Y2 != zero_zero_real )
=> ( ( Z != zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ X2 @ Y2 ) @ ( divide_divide_real @ W @ Z ) )
= ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ W @ Y2 ) ) @ ( times_times_real @ Y2 @ Z ) ) ) ) ) ).
% add_frac_eq
thf(fact_1679_add__frac__eq,axiom,
! [Y2: rat,Z: rat,X2: rat,W: rat] :
( ( Y2 != zero_zero_rat )
=> ( ( Z != zero_zero_rat )
=> ( ( plus_plus_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ ( divide_divide_rat @ W @ Z ) )
= ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ X2 @ Z ) @ ( times_times_rat @ W @ Y2 ) ) @ ( times_times_rat @ Y2 @ Z ) ) ) ) ) ).
% add_frac_eq
thf(fact_1680_add__divide__eq__if__simps_I1_J,axiom,
! [Z: complex,A: complex,B: complex] :
( ( ( Z = zero_zero_complex )
=> ( ( plus_plus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
= A ) )
& ( ( Z != zero_zero_complex )
=> ( ( plus_plus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ A @ Z ) @ B ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(1)
thf(fact_1681_add__divide__eq__if__simps_I1_J,axiom,
! [Z: real,A: real,B: real] :
( ( ( Z = zero_zero_real )
=> ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z ) )
= A ) )
& ( ( Z != zero_zero_real )
=> ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z ) )
= ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ A @ Z ) @ B ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(1)
thf(fact_1682_add__divide__eq__if__simps_I1_J,axiom,
! [Z: rat,A: rat,B: rat] :
( ( ( Z = zero_zero_rat )
=> ( ( plus_plus_rat @ A @ ( divide_divide_rat @ B @ Z ) )
= A ) )
& ( ( Z != zero_zero_rat )
=> ( ( plus_plus_rat @ A @ ( divide_divide_rat @ B @ Z ) )
= ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ Z ) @ B ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(1)
thf(fact_1683_add__divide__eq__if__simps_I2_J,axiom,
! [Z: complex,A: complex,B: complex] :
( ( ( Z = zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
= B ) )
& ( ( Z != zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(2)
thf(fact_1684_add__divide__eq__if__simps_I2_J,axiom,
! [Z: real,A: real,B: real] :
( ( ( Z = zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ A @ Z ) @ B )
= B ) )
& ( ( Z != zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ A @ Z ) @ B )
= ( divide_divide_real @ ( plus_plus_real @ A @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(2)
thf(fact_1685_add__divide__eq__if__simps_I2_J,axiom,
! [Z: rat,A: rat,B: rat] :
( ( ( Z = zero_zero_rat )
=> ( ( plus_plus_rat @ ( divide_divide_rat @ A @ Z ) @ B )
= B ) )
& ( ( Z != zero_zero_rat )
=> ( ( plus_plus_rat @ ( divide_divide_rat @ A @ Z ) @ B )
= ( divide_divide_rat @ ( plus_plus_rat @ A @ ( times_times_rat @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(2)
thf(fact_1686_dvd__div__div__eq__mult,axiom,
! [A: nat,C: nat,B: nat,D2: nat] :
( ( A != zero_zero_nat )
=> ( ( C != zero_zero_nat )
=> ( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ C @ D2 )
=> ( ( ( divide_divide_nat @ B @ A )
= ( divide_divide_nat @ D2 @ C ) )
= ( ( times_times_nat @ B @ C )
= ( times_times_nat @ A @ D2 ) ) ) ) ) ) ) ).
% dvd_div_div_eq_mult
thf(fact_1687_dvd__div__div__eq__mult,axiom,
! [A: int,C: int,B: int,D2: int] :
( ( A != zero_zero_int )
=> ( ( C != zero_zero_int )
=> ( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ C @ D2 )
=> ( ( ( divide_divide_int @ B @ A )
= ( divide_divide_int @ D2 @ C ) )
= ( ( times_times_int @ B @ C )
= ( times_times_int @ A @ D2 ) ) ) ) ) ) ) ).
% dvd_div_div_eq_mult
thf(fact_1688_dvd__div__iff__mult,axiom,
! [C: nat,B: nat,A: nat] :
( ( C != zero_zero_nat )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( ( dvd_dvd_nat @ A @ ( divide_divide_nat @ B @ C ) )
= ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ B ) ) ) ) ).
% dvd_div_iff_mult
thf(fact_1689_dvd__div__iff__mult,axiom,
! [C: int,B: int,A: int] :
( ( C != zero_zero_int )
=> ( ( dvd_dvd_int @ C @ B )
=> ( ( dvd_dvd_int @ A @ ( divide_divide_int @ B @ C ) )
= ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ B ) ) ) ) ).
% dvd_div_iff_mult
thf(fact_1690_div__dvd__iff__mult,axiom,
! [B: nat,A: nat,C: nat] :
( ( B != zero_zero_nat )
=> ( ( dvd_dvd_nat @ B @ A )
=> ( ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ C )
= ( dvd_dvd_nat @ A @ ( times_times_nat @ C @ B ) ) ) ) ) ).
% div_dvd_iff_mult
thf(fact_1691_div__dvd__iff__mult,axiom,
! [B: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( dvd_dvd_int @ B @ A )
=> ( ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ C )
= ( dvd_dvd_int @ A @ ( times_times_int @ C @ B ) ) ) ) ) ).
% div_dvd_iff_mult
thf(fact_1692_dvd__div__eq__mult,axiom,
! [A: nat,B: nat,C: nat] :
( ( A != zero_zero_nat )
=> ( ( dvd_dvd_nat @ A @ B )
=> ( ( ( divide_divide_nat @ B @ A )
= C )
= ( B
= ( times_times_nat @ C @ A ) ) ) ) ) ).
% dvd_div_eq_mult
thf(fact_1693_dvd__div__eq__mult,axiom,
! [A: int,B: int,C: int] :
( ( A != zero_zero_int )
=> ( ( dvd_dvd_int @ A @ B )
=> ( ( ( divide_divide_int @ B @ A )
= C )
= ( B
= ( times_times_int @ C @ A ) ) ) ) ) ).
% dvd_div_eq_mult
thf(fact_1694_numeral__1__eq__Suc__0,axiom,
( ( numeral_numeral_nat @ one )
= ( suc @ zero_zero_nat ) ) ).
% numeral_1_eq_Suc_0
thf(fact_1695_nat__one__le__power,axiom,
! [I: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ I )
=> ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( power_power_nat @ I @ N ) ) ) ).
% nat_one_le_power
thf(fact_1696_gcd__nat_Onot__eq__order__implies__strict,axiom,
! [A: nat,B: nat] :
( ( A != B )
=> ( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) ) ) ) ).
% gcd_nat.not_eq_order_implies_strict
thf(fact_1697_gcd__nat_Ostrict__implies__not__eq,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ( A != B ) ) ).
% gcd_nat.strict_implies_not_eq
thf(fact_1698_gcd__nat_Ostrict__implies__order,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ( dvd_dvd_nat @ A @ B ) ) ).
% gcd_nat.strict_implies_order
thf(fact_1699_gcd__nat_Ostrict__iff__order,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
= ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) ) ) ).
% gcd_nat.strict_iff_order
thf(fact_1700_gcd__nat_Oorder__iff__strict,axiom,
( dvd_dvd_nat
= ( ^ [A3: nat,B2: nat] :
( ( ( dvd_dvd_nat @ A3 @ B2 )
& ( A3 != B2 ) )
| ( A3 = B2 ) ) ) ) ).
% gcd_nat.order_iff_strict
thf(fact_1701_gcd__nat_Ostrict__iff__not,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
= ( ( dvd_dvd_nat @ A @ B )
& ~ ( dvd_dvd_nat @ B @ A ) ) ) ).
% gcd_nat.strict_iff_not
thf(fact_1702_gcd__nat_Ostrict__trans2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ( ( dvd_dvd_nat @ B @ C )
=> ( ( dvd_dvd_nat @ A @ C )
& ( A != C ) ) ) ) ).
% gcd_nat.strict_trans2
thf(fact_1703_gcd__nat_Ostrict__trans1,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( ( dvd_dvd_nat @ B @ C )
& ( B != C ) )
=> ( ( dvd_dvd_nat @ A @ C )
& ( A != C ) ) ) ) ).
% gcd_nat.strict_trans1
thf(fact_1704_gcd__nat_Ostrict__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ( ( ( dvd_dvd_nat @ B @ C )
& ( B != C ) )
=> ( ( dvd_dvd_nat @ A @ C )
& ( A != C ) ) ) ) ).
% gcd_nat.strict_trans
thf(fact_1705_gcd__nat_Oantisym,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ B @ A )
=> ( A = B ) ) ) ).
% gcd_nat.antisym
thf(fact_1706_gcd__nat_Oirrefl,axiom,
! [A: nat] :
~ ( ( dvd_dvd_nat @ A @ A )
& ( A != A ) ) ).
% gcd_nat.irrefl
thf(fact_1707_gcd__nat_Oeq__iff,axiom,
( ( ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 ) )
= ( ^ [A3: nat,B2: nat] :
( ( dvd_dvd_nat @ A3 @ B2 )
& ( dvd_dvd_nat @ B2 @ A3 ) ) ) ) ).
% gcd_nat.eq_iff
thf(fact_1708_gcd__nat_Otrans,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ B @ C )
=> ( dvd_dvd_nat @ A @ C ) ) ) ).
% gcd_nat.trans
thf(fact_1709_gcd__nat_Orefl,axiom,
! [A: nat] : ( dvd_dvd_nat @ A @ A ) ).
% gcd_nat.refl
thf(fact_1710_gcd__nat_Oasym,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ~ ( ( dvd_dvd_nat @ B @ A )
& ( B != A ) ) ) ).
% gcd_nat.asym
thf(fact_1711_numeral__code_I3_J,axiom,
! [N: num] :
( ( numera6690914467698888265omplex @ ( bit1 @ N ) )
= ( plus_plus_complex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) @ one_one_complex ) ) ).
% numeral_code(3)
thf(fact_1712_numeral__code_I3_J,axiom,
! [N: num] :
( ( numeral_numeral_real @ ( bit1 @ N ) )
= ( plus_plus_real @ ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) @ one_one_real ) ) ).
% numeral_code(3)
thf(fact_1713_numeral__code_I3_J,axiom,
! [N: num] :
( ( numeral_numeral_rat @ ( bit1 @ N ) )
= ( plus_plus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ ( numeral_numeral_rat @ N ) ) @ one_one_rat ) ) ).
% numeral_code(3)
thf(fact_1714_numeral__code_I3_J,axiom,
! [N: num] :
( ( numeral_numeral_nat @ ( bit1 @ N ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) @ one_one_nat ) ) ).
% numeral_code(3)
thf(fact_1715_numeral__code_I3_J,axiom,
! [N: num] :
( ( numeral_numeral_int @ ( bit1 @ N ) )
= ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) @ one_one_int ) ) ).
% numeral_code(3)
thf(fact_1716_odd__one,axiom,
~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ one_one_nat ) ).
% odd_one
thf(fact_1717_odd__one,axiom,
~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ one_one_int ) ).
% odd_one
thf(fact_1718_one__power2,axiom,
( ( power_power_rat @ one_one_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_rat ) ).
% one_power2
thf(fact_1719_one__power2,axiom,
( ( power_power_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ).
% one_power2
thf(fact_1720_one__power2,axiom,
( ( power_power_real @ one_one_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_real ) ).
% one_power2
thf(fact_1721_one__power2,axiom,
( ( power_power_int @ one_one_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_int ) ).
% one_power2
thf(fact_1722_one__power2,axiom,
( ( power_power_complex @ one_one_complex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_complex ) ).
% one_power2
thf(fact_1723_one__power2,axiom,
( ( power_8256067586552552935nteger @ one_one_Code_integer @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_Code_integer ) ).
% one_power2
thf(fact_1724_even__zero,axiom,
dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ zero_zero_nat ).
% even_zero
thf(fact_1725_even__zero,axiom,
dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ zero_zero_int ).
% even_zero
thf(fact_1726_zero__power2,axiom,
( ( power_power_rat @ zero_zero_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_rat ) ).
% zero_power2
thf(fact_1727_zero__power2,axiom,
( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% zero_power2
thf(fact_1728_zero__power2,axiom,
( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_real ) ).
% zero_power2
thf(fact_1729_zero__power2,axiom,
( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% zero_power2
thf(fact_1730_zero__power2,axiom,
( ( power_power_complex @ zero_zero_complex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_complex ) ).
% zero_power2
thf(fact_1731_zero__power2,axiom,
( ( power_8256067586552552935nteger @ zero_z3403309356797280102nteger @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_z3403309356797280102nteger ) ).
% zero_power2
thf(fact_1732_numeral__2__eq__2,axiom,
( ( numeral_numeral_nat @ ( bit0 @ one ) )
= ( suc @ ( suc @ zero_zero_nat ) ) ) ).
% numeral_2_eq_2
thf(fact_1733_numeral__3__eq__3,axiom,
( ( numeral_numeral_nat @ ( bit1 @ one ) )
= ( suc @ ( suc @ ( suc @ zero_zero_nat ) ) ) ) ).
% numeral_3_eq_3
thf(fact_1734_VEBT__internal_OTb_H_Osimps_I1_J,axiom,
( ( vEBT_VEBT_Tb2 @ zero_zero_nat )
= ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ).
% VEBT_internal.Tb'.simps(1)
thf(fact_1735_VEBT__internal_OTb_Oelims,axiom,
! [X2: nat,Y2: int] :
( ( ( vEBT_VEBT_Tb @ X2 )
= Y2 )
=> ( ( ( X2 = zero_zero_nat )
=> ( Y2
!= ( numeral_numeral_int @ ( bit1 @ one ) ) ) )
=> ( ( ( X2
= ( suc @ zero_zero_nat ) )
=> ( Y2
!= ( numeral_numeral_int @ ( bit1 @ one ) ) ) )
=> ~ ! [N2: nat] :
( ( X2
= ( suc @ ( suc @ N2 ) ) )
=> ~ ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( Y2
= ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ ( bit1 @ ( bit0 @ one ) ) ) @ ( vEBT_VEBT_Tb @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( times_times_int @ ( vEBT_VEBT_Tb @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( Y2
= ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ ( bit1 @ ( bit0 @ one ) ) ) @ ( vEBT_VEBT_Tb @ ( suc @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( times_times_int @ ( vEBT_VEBT_Tb @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.Tb.elims
thf(fact_1736_VEBT__internal_OT__vebt__buildupi_Oelims,axiom,
! [X2: nat,Y2: nat] :
( ( ( vEBT_V441764108873111860ildupi @ X2 )
= Y2 )
=> ( ( ( X2 = zero_zero_nat )
=> ( Y2
!= ( suc @ zero_zero_nat ) ) )
=> ( ( ( X2
= ( suc @ zero_zero_nat ) )
=> ( Y2
!= ( suc @ zero_zero_nat ) ) )
=> ~ ! [N2: nat] :
( ( X2
= ( suc @ ( suc @ N2 ) ) )
=> ~ ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( Y2
= ( suc @ ( suc @ ( suc @ ( plus_plus_nat @ ( vEBT_V441764108873111860ildupi @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( vEBT_V441764108873111860ildupi @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( Y2
= ( suc @ ( suc @ ( suc @ ( plus_plus_nat @ ( vEBT_V441764108873111860ildupi @ ( suc @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( vEBT_V441764108873111860ildupi @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.T_vebt_buildupi.elims
thf(fact_1737_power2__le__imp__le,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ord_less_eq_real @ X2 @ Y2 ) ) ) ).
% power2_le_imp_le
thf(fact_1738_power2__le__imp__le,axiom,
! [X2: code_integer,Y2: code_integer] :
( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ Y2 )
=> ( ord_le3102999989581377725nteger @ X2 @ Y2 ) ) ) ).
% power2_le_imp_le
thf(fact_1739_power2__le__imp__le,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_eq_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
=> ( ord_less_eq_rat @ X2 @ Y2 ) ) ) ).
% power2_le_imp_le
thf(fact_1740_power2__le__imp__le,axiom,
! [X2: nat,Y2: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y2 )
=> ( ord_less_eq_nat @ X2 @ Y2 ) ) ) ).
% power2_le_imp_le
thf(fact_1741_power2__le__imp__le,axiom,
! [X2: int,Y2: int] :
( ( ord_less_eq_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
=> ( ord_less_eq_int @ X2 @ Y2 ) ) ) ).
% power2_le_imp_le
thf(fact_1742_power2__eq__imp__eq,axiom,
! [X2: real,Y2: real] :
( ( ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( X2 = Y2 ) ) ) ) ).
% power2_eq_imp_eq
thf(fact_1743_power2__eq__imp__eq,axiom,
! [X2: code_integer,Y2: code_integer] :
( ( ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_8256067586552552935nteger @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X2 )
=> ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ Y2 )
=> ( X2 = Y2 ) ) ) ) ).
% power2_eq_imp_eq
thf(fact_1744_power2__eq__imp__eq,axiom,
! [X2: rat,Y2: rat] :
( ( ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
=> ( X2 = Y2 ) ) ) ) ).
% power2_eq_imp_eq
thf(fact_1745_power2__eq__imp__eq,axiom,
! [X2: nat,Y2: nat] :
( ( ( power_power_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_nat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ X2 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y2 )
=> ( X2 = Y2 ) ) ) ) ).
% power2_eq_imp_eq
thf(fact_1746_power2__eq__imp__eq,axiom,
! [X2: int,Y2: int] :
( ( ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ X2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
=> ( X2 = Y2 ) ) ) ) ).
% power2_eq_imp_eq
thf(fact_1747_zero__le__power2,axiom,
! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% zero_le_power2
thf(fact_1748_zero__le__power2,axiom,
! [A: code_integer] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% zero_le_power2
thf(fact_1749_zero__le__power2,axiom,
! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% zero_le_power2
thf(fact_1750_zero__le__power2,axiom,
! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% zero_le_power2
thf(fact_1751_exp__add__not__zero__imp__right,axiom,
! [M: nat,N: nat] :
( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
!= zero_z3403309356797280102nteger )
=> ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N )
!= zero_z3403309356797280102nteger ) ) ).
% exp_add_not_zero_imp_right
thf(fact_1752_exp__add__not__zero__imp__right,axiom,
! [M: nat,N: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
!= zero_zero_nat )
=> ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
!= zero_zero_nat ) ) ).
% exp_add_not_zero_imp_right
thf(fact_1753_exp__add__not__zero__imp__right,axiom,
! [M: nat,N: nat] :
( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
!= zero_zero_int )
=> ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
!= zero_zero_int ) ) ).
% exp_add_not_zero_imp_right
thf(fact_1754_exp__add__not__zero__imp__left,axiom,
! [M: nat,N: nat] :
( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
!= zero_z3403309356797280102nteger )
=> ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M )
!= zero_z3403309356797280102nteger ) ) ).
% exp_add_not_zero_imp_left
thf(fact_1755_exp__add__not__zero__imp__left,axiom,
! [M: nat,N: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
!= zero_zero_nat )
=> ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
!= zero_zero_nat ) ) ).
% exp_add_not_zero_imp_left
thf(fact_1756_exp__add__not__zero__imp__left,axiom,
! [M: nat,N: nat] :
( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
!= zero_zero_int )
=> ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M )
!= zero_zero_int ) ) ).
% exp_add_not_zero_imp_left
thf(fact_1757_two__realpow__ge__one,axiom,
! [N: nat] : ( ord_less_eq_real @ one_one_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ).
% two_realpow_ge_one
thf(fact_1758_VEBT__internal_OTb_H_Osimps_I2_J,axiom,
( ( vEBT_VEBT_Tb2 @ ( suc @ zero_zero_nat ) )
= ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ).
% VEBT_internal.Tb'.simps(2)
thf(fact_1759_oddE,axiom,
! [A: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ~ ! [B3: nat] :
( A
!= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B3 ) @ one_one_nat ) ) ) ).
% oddE
thf(fact_1760_oddE,axiom,
! [A: int] :
( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ~ ! [B3: int] :
( A
!= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B3 ) @ one_one_int ) ) ) ).
% oddE
thf(fact_1761_sum__power2__le__zero__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_real )
= ( ( X2 = zero_zero_real )
& ( Y2 = zero_zero_real ) ) ) ).
% sum_power2_le_zero_iff
thf(fact_1762_sum__power2__le__zero__iff,axiom,
! [X2: code_integer,Y2: code_integer] :
( ( ord_le3102999989581377725nteger @ ( plus_p5714425477246183910nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_z3403309356797280102nteger )
= ( ( X2 = zero_z3403309356797280102nteger )
& ( Y2 = zero_z3403309356797280102nteger ) ) ) ).
% sum_power2_le_zero_iff
thf(fact_1763_sum__power2__le__zero__iff,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_rat )
= ( ( X2 = zero_zero_rat )
& ( Y2 = zero_zero_rat ) ) ) ).
% sum_power2_le_zero_iff
thf(fact_1764_sum__power2__le__zero__iff,axiom,
! [X2: int,Y2: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int )
= ( ( X2 = zero_zero_int )
& ( Y2 = zero_zero_int ) ) ) ).
% sum_power2_le_zero_iff
thf(fact_1765_sum__power2__ge__zero,axiom,
! [X2: real,Y2: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_power2_ge_zero
thf(fact_1766_sum__power2__ge__zero,axiom,
! [X2: code_integer,Y2: code_integer] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( plus_p5714425477246183910nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_power2_ge_zero
thf(fact_1767_sum__power2__ge__zero,axiom,
! [X2: rat,Y2: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_power2_ge_zero
thf(fact_1768_sum__power2__ge__zero,axiom,
! [X2: int,Y2: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_power2_ge_zero
thf(fact_1769_zero__le__even__power_H,axiom,
! [A: real,N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% zero_le_even_power'
thf(fact_1770_zero__le__even__power_H,axiom,
! [A: code_integer,N: nat] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% zero_le_even_power'
thf(fact_1771_zero__le__even__power_H,axiom,
! [A: rat,N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% zero_le_even_power'
thf(fact_1772_zero__le__even__power_H,axiom,
! [A: int,N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% zero_le_even_power'
thf(fact_1773_zero__le__even__power,axiom,
! [N: nat,A: real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).
% zero_le_even_power
thf(fact_1774_zero__le__even__power,axiom,
! [N: nat,A: code_integer] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).
% zero_le_even_power
thf(fact_1775_zero__le__even__power,axiom,
! [N: nat,A: rat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) ) ) ).
% zero_le_even_power
thf(fact_1776_zero__le__even__power,axiom,
! [N: nat,A: int] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).
% zero_le_even_power
thf(fact_1777_zero__le__odd__power,axiom,
! [N: nat,A: real] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ).
% zero_le_odd_power
thf(fact_1778_zero__le__odd__power,axiom,
! [N: nat,A: code_integer] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ A @ N ) )
= ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ) ).
% zero_le_odd_power
thf(fact_1779_zero__le__odd__power,axiom,
! [N: nat,A: rat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ).
% zero_le_odd_power
thf(fact_1780_zero__le__odd__power,axiom,
! [N: nat,A: int] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).
% zero_le_odd_power
thf(fact_1781_zero__le__power__eq,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ).
% zero_le_power_eq
thf(fact_1782_zero__le__power__eq,axiom,
! [A: code_integer,N: nat] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ A @ N ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ) ) ).
% zero_le_power_eq
thf(fact_1783_zero__le__power__eq,axiom,
! [A: rat,N: nat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ).
% zero_le_power_eq
thf(fact_1784_zero__le__power__eq,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ) ).
% zero_le_power_eq
thf(fact_1785_division__decomp,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) )
=> ? [B5: nat,C4: nat] :
( ( A
= ( times_times_nat @ B5 @ C4 ) )
& ( dvd_dvd_nat @ B5 @ B )
& ( dvd_dvd_nat @ C4 @ C ) ) ) ).
% division_decomp
thf(fact_1786_division__decomp,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) )
=> ? [B5: int,C4: int] :
( ( A
= ( times_times_int @ B5 @ C4 ) )
& ( dvd_dvd_int @ B5 @ B )
& ( dvd_dvd_int @ C4 @ C ) ) ) ).
% division_decomp
thf(fact_1787_dvd__productE,axiom,
! [P2: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ P2 @ ( times_times_nat @ A @ B ) )
=> ~ ! [X3: nat,Y3: nat] :
( ( P2
= ( times_times_nat @ X3 @ Y3 ) )
=> ( ( dvd_dvd_nat @ X3 @ A )
=> ~ ( dvd_dvd_nat @ Y3 @ B ) ) ) ) ).
% dvd_productE
thf(fact_1788_dvd__productE,axiom,
! [P2: int,A: int,B: int] :
( ( dvd_dvd_int @ P2 @ ( times_times_int @ A @ B ) )
=> ~ ! [X3: int,Y3: int] :
( ( P2
= ( times_times_int @ X3 @ Y3 ) )
=> ( ( dvd_dvd_int @ X3 @ A )
=> ~ ( dvd_dvd_int @ Y3 @ B ) ) ) ) ).
% dvd_productE
thf(fact_1789_odd__0__le__power__imp__0__le,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% odd_0_le_power_imp_0_le
thf(fact_1790_odd__0__le__power__imp__0__le,axiom,
! [A: code_integer,N: nat] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
=> ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).
% odd_0_le_power_imp_0_le
thf(fact_1791_odd__0__le__power__imp__0__le,axiom,
! [A: rat,N: nat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% odd_0_le_power_imp_0_le
thf(fact_1792_odd__0__le__power__imp__0__le,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
=> ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% odd_0_le_power_imp_0_le
thf(fact_1793_arith__geo__mean,axiom,
! [U: real,X2: real,Y2: real] :
( ( ( power_power_real @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_real @ X2 @ Y2 ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ord_less_eq_real @ U @ ( divide_divide_real @ ( plus_plus_real @ X2 @ Y2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).
% arith_geo_mean
thf(fact_1794_arith__geo__mean,axiom,
! [U: rat,X2: rat,Y2: rat] :
( ( ( power_power_rat @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_rat @ X2 @ Y2 ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
=> ( ord_less_eq_rat @ U @ ( divide_divide_rat @ ( plus_plus_rat @ X2 @ Y2 ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% arith_geo_mean
thf(fact_1795_Bernoulli__inequality__even,axiom,
! [N: nat,X2: real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X2 ) ) @ ( power_power_real @ ( plus_plus_real @ one_one_real @ X2 ) @ N ) ) ) ).
% Bernoulli_inequality_even
thf(fact_1796_VEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_092_060_094sub_062u_092_060_094sub_062p_Osimps_I2_J,axiom,
( ( vEBT_V8346862874174094_d_u_p @ ( suc @ zero_zero_nat ) )
= ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ).
% VEBT_internal.T\<^sub>b\<^sub>u\<^sub>i\<^sub>l\<^sub>d\<^sub>u\<^sub>p.simps(2)
thf(fact_1797_VEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_Osimps_I2_J,axiom,
( ( vEBT_V8646137997579335489_i_l_d @ ( suc @ zero_zero_nat ) )
= ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) ) ).
% VEBT_internal.T\<^sub>b\<^sub>u\<^sub>i\<^sub>l\<^sub>d.simps(2)
thf(fact_1798_high__inv,axiom,
! [X2: nat,N: nat,Y2: nat] :
( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ Y2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ X2 ) @ N )
= Y2 ) ) ).
% high_inv
thf(fact_1799_replicate__eq__replicate,axiom,
! [M: nat,X2: vEBT_VEBT,N: nat,Y2: vEBT_VEBT] :
( ( ( replicate_VEBT_VEBT @ M @ X2 )
= ( replicate_VEBT_VEBT @ N @ Y2 ) )
= ( ( M = N )
& ( ( M != zero_zero_nat )
=> ( X2 = Y2 ) ) ) ) ).
% replicate_eq_replicate
thf(fact_1800_VEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_092_060_094sub_062u_092_060_094sub_062p_Osimps_I1_J,axiom,
( ( vEBT_V8346862874174094_d_u_p @ zero_zero_nat )
= ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ).
% VEBT_internal.T\<^sub>b\<^sub>u\<^sub>i\<^sub>l\<^sub>d\<^sub>u\<^sub>p.simps(1)
thf(fact_1801_VEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_Osimps_I1_J,axiom,
( ( vEBT_V8646137997579335489_i_l_d @ zero_zero_nat )
= ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) ) ).
% VEBT_internal.T\<^sub>b\<^sub>u\<^sub>i\<^sub>l\<^sub>d.simps(1)
thf(fact_1802_Tb__T__vebt__buildupi_H_H,axiom,
! [N: nat] : ( ord_less_eq_nat @ ( vEBT_V441764108873111860ildupi @ N ) @ ( minus_minus_nat @ ( vEBT_VEBT_Tb2 @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% Tb_T_vebt_buildupi''
thf(fact_1803_space_H__bound,axiom,
! [T2: vEBT_VEBT,N: nat,U: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( U
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ord_less_eq_nat @ ( vEBT_VEBT_space2 @ T2 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit1 @ one ) ) ) ) @ U ) ) ) ) ).
% space'_bound
thf(fact_1804_high__bound__aux,axiom,
! [Ma: nat,N: nat,M: nat] :
( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) )
=> ( ord_less_nat @ ( vEBT_VEBT_high @ Ma @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).
% high_bound_aux
thf(fact_1805_int__eq__iff__numeral,axiom,
! [M: nat,V: num] :
( ( ( semiri1314217659103216013at_int @ M )
= ( numeral_numeral_int @ V ) )
= ( M
= ( numeral_numeral_nat @ V ) ) ) ).
% int_eq_iff_numeral
thf(fact_1806_valid__tree__deg__neq__0,axiom,
! [T2: vEBT_VEBT] :
~ ( vEBT_invar_vebt @ T2 @ zero_zero_nat ) ).
% valid_tree_deg_neq_0
thf(fact_1807_valid__0__not,axiom,
! [T2: vEBT_VEBT] :
~ ( vEBT_invar_vebt @ T2 @ zero_zero_nat ) ).
% valid_0_not
thf(fact_1808_deg__deg__n,axiom,
! [Info: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ N )
=> ( Deg = N ) ) ).
% deg_deg_n
thf(fact_1809_cnt__non__neg,axiom,
! [T2: vEBT_VEBT] : ( ord_less_eq_real @ zero_zero_real @ ( vEBT_VEBT_cnt @ T2 ) ) ).
% cnt_non_neg
thf(fact_1810_deg__not__0,axiom,
! [T2: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% deg_not_0
thf(fact_1811_deg__SUcn__Node,axiom,
! [Tree: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ Tree @ ( suc @ ( suc @ N ) ) )
=> ? [Info2: option4927543243414619207at_nat,TreeList2: list_VEBT_VEBT,S2: vEBT_VEBT] :
( Tree
= ( vEBT_Node @ Info2 @ ( suc @ ( suc @ N ) ) @ TreeList2 @ S2 ) ) ) ).
% deg_SUcn_Node
thf(fact_1812_T__vebt__buildupi__gq__0,axiom,
! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( vEBT_V441764108873111860ildupi @ N ) ) ).
% T_vebt_buildupi_gq_0
thf(fact_1813_buildup__build__time,axiom,
! [N: nat] : ( ord_less_nat @ ( vEBT_V8346862874174094_d_u_p @ N ) @ ( vEBT_V8646137997579335489_i_l_d @ N ) ) ).
% buildup_build_time
thf(fact_1814_buildup__gives__valid,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( vEBT_invar_vebt @ ( vEBT_vebt_buildup @ N ) @ N ) ) ).
% buildup_gives_valid
thf(fact_1815_not__gr__zero,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr_zero
thf(fact_1816_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_1817_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_1818_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_1819_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_1820_double__eq__0__iff,axiom,
! [A: real] :
( ( ( plus_plus_real @ A @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% double_eq_0_iff
thf(fact_1821_double__eq__0__iff,axiom,
! [A: rat] :
( ( ( plus_plus_rat @ A @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% double_eq_0_iff
thf(fact_1822_double__eq__0__iff,axiom,
! [A: int] :
( ( ( plus_plus_int @ A @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% double_eq_0_iff
thf(fact_1823_add__less__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( ord_less_real @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_1824_add__less__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
= ( ord_less_rat @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_1825_add__less__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_1826_add__less__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_1827_add__less__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( ord_less_real @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_1828_add__less__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
= ( ord_less_rat @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_1829_add__less__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_1830_add__less__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_1831_diff__self,axiom,
! [A: complex] :
( ( minus_minus_complex @ A @ A )
= zero_zero_complex ) ).
% diff_self
thf(fact_1832_diff__self,axiom,
! [A: real] :
( ( minus_minus_real @ A @ A )
= zero_zero_real ) ).
% diff_self
thf(fact_1833_diff__self,axiom,
! [A: rat] :
( ( minus_minus_rat @ A @ A )
= zero_zero_rat ) ).
% diff_self
thf(fact_1834_diff__self,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% diff_self
thf(fact_1835_diff__0__right,axiom,
! [A: complex] :
( ( minus_minus_complex @ A @ zero_zero_complex )
= A ) ).
% diff_0_right
thf(fact_1836_diff__0__right,axiom,
! [A: real] :
( ( minus_minus_real @ A @ zero_zero_real )
= A ) ).
% diff_0_right
thf(fact_1837_diff__0__right,axiom,
! [A: rat] :
( ( minus_minus_rat @ A @ zero_zero_rat )
= A ) ).
% diff_0_right
thf(fact_1838_diff__0__right,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_0_right
thf(fact_1839_zero__diff,axiom,
! [A: nat] :
( ( minus_minus_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% zero_diff
thf(fact_1840_diff__zero,axiom,
! [A: complex] :
( ( minus_minus_complex @ A @ zero_zero_complex )
= A ) ).
% diff_zero
thf(fact_1841_diff__zero,axiom,
! [A: real] :
( ( minus_minus_real @ A @ zero_zero_real )
= A ) ).
% diff_zero
thf(fact_1842_diff__zero,axiom,
! [A: rat] :
( ( minus_minus_rat @ A @ zero_zero_rat )
= A ) ).
% diff_zero
thf(fact_1843_diff__zero,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ zero_zero_nat )
= A ) ).
% diff_zero
thf(fact_1844_diff__zero,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_zero
thf(fact_1845_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: complex] :
( ( minus_minus_complex @ A @ A )
= zero_zero_complex ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1846_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: real] :
( ( minus_minus_real @ A @ A )
= zero_zero_real ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1847_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: rat] :
( ( minus_minus_rat @ A @ A )
= zero_zero_rat ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1848_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ A )
= zero_zero_nat ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1849_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1850_add__diff__cancel__right_H,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_1851_add__diff__cancel__right_H,axiom,
! [A: rat,B: rat] :
( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_1852_add__diff__cancel__right_H,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_1853_add__diff__cancel__right_H,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_1854_add__diff__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( minus_minus_real @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_1855_add__diff__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
= ( minus_minus_rat @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_1856_add__diff__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( minus_minus_nat @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_1857_add__diff__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( minus_minus_int @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_1858_add__diff__cancel__left_H,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_1859_add__diff__cancel__left_H,axiom,
! [A: rat,B: rat] :
( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_1860_add__diff__cancel__left_H,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_1861_add__diff__cancel__left_H,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_1862_add__diff__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( minus_minus_real @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_1863_add__diff__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( minus_minus_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
= ( minus_minus_rat @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_1864_add__diff__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( minus_minus_nat @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_1865_add__diff__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( minus_minus_int @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_1866_diff__add__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_1867_diff__add__cancel,axiom,
! [A: rat,B: rat] :
( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_1868_diff__add__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_1869_add__diff__cancel,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_1870_add__diff__cancel,axiom,
! [A: rat,B: rat] :
( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_1871_add__diff__cancel,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_1872_lessI,axiom,
! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).
% lessI
thf(fact_1873_Suc__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).
% Suc_mono
thf(fact_1874_Suc__less__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_less_eq
thf(fact_1875_bot__nat__0_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ A ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_1876_neq0__conv,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% neq0_conv
thf(fact_1877_less__nat__zero__code,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_nat_zero_code
thf(fact_1878_diff__Suc__Suc,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N ) )
= ( minus_minus_nat @ M @ N ) ) ).
% diff_Suc_Suc
thf(fact_1879_Suc__diff__diff,axiom,
! [M: nat,N: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M @ N ) @ K ) ) ).
% Suc_diff_diff
thf(fact_1880_nat__add__left__cancel__less,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% nat_add_left_cancel_less
thf(fact_1881_power__one__right,axiom,
! [A: nat] :
( ( power_power_nat @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_1882_power__one__right,axiom,
! [A: real] :
( ( power_power_real @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_1883_power__one__right,axiom,
! [A: int] :
( ( power_power_int @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_1884_power__one__right,axiom,
! [A: complex] :
( ( power_power_complex @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_1885_power__one__right,axiom,
! [A: code_integer] :
( ( power_8256067586552552935nteger @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_1886_diff__0__eq__0,axiom,
! [N: nat] :
( ( minus_minus_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% diff_0_eq_0
thf(fact_1887_diff__self__eq__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ M )
= zero_zero_nat ) ).
% diff_self_eq_0
thf(fact_1888_diff__diff__left,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
= ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).
% diff_diff_left
thf(fact_1889_diff__diff__cancel,axiom,
! [I: nat,N: nat] :
( ( ord_less_eq_nat @ I @ N )
=> ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
= I ) ) ).
% diff_diff_cancel
thf(fact_1890_nat__1__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( one_one_nat
= ( times_times_nat @ M @ N ) )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_1_eq_mult_iff
thf(fact_1891_nat__mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= one_one_nat )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_mult_eq_1_iff
thf(fact_1892_nat__dvd__1__iff__1,axiom,
! [M: nat] :
( ( dvd_dvd_nat @ M @ one_one_nat )
= ( M = one_one_nat ) ) ).
% nat_dvd_1_iff_1
thf(fact_1893_int__dvd__int__iff,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( dvd_dvd_nat @ M @ N ) ) ).
% int_dvd_int_iff
thf(fact_1894_add__less__same__cancel1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( plus_plus_real @ B @ A ) @ B )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% add_less_same_cancel1
thf(fact_1895_add__less__same__cancel1,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ B @ A ) @ B )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% add_less_same_cancel1
thf(fact_1896_add__less__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel1
thf(fact_1897_add__less__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel1
thf(fact_1898_add__less__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ B ) @ B )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% add_less_same_cancel2
thf(fact_1899_add__less__same__cancel2,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ B )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% add_less_same_cancel2
thf(fact_1900_add__less__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel2
thf(fact_1901_add__less__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel2
thf(fact_1902_less__add__same__cancel1,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( plus_plus_real @ A @ B ) )
= ( ord_less_real @ zero_zero_real @ B ) ) ).
% less_add_same_cancel1
thf(fact_1903_less__add__same__cancel1,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ ( plus_plus_rat @ A @ B ) )
= ( ord_less_rat @ zero_zero_rat @ B ) ) ).
% less_add_same_cancel1
thf(fact_1904_less__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel1
thf(fact_1905_less__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel1
thf(fact_1906_less__add__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( plus_plus_real @ B @ A ) )
= ( ord_less_real @ zero_zero_real @ B ) ) ).
% less_add_same_cancel2
thf(fact_1907_less__add__same__cancel2,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ ( plus_plus_rat @ B @ A ) )
= ( ord_less_rat @ zero_zero_rat @ B ) ) ).
% less_add_same_cancel2
thf(fact_1908_less__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel2
thf(fact_1909_less__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel2
thf(fact_1910_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_1911_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ A @ A ) @ zero_zero_rat )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_1912_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_1913_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_1914_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ A ) )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_1915_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_1916_diff__ge__0__iff__ge,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
= ( ord_less_eq_real @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_1917_diff__ge__0__iff__ge,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( minus_minus_rat @ A @ B ) )
= ( ord_less_eq_rat @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_1918_diff__ge__0__iff__ge,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
= ( ord_less_eq_int @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_1919_diff__gt__0__iff__gt,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
= ( ord_less_real @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_1920_diff__gt__0__iff__gt,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( minus_minus_rat @ A @ B ) )
= ( ord_less_rat @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_1921_diff__gt__0__iff__gt,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
= ( ord_less_int @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_1922_diff__add__zero,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
= zero_zero_nat ) ).
% diff_add_zero
thf(fact_1923_diff__numeral__special_I9_J,axiom,
( ( minus_minus_complex @ one_one_complex @ one_one_complex )
= zero_zero_complex ) ).
% diff_numeral_special(9)
thf(fact_1924_diff__numeral__special_I9_J,axiom,
( ( minus_minus_real @ one_one_real @ one_one_real )
= zero_zero_real ) ).
% diff_numeral_special(9)
thf(fact_1925_diff__numeral__special_I9_J,axiom,
( ( minus_minus_rat @ one_one_rat @ one_one_rat )
= zero_zero_rat ) ).
% diff_numeral_special(9)
thf(fact_1926_diff__numeral__special_I9_J,axiom,
( ( minus_minus_int @ one_one_int @ one_one_int )
= zero_zero_int ) ).
% diff_numeral_special(9)
thf(fact_1927_le__add__diff__inverse2,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_1928_le__add__diff__inverse2,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_1929_le__add__diff__inverse2,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_1930_le__add__diff__inverse2,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_1931_le__add__diff__inverse,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_1932_le__add__diff__inverse,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( plus_plus_rat @ B @ ( minus_minus_rat @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_1933_le__add__diff__inverse,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_1934_le__add__diff__inverse,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_1935_left__diff__distrib__numeral,axiom,
! [A: complex,B: complex,V: num] :
( ( times_times_complex @ ( minus_minus_complex @ A @ B ) @ ( numera6690914467698888265omplex @ V ) )
= ( minus_minus_complex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ B @ ( numera6690914467698888265omplex @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_1936_left__diff__distrib__numeral,axiom,
! [A: real,B: real,V: num] :
( ( times_times_real @ ( minus_minus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
= ( minus_minus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_1937_left__diff__distrib__numeral,axiom,
! [A: rat,B: rat,V: num] :
( ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ ( numeral_numeral_rat @ V ) )
= ( minus_minus_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ B @ ( numeral_numeral_rat @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_1938_left__diff__distrib__numeral,axiom,
! [A: int,B: int,V: num] :
( ( times_times_int @ ( minus_minus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
= ( minus_minus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_1939_right__diff__distrib__numeral,axiom,
! [V: num,B: complex,C: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( minus_minus_complex @ B @ C ) )
= ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ B ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_1940_right__diff__distrib__numeral,axiom,
! [V: num,B: real,C: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_1941_right__diff__distrib__numeral,axiom,
! [V: num,B: rat,C: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( minus_minus_rat @ B @ C ) )
= ( minus_minus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ B ) @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_1942_right__diff__distrib__numeral,axiom,
! [V: num,B: int,C: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_1943_power__inject__exp,axiom,
! [A: code_integer,M: nat,N: nat] :
( ( ord_le6747313008572928689nteger @ one_one_Code_integer @ A )
=> ( ( ( power_8256067586552552935nteger @ A @ M )
= ( power_8256067586552552935nteger @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_1944_power__inject__exp,axiom,
! [A: real,M: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ( power_power_real @ A @ M )
= ( power_power_real @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_1945_power__inject__exp,axiom,
! [A: rat,M: nat,N: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ( ( power_power_rat @ A @ M )
= ( power_power_rat @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_1946_power__inject__exp,axiom,
! [A: nat,M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ( power_power_nat @ A @ M )
= ( power_power_nat @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_1947_power__inject__exp,axiom,
! [A: int,M: nat,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ( power_power_int @ A @ M )
= ( power_power_int @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_1948_zero__less__Suc,axiom,
! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).
% zero_less_Suc
thf(fact_1949_less__Suc0,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
= ( N = zero_zero_nat ) ) ).
% less_Suc0
thf(fact_1950_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_1951_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_1952_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_1953_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_1954_div__diff,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ A )
=> ( ( dvd_dvd_int @ C @ B )
=> ( ( divide_divide_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).
% div_diff
thf(fact_1955_add__gr__0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
| ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% add_gr_0
thf(fact_1956_less__one,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ one_one_nat )
= ( N = zero_zero_nat ) ) ).
% less_one
thf(fact_1957_zero__less__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
= ( ord_less_nat @ M @ N ) ) ).
% zero_less_diff
thf(fact_1958_diff__Suc__1,axiom,
! [N: nat] :
( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
= N ) ).
% diff_Suc_1
thf(fact_1959_div__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( divide_divide_nat @ M @ N )
= zero_zero_nat ) ) ).
% div_less
thf(fact_1960_mult__less__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% mult_less_cancel2
thf(fact_1961_nat__0__less__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% nat_0_less_mult_iff
thf(fact_1962_nat__mult__less__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel_disj
thf(fact_1963_diff__is__0__eq,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus_nat @ M @ N )
= zero_zero_nat )
= ( ord_less_eq_nat @ M @ N ) ) ).
% diff_is_0_eq
thf(fact_1964_diff__is__0__eq_H,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( minus_minus_nat @ M @ N )
= zero_zero_nat ) ) ).
% diff_is_0_eq'
thf(fact_1965_nat__zero__less__power__iff,axiom,
! [X2: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X2 @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X2 )
| ( N = zero_zero_nat ) ) ) ).
% nat_zero_less_power_iff
thf(fact_1966_Nat_Odiff__diff__right,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).
% Nat.diff_diff_right
thf(fact_1967_Nat_Oadd__diff__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).
% Nat.add_diff_assoc2
thf(fact_1968_Nat_Oadd__diff__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).
% Nat.add_diff_assoc
thf(fact_1969_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_real @ one_one_real @ ( numeral_numeral_real @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_1970_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_rat @ one_one_rat @ ( numeral_numeral_rat @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_1971_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_1972_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_int @ one_one_int @ ( numeral_numeral_int @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_1973_zero__less__divide__1__iff,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% zero_less_divide_1_iff
thf(fact_1974_zero__less__divide__1__iff,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ one_one_rat @ A ) )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% zero_less_divide_1_iff
thf(fact_1975_less__divide__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_real @ A @ B ) ) ) ).
% less_divide_eq_1_pos
thf(fact_1976_less__divide__eq__1__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
= ( ord_less_rat @ A @ B ) ) ) ).
% less_divide_eq_1_pos
thf(fact_1977_less__divide__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_real @ B @ A ) ) ) ).
% less_divide_eq_1_neg
thf(fact_1978_less__divide__eq__1__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
= ( ord_less_rat @ B @ A ) ) ) ).
% less_divide_eq_1_neg
thf(fact_1979_divide__less__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_real @ B @ A ) ) ) ).
% divide_less_eq_1_pos
thf(fact_1980_divide__less__eq__1__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
= ( ord_less_rat @ B @ A ) ) ) ).
% divide_less_eq_1_pos
thf(fact_1981_divide__less__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_real @ A @ B ) ) ) ).
% divide_less_eq_1_neg
thf(fact_1982_divide__less__eq__1__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
= ( ord_less_rat @ A @ B ) ) ) ).
% divide_less_eq_1_neg
thf(fact_1983_divide__less__0__1__iff,axiom,
! [A: real] :
( ( ord_less_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% divide_less_0_1_iff
thf(fact_1984_divide__less__0__1__iff,axiom,
! [A: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ zero_zero_rat )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% divide_less_0_1_iff
thf(fact_1985_divide__less__eq__numeral1_I1_J,axiom,
! [B: real,W: num,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A )
= ( ord_less_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) ) ).
% divide_less_eq_numeral1(1)
thf(fact_1986_divide__less__eq__numeral1_I1_J,axiom,
! [B: rat,W: num,A: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) @ A )
= ( ord_less_rat @ B @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) ) ).
% divide_less_eq_numeral1(1)
thf(fact_1987_less__divide__eq__numeral1_I1_J,axiom,
! [A: real,B: real,W: num] :
( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
= ( ord_less_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) @ B ) ) ).
% less_divide_eq_numeral1(1)
thf(fact_1988_less__divide__eq__numeral1_I1_J,axiom,
! [A: rat,B: rat,W: num] :
( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
= ( ord_less_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) @ B ) ) ).
% less_divide_eq_numeral1(1)
thf(fact_1989_power__strict__increasing__iff,axiom,
! [B: code_integer,X2: nat,Y2: nat] :
( ( ord_le6747313008572928689nteger @ one_one_Code_integer @ B )
=> ( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ B @ X2 ) @ ( power_8256067586552552935nteger @ B @ Y2 ) )
= ( ord_less_nat @ X2 @ Y2 ) ) ) ).
% power_strict_increasing_iff
thf(fact_1990_power__strict__increasing__iff,axiom,
! [B: real,X2: nat,Y2: nat] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ ( power_power_real @ B @ X2 ) @ ( power_power_real @ B @ Y2 ) )
= ( ord_less_nat @ X2 @ Y2 ) ) ) ).
% power_strict_increasing_iff
thf(fact_1991_power__strict__increasing__iff,axiom,
! [B: rat,X2: nat,Y2: nat] :
( ( ord_less_rat @ one_one_rat @ B )
=> ( ( ord_less_rat @ ( power_power_rat @ B @ X2 ) @ ( power_power_rat @ B @ Y2 ) )
= ( ord_less_nat @ X2 @ Y2 ) ) ) ).
% power_strict_increasing_iff
thf(fact_1992_power__strict__increasing__iff,axiom,
! [B: nat,X2: nat,Y2: nat] :
( ( ord_less_nat @ one_one_nat @ B )
=> ( ( ord_less_nat @ ( power_power_nat @ B @ X2 ) @ ( power_power_nat @ B @ Y2 ) )
= ( ord_less_nat @ X2 @ Y2 ) ) ) ).
% power_strict_increasing_iff
thf(fact_1993_power__strict__increasing__iff,axiom,
! [B: int,X2: nat,Y2: nat] :
( ( ord_less_int @ one_one_int @ B )
=> ( ( ord_less_int @ ( power_power_int @ B @ X2 ) @ ( power_power_int @ B @ Y2 ) )
= ( ord_less_nat @ X2 @ Y2 ) ) ) ).
% power_strict_increasing_iff
thf(fact_1994_power__eq__0__iff,axiom,
! [A: rat,N: nat] :
( ( ( power_power_rat @ A @ N )
= zero_zero_rat )
= ( ( A = zero_zero_rat )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_1995_power__eq__0__iff,axiom,
! [A: nat,N: nat] :
( ( ( power_power_nat @ A @ N )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_1996_power__eq__0__iff,axiom,
! [A: real,N: nat] :
( ( ( power_power_real @ A @ N )
= zero_zero_real )
= ( ( A = zero_zero_real )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_1997_power__eq__0__iff,axiom,
! [A: int,N: nat] :
( ( ( power_power_int @ A @ N )
= zero_zero_int )
= ( ( A = zero_zero_int )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_1998_power__eq__0__iff,axiom,
! [A: complex,N: nat] :
( ( ( power_power_complex @ A @ N )
= zero_zero_complex )
= ( ( A = zero_zero_complex )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_1999_power__eq__0__iff,axiom,
! [A: code_integer,N: nat] :
( ( ( power_8256067586552552935nteger @ A @ N )
= zero_z3403309356797280102nteger )
= ( ( A = zero_z3403309356797280102nteger )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_2000_Suc__pred,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
= N ) ) ).
% Suc_pred
thf(fact_2001_pow__divides__pow__iff,axiom,
! [N: nat,A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
= ( dvd_dvd_nat @ A @ B ) ) ) ).
% pow_divides_pow_iff
thf(fact_2002_pow__divides__pow__iff,axiom,
! [N: nat,A: int,B: int] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
= ( dvd_dvd_int @ A @ B ) ) ) ).
% pow_divides_pow_iff
thf(fact_2003_diff__Suc__diff__eq1,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ ( suc @ J ) ) ) ) ).
% diff_Suc_diff_eq1
thf(fact_2004_diff__Suc__diff__eq2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I )
= ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I ) ) ) ) ).
% diff_Suc_diff_eq2
thf(fact_2005_div__eq__dividend__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ( divide_divide_nat @ M @ N )
= M )
= ( N = one_one_nat ) ) ) ).
% div_eq_dividend_iff
thf(fact_2006_mult__le__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% mult_le_cancel2
thf(fact_2007_nat__mult__le__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% nat_mult_le_cancel_disj
thf(fact_2008_div__mult__self__is__m,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide_divide_nat @ ( times_times_nat @ M @ N ) @ N )
= M ) ) ).
% div_mult_self_is_m
thf(fact_2009_div__mult__self1__is__m,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide_divide_nat @ ( times_times_nat @ N @ M ) @ N )
= M ) ) ).
% div_mult_self1_is_m
thf(fact_2010_half__nonnegative__int__iff,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% half_nonnegative_int_iff
thf(fact_2011_divide__le__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% divide_le_eq_1_neg
thf(fact_2012_divide__le__eq__1__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
= ( ord_less_eq_rat @ A @ B ) ) ) ).
% divide_le_eq_1_neg
thf(fact_2013_divide__le__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_eq_real @ B @ A ) ) ) ).
% divide_le_eq_1_pos
thf(fact_2014_divide__le__eq__1__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
= ( ord_less_eq_rat @ B @ A ) ) ) ).
% divide_le_eq_1_pos
thf(fact_2015_le__divide__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_eq_real @ B @ A ) ) ) ).
% le_divide_eq_1_neg
thf(fact_2016_le__divide__eq__1__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
= ( ord_less_eq_rat @ B @ A ) ) ) ).
% le_divide_eq_1_neg
thf(fact_2017_le__divide__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% le_divide_eq_1_pos
thf(fact_2018_le__divide__eq__1__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
= ( ord_less_eq_rat @ A @ B ) ) ) ).
% le_divide_eq_1_pos
thf(fact_2019_power__strict__decreasing__iff,axiom,
! [B: code_integer,M: nat,N: nat] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
=> ( ( ord_le6747313008572928689nteger @ B @ one_one_Code_integer )
=> ( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ B @ M ) @ ( power_8256067586552552935nteger @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_2020_power__strict__decreasing__iff,axiom,
! [B: real,M: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_real @ B @ one_one_real )
=> ( ( ord_less_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_2021_power__strict__decreasing__iff,axiom,
! [B: rat,M: nat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ( ord_less_rat @ B @ one_one_rat )
=> ( ( ord_less_rat @ ( power_power_rat @ B @ M ) @ ( power_power_rat @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_2022_power__strict__decreasing__iff,axiom,
! [B: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ B @ one_one_nat )
=> ( ( ord_less_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_2023_power__strict__decreasing__iff,axiom,
! [B: int,M: nat,N: nat] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ one_one_int )
=> ( ( ord_less_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_2024_power__mono__iff,axiom,
! [A: real,B: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
= ( ord_less_eq_real @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_2025_power__mono__iff,axiom,
! [A: code_integer,B: code_integer,N: nat] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( power_8256067586552552935nteger @ B @ N ) )
= ( ord_le3102999989581377725nteger @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_2026_power__mono__iff,axiom,
! [A: rat,B: rat,N: nat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) )
= ( ord_less_eq_rat @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_2027_power__mono__iff,axiom,
! [A: nat,B: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_2028_power__mono__iff,axiom,
! [A: int,B: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
= ( ord_less_eq_int @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_2029_power__increasing__iff,axiom,
! [B: code_integer,X2: nat,Y2: nat] :
( ( ord_le6747313008572928689nteger @ one_one_Code_integer @ B )
=> ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ B @ X2 ) @ ( power_8256067586552552935nteger @ B @ Y2 ) )
= ( ord_less_eq_nat @ X2 @ Y2 ) ) ) ).
% power_increasing_iff
thf(fact_2030_power__increasing__iff,axiom,
! [B: real,X2: nat,Y2: nat] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_eq_real @ ( power_power_real @ B @ X2 ) @ ( power_power_real @ B @ Y2 ) )
= ( ord_less_eq_nat @ X2 @ Y2 ) ) ) ).
% power_increasing_iff
thf(fact_2031_power__increasing__iff,axiom,
! [B: rat,X2: nat,Y2: nat] :
( ( ord_less_rat @ one_one_rat @ B )
=> ( ( ord_less_eq_rat @ ( power_power_rat @ B @ X2 ) @ ( power_power_rat @ B @ Y2 ) )
= ( ord_less_eq_nat @ X2 @ Y2 ) ) ) ).
% power_increasing_iff
thf(fact_2032_power__increasing__iff,axiom,
! [B: nat,X2: nat,Y2: nat] :
( ( ord_less_nat @ one_one_nat @ B )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B @ X2 ) @ ( power_power_nat @ B @ Y2 ) )
= ( ord_less_eq_nat @ X2 @ Y2 ) ) ) ).
% power_increasing_iff
thf(fact_2033_power__increasing__iff,axiom,
! [B: int,X2: nat,Y2: nat] :
( ( ord_less_int @ one_one_int @ B )
=> ( ( ord_less_eq_int @ ( power_power_int @ B @ X2 ) @ ( power_power_int @ B @ Y2 ) )
= ( ord_less_eq_nat @ X2 @ Y2 ) ) ) ).
% power_increasing_iff
thf(fact_2034_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_rat @ zero_zero_rat @ ( semiri681578069525770553at_rat @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_2035_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_2036_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_2037_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_2038_Suc__1,axiom,
( ( suc @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% Suc_1
thf(fact_2039_Suc__diff__1,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
= N ) ) ).
% Suc_diff_1
thf(fact_2040_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X2: nat] :
( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ ( semiri4939895301339042750nteger @ B ) @ W ) @ ( semiri4939895301339042750nteger @ X2 ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X2 ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_2041_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X2: nat] :
( ( ord_less_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) @ ( semiri681578069525770553at_rat @ X2 ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X2 ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_2042_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X2: nat] :
( ( ord_less_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) @ ( semiri5074537144036343181t_real @ X2 ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X2 ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_2043_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X2: nat] :
( ( ord_less_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X2 ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X2 ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_2044_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X2: nat] :
( ( ord_less_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X2 ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X2 ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_2045_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X2: nat,B: nat,W: nat] :
( ( ord_le6747313008572928689nteger @ ( semiri4939895301339042750nteger @ X2 ) @ ( power_8256067586552552935nteger @ ( semiri4939895301339042750nteger @ B ) @ W ) )
= ( ord_less_nat @ X2 @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_2046_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X2: nat,B: nat,W: nat] :
( ( ord_less_rat @ ( semiri681578069525770553at_rat @ X2 ) @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) )
= ( ord_less_nat @ X2 @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_2047_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X2: nat,B: nat,W: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ X2 ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
= ( ord_less_nat @ X2 @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_2048_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X2: nat,B: nat,W: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ X2 ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
= ( ord_less_nat @ X2 @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_2049_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X2: nat,B: nat,W: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X2 ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
= ( ord_less_nat @ X2 @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_2050_zero__less__power2,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( A != zero_z3403309356797280102nteger ) ) ).
% zero_less_power2
thf(fact_2051_zero__less__power2,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( A != zero_zero_real ) ) ).
% zero_less_power2
thf(fact_2052_zero__less__power2,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( A != zero_zero_rat ) ) ).
% zero_less_power2
thf(fact_2053_zero__less__power2,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( A != zero_zero_int ) ) ).
% zero_less_power2
thf(fact_2054_power__decreasing__iff,axiom,
! [B: code_integer,M: nat,N: nat] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
=> ( ( ord_le6747313008572928689nteger @ B @ one_one_Code_integer )
=> ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ B @ M ) @ ( power_8256067586552552935nteger @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_2055_power__decreasing__iff,axiom,
! [B: real,M: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_real @ B @ one_one_real )
=> ( ( ord_less_eq_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_2056_power__decreasing__iff,axiom,
! [B: rat,M: nat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ( ord_less_rat @ B @ one_one_rat )
=> ( ( ord_less_eq_rat @ ( power_power_rat @ B @ M ) @ ( power_power_rat @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_2057_power__decreasing__iff,axiom,
! [B: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ B @ one_one_nat )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_2058_power__decreasing__iff,axiom,
! [B: int,M: nat,N: nat] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ one_one_int )
=> ( ( ord_less_eq_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_2059_even__diff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ A @ B ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) ) ).
% even_diff
thf(fact_2060_of__nat__zero__less__power__iff,axiom,
! [X2: nat,N: nat] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ ( semiri4939895301339042750nteger @ X2 ) @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X2 )
| ( N = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_2061_of__nat__zero__less__power__iff,axiom,
! [X2: nat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ X2 ) @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X2 )
| ( N = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_2062_of__nat__zero__less__power__iff,axiom,
! [X2: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ X2 ) @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X2 )
| ( N = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_2063_of__nat__zero__less__power__iff,axiom,
! [X2: nat,N: nat] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ X2 ) @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X2 )
| ( N = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_2064_of__nat__zero__less__power__iff,axiom,
! [X2: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ X2 ) @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X2 )
| ( N = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_2065_even__power,axiom,
! [A: code_integer,N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( power_8256067586552552935nteger @ A @ N ) )
= ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% even_power
thf(fact_2066_even__power,axiom,
! [A: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( power_power_nat @ A @ N ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% even_power
thf(fact_2067_even__power,axiom,
! [A: int,N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( power_power_int @ A @ N ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% even_power
thf(fact_2068_power__less__zero__eq,axiom,
! [A: code_integer,N: nat] :
( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ A @ N ) @ zero_z3403309356797280102nteger )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ) ).
% power_less_zero_eq
thf(fact_2069_power__less__zero__eq,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ ( power_power_real @ A @ N ) @ zero_zero_real )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_real @ A @ zero_zero_real ) ) ) ).
% power_less_zero_eq
thf(fact_2070_power__less__zero__eq,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ ( power_power_rat @ A @ N ) @ zero_zero_rat )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).
% power_less_zero_eq
thf(fact_2071_power__less__zero__eq,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ ( power_power_int @ A @ N ) @ zero_zero_int )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_int @ A @ zero_zero_int ) ) ) ).
% power_less_zero_eq
thf(fact_2072_power__less__zero__eq__numeral,axiom,
! [A: code_integer,W: num] :
( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ W ) ) @ zero_z3403309356797280102nteger )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ) ).
% power_less_zero_eq_numeral
thf(fact_2073_power__less__zero__eq__numeral,axiom,
! [A: real,W: num] :
( ( ord_less_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_real )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_real @ A @ zero_zero_real ) ) ) ).
% power_less_zero_eq_numeral
thf(fact_2074_power__less__zero__eq__numeral,axiom,
! [A: rat,W: num] :
( ( ord_less_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_rat )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).
% power_less_zero_eq_numeral
thf(fact_2075_power__less__zero__eq__numeral,axiom,
! [A: int,W: num] :
( ( ord_less_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_int )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_int @ A @ zero_zero_int ) ) ) ).
% power_less_zero_eq_numeral
thf(fact_2076_numeral__power__less__of__nat__cancel__iff,axiom,
! [I: num,N: nat,X2: nat] :
( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ I ) @ N ) @ ( semiri4939895301339042750nteger @ X2 ) )
= ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X2 ) ) ).
% numeral_power_less_of_nat_cancel_iff
thf(fact_2077_numeral__power__less__of__nat__cancel__iff,axiom,
! [I: num,N: nat,X2: nat] :
( ( ord_less_rat @ ( power_power_rat @ ( numeral_numeral_rat @ I ) @ N ) @ ( semiri681578069525770553at_rat @ X2 ) )
= ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X2 ) ) ).
% numeral_power_less_of_nat_cancel_iff
thf(fact_2078_numeral__power__less__of__nat__cancel__iff,axiom,
! [I: num,N: nat,X2: nat] :
( ( ord_less_real @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N ) @ ( semiri5074537144036343181t_real @ X2 ) )
= ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X2 ) ) ).
% numeral_power_less_of_nat_cancel_iff
thf(fact_2079_numeral__power__less__of__nat__cancel__iff,axiom,
! [I: num,N: nat,X2: nat] :
( ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) @ ( semiri1314217659103216013at_int @ X2 ) )
= ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X2 ) ) ).
% numeral_power_less_of_nat_cancel_iff
thf(fact_2080_numeral__power__less__of__nat__cancel__iff,axiom,
! [I: num,N: nat,X2: nat] :
( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ ( semiri1316708129612266289at_nat @ X2 ) )
= ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X2 ) ) ).
% numeral_power_less_of_nat_cancel_iff
thf(fact_2081_of__nat__less__numeral__power__cancel__iff,axiom,
! [X2: nat,I: num,N: nat] :
( ( ord_le6747313008572928689nteger @ ( semiri4939895301339042750nteger @ X2 ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ I ) @ N ) )
= ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).
% of_nat_less_numeral_power_cancel_iff
thf(fact_2082_of__nat__less__numeral__power__cancel__iff,axiom,
! [X2: nat,I: num,N: nat] :
( ( ord_less_rat @ ( semiri681578069525770553at_rat @ X2 ) @ ( power_power_rat @ ( numeral_numeral_rat @ I ) @ N ) )
= ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).
% of_nat_less_numeral_power_cancel_iff
thf(fact_2083_of__nat__less__numeral__power__cancel__iff,axiom,
! [X2: nat,I: num,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ X2 ) @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N ) )
= ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).
% of_nat_less_numeral_power_cancel_iff
thf(fact_2084_of__nat__less__numeral__power__cancel__iff,axiom,
! [X2: nat,I: num,N: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ X2 ) @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) )
= ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).
% of_nat_less_numeral_power_cancel_iff
thf(fact_2085_of__nat__less__numeral__power__cancel__iff,axiom,
! [X2: nat,I: num,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X2 ) @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) )
= ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).
% of_nat_less_numeral_power_cancel_iff
thf(fact_2086_odd__Suc__minus__one,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
= N ) ) ).
% odd_Suc_minus_one
thf(fact_2087_even__diff__nat,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) )
= ( ( ord_less_nat @ M @ N )
| ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).
% even_diff_nat
thf(fact_2088_semiring__parity__class_Oeven__mask__iff,axiom,
! [N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) @ one_one_Code_integer ) )
= ( N = zero_zero_nat ) ) ).
% semiring_parity_class.even_mask_iff
thf(fact_2089_semiring__parity__class_Oeven__mask__iff,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) )
= ( N = zero_zero_nat ) ) ).
% semiring_parity_class.even_mask_iff
thf(fact_2090_semiring__parity__class_Oeven__mask__iff,axiom,
! [N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int ) )
= ( N = zero_zero_nat ) ) ).
% semiring_parity_class.even_mask_iff
thf(fact_2091_zero__less__power__eq__numeral,axiom,
! [A: code_integer,W: num] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ W ) ) )
= ( ( ( numeral_numeral_nat @ W )
= zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( A != zero_z3403309356797280102nteger ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ) ) ).
% zero_less_power_eq_numeral
thf(fact_2092_zero__less__power__eq__numeral,axiom,
! [A: real,W: num] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) )
= ( ( ( numeral_numeral_nat @ W )
= zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( A != zero_zero_real ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_real @ zero_zero_real @ A ) ) ) ) ).
% zero_less_power_eq_numeral
thf(fact_2093_zero__less__power__eq__numeral,axiom,
! [A: rat,W: num] :
( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) )
= ( ( ( numeral_numeral_nat @ W )
= zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( A != zero_zero_rat ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ).
% zero_less_power_eq_numeral
thf(fact_2094_zero__less__power__eq__numeral,axiom,
! [A: int,W: num] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) )
= ( ( ( numeral_numeral_nat @ W )
= zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( A != zero_zero_int ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_int @ zero_zero_int @ A ) ) ) ) ).
% zero_less_power_eq_numeral
thf(fact_2095_odd__two__times__div__two__nat,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( minus_minus_nat @ N @ one_one_nat ) ) ) ).
% odd_two_times_div_two_nat
thf(fact_2096_power__le__zero__eq__numeral,axiom,
! [A: real,W: num] :
( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_real )
= ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_eq_real @ A @ zero_zero_real ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( A = zero_zero_real ) ) ) ) ) ).
% power_le_zero_eq_numeral
thf(fact_2097_power__le__zero__eq__numeral,axiom,
! [A: code_integer,W: num] :
( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ W ) ) @ zero_z3403309356797280102nteger )
= ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( A = zero_z3403309356797280102nteger ) ) ) ) ) ).
% power_le_zero_eq_numeral
thf(fact_2098_power__le__zero__eq__numeral,axiom,
! [A: rat,W: num] :
( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_rat )
= ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_eq_rat @ A @ zero_zero_rat ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( A = zero_zero_rat ) ) ) ) ) ).
% power_le_zero_eq_numeral
thf(fact_2099_power__le__zero__eq__numeral,axiom,
! [A: int,W: num] :
( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_int )
= ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_eq_int @ A @ zero_zero_int ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( A = zero_zero_int ) ) ) ) ) ).
% power_le_zero_eq_numeral
thf(fact_2100_even__succ__div__exp,axiom,
! [A: code_integer,N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
= ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).
% even_succ_div_exp
thf(fact_2101_even__succ__div__exp,axiom,
! [A: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).
% even_succ_div_exp
thf(fact_2102_even__succ__div__exp,axiom,
! [A: int,N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).
% even_succ_div_exp
thf(fact_2103_nonneg__int__cases,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ~ ! [N2: nat] :
( K
!= ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% nonneg_int_cases
thf(fact_2104_zero__le__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ? [N2: nat] :
( K
= ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% zero_le_imp_eq_int
thf(fact_2105_int__int__eq,axiom,
! [M: nat,N: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= ( semiri1314217659103216013at_int @ N ) )
= ( M = N ) ) ).
% int_int_eq
thf(fact_2106_odd__nonzero,axiom,
! [Z: int] :
( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z )
!= zero_zero_int ) ).
% odd_nonzero
thf(fact_2107_linorder__neqE__linordered__idom,axiom,
! [X2: real,Y2: real] :
( ( X2 != Y2 )
=> ( ~ ( ord_less_real @ X2 @ Y2 )
=> ( ord_less_real @ Y2 @ X2 ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_2108_linorder__neqE__linordered__idom,axiom,
! [X2: rat,Y2: rat] :
( ( X2 != Y2 )
=> ( ~ ( ord_less_rat @ X2 @ Y2 )
=> ( ord_less_rat @ Y2 @ X2 ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_2109_linorder__neqE__linordered__idom,axiom,
! [X2: int,Y2: int] :
( ( X2 != Y2 )
=> ( ~ ( ord_less_int @ X2 @ Y2 )
=> ( ord_less_int @ Y2 @ X2 ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_2110_nat__neq__iff,axiom,
! [M: nat,N: nat] :
( ( M != N )
= ( ( ord_less_nat @ M @ N )
| ( ord_less_nat @ N @ M ) ) ) ).
% nat_neq_iff
thf(fact_2111_diff__commute,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
= ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).
% diff_commute
thf(fact_2112_less__not__refl,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_not_refl
thf(fact_2113_less__not__refl2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ M )
=> ( M != N ) ) ).
% less_not_refl2
thf(fact_2114_less__not__refl3,axiom,
! [S3: nat,T2: nat] :
( ( ord_less_nat @ S3 @ T2 )
=> ( S3 != T2 ) ) ).
% less_not_refl3
thf(fact_2115_diff__less__mono2,axiom,
! [M: nat,N: nat,L2: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( ord_less_nat @ M @ L2 )
=> ( ord_less_nat @ ( minus_minus_nat @ L2 @ N ) @ ( minus_minus_nat @ L2 @ M ) ) ) ) ).
% diff_less_mono2
thf(fact_2116_less__irrefl__nat,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_irrefl_nat
thf(fact_2117_nat__less__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ! [M4: nat] :
( ( ord_less_nat @ M4 @ N2 )
=> ( P @ M4 ) )
=> ( P @ N2 ) )
=> ( P @ N ) ) ).
% nat_less_induct
thf(fact_2118_infinite__descent,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ~ ( P @ N2 )
=> ? [M4: nat] :
( ( ord_less_nat @ M4 @ N2 )
& ~ ( P @ M4 ) ) )
=> ( P @ N ) ) ).
% infinite_descent
thf(fact_2119_linorder__neqE__nat,axiom,
! [X2: nat,Y2: nat] :
( ( X2 != Y2 )
=> ( ~ ( ord_less_nat @ X2 @ Y2 )
=> ( ord_less_nat @ Y2 @ X2 ) ) ) ).
% linorder_neqE_nat
thf(fact_2120_less__imp__diff__less,axiom,
! [J: nat,K: nat,N: nat] :
( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( minus_minus_nat @ J @ N ) @ K ) ) ).
% less_imp_diff_less
thf(fact_2121_diff__eq__diff__eq,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D2 ) )
=> ( ( A = B )
= ( C = D2 ) ) ) ).
% diff_eq_diff_eq
thf(fact_2122_diff__eq__diff__eq,axiom,
! [A: rat,B: rat,C: rat,D2: rat] :
( ( ( minus_minus_rat @ A @ B )
= ( minus_minus_rat @ C @ D2 ) )
=> ( ( A = B )
= ( C = D2 ) ) ) ).
% diff_eq_diff_eq
thf(fact_2123_diff__eq__diff__eq,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D2 ) )
=> ( ( A = B )
= ( C = D2 ) ) ) ).
% diff_eq_diff_eq
thf(fact_2124_diff__strict__mono,axiom,
! [A: real,B: real,D2: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ D2 @ C )
=> ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D2 ) ) ) ) ).
% diff_strict_mono
thf(fact_2125_diff__strict__mono,axiom,
! [A: rat,B: rat,D2: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ D2 @ C )
=> ( ord_less_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ D2 ) ) ) ) ).
% diff_strict_mono
thf(fact_2126_diff__strict__mono,axiom,
! [A: int,B: int,D2: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ D2 @ C )
=> ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D2 ) ) ) ) ).
% diff_strict_mono
thf(fact_2127_diff__eq__diff__less,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D2 ) )
=> ( ( ord_less_real @ A @ B )
= ( ord_less_real @ C @ D2 ) ) ) ).
% diff_eq_diff_less
thf(fact_2128_diff__eq__diff__less,axiom,
! [A: rat,B: rat,C: rat,D2: rat] :
( ( ( minus_minus_rat @ A @ B )
= ( minus_minus_rat @ C @ D2 ) )
=> ( ( ord_less_rat @ A @ B )
= ( ord_less_rat @ C @ D2 ) ) ) ).
% diff_eq_diff_less
thf(fact_2129_diff__eq__diff__less,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D2 ) )
=> ( ( ord_less_int @ A @ B )
= ( ord_less_int @ C @ D2 ) ) ) ).
% diff_eq_diff_less
thf(fact_2130_linordered__field__no__lb,axiom,
! [X4: real] :
? [Y3: real] : ( ord_less_real @ Y3 @ X4 ) ).
% linordered_field_no_lb
thf(fact_2131_linordered__field__no__lb,axiom,
! [X4: rat] :
? [Y3: rat] : ( ord_less_rat @ Y3 @ X4 ) ).
% linordered_field_no_lb
thf(fact_2132_linordered__field__no__ub,axiom,
! [X4: real] :
? [X_1: real] : ( ord_less_real @ X4 @ X_1 ) ).
% linordered_field_no_ub
thf(fact_2133_linordered__field__no__ub,axiom,
! [X4: rat] :
? [X_1: rat] : ( ord_less_rat @ X4 @ X_1 ) ).
% linordered_field_no_ub
thf(fact_2134_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
! [A: real,C: real,B: real] :
( ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B )
= ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C ) ) ).
% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_2135_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
! [A: rat,C: rat,B: rat] :
( ( minus_minus_rat @ ( minus_minus_rat @ A @ C ) @ B )
= ( minus_minus_rat @ ( minus_minus_rat @ A @ B ) @ C ) ) ).
% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_2136_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
! [A: nat,C: nat,B: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
= ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).
% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_2137_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
! [A: int,C: int,B: int] :
( ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B )
= ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).
% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_2138_diff__strict__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ord_less_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_2139_diff__strict__left__mono,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ord_less_rat @ ( minus_minus_rat @ C @ A ) @ ( minus_minus_rat @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_2140_diff__strict__left__mono,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ord_less_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_2141_diff__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_2142_diff__strict__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_2143_diff__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_2144_less__iff__diff__less__0,axiom,
( ord_less_real
= ( ^ [A3: real,B2: real] : ( ord_less_real @ ( minus_minus_real @ A3 @ B2 ) @ zero_zero_real ) ) ) ).
% less_iff_diff_less_0
thf(fact_2145_less__iff__diff__less__0,axiom,
( ord_less_rat
= ( ^ [A3: rat,B2: rat] : ( ord_less_rat @ ( minus_minus_rat @ A3 @ B2 ) @ zero_zero_rat ) ) ) ).
% less_iff_diff_less_0
thf(fact_2146_less__iff__diff__less__0,axiom,
( ord_less_int
= ( ^ [A3: int,B2: int] : ( ord_less_int @ ( minus_minus_int @ A3 @ B2 ) @ zero_zero_int ) ) ) ).
% less_iff_diff_less_0
thf(fact_2147_diff__less__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ ( minus_minus_real @ A @ B ) @ C )
= ( ord_less_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).
% diff_less_eq
thf(fact_2148_diff__less__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ ( minus_minus_rat @ A @ B ) @ C )
= ( ord_less_rat @ A @ ( plus_plus_rat @ C @ B ) ) ) ).
% diff_less_eq
thf(fact_2149_diff__less__eq,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ ( minus_minus_int @ A @ B ) @ C )
= ( ord_less_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).
% diff_less_eq
thf(fact_2150_less__diff__eq,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ A @ ( minus_minus_real @ C @ B ) )
= ( ord_less_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).
% less_diff_eq
thf(fact_2151_less__diff__eq,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ A @ ( minus_minus_rat @ C @ B ) )
= ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).
% less_diff_eq
thf(fact_2152_less__diff__eq,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ A @ ( minus_minus_int @ C @ B ) )
= ( ord_less_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% less_diff_eq
thf(fact_2153_linordered__semidom__class_Oadd__diff__inverse,axiom,
! [A: real,B: real] :
( ~ ( ord_less_real @ A @ B )
=> ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
= A ) ) ).
% linordered_semidom_class.add_diff_inverse
thf(fact_2154_linordered__semidom__class_Oadd__diff__inverse,axiom,
! [A: rat,B: rat] :
( ~ ( ord_less_rat @ A @ B )
=> ( ( plus_plus_rat @ B @ ( minus_minus_rat @ A @ B ) )
= A ) ) ).
% linordered_semidom_class.add_diff_inverse
thf(fact_2155_linordered__semidom__class_Oadd__diff__inverse,axiom,
! [A: nat,B: nat] :
( ~ ( ord_less_nat @ A @ B )
=> ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
= A ) ) ).
% linordered_semidom_class.add_diff_inverse
thf(fact_2156_linordered__semidom__class_Oadd__diff__inverse,axiom,
! [A: int,B: int] :
( ~ ( ord_less_int @ A @ B )
=> ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
= A ) ) ).
% linordered_semidom_class.add_diff_inverse
thf(fact_2157_lift__Suc__mono__less__iff,axiom,
! [F: nat > real,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_real @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_2158_lift__Suc__mono__less__iff,axiom,
! [F: nat > rat,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less_rat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_rat @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_2159_lift__Suc__mono__less__iff,axiom,
! [F: nat > num,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less_num @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_num @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_2160_lift__Suc__mono__less__iff,axiom,
! [F: nat > nat,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_2161_lift__Suc__mono__less__iff,axiom,
! [F: nat > int,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_int @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_2162_lift__Suc__mono__less,axiom,
! [F: nat > real,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ N @ N4 )
=> ( ord_less_real @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_2163_lift__Suc__mono__less,axiom,
! [F: nat > rat,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_rat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ N @ N4 )
=> ( ord_less_rat @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_2164_lift__Suc__mono__less,axiom,
! [F: nat > num,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_num @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ N @ N4 )
=> ( ord_less_num @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_2165_lift__Suc__mono__less,axiom,
! [F: nat > nat,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ N @ N4 )
=> ( ord_less_nat @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_2166_lift__Suc__mono__less,axiom,
! [F: nat > int,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ N @ N4 )
=> ( ord_less_int @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_2167_diff__less__Suc,axiom,
! [M: nat,N: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ ( suc @ M ) ) ).
% diff_less_Suc
thf(fact_2168_Suc__diff__Suc,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ M )
=> ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N ) ) )
= ( minus_minus_nat @ M @ N ) ) ) ).
% Suc_diff_Suc
thf(fact_2169_diff__less,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).
% diff_less
thf(fact_2170_less__diff__conv,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ).
% less_diff_conv
thf(fact_2171_add__diff__inverse__nat,axiom,
! [M: nat,N: nat] :
( ~ ( ord_less_nat @ M @ N )
=> ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
= M ) ) ).
% add_diff_inverse_nat
thf(fact_2172_diff__Suc__eq__diff__pred,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ M @ ( suc @ N ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N ) ) ).
% diff_Suc_eq_diff_pred
thf(fact_2173_less__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( ord_less_nat @ M @ N ) ) ) ) ).
% less_diff_iff
thf(fact_2174_diff__less__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ A )
=> ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).
% diff_less_mono
thf(fact_2175_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_2176_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_2177_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_2178_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_2179_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_2180_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_2181_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_2182_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_2183_dvd__minus__self,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ M ) )
= ( ( ord_less_nat @ N @ M )
| ( dvd_dvd_nat @ M @ N ) ) ) ).
% dvd_minus_self
thf(fact_2184_Suc__pred_H,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( N
= ( suc @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).
% Suc_pred'
thf(fact_2185_Suc__diff__eq__diff__pred,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( minus_minus_nat @ ( suc @ M ) @ N )
= ( minus_minus_nat @ M @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).
% Suc_diff_eq_diff_pred
thf(fact_2186_int__ge__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_eq_int @ K @ I )
=> ( ( P @ K )
=> ( ! [I2: int] :
( ( ord_less_eq_int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_ge_induct
thf(fact_2187_plus__int__code_I2_J,axiom,
! [L2: int] :
( ( plus_plus_int @ zero_zero_int @ L2 )
= L2 ) ).
% plus_int_code(2)
thf(fact_2188_plus__int__code_I1_J,axiom,
! [K: int] :
( ( plus_plus_int @ K @ zero_zero_int )
= K ) ).
% plus_int_code(1)
thf(fact_2189_times__int__code_I2_J,axiom,
! [L2: int] :
( ( times_times_int @ zero_zero_int @ L2 )
= zero_zero_int ) ).
% times_int_code(2)
thf(fact_2190_times__int__code_I1_J,axiom,
! [K: int] :
( ( times_times_int @ K @ zero_zero_int )
= zero_zero_int ) ).
% times_int_code(1)
thf(fact_2191_zdvd__mult__cancel,axiom,
! [K: int,M: int,N: int] :
( ( dvd_dvd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ N ) )
=> ( ( K != zero_zero_int )
=> ( dvd_dvd_int @ M @ N ) ) ) ).
% zdvd_mult_cancel
thf(fact_2192_power__minus__mult,axiom,
! [N: nat,A: complex] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_complex @ ( power_power_complex @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_power_complex @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_2193_power__minus__mult,axiom,
! [N: nat,A: code_integer] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_8256067586552552935nteger @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_2194_power__minus__mult,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_real @ ( power_power_real @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_power_real @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_2195_power__minus__mult,axiom,
! [N: nat,A: rat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_rat @ ( power_power_rat @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_power_rat @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_2196_power__minus__mult,axiom,
! [N: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_power_nat @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_2197_power__minus__mult,axiom,
! [N: nat,A: int] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_int @ ( power_power_int @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_power_int @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_2198_less__add__iff2,axiom,
! [A: real,E: real,C: real,B: real,D2: real] :
( ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D2 ) )
= ( ord_less_real @ C @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D2 ) ) ) ).
% less_add_iff2
thf(fact_2199_less__add__iff2,axiom,
! [A: rat,E: rat,C: rat,B: rat,D2: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D2 ) )
= ( ord_less_rat @ C @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E ) @ D2 ) ) ) ).
% less_add_iff2
thf(fact_2200_less__add__iff2,axiom,
! [A: int,E: int,C: int,B: int,D2: int] :
( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D2 ) )
= ( ord_less_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D2 ) ) ) ).
% less_add_iff2
thf(fact_2201_less__add__iff1,axiom,
! [A: real,E: real,C: real,B: real,D2: real] :
( ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D2 ) )
= ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C ) @ D2 ) ) ).
% less_add_iff1
thf(fact_2202_less__add__iff1,axiom,
! [A: rat,E: rat,C: rat,B: rat,D2: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D2 ) )
= ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E ) @ C ) @ D2 ) ) ).
% less_add_iff1
thf(fact_2203_less__add__iff1,axiom,
! [A: int,E: int,C: int,B: int,D2: int] :
( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D2 ) )
= ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C ) @ D2 ) ) ).
% less_add_iff1
thf(fact_2204_of__nat__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( semiri681578069525770553at_rat @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) ) ) ).
% of_nat_diff
thf(fact_2205_of__nat__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( semiri5074537144036343181t_real @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).
% of_nat_diff
thf(fact_2206_of__nat__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).
% of_nat_diff
thf(fact_2207_of__nat__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( semiri1316708129612266289at_nat @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ) ).
% of_nat_diff
thf(fact_2208_power__strict__increasing,axiom,
! [N: nat,N5: nat,A: code_integer] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_le6747313008572928689nteger @ one_one_Code_integer @ A )
=> ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( power_8256067586552552935nteger @ A @ N5 ) ) ) ) ).
% power_strict_increasing
thf(fact_2209_power__strict__increasing,axiom,
! [N: nat,N5: nat,A: real] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N5 ) ) ) ) ).
% power_strict_increasing
thf(fact_2210_power__strict__increasing,axiom,
! [N: nat,N5: nat,A: rat] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_rat @ one_one_rat @ A )
=> ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ A @ N5 ) ) ) ) ).
% power_strict_increasing
thf(fact_2211_power__strict__increasing,axiom,
! [N: nat,N5: nat,A: nat] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N5 ) ) ) ) ).
% power_strict_increasing
thf(fact_2212_power__strict__increasing,axiom,
! [N: nat,N5: nat,A: int] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N5 ) ) ) ) ).
% power_strict_increasing
thf(fact_2213_power__less__imp__less__exp,axiom,
! [A: code_integer,M: nat,N: nat] :
( ( ord_le6747313008572928689nteger @ one_one_Code_integer @ A )
=> ( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ A @ M ) @ ( power_8256067586552552935nteger @ A @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_2214_power__less__imp__less__exp,axiom,
! [A: real,M: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_2215_power__less__imp__less__exp,axiom,
! [A: rat,M: nat,N: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ( ord_less_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_2216_power__less__imp__less__exp,axiom,
! [A: nat,M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_2217_power__less__imp__less__exp,axiom,
! [A: int,M: nat,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_2218_diff__Suc__less,axiom,
! [N: nat,I: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ ( minus_minus_nat @ N @ ( suc @ I ) ) @ N ) ) ).
% diff_Suc_less
thf(fact_2219_nat__diff__split,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ( ( ord_less_nat @ A @ B )
=> ( P @ zero_zero_nat ) )
& ! [D: nat] :
( ( A
= ( plus_plus_nat @ B @ D ) )
=> ( P @ D ) ) ) ) ).
% nat_diff_split
thf(fact_2220_nat__diff__split__asm,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ~ ( ( ( ord_less_nat @ A @ B )
& ~ ( P @ zero_zero_nat ) )
| ? [D: nat] :
( ( A
= ( plus_plus_nat @ B @ D ) )
& ~ ( P @ D ) ) ) ) ) ).
% nat_diff_split_asm
thf(fact_2221_less__diff__conv2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( ord_less_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ) ).
% less_diff_conv2
thf(fact_2222_nat__induct__non__zero,axiom,
! [N: nat,P: nat > $o] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( P @ one_one_nat )
=> ( ! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct_non_zero
thf(fact_2223_div__less__dividend,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ one_one_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ M ) ) ) ).
% div_less_dividend
thf(fact_2224_eq__iff__diff__eq__0,axiom,
( ( ^ [Y5: complex,Z3: complex] : ( Y5 = Z3 ) )
= ( ^ [A3: complex,B2: complex] :
( ( minus_minus_complex @ A3 @ B2 )
= zero_zero_complex ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_2225_eq__iff__diff__eq__0,axiom,
( ( ^ [Y5: real,Z3: real] : ( Y5 = Z3 ) )
= ( ^ [A3: real,B2: real] :
( ( minus_minus_real @ A3 @ B2 )
= zero_zero_real ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_2226_eq__iff__diff__eq__0,axiom,
( ( ^ [Y5: rat,Z3: rat] : ( Y5 = Z3 ) )
= ( ^ [A3: rat,B2: rat] :
( ( minus_minus_rat @ A3 @ B2 )
= zero_zero_rat ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_2227_eq__iff__diff__eq__0,axiom,
( ( ^ [Y5: int,Z3: int] : ( Y5 = Z3 ) )
= ( ^ [A3: int,B2: int] :
( ( minus_minus_int @ A3 @ B2 )
= zero_zero_int ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_2228_diff__mono,axiom,
! [A: real,B: real,D2: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ D2 @ C )
=> ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D2 ) ) ) ) ).
% diff_mono
thf(fact_2229_diff__mono,axiom,
! [A: rat,B: rat,D2: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ D2 @ C )
=> ( ord_less_eq_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ D2 ) ) ) ) ).
% diff_mono
thf(fact_2230_diff__mono,axiom,
! [A: int,B: int,D2: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ D2 @ C )
=> ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D2 ) ) ) ) ).
% diff_mono
thf(fact_2231_diff__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ord_less_eq_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_2232_diff__left__mono,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ord_less_eq_rat @ ( minus_minus_rat @ C @ A ) @ ( minus_minus_rat @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_2233_diff__left__mono,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ord_less_eq_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_2234_diff__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_2235_diff__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_2236_diff__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_2237_diff__eq__diff__less__eq,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D2 ) )
=> ( ( ord_less_eq_real @ A @ B )
= ( ord_less_eq_real @ C @ D2 ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_2238_diff__eq__diff__less__eq,axiom,
! [A: rat,B: rat,C: rat,D2: rat] :
( ( ( minus_minus_rat @ A @ B )
= ( minus_minus_rat @ C @ D2 ) )
=> ( ( ord_less_eq_rat @ A @ B )
= ( ord_less_eq_rat @ C @ D2 ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_2239_diff__eq__diff__less__eq,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D2 ) )
=> ( ( ord_less_eq_int @ A @ B )
= ( ord_less_eq_int @ C @ D2 ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_2240_diff__diff__eq,axiom,
! [A: real,B: real,C: real] :
( ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_2241_diff__diff__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( minus_minus_rat @ ( minus_minus_rat @ A @ B ) @ C )
= ( minus_minus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_2242_diff__diff__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C )
= ( minus_minus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_2243_diff__diff__eq,axiom,
! [A: int,B: int,C: int] :
( ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_2244_add__diff__add,axiom,
! [A: real,C: real,B: real,D2: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D2 ) )
= ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ ( minus_minus_real @ C @ D2 ) ) ) ).
% add_diff_add
thf(fact_2245_add__diff__add,axiom,
! [A: rat,C: rat,B: rat,D2: rat] :
( ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D2 ) )
= ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ ( minus_minus_rat @ C @ D2 ) ) ) ).
% add_diff_add
thf(fact_2246_add__diff__add,axiom,
! [A: int,C: int,B: int,D2: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D2 ) )
= ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ ( minus_minus_int @ C @ D2 ) ) ) ).
% add_diff_add
thf(fact_2247_add__implies__diff,axiom,
! [C: real,B: real,A: real] :
( ( ( plus_plus_real @ C @ B )
= A )
=> ( C
= ( minus_minus_real @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_2248_add__implies__diff,axiom,
! [C: rat,B: rat,A: rat] :
( ( ( plus_plus_rat @ C @ B )
= A )
=> ( C
= ( minus_minus_rat @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_2249_add__implies__diff,axiom,
! [C: nat,B: nat,A: nat] :
( ( ( plus_plus_nat @ C @ B )
= A )
=> ( C
= ( minus_minus_nat @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_2250_add__implies__diff,axiom,
! [C: int,B: int,A: int] :
( ( ( plus_plus_int @ C @ B )
= A )
=> ( C
= ( minus_minus_int @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_2251_diff__add__eq__diff__diff__swap,axiom,
! [A: real,B: real,C: real] :
( ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) )
= ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B ) ) ).
% diff_add_eq_diff_diff_swap
thf(fact_2252_diff__add__eq__diff__diff__swap,axiom,
! [A: rat,B: rat,C: rat] :
( ( minus_minus_rat @ A @ ( plus_plus_rat @ B @ C ) )
= ( minus_minus_rat @ ( minus_minus_rat @ A @ C ) @ B ) ) ).
% diff_add_eq_diff_diff_swap
thf(fact_2253_diff__add__eq__diff__diff__swap,axiom,
! [A: int,B: int,C: int] :
( ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) )
= ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B ) ) ).
% diff_add_eq_diff_diff_swap
thf(fact_2254_diff__add__eq,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).
% diff_add_eq
thf(fact_2255_diff__add__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ C )
= ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ).
% diff_add_eq
thf(fact_2256_diff__add__eq,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).
% diff_add_eq
thf(fact_2257_diff__diff__eq2,axiom,
! [A: real,B: real,C: real] :
( ( minus_minus_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).
% diff_diff_eq2
thf(fact_2258_diff__diff__eq2,axiom,
! [A: rat,B: rat,C: rat] :
( ( minus_minus_rat @ A @ ( minus_minus_rat @ B @ C ) )
= ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ).
% diff_diff_eq2
thf(fact_2259_diff__diff__eq2,axiom,
! [A: int,B: int,C: int] :
( ( minus_minus_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).
% diff_diff_eq2
thf(fact_2260_add__diff__eq,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).
% add_diff_eq
thf(fact_2261_add__diff__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( plus_plus_rat @ A @ ( minus_minus_rat @ B @ C ) )
= ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).
% add_diff_eq
thf(fact_2262_add__diff__eq,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% add_diff_eq
thf(fact_2263_eq__diff__eq,axiom,
! [A: real,C: real,B: real] :
( ( A
= ( minus_minus_real @ C @ B ) )
= ( ( plus_plus_real @ A @ B )
= C ) ) ).
% eq_diff_eq
thf(fact_2264_eq__diff__eq,axiom,
! [A: rat,C: rat,B: rat] :
( ( A
= ( minus_minus_rat @ C @ B ) )
= ( ( plus_plus_rat @ A @ B )
= C ) ) ).
% eq_diff_eq
thf(fact_2265_eq__diff__eq,axiom,
! [A: int,C: int,B: int] :
( ( A
= ( minus_minus_int @ C @ B ) )
= ( ( plus_plus_int @ A @ B )
= C ) ) ).
% eq_diff_eq
thf(fact_2266_diff__eq__eq,axiom,
! [A: real,B: real,C: real] :
( ( ( minus_minus_real @ A @ B )
= C )
= ( A
= ( plus_plus_real @ C @ B ) ) ) ).
% diff_eq_eq
thf(fact_2267_diff__eq__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ( minus_minus_rat @ A @ B )
= C )
= ( A
= ( plus_plus_rat @ C @ B ) ) ) ).
% diff_eq_eq
thf(fact_2268_diff__eq__eq,axiom,
! [A: int,B: int,C: int] :
( ( ( minus_minus_int @ A @ B )
= C )
= ( A
= ( plus_plus_int @ C @ B ) ) ) ).
% diff_eq_eq
thf(fact_2269_group__cancel_Osub1,axiom,
! [A2: real,K: real,A: real,B: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( minus_minus_real @ A2 @ B )
= ( plus_plus_real @ K @ ( minus_minus_real @ A @ B ) ) ) ) ).
% group_cancel.sub1
thf(fact_2270_group__cancel_Osub1,axiom,
! [A2: rat,K: rat,A: rat,B: rat] :
( ( A2
= ( plus_plus_rat @ K @ A ) )
=> ( ( minus_minus_rat @ A2 @ B )
= ( plus_plus_rat @ K @ ( minus_minus_rat @ A @ B ) ) ) ) ).
% group_cancel.sub1
thf(fact_2271_group__cancel_Osub1,axiom,
! [A2: int,K: int,A: int,B: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( minus_minus_int @ A2 @ B )
= ( plus_plus_int @ K @ ( minus_minus_int @ A @ B ) ) ) ) ).
% group_cancel.sub1
thf(fact_2272_left__diff__distrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% left_diff_distrib
thf(fact_2273_left__diff__distrib,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ C )
= ( minus_minus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).
% left_diff_distrib
thf(fact_2274_left__diff__distrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% left_diff_distrib
thf(fact_2275_right__diff__distrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% right_diff_distrib
thf(fact_2276_right__diff__distrib,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ A @ ( minus_minus_rat @ B @ C ) )
= ( minus_minus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).
% right_diff_distrib
thf(fact_2277_right__diff__distrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% right_diff_distrib
thf(fact_2278_left__diff__distrib_H,axiom,
! [B: real,C: real,A: real] :
( ( times_times_real @ ( minus_minus_real @ B @ C ) @ A )
= ( minus_minus_real @ ( times_times_real @ B @ A ) @ ( times_times_real @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_2279_left__diff__distrib_H,axiom,
! [B: rat,C: rat,A: rat] :
( ( times_times_rat @ ( minus_minus_rat @ B @ C ) @ A )
= ( minus_minus_rat @ ( times_times_rat @ B @ A ) @ ( times_times_rat @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_2280_left__diff__distrib_H,axiom,
! [B: nat,C: nat,A: nat] :
( ( times_times_nat @ ( minus_minus_nat @ B @ C ) @ A )
= ( minus_minus_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_2281_left__diff__distrib_H,axiom,
! [B: int,C: int,A: int] :
( ( times_times_int @ ( minus_minus_int @ B @ C ) @ A )
= ( minus_minus_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_2282_right__diff__distrib_H,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_2283_right__diff__distrib_H,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ A @ ( minus_minus_rat @ B @ C ) )
= ( minus_minus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_2284_right__diff__distrib_H,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ A @ ( minus_minus_nat @ B @ C ) )
= ( minus_minus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_2285_right__diff__distrib_H,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_2286_diff__divide__distrib,axiom,
! [A: complex,B: complex,C: complex] :
( ( divide1717551699836669952omplex @ ( minus_minus_complex @ A @ B ) @ C )
= ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ C ) @ ( divide1717551699836669952omplex @ B @ C ) ) ) ).
% diff_divide_distrib
thf(fact_2287_diff__divide__distrib,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).
% diff_divide_distrib
thf(fact_2288_diff__divide__distrib,axiom,
! [A: rat,B: rat,C: rat] :
( ( divide_divide_rat @ ( minus_minus_rat @ A @ B ) @ C )
= ( minus_minus_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ).
% diff_divide_distrib
thf(fact_2289_less__numeral__extra_I3_J,axiom,
~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).
% less_numeral_extra(3)
thf(fact_2290_less__numeral__extra_I3_J,axiom,
~ ( ord_less_rat @ zero_zero_rat @ zero_zero_rat ) ).
% less_numeral_extra(3)
thf(fact_2291_less__numeral__extra_I3_J,axiom,
~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).
% less_numeral_extra(3)
thf(fact_2292_less__numeral__extra_I3_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_numeral_extra(3)
thf(fact_2293_gr__zeroI,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr_zeroI
thf(fact_2294_not__less__zero,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less_zero
thf(fact_2295_gr__implies__not__zero,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not_zero
thf(fact_2296_zero__less__iff__neq__zero,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
= ( N != zero_zero_nat ) ) ).
% zero_less_iff_neq_zero
thf(fact_2297_field__lbound__gt__zero,axiom,
! [D1: real,D22: real] :
( ( ord_less_real @ zero_zero_real @ D1 )
=> ( ( ord_less_real @ zero_zero_real @ D22 )
=> ? [E2: real] :
( ( ord_less_real @ zero_zero_real @ E2 )
& ( ord_less_real @ E2 @ D1 )
& ( ord_less_real @ E2 @ D22 ) ) ) ) ).
% field_lbound_gt_zero
thf(fact_2298_field__lbound__gt__zero,axiom,
! [D1: rat,D22: rat] :
( ( ord_less_rat @ zero_zero_rat @ D1 )
=> ( ( ord_less_rat @ zero_zero_rat @ D22 )
=> ? [E2: rat] :
( ( ord_less_rat @ zero_zero_rat @ E2 )
& ( ord_less_rat @ E2 @ D1 )
& ( ord_less_rat @ E2 @ D22 ) ) ) ) ).
% field_lbound_gt_zero
thf(fact_2299_add__less__imp__less__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
=> ( ord_less_real @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_2300_add__less__imp__less__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
=> ( ord_less_rat @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_2301_add__less__imp__less__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
=> ( ord_less_nat @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_2302_add__less__imp__less__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
=> ( ord_less_int @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_2303_add__less__imp__less__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
=> ( ord_less_real @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_2304_add__less__imp__less__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
=> ( ord_less_rat @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_2305_add__less__imp__less__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
=> ( ord_less_nat @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_2306_add__less__imp__less__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
=> ( ord_less_int @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_2307_add__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_2308_add__strict__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_2309_add__strict__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_2310_add__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_2311_add__strict__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_2312_add__strict__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_2313_add__strict__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_2314_add__strict__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_2315_add__strict__mono,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ D2 )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D2 ) ) ) ) ).
% add_strict_mono
thf(fact_2316_add__strict__mono,axiom,
! [A: rat,B: rat,C: rat,D2: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ C @ D2 )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D2 ) ) ) ) ).
% add_strict_mono
thf(fact_2317_add__strict__mono,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D2 )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D2 ) ) ) ) ).
% add_strict_mono
thf(fact_2318_add__strict__mono,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ C @ D2 )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D2 ) ) ) ) ).
% add_strict_mono
thf(fact_2319_add__mono__thms__linordered__field_I1_J,axiom,
! [I: real,J: real,K: real,L2: real] :
( ( ( ord_less_real @ I @ J )
& ( K = L2 ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_2320_add__mono__thms__linordered__field_I1_J,axiom,
! [I: rat,J: rat,K: rat,L2: rat] :
( ( ( ord_less_rat @ I @ J )
& ( K = L2 ) )
=> ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_2321_add__mono__thms__linordered__field_I1_J,axiom,
! [I: nat,J: nat,K: nat,L2: nat] :
( ( ( ord_less_nat @ I @ J )
& ( K = L2 ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_2322_add__mono__thms__linordered__field_I1_J,axiom,
! [I: int,J: int,K: int,L2: int] :
( ( ( ord_less_int @ I @ J )
& ( K = L2 ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_2323_add__mono__thms__linordered__field_I2_J,axiom,
! [I: real,J: real,K: real,L2: real] :
( ( ( I = J )
& ( ord_less_real @ K @ L2 ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_2324_add__mono__thms__linordered__field_I2_J,axiom,
! [I: rat,J: rat,K: rat,L2: rat] :
( ( ( I = J )
& ( ord_less_rat @ K @ L2 ) )
=> ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_2325_add__mono__thms__linordered__field_I2_J,axiom,
! [I: nat,J: nat,K: nat,L2: nat] :
( ( ( I = J )
& ( ord_less_nat @ K @ L2 ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_2326_add__mono__thms__linordered__field_I2_J,axiom,
! [I: int,J: int,K: int,L2: int] :
( ( ( I = J )
& ( ord_less_int @ K @ L2 ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_2327_add__mono__thms__linordered__field_I5_J,axiom,
! [I: real,J: real,K: real,L2: real] :
( ( ( ord_less_real @ I @ J )
& ( ord_less_real @ K @ L2 ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_2328_add__mono__thms__linordered__field_I5_J,axiom,
! [I: rat,J: rat,K: rat,L2: rat] :
( ( ( ord_less_rat @ I @ J )
& ( ord_less_rat @ K @ L2 ) )
=> ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_2329_add__mono__thms__linordered__field_I5_J,axiom,
! [I: nat,J: nat,K: nat,L2: nat] :
( ( ( ord_less_nat @ I @ J )
& ( ord_less_nat @ K @ L2 ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_2330_add__mono__thms__linordered__field_I5_J,axiom,
! [I: int,J: int,K: int,L2: int] :
( ( ( ord_less_int @ I @ J )
& ( ord_less_int @ K @ L2 ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_2331_dvd__diff,axiom,
! [X2: real,Y2: real,Z: real] :
( ( dvd_dvd_real @ X2 @ Y2 )
=> ( ( dvd_dvd_real @ X2 @ Z )
=> ( dvd_dvd_real @ X2 @ ( minus_minus_real @ Y2 @ Z ) ) ) ) ).
% dvd_diff
thf(fact_2332_dvd__diff,axiom,
! [X2: rat,Y2: rat,Z: rat] :
( ( dvd_dvd_rat @ X2 @ Y2 )
=> ( ( dvd_dvd_rat @ X2 @ Z )
=> ( dvd_dvd_rat @ X2 @ ( minus_minus_rat @ Y2 @ Z ) ) ) ) ).
% dvd_diff
thf(fact_2333_dvd__diff,axiom,
! [X2: int,Y2: int,Z: int] :
( ( dvd_dvd_int @ X2 @ Y2 )
=> ( ( dvd_dvd_int @ X2 @ Z )
=> ( dvd_dvd_int @ X2 @ ( minus_minus_int @ Y2 @ Z ) ) ) ) ).
% dvd_diff
thf(fact_2334_dvd__diff__commute,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ A @ ( minus_minus_int @ C @ B ) )
= ( dvd_dvd_int @ A @ ( minus_minus_int @ B @ C ) ) ) ).
% dvd_diff_commute
thf(fact_2335_less__numeral__extra_I4_J,axiom,
~ ( ord_less_real @ one_one_real @ one_one_real ) ).
% less_numeral_extra(4)
thf(fact_2336_less__numeral__extra_I4_J,axiom,
~ ( ord_less_rat @ one_one_rat @ one_one_rat ) ).
% less_numeral_extra(4)
thf(fact_2337_less__numeral__extra_I4_J,axiom,
~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).
% less_numeral_extra(4)
thf(fact_2338_less__numeral__extra_I4_J,axiom,
~ ( ord_less_int @ one_one_int @ one_one_int ) ).
% less_numeral_extra(4)
thf(fact_2339_zero__induct__lemma,axiom,
! [P: nat > $o,K: nat,I: nat] :
( ( P @ K )
=> ( ! [N2: nat] :
( ( P @ ( suc @ N2 ) )
=> ( P @ N2 ) )
=> ( P @ ( minus_minus_nat @ K @ I ) ) ) ) ).
% zero_induct_lemma
thf(fact_2340_minus__nat_Odiff__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ zero_zero_nat )
= M ) ).
% minus_nat.diff_0
thf(fact_2341_diffs0__imp__equal,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus_nat @ M @ N )
= zero_zero_nat )
=> ( ( ( minus_minus_nat @ N @ M )
= zero_zero_nat )
=> ( M = N ) ) ) ).
% diffs0_imp_equal
thf(fact_2342_diff__add__inverse2,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
= M ) ).
% diff_add_inverse2
thf(fact_2343_diff__add__inverse,axiom,
! [N: nat,M: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
= M ) ).
% diff_add_inverse
thf(fact_2344_diff__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) )
= ( minus_minus_nat @ M @ N ) ) ).
% diff_cancel2
thf(fact_2345_Nat_Odiff__cancel,axiom,
! [K: nat,M: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( minus_minus_nat @ M @ N ) ) ).
% Nat.diff_cancel
thf(fact_2346_eq__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ( minus_minus_nat @ M @ K )
= ( minus_minus_nat @ N @ K ) )
= ( M = N ) ) ) ) ).
% eq_diff_iff
thf(fact_2347_le__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ) ).
% le_diff_iff
thf(fact_2348_Nat_Odiff__diff__eq,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( minus_minus_nat @ M @ N ) ) ) ) ).
% Nat.diff_diff_eq
thf(fact_2349_diff__le__mono,axiom,
! [M: nat,N: nat,L2: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L2 ) @ ( minus_minus_nat @ N @ L2 ) ) ) ).
% diff_le_mono
thf(fact_2350_diff__le__self,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).
% diff_le_self
thf(fact_2351_le__diff__iff_H,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ A @ C )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
= ( ord_less_eq_nat @ B @ A ) ) ) ) ).
% le_diff_iff'
thf(fact_2352_diff__le__mono2,axiom,
! [M: nat,N: nat,L2: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ L2 @ N ) @ ( minus_minus_nat @ L2 @ M ) ) ) ).
% diff_le_mono2
thf(fact_2353_Nat_OlessE,axiom,
! [I: nat,K: nat] :
( ( ord_less_nat @ I @ K )
=> ( ( K
!= ( suc @ I ) )
=> ~ ! [J2: nat] :
( ( ord_less_nat @ I @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ) ).
% Nat.lessE
thf(fact_2354_Suc__lessD,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ N )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_lessD
thf(fact_2355_Suc__lessE,axiom,
! [I: nat,K: nat] :
( ( ord_less_nat @ ( suc @ I ) @ K )
=> ~ ! [J2: nat] :
( ( ord_less_nat @ I @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ).
% Suc_lessE
thf(fact_2356_Suc__lessI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( ( suc @ M )
!= N )
=> ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).
% Suc_lessI
thf(fact_2357_less__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less_nat @ M @ N )
=> ( M = N ) ) ) ).
% less_SucE
thf(fact_2358_less__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ M @ ( suc @ N ) ) ) ).
% less_SucI
thf(fact_2359_Ex__less__Suc,axiom,
! [N: nat,P: nat > $o] :
( ( ? [I3: nat] :
( ( ord_less_nat @ I3 @ ( suc @ N ) )
& ( P @ I3 ) ) )
= ( ( P @ N )
| ? [I3: nat] :
( ( ord_less_nat @ I3 @ N )
& ( P @ I3 ) ) ) ) ).
% Ex_less_Suc
thf(fact_2360_less__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ( ord_less_nat @ M @ N )
| ( M = N ) ) ) ).
% less_Suc_eq
thf(fact_2361_not__less__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less_nat @ M @ N ) )
= ( ord_less_nat @ N @ ( suc @ M ) ) ) ).
% not_less_eq
thf(fact_2362_Nat_OAll__less__Suc,axiom,
! [N: nat,P: nat > $o] :
( ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( suc @ N ) )
=> ( P @ I3 ) ) )
= ( ( P @ N )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ N )
=> ( P @ I3 ) ) ) ) ).
% Nat.All_less_Suc
thf(fact_2363_Suc__less__eq2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ ( suc @ N ) @ M )
= ( ? [M6: nat] :
( ( M
= ( suc @ M6 ) )
& ( ord_less_nat @ N @ M6 ) ) ) ) ).
% Suc_less_eq2
thf(fact_2364_less__antisym,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less_nat @ N @ M )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
=> ( M = N ) ) ) ).
% less_antisym
thf(fact_2365_Suc__less__SucD,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_less_SucD
thf(fact_2366_less__trans__Suc,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( suc @ I ) @ K ) ) ) ).
% less_trans_Suc
thf(fact_2367_less__Suc__induct,axiom,
! [I: nat,J: nat,P: nat > nat > $o] :
( ( ord_less_nat @ I @ J )
=> ( ! [I2: nat] : ( P @ I2 @ ( suc @ I2 ) )
=> ( ! [I2: nat,J2: nat,K3: nat] :
( ( ord_less_nat @ I2 @ J2 )
=> ( ( ord_less_nat @ J2 @ K3 )
=> ( ( P @ I2 @ J2 )
=> ( ( P @ J2 @ K3 )
=> ( P @ I2 @ K3 ) ) ) ) )
=> ( P @ I @ J ) ) ) ) ).
% less_Suc_induct
thf(fact_2368_strict__inc__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_nat @ I @ J )
=> ( ! [I2: nat] :
( ( J
= ( suc @ I2 ) )
=> ( P @ I2 ) )
=> ( ! [I2: nat] :
( ( ord_less_nat @ I2 @ J )
=> ( ( P @ ( suc @ I2 ) )
=> ( P @ I2 ) ) )
=> ( P @ I ) ) ) ) ).
% strict_inc_induct
thf(fact_2369_not__less__less__Suc__eq,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less_nat @ N @ M )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
= ( N = M ) ) ) ).
% not_less_less_Suc_eq
thf(fact_2370_bot__nat__0_Oextremum__strict,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ zero_zero_nat ) ).
% bot_nat_0.extremum_strict
thf(fact_2371_gr0I,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr0I
thf(fact_2372_not__gr0,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr0
thf(fact_2373_not__less0,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less0
thf(fact_2374_less__zeroE,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_zeroE
thf(fact_2375_gr__implies__not0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not0
thf(fact_2376_infinite__descent0,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ~ ( P @ N2 )
=> ? [M4: nat] :
( ( ord_less_nat @ M4 @ N2 )
& ~ ( P @ M4 ) ) ) )
=> ( P @ N ) ) ) ).
% infinite_descent0
thf(fact_2377_diff__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times_nat @ ( minus_minus_nat @ M @ N ) @ K )
= ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% diff_mult_distrib
thf(fact_2378_diff__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% diff_mult_distrib2
thf(fact_2379_less__add__eq__less,axiom,
! [K: nat,L2: nat,M: nat,N: nat] :
( ( ord_less_nat @ K @ L2 )
=> ( ( ( plus_plus_nat @ M @ L2 )
= ( plus_plus_nat @ K @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% less_add_eq_less
thf(fact_2380_trans__less__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_less_add2
thf(fact_2381_trans__less__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_less_add1
thf(fact_2382_add__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_less_mono1
thf(fact_2383_not__add__less2,axiom,
! [J: nat,I: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).
% not_add_less2
thf(fact_2384_not__add__less1,axiom,
! [I: nat,J: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).
% not_add_less1
thf(fact_2385_add__less__mono,axiom,
! [I: nat,J: nat,K: nat,L2: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ K @ L2 )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ) ).
% add_less_mono
thf(fact_2386_add__lessD1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
=> ( ord_less_nat @ I @ K ) ) ).
% add_lessD1
thf(fact_2387_nat__less__le,axiom,
( ord_less_nat
= ( ^ [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
& ( M5 != N3 ) ) ) ) ).
% nat_less_le
thf(fact_2388_less__imp__le__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_imp_le_nat
thf(fact_2389_le__eq__less__or__eq,axiom,
( ord_less_eq_nat
= ( ^ [M5: nat,N3: nat] :
( ( ord_less_nat @ M5 @ N3 )
| ( M5 = N3 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_2390_less__or__eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( ( ord_less_nat @ M @ N )
| ( M = N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_or_eq_imp_le
thf(fact_2391_le__neq__implies__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( M != N )
=> ( ord_less_nat @ M @ N ) ) ) ).
% le_neq_implies_less
thf(fact_2392_less__mono__imp__le__mono,axiom,
! [F: nat > nat,I: nat,J: nat] :
( ! [I2: nat,J2: nat] :
( ( ord_less_nat @ I2 @ J2 )
=> ( ord_less_nat @ ( F @ I2 ) @ ( F @ J2 ) ) )
=> ( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_2393_dvd__diff__nat,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ K @ M )
=> ( ( dvd_dvd_nat @ K @ N )
=> ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% dvd_diff_nat
thf(fact_2394_nat__mult__1,axiom,
! [N: nat] :
( ( times_times_nat @ one_one_nat @ N )
= N ) ).
% nat_mult_1
thf(fact_2395_nat__mult__1__right,axiom,
! [N: nat] :
( ( times_times_nat @ N @ one_one_nat )
= N ) ).
% nat_mult_1_right
thf(fact_2396_frac__less__eq,axiom,
! [Y2: real,Z: real,X2: real,W: real] :
( ( Y2 != zero_zero_real )
=> ( ( Z != zero_zero_real )
=> ( ( ord_less_real @ ( divide_divide_real @ X2 @ Y2 ) @ ( divide_divide_real @ W @ Z ) )
= ( ord_less_real @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ W @ Y2 ) ) @ ( times_times_real @ Y2 @ Z ) ) @ zero_zero_real ) ) ) ) ).
% frac_less_eq
thf(fact_2397_frac__less__eq,axiom,
! [Y2: rat,Z: rat,X2: rat,W: rat] :
( ( Y2 != zero_zero_rat )
=> ( ( Z != zero_zero_rat )
=> ( ( ord_less_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ ( divide_divide_rat @ W @ Z ) )
= ( ord_less_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X2 @ Z ) @ ( times_times_rat @ W @ Y2 ) ) @ ( times_times_rat @ Y2 @ Z ) ) @ zero_zero_rat ) ) ) ) ).
% frac_less_eq
thf(fact_2398_power__strict__decreasing,axiom,
! [N: nat,N5: nat,A: code_integer] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( ord_le6747313008572928689nteger @ A @ one_one_Code_integer )
=> ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ A @ N5 ) @ ( power_8256067586552552935nteger @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_2399_power__strict__decreasing,axiom,
! [N: nat,N5: nat,A: real] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( power_power_real @ A @ N5 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_2400_power__strict__decreasing,axiom,
! [N: nat,N5: nat,A: rat] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ A @ one_one_rat )
=> ( ord_less_rat @ ( power_power_rat @ A @ N5 ) @ ( power_power_rat @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_2401_power__strict__decreasing,axiom,
! [N: nat,N5: nat,A: nat] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( power_power_nat @ A @ N5 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_2402_power__strict__decreasing,axiom,
! [N: nat,N5: nat,A: int] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( power_power_int @ A @ N5 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_2403_one__less__power,axiom,
! [A: code_integer,N: nat] :
( ( ord_le6747313008572928689nteger @ one_one_Code_integer @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_le6747313008572928689nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_2404_one__less__power,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_2405_one__less__power,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_rat @ one_one_rat @ ( power_power_rat @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_2406_one__less__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_2407_one__less__power,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_2408_div__geq,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ~ ( ord_less_nat @ M @ N )
=> ( ( divide_divide_nat @ M @ N )
= ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ) ) ).
% div_geq
thf(fact_2409_div__if,axiom,
( divide_divide_nat
= ( ^ [M5: nat,N3: nat] :
( if_nat
@ ( ( ord_less_nat @ M5 @ N3 )
| ( N3 = zero_zero_nat ) )
@ zero_zero_nat
@ ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M5 @ N3 ) @ N3 ) ) ) ) ) ).
% div_if
thf(fact_2410_add__eq__if,axiom,
( plus_plus_nat
= ( ^ [M5: nat,N3: nat] : ( if_nat @ ( M5 = zero_zero_nat ) @ N3 @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M5 @ one_one_nat ) @ N3 ) ) ) ) ) ).
% add_eq_if
thf(fact_2411_nat__less__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).
% nat_less_add_iff1
thf(fact_2412_nat__less__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ord_less_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).
% nat_less_add_iff2
thf(fact_2413_mult__eq__if,axiom,
( times_times_nat
= ( ^ [M5: nat,N3: nat] : ( if_nat @ ( M5 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N3 @ ( times_times_nat @ ( minus_minus_nat @ M5 @ one_one_nat ) @ N3 ) ) ) ) ) ).
% mult_eq_if
thf(fact_2414_i0__lb,axiom,
! [N: extended_enat] : ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ N ) ).
% i0_lb
thf(fact_2415_ile0__eq,axiom,
! [N: extended_enat] :
( ( ord_le2932123472753598470d_enat @ N @ zero_z5237406670263579293d_enat )
= ( N = zero_z5237406670263579293d_enat ) ) ).
% ile0_eq
thf(fact_2416_dvd__mult__cancel1,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ M @ N ) @ M )
= ( N = one_one_nat ) ) ) ).
% dvd_mult_cancel1
thf(fact_2417_dvd__mult__cancel2,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ N @ M ) @ M )
= ( N = one_one_nat ) ) ) ).
% dvd_mult_cancel2
thf(fact_2418_power__dvd__imp__le,axiom,
! [I: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
=> ( ( ord_less_nat @ one_one_nat @ I )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_dvd_imp_le
thf(fact_2419_power__strict__mono,axiom,
! [A: code_integer,B: code_integer,N: nat] :
( ( ord_le6747313008572928689nteger @ A @ B )
=> ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( power_8256067586552552935nteger @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_2420_power__strict__mono,axiom,
! [A: real,B: real,N: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_2421_power__strict__mono,axiom,
! [A: rat,B: rat,N: nat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_2422_power__strict__mono,axiom,
! [A: nat,B: nat,N: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_2423_power__strict__mono,axiom,
! [A: int,B: int,N: nat] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_2424_le__div__geq,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( divide_divide_nat @ M @ N )
= ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ) ) ).
% le_div_geq
thf(fact_2425_le__iff__diff__le__0,axiom,
( ord_less_eq_real
= ( ^ [A3: real,B2: real] : ( ord_less_eq_real @ ( minus_minus_real @ A3 @ B2 ) @ zero_zero_real ) ) ) ).
% le_iff_diff_le_0
thf(fact_2426_le__iff__diff__le__0,axiom,
( ord_less_eq_rat
= ( ^ [A3: rat,B2: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ A3 @ B2 ) @ zero_zero_rat ) ) ) ).
% le_iff_diff_le_0
thf(fact_2427_le__iff__diff__le__0,axiom,
( ord_less_eq_int
= ( ^ [A3: int,B2: int] : ( ord_less_eq_int @ ( minus_minus_int @ A3 @ B2 ) @ zero_zero_int ) ) ) ).
% le_iff_diff_le_0
thf(fact_2428_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ( ( minus_minus_nat @ B @ A )
= C )
= ( B
= ( plus_plus_nat @ C @ A ) ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_2429_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ A @ ( minus_minus_nat @ B @ A ) )
= B ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_2430_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ C @ ( minus_minus_nat @ B @ A ) )
= ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_2431_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A )
= ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_2432_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C )
= ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_2433_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A )
= ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_2434_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) )
= ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_2435_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ ( minus_minus_nat @ B @ A ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_2436_le__add__diff,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ C @ ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).
% le_add_diff
thf(fact_2437_ordered__cancel__comm__monoid__diff__class_Odiff__add,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ A )
= B ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add
thf(fact_2438_le__diff__eq,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ A @ ( minus_minus_real @ C @ B ) )
= ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).
% le_diff_eq
thf(fact_2439_le__diff__eq,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ A @ ( minus_minus_rat @ C @ B ) )
= ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).
% le_diff_eq
thf(fact_2440_le__diff__eq,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ A @ ( minus_minus_int @ C @ B ) )
= ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% le_diff_eq
thf(fact_2441_diff__le__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ ( minus_minus_real @ A @ B ) @ C )
= ( ord_less_eq_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).
% diff_le_eq
thf(fact_2442_diff__le__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ ( minus_minus_rat @ A @ B ) @ C )
= ( ord_less_eq_rat @ A @ ( plus_plus_rat @ C @ B ) ) ) ).
% diff_le_eq
thf(fact_2443_diff__le__eq,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ ( minus_minus_int @ A @ B ) @ C )
= ( ord_less_eq_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).
% diff_le_eq
thf(fact_2444_add__le__add__imp__diff__le,axiom,
! [I: real,K: real,N: real,J: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
=> ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J @ K ) )
=> ( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
=> ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J @ K ) )
=> ( ord_less_eq_real @ ( minus_minus_real @ N @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_2445_add__le__add__imp__diff__le,axiom,
! [I: rat,K: rat,N: rat,J: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ N )
=> ( ( ord_less_eq_rat @ N @ ( plus_plus_rat @ J @ K ) )
=> ( ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ N )
=> ( ( ord_less_eq_rat @ N @ ( plus_plus_rat @ J @ K ) )
=> ( ord_less_eq_rat @ ( minus_minus_rat @ N @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_2446_add__le__add__imp__diff__le,axiom,
! [I: nat,K: nat,N: nat,J: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
=> ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
=> ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ N @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_2447_add__le__add__imp__diff__le,axiom,
! [I: int,K: int,N: int,J: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
=> ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K ) )
=> ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
=> ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K ) )
=> ( ord_less_eq_int @ ( minus_minus_int @ N @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_2448_add__le__imp__le__diff,axiom,
! [I: real,K: real,N: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
=> ( ord_less_eq_real @ I @ ( minus_minus_real @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_2449_add__le__imp__le__diff,axiom,
! [I: rat,K: rat,N: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ N )
=> ( ord_less_eq_rat @ I @ ( minus_minus_rat @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_2450_add__le__imp__le__diff,axiom,
! [I: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
=> ( ord_less_eq_nat @ I @ ( minus_minus_nat @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_2451_add__le__imp__le__diff,axiom,
! [I: int,K: int,N: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
=> ( ord_less_eq_int @ I @ ( minus_minus_int @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_2452_mult__diff__mult,axiom,
! [X2: real,Y2: real,A: real,B: real] :
( ( minus_minus_real @ ( times_times_real @ X2 @ Y2 ) @ ( times_times_real @ A @ B ) )
= ( plus_plus_real @ ( times_times_real @ X2 @ ( minus_minus_real @ Y2 @ B ) ) @ ( times_times_real @ ( minus_minus_real @ X2 @ A ) @ B ) ) ) ).
% mult_diff_mult
thf(fact_2453_mult__diff__mult,axiom,
! [X2: rat,Y2: rat,A: rat,B: rat] :
( ( minus_minus_rat @ ( times_times_rat @ X2 @ Y2 ) @ ( times_times_rat @ A @ B ) )
= ( plus_plus_rat @ ( times_times_rat @ X2 @ ( minus_minus_rat @ Y2 @ B ) ) @ ( times_times_rat @ ( minus_minus_rat @ X2 @ A ) @ B ) ) ) ).
% mult_diff_mult
thf(fact_2454_mult__diff__mult,axiom,
! [X2: int,Y2: int,A: int,B: int] :
( ( minus_minus_int @ ( times_times_int @ X2 @ Y2 ) @ ( times_times_int @ A @ B ) )
= ( plus_plus_int @ ( times_times_int @ X2 @ ( minus_minus_int @ Y2 @ B ) ) @ ( times_times_int @ ( minus_minus_int @ X2 @ A ) @ B ) ) ) ).
% mult_diff_mult
thf(fact_2455_square__diff__square__factored,axiom,
! [X2: real,Y2: real] :
( ( minus_minus_real @ ( times_times_real @ X2 @ X2 ) @ ( times_times_real @ Y2 @ Y2 ) )
= ( times_times_real @ ( plus_plus_real @ X2 @ Y2 ) @ ( minus_minus_real @ X2 @ Y2 ) ) ) ).
% square_diff_square_factored
thf(fact_2456_square__diff__square__factored,axiom,
! [X2: rat,Y2: rat] :
( ( minus_minus_rat @ ( times_times_rat @ X2 @ X2 ) @ ( times_times_rat @ Y2 @ Y2 ) )
= ( times_times_rat @ ( plus_plus_rat @ X2 @ Y2 ) @ ( minus_minus_rat @ X2 @ Y2 ) ) ) ).
% square_diff_square_factored
thf(fact_2457_square__diff__square__factored,axiom,
! [X2: int,Y2: int] :
( ( minus_minus_int @ ( times_times_int @ X2 @ X2 ) @ ( times_times_int @ Y2 @ Y2 ) )
= ( times_times_int @ ( plus_plus_int @ X2 @ Y2 ) @ ( minus_minus_int @ X2 @ Y2 ) ) ) ).
% square_diff_square_factored
thf(fact_2458_eq__add__iff2,axiom,
! [A: real,E: real,C: real,B: real,D2: real] :
( ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ C )
= ( plus_plus_real @ ( times_times_real @ B @ E ) @ D2 ) )
= ( C
= ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D2 ) ) ) ).
% eq_add_iff2
thf(fact_2459_eq__add__iff2,axiom,
! [A: rat,E: rat,C: rat,B: rat,D2: rat] :
( ( ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C )
= ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D2 ) )
= ( C
= ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E ) @ D2 ) ) ) ).
% eq_add_iff2
thf(fact_2460_eq__add__iff2,axiom,
! [A: int,E: int,C: int,B: int,D2: int] :
( ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ C )
= ( plus_plus_int @ ( times_times_int @ B @ E ) @ D2 ) )
= ( C
= ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D2 ) ) ) ).
% eq_add_iff2
thf(fact_2461_eq__add__iff1,axiom,
! [A: real,E: real,C: real,B: real,D2: real] :
( ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ C )
= ( plus_plus_real @ ( times_times_real @ B @ E ) @ D2 ) )
= ( ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C )
= D2 ) ) ).
% eq_add_iff1
thf(fact_2462_eq__add__iff1,axiom,
! [A: rat,E: rat,C: rat,B: rat,D2: rat] :
( ( ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C )
= ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D2 ) )
= ( ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E ) @ C )
= D2 ) ) ).
% eq_add_iff1
thf(fact_2463_eq__add__iff1,axiom,
! [A: int,E: int,C: int,B: int,D2: int] :
( ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ C )
= ( plus_plus_int @ ( times_times_int @ B @ E ) @ D2 ) )
= ( ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C )
= D2 ) ) ).
% eq_add_iff1
thf(fact_2464_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ zero_zero_real ) ).
% not_numeral_less_zero
thf(fact_2465_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_less_rat @ ( numeral_numeral_rat @ N ) @ zero_zero_rat ) ).
% not_numeral_less_zero
thf(fact_2466_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).
% not_numeral_less_zero
thf(fact_2467_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).
% not_numeral_less_zero
thf(fact_2468_zero__less__numeral,axiom,
! [N: num] : ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ N ) ) ).
% zero_less_numeral
thf(fact_2469_zero__less__numeral,axiom,
! [N: num] : ( ord_less_rat @ zero_zero_rat @ ( numeral_numeral_rat @ N ) ) ).
% zero_less_numeral
thf(fact_2470_zero__less__numeral,axiom,
! [N: num] : ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).
% zero_less_numeral
thf(fact_2471_zero__less__numeral,axiom,
! [N: num] : ( ord_less_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).
% zero_less_numeral
thf(fact_2472_add__neg__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_neg_neg
thf(fact_2473_add__neg__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% add_neg_neg
thf(fact_2474_add__neg__neg,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_neg_neg
thf(fact_2475_add__neg__neg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_neg_neg
thf(fact_2476_add__pos__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_pos_pos
thf(fact_2477_add__pos__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).
% add_pos_pos
thf(fact_2478_add__pos__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_pos_pos
thf(fact_2479_add__pos__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_pos_pos
thf(fact_2480_canonically__ordered__monoid__add__class_OlessE,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ! [C3: nat] :
( ( B
= ( plus_plus_nat @ A @ C3 ) )
=> ( C3 = zero_zero_nat ) ) ) ).
% canonically_ordered_monoid_add_class.lessE
thf(fact_2481_pos__add__strict,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_2482_pos__add__strict,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ B @ C )
=> ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_2483_pos__add__strict,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_2484_pos__add__strict,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_2485_add__less__zeroD,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ ( plus_plus_real @ X2 @ Y2 ) @ zero_zero_real )
=> ( ( ord_less_real @ X2 @ zero_zero_real )
| ( ord_less_real @ Y2 @ zero_zero_real ) ) ) ).
% add_less_zeroD
thf(fact_2486_add__less__zeroD,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ X2 @ Y2 ) @ zero_zero_rat )
=> ( ( ord_less_rat @ X2 @ zero_zero_rat )
| ( ord_less_rat @ Y2 @ zero_zero_rat ) ) ) ).
% add_less_zeroD
thf(fact_2487_add__less__zeroD,axiom,
! [X2: int,Y2: int] :
( ( ord_less_int @ ( plus_plus_int @ X2 @ Y2 ) @ zero_zero_int )
=> ( ( ord_less_int @ X2 @ zero_zero_int )
| ( ord_less_int @ Y2 @ zero_zero_int ) ) ) ).
% add_less_zeroD
thf(fact_2488_less__numeral__extra_I1_J,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% less_numeral_extra(1)
thf(fact_2489_less__numeral__extra_I1_J,axiom,
ord_less_rat @ zero_zero_rat @ one_one_rat ).
% less_numeral_extra(1)
thf(fact_2490_less__numeral__extra_I1_J,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% less_numeral_extra(1)
thf(fact_2491_less__numeral__extra_I1_J,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% less_numeral_extra(1)
thf(fact_2492_zero__less__one,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% zero_less_one
thf(fact_2493_zero__less__one,axiom,
ord_less_rat @ zero_zero_rat @ one_one_rat ).
% zero_less_one
thf(fact_2494_zero__less__one,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one
thf(fact_2495_zero__less__one,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% zero_less_one
thf(fact_2496_not__one__less__zero,axiom,
~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).
% not_one_less_zero
thf(fact_2497_not__one__less__zero,axiom,
~ ( ord_less_rat @ one_one_rat @ zero_zero_rat ) ).
% not_one_less_zero
thf(fact_2498_not__one__less__zero,axiom,
~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_less_zero
thf(fact_2499_not__one__less__zero,axiom,
~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).
% not_one_less_zero
thf(fact_2500_add__less__le__mono,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D2 )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D2 ) ) ) ) ).
% add_less_le_mono
thf(fact_2501_add__less__le__mono,axiom,
! [A: rat,B: rat,C: rat,D2: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ D2 )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D2 ) ) ) ) ).
% add_less_le_mono
thf(fact_2502_add__less__le__mono,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D2 )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D2 ) ) ) ) ).
% add_less_le_mono
thf(fact_2503_add__less__le__mono,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D2 )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D2 ) ) ) ) ).
% add_less_le_mono
thf(fact_2504_add__le__less__mono,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ C @ D2 )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D2 ) ) ) ) ).
% add_le_less_mono
thf(fact_2505_add__le__less__mono,axiom,
! [A: rat,B: rat,C: rat,D2: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_rat @ C @ D2 )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D2 ) ) ) ) ).
% add_le_less_mono
thf(fact_2506_add__le__less__mono,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D2 )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D2 ) ) ) ) ).
% add_le_less_mono
thf(fact_2507_add__le__less__mono,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_int @ C @ D2 )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D2 ) ) ) ) ).
% add_le_less_mono
thf(fact_2508_add__mono__thms__linordered__field_I3_J,axiom,
! [I: real,J: real,K: real,L2: real] :
( ( ( ord_less_real @ I @ J )
& ( ord_less_eq_real @ K @ L2 ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_2509_add__mono__thms__linordered__field_I3_J,axiom,
! [I: rat,J: rat,K: rat,L2: rat] :
( ( ( ord_less_rat @ I @ J )
& ( ord_less_eq_rat @ K @ L2 ) )
=> ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_2510_add__mono__thms__linordered__field_I3_J,axiom,
! [I: nat,J: nat,K: nat,L2: nat] :
( ( ( ord_less_nat @ I @ J )
& ( ord_less_eq_nat @ K @ L2 ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_2511_add__mono__thms__linordered__field_I3_J,axiom,
! [I: int,J: int,K: int,L2: int] :
( ( ( ord_less_int @ I @ J )
& ( ord_less_eq_int @ K @ L2 ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_2512_add__mono__thms__linordered__field_I4_J,axiom,
! [I: real,J: real,K: real,L2: real] :
( ( ( ord_less_eq_real @ I @ J )
& ( ord_less_real @ K @ L2 ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_2513_add__mono__thms__linordered__field_I4_J,axiom,
! [I: rat,J: rat,K: rat,L2: rat] :
( ( ( ord_less_eq_rat @ I @ J )
& ( ord_less_rat @ K @ L2 ) )
=> ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_2514_add__mono__thms__linordered__field_I4_J,axiom,
! [I: nat,J: nat,K: nat,L2: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( ord_less_nat @ K @ L2 ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_2515_add__mono__thms__linordered__field_I4_J,axiom,
! [I: int,J: int,K: int,L2: int] :
( ( ( ord_less_eq_int @ I @ J )
& ( ord_less_int @ K @ L2 ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L2 ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_2516_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2517_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2518_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2519_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2520_mult__less__cancel__right__disj,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
& ( ord_less_real @ A @ B ) )
| ( ( ord_less_real @ C @ zero_zero_real )
& ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_2521_mult__less__cancel__right__disj,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
& ( ord_less_rat @ A @ B ) )
| ( ( ord_less_rat @ C @ zero_zero_rat )
& ( ord_less_rat @ B @ A ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_2522_mult__less__cancel__right__disj,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
& ( ord_less_int @ A @ B ) )
| ( ( ord_less_int @ C @ zero_zero_int )
& ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_2523_mult__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_2524_mult__strict__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_2525_mult__strict__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_2526_mult__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_2527_mult__strict__right__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_2528_mult__strict__right__mono__neg,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_2529_mult__strict__right__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_2530_mult__less__cancel__left__disj,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
& ( ord_less_real @ A @ B ) )
| ( ( ord_less_real @ C @ zero_zero_real )
& ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_2531_mult__less__cancel__left__disj,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
& ( ord_less_rat @ A @ B ) )
| ( ( ord_less_rat @ C @ zero_zero_rat )
& ( ord_less_rat @ B @ A ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_2532_mult__less__cancel__left__disj,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
& ( ord_less_int @ A @ B ) )
| ( ( ord_less_int @ C @ zero_zero_int )
& ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_2533_mult__strict__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_2534_mult__strict__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_2535_mult__strict__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_2536_mult__strict__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_2537_mult__strict__left__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_2538_mult__strict__left__mono__neg,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_2539_mult__strict__left__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_2540_mult__less__cancel__left__pos,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_real @ A @ B ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_2541_mult__less__cancel__left__pos,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ord_less_rat @ A @ B ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_2542_mult__less__cancel__left__pos,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ C )
=> ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_int @ A @ B ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_2543_mult__less__cancel__left__neg,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_real @ B @ A ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_2544_mult__less__cancel__left__neg,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ord_less_rat @ B @ A ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_2545_mult__less__cancel__left__neg,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ C @ zero_zero_int )
=> ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_int @ B @ A ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_2546_zero__less__mult__pos2,axiom,
! [B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ B @ A ) )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_2547_zero__less__mult__pos2,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ B @ A ) )
=> ( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_rat @ zero_zero_rat @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_2548_zero__less__mult__pos2,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B @ A ) )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_2549_zero__less__mult__pos2,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ B @ A ) )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_2550_zero__less__mult__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_2551_zero__less__mult__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
=> ( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_rat @ zero_zero_rat @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_2552_zero__less__mult__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_2553_zero__less__mult__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_2554_zero__less__mult__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ zero_zero_real @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).
% zero_less_mult_iff
thf(fact_2555_zero__less__mult__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ zero_zero_rat @ B ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_rat @ B @ zero_zero_rat ) ) ) ) ).
% zero_less_mult_iff
thf(fact_2556_zero__less__mult__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ A )
& ( ord_less_int @ zero_zero_int @ B ) )
| ( ( ord_less_int @ A @ zero_zero_int )
& ( ord_less_int @ B @ zero_zero_int ) ) ) ) ).
% zero_less_mult_iff
thf(fact_2557_mult__pos__neg2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).
% mult_pos_neg2
thf(fact_2558_mult__pos__neg2,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ B @ A ) @ zero_zero_rat ) ) ) ).
% mult_pos_neg2
thf(fact_2559_mult__pos__neg2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).
% mult_pos_neg2
thf(fact_2560_mult__pos__neg2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).
% mult_pos_neg2
thf(fact_2561_mult__pos__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_2562_mult__pos__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_2563_mult__pos__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_2564_mult__pos__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_2565_mult__pos__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_pos_neg
thf(fact_2566_mult__pos__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% mult_pos_neg
thf(fact_2567_mult__pos__neg,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_pos_neg
thf(fact_2568_mult__pos__neg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_pos_neg
thf(fact_2569_mult__neg__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_neg_pos
thf(fact_2570_mult__neg__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% mult_neg_pos
thf(fact_2571_mult__neg__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_neg_pos
thf(fact_2572_mult__neg__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_neg_pos
thf(fact_2573_mult__less__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B @ zero_zero_real ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).
% mult_less_0_iff
thf(fact_2574_mult__less__0__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ B @ zero_zero_rat ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_rat @ zero_zero_rat @ B ) ) ) ) ).
% mult_less_0_iff
thf(fact_2575_mult__less__0__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
= ( ( ( ord_less_int @ zero_zero_int @ A )
& ( ord_less_int @ B @ zero_zero_int ) )
| ( ( ord_less_int @ A @ zero_zero_int )
& ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).
% mult_less_0_iff
thf(fact_2576_not__square__less__zero,axiom,
! [A: real] :
~ ( ord_less_real @ ( times_times_real @ A @ A ) @ zero_zero_real ) ).
% not_square_less_zero
thf(fact_2577_not__square__less__zero,axiom,
! [A: rat] :
~ ( ord_less_rat @ ( times_times_rat @ A @ A ) @ zero_zero_rat ) ).
% not_square_less_zero
thf(fact_2578_not__square__less__zero,axiom,
! [A: int] :
~ ( ord_less_int @ ( times_times_int @ A @ A ) @ zero_zero_int ) ).
% not_square_less_zero
thf(fact_2579_mult__neg__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_neg_neg
thf(fact_2580_mult__neg__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).
% mult_neg_neg
thf(fact_2581_mult__neg__neg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_neg_neg
thf(fact_2582_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ one_one_real ) ).
% not_numeral_less_one
thf(fact_2583_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_less_rat @ ( numeral_numeral_rat @ N ) @ one_one_rat ) ).
% not_numeral_less_one
thf(fact_2584_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat ) ).
% not_numeral_less_one
thf(fact_2585_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ).
% not_numeral_less_one
thf(fact_2586_divide__neg__neg,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ X2 @ zero_zero_real )
=> ( ( ord_less_real @ Y2 @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X2 @ Y2 ) ) ) ) ).
% divide_neg_neg
thf(fact_2587_divide__neg__neg,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_rat @ X2 @ zero_zero_rat )
=> ( ( ord_less_rat @ Y2 @ zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ X2 @ Y2 ) ) ) ) ).
% divide_neg_neg
thf(fact_2588_divide__neg__pos,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ X2 @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ Y2 )
=> ( ord_less_real @ ( divide_divide_real @ X2 @ Y2 ) @ zero_zero_real ) ) ) ).
% divide_neg_pos
thf(fact_2589_divide__neg__pos,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_rat @ X2 @ zero_zero_rat )
=> ( ( ord_less_rat @ zero_zero_rat @ Y2 )
=> ( ord_less_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ zero_zero_rat ) ) ) ).
% divide_neg_pos
thf(fact_2590_divide__pos__neg,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ Y2 @ zero_zero_real )
=> ( ord_less_real @ ( divide_divide_real @ X2 @ Y2 ) @ zero_zero_real ) ) ) ).
% divide_pos_neg
thf(fact_2591_divide__pos__neg,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_rat @ zero_zero_rat @ X2 )
=> ( ( ord_less_rat @ Y2 @ zero_zero_rat )
=> ( ord_less_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ zero_zero_rat ) ) ) ).
% divide_pos_neg
thf(fact_2592_divide__pos__pos,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ zero_zero_real @ Y2 )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X2 @ Y2 ) ) ) ) ).
% divide_pos_pos
thf(fact_2593_divide__pos__pos,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_rat @ zero_zero_rat @ X2 )
=> ( ( ord_less_rat @ zero_zero_rat @ Y2 )
=> ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ X2 @ Y2 ) ) ) ) ).
% divide_pos_pos
thf(fact_2594_divide__less__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B @ zero_zero_real ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).
% divide_less_0_iff
thf(fact_2595_divide__less__0__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ A @ B ) @ zero_zero_rat )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ B @ zero_zero_rat ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_rat @ zero_zero_rat @ B ) ) ) ) ).
% divide_less_0_iff
thf(fact_2596_divide__less__cancel,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ A ) )
& ( C != zero_zero_real ) ) ) ).
% divide_less_cancel
thf(fact_2597_divide__less__cancel,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ B ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ A ) )
& ( C != zero_zero_rat ) ) ) ).
% divide_less_cancel
thf(fact_2598_zero__less__divide__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ zero_zero_real @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).
% zero_less_divide_iff
thf(fact_2599_zero__less__divide__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ B ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ zero_zero_rat @ B ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_rat @ B @ zero_zero_rat ) ) ) ) ).
% zero_less_divide_iff
thf(fact_2600_divide__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_strict_right_mono
thf(fact_2601_divide__strict__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).
% divide_strict_right_mono
thf(fact_2602_divide__strict__right__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_strict_right_mono_neg
thf(fact_2603_divide__strict__right__mono__neg,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).
% divide_strict_right_mono_neg
thf(fact_2604_add__mono1,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( plus_plus_real @ A @ one_one_real ) @ ( plus_plus_real @ B @ one_one_real ) ) ) ).
% add_mono1
thf(fact_2605_add__mono1,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( plus_plus_rat @ B @ one_one_rat ) ) ) ).
% add_mono1
thf(fact_2606_add__mono1,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( plus_plus_nat @ B @ one_one_nat ) ) ) ).
% add_mono1
thf(fact_2607_add__mono1,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ A @ one_one_int ) @ ( plus_plus_int @ B @ one_one_int ) ) ) ).
% add_mono1
thf(fact_2608_less__add__one,axiom,
! [A: real] : ( ord_less_real @ A @ ( plus_plus_real @ A @ one_one_real ) ) ).
% less_add_one
thf(fact_2609_less__add__one,axiom,
! [A: rat] : ( ord_less_rat @ A @ ( plus_plus_rat @ A @ one_one_rat ) ) ).
% less_add_one
thf(fact_2610_less__add__one,axiom,
! [A: nat] : ( ord_less_nat @ A @ ( plus_plus_nat @ A @ one_one_nat ) ) ).
% less_add_one
thf(fact_2611_less__add__one,axiom,
! [A: int] : ( ord_less_int @ A @ ( plus_plus_int @ A @ one_one_int ) ) ).
% less_add_one
thf(fact_2612_less__1__mult,axiom,
! [M: real,N: real] :
( ( ord_less_real @ one_one_real @ M )
=> ( ( ord_less_real @ one_one_real @ N )
=> ( ord_less_real @ one_one_real @ ( times_times_real @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_2613_less__1__mult,axiom,
! [M: rat,N: rat] :
( ( ord_less_rat @ one_one_rat @ M )
=> ( ( ord_less_rat @ one_one_rat @ N )
=> ( ord_less_rat @ one_one_rat @ ( times_times_rat @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_2614_less__1__mult,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ M )
=> ( ( ord_less_nat @ one_one_nat @ N )
=> ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_2615_less__1__mult,axiom,
! [M: int,N: int] :
( ( ord_less_int @ one_one_int @ M )
=> ( ( ord_less_int @ one_one_int @ N )
=> ( ord_less_int @ one_one_int @ ( times_times_int @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_2616_zero__less__power,axiom,
! [A: code_integer,N: nat] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A )
=> ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).
% zero_less_power
thf(fact_2617_zero__less__power,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).
% zero_less_power
thf(fact_2618_zero__less__power,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) ) ) ).
% zero_less_power
thf(fact_2619_zero__less__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).
% zero_less_power
thf(fact_2620_zero__less__power,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).
% zero_less_power
thf(fact_2621_real__archimedian__rdiv__eq__0,axiom,
! [X2: real,C: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ! [M3: nat] :
( ( ord_less_nat @ zero_zero_nat @ M3 )
=> ( ord_less_eq_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M3 ) @ X2 ) @ C ) )
=> ( X2 = zero_zero_real ) ) ) ) ).
% real_archimedian_rdiv_eq_0
thf(fact_2622_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ zero_zero_rat ) ).
% of_nat_less_0_iff
thf(fact_2623_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real ) ).
% of_nat_less_0_iff
thf(fact_2624_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int ) ).
% of_nat_less_0_iff
thf(fact_2625_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat ) ).
% of_nat_less_0_iff
thf(fact_2626_Suc__diff__le,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( minus_minus_nat @ ( suc @ M ) @ N )
= ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% Suc_diff_le
thf(fact_2627_diff__add__0,axiom,
! [N: nat,M: nat] :
( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
= zero_zero_nat ) ).
% diff_add_0
thf(fact_2628_Nat_Ole__imp__diff__is__add,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ( minus_minus_nat @ J @ I )
= K )
= ( J
= ( plus_plus_nat @ K @ I ) ) ) ) ).
% Nat.le_imp_diff_is_add
thf(fact_2629_Nat_Odiff__add__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
= ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).
% Nat.diff_add_assoc2
thf(fact_2630_Nat_Odiff__add__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
= ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).
% Nat.diff_add_assoc
thf(fact_2631_Nat_Ole__diff__conv2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).
% Nat.le_diff_conv2
thf(fact_2632_le__diff__conv,axiom,
! [J: nat,K: nat,I: nat] :
( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).
% le_diff_conv
thf(fact_2633_less__Suc__eq__0__disj,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ( M = zero_zero_nat )
| ? [J3: nat] :
( ( M
= ( suc @ J3 ) )
& ( ord_less_nat @ J3 @ N ) ) ) ) ).
% less_Suc_eq_0_disj
thf(fact_2634_gr0__implies__Suc,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ? [M3: nat] :
( N
= ( suc @ M3 ) ) ) ).
% gr0_implies_Suc
thf(fact_2635_All__less__Suc2,axiom,
! [N: nat,P: nat > $o] :
( ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( suc @ N ) )
=> ( P @ I3 ) ) )
= ( ( P @ zero_zero_nat )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ N )
=> ( P @ ( suc @ I3 ) ) ) ) ) ).
% All_less_Suc2
thf(fact_2636_gr0__conv__Suc,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
= ( ? [M5: nat] :
( N
= ( suc @ M5 ) ) ) ) ).
% gr0_conv_Suc
thf(fact_2637_Ex__less__Suc2,axiom,
! [N: nat,P: nat > $o] :
( ( ? [I3: nat] :
( ( ord_less_nat @ I3 @ ( suc @ N ) )
& ( P @ I3 ) ) )
= ( ( P @ zero_zero_nat )
| ? [I3: nat] :
( ( ord_less_nat @ I3 @ N )
& ( P @ ( suc @ I3 ) ) ) ) ) ).
% Ex_less_Suc2
thf(fact_2638_less__imp__Suc__add,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ? [K3: nat] :
( N
= ( suc @ ( plus_plus_nat @ M @ K3 ) ) ) ) ).
% less_imp_Suc_add
thf(fact_2639_less__iff__Suc__add,axiom,
( ord_less_nat
= ( ^ [M5: nat,N3: nat] :
? [K2: nat] :
( N3
= ( suc @ ( plus_plus_nat @ M5 @ K2 ) ) ) ) ) ).
% less_iff_Suc_add
thf(fact_2640_less__add__Suc2,axiom,
! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M @ I ) ) ) ).
% less_add_Suc2
thf(fact_2641_less__add__Suc1,axiom,
! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ I @ M ) ) ) ).
% less_add_Suc1
thf(fact_2642_less__natE,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ~ ! [Q3: nat] :
( N
!= ( suc @ ( plus_plus_nat @ M @ Q3 ) ) ) ) ).
% less_natE
thf(fact_2643_Suc__leI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).
% Suc_leI
thf(fact_2644_Suc__le__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_le_eq
thf(fact_2645_dec__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( P @ I )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ I @ N2 )
=> ( ( ord_less_nat @ N2 @ J )
=> ( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) ) ) )
=> ( P @ J ) ) ) ) ).
% dec_induct
thf(fact_2646_inc__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( P @ J )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ I @ N2 )
=> ( ( ord_less_nat @ N2 @ J )
=> ( ( P @ ( suc @ N2 ) )
=> ( P @ N2 ) ) ) )
=> ( P @ I ) ) ) ) ).
% inc_induct
thf(fact_2647_Suc__le__lessD,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_le_lessD
thf(fact_2648_le__less__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
= ( N = M ) ) ) ).
% le_less_Suc_eq
thf(fact_2649_less__Suc__eq__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% less_Suc_eq_le
thf(fact_2650_less__eq__Suc__le,axiom,
( ord_less_nat
= ( ^ [N3: nat] : ( ord_less_eq_nat @ ( suc @ N3 ) ) ) ) ).
% less_eq_Suc_le
thf(fact_2651_le__imp__less__Suc,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_nat @ M @ ( suc @ N ) ) ) ).
% le_imp_less_Suc
thf(fact_2652_less__imp__add__positive,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ I @ J )
=> ? [K3: nat] :
( ( ord_less_nat @ zero_zero_nat @ K3 )
& ( ( plus_plus_nat @ I @ K3 )
= J ) ) ) ).
% less_imp_add_positive
thf(fact_2653_ex__least__nat__le,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K3: nat] :
( ( ord_less_eq_nat @ K3 @ N )
& ! [I4: nat] :
( ( ord_less_nat @ I4 @ K3 )
=> ~ ( P @ I4 ) )
& ( P @ K3 ) ) ) ) ).
% ex_least_nat_le
thf(fact_2654_Suc__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_mult_less_cancel1
thf(fact_2655_dvd__diffD,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) )
=> ( ( dvd_dvd_nat @ K @ N )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_nat @ K @ M ) ) ) ) ).
% dvd_diffD
thf(fact_2656_dvd__diffD1,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) )
=> ( ( dvd_dvd_nat @ K @ M )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_nat @ K @ N ) ) ) ) ).
% dvd_diffD1
thf(fact_2657_less__eq__dvd__minus,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( dvd_dvd_nat @ M @ N )
= ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ M ) ) ) ) ).
% less_eq_dvd_minus
thf(fact_2658_mono__nat__linear__lb,axiom,
! [F: nat > nat,M: nat,K: nat] :
( ! [M3: nat,N2: nat] :
( ( ord_less_nat @ M3 @ N2 )
=> ( ord_less_nat @ ( F @ M3 ) @ ( F @ N2 ) ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).
% mono_nat_linear_lb
thf(fact_2659_Euclidean__Division_Odiv__eq__0__iff,axiom,
! [M: nat,N: nat] :
( ( ( divide_divide_nat @ M @ N )
= zero_zero_nat )
= ( ( ord_less_nat @ M @ N )
| ( N = zero_zero_nat ) ) ) ).
% Euclidean_Division.div_eq_0_iff
thf(fact_2660_mult__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).
% mult_less_mono1
thf(fact_2661_mult__less__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).
% mult_less_mono2
thf(fact_2662_nat__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel1
thf(fact_2663_nat__mult__eq__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( M = N ) ) ) ).
% nat_mult_eq_cancel1
thf(fact_2664_nat__power__less__imp__less,axiom,
! [I: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ I )
=> ( ( ord_less_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% nat_power_less_imp_less
thf(fact_2665_bezout1__nat,axiom,
! [A: nat,B: nat] :
? [D3: nat,X3: nat,Y3: nat] :
( ( dvd_dvd_nat @ D3 @ A )
& ( dvd_dvd_nat @ D3 @ B )
& ( ( ( minus_minus_nat @ ( times_times_nat @ A @ X3 ) @ ( times_times_nat @ B @ Y3 ) )
= D3 )
| ( ( minus_minus_nat @ ( times_times_nat @ B @ X3 ) @ ( times_times_nat @ A @ Y3 ) )
= D3 ) ) ) ).
% bezout1_nat
thf(fact_2666_nat__dvd__not__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N )
=> ~ ( dvd_dvd_nat @ N @ M ) ) ) ).
% nat_dvd_not_less
thf(fact_2667_dvd__pos__nat,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( dvd_dvd_nat @ M @ N )
=> ( ord_less_nat @ zero_zero_nat @ M ) ) ) ).
% dvd_pos_nat
thf(fact_2668_numerals_I1_J,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numerals(1)
thf(fact_2669_less__mult__imp__div__less,axiom,
! [M: nat,I: nat,N: nat] :
( ( ord_less_nat @ M @ ( times_times_nat @ I @ N ) )
=> ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ I ) ) ).
% less_mult_imp_div_less
thf(fact_2670_One__nat__def,axiom,
( one_one_nat
= ( suc @ zero_zero_nat ) ) ).
% One_nat_def
thf(fact_2671_Suc__eq__plus1__left,axiom,
( suc
= ( plus_plus_nat @ one_one_nat ) ) ).
% Suc_eq_plus1_left
thf(fact_2672_plus__1__eq__Suc,axiom,
( ( plus_plus_nat @ one_one_nat )
= suc ) ).
% plus_1_eq_Suc
thf(fact_2673_Suc__eq__plus1,axiom,
( suc
= ( ^ [N3: nat] : ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ).
% Suc_eq_plus1
thf(fact_2674_mult__eq__self__implies__10,axiom,
! [M: nat,N: nat] :
( ( M
= ( times_times_nat @ M @ N ) )
=> ( ( N = one_one_nat )
| ( M = zero_zero_nat ) ) ) ).
% mult_eq_self_implies_10
thf(fact_2675_zdiv__zmult2__eq,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).
% zdiv_zmult2_eq
thf(fact_2676_VEBT__internal_OT__vebt__buildupi_H_Osimps_I1_J,axiom,
( ( vEBT_V9176841429113362141ildupi @ zero_zero_nat )
= one_one_int ) ).
% VEBT_internal.T_vebt_buildupi'.simps(1)
thf(fact_2677_ordered__ring__class_Ole__add__iff1,axiom,
! [A: real,E: real,C: real,B: real,D2: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D2 ) )
= ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C ) @ D2 ) ) ).
% ordered_ring_class.le_add_iff1
thf(fact_2678_ordered__ring__class_Ole__add__iff1,axiom,
! [A: rat,E: rat,C: rat,B: rat,D2: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D2 ) )
= ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E ) @ C ) @ D2 ) ) ).
% ordered_ring_class.le_add_iff1
thf(fact_2679_ordered__ring__class_Ole__add__iff1,axiom,
! [A: int,E: int,C: int,B: int,D2: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D2 ) )
= ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C ) @ D2 ) ) ).
% ordered_ring_class.le_add_iff1
thf(fact_2680_ordered__ring__class_Ole__add__iff2,axiom,
! [A: real,E: real,C: real,B: real,D2: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D2 ) )
= ( ord_less_eq_real @ C @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D2 ) ) ) ).
% ordered_ring_class.le_add_iff2
thf(fact_2681_ordered__ring__class_Ole__add__iff2,axiom,
! [A: rat,E: rat,C: rat,B: rat,D2: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D2 ) )
= ( ord_less_eq_rat @ C @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E ) @ D2 ) ) ) ).
% ordered_ring_class.le_add_iff2
thf(fact_2682_ordered__ring__class_Ole__add__iff2,axiom,
! [A: int,E: int,C: int,B: int,D2: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D2 ) )
= ( ord_less_eq_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D2 ) ) ) ).
% ordered_ring_class.le_add_iff2
thf(fact_2683_add__divide__eq__if__simps_I4_J,axiom,
! [Z: complex,A: complex,B: complex] :
( ( ( Z = zero_zero_complex )
=> ( ( minus_minus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
= A ) )
& ( ( Z != zero_zero_complex )
=> ( ( minus_minus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ A @ Z ) @ B ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(4)
thf(fact_2684_add__divide__eq__if__simps_I4_J,axiom,
! [Z: real,A: real,B: real] :
( ( ( Z = zero_zero_real )
=> ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z ) )
= A ) )
& ( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z ) )
= ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ A @ Z ) @ B ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(4)
thf(fact_2685_add__divide__eq__if__simps_I4_J,axiom,
! [Z: rat,A: rat,B: rat] :
( ( ( Z = zero_zero_rat )
=> ( ( minus_minus_rat @ A @ ( divide_divide_rat @ B @ Z ) )
= A ) )
& ( ( Z != zero_zero_rat )
=> ( ( minus_minus_rat @ A @ ( divide_divide_rat @ B @ Z ) )
= ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ A @ Z ) @ B ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(4)
thf(fact_2686_diff__frac__eq,axiom,
! [Y2: complex,Z: complex,X2: complex,W: complex] :
( ( Y2 != zero_zero_complex )
=> ( ( Z != zero_zero_complex )
=> ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ X2 @ Y2 ) @ ( divide1717551699836669952omplex @ W @ Z ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ X2 @ Z ) @ ( times_times_complex @ W @ Y2 ) ) @ ( times_times_complex @ Y2 @ Z ) ) ) ) ) ).
% diff_frac_eq
thf(fact_2687_diff__frac__eq,axiom,
! [Y2: real,Z: real,X2: real,W: real] :
( ( Y2 != zero_zero_real )
=> ( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ X2 @ Y2 ) @ ( divide_divide_real @ W @ Z ) )
= ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ W @ Y2 ) ) @ ( times_times_real @ Y2 @ Z ) ) ) ) ) ).
% diff_frac_eq
thf(fact_2688_diff__frac__eq,axiom,
! [Y2: rat,Z: rat,X2: rat,W: rat] :
( ( Y2 != zero_zero_rat )
=> ( ( Z != zero_zero_rat )
=> ( ( minus_minus_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ ( divide_divide_rat @ W @ Z ) )
= ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X2 @ Z ) @ ( times_times_rat @ W @ Y2 ) ) @ ( times_times_rat @ Y2 @ Z ) ) ) ) ) ).
% diff_frac_eq
thf(fact_2689_diff__divide__eq__iff,axiom,
! [Z: complex,X2: complex,Y2: complex] :
( ( Z != zero_zero_complex )
=> ( ( minus_minus_complex @ X2 @ ( divide1717551699836669952omplex @ Y2 @ Z ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ X2 @ Z ) @ Y2 ) @ Z ) ) ) ).
% diff_divide_eq_iff
thf(fact_2690_diff__divide__eq__iff,axiom,
! [Z: real,X2: real,Y2: real] :
( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ X2 @ ( divide_divide_real @ Y2 @ Z ) )
= ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X2 @ Z ) @ Y2 ) @ Z ) ) ) ).
% diff_divide_eq_iff
thf(fact_2691_diff__divide__eq__iff,axiom,
! [Z: rat,X2: rat,Y2: rat] :
( ( Z != zero_zero_rat )
=> ( ( minus_minus_rat @ X2 @ ( divide_divide_rat @ Y2 @ Z ) )
= ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X2 @ Z ) @ Y2 ) @ Z ) ) ) ).
% diff_divide_eq_iff
thf(fact_2692_divide__diff__eq__iff,axiom,
! [Z: complex,X2: complex,Y2: complex] :
( ( Z != zero_zero_complex )
=> ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ X2 @ Z ) @ Y2 )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ X2 @ ( times_times_complex @ Y2 @ Z ) ) @ Z ) ) ) ).
% divide_diff_eq_iff
thf(fact_2693_divide__diff__eq__iff,axiom,
! [Z: real,X2: real,Y2: real] :
( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ X2 @ Z ) @ Y2 )
= ( divide_divide_real @ ( minus_minus_real @ X2 @ ( times_times_real @ Y2 @ Z ) ) @ Z ) ) ) ).
% divide_diff_eq_iff
thf(fact_2694_divide__diff__eq__iff,axiom,
! [Z: rat,X2: rat,Y2: rat] :
( ( Z != zero_zero_rat )
=> ( ( minus_minus_rat @ ( divide_divide_rat @ X2 @ Z ) @ Y2 )
= ( divide_divide_rat @ ( minus_minus_rat @ X2 @ ( times_times_rat @ Y2 @ Z ) ) @ Z ) ) ) ).
% divide_diff_eq_iff
thf(fact_2695_square__diff__one__factored,axiom,
! [X2: complex] :
( ( minus_minus_complex @ ( times_times_complex @ X2 @ X2 ) @ one_one_complex )
= ( times_times_complex @ ( plus_plus_complex @ X2 @ one_one_complex ) @ ( minus_minus_complex @ X2 @ one_one_complex ) ) ) ).
% square_diff_one_factored
thf(fact_2696_square__diff__one__factored,axiom,
! [X2: real] :
( ( minus_minus_real @ ( times_times_real @ X2 @ X2 ) @ one_one_real )
= ( times_times_real @ ( plus_plus_real @ X2 @ one_one_real ) @ ( minus_minus_real @ X2 @ one_one_real ) ) ) ).
% square_diff_one_factored
thf(fact_2697_square__diff__one__factored,axiom,
! [X2: rat] :
( ( minus_minus_rat @ ( times_times_rat @ X2 @ X2 ) @ one_one_rat )
= ( times_times_rat @ ( plus_plus_rat @ X2 @ one_one_rat ) @ ( minus_minus_rat @ X2 @ one_one_rat ) ) ) ).
% square_diff_one_factored
thf(fact_2698_square__diff__one__factored,axiom,
! [X2: int] :
( ( minus_minus_int @ ( times_times_int @ X2 @ X2 ) @ one_one_int )
= ( times_times_int @ ( plus_plus_int @ X2 @ one_one_int ) @ ( minus_minus_int @ X2 @ one_one_int ) ) ) ).
% square_diff_one_factored
thf(fact_2699_add__strict__increasing2,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_strict_increasing2
thf(fact_2700_add__strict__increasing2,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ B @ C )
=> ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).
% add_strict_increasing2
thf(fact_2701_add__strict__increasing2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_strict_increasing2
thf(fact_2702_add__strict__increasing2,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_strict_increasing2
thf(fact_2703_add__strict__increasing,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_strict_increasing
thf(fact_2704_add__strict__increasing,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).
% add_strict_increasing
thf(fact_2705_add__strict__increasing,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_strict_increasing
thf(fact_2706_add__strict__increasing,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_strict_increasing
thf(fact_2707_add__pos__nonneg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_pos_nonneg
thf(fact_2708_add__pos__nonneg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).
% add_pos_nonneg
thf(fact_2709_add__pos__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_pos_nonneg
thf(fact_2710_add__pos__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_pos_nonneg
thf(fact_2711_add__nonpos__neg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_nonpos_neg
thf(fact_2712_add__nonpos__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% add_nonpos_neg
thf(fact_2713_add__nonpos__neg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_nonpos_neg
thf(fact_2714_add__nonpos__neg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_nonpos_neg
thf(fact_2715_add__nonneg__pos,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_nonneg_pos
thf(fact_2716_add__nonneg__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).
% add_nonneg_pos
thf(fact_2717_add__nonneg__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_nonneg_pos
thf(fact_2718_add__nonneg__pos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_nonneg_pos
thf(fact_2719_add__neg__nonpos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_neg_nonpos
thf(fact_2720_add__neg__nonpos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% add_neg_nonpos
thf(fact_2721_add__neg__nonpos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_neg_nonpos
thf(fact_2722_add__neg__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_neg_nonpos
thf(fact_2723_field__le__epsilon,axiom,
! [X2: real,Y2: real] :
( ! [E2: real] :
( ( ord_less_real @ zero_zero_real @ E2 )
=> ( ord_less_eq_real @ X2 @ ( plus_plus_real @ Y2 @ E2 ) ) )
=> ( ord_less_eq_real @ X2 @ Y2 ) ) ).
% field_le_epsilon
thf(fact_2724_field__le__epsilon,axiom,
! [X2: rat,Y2: rat] :
( ! [E2: rat] :
( ( ord_less_rat @ zero_zero_rat @ E2 )
=> ( ord_less_eq_rat @ X2 @ ( plus_plus_rat @ Y2 @ E2 ) ) )
=> ( ord_less_eq_rat @ X2 @ Y2 ) ) ).
% field_le_epsilon
thf(fact_2725_mult__le__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ A ) ) ) ) ).
% mult_le_cancel_left
thf(fact_2726_mult__le__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ B ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ A ) ) ) ) ).
% mult_le_cancel_left
thf(fact_2727_mult__le__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ B ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ B @ A ) ) ) ) ).
% mult_le_cancel_left
thf(fact_2728_mult__le__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ A ) ) ) ) ).
% mult_le_cancel_right
thf(fact_2729_mult__le__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ B ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ A ) ) ) ) ).
% mult_le_cancel_right
thf(fact_2730_mult__le__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ B ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ B @ A ) ) ) ) ).
% mult_le_cancel_right
thf(fact_2731_mult__left__less__imp__less,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) ) ) ).
% mult_left_less_imp_less
thf(fact_2732_mult__left__less__imp__less,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ B ) ) ) ).
% mult_left_less_imp_less
thf(fact_2733_mult__left__less__imp__less,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ A @ B ) ) ) ).
% mult_left_less_imp_less
thf(fact_2734_mult__left__less__imp__less,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ B ) ) ) ).
% mult_left_less_imp_less
thf(fact_2735_mult__strict__mono,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ D2 )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_2736_mult__strict__mono,axiom,
! [A: rat,B: rat,C: rat,D2: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ C @ D2 )
=> ( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D2 ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_2737_mult__strict__mono,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D2 )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_2738_mult__strict__mono,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ C @ D2 )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_2739_mult__less__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_left
thf(fact_2740_mult__less__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ B ) )
& ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ A ) ) ) ) ).
% mult_less_cancel_left
thf(fact_2741_mult__less__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ B ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_left
thf(fact_2742_mult__right__less__imp__less,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) ) ) ).
% mult_right_less_imp_less
thf(fact_2743_mult__right__less__imp__less,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ B ) ) ) ).
% mult_right_less_imp_less
thf(fact_2744_mult__right__less__imp__less,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ A @ B ) ) ) ).
% mult_right_less_imp_less
thf(fact_2745_mult__right__less__imp__less,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ B ) ) ) ).
% mult_right_less_imp_less
thf(fact_2746_mult__strict__mono_H,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ D2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_2747_mult__strict__mono_H,axiom,
! [A: rat,B: rat,C: rat,D2: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ C @ D2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D2 ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_2748_mult__strict__mono_H,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D2 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_2749_mult__strict__mono_H,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ C @ D2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_2750_mult__less__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_right
thf(fact_2751_mult__less__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ B ) )
& ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ A ) ) ) ) ).
% mult_less_cancel_right
thf(fact_2752_mult__less__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ B ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_right
thf(fact_2753_mult__le__cancel__left__neg,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_eq_real @ B @ A ) ) ) ).
% mult_le_cancel_left_neg
thf(fact_2754_mult__le__cancel__left__neg,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ord_less_eq_rat @ B @ A ) ) ) ).
% mult_le_cancel_left_neg
thf(fact_2755_mult__le__cancel__left__neg,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ C @ zero_zero_int )
=> ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_eq_int @ B @ A ) ) ) ).
% mult_le_cancel_left_neg
thf(fact_2756_mult__le__cancel__left__pos,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% mult_le_cancel_left_pos
thf(fact_2757_mult__le__cancel__left__pos,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ord_less_eq_rat @ A @ B ) ) ) ).
% mult_le_cancel_left_pos
thf(fact_2758_mult__le__cancel__left__pos,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ C )
=> ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_eq_int @ A @ B ) ) ) ).
% mult_le_cancel_left_pos
thf(fact_2759_mult__left__le__imp__le,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) ) ) ).
% mult_left_le_imp_le
thf(fact_2760_mult__left__le__imp__le,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ B ) ) ) ).
% mult_left_le_imp_le
thf(fact_2761_mult__left__le__imp__le,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ A @ B ) ) ) ).
% mult_left_le_imp_le
thf(fact_2762_mult__left__le__imp__le,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ B ) ) ) ).
% mult_left_le_imp_le
thf(fact_2763_mult__right__le__imp__le,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) ) ) ).
% mult_right_le_imp_le
thf(fact_2764_mult__right__le__imp__le,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ B ) ) ) ).
% mult_right_le_imp_le
thf(fact_2765_mult__right__le__imp__le,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ A @ B ) ) ) ).
% mult_right_le_imp_le
thf(fact_2766_mult__right__le__imp__le,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ B ) ) ) ).
% mult_right_le_imp_le
thf(fact_2767_mult__le__less__imp__less,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ C @ D2 )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_2768_mult__le__less__imp__less,axiom,
! [A: rat,B: rat,C: rat,D2: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_rat @ C @ D2 )
=> ( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D2 ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_2769_mult__le__less__imp__less,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D2 )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_2770_mult__le__less__imp__less,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_int @ C @ D2 )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_2771_mult__less__le__imp__less,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_2772_mult__less__le__imp__less,axiom,
! [A: rat,B: rat,C: rat,D2: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ D2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D2 ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_2773_mult__less__le__imp__less,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D2 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_2774_mult__less__le__imp__less,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_2775_zero__less__two,axiom,
ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ one_one_real ) ).
% zero_less_two
thf(fact_2776_zero__less__two,axiom,
ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ).
% zero_less_two
thf(fact_2777_zero__less__two,axiom,
ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).
% zero_less_two
thf(fact_2778_zero__less__two,axiom,
ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ one_one_int ) ).
% zero_less_two
thf(fact_2779_sum__squares__gt__zero__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X2 @ X2 ) @ ( times_times_real @ Y2 @ Y2 ) ) )
= ( ( X2 != zero_zero_real )
| ( Y2 != zero_zero_real ) ) ) ).
% sum_squares_gt_zero_iff
thf(fact_2780_sum__squares__gt__zero__iff,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ ( times_times_rat @ X2 @ X2 ) @ ( times_times_rat @ Y2 @ Y2 ) ) )
= ( ( X2 != zero_zero_rat )
| ( Y2 != zero_zero_rat ) ) ) ).
% sum_squares_gt_zero_iff
thf(fact_2781_sum__squares__gt__zero__iff,axiom,
! [X2: int,Y2: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X2 @ X2 ) @ ( times_times_int @ Y2 @ Y2 ) ) )
= ( ( X2 != zero_zero_int )
| ( Y2 != zero_zero_int ) ) ) ).
% sum_squares_gt_zero_iff
thf(fact_2782_not__sum__squares__lt__zero,axiom,
! [X2: real,Y2: real] :
~ ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ X2 @ X2 ) @ ( times_times_real @ Y2 @ Y2 ) ) @ zero_zero_real ) ).
% not_sum_squares_lt_zero
thf(fact_2783_not__sum__squares__lt__zero,axiom,
! [X2: rat,Y2: rat] :
~ ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ X2 @ X2 ) @ ( times_times_rat @ Y2 @ Y2 ) ) @ zero_zero_rat ) ).
% not_sum_squares_lt_zero
thf(fact_2784_not__sum__squares__lt__zero,axiom,
! [X2: int,Y2: int] :
~ ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ X2 @ X2 ) @ ( times_times_int @ Y2 @ Y2 ) ) @ zero_zero_int ) ).
% not_sum_squares_lt_zero
thf(fact_2785_frac__le,axiom,
! [Y2: real,X2: real,W: real,Z: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_eq_real @ X2 @ Y2 )
=> ( ( ord_less_real @ zero_zero_real @ W )
=> ( ( ord_less_eq_real @ W @ Z )
=> ( ord_less_eq_real @ ( divide_divide_real @ X2 @ Z ) @ ( divide_divide_real @ Y2 @ W ) ) ) ) ) ) ).
% frac_le
thf(fact_2786_frac__le,axiom,
! [Y2: rat,X2: rat,W: rat,Z: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
=> ( ( ord_less_eq_rat @ X2 @ Y2 )
=> ( ( ord_less_rat @ zero_zero_rat @ W )
=> ( ( ord_less_eq_rat @ W @ Z )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ X2 @ Z ) @ ( divide_divide_rat @ Y2 @ W ) ) ) ) ) ) ).
% frac_le
thf(fact_2787_frac__less,axiom,
! [X2: real,Y2: real,W: real,Z: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ X2 @ Y2 )
=> ( ( ord_less_real @ zero_zero_real @ W )
=> ( ( ord_less_eq_real @ W @ Z )
=> ( ord_less_real @ ( divide_divide_real @ X2 @ Z ) @ ( divide_divide_real @ Y2 @ W ) ) ) ) ) ) ).
% frac_less
thf(fact_2788_frac__less,axiom,
! [X2: rat,Y2: rat,W: rat,Z: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
=> ( ( ord_less_rat @ X2 @ Y2 )
=> ( ( ord_less_rat @ zero_zero_rat @ W )
=> ( ( ord_less_eq_rat @ W @ Z )
=> ( ord_less_rat @ ( divide_divide_rat @ X2 @ Z ) @ ( divide_divide_rat @ Y2 @ W ) ) ) ) ) ) ).
% frac_less
thf(fact_2789_frac__less2,axiom,
! [X2: real,Y2: real,W: real,Z: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ X2 @ Y2 )
=> ( ( ord_less_real @ zero_zero_real @ W )
=> ( ( ord_less_real @ W @ Z )
=> ( ord_less_real @ ( divide_divide_real @ X2 @ Z ) @ ( divide_divide_real @ Y2 @ W ) ) ) ) ) ) ).
% frac_less2
thf(fact_2790_frac__less2,axiom,
! [X2: rat,Y2: rat,W: rat,Z: rat] :
( ( ord_less_rat @ zero_zero_rat @ X2 )
=> ( ( ord_less_eq_rat @ X2 @ Y2 )
=> ( ( ord_less_rat @ zero_zero_rat @ W )
=> ( ( ord_less_rat @ W @ Z )
=> ( ord_less_rat @ ( divide_divide_rat @ X2 @ Z ) @ ( divide_divide_rat @ Y2 @ W ) ) ) ) ) ) ).
% frac_less2
thf(fact_2791_divide__le__cancel,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ A ) ) ) ) ).
% divide_le_cancel
thf(fact_2792_divide__le__cancel,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ B ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ A ) ) ) ) ).
% divide_le_cancel
thf(fact_2793_divide__nonneg__neg,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ Y2 @ zero_zero_real )
=> ( ord_less_eq_real @ ( divide_divide_real @ X2 @ Y2 ) @ zero_zero_real ) ) ) ).
% divide_nonneg_neg
thf(fact_2794_divide__nonneg__neg,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
=> ( ( ord_less_rat @ Y2 @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ zero_zero_rat ) ) ) ).
% divide_nonneg_neg
thf(fact_2795_divide__nonneg__pos,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ zero_zero_real @ Y2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X2 @ Y2 ) ) ) ) ).
% divide_nonneg_pos
thf(fact_2796_divide__nonneg__pos,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
=> ( ( ord_less_rat @ zero_zero_rat @ Y2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X2 @ Y2 ) ) ) ) ).
% divide_nonneg_pos
thf(fact_2797_divide__nonpos__neg,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ X2 @ zero_zero_real )
=> ( ( ord_less_real @ Y2 @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X2 @ Y2 ) ) ) ) ).
% divide_nonpos_neg
thf(fact_2798_divide__nonpos__neg,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_eq_rat @ X2 @ zero_zero_rat )
=> ( ( ord_less_rat @ Y2 @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X2 @ Y2 ) ) ) ) ).
% divide_nonpos_neg
thf(fact_2799_divide__nonpos__pos,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ X2 @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ Y2 )
=> ( ord_less_eq_real @ ( divide_divide_real @ X2 @ Y2 ) @ zero_zero_real ) ) ) ).
% divide_nonpos_pos
thf(fact_2800_divide__nonpos__pos,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_eq_rat @ X2 @ zero_zero_rat )
=> ( ( ord_less_rat @ zero_zero_rat @ Y2 )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ zero_zero_rat ) ) ) ).
% divide_nonpos_pos
thf(fact_2801_unique__euclidean__semiring__numeral__class_Odiv__less,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ B )
=> ( ( divide_divide_nat @ A @ B )
= zero_zero_nat ) ) ) ).
% unique_euclidean_semiring_numeral_class.div_less
thf(fact_2802_unique__euclidean__semiring__numeral__class_Odiv__less,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ B )
=> ( ( divide_divide_int @ A @ B )
= zero_zero_int ) ) ) ).
% unique_euclidean_semiring_numeral_class.div_less
thf(fact_2803_div__positive,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ B @ A )
=> ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_positive
thf(fact_2804_div__positive,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ B @ A )
=> ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_positive
thf(fact_2805_discrete,axiom,
( ord_less_nat
= ( ^ [A3: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ A3 @ one_one_nat ) ) ) ) ).
% discrete
thf(fact_2806_discrete,axiom,
( ord_less_int
= ( ^ [A3: int] : ( ord_less_eq_int @ ( plus_plus_int @ A3 @ one_one_int ) ) ) ) ).
% discrete
thf(fact_2807_power__less__imp__less__base,axiom,
! [A: code_integer,N: nat,B: code_integer] :
( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( power_8256067586552552935nteger @ B @ N ) )
=> ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
=> ( ord_le6747313008572928689nteger @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_2808_power__less__imp__less__base,axiom,
! [A: real,N: nat,B: real] :
( ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_real @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_2809_power__less__imp__less__base,axiom,
! [A: rat,N: nat,B: rat] :
( ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_rat @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_2810_power__less__imp__less__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_2811_power__less__imp__less__base,axiom,
! [A: int,N: nat,B: int] :
( ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_int @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_2812_less__divide__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ A @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B @ A ) ) ) ) ).
% less_divide_eq_1
thf(fact_2813_less__divide__eq__1,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ A @ B ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_rat @ B @ A ) ) ) ) ).
% less_divide_eq_1
thf(fact_2814_divide__less__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B @ A ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ A @ B ) )
| ( A = zero_zero_real ) ) ) ).
% divide_less_eq_1
thf(fact_2815_divide__less__eq__1,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ B @ A ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_rat @ A @ B ) )
| ( A = zero_zero_rat ) ) ) ).
% divide_less_eq_1
thf(fact_2816_ex__power__ivl1,axiom,
! [B: nat,K: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( ord_less_eq_nat @ one_one_nat @ K )
=> ? [N2: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ B @ N2 ) @ K )
& ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) ) ) ).
% ex_power_ivl1
thf(fact_2817_ex__power__ivl2,axiom,
! [B: nat,K: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ? [N2: nat] :
( ( ord_less_nat @ ( power_power_nat @ B @ N2 ) @ K )
& ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) ) ) ).
% ex_power_ivl2
thf(fact_2818_divide__less__eq,axiom,
! [B: real,C: real,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ A ) ) ) ) ) ) ).
% divide_less_eq
thf(fact_2819_divide__less__eq,axiom,
! [B: rat,C: rat,A: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).
% divide_less_eq
thf(fact_2820_less__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ A @ zero_zero_real ) ) ) ) ) ) ).
% less_divide_eq
thf(fact_2821_less__divide__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).
% less_divide_eq
thf(fact_2822_neg__divide__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).
% neg_divide_less_eq
thf(fact_2823_neg__divide__less__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).
% neg_divide_less_eq
thf(fact_2824_neg__less__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).
% neg_less_divide_eq
thf(fact_2825_neg__less__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).
% neg_less_divide_eq
thf(fact_2826_pos__divide__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).
% pos_divide_less_eq
thf(fact_2827_pos__divide__less__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).
% pos_divide_less_eq
thf(fact_2828_pos__less__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).
% pos_less_divide_eq
thf(fact_2829_pos__less__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).
% pos_less_divide_eq
thf(fact_2830_mult__imp__div__pos__less,axiom,
! [Y2: real,X2: real,Z: real] :
( ( ord_less_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_real @ X2 @ ( times_times_real @ Z @ Y2 ) )
=> ( ord_less_real @ ( divide_divide_real @ X2 @ Y2 ) @ Z ) ) ) ).
% mult_imp_div_pos_less
thf(fact_2831_mult__imp__div__pos__less,axiom,
! [Y2: rat,X2: rat,Z: rat] :
( ( ord_less_rat @ zero_zero_rat @ Y2 )
=> ( ( ord_less_rat @ X2 @ ( times_times_rat @ Z @ Y2 ) )
=> ( ord_less_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ Z ) ) ) ).
% mult_imp_div_pos_less
thf(fact_2832_mult__imp__less__div__pos,axiom,
! [Y2: real,Z: real,X2: real] :
( ( ord_less_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_real @ ( times_times_real @ Z @ Y2 ) @ X2 )
=> ( ord_less_real @ Z @ ( divide_divide_real @ X2 @ Y2 ) ) ) ) ).
% mult_imp_less_div_pos
thf(fact_2833_mult__imp__less__div__pos,axiom,
! [Y2: rat,Z: rat,X2: rat] :
( ( ord_less_rat @ zero_zero_rat @ Y2 )
=> ( ( ord_less_rat @ ( times_times_rat @ Z @ Y2 ) @ X2 )
=> ( ord_less_rat @ Z @ ( divide_divide_rat @ X2 @ Y2 ) ) ) ) ).
% mult_imp_less_div_pos
thf(fact_2834_divide__strict__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).
% divide_strict_left_mono
thf(fact_2835_divide__strict__left__mono,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
=> ( ord_less_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).
% divide_strict_left_mono
thf(fact_2836_divide__strict__left__mono__neg,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).
% divide_strict_left_mono_neg
thf(fact_2837_divide__strict__left__mono__neg,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
=> ( ord_less_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).
% divide_strict_left_mono_neg
thf(fact_2838_less__half__sum,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ A @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) ) ) ).
% less_half_sum
thf(fact_2839_less__half__sum,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ A @ ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ) ) ) ).
% less_half_sum
thf(fact_2840_gt__half__sum,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) @ B ) ) ).
% gt_half_sum
thf(fact_2841_gt__half__sum,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ) @ B ) ) ).
% gt_half_sum
thf(fact_2842_power__gt1__lemma,axiom,
! [A: code_integer,N: nat] :
( ( ord_le6747313008572928689nteger @ one_one_Code_integer @ A )
=> ( ord_le6747313008572928689nteger @ one_one_Code_integer @ ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ A @ N ) ) ) ) ).
% power_gt1_lemma
thf(fact_2843_power__gt1__lemma,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ one_one_real @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).
% power_gt1_lemma
thf(fact_2844_power__gt1__lemma,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ord_less_rat @ one_one_rat @ ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ) ).
% power_gt1_lemma
thf(fact_2845_power__gt1__lemma,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ one_one_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).
% power_gt1_lemma
thf(fact_2846_power__gt1__lemma,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ one_one_int @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).
% power_gt1_lemma
thf(fact_2847_power__less__power__Suc,axiom,
! [A: code_integer,N: nat] :
( ( ord_le6747313008572928689nteger @ one_one_Code_integer @ A )
=> ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ A @ N ) ) ) ) ).
% power_less_power_Suc
thf(fact_2848_power__less__power__Suc,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ ( power_power_real @ A @ N ) @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).
% power_less_power_Suc
thf(fact_2849_power__less__power__Suc,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ) ).
% power_less_power_Suc
thf(fact_2850_power__less__power__Suc,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).
% power_less_power_Suc
thf(fact_2851_power__less__power__Suc,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ ( power_power_int @ A @ N ) @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).
% power_less_power_Suc
thf(fact_2852_power__gt1,axiom,
! [A: code_integer,N: nat] :
( ( ord_le6747313008572928689nteger @ one_one_Code_integer @ A )
=> ( ord_le6747313008572928689nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ A @ ( suc @ N ) ) ) ) ).
% power_gt1
thf(fact_2853_power__gt1,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ one_one_real @ ( power_power_real @ A @ ( suc @ N ) ) ) ) ).
% power_gt1
thf(fact_2854_power__gt1,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ord_less_rat @ one_one_rat @ ( power_power_rat @ A @ ( suc @ N ) ) ) ) ).
% power_gt1
thf(fact_2855_power__gt1,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ ( suc @ N ) ) ) ) ).
% power_gt1
thf(fact_2856_power__gt1,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ one_one_int @ ( power_power_int @ A @ ( suc @ N ) ) ) ) ).
% power_gt1
thf(fact_2857_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_rat @ zero_zero_rat @ N )
= zero_zero_rat ) ) ).
% zero_power
thf(fact_2858_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ) ).
% zero_power
thf(fact_2859_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_real @ zero_zero_real @ N )
= zero_zero_real ) ) ).
% zero_power
thf(fact_2860_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_int @ zero_zero_int @ N )
= zero_zero_int ) ) ).
% zero_power
thf(fact_2861_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_complex @ zero_zero_complex @ N )
= zero_zero_complex ) ) ).
% zero_power
thf(fact_2862_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_8256067586552552935nteger @ zero_z3403309356797280102nteger @ N )
= zero_z3403309356797280102nteger ) ) ).
% zero_power
thf(fact_2863_nat__eq__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
= ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M )
= N ) ) ) ).
% nat_eq_add_iff1
thf(fact_2864_nat__eq__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
= ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( M
= ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).
% nat_eq_add_iff2
thf(fact_2865_nat__le__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).
% nat_le_add_iff1
thf(fact_2866_nat__le__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ord_less_eq_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).
% nat_le_add_iff2
thf(fact_2867_nat__diff__add__eq1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).
% nat_diff_add_eq1
thf(fact_2868_nat__diff__add__eq2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( minus_minus_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).
% nat_diff_add_eq2
thf(fact_2869_ex__least__nat__less,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K3: nat] :
( ( ord_less_nat @ K3 @ N )
& ! [I4: nat] :
( ( ord_less_eq_nat @ I4 @ K3 )
=> ~ ( P @ I4 ) )
& ( P @ ( suc @ K3 ) ) ) ) ) ).
% ex_least_nat_less
thf(fact_2870_pos__zdiv__mult__2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
= ( divide_divide_int @ B @ A ) ) ) ).
% pos_zdiv_mult_2
thf(fact_2871_neg__zdiv__mult__2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
= ( divide_divide_int @ ( plus_plus_int @ B @ one_one_int ) @ A ) ) ) ).
% neg_zdiv_mult_2
thf(fact_2872_one__less__mult,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) ) ) ) ).
% one_less_mult
thf(fact_2873_n__less__m__mult__n,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ N @ ( times_times_nat @ M @ N ) ) ) ) ).
% n_less_m_mult_n
thf(fact_2874_n__less__n__mult__m,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ N @ ( times_times_nat @ N @ M ) ) ) ) ).
% n_less_n_mult_m
thf(fact_2875_power__gt__expt,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ord_less_nat @ K @ ( power_power_nat @ N @ K ) ) ) ).
% power_gt_expt
thf(fact_2876_div__le__mono2,axiom,
! [M: nat,N: nat,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( divide_divide_nat @ K @ N ) @ ( divide_divide_nat @ K @ M ) ) ) ) ).
% div_le_mono2
thf(fact_2877_div__greater__zero__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ M @ N ) )
= ( ( ord_less_eq_nat @ N @ M )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% div_greater_zero_iff
thf(fact_2878_nat__mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ).
% nat_mult_le_cancel1
thf(fact_2879_div__less__iff__less__mult,axiom,
! [Q2: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ Q2 )
=> ( ( ord_less_nat @ ( divide_divide_nat @ M @ Q2 ) @ N )
= ( ord_less_nat @ M @ ( times_times_nat @ N @ Q2 ) ) ) ) ).
% div_less_iff_less_mult
thf(fact_2880_nat__mult__div__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( divide_divide_nat @ M @ N ) ) ) ).
% nat_mult_div_cancel1
thf(fact_2881_dvd__imp__le,axiom,
! [K: nat,N: nat] :
( ( dvd_dvd_nat @ K @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_nat @ K @ N ) ) ) ).
% dvd_imp_le
thf(fact_2882_dvd__mult__cancel,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( dvd_dvd_nat @ M @ N ) ) ) ).
% dvd_mult_cancel
thf(fact_2883_nat__mult__dvd__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( dvd_dvd_nat @ M @ N ) ) ) ).
% nat_mult_dvd_cancel1
thf(fact_2884_zle__int,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% zle_int
thf(fact_2885_zle__iff__zadd,axiom,
( ord_less_eq_int
= ( ^ [W2: int,Z5: int] :
? [N3: nat] :
( Z5
= ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).
% zle_iff_zadd
thf(fact_2886_VEBT__internal_OT__vebt__buildupi_H_Osimps_I2_J,axiom,
( ( vEBT_V9176841429113362141ildupi @ ( suc @ zero_zero_nat ) )
= one_one_int ) ).
% VEBT_internal.T_vebt_buildupi'.simps(2)
thf(fact_2887_frac__le__eq,axiom,
! [Y2: real,Z: real,X2: real,W: real] :
( ( Y2 != zero_zero_real )
=> ( ( Z != zero_zero_real )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ X2 @ Y2 ) @ ( divide_divide_real @ W @ Z ) )
= ( ord_less_eq_real @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ W @ Y2 ) ) @ ( times_times_real @ Y2 @ Z ) ) @ zero_zero_real ) ) ) ) ).
% frac_le_eq
thf(fact_2888_frac__le__eq,axiom,
! [Y2: rat,Z: rat,X2: rat,W: rat] :
( ( Y2 != zero_zero_rat )
=> ( ( Z != zero_zero_rat )
=> ( ( ord_less_eq_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ ( divide_divide_rat @ W @ Z ) )
= ( ord_less_eq_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X2 @ Z ) @ ( times_times_rat @ W @ Y2 ) ) @ ( times_times_rat @ Y2 @ Z ) ) @ zero_zero_rat ) ) ) ) ).
% frac_le_eq
thf(fact_2889_power2__commute,axiom,
! [X2: complex,Y2: complex] :
( ( power_power_complex @ ( minus_minus_complex @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_complex @ ( minus_minus_complex @ Y2 @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_commute
thf(fact_2890_power2__commute,axiom,
! [X2: code_integer,Y2: code_integer] :
( ( power_8256067586552552935nteger @ ( minus_8373710615458151222nteger @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_8256067586552552935nteger @ ( minus_8373710615458151222nteger @ Y2 @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_commute
thf(fact_2891_power2__commute,axiom,
! [X2: real,Y2: real] :
( ( power_power_real @ ( minus_minus_real @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ ( minus_minus_real @ Y2 @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_commute
thf(fact_2892_power2__commute,axiom,
! [X2: rat,Y2: rat] :
( ( power_power_rat @ ( minus_minus_rat @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_rat @ ( minus_minus_rat @ Y2 @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_commute
thf(fact_2893_power2__commute,axiom,
! [X2: int,Y2: int] :
( ( power_power_int @ ( minus_minus_int @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ ( minus_minus_int @ Y2 @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_commute
thf(fact_2894_field__le__mult__one__interval,axiom,
! [X2: real,Y2: real] :
( ! [Z2: real] :
( ( ord_less_real @ zero_zero_real @ Z2 )
=> ( ( ord_less_real @ Z2 @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ Z2 @ X2 ) @ Y2 ) ) )
=> ( ord_less_eq_real @ X2 @ Y2 ) ) ).
% field_le_mult_one_interval
thf(fact_2895_field__le__mult__one__interval,axiom,
! [X2: rat,Y2: rat] :
( ! [Z2: rat] :
( ( ord_less_rat @ zero_zero_rat @ Z2 )
=> ( ( ord_less_rat @ Z2 @ one_one_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ Z2 @ X2 ) @ Y2 ) ) )
=> ( ord_less_eq_rat @ X2 @ Y2 ) ) ).
% field_le_mult_one_interval
thf(fact_2896_mult__le__cancel__left1,axiom,
! [C: real,B: real] :
( ( ord_less_eq_real @ C @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ one_one_real @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).
% mult_le_cancel_left1
thf(fact_2897_mult__le__cancel__left1,axiom,
! [C: rat,B: rat] :
( ( ord_less_eq_rat @ C @ ( times_times_rat @ C @ B ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ one_one_rat @ B ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ one_one_rat ) ) ) ) ).
% mult_le_cancel_left1
thf(fact_2898_mult__le__cancel__left1,axiom,
! [C: int,B: int] :
( ( ord_less_eq_int @ C @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ one_one_int @ B ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).
% mult_le_cancel_left1
thf(fact_2899_mult__le__cancel__left2,axiom,
! [C: real,A: real] :
( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ C )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ one_one_real ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).
% mult_le_cancel_left2
thf(fact_2900_mult__le__cancel__left2,axiom,
! [C: rat,A: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ C )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ one_one_rat ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ one_one_rat @ A ) ) ) ) ).
% mult_le_cancel_left2
thf(fact_2901_mult__le__cancel__left2,axiom,
! [C: int,A: int] :
( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ C )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ one_one_int ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).
% mult_le_cancel_left2
thf(fact_2902_mult__le__cancel__right1,axiom,
! [C: real,B: real] :
( ( ord_less_eq_real @ C @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ one_one_real @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).
% mult_le_cancel_right1
thf(fact_2903_mult__le__cancel__right1,axiom,
! [C: rat,B: rat] :
( ( ord_less_eq_rat @ C @ ( times_times_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ one_one_rat @ B ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ one_one_rat ) ) ) ) ).
% mult_le_cancel_right1
thf(fact_2904_mult__le__cancel__right1,axiom,
! [C: int,B: int] :
( ( ord_less_eq_int @ C @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ one_one_int @ B ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).
% mult_le_cancel_right1
thf(fact_2905_mult__le__cancel__right2,axiom,
! [A: real,C: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ C )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ one_one_real ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).
% mult_le_cancel_right2
thf(fact_2906_mult__le__cancel__right2,axiom,
! [A: rat,C: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ C )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ one_one_rat ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ one_one_rat @ A ) ) ) ) ).
% mult_le_cancel_right2
thf(fact_2907_mult__le__cancel__right2,axiom,
! [A: int,C: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ C )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ one_one_int ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).
% mult_le_cancel_right2
thf(fact_2908_mult__less__cancel__left1,axiom,
! [C: real,B: real] :
( ( ord_less_real @ C @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ one_one_real @ B ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ one_one_real ) ) ) ) ).
% mult_less_cancel_left1
thf(fact_2909_mult__less__cancel__left1,axiom,
! [C: rat,B: rat] :
( ( ord_less_rat @ C @ ( times_times_rat @ C @ B ) )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ one_one_rat @ B ) )
& ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ one_one_rat ) ) ) ) ).
% mult_less_cancel_left1
thf(fact_2910_mult__less__cancel__left1,axiom,
! [C: int,B: int] :
( ( ord_less_int @ C @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ one_one_int @ B ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ B @ one_one_int ) ) ) ) ).
% mult_less_cancel_left1
thf(fact_2911_mult__less__cancel__left2,axiom,
! [C: real,A: real] :
( ( ord_less_real @ ( times_times_real @ C @ A ) @ C )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ one_one_real ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ one_one_real @ A ) ) ) ) ).
% mult_less_cancel_left2
thf(fact_2912_mult__less__cancel__left2,axiom,
! [C: rat,A: rat] :
( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ C )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ one_one_rat ) )
& ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ one_one_rat @ A ) ) ) ) ).
% mult_less_cancel_left2
thf(fact_2913_mult__less__cancel__left2,axiom,
! [C: int,A: int] :
( ( ord_less_int @ ( times_times_int @ C @ A ) @ C )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ one_one_int ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ one_one_int @ A ) ) ) ) ).
% mult_less_cancel_left2
thf(fact_2914_mult__less__cancel__right1,axiom,
! [C: real,B: real] :
( ( ord_less_real @ C @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ one_one_real @ B ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ one_one_real ) ) ) ) ).
% mult_less_cancel_right1
thf(fact_2915_mult__less__cancel__right1,axiom,
! [C: rat,B: rat] :
( ( ord_less_rat @ C @ ( times_times_rat @ B @ C ) )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ one_one_rat @ B ) )
& ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ one_one_rat ) ) ) ) ).
% mult_less_cancel_right1
thf(fact_2916_mult__less__cancel__right1,axiom,
! [C: int,B: int] :
( ( ord_less_int @ C @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ one_one_int @ B ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ B @ one_one_int ) ) ) ) ).
% mult_less_cancel_right1
thf(fact_2917_mult__less__cancel__right2,axiom,
! [A: real,C: real] :
( ( ord_less_real @ ( times_times_real @ A @ C ) @ C )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ one_one_real ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ one_one_real @ A ) ) ) ) ).
% mult_less_cancel_right2
thf(fact_2918_mult__less__cancel__right2,axiom,
! [A: rat,C: rat] :
( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ C )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ one_one_rat ) )
& ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ one_one_rat @ A ) ) ) ) ).
% mult_less_cancel_right2
thf(fact_2919_mult__less__cancel__right2,axiom,
! [A: int,C: int] :
( ( ord_less_int @ ( times_times_int @ A @ C ) @ C )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ one_one_int ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ one_one_int @ A ) ) ) ) ).
% mult_less_cancel_right2
thf(fact_2920_le__divide__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ A @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ A ) ) ) ) ).
% le_divide_eq_1
thf(fact_2921_le__divide__eq__1,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ A @ B ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ B @ A ) ) ) ) ).
% le_divide_eq_1
thf(fact_2922_divide__le__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ A ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ A @ B ) )
| ( A = zero_zero_real ) ) ) ).
% divide_le_eq_1
thf(fact_2923_divide__le__eq__1,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ B @ A ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ A @ B ) )
| ( A = zero_zero_rat ) ) ) ).
% divide_le_eq_1
thf(fact_2924_divide__le__eq,axiom,
! [B: real,C: real,A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ) ) ).
% divide_le_eq
thf(fact_2925_divide__le__eq,axiom,
! [B: rat,C: rat,A: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).
% divide_le_eq
thf(fact_2926_le__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ A @ zero_zero_real ) ) ) ) ) ) ).
% le_divide_eq
thf(fact_2927_le__divide__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).
% le_divide_eq
thf(fact_2928_divide__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_eq_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).
% divide_left_mono
thf(fact_2929_divide__left__mono,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).
% divide_left_mono
thf(fact_2930_neg__divide__le__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).
% neg_divide_le_eq
thf(fact_2931_neg__divide__le__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).
% neg_divide_le_eq
thf(fact_2932_neg__le__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).
% neg_le_divide_eq
thf(fact_2933_neg__le__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).
% neg_le_divide_eq
thf(fact_2934_pos__divide__le__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).
% pos_divide_le_eq
thf(fact_2935_pos__divide__le__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).
% pos_divide_le_eq
thf(fact_2936_pos__le__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).
% pos_le_divide_eq
thf(fact_2937_pos__le__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).
% pos_le_divide_eq
thf(fact_2938_mult__imp__div__pos__le,axiom,
! [Y2: real,X2: real,Z: real] :
( ( ord_less_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_eq_real @ X2 @ ( times_times_real @ Z @ Y2 ) )
=> ( ord_less_eq_real @ ( divide_divide_real @ X2 @ Y2 ) @ Z ) ) ) ).
% mult_imp_div_pos_le
thf(fact_2939_mult__imp__div__pos__le,axiom,
! [Y2: rat,X2: rat,Z: rat] :
( ( ord_less_rat @ zero_zero_rat @ Y2 )
=> ( ( ord_less_eq_rat @ X2 @ ( times_times_rat @ Z @ Y2 ) )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ Z ) ) ) ).
% mult_imp_div_pos_le
thf(fact_2940_mult__imp__le__div__pos,axiom,
! [Y2: real,Z: real,X2: real] :
( ( ord_less_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_eq_real @ ( times_times_real @ Z @ Y2 ) @ X2 )
=> ( ord_less_eq_real @ Z @ ( divide_divide_real @ X2 @ Y2 ) ) ) ) ).
% mult_imp_le_div_pos
thf(fact_2941_mult__imp__le__div__pos,axiom,
! [Y2: rat,Z: rat,X2: rat] :
( ( ord_less_rat @ zero_zero_rat @ Y2 )
=> ( ( ord_less_eq_rat @ ( times_times_rat @ Z @ Y2 ) @ X2 )
=> ( ord_less_eq_rat @ Z @ ( divide_divide_rat @ X2 @ Y2 ) ) ) ) ).
% mult_imp_le_div_pos
thf(fact_2942_divide__left__mono__neg,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_eq_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).
% divide_left_mono_neg
thf(fact_2943_divide__left__mono__neg,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).
% divide_left_mono_neg
thf(fact_2944_divide__less__eq__numeral_I1_J,axiom,
! [B: real,C: real,W: num] :
( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ ( numeral_numeral_real @ W ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ).
% divide_less_eq_numeral(1)
thf(fact_2945_divide__less__eq__numeral_I1_J,axiom,
! [B: rat,C: rat,W: num] :
( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ ( numeral_numeral_rat @ W ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ).
% divide_less_eq_numeral(1)
thf(fact_2946_less__divide__eq__numeral_I1_J,axiom,
! [W: num,B: real,C: real] :
( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( numeral_numeral_real @ W ) @ zero_zero_real ) ) ) ) ) ) ).
% less_divide_eq_numeral(1)
thf(fact_2947_less__divide__eq__numeral_I1_J,axiom,
! [W: num,B: rat,C: rat] :
( ( ord_less_rat @ ( numeral_numeral_rat @ W ) @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( numeral_numeral_rat @ W ) @ zero_zero_rat ) ) ) ) ) ) ).
% less_divide_eq_numeral(1)
thf(fact_2948_power__Suc__less,axiom,
! [A: code_integer,N: nat] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( ord_le6747313008572928689nteger @ A @ one_one_Code_integer )
=> ( ord_le6747313008572928689nteger @ ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ A @ N ) ) @ ( power_8256067586552552935nteger @ A @ N ) ) ) ) ).
% power_Suc_less
thf(fact_2949_power__Suc__less,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) @ ( power_power_real @ A @ N ) ) ) ) ).
% power_Suc_less
thf(fact_2950_power__Suc__less,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ A @ one_one_rat )
=> ( ord_less_rat @ ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) @ ( power_power_rat @ A @ N ) ) ) ) ).
% power_Suc_less
thf(fact_2951_power__Suc__less,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) @ ( power_power_nat @ A @ N ) ) ) ) ).
% power_Suc_less
thf(fact_2952_power__Suc__less,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) @ ( power_power_int @ A @ N ) ) ) ) ).
% power_Suc_less
thf(fact_2953_power__Suc__less__one,axiom,
! [A: code_integer,N: nat] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( ord_le6747313008572928689nteger @ A @ one_one_Code_integer )
=> ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ A @ ( suc @ N ) ) @ one_one_Code_integer ) ) ) ).
% power_Suc_less_one
thf(fact_2954_power__Suc__less__one,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( power_power_real @ A @ ( suc @ N ) ) @ one_one_real ) ) ) ).
% power_Suc_less_one
thf(fact_2955_power__Suc__less__one,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ A @ one_one_rat )
=> ( ord_less_rat @ ( power_power_rat @ A @ ( suc @ N ) ) @ one_one_rat ) ) ) ).
% power_Suc_less_one
thf(fact_2956_power__Suc__less__one,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ one_one_nat ) ) ) ).
% power_Suc_less_one
thf(fact_2957_power__Suc__less__one,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( power_power_int @ A @ ( suc @ N ) ) @ one_one_int ) ) ) ).
% power_Suc_less_one
thf(fact_2958_power__eq__if,axiom,
( power_power_complex
= ( ^ [P3: complex,M5: nat] : ( if_complex @ ( M5 = zero_zero_nat ) @ one_one_complex @ ( times_times_complex @ P3 @ ( power_power_complex @ P3 @ ( minus_minus_nat @ M5 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_2959_power__eq__if,axiom,
( power_8256067586552552935nteger
= ( ^ [P3: code_integer,M5: nat] : ( if_Code_integer @ ( M5 = zero_zero_nat ) @ one_one_Code_integer @ ( times_3573771949741848930nteger @ P3 @ ( power_8256067586552552935nteger @ P3 @ ( minus_minus_nat @ M5 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_2960_power__eq__if,axiom,
( power_power_real
= ( ^ [P3: real,M5: nat] : ( if_real @ ( M5 = zero_zero_nat ) @ one_one_real @ ( times_times_real @ P3 @ ( power_power_real @ P3 @ ( minus_minus_nat @ M5 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_2961_power__eq__if,axiom,
( power_power_rat
= ( ^ [P3: rat,M5: nat] : ( if_rat @ ( M5 = zero_zero_nat ) @ one_one_rat @ ( times_times_rat @ P3 @ ( power_power_rat @ P3 @ ( minus_minus_nat @ M5 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_2962_power__eq__if,axiom,
( power_power_nat
= ( ^ [P3: nat,M5: nat] : ( if_nat @ ( M5 = zero_zero_nat ) @ one_one_nat @ ( times_times_nat @ P3 @ ( power_power_nat @ P3 @ ( minus_minus_nat @ M5 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_2963_power__eq__if,axiom,
( power_power_int
= ( ^ [P3: int,M5: nat] : ( if_int @ ( M5 = zero_zero_nat ) @ one_one_int @ ( times_times_int @ P3 @ ( power_power_int @ P3 @ ( minus_minus_nat @ M5 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_2964_power__le__imp__le__exp,axiom,
! [A: code_integer,M: nat,N: nat] :
( ( ord_le6747313008572928689nteger @ one_one_Code_integer @ A )
=> ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ A @ M ) @ ( power_8256067586552552935nteger @ A @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_2965_power__le__imp__le__exp,axiom,
! [A: real,M: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_eq_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_2966_power__le__imp__le__exp,axiom,
! [A: rat,M: nat,N: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ( ord_less_eq_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_2967_power__le__imp__le__exp,axiom,
! [A: nat,M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_2968_power__le__imp__le__exp,axiom,
! [A: int,M: nat,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_eq_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_2969_power__diff,axiom,
! [A: code_integer,N: nat,M: nat] :
( ( A != zero_z3403309356797280102nteger )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( power_8256067586552552935nteger @ A @ ( minus_minus_nat @ M @ N ) )
= ( divide6298287555418463151nteger @ ( power_8256067586552552935nteger @ A @ M ) @ ( power_8256067586552552935nteger @ A @ N ) ) ) ) ) ).
% power_diff
thf(fact_2970_power__diff,axiom,
! [A: complex,N: nat,M: nat] :
( ( A != zero_zero_complex )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( power_power_complex @ A @ ( minus_minus_nat @ M @ N ) )
= ( divide1717551699836669952omplex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N ) ) ) ) ) ).
% power_diff
thf(fact_2971_power__diff,axiom,
! [A: real,N: nat,M: nat] :
( ( A != zero_zero_real )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( power_power_real @ A @ ( minus_minus_nat @ M @ N ) )
= ( divide_divide_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ) ) ).
% power_diff
thf(fact_2972_power__diff,axiom,
! [A: rat,N: nat,M: nat] :
( ( A != zero_zero_rat )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( power_power_rat @ A @ ( minus_minus_nat @ M @ N ) )
= ( divide_divide_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) ) ) ) ) ).
% power_diff
thf(fact_2973_power__diff,axiom,
! [A: nat,N: nat,M: nat] :
( ( A != zero_zero_nat )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( power_power_nat @ A @ ( minus_minus_nat @ M @ N ) )
= ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).
% power_diff
thf(fact_2974_power__diff,axiom,
! [A: int,N: nat,M: nat] :
( ( A != zero_zero_int )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( power_power_int @ A @ ( minus_minus_nat @ M @ N ) )
= ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ) ) ).
% power_diff
thf(fact_2975_power__eq__iff__eq__base,axiom,
! [N: nat,A: real,B: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ( power_power_real @ A @ N )
= ( power_power_real @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_2976_power__eq__iff__eq__base,axiom,
! [N: nat,A: code_integer,B: code_integer] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
=> ( ( ( power_8256067586552552935nteger @ A @ N )
= ( power_8256067586552552935nteger @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_2977_power__eq__iff__eq__base,axiom,
! [N: nat,A: rat,B: rat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ( ( power_power_rat @ A @ N )
= ( power_power_rat @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_2978_power__eq__iff__eq__base,axiom,
! [N: nat,A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ( power_power_nat @ A @ N )
= ( power_power_nat @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_2979_power__eq__iff__eq__base,axiom,
! [N: nat,A: int,B: int] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ( power_power_int @ A @ N )
= ( power_power_int @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_2980_power__eq__imp__eq__base,axiom,
! [A: real,N: nat,B: real] :
( ( ( power_power_real @ A @ N )
= ( power_power_real @ B @ N ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_2981_power__eq__imp__eq__base,axiom,
! [A: code_integer,N: nat,B: code_integer] :
( ( ( power_8256067586552552935nteger @ A @ N )
= ( power_8256067586552552935nteger @ B @ N ) )
=> ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_2982_power__eq__imp__eq__base,axiom,
! [A: rat,N: nat,B: rat] :
( ( ( power_power_rat @ A @ N )
= ( power_power_rat @ B @ N ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_2983_power__eq__imp__eq__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ( power_power_nat @ A @ N )
= ( power_power_nat @ B @ N ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_2984_power__eq__imp__eq__base,axiom,
! [A: int,N: nat,B: int] :
( ( ( power_power_int @ A @ N )
= ( power_power_int @ B @ N ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_2985_self__le__power,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ one_one_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).
% self_le_power
thf(fact_2986_self__le__power,axiom,
! [A: code_integer,N: nat] :
( ( ord_le3102999989581377725nteger @ one_one_Code_integer @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_le3102999989581377725nteger @ A @ ( power_8256067586552552935nteger @ A @ N ) ) ) ) ).
% self_le_power
thf(fact_2987_self__le__power,axiom,
! [A: rat,N: nat] :
( ( ord_less_eq_rat @ one_one_rat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_rat @ A @ ( power_power_rat @ A @ N ) ) ) ) ).
% self_le_power
thf(fact_2988_self__le__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).
% self_le_power
thf(fact_2989_self__le__power,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ one_one_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).
% self_le_power
thf(fact_2990_pos2,axiom,
ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ).
% pos2
thf(fact_2991_dvd__power,axiom,
! [N: nat,X2: rat] :
( ( ( ord_less_nat @ zero_zero_nat @ N )
| ( X2 = one_one_rat ) )
=> ( dvd_dvd_rat @ X2 @ ( power_power_rat @ X2 @ N ) ) ) ).
% dvd_power
thf(fact_2992_dvd__power,axiom,
! [N: nat,X2: nat] :
( ( ( ord_less_nat @ zero_zero_nat @ N )
| ( X2 = one_one_nat ) )
=> ( dvd_dvd_nat @ X2 @ ( power_power_nat @ X2 @ N ) ) ) ).
% dvd_power
thf(fact_2993_dvd__power,axiom,
! [N: nat,X2: real] :
( ( ( ord_less_nat @ zero_zero_nat @ N )
| ( X2 = one_one_real ) )
=> ( dvd_dvd_real @ X2 @ ( power_power_real @ X2 @ N ) ) ) ).
% dvd_power
thf(fact_2994_dvd__power,axiom,
! [N: nat,X2: int] :
( ( ( ord_less_nat @ zero_zero_nat @ N )
| ( X2 = one_one_int ) )
=> ( dvd_dvd_int @ X2 @ ( power_power_int @ X2 @ N ) ) ) ).
% dvd_power
thf(fact_2995_dvd__power,axiom,
! [N: nat,X2: complex] :
( ( ( ord_less_nat @ zero_zero_nat @ N )
| ( X2 = one_one_complex ) )
=> ( dvd_dvd_complex @ X2 @ ( power_power_complex @ X2 @ N ) ) ) ).
% dvd_power
thf(fact_2996_dvd__power,axiom,
! [N: nat,X2: code_integer] :
( ( ( ord_less_nat @ zero_zero_nat @ N )
| ( X2 = one_one_Code_integer ) )
=> ( dvd_dvd_Code_integer @ X2 @ ( power_8256067586552552935nteger @ X2 @ N ) ) ) ).
% dvd_power
thf(fact_2997_dvd__minus__add,axiom,
! [Q2: nat,N: nat,R2: nat,M: nat] :
( ( ord_less_eq_nat @ Q2 @ N )
=> ( ( ord_less_eq_nat @ Q2 @ ( times_times_nat @ R2 @ M ) )
=> ( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ Q2 ) )
= ( dvd_dvd_nat @ M @ ( plus_plus_nat @ N @ ( minus_minus_nat @ ( times_times_nat @ R2 @ M ) @ Q2 ) ) ) ) ) ) ).
% dvd_minus_add
thf(fact_2998_div__nat__eqI,axiom,
! [N: nat,Q2: nat,M: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ N @ Q2 ) @ M )
=> ( ( ord_less_nat @ M @ ( times_times_nat @ N @ ( suc @ Q2 ) ) )
=> ( ( divide_divide_nat @ M @ N )
= Q2 ) ) ) ).
% div_nat_eqI
thf(fact_2999_split__div,axiom,
! [P: nat > $o,M: nat,N: nat] :
( ( P @ ( divide_divide_nat @ M @ N ) )
= ( ( ( N = zero_zero_nat )
=> ( P @ zero_zero_nat ) )
& ( ( N != zero_zero_nat )
=> ! [I3: nat,J3: nat] :
( ( ord_less_nat @ J3 @ N )
=> ( ( M
= ( plus_plus_nat @ ( times_times_nat @ N @ I3 ) @ J3 ) )
=> ( P @ I3 ) ) ) ) ) ) ).
% split_div
thf(fact_3000_dividend__less__div__times,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) ) ) ) ).
% dividend_less_div_times
thf(fact_3001_dividend__less__times__div,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) ) ) ) ).
% dividend_less_times_div
thf(fact_3002_less__eq__div__iff__mult__less__eq,axiom,
! [Q2: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ Q2 )
=> ( ( ord_less_eq_nat @ M @ ( divide_divide_nat @ N @ Q2 ) )
= ( ord_less_eq_nat @ ( times_times_nat @ M @ Q2 ) @ N ) ) ) ).
% less_eq_div_iff_mult_less_eq
thf(fact_3003_nat__1__add__1,axiom,
( ( plus_plus_nat @ one_one_nat @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% nat_1_add_1
thf(fact_3004_even__mult__exp__div__exp__iff,axiom,
! [A: code_integer,M: nat,N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) )
= ( ( ord_less_nat @ N @ M )
| ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N )
= zero_z3403309356797280102nteger )
| ( ( ord_less_eq_nat @ M @ N )
& ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).
% even_mult_exp_div_exp_iff
thf(fact_3005_even__mult__exp__div__exp__iff,axiom,
! [A: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( times_times_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( ( ord_less_nat @ N @ M )
| ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
= zero_zero_nat )
| ( ( ord_less_eq_nat @ M @ N )
& ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).
% even_mult_exp_div_exp_iff
thf(fact_3006_even__mult__exp__div__exp__iff,axiom,
! [A: int,M: nat,N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( times_times_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
= ( ( ord_less_nat @ N @ M )
| ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
= zero_zero_int )
| ( ( ord_less_eq_nat @ M @ N )
& ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).
% even_mult_exp_div_exp_iff
thf(fact_3007_nat__less__real__le,axiom,
( ord_less_nat
= ( ^ [N3: nat,M5: nat] : ( ord_less_eq_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N3 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ M5 ) ) ) ) ).
% nat_less_real_le
thf(fact_3008_not__exp__less__eq__0__int,axiom,
! [N: nat] :
~ ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ zero_zero_int ) ).
% not_exp_less_eq_0_int
thf(fact_3009_scaling__mono,axiom,
! [U: real,V: real,R2: real,S3: real] :
( ( ord_less_eq_real @ U @ V )
=> ( ( ord_less_eq_real @ zero_zero_real @ R2 )
=> ( ( ord_less_eq_real @ R2 @ S3 )
=> ( ord_less_eq_real @ ( plus_plus_real @ U @ ( divide_divide_real @ ( times_times_real @ R2 @ ( minus_minus_real @ V @ U ) ) @ S3 ) ) @ V ) ) ) ) ).
% scaling_mono
thf(fact_3010_scaling__mono,axiom,
! [U: rat,V: rat,R2: rat,S3: rat] :
( ( ord_less_eq_rat @ U @ V )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ R2 )
=> ( ( ord_less_eq_rat @ R2 @ S3 )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ U @ ( divide_divide_rat @ ( times_times_rat @ R2 @ ( minus_minus_rat @ V @ U ) ) @ S3 ) ) @ V ) ) ) ) ).
% scaling_mono
thf(fact_3011_convex__bound__lt,axiom,
! [X2: real,A: real,Y2: real,U: real,V: real] :
( ( ord_less_real @ X2 @ A )
=> ( ( ord_less_real @ Y2 @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ U )
=> ( ( ord_less_eq_real @ zero_zero_real @ V )
=> ( ( ( plus_plus_real @ U @ V )
= one_one_real )
=> ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ U @ X2 ) @ ( times_times_real @ V @ Y2 ) ) @ A ) ) ) ) ) ) ).
% convex_bound_lt
thf(fact_3012_convex__bound__lt,axiom,
! [X2: rat,A: rat,Y2: rat,U: rat,V: rat] :
( ( ord_less_rat @ X2 @ A )
=> ( ( ord_less_rat @ Y2 @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ U )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ V )
=> ( ( ( plus_plus_rat @ U @ V )
= one_one_rat )
=> ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ U @ X2 ) @ ( times_times_rat @ V @ Y2 ) ) @ A ) ) ) ) ) ) ).
% convex_bound_lt
thf(fact_3013_convex__bound__lt,axiom,
! [X2: int,A: int,Y2: int,U: int,V: int] :
( ( ord_less_int @ X2 @ A )
=> ( ( ord_less_int @ Y2 @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ U )
=> ( ( ord_less_eq_int @ zero_zero_int @ V )
=> ( ( ( plus_plus_int @ U @ V )
= one_one_int )
=> ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ U @ X2 ) @ ( times_times_int @ V @ Y2 ) ) @ A ) ) ) ) ) ) ).
% convex_bound_lt
thf(fact_3014_divide__le__eq__numeral_I1_J,axiom,
! [B: real,C: real,W: num] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( numeral_numeral_real @ W ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ).
% divide_le_eq_numeral(1)
thf(fact_3015_divide__le__eq__numeral_I1_J,axiom,
! [B: rat,C: rat,W: num] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( numeral_numeral_rat @ W ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ).
% divide_le_eq_numeral(1)
thf(fact_3016_le__divide__eq__numeral_I1_J,axiom,
! [W: num,B: real,C: real] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ W ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( numeral_numeral_real @ W ) @ zero_zero_real ) ) ) ) ) ) ).
% le_divide_eq_numeral(1)
thf(fact_3017_le__divide__eq__numeral_I1_J,axiom,
! [W: num,B: rat,C: rat] :
( ( ord_less_eq_rat @ ( numeral_numeral_rat @ W ) @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( numeral_numeral_rat @ W ) @ zero_zero_rat ) ) ) ) ) ) ).
% le_divide_eq_numeral(1)
thf(fact_3018_half__gt__zero,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% half_gt_zero
thf(fact_3019_half__gt__zero,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).
% half_gt_zero
thf(fact_3020_half__gt__zero__iff,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% half_gt_zero_iff
thf(fact_3021_half__gt__zero__iff,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% half_gt_zero_iff
thf(fact_3022_exp__not__zero__imp__exp__diff__not__zero,axiom,
! [N: nat,M: nat] :
( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N )
!= zero_z3403309356797280102nteger )
=> ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) )
!= zero_z3403309356797280102nteger ) ) ).
% exp_not_zero_imp_exp_diff_not_zero
thf(fact_3023_exp__not__zero__imp__exp__diff__not__zero,axiom,
! [N: nat,M: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
!= zero_zero_nat )
=> ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) )
!= zero_zero_nat ) ) ).
% exp_not_zero_imp_exp_diff_not_zero
thf(fact_3024_exp__not__zero__imp__exp__diff__not__zero,axiom,
! [N: nat,M: nat] :
( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
!= zero_zero_int )
=> ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) )
!= zero_zero_int ) ) ).
% exp_not_zero_imp_exp_diff_not_zero
thf(fact_3025_field__less__half__sum,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ X2 @ Y2 )
=> ( ord_less_real @ X2 @ ( divide_divide_real @ ( plus_plus_real @ X2 @ Y2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% field_less_half_sum
thf(fact_3026_field__less__half__sum,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_rat @ X2 @ Y2 )
=> ( ord_less_rat @ X2 @ ( divide_divide_rat @ ( plus_plus_rat @ X2 @ Y2 ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).
% field_less_half_sum
thf(fact_3027_power2__less__0,axiom,
! [A: code_integer] :
~ ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_z3403309356797280102nteger ) ).
% power2_less_0
thf(fact_3028_power2__less__0,axiom,
! [A: real] :
~ ( ord_less_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real ) ).
% power2_less_0
thf(fact_3029_power2__less__0,axiom,
! [A: rat] :
~ ( ord_less_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_rat ) ).
% power2_less_0
thf(fact_3030_power2__less__0,axiom,
! [A: int] :
~ ( ord_less_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int ) ).
% power2_less_0
thf(fact_3031_of__nat__less__two__power,axiom,
! [N: nat] : ( ord_le6747313008572928689nteger @ ( semiri4939895301339042750nteger @ N ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ).
% of_nat_less_two_power
thf(fact_3032_of__nat__less__two__power,axiom,
! [N: nat] : ( ord_less_rat @ ( semiri681578069525770553at_rat @ N ) @ ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ N ) ) ).
% of_nat_less_two_power
thf(fact_3033_of__nat__less__two__power,axiom,
! [N: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ).
% of_nat_less_two_power
thf(fact_3034_of__nat__less__two__power,axiom,
! [N: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).
% of_nat_less_two_power
thf(fact_3035_power__diff__power__eq,axiom,
! [A: code_integer,N: nat,M: nat] :
( ( A != zero_z3403309356797280102nteger )
=> ( ( ( ord_less_eq_nat @ N @ M )
=> ( ( divide6298287555418463151nteger @ ( power_8256067586552552935nteger @ A @ M ) @ ( power_8256067586552552935nteger @ A @ N ) )
= ( power_8256067586552552935nteger @ A @ ( minus_minus_nat @ M @ N ) ) ) )
& ( ~ ( ord_less_eq_nat @ N @ M )
=> ( ( divide6298287555418463151nteger @ ( power_8256067586552552935nteger @ A @ M ) @ ( power_8256067586552552935nteger @ A @ N ) )
= ( divide6298287555418463151nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ A @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).
% power_diff_power_eq
thf(fact_3036_power__diff__power__eq,axiom,
! [A: nat,N: nat,M: nat] :
( ( A != zero_zero_nat )
=> ( ( ( ord_less_eq_nat @ N @ M )
=> ( ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
= ( power_power_nat @ A @ ( minus_minus_nat @ M @ N ) ) ) )
& ( ~ ( ord_less_eq_nat @ N @ M )
=> ( ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
= ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).
% power_diff_power_eq
thf(fact_3037_power__diff__power__eq,axiom,
! [A: int,N: nat,M: nat] :
( ( A != zero_zero_int )
=> ( ( ( ord_less_eq_nat @ N @ M )
=> ( ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
= ( power_power_int @ A @ ( minus_minus_nat @ M @ N ) ) ) )
& ( ~ ( ord_less_eq_nat @ N @ M )
=> ( ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
= ( divide_divide_int @ one_one_int @ ( power_power_int @ A @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).
% power_diff_power_eq
thf(fact_3038_diff__le__diff__pow,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ ( minus_minus_nat @ ( power_power_nat @ K @ M ) @ ( power_power_nat @ K @ N ) ) ) ) ).
% diff_le_diff_pow
thf(fact_3039_less__2__cases,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
=> ( ( N = zero_zero_nat )
| ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% less_2_cases
thf(fact_3040_less__2__cases__iff,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( ( N = zero_zero_nat )
| ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% less_2_cases_iff
thf(fact_3041_odd__pos,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% odd_pos
thf(fact_3042_split__div_H,axiom,
! [P: nat > $o,M: nat,N: nat] :
( ( P @ ( divide_divide_nat @ M @ N ) )
= ( ( ( N = zero_zero_nat )
& ( P @ zero_zero_nat ) )
| ? [Q4: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ N @ Q4 ) @ M )
& ( ord_less_nat @ M @ ( times_times_nat @ N @ ( suc @ Q4 ) ) )
& ( P @ Q4 ) ) ) ) ).
% split_div'
thf(fact_3043_nat__induct2,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ( P @ one_one_nat )
=> ( ! [N2: nat] :
( ( P @ N2 )
=> ( P @ ( plus_plus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct2
thf(fact_3044_power2__less__imp__less,axiom,
! [X2: code_integer,Y2: code_integer] :
( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ Y2 )
=> ( ord_le6747313008572928689nteger @ X2 @ Y2 ) ) ) ).
% power2_less_imp_less
thf(fact_3045_power2__less__imp__less,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ord_less_real @ X2 @ Y2 ) ) ) ).
% power2_less_imp_less
thf(fact_3046_power2__less__imp__less,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
=> ( ord_less_rat @ X2 @ Y2 ) ) ) ).
% power2_less_imp_less
thf(fact_3047_power2__less__imp__less,axiom,
! [X2: nat,Y2: nat] :
( ( ord_less_nat @ ( power_power_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y2 )
=> ( ord_less_nat @ X2 @ Y2 ) ) ) ).
% power2_less_imp_less
thf(fact_3048_power2__less__imp__less,axiom,
! [X2: int,Y2: int] :
( ( ord_less_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
=> ( ord_less_int @ X2 @ Y2 ) ) ) ).
% power2_less_imp_less
thf(fact_3049_not__sum__power2__lt__zero,axiom,
! [X2: code_integer,Y2: code_integer] :
~ ( ord_le6747313008572928689nteger @ ( plus_p5714425477246183910nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_z3403309356797280102nteger ) ).
% not_sum_power2_lt_zero
thf(fact_3050_not__sum__power2__lt__zero,axiom,
! [X2: real,Y2: real] :
~ ( ord_less_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_real ) ).
% not_sum_power2_lt_zero
thf(fact_3051_not__sum__power2__lt__zero,axiom,
! [X2: rat,Y2: rat] :
~ ( ord_less_rat @ ( plus_plus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_rat ) ).
% not_sum_power2_lt_zero
thf(fact_3052_not__sum__power2__lt__zero,axiom,
! [X2: int,Y2: int] :
~ ( ord_less_int @ ( plus_plus_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int ) ).
% not_sum_power2_lt_zero
thf(fact_3053_sum__power2__gt__zero__iff,axiom,
! [X2: code_integer,Y2: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( plus_p5714425477246183910nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= ( ( X2 != zero_z3403309356797280102nteger )
| ( Y2 != zero_z3403309356797280102nteger ) ) ) ).
% sum_power2_gt_zero_iff
thf(fact_3054_sum__power2__gt__zero__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= ( ( X2 != zero_zero_real )
| ( Y2 != zero_zero_real ) ) ) ).
% sum_power2_gt_zero_iff
thf(fact_3055_sum__power2__gt__zero__iff,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= ( ( X2 != zero_zero_rat )
| ( Y2 != zero_zero_rat ) ) ) ).
% sum_power2_gt_zero_iff
thf(fact_3056_sum__power2__gt__zero__iff,axiom,
! [X2: int,Y2: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= ( ( X2 != zero_zero_int )
| ( Y2 != zero_zero_int ) ) ) ).
% sum_power2_gt_zero_iff
thf(fact_3057_div__2__gt__zero,axiom,
! [N: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% div_2_gt_zero
thf(fact_3058_Suc__n__div__2__gt__zero,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% Suc_n_div_2_gt_zero
thf(fact_3059_nat__bit__induct,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N2: nat] :
( ( P @ N2 )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( P @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
=> ( ! [N2: nat] :
( ( P @ N2 )
=> ( P @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_bit_induct
thf(fact_3060_VEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_092_060_094sub_062u_092_060_094sub_062p_Ocases,axiom,
! [X2: nat] :
( ( X2 != zero_zero_nat )
=> ( ( X2
!= ( suc @ zero_zero_nat ) )
=> ~ ! [Va2: nat] :
( X2
!= ( suc @ ( suc @ Va2 ) ) ) ) ) ).
% VEBT_internal.T\<^sub>b\<^sub>u\<^sub>i\<^sub>l\<^sub>d\<^sub>u\<^sub>p.cases
thf(fact_3061_power2__diff,axiom,
! [X2: code_integer,Y2: code_integer] :
( ( power_8256067586552552935nteger @ ( minus_8373710615458151222nteger @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_8373710615458151222nteger @ ( plus_p5714425477246183910nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_3573771949741848930nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ X2 ) @ Y2 ) ) ) ).
% power2_diff
thf(fact_3062_power2__diff,axiom,
! [X2: complex,Y2: complex] :
( ( power_power_complex @ ( minus_minus_complex @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_complex @ ( plus_plus_complex @ ( power_power_complex @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X2 ) @ Y2 ) ) ) ).
% power2_diff
thf(fact_3063_power2__diff,axiom,
! [X2: real,Y2: real] :
( ( power_power_real @ ( minus_minus_real @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) @ Y2 ) ) ) ).
% power2_diff
thf(fact_3064_power2__diff,axiom,
! [X2: rat,Y2: rat] :
( ( power_power_rat @ ( minus_minus_rat @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_rat @ ( plus_plus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X2 ) @ Y2 ) ) ) ).
% power2_diff
thf(fact_3065_power2__diff,axiom,
! [X2: int,Y2: int] :
( ( power_power_int @ ( minus_minus_int @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_int @ ( plus_plus_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X2 ) @ Y2 ) ) ) ).
% power2_diff
thf(fact_3066_zadd__int__left,axiom,
! [M: nat,N: nat,Z: int] :
( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ Z ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) ) @ Z ) ) ).
% zadd_int_left
thf(fact_3067_odd__power__less__zero,axiom,
! [A: code_integer,N: nat] :
( ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger )
=> ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ zero_z3403309356797280102nteger ) ) ).
% odd_power_less_zero
thf(fact_3068_odd__power__less__zero,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ord_less_real @ ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ zero_zero_real ) ) ).
% odd_power_less_zero
thf(fact_3069_odd__power__less__zero,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ord_less_rat @ ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ zero_zero_rat ) ) ).
% odd_power_less_zero
thf(fact_3070_odd__power__less__zero,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ord_less_int @ ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ zero_zero_int ) ) ).
% odd_power_less_zero
thf(fact_3071_zero__less__power__eq,axiom,
! [A: code_integer,N: nat] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ A @ N ) )
= ( ( N = zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( A != zero_z3403309356797280102nteger ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ) ) ).
% zero_less_power_eq
thf(fact_3072_zero__less__power__eq,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N ) )
= ( ( N = zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( A != zero_zero_real ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_real @ zero_zero_real @ A ) ) ) ) ).
% zero_less_power_eq
thf(fact_3073_zero__less__power__eq,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) )
= ( ( N = zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( A != zero_zero_rat ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ).
% zero_less_power_eq
thf(fact_3074_zero__less__power__eq,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N ) )
= ( ( N = zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( A != zero_zero_int ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_int @ zero_zero_int @ A ) ) ) ) ).
% zero_less_power_eq
thf(fact_3075_int__distrib_I2_J,axiom,
! [W: int,Z1: int,Z22: int] :
( ( times_times_int @ W @ ( plus_plus_int @ Z1 @ Z22 ) )
= ( plus_plus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).
% int_distrib(2)
thf(fact_3076_int__distrib_I1_J,axiom,
! [Z1: int,Z22: int,W: int] :
( ( times_times_int @ ( plus_plus_int @ Z1 @ Z22 ) @ W )
= ( plus_plus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).
% int_distrib(1)
thf(fact_3077_zdvd__period,axiom,
! [A: int,D2: int,X2: int,T2: int,C: int] :
( ( dvd_dvd_int @ A @ D2 )
=> ( ( dvd_dvd_int @ A @ ( plus_plus_int @ X2 @ T2 ) )
= ( dvd_dvd_int @ A @ ( plus_plus_int @ ( plus_plus_int @ X2 @ ( times_times_int @ C @ D2 ) ) @ T2 ) ) ) ) ).
% zdvd_period
thf(fact_3078_zdvd__reduce,axiom,
! [K: int,N: int,M: int] :
( ( dvd_dvd_int @ K @ ( plus_plus_int @ N @ ( times_times_int @ K @ M ) ) )
= ( dvd_dvd_int @ K @ N ) ) ).
% zdvd_reduce
thf(fact_3079_VEBT__internal_Oexp__split__high__low_I1_J,axiom,
! [X2: nat,N: nat,M: nat] :
( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) ) ).
% VEBT_internal.exp_split_high_low(1)
thf(fact_3080_even__mask__div__iff_H,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ one_one_Code_integer ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% even_mask_div_iff'
thf(fact_3081_even__mask__div__iff_H,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% even_mask_div_iff'
thf(fact_3082_even__mask__div__iff_H,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% even_mask_div_iff'
thf(fact_3083_power__le__zero__eq,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ zero_zero_real )
= ( ( ord_less_nat @ zero_zero_nat @ N )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_eq_real @ A @ zero_zero_real ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( A = zero_zero_real ) ) ) ) ) ).
% power_le_zero_eq
thf(fact_3084_power__le__zero__eq,axiom,
! [A: code_integer,N: nat] :
( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ A @ N ) @ zero_z3403309356797280102nteger )
= ( ( ord_less_nat @ zero_zero_nat @ N )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( A = zero_z3403309356797280102nteger ) ) ) ) ) ).
% power_le_zero_eq
thf(fact_3085_power__le__zero__eq,axiom,
! [A: rat,N: nat] :
( ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ zero_zero_rat )
= ( ( ord_less_nat @ zero_zero_nat @ N )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_eq_rat @ A @ zero_zero_rat ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( A = zero_zero_rat ) ) ) ) ) ).
% power_le_zero_eq
thf(fact_3086_power__le__zero__eq,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ zero_zero_int )
= ( ( ord_less_nat @ zero_zero_nat @ N )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_eq_int @ A @ zero_zero_int ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( A = zero_zero_int ) ) ) ) ) ).
% power_le_zero_eq
thf(fact_3087_even__mask__div__iff,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ one_one_Code_integer ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) )
= ( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N )
= zero_z3403309356797280102nteger )
| ( ord_less_eq_nat @ M @ N ) ) ) ).
% even_mask_div_iff
thf(fact_3088_even__mask__div__iff,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
= zero_zero_nat )
| ( ord_less_eq_nat @ M @ N ) ) ) ).
% even_mask_div_iff
thf(fact_3089_even__mask__div__iff,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
= ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
= zero_zero_int )
| ( ord_less_eq_nat @ M @ N ) ) ) ).
% even_mask_div_iff
thf(fact_3090_VEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_092_060_094sub_062u_092_060_094sub_062p_Osimps_I3_J,axiom,
! [Va: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( ( vEBT_V8346862874174094_d_u_p @ ( suc @ ( suc @ Va ) ) )
= ( plus_plus_nat @ one_one_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( vEBT_V8346862874174094_d_u_p @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_nat @ ( vEBT_V8346862874174094_d_u_p @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_nat ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( ( vEBT_V8346862874174094_d_u_p @ ( suc @ ( suc @ Va ) ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( vEBT_V8346862874174094_d_u_p @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_nat @ ( vEBT_V8346862874174094_d_u_p @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_nat ) ) ) ) ) ) ).
% VEBT_internal.T\<^sub>b\<^sub>u\<^sub>i\<^sub>l\<^sub>d\<^sub>u\<^sub>p.simps(3)
thf(fact_3091_VEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_Osimps_I3_J,axiom,
! [Va: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( ( vEBT_V8646137997579335489_i_l_d @ ( suc @ ( suc @ Va ) ) )
= ( plus_plus_nat @ one_one_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( vEBT_V8646137997579335489_i_l_d @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_V8646137997579335489_i_l_d @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( ( vEBT_V8646137997579335489_i_l_d @ ( suc @ ( suc @ Va ) ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit1 @ one ) ) ) ) @ ( vEBT_V8646137997579335489_i_l_d @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_V8646137997579335489_i_l_d @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.T\<^sub>b\<^sub>u\<^sub>i\<^sub>l\<^sub>d.simps(3)
thf(fact_3092_VEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_092_060_094sub_062u_092_060_094sub_062p_Oelims,axiom,
! [X2: nat,Y2: nat] :
( ( ( vEBT_V8346862874174094_d_u_p @ X2 )
= Y2 )
=> ( ( ( X2 = zero_zero_nat )
=> ( Y2
!= ( numeral_numeral_nat @ ( bit1 @ one ) ) ) )
=> ( ( ( X2
= ( suc @ zero_zero_nat ) )
=> ( Y2
!= ( numeral_numeral_nat @ ( bit1 @ one ) ) ) )
=> ~ ! [Va2: nat] :
( ( X2
= ( suc @ ( suc @ Va2 ) ) )
=> ~ ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( Y2
= ( plus_plus_nat @ one_one_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( vEBT_V8346862874174094_d_u_p @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_nat @ ( vEBT_V8346862874174094_d_u_p @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_nat ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( Y2
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( vEBT_V8346862874174094_d_u_p @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_nat @ ( vEBT_V8346862874174094_d_u_p @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_nat ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.T\<^sub>b\<^sub>u\<^sub>i\<^sub>l\<^sub>d\<^sub>u\<^sub>p.elims
thf(fact_3093_VEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_Oelims,axiom,
! [X2: nat,Y2: nat] :
( ( ( vEBT_V8646137997579335489_i_l_d @ X2 )
= Y2 )
=> ( ( ( X2 = zero_zero_nat )
=> ( Y2
!= ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) ) )
=> ( ( ( X2
= ( suc @ zero_zero_nat ) )
=> ( Y2
!= ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) ) )
=> ~ ! [Va2: nat] :
( ( X2
= ( suc @ ( suc @ Va2 ) ) )
=> ~ ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( Y2
= ( plus_plus_nat @ one_one_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( vEBT_V8646137997579335489_i_l_d @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_V8646137997579335489_i_l_d @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( Y2
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit1 @ one ) ) ) ) @ ( vEBT_V8646137997579335489_i_l_d @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_V8646137997579335489_i_l_d @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.T\<^sub>b\<^sub>u\<^sub>i\<^sub>l\<^sub>d.elims
thf(fact_3094_VEBT__internal_OT__vebt__buildupi_H_Oelims,axiom,
! [X2: nat,Y2: int] :
( ( ( vEBT_V9176841429113362141ildupi @ X2 )
= Y2 )
=> ( ( ( X2 = zero_zero_nat )
=> ( Y2 != one_one_int ) )
=> ( ( ( X2
= ( suc @ zero_zero_nat ) )
=> ( Y2 != one_one_int ) )
=> ~ ! [N2: nat] :
( ( X2
= ( suc @ ( suc @ N2 ) ) )
=> ~ ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( Y2
= ( plus_plus_int @ ( numeral_numeral_int @ ( bit1 @ one ) ) @ ( plus_plus_int @ ( vEBT_V9176841429113362141ildupi @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( times_times_int @ ( vEBT_V9176841429113362141ildupi @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( Y2
= ( plus_plus_int @ ( numeral_numeral_int @ ( bit1 @ one ) ) @ ( plus_plus_int @ ( vEBT_V9176841429113362141ildupi @ ( suc @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( vEBT_V9176841429113362141ildupi @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.T_vebt_buildupi'.elims
thf(fact_3095_space__bound,axiom,
! [T2: vEBT_VEBT,N: nat,U: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( U
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ord_less_eq_nat @ ( vEBT_VEBT_space @ T2 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit1 @ one ) ) ) ) @ U ) ) ) ) ).
% space_bound
thf(fact_3096_space__space_H,axiom,
! [T2: vEBT_VEBT] : ( ord_less_nat @ ( vEBT_VEBT_space @ T2 ) @ ( vEBT_VEBT_space2 @ T2 ) ) ).
% space_space'
thf(fact_3097_Suc__diff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_eq_nat @ one_one_nat @ M )
=> ( ( suc @ ( minus_minus_nat @ N @ M ) )
= ( minus_minus_nat @ N @ ( minus_minus_nat @ M @ one_one_nat ) ) ) ) ) ).
% Suc_diff
thf(fact_3098_power__2__mult__step__le,axiom,
! [N4: nat,N: nat,K4: nat,K: nat] :
( ( ord_less_eq_nat @ N4 @ N )
=> ( ( ord_less_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) @ K4 ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ K ) )
=> ( ord_less_eq_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) @ ( plus_plus_nat @ K4 @ one_one_nat ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ K ) ) ) ) ).
% power_2_mult_step_le
thf(fact_3099_small__powers__of__2,axiom,
! [X2: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ X2 )
=> ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ X2 @ one_one_nat ) ) ) ) ).
% small_powers_of_2
thf(fact_3100_nat__div__eq__Suc__0__iff,axiom,
! [N: nat,M: nat] :
( ( ( divide_divide_nat @ N @ M )
= ( suc @ zero_zero_nat ) )
= ( ( ord_less_eq_nat @ M @ N )
& ( ord_less_nat @ N @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) ).
% nat_div_eq_Suc_0_iff
thf(fact_3101_space__2__pow__bound,axiom,
! [T2: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_VEBT_space2 @ T2 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ ( bit1 @ one ) ) ) ) @ ( minus_minus_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) @ one_one_real ) ) ) ) ).
% space_2_pow_bound
thf(fact_3102_nat__less__power__trans,axiom,
! [N: nat,M: nat,K: nat] :
( ( ord_less_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ K ) ) )
=> ( ( ord_less_eq_nat @ K @ M )
=> ( ord_less_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K ) @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) ).
% nat_less_power_trans
thf(fact_3103_less__two__pow__divD,axiom,
! [X2: nat,N: nat,M: nat] :
( ( ord_less_nat @ X2 @ ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) )
=> ( ( ord_less_eq_nat @ M @ N )
& ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).
% less_two_pow_divD
thf(fact_3104_less__two__pow__divI,axiom,
! [X2: nat,N: nat,M: nat] :
( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_nat @ X2 @ ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) ) ).
% less_two_pow_divI
thf(fact_3105_idiff__0__right,axiom,
! [N: extended_enat] :
( ( minus_3235023915231533773d_enat @ N @ zero_z5237406670263579293d_enat )
= N ) ).
% idiff_0_right
thf(fact_3106_idiff__0,axiom,
! [N: extended_enat] :
( ( minus_3235023915231533773d_enat @ zero_z5237406670263579293d_enat @ N )
= zero_z5237406670263579293d_enat ) ).
% idiff_0
thf(fact_3107_i0__less,axiom,
! [N: extended_enat] :
( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N )
= ( N != zero_z5237406670263579293d_enat ) ) ).
% i0_less
thf(fact_3108_Tb__T__vebt__buildupi_H,axiom,
! [N: nat] : ( ord_less_eq_int @ ( vEBT_V9176841429113362141ildupi @ N ) @ ( minus_minus_int @ ( vEBT_VEBT_Tb @ N ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% Tb_T_vebt_buildupi'
thf(fact_3109_Tb__T__vebt__buildupi,axiom,
! [N: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ ( vEBT_V441764108873111860ildupi @ N ) ) @ ( minus_minus_int @ ( vEBT_VEBT_Tb @ N ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% Tb_T_vebt_buildupi
thf(fact_3110_not__real__square__gt__zero,axiom,
! [X2: real] :
( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X2 @ X2 ) ) )
= ( X2 = zero_zero_real ) ) ).
% not_real_square_gt_zero
thf(fact_3111_zle__diff1__eq,axiom,
! [W: int,Z: int] :
( ( ord_less_eq_int @ W @ ( minus_minus_int @ Z @ one_one_int ) )
= ( ord_less_int @ W @ Z ) ) ).
% zle_diff1_eq
thf(fact_3112_semiring__norm_I78_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(78)
thf(fact_3113_semiring__norm_I75_J,axiom,
! [M: num] :
~ ( ord_less_num @ M @ one ) ).
% semiring_norm(75)
thf(fact_3114_semiring__norm_I80_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(80)
thf(fact_3115_cnt__bound_H,axiom,
! [T2: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ord_less_eq_real @ ( vEBT_VEBT_cnt @ T2 ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( minus_minus_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) @ one_one_real ) ) ) ) ).
% cnt_bound'
thf(fact_3116_cnt__bound,axiom,
! [T2: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ord_less_eq_real @ ( vEBT_VEBT_cnt @ T2 ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( minus_minus_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% cnt_bound
thf(fact_3117_zero__comp__diff__simps_I1_J,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
= ( ord_less_eq_real @ B @ A ) ) ).
% zero_comp_diff_simps(1)
thf(fact_3118_zero__comp__diff__simps_I1_J,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( minus_minus_rat @ A @ B ) )
= ( ord_less_eq_rat @ B @ A ) ) ).
% zero_comp_diff_simps(1)
thf(fact_3119_zero__comp__diff__simps_I1_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
= ( ord_less_eq_int @ B @ A ) ) ).
% zero_comp_diff_simps(1)
thf(fact_3120_zero__comp__diff__simps_I2_J,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
= ( ord_less_real @ B @ A ) ) ).
% zero_comp_diff_simps(2)
thf(fact_3121_zero__comp__diff__simps_I2_J,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( minus_minus_rat @ A @ B ) )
= ( ord_less_rat @ B @ A ) ) ).
% zero_comp_diff_simps(2)
thf(fact_3122_zero__comp__diff__simps_I2_J,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
= ( ord_less_int @ B @ A ) ) ).
% zero_comp_diff_simps(2)
thf(fact_3123_zle__add1__eq__le,axiom,
! [W: int,Z: int] :
( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
= ( ord_less_eq_int @ W @ Z ) ) ).
% zle_add1_eq_le
thf(fact_3124_div__pos__pos__trivial,axiom,
! [K: int,L2: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ K @ L2 )
=> ( ( divide_divide_int @ K @ L2 )
= zero_zero_int ) ) ) ).
% div_pos_pos_trivial
thf(fact_3125_div__neg__neg__trivial,axiom,
! [K: int,L2: int] :
( ( ord_less_eq_int @ K @ zero_zero_int )
=> ( ( ord_less_int @ L2 @ K )
=> ( ( divide_divide_int @ K @ L2 )
= zero_zero_int ) ) ) ).
% div_neg_neg_trivial
thf(fact_3126_int__div__same__is__1,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ( divide_divide_int @ A @ B )
= A )
= ( B = one_one_int ) ) ) ).
% int_div_same_is_1
thf(fact_3127_semiring__norm_I76_J,axiom,
! [N: num] : ( ord_less_num @ one @ ( bit0 @ N ) ) ).
% semiring_norm(76)
thf(fact_3128_semiring__norm_I81_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(81)
thf(fact_3129_semiring__norm_I77_J,axiom,
! [N: num] : ( ord_less_num @ one @ ( bit1 @ N ) ) ).
% semiring_norm(77)
thf(fact_3130_enat__ord__number_I2_J,axiom,
! [M: num,N: num] :
( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).
% enat_ord_number(2)
thf(fact_3131_numeral__less__real__of__nat__iff,axiom,
! [W: num,N: nat] :
( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ ( numeral_numeral_nat @ W ) @ N ) ) ).
% numeral_less_real_of_nat_iff
thf(fact_3132_real__of__nat__less__numeral__iff,axiom,
! [N: nat,W: num] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( numeral_numeral_real @ W ) )
= ( ord_less_nat @ N @ ( numeral_numeral_nat @ W ) ) ) ).
% real_of_nat_less_numeral_iff
thf(fact_3133_semiring__norm_I74_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(74)
thf(fact_3134_semiring__norm_I79_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% semiring_norm(79)
thf(fact_3135_half__negative__int__iff,axiom,
! [K: int] :
( ( ord_less_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% half_negative_int_iff
thf(fact_3136_not__iless0,axiom,
! [N: extended_enat] :
~ ( ord_le72135733267957522d_enat @ N @ zero_z5237406670263579293d_enat ) ).
% not_iless0
thf(fact_3137_zero__one__enat__neq_I1_J,axiom,
zero_z5237406670263579293d_enat != one_on7984719198319812577d_enat ).
% zero_one_enat_neq(1)
thf(fact_3138_less__int__code_I1_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_int_code(1)
thf(fact_3139_minus__int__code_I1_J,axiom,
! [K: int] :
( ( minus_minus_int @ K @ zero_zero_int )
= K ) ).
% minus_int_code(1)
thf(fact_3140_int__less__induct,axiom,
! [I: int,K: int,P: int > $o] :
( ( ord_less_int @ I @ K )
=> ( ( P @ ( minus_minus_int @ K @ one_one_int ) )
=> ( ! [I2: int] :
( ( ord_less_int @ I2 @ K )
=> ( ( P @ I2 )
=> ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_less_induct
thf(fact_3141_zdvd__not__zless,axiom,
! [M: int,N: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ord_less_int @ M @ N )
=> ~ ( dvd_dvd_int @ N @ M ) ) ) ).
% zdvd_not_zless
thf(fact_3142_enat__0__less__mult__iff,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( times_7803423173614009249d_enat @ M @ N ) )
= ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ M )
& ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N ) ) ) ).
% enat_0_less_mult_iff
thf(fact_3143_int__one__le__iff__zero__less,axiom,
! [Z: int] :
( ( ord_less_eq_int @ one_one_int @ Z )
= ( ord_less_int @ zero_zero_int @ Z ) ) ).
% int_one_le_iff_zero_less
thf(fact_3144_zdvd__antisym__nonneg,axiom,
! [M: int,N: int] :
( ( ord_less_eq_int @ zero_zero_int @ M )
=> ( ( ord_less_eq_int @ zero_zero_int @ N )
=> ( ( dvd_dvd_int @ M @ N )
=> ( ( dvd_dvd_int @ N @ M )
=> ( M = N ) ) ) ) ) ).
% zdvd_antisym_nonneg
thf(fact_3145_imult__is__0,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ( times_7803423173614009249d_enat @ M @ N )
= zero_z5237406670263579293d_enat )
= ( ( M = zero_z5237406670263579293d_enat )
| ( N = zero_z5237406670263579293d_enat ) ) ) ).
% imult_is_0
thf(fact_3146_iadd__is__0,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ( plus_p3455044024723400733d_enat @ M @ N )
= zero_z5237406670263579293d_enat )
= ( ( M = zero_z5237406670263579293d_enat )
& ( N = zero_z5237406670263579293d_enat ) ) ) ).
% iadd_is_0
thf(fact_3147_int__le__induct,axiom,
! [I: int,K: int,P: int > $o] :
( ( ord_less_eq_int @ I @ K )
=> ( ( P @ K )
=> ( ! [I2: int] :
( ( ord_less_eq_int @ I2 @ K )
=> ( ( P @ I2 )
=> ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_le_induct
thf(fact_3148_zdvd__imp__le,axiom,
! [Z: int,N: int] :
( ( dvd_dvd_int @ Z @ N )
=> ( ( ord_less_int @ zero_zero_int @ N )
=> ( ord_less_eq_int @ Z @ N ) ) ) ).
% zdvd_imp_le
thf(fact_3149_less__eq__int__code_I1_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% less_eq_int_code(1)
thf(fact_3150_int__div__sub__1,axiom,
! [M: int,N: int] :
( ( ord_less_eq_int @ one_one_int @ M )
=> ( ( ( dvd_dvd_int @ M @ N )
=> ( ( divide_divide_int @ ( minus_minus_int @ N @ one_one_int ) @ M )
= ( minus_minus_int @ ( divide_divide_int @ N @ M ) @ one_one_int ) ) )
& ( ~ ( dvd_dvd_int @ M @ N )
=> ( ( divide_divide_int @ ( minus_minus_int @ N @ one_one_int ) @ M )
= ( divide_divide_int @ N @ M ) ) ) ) ) ).
% int_div_sub_1
thf(fact_3151_zdiv__le__dividend,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ A ) ) ) ).
% zdiv_le_dividend
thf(fact_3152_div__pos__geq,axiom,
! [L2: int,K: int] :
( ( ord_less_int @ zero_zero_int @ L2 )
=> ( ( ord_less_eq_int @ L2 @ K )
=> ( ( divide_divide_int @ K @ L2 )
= ( plus_plus_int @ ( divide_divide_int @ ( minus_minus_int @ K @ L2 ) @ L2 ) @ one_one_int ) ) ) ) ).
% div_pos_geq
thf(fact_3153_int__induct,axiom,
! [P: int > $o,K: int,I: int] :
( ( P @ K )
=> ( ! [I2: int] :
( ( ord_less_eq_int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
=> ( ! [I2: int] :
( ( ord_less_eq_int @ I2 @ K )
=> ( ( P @ I2 )
=> ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_induct
thf(fact_3154_int__distrib_I3_J,axiom,
! [Z1: int,Z22: int,W: int] :
( ( times_times_int @ ( minus_minus_int @ Z1 @ Z22 ) @ W )
= ( minus_minus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).
% int_distrib(3)
thf(fact_3155_int__distrib_I4_J,axiom,
! [W: int,Z1: int,Z22: int] :
( ( times_times_int @ W @ ( minus_minus_int @ Z1 @ Z22 ) )
= ( minus_minus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).
% int_distrib(4)
thf(fact_3156_int__diff__cases,axiom,
! [Z: int] :
~ ! [M3: nat,N2: nat] :
( Z
!= ( minus_minus_int @ ( semiri1314217659103216013at_int @ M3 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% int_diff_cases
thf(fact_3157_less__eq__real__def,axiom,
( ord_less_eq_real
= ( ^ [X: real,Y: real] :
( ( ord_less_real @ X @ Y )
| ( X = Y ) ) ) ) ).
% less_eq_real_def
thf(fact_3158_add1__zle__eq,axiom,
! [W: int,Z: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z )
= ( ord_less_int @ W @ Z ) ) ).
% add1_zle_eq
thf(fact_3159_int__gr__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_int @ K @ I )
=> ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
=> ( ! [I2: int] :
( ( ord_less_int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_gr_induct
thf(fact_3160_le__imp__0__less,axiom,
! [Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z ) ) ) ).
% le_imp_0_less
thf(fact_3161_zless__add1__eq,axiom,
! [W: int,Z: int] :
( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
= ( ( ord_less_int @ W @ Z )
| ( W = Z ) ) ) ).
% zless_add1_eq
thf(fact_3162_odd__less__0__iff,axiom,
! [Z: int] :
( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z ) @ zero_zero_int )
= ( ord_less_int @ Z @ zero_zero_int ) ) ).
% odd_less_0_iff
thf(fact_3163_zless__imp__add1__zle,axiom,
! [W: int,Z: int] :
( ( ord_less_int @ W @ Z )
=> ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z ) ) ).
% zless_imp_add1_zle
thf(fact_3164_zmult__zless__mono2,axiom,
! [I: int,J: int,K: int] :
( ( ord_less_int @ I @ J )
=> ( ( ord_less_int @ zero_zero_int @ K )
=> ( ord_less_int @ ( times_times_int @ K @ I ) @ ( times_times_int @ K @ J ) ) ) ) ).
% zmult_zless_mono2
thf(fact_3165_pos__zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ( times_times_int @ M @ N )
= one_one_int )
= ( ( M = one_one_int )
& ( N = one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff
thf(fact_3166_pos__imp__zdiv__neg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ) ).
% pos_imp_zdiv_neg_iff
thf(fact_3167_neg__imp__zdiv__neg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ zero_zero_int )
=> ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
= ( ord_less_int @ zero_zero_int @ A ) ) ) ).
% neg_imp_zdiv_neg_iff
thf(fact_3168_div__neg__pos__less0,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).
% div_neg_pos_less0
thf(fact_3169_nonneg1__imp__zdiv__pos__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
= ( ( ord_less_eq_int @ B @ A )
& ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).
% nonneg1_imp_zdiv_pos_iff
thf(fact_3170_pos__imp__zdiv__nonneg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).
% pos_imp_zdiv_nonneg_iff
thf(fact_3171_neg__imp__zdiv__nonneg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ zero_zero_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ) ).
% neg_imp_zdiv_nonneg_iff
thf(fact_3172_pos__imp__zdiv__pos__iff,axiom,
! [K: int,I: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ I @ K ) )
= ( ord_less_eq_int @ K @ I ) ) ) ).
% pos_imp_zdiv_pos_iff
thf(fact_3173_div__nonpos__pos__le0,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).
% div_nonpos_pos_le0
thf(fact_3174_div__nonneg__neg__le0,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).
% div_nonneg_neg_le0
thf(fact_3175_div__positive__int,axiom,
! [L2: int,K: int] :
( ( ord_less_eq_int @ L2 @ K )
=> ( ( ord_less_int @ zero_zero_int @ L2 )
=> ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ K @ L2 ) ) ) ) ).
% div_positive_int
thf(fact_3176_div__int__pos__iff,axiom,
! [K: int,L2: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ L2 ) )
= ( ( K = zero_zero_int )
| ( L2 = zero_zero_int )
| ( ( ord_less_eq_int @ zero_zero_int @ K )
& ( ord_less_eq_int @ zero_zero_int @ L2 ) )
| ( ( ord_less_int @ K @ zero_zero_int )
& ( ord_less_int @ L2 @ zero_zero_int ) ) ) ) ).
% div_int_pos_iff
thf(fact_3177_zdiv__mono2__neg,axiom,
! [A: int,B6: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B6 )
=> ( ( ord_less_eq_int @ B6 @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B6 ) @ ( divide_divide_int @ A @ B ) ) ) ) ) ).
% zdiv_mono2_neg
thf(fact_3178_zdiv__mono1__neg,axiom,
! [A: int,A5: int,B: int] :
( ( ord_less_eq_int @ A @ A5 )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( divide_divide_int @ A5 @ B ) @ ( divide_divide_int @ A @ B ) ) ) ) ).
% zdiv_mono1_neg
thf(fact_3179_zdiv__eq__0__iff,axiom,
! [I: int,K: int] :
( ( ( divide_divide_int @ I @ K )
= zero_zero_int )
= ( ( K = zero_zero_int )
| ( ( ord_less_eq_int @ zero_zero_int @ I )
& ( ord_less_int @ I @ K ) )
| ( ( ord_less_eq_int @ I @ zero_zero_int )
& ( ord_less_int @ K @ I ) ) ) ) ).
% zdiv_eq_0_iff
thf(fact_3180_zdiv__mono2,axiom,
! [A: int,B6: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B6 )
=> ( ( ord_less_eq_int @ B6 @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A @ B6 ) ) ) ) ) ).
% zdiv_mono2
thf(fact_3181_zdiv__mono1,axiom,
! [A: int,A5: int,B: int] :
( ( ord_less_eq_int @ A @ A5 )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A5 @ B ) ) ) ) ).
% zdiv_mono1
thf(fact_3182_int__div__less__self,axiom,
! [X2: int,K: int] :
( ( ord_less_int @ zero_zero_int @ X2 )
=> ( ( ord_less_int @ one_one_int @ K )
=> ( ord_less_int @ ( divide_divide_int @ X2 @ K ) @ X2 ) ) ) ).
% int_div_less_self
thf(fact_3183_add__diff__assoc__enat,axiom,
! [Z: extended_enat,Y2: extended_enat,X2: extended_enat] :
( ( ord_le2932123472753598470d_enat @ Z @ Y2 )
=> ( ( plus_p3455044024723400733d_enat @ X2 @ ( minus_3235023915231533773d_enat @ Y2 @ Z ) )
= ( minus_3235023915231533773d_enat @ ( plus_p3455044024723400733d_enat @ X2 @ Y2 ) @ Z ) ) ) ).
% add_diff_assoc_enat
thf(fact_3184_strict__subset__divisors__dvd,axiom,
! [A: complex,B: complex] :
( ( ord_less_set_complex
@ ( collect_complex
@ ^ [C2: complex] : ( dvd_dvd_complex @ C2 @ A ) )
@ ( collect_complex
@ ^ [C2: complex] : ( dvd_dvd_complex @ C2 @ B ) ) )
= ( ( dvd_dvd_complex @ A @ B )
& ~ ( dvd_dvd_complex @ B @ A ) ) ) ).
% strict_subset_divisors_dvd
thf(fact_3185_strict__subset__divisors__dvd,axiom,
! [A: nat,B: nat] :
( ( ord_less_set_nat
@ ( collect_nat
@ ^ [C2: nat] : ( dvd_dvd_nat @ C2 @ A ) )
@ ( collect_nat
@ ^ [C2: nat] : ( dvd_dvd_nat @ C2 @ B ) ) )
= ( ( dvd_dvd_nat @ A @ B )
& ~ ( dvd_dvd_nat @ B @ A ) ) ) ).
% strict_subset_divisors_dvd
thf(fact_3186_strict__subset__divisors__dvd,axiom,
! [A: int,B: int] :
( ( ord_less_set_int
@ ( collect_int
@ ^ [C2: int] : ( dvd_dvd_int @ C2 @ A ) )
@ ( collect_int
@ ^ [C2: int] : ( dvd_dvd_int @ C2 @ B ) ) )
= ( ( dvd_dvd_int @ A @ B )
& ~ ( dvd_dvd_int @ B @ A ) ) ) ).
% strict_subset_divisors_dvd
thf(fact_3187_realpow__pos__nth2,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ? [R3: real] :
( ( ord_less_real @ zero_zero_real @ R3 )
& ( ( power_power_real @ R3 @ ( suc @ N ) )
= A ) ) ) ).
% realpow_pos_nth2
thf(fact_3188_q__pos__lemma,axiom,
! [B6: int,Q5: int,R4: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ B6 @ Q5 ) @ R4 ) )
=> ( ( ord_less_int @ R4 @ B6 )
=> ( ( ord_less_int @ zero_zero_int @ B6 )
=> ( ord_less_eq_int @ zero_zero_int @ Q5 ) ) ) ) ).
% q_pos_lemma
thf(fact_3189_zdiv__mono2__lemma,axiom,
! [B: int,Q2: int,R2: int,B6: int,Q5: int,R4: int] :
( ( ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 )
= ( plus_plus_int @ ( times_times_int @ B6 @ Q5 ) @ R4 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ B6 @ Q5 ) @ R4 ) )
=> ( ( ord_less_int @ R4 @ B6 )
=> ( ( ord_less_eq_int @ zero_zero_int @ R2 )
=> ( ( ord_less_int @ zero_zero_int @ B6 )
=> ( ( ord_less_eq_int @ B6 @ B )
=> ( ord_less_eq_int @ Q2 @ Q5 ) ) ) ) ) ) ) ).
% zdiv_mono2_lemma
thf(fact_3190_zdiv__mono2__neg__lemma,axiom,
! [B: int,Q2: int,R2: int,B6: int,Q5: int,R4: int] :
( ( ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 )
= ( plus_plus_int @ ( times_times_int @ B6 @ Q5 ) @ R4 ) )
=> ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ B6 @ Q5 ) @ R4 ) @ zero_zero_int )
=> ( ( ord_less_int @ R2 @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ R4 )
=> ( ( ord_less_int @ zero_zero_int @ B6 )
=> ( ( ord_less_eq_int @ B6 @ B )
=> ( ord_less_eq_int @ Q5 @ Q2 ) ) ) ) ) ) ) ).
% zdiv_mono2_neg_lemma
thf(fact_3191_unique__quotient__lemma,axiom,
! [B: int,Q5: int,R4: int,Q2: int,R2: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ B @ Q5 ) @ R4 ) @ ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ R4 )
=> ( ( ord_less_int @ R4 @ B )
=> ( ( ord_less_int @ R2 @ B )
=> ( ord_less_eq_int @ Q5 @ Q2 ) ) ) ) ) ).
% unique_quotient_lemma
thf(fact_3192_unique__quotient__lemma__neg,axiom,
! [B: int,Q5: int,R4: int,Q2: int,R2: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ B @ Q5 ) @ R4 ) @ ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
=> ( ( ord_less_eq_int @ R2 @ zero_zero_int )
=> ( ( ord_less_int @ B @ R2 )
=> ( ( ord_less_int @ B @ R4 )
=> ( ord_less_eq_int @ Q2 @ Q5 ) ) ) ) ) ).
% unique_quotient_lemma_neg
thf(fact_3193_real__arch__pow,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ one_one_real @ X2 )
=> ? [N2: nat] : ( ord_less_real @ Y2 @ ( power_power_real @ X2 @ N2 ) ) ) ).
% real_arch_pow
thf(fact_3194_real__arch__pow__inv,axiom,
! [Y2: real,X2: real] :
( ( ord_less_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_real @ X2 @ one_one_real )
=> ? [N2: nat] : ( ord_less_real @ ( power_power_real @ X2 @ N2 ) @ Y2 ) ) ) ).
% real_arch_pow_inv
thf(fact_3195_reals__Archimedean3,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ! [Y4: real] :
? [N2: nat] : ( ord_less_real @ Y4 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ X2 ) ) ) ).
% reals_Archimedean3
thf(fact_3196_ord__eq__le__eq__trans,axiom,
! [A: set_nat,B: set_nat,C: set_nat,D2: set_nat] :
( ( A = B )
=> ( ( ord_less_eq_set_nat @ B @ C )
=> ( ( C = D2 )
=> ( ord_less_eq_set_nat @ A @ D2 ) ) ) ) ).
% ord_eq_le_eq_trans
thf(fact_3197_ord__eq__le__eq__trans,axiom,
! [A: rat,B: rat,C: rat,D2: rat] :
( ( A = B )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ( C = D2 )
=> ( ord_less_eq_rat @ A @ D2 ) ) ) ) ).
% ord_eq_le_eq_trans
thf(fact_3198_ord__eq__le__eq__trans,axiom,
! [A: num,B: num,C: num,D2: num] :
( ( A = B )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ( C = D2 )
=> ( ord_less_eq_num @ A @ D2 ) ) ) ) ).
% ord_eq_le_eq_trans
thf(fact_3199_ord__eq__le__eq__trans,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( A = B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ( C = D2 )
=> ( ord_less_eq_nat @ A @ D2 ) ) ) ) ).
% ord_eq_le_eq_trans
thf(fact_3200_ord__eq__le__eq__trans,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( A = B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ( C = D2 )
=> ( ord_less_eq_int @ A @ D2 ) ) ) ) ).
% ord_eq_le_eq_trans
thf(fact_3201_pos__int__cases,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ~ ! [N2: nat] :
( ( K
= ( semiri1314217659103216013at_int @ N2 ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% pos_int_cases
thf(fact_3202_zero__less__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ? [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
& ( K
= ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).
% zero_less_imp_eq_int
thf(fact_3203_realpow__pos__nth,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [R3: real] :
( ( ord_less_real @ zero_zero_real @ R3 )
& ( ( power_power_real @ R3 @ N )
= A ) ) ) ) ).
% realpow_pos_nth
thf(fact_3204_realpow__pos__nth__unique,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
& ( ( power_power_real @ X3 @ N )
= A )
& ! [Y4: real] :
( ( ( ord_less_real @ zero_zero_real @ Y4 )
& ( ( power_power_real @ Y4 @ N )
= A ) )
=> ( Y4 = X3 ) ) ) ) ) ).
% realpow_pos_nth_unique
thf(fact_3205_zless__iff__Suc__zadd,axiom,
( ord_less_int
= ( ^ [W2: int,Z5: int] :
? [N3: nat] :
( Z5
= ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) ) ) ) ).
% zless_iff_Suc_zadd
thf(fact_3206_subset__Collect__conv,axiom,
! [S: set_int,P: int > $o] :
( ( ord_less_eq_set_int @ S @ ( collect_int @ P ) )
= ( ! [X: int] :
( ( member_int @ X @ S )
=> ( P @ X ) ) ) ) ).
% subset_Collect_conv
thf(fact_3207_subset__Collect__conv,axiom,
! [S: set_complex,P: complex > $o] :
( ( ord_le211207098394363844omplex @ S @ ( collect_complex @ P ) )
= ( ! [X: complex] :
( ( member_complex @ X @ S )
=> ( P @ X ) ) ) ) ).
% subset_Collect_conv
thf(fact_3208_subset__Collect__conv,axiom,
! [S: set_Pr958786334691620121nt_int,P: product_prod_int_int > $o] :
( ( ord_le2843351958646193337nt_int @ S @ ( collec213857154873943460nt_int @ P ) )
= ( ! [X: product_prod_int_int] :
( ( member5262025264175285858nt_int @ X @ S )
=> ( P @ X ) ) ) ) ).
% subset_Collect_conv
thf(fact_3209_subset__Collect__conv,axiom,
! [S: set_set_nat,P: set_nat > $o] :
( ( ord_le6893508408891458716et_nat @ S @ ( collect_set_nat @ P ) )
= ( ! [X: set_nat] :
( ( member_set_nat @ X @ S )
=> ( P @ X ) ) ) ) ).
% subset_Collect_conv
thf(fact_3210_subset__Collect__conv,axiom,
! [S: set_nat,P: nat > $o] :
( ( ord_less_eq_set_nat @ S @ ( collect_nat @ P ) )
= ( ! [X: nat] :
( ( member_nat @ X @ S )
=> ( P @ X ) ) ) ) ).
% subset_Collect_conv
thf(fact_3211_int__div__pos__eq,axiom,
! [A: int,B: int,Q2: int,R2: int] :
( ( A
= ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ R2 )
=> ( ( ord_less_int @ R2 @ B )
=> ( ( divide_divide_int @ A @ B )
= Q2 ) ) ) ) ).
% int_div_pos_eq
thf(fact_3212_int__div__neg__eq,axiom,
! [A: int,B: int,Q2: int,R2: int] :
( ( A
= ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
=> ( ( ord_less_eq_int @ R2 @ zero_zero_int )
=> ( ( ord_less_int @ B @ R2 )
=> ( ( divide_divide_int @ A @ B )
= Q2 ) ) ) ) ).
% int_div_neg_eq
thf(fact_3213_split__zdiv,axiom,
! [P: int > $o,N: int,K: int] :
( ( P @ ( divide_divide_int @ N @ K ) )
= ( ( ( K = zero_zero_int )
=> ( P @ zero_zero_int ) )
& ( ( ord_less_int @ zero_zero_int @ K )
=> ! [I3: int,J3: int] :
( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
& ( ord_less_int @ J3 @ K )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I3 ) @ J3 ) ) )
=> ( P @ I3 ) ) )
& ( ( ord_less_int @ K @ zero_zero_int )
=> ! [I3: int,J3: int] :
( ( ( ord_less_int @ K @ J3 )
& ( ord_less_eq_int @ J3 @ zero_zero_int )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I3 ) @ J3 ) ) )
=> ( P @ I3 ) ) ) ) ) ).
% split_zdiv
thf(fact_3214_even__diff__iff,axiom,
! [K: int,L2: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ K @ L2 ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L2 ) ) ) ).
% even_diff_iff
thf(fact_3215_real__of__nat__div2,axiom,
! [N: nat,X2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X2 ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X2 ) ) ) ) ).
% real_of_nat_div2
thf(fact_3216_zmult__zless__mono2__lemma,axiom,
! [I: int,J: int,K: nat] :
( ( ord_less_int @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ I ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ J ) ) ) ) ).
% zmult_zless_mono2_lemma
thf(fact_3217_nat__le__real__less,axiom,
( ord_less_eq_nat
= ( ^ [N3: nat,M5: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M5 ) @ one_one_real ) ) ) ) ).
% nat_le_real_less
thf(fact_3218_real__of__nat__div3,axiom,
! [N: nat,X2: nat] : ( ord_less_eq_real @ ( minus_minus_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X2 ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X2 ) ) ) @ one_one_real ) ).
% real_of_nat_div3
thf(fact_3219_int__power__div__base,axiom,
! [M: nat,K: int] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_int @ zero_zero_int @ K )
=> ( ( divide_divide_int @ ( power_power_int @ K @ M ) @ K )
= ( power_power_int @ K @ ( minus_minus_nat @ M @ ( suc @ zero_zero_nat ) ) ) ) ) ) ).
% int_power_div_base
thf(fact_3220_exists__leI,axiom,
! [N: nat,P: nat > $o] :
( ( ! [N6: nat] :
( ( ord_less_nat @ N6 @ N )
=> ~ ( P @ N6 ) )
=> ( P @ N ) )
=> ? [N7: nat] :
( ( ord_less_eq_nat @ N7 @ N )
& ( P @ N7 ) ) ) ).
% exists_leI
thf(fact_3221_nat__compl__induct_H,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N2: nat] :
( ! [Nn: nat] :
( ( ord_less_eq_nat @ Nn @ N2 )
=> ( P @ Nn ) )
=> ( P @ ( suc @ N2 ) ) )
=> ( P @ N ) ) ) ).
% nat_compl_induct'
thf(fact_3222_nat__compl__induct,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N2: nat] :
( ! [Nn: nat] :
( ( ord_less_eq_nat @ Nn @ N2 )
=> ( P @ Nn ) )
=> ( P @ ( suc @ N2 ) ) )
=> ( P @ N ) ) ) ).
% nat_compl_induct
thf(fact_3223_nat__in__between__eq_I1_J,axiom,
! [A: nat,B: nat] :
( ( ( ord_less_nat @ A @ B )
& ( ord_less_eq_nat @ B @ ( suc @ A ) ) )
= ( B
= ( suc @ A ) ) ) ).
% nat_in_between_eq(1)
thf(fact_3224_nat__in__between__eq_I2_J,axiom,
! [A: nat,B: nat] :
( ( ( ord_less_eq_nat @ A @ B )
& ( ord_less_nat @ B @ ( suc @ A ) ) )
= ( B = A ) ) ).
% nat_in_between_eq(2)
thf(fact_3225_Suc__to__right,axiom,
! [N: nat,M: nat] :
( ( ( suc @ N )
= M )
=> ( N
= ( minus_minus_nat @ M @ ( suc @ zero_zero_nat ) ) ) ) ).
% Suc_to_right
thf(fact_3226_nat__geq__1__eq__neqz,axiom,
! [X2: nat] :
( ( ord_less_eq_nat @ one_one_nat @ X2 )
= ( X2 != zero_zero_nat ) ) ).
% nat_geq_1_eq_neqz
thf(fact_3227_mlex__bound,axiom,
! [A: nat,A2: nat,B: nat,N5: nat] :
( ( ord_less_nat @ A @ A2 )
=> ( ( ord_less_nat @ B @ N5 )
=> ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ A @ N5 ) @ B ) @ ( times_times_nat @ A2 @ N5 ) ) ) ) ).
% mlex_bound
thf(fact_3228_mlex__fst__decrI,axiom,
! [A: nat,A5: nat,B: nat,N5: nat,B6: nat] :
( ( ord_less_nat @ A @ A5 )
=> ( ( ord_less_nat @ B @ N5 )
=> ( ( ord_less_nat @ B6 @ N5 )
=> ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ A @ N5 ) @ B ) @ ( plus_plus_nat @ ( times_times_nat @ A5 @ N5 ) @ B6 ) ) ) ) ) ).
% mlex_fst_decrI
thf(fact_3229_mlex__snd__decrI,axiom,
! [A: nat,A5: nat,B: nat,B6: nat,N5: nat] :
( ( A = A5 )
=> ( ( ord_less_nat @ B @ B6 )
=> ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ A @ N5 ) @ B ) @ ( plus_plus_nat @ ( times_times_nat @ A5 @ N5 ) @ B6 ) ) ) ) ).
% mlex_snd_decrI
thf(fact_3230_mlex__leI,axiom,
! [A: nat,A5: nat,B: nat,B6: nat,N5: nat] :
( ( ord_less_eq_nat @ A @ A5 )
=> ( ( ord_less_eq_nat @ B @ B6 )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ A @ N5 ) @ B ) @ ( plus_plus_nat @ ( times_times_nat @ A5 @ N5 ) @ B6 ) ) ) ) ).
% mlex_leI
thf(fact_3231_div__mult__le,axiom,
! [A: nat,B: nat] : ( ord_less_eq_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ A ) ).
% div_mult_le
thf(fact_3232_zdiv__mult__self,axiom,
! [M: int,A: int,N: int] :
( ( M != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ M @ N ) ) @ M )
= ( plus_plus_int @ ( divide_divide_int @ A @ M ) @ N ) ) ) ).
% zdiv_mult_self
thf(fact_3233_td__gal__lt,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ( ord_less_nat @ A @ ( times_times_nat @ B @ C ) )
= ( ord_less_nat @ ( divide_divide_nat @ A @ C ) @ B ) ) ) ).
% td_gal_lt
thf(fact_3234_n__less__equal__power__2,axiom,
! [N: nat] : ( ord_less_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% n_less_equal_power_2
thf(fact_3235_nz__le__conv__less,axiom,
! [K: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_eq_nat @ K @ M )
=> ( ord_less_nat @ ( minus_minus_nat @ K @ ( suc @ zero_zero_nat ) ) @ M ) ) ) ).
% nz_le_conv_less
thf(fact_3236_Suc__n__minus__m__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_nat @ one_one_nat @ M )
=> ( ( suc @ ( minus_minus_nat @ N @ M ) )
= ( minus_minus_nat @ N @ ( minus_minus_nat @ M @ one_one_nat ) ) ) ) ) ).
% Suc_n_minus_m_eq
thf(fact_3237_msrevs_I1_J,axiom,
! [N: nat,K: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ K @ N ) @ M ) @ N )
= ( plus_plus_nat @ ( divide_divide_nat @ M @ N ) @ K ) ) ) ).
% msrevs(1)
thf(fact_3238_td__gal,axiom,
! [C: nat,B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ( ord_less_eq_nat @ ( times_times_nat @ B @ C ) @ A )
= ( ord_less_eq_nat @ B @ ( divide_divide_nat @ A @ C ) ) ) ) ).
% td_gal
thf(fact_3239_nat__mult__power__less__eq,axiom,
! [B: nat,A: nat,N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ ( times_times_nat @ A @ ( power_power_nat @ B @ N ) ) @ ( power_power_nat @ B @ M ) )
= ( ord_less_nat @ A @ ( power_power_nat @ B @ ( minus_minus_nat @ M @ N ) ) ) ) ) ).
% nat_mult_power_less_eq
thf(fact_3240_axxdiv2,axiom,
! [X2: int] :
( ( ( divide_divide_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ X2 ) @ X2 ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= X2 )
& ( ( divide_divide_int @ ( plus_plus_int @ ( plus_plus_int @ zero_zero_int @ X2 ) @ X2 ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= X2 ) ) ).
% axxdiv2
thf(fact_3241_power__sub,axiom,
! [N: nat,M: nat,A: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( power_power_nat @ A @ ( minus_minus_nat @ M @ N ) )
= ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).
% power_sub
thf(fact_3242_z1pdiv2,axiom,
! [B: int] :
( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= B ) ).
% z1pdiv2
thf(fact_3243_two__pow__div__gt__le,axiom,
! [V: nat,N: nat,M: nat] :
( ( ord_less_nat @ V @ ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% two_pow_div_gt_le
thf(fact_3244_nat__add__offset__less,axiom,
! [Y2: nat,N: nat,X2: nat,M: nat,Sz: nat] :
( ( ord_less_nat @ Y2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( Sz
= ( plus_plus_nat @ M @ N ) )
=> ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ Y2 ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Sz ) ) ) ) ) ).
% nat_add_offset_less
thf(fact_3245_nat__power__less__diff,axiom,
! [N: nat,Q2: nat,M: nat] :
( ( ord_less_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ Q2 ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ord_less_nat @ Q2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% nat_power_less_diff
thf(fact_3246_power__minus__is__div,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ A @ B ) )
= ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ) ).
% power_minus_is_div
thf(fact_3247_nat__le__power__trans,axiom,
! [N: nat,M: nat,K: nat] :
( ( ord_less_eq_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ K ) ) )
=> ( ( ord_less_eq_nat @ K @ M )
=> ( ord_less_eq_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K ) @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) ).
% nat_le_power_trans
thf(fact_3248_real__average__minus__first,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A )
= ( divide_divide_real @ ( minus_minus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% real_average_minus_first
thf(fact_3249_real__average__minus__second,axiom,
! [B: real,A: real] :
( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A )
= ( divide_divide_real @ ( minus_minus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% real_average_minus_second
thf(fact_3250_two__powr__height__bound__deg,axiom,
! [T2: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( vEBT_VEBT_height @ T2 ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% two_powr_height_bound_deg
thf(fact_3251_linear__plus__1__le__power,axiom,
! [X2: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X2 ) @ one_one_real ) @ ( power_power_real @ ( plus_plus_real @ X2 @ one_one_real ) @ N ) ) ) ).
% linear_plus_1_le_power
thf(fact_3252_member__bound,axiom,
! [Tree: vEBT_VEBT,X2: nat,N: nat] :
( ( vEBT_vebt_member @ Tree @ X2 )
=> ( ( vEBT_invar_vebt @ Tree @ N )
=> ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% member_bound
thf(fact_3253_nat__approx__posE,axiom,
! [E: rat] :
( ( ord_less_rat @ zero_zero_rat @ E )
=> ~ ! [N2: nat] :
~ ( ord_less_rat @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ ( suc @ N2 ) ) ) @ E ) ) ).
% nat_approx_posE
thf(fact_3254_nat__approx__posE,axiom,
! [E: real] :
( ( ord_less_real @ zero_zero_real @ E )
=> ~ ! [N2: nat] :
~ ( ord_less_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) @ E ) ) ).
% nat_approx_posE
thf(fact_3255_zdiff__int__split,axiom,
! [P: int > $o,X2: nat,Y2: nat] :
( ( P @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ X2 @ Y2 ) ) )
= ( ( ( ord_less_eq_nat @ Y2 @ X2 )
=> ( P @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ X2 ) @ ( semiri1314217659103216013at_int @ Y2 ) ) ) )
& ( ( ord_less_nat @ X2 @ Y2 )
=> ( P @ zero_zero_int ) ) ) ) ).
% zdiff_int_split
thf(fact_3256_set__bit__0,axiom,
! [A: int] :
( ( bit_se7879613467334960850it_int @ zero_zero_nat @ A )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ).
% set_bit_0
thf(fact_3257_set__bit__0,axiom,
! [A: nat] :
( ( bit_se7882103937844011126it_nat @ zero_zero_nat @ A )
= ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% set_bit_0
thf(fact_3258_height__compose__summary,axiom,
! [Summary: vEBT_VEBT,Info: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT] : ( ord_less_eq_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ Summary ) ) @ ( vEBT_VEBT_height @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) ) ) ).
% height_compose_summary
thf(fact_3259_set__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se7879613467334960850it_int @ N @ K ) )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% set_bit_nonnegative_int_iff
thf(fact_3260_set__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se7879613467334960850it_int @ N @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% set_bit_negative_int_iff
thf(fact_3261_member__correct,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_vebt_member @ T2 @ X2 )
= ( member_nat @ X2 @ ( vEBT_set_vebt @ T2 ) ) ) ) ).
% member_correct
thf(fact_3262_enat__less__induct,axiom,
! [P: extended_enat > $o,N: extended_enat] :
( ! [N2: extended_enat] :
( ! [M4: extended_enat] :
( ( ord_le72135733267957522d_enat @ M4 @ N2 )
=> ( P @ M4 ) )
=> ( P @ N2 ) )
=> ( P @ N ) ) ).
% enat_less_induct
thf(fact_3263_set__bit__greater__eq,axiom,
! [K: int,N: nat] : ( ord_less_eq_int @ K @ ( bit_se7879613467334960850it_int @ N @ K ) ) ).
% set_bit_greater_eq
thf(fact_3264_mult__commute__abs,axiom,
! [C: real] :
( ( ^ [X: real] : ( times_times_real @ X @ C ) )
= ( times_times_real @ C ) ) ).
% mult_commute_abs
thf(fact_3265_mult__commute__abs,axiom,
! [C: rat] :
( ( ^ [X: rat] : ( times_times_rat @ X @ C ) )
= ( times_times_rat @ C ) ) ).
% mult_commute_abs
thf(fact_3266_mult__commute__abs,axiom,
! [C: nat] :
( ( ^ [X: nat] : ( times_times_nat @ X @ C ) )
= ( times_times_nat @ C ) ) ).
% mult_commute_abs
thf(fact_3267_mult__commute__abs,axiom,
! [C: int] :
( ( ^ [X: int] : ( times_times_int @ X @ C ) )
= ( times_times_int @ C ) ) ).
% mult_commute_abs
thf(fact_3268_minf_I8_J,axiom,
! [T2: real] :
? [Z2: real] :
! [X4: real] :
( ( ord_less_real @ X4 @ Z2 )
=> ~ ( ord_less_eq_real @ T2 @ X4 ) ) ).
% minf(8)
thf(fact_3269_minf_I8_J,axiom,
! [T2: rat] :
? [Z2: rat] :
! [X4: rat] :
( ( ord_less_rat @ X4 @ Z2 )
=> ~ ( ord_less_eq_rat @ T2 @ X4 ) ) ).
% minf(8)
thf(fact_3270_minf_I8_J,axiom,
! [T2: num] :
? [Z2: num] :
! [X4: num] :
( ( ord_less_num @ X4 @ Z2 )
=> ~ ( ord_less_eq_num @ T2 @ X4 ) ) ).
% minf(8)
thf(fact_3271_minf_I8_J,axiom,
! [T2: nat] :
? [Z2: nat] :
! [X4: nat] :
( ( ord_less_nat @ X4 @ Z2 )
=> ~ ( ord_less_eq_nat @ T2 @ X4 ) ) ).
% minf(8)
thf(fact_3272_minf_I8_J,axiom,
! [T2: int] :
? [Z2: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z2 )
=> ~ ( ord_less_eq_int @ T2 @ X4 ) ) ).
% minf(8)
thf(fact_3273_minf_I6_J,axiom,
! [T2: real] :
? [Z2: real] :
! [X4: real] :
( ( ord_less_real @ X4 @ Z2 )
=> ( ord_less_eq_real @ X4 @ T2 ) ) ).
% minf(6)
thf(fact_3274_minf_I6_J,axiom,
! [T2: rat] :
? [Z2: rat] :
! [X4: rat] :
( ( ord_less_rat @ X4 @ Z2 )
=> ( ord_less_eq_rat @ X4 @ T2 ) ) ).
% minf(6)
thf(fact_3275_minf_I6_J,axiom,
! [T2: num] :
? [Z2: num] :
! [X4: num] :
( ( ord_less_num @ X4 @ Z2 )
=> ( ord_less_eq_num @ X4 @ T2 ) ) ).
% minf(6)
thf(fact_3276_minf_I6_J,axiom,
! [T2: nat] :
? [Z2: nat] :
! [X4: nat] :
( ( ord_less_nat @ X4 @ Z2 )
=> ( ord_less_eq_nat @ X4 @ T2 ) ) ).
% minf(6)
thf(fact_3277_minf_I6_J,axiom,
! [T2: int] :
? [Z2: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z2 )
=> ( ord_less_eq_int @ X4 @ T2 ) ) ).
% minf(6)
thf(fact_3278_pinf_I8_J,axiom,
! [T2: real] :
? [Z2: real] :
! [X4: real] :
( ( ord_less_real @ Z2 @ X4 )
=> ( ord_less_eq_real @ T2 @ X4 ) ) ).
% pinf(8)
thf(fact_3279_pinf_I8_J,axiom,
! [T2: rat] :
? [Z2: rat] :
! [X4: rat] :
( ( ord_less_rat @ Z2 @ X4 )
=> ( ord_less_eq_rat @ T2 @ X4 ) ) ).
% pinf(8)
thf(fact_3280_pinf_I8_J,axiom,
! [T2: num] :
? [Z2: num] :
! [X4: num] :
( ( ord_less_num @ Z2 @ X4 )
=> ( ord_less_eq_num @ T2 @ X4 ) ) ).
% pinf(8)
thf(fact_3281_pinf_I8_J,axiom,
! [T2: nat] :
? [Z2: nat] :
! [X4: nat] :
( ( ord_less_nat @ Z2 @ X4 )
=> ( ord_less_eq_nat @ T2 @ X4 ) ) ).
% pinf(8)
thf(fact_3282_pinf_I8_J,axiom,
! [T2: int] :
? [Z2: int] :
! [X4: int] :
( ( ord_less_int @ Z2 @ X4 )
=> ( ord_less_eq_int @ T2 @ X4 ) ) ).
% pinf(8)
thf(fact_3283_pinf_I6_J,axiom,
! [T2: real] :
? [Z2: real] :
! [X4: real] :
( ( ord_less_real @ Z2 @ X4 )
=> ~ ( ord_less_eq_real @ X4 @ T2 ) ) ).
% pinf(6)
thf(fact_3284_pinf_I6_J,axiom,
! [T2: rat] :
? [Z2: rat] :
! [X4: rat] :
( ( ord_less_rat @ Z2 @ X4 )
=> ~ ( ord_less_eq_rat @ X4 @ T2 ) ) ).
% pinf(6)
thf(fact_3285_pinf_I6_J,axiom,
! [T2: num] :
? [Z2: num] :
! [X4: num] :
( ( ord_less_num @ Z2 @ X4 )
=> ~ ( ord_less_eq_num @ X4 @ T2 ) ) ).
% pinf(6)
thf(fact_3286_pinf_I6_J,axiom,
! [T2: nat] :
? [Z2: nat] :
! [X4: nat] :
( ( ord_less_nat @ Z2 @ X4 )
=> ~ ( ord_less_eq_nat @ X4 @ T2 ) ) ).
% pinf(6)
thf(fact_3287_pinf_I6_J,axiom,
! [T2: int] :
? [Z2: int] :
! [X4: int] :
( ( ord_less_int @ Z2 @ X4 )
=> ~ ( ord_less_eq_int @ X4 @ T2 ) ) ).
% pinf(6)
thf(fact_3288_inf__period_I2_J,axiom,
! [P: real > $o,D4: real,Q: real > $o] :
( ! [X3: real,K3: real] :
( ( P @ X3 )
= ( P @ ( minus_minus_real @ X3 @ ( times_times_real @ K3 @ D4 ) ) ) )
=> ( ! [X3: real,K3: real] :
( ( Q @ X3 )
= ( Q @ ( minus_minus_real @ X3 @ ( times_times_real @ K3 @ D4 ) ) ) )
=> ! [X4: real,K5: real] :
( ( ( P @ X4 )
| ( Q @ X4 ) )
= ( ( P @ ( minus_minus_real @ X4 @ ( times_times_real @ K5 @ D4 ) ) )
| ( Q @ ( minus_minus_real @ X4 @ ( times_times_real @ K5 @ D4 ) ) ) ) ) ) ) ).
% inf_period(2)
thf(fact_3289_inf__period_I2_J,axiom,
! [P: rat > $o,D4: rat,Q: rat > $o] :
( ! [X3: rat,K3: rat] :
( ( P @ X3 )
= ( P @ ( minus_minus_rat @ X3 @ ( times_times_rat @ K3 @ D4 ) ) ) )
=> ( ! [X3: rat,K3: rat] :
( ( Q @ X3 )
= ( Q @ ( minus_minus_rat @ X3 @ ( times_times_rat @ K3 @ D4 ) ) ) )
=> ! [X4: rat,K5: rat] :
( ( ( P @ X4 )
| ( Q @ X4 ) )
= ( ( P @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K5 @ D4 ) ) )
| ( Q @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K5 @ D4 ) ) ) ) ) ) ) ).
% inf_period(2)
thf(fact_3290_inf__period_I2_J,axiom,
! [P: int > $o,D4: int,Q: int > $o] :
( ! [X3: int,K3: int] :
( ( P @ X3 )
= ( P @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D4 ) ) ) )
=> ( ! [X3: int,K3: int] :
( ( Q @ X3 )
= ( Q @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D4 ) ) ) )
=> ! [X4: int,K5: int] :
( ( ( P @ X4 )
| ( Q @ X4 ) )
= ( ( P @ ( minus_minus_int @ X4 @ ( times_times_int @ K5 @ D4 ) ) )
| ( Q @ ( minus_minus_int @ X4 @ ( times_times_int @ K5 @ D4 ) ) ) ) ) ) ) ).
% inf_period(2)
thf(fact_3291_inf__period_I1_J,axiom,
! [P: real > $o,D4: real,Q: real > $o] :
( ! [X3: real,K3: real] :
( ( P @ X3 )
= ( P @ ( minus_minus_real @ X3 @ ( times_times_real @ K3 @ D4 ) ) ) )
=> ( ! [X3: real,K3: real] :
( ( Q @ X3 )
= ( Q @ ( minus_minus_real @ X3 @ ( times_times_real @ K3 @ D4 ) ) ) )
=> ! [X4: real,K5: real] :
( ( ( P @ X4 )
& ( Q @ X4 ) )
= ( ( P @ ( minus_minus_real @ X4 @ ( times_times_real @ K5 @ D4 ) ) )
& ( Q @ ( minus_minus_real @ X4 @ ( times_times_real @ K5 @ D4 ) ) ) ) ) ) ) ).
% inf_period(1)
thf(fact_3292_inf__period_I1_J,axiom,
! [P: rat > $o,D4: rat,Q: rat > $o] :
( ! [X3: rat,K3: rat] :
( ( P @ X3 )
= ( P @ ( minus_minus_rat @ X3 @ ( times_times_rat @ K3 @ D4 ) ) ) )
=> ( ! [X3: rat,K3: rat] :
( ( Q @ X3 )
= ( Q @ ( minus_minus_rat @ X3 @ ( times_times_rat @ K3 @ D4 ) ) ) )
=> ! [X4: rat,K5: rat] :
( ( ( P @ X4 )
& ( Q @ X4 ) )
= ( ( P @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K5 @ D4 ) ) )
& ( Q @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K5 @ D4 ) ) ) ) ) ) ) ).
% inf_period(1)
thf(fact_3293_inf__period_I1_J,axiom,
! [P: int > $o,D4: int,Q: int > $o] :
( ! [X3: int,K3: int] :
( ( P @ X3 )
= ( P @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D4 ) ) ) )
=> ( ! [X3: int,K3: int] :
( ( Q @ X3 )
= ( Q @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D4 ) ) ) )
=> ! [X4: int,K5: int] :
( ( ( P @ X4 )
& ( Q @ X4 ) )
= ( ( P @ ( minus_minus_int @ X4 @ ( times_times_int @ K5 @ D4 ) ) )
& ( Q @ ( minus_minus_int @ X4 @ ( times_times_int @ K5 @ D4 ) ) ) ) ) ) ) ).
% inf_period(1)
thf(fact_3294_real__arch__simple,axiom,
! [X2: real] :
? [N2: nat] : ( ord_less_eq_real @ X2 @ ( semiri5074537144036343181t_real @ N2 ) ) ).
% real_arch_simple
thf(fact_3295_real__arch__simple,axiom,
! [X2: rat] :
? [N2: nat] : ( ord_less_eq_rat @ X2 @ ( semiri681578069525770553at_rat @ N2 ) ) ).
% real_arch_simple
thf(fact_3296_exists__least__lemma,axiom,
! [P: nat > $o] :
( ~ ( P @ zero_zero_nat )
=> ( ? [X_12: nat] : ( P @ X_12 )
=> ? [N2: nat] :
( ~ ( P @ N2 )
& ( P @ ( suc @ N2 ) ) ) ) ) ).
% exists_least_lemma
thf(fact_3297_reals__Archimedean2,axiom,
! [X2: rat] :
? [N2: nat] : ( ord_less_rat @ X2 @ ( semiri681578069525770553at_rat @ N2 ) ) ).
% reals_Archimedean2
thf(fact_3298_reals__Archimedean2,axiom,
! [X2: real] :
? [N2: nat] : ( ord_less_real @ X2 @ ( semiri5074537144036343181t_real @ N2 ) ) ).
% reals_Archimedean2
thf(fact_3299_imp__le__cong,axiom,
! [X2: int,X5: int,P: $o,P4: $o] :
( ( X2 = X5 )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X5 )
=> ( P = P4 ) )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X2 )
=> P )
= ( ( ord_less_eq_int @ zero_zero_int @ X5 )
=> P4 ) ) ) ) ).
% imp_le_cong
thf(fact_3300_conj__le__cong,axiom,
! [X2: int,X5: int,P: $o,P4: $o] :
( ( X2 = X5 )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X5 )
=> ( P = P4 ) )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X2 )
& P )
= ( ( ord_less_eq_int @ zero_zero_int @ X5 )
& P4 ) ) ) ) ).
% conj_le_cong
thf(fact_3301_plusinfinity,axiom,
! [D2: int,P4: int > $o,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D2 )
=> ( ! [X3: int,K3: int] :
( ( P4 @ X3 )
= ( P4 @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D2 ) ) ) )
=> ( ? [Z4: int] :
! [X3: int] :
( ( ord_less_int @ Z4 @ X3 )
=> ( ( P @ X3 )
= ( P4 @ X3 ) ) )
=> ( ? [X_12: int] : ( P4 @ X_12 )
=> ? [X_1: int] : ( P @ X_1 ) ) ) ) ) ).
% plusinfinity
thf(fact_3302_minusinfinity,axiom,
! [D2: int,P1: int > $o,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D2 )
=> ( ! [X3: int,K3: int] :
( ( P1 @ X3 )
= ( P1 @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D2 ) ) ) )
=> ( ? [Z4: int] :
! [X3: int] :
( ( ord_less_int @ X3 @ Z4 )
=> ( ( P @ X3 )
= ( P1 @ X3 ) ) )
=> ( ? [X_12: int] : ( P1 @ X_12 )
=> ? [X_1: int] : ( P @ X_1 ) ) ) ) ) ).
% minusinfinity
thf(fact_3303_even__set__bit__iff,axiom,
! [M: nat,A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se7879613467334960850it_int @ M @ A ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
& ( M != zero_zero_nat ) ) ) ).
% even_set_bit_iff
thf(fact_3304_even__set__bit__iff,axiom,
! [M: nat,A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se7882103937844011126it_nat @ M @ A ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
& ( M != zero_zero_nat ) ) ) ).
% even_set_bit_iff
thf(fact_3305_pinf_I9_J,axiom,
! [D2: real,S3: real] :
? [Z2: real] :
! [X4: real] :
( ( ord_less_real @ Z2 @ X4 )
=> ( ( dvd_dvd_real @ D2 @ ( plus_plus_real @ X4 @ S3 ) )
= ( dvd_dvd_real @ D2 @ ( plus_plus_real @ X4 @ S3 ) ) ) ) ).
% pinf(9)
thf(fact_3306_pinf_I9_J,axiom,
! [D2: rat,S3: rat] :
? [Z2: rat] :
! [X4: rat] :
( ( ord_less_rat @ Z2 @ X4 )
=> ( ( dvd_dvd_rat @ D2 @ ( plus_plus_rat @ X4 @ S3 ) )
= ( dvd_dvd_rat @ D2 @ ( plus_plus_rat @ X4 @ S3 ) ) ) ) ).
% pinf(9)
thf(fact_3307_pinf_I9_J,axiom,
! [D2: nat,S3: nat] :
? [Z2: nat] :
! [X4: nat] :
( ( ord_less_nat @ Z2 @ X4 )
=> ( ( dvd_dvd_nat @ D2 @ ( plus_plus_nat @ X4 @ S3 ) )
= ( dvd_dvd_nat @ D2 @ ( plus_plus_nat @ X4 @ S3 ) ) ) ) ).
% pinf(9)
thf(fact_3308_pinf_I9_J,axiom,
! [D2: int,S3: int] :
? [Z2: int] :
! [X4: int] :
( ( ord_less_int @ Z2 @ X4 )
=> ( ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ S3 ) )
= ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ S3 ) ) ) ) ).
% pinf(9)
thf(fact_3309_pinf_I10_J,axiom,
! [D2: real,S3: real] :
? [Z2: real] :
! [X4: real] :
( ( ord_less_real @ Z2 @ X4 )
=> ( ( ~ ( dvd_dvd_real @ D2 @ ( plus_plus_real @ X4 @ S3 ) ) )
= ( ~ ( dvd_dvd_real @ D2 @ ( plus_plus_real @ X4 @ S3 ) ) ) ) ) ).
% pinf(10)
thf(fact_3310_pinf_I10_J,axiom,
! [D2: rat,S3: rat] :
? [Z2: rat] :
! [X4: rat] :
( ( ord_less_rat @ Z2 @ X4 )
=> ( ( ~ ( dvd_dvd_rat @ D2 @ ( plus_plus_rat @ X4 @ S3 ) ) )
= ( ~ ( dvd_dvd_rat @ D2 @ ( plus_plus_rat @ X4 @ S3 ) ) ) ) ) ).
% pinf(10)
thf(fact_3311_pinf_I10_J,axiom,
! [D2: nat,S3: nat] :
? [Z2: nat] :
! [X4: nat] :
( ( ord_less_nat @ Z2 @ X4 )
=> ( ( ~ ( dvd_dvd_nat @ D2 @ ( plus_plus_nat @ X4 @ S3 ) ) )
= ( ~ ( dvd_dvd_nat @ D2 @ ( plus_plus_nat @ X4 @ S3 ) ) ) ) ) ).
% pinf(10)
thf(fact_3312_pinf_I10_J,axiom,
! [D2: int,S3: int] :
? [Z2: int] :
! [X4: int] :
( ( ord_less_int @ Z2 @ X4 )
=> ( ( ~ ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ S3 ) ) )
= ( ~ ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ S3 ) ) ) ) ) ).
% pinf(10)
thf(fact_3313_minf_I9_J,axiom,
! [D2: real,S3: real] :
? [Z2: real] :
! [X4: real] :
( ( ord_less_real @ X4 @ Z2 )
=> ( ( dvd_dvd_real @ D2 @ ( plus_plus_real @ X4 @ S3 ) )
= ( dvd_dvd_real @ D2 @ ( plus_plus_real @ X4 @ S3 ) ) ) ) ).
% minf(9)
thf(fact_3314_minf_I9_J,axiom,
! [D2: rat,S3: rat] :
? [Z2: rat] :
! [X4: rat] :
( ( ord_less_rat @ X4 @ Z2 )
=> ( ( dvd_dvd_rat @ D2 @ ( plus_plus_rat @ X4 @ S3 ) )
= ( dvd_dvd_rat @ D2 @ ( plus_plus_rat @ X4 @ S3 ) ) ) ) ).
% minf(9)
thf(fact_3315_minf_I9_J,axiom,
! [D2: nat,S3: nat] :
? [Z2: nat] :
! [X4: nat] :
( ( ord_less_nat @ X4 @ Z2 )
=> ( ( dvd_dvd_nat @ D2 @ ( plus_plus_nat @ X4 @ S3 ) )
= ( dvd_dvd_nat @ D2 @ ( plus_plus_nat @ X4 @ S3 ) ) ) ) ).
% minf(9)
thf(fact_3316_minf_I9_J,axiom,
! [D2: int,S3: int] :
? [Z2: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z2 )
=> ( ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ S3 ) )
= ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ S3 ) ) ) ) ).
% minf(9)
thf(fact_3317_minf_I10_J,axiom,
! [D2: real,S3: real] :
? [Z2: real] :
! [X4: real] :
( ( ord_less_real @ X4 @ Z2 )
=> ( ( ~ ( dvd_dvd_real @ D2 @ ( plus_plus_real @ X4 @ S3 ) ) )
= ( ~ ( dvd_dvd_real @ D2 @ ( plus_plus_real @ X4 @ S3 ) ) ) ) ) ).
% minf(10)
thf(fact_3318_minf_I10_J,axiom,
! [D2: rat,S3: rat] :
? [Z2: rat] :
! [X4: rat] :
( ( ord_less_rat @ X4 @ Z2 )
=> ( ( ~ ( dvd_dvd_rat @ D2 @ ( plus_plus_rat @ X4 @ S3 ) ) )
= ( ~ ( dvd_dvd_rat @ D2 @ ( plus_plus_rat @ X4 @ S3 ) ) ) ) ) ).
% minf(10)
thf(fact_3319_minf_I10_J,axiom,
! [D2: nat,S3: nat] :
? [Z2: nat] :
! [X4: nat] :
( ( ord_less_nat @ X4 @ Z2 )
=> ( ( ~ ( dvd_dvd_nat @ D2 @ ( plus_plus_nat @ X4 @ S3 ) ) )
= ( ~ ( dvd_dvd_nat @ D2 @ ( plus_plus_nat @ X4 @ S3 ) ) ) ) ) ).
% minf(10)
thf(fact_3320_minf_I10_J,axiom,
! [D2: int,S3: int] :
? [Z2: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z2 )
=> ( ( ~ ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ S3 ) ) )
= ( ~ ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ S3 ) ) ) ) ) ).
% minf(10)
thf(fact_3321_decr__mult__lemma,axiom,
! [D2: int,P: int > $o,K: int] :
( ( ord_less_int @ zero_zero_int @ D2 )
=> ( ! [X3: int] :
( ( P @ X3 )
=> ( P @ ( minus_minus_int @ X3 @ D2 ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ K )
=> ! [X4: int] :
( ( P @ X4 )
=> ( P @ ( minus_minus_int @ X4 @ ( times_times_int @ K @ D2 ) ) ) ) ) ) ) ).
% decr_mult_lemma
thf(fact_3322_Bolzano,axiom,
! [A: real,B: real,P: real > real > $o] :
( ( ord_less_eq_real @ A @ B )
=> ( ! [A4: real,B3: real,C3: real] :
( ( P @ A4 @ B3 )
=> ( ( P @ B3 @ C3 )
=> ( ( ord_less_eq_real @ A4 @ B3 )
=> ( ( ord_less_eq_real @ B3 @ C3 )
=> ( P @ A4 @ C3 ) ) ) ) )
=> ( ! [X3: real] :
( ( ord_less_eq_real @ A @ X3 )
=> ( ( ord_less_eq_real @ X3 @ B )
=> ? [D5: real] :
( ( ord_less_real @ zero_zero_real @ D5 )
& ! [A4: real,B3: real] :
( ( ( ord_less_eq_real @ A4 @ X3 )
& ( ord_less_eq_real @ X3 @ B3 )
& ( ord_less_real @ ( minus_minus_real @ B3 @ A4 ) @ D5 ) )
=> ( P @ A4 @ B3 ) ) ) ) )
=> ( P @ A @ B ) ) ) ) ).
% Bolzano
thf(fact_3323_zdvd__mono,axiom,
! [K: int,M: int,T2: int] :
( ( K != zero_zero_int )
=> ( ( dvd_dvd_int @ M @ T2 )
= ( dvd_dvd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ T2 ) ) ) ) ).
% zdvd_mono
thf(fact_3324_ex__less__of__nat__mult,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_rat @ zero_zero_rat @ X2 )
=> ? [N2: nat] : ( ord_less_rat @ Y2 @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N2 ) @ X2 ) ) ) ).
% ex_less_of_nat_mult
thf(fact_3325_ex__less__of__nat__mult,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ? [N2: nat] : ( ord_less_real @ Y2 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ X2 ) ) ) ).
% ex_less_of_nat_mult
thf(fact_3326_unity__coeff__ex,axiom,
! [P: complex > $o,L2: complex] :
( ( ? [X: complex] : ( P @ ( times_times_complex @ L2 @ X ) ) )
= ( ? [X: complex] :
( ( dvd_dvd_complex @ L2 @ ( plus_plus_complex @ X @ zero_zero_complex ) )
& ( P @ X ) ) ) ) ).
% unity_coeff_ex
thf(fact_3327_unity__coeff__ex,axiom,
! [P: real > $o,L2: real] :
( ( ? [X: real] : ( P @ ( times_times_real @ L2 @ X ) ) )
= ( ? [X: real] :
( ( dvd_dvd_real @ L2 @ ( plus_plus_real @ X @ zero_zero_real ) )
& ( P @ X ) ) ) ) ).
% unity_coeff_ex
thf(fact_3328_unity__coeff__ex,axiom,
! [P: rat > $o,L2: rat] :
( ( ? [X: rat] : ( P @ ( times_times_rat @ L2 @ X ) ) )
= ( ? [X: rat] :
( ( dvd_dvd_rat @ L2 @ ( plus_plus_rat @ X @ zero_zero_rat ) )
& ( P @ X ) ) ) ) ).
% unity_coeff_ex
thf(fact_3329_unity__coeff__ex,axiom,
! [P: nat > $o,L2: nat] :
( ( ? [X: nat] : ( P @ ( times_times_nat @ L2 @ X ) ) )
= ( ? [X: nat] :
( ( dvd_dvd_nat @ L2 @ ( plus_plus_nat @ X @ zero_zero_nat ) )
& ( P @ X ) ) ) ) ).
% unity_coeff_ex
thf(fact_3330_unity__coeff__ex,axiom,
! [P: int > $o,L2: int] :
( ( ? [X: int] : ( P @ ( times_times_int @ L2 @ X ) ) )
= ( ? [X: int] :
( ( dvd_dvd_int @ L2 @ ( plus_plus_int @ X @ zero_zero_int ) )
& ( P @ X ) ) ) ) ).
% unity_coeff_ex
thf(fact_3331_inf__period_I4_J,axiom,
! [D2: real,D4: real,T2: real] :
( ( dvd_dvd_real @ D2 @ D4 )
=> ! [X4: real,K5: real] :
( ( ~ ( dvd_dvd_real @ D2 @ ( plus_plus_real @ X4 @ T2 ) ) )
= ( ~ ( dvd_dvd_real @ D2 @ ( plus_plus_real @ ( minus_minus_real @ X4 @ ( times_times_real @ K5 @ D4 ) ) @ T2 ) ) ) ) ) ).
% inf_period(4)
thf(fact_3332_inf__period_I4_J,axiom,
! [D2: rat,D4: rat,T2: rat] :
( ( dvd_dvd_rat @ D2 @ D4 )
=> ! [X4: rat,K5: rat] :
( ( ~ ( dvd_dvd_rat @ D2 @ ( plus_plus_rat @ X4 @ T2 ) ) )
= ( ~ ( dvd_dvd_rat @ D2 @ ( plus_plus_rat @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K5 @ D4 ) ) @ T2 ) ) ) ) ) ).
% inf_period(4)
thf(fact_3333_inf__period_I4_J,axiom,
! [D2: int,D4: int,T2: int] :
( ( dvd_dvd_int @ D2 @ D4 )
=> ! [X4: int,K5: int] :
( ( ~ ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ T2 ) ) )
= ( ~ ( dvd_dvd_int @ D2 @ ( plus_plus_int @ ( minus_minus_int @ X4 @ ( times_times_int @ K5 @ D4 ) ) @ T2 ) ) ) ) ) ).
% inf_period(4)
thf(fact_3334_inf__period_I3_J,axiom,
! [D2: real,D4: real,T2: real] :
( ( dvd_dvd_real @ D2 @ D4 )
=> ! [X4: real,K5: real] :
( ( dvd_dvd_real @ D2 @ ( plus_plus_real @ X4 @ T2 ) )
= ( dvd_dvd_real @ D2 @ ( plus_plus_real @ ( minus_minus_real @ X4 @ ( times_times_real @ K5 @ D4 ) ) @ T2 ) ) ) ) ).
% inf_period(3)
thf(fact_3335_inf__period_I3_J,axiom,
! [D2: rat,D4: rat,T2: rat] :
( ( dvd_dvd_rat @ D2 @ D4 )
=> ! [X4: rat,K5: rat] :
( ( dvd_dvd_rat @ D2 @ ( plus_plus_rat @ X4 @ T2 ) )
= ( dvd_dvd_rat @ D2 @ ( plus_plus_rat @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K5 @ D4 ) ) @ T2 ) ) ) ) ).
% inf_period(3)
thf(fact_3336_inf__period_I3_J,axiom,
! [D2: int,D4: int,T2: int] :
( ( dvd_dvd_int @ D2 @ D4 )
=> ! [X4: int,K5: int] :
( ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ T2 ) )
= ( dvd_dvd_int @ D2 @ ( plus_plus_int @ ( minus_minus_int @ X4 @ ( times_times_int @ K5 @ D4 ) ) @ T2 ) ) ) ) ).
% inf_period(3)
thf(fact_3337_incr__mult__lemma,axiom,
! [D2: int,P: int > $o,K: int] :
( ( ord_less_int @ zero_zero_int @ D2 )
=> ( ! [X3: int] :
( ( P @ X3 )
=> ( P @ ( plus_plus_int @ X3 @ D2 ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ K )
=> ! [X4: int] :
( ( P @ X4 )
=> ( P @ ( plus_plus_int @ X4 @ ( times_times_int @ K @ D2 ) ) ) ) ) ) ) ).
% incr_mult_lemma
thf(fact_3338_delete__bound__height,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ord_less_eq_nat @ ( vEBT_T_d_e_l_e_t_e @ T2 @ X2 ) @ ( times_times_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ T2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% delete_bound_height
thf(fact_3339_delete__bound__height_H,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ord_less_eq_nat @ ( vEBT_V1232361888498592333_e_t_e @ T2 @ X2 ) @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ T2 ) ) ) ) ).
% delete_bound_height'
thf(fact_3340_post__member__pre__member,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat,Y2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( ord_less_nat @ Y2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( vEBT_vebt_member @ ( vEBT_vebt_insert @ T2 @ X2 ) @ Y2 )
=> ( ( vEBT_vebt_member @ T2 @ Y2 )
| ( X2 = Y2 ) ) ) ) ) ) ).
% post_member_pre_member
thf(fact_3341_height__double__log__univ__size,axiom,
! [U: real,Deg: nat,T2: vEBT_VEBT] :
( ( U
= ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Deg ) )
=> ( ( vEBT_invar_vebt @ T2 @ Deg )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_VEBT_height @ T2 ) ) @ ( plus_plus_real @ one_one_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ U ) ) ) ) ) ) ).
% height_double_log_univ_size
thf(fact_3342_set__vebt_H__def,axiom,
( vEBT_VEBT_set_vebt
= ( ^ [T: vEBT_VEBT] : ( collect_nat @ ( vEBT_vebt_member @ T ) ) ) ) ).
% set_vebt'_def
thf(fact_3343_member__valid__both__member__options,axiom,
! [Tree: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ Tree @ N )
=> ( ( vEBT_vebt_member @ Tree @ X2 )
=> ( ( vEBT_V5719532721284313246member @ Tree @ X2 )
| ( vEBT_VEBT_membermima @ Tree @ X2 ) ) ) ) ).
% member_valid_both_member_options
thf(fact_3344_psubsetI,axiom,
! [A2: set_nat,B4: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ B4 )
=> ( ( A2 != B4 )
=> ( ord_less_set_nat @ A2 @ B4 ) ) ) ).
% psubsetI
thf(fact_3345_int__ops_I6_J,axiom,
! [A: nat,B: nat] :
( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
= zero_zero_int ) )
& ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
= ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).
% int_ops(6)
thf(fact_3346_buildup__nothing__in__min__max,axiom,
! [N: nat,X2: nat] :
~ ( vEBT_VEBT_membermima @ ( vEBT_vebt_buildup @ N ) @ X2 ) ).
% buildup_nothing_in_min_max
thf(fact_3347_set__vebt__set__vebt_H__valid,axiom,
! [T2: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_set_vebt @ T2 )
= ( vEBT_VEBT_set_vebt @ T2 ) ) ) ).
% set_vebt_set_vebt'_valid
thf(fact_3348_verit__eq__simplify_I8_J,axiom,
! [X23: num,Y22: num] :
( ( ( bit0 @ X23 )
= ( bit0 @ Y22 ) )
= ( X23 = Y22 ) ) ).
% verit_eq_simplify(8)
thf(fact_3349_verit__eq__simplify_I9_J,axiom,
! [X33: num,Y32: num] :
( ( ( bit1 @ X33 )
= ( bit1 @ Y32 ) )
= ( X33 = Y32 ) ) ).
% verit_eq_simplify(9)
thf(fact_3350_subset__antisym,axiom,
! [A2: set_nat,B4: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ B4 )
=> ( ( ord_less_eq_set_nat @ B4 @ A2 )
=> ( A2 = B4 ) ) ) ).
% subset_antisym
thf(fact_3351_subsetI,axiom,
! [A2: set_real,B4: set_real] :
( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( member_real @ X3 @ B4 ) )
=> ( ord_less_eq_set_real @ A2 @ B4 ) ) ).
% subsetI
thf(fact_3352_subsetI,axiom,
! [A2: set_int,B4: set_int] :
( ! [X3: int] :
( ( member_int @ X3 @ A2 )
=> ( member_int @ X3 @ B4 ) )
=> ( ord_less_eq_set_int @ A2 @ B4 ) ) ).
% subsetI
thf(fact_3353_subsetI,axiom,
! [A2: set_VEBT_VEBT,B4: set_VEBT_VEBT] :
( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( member_VEBT_VEBT @ X3 @ B4 ) )
=> ( ord_le4337996190870823476T_VEBT @ A2 @ B4 ) ) ).
% subsetI
thf(fact_3354_subsetI,axiom,
! [A2: set_nat,B4: set_nat] :
( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( member_nat @ X3 @ B4 ) )
=> ( ord_less_eq_set_nat @ A2 @ B4 ) ) ).
% subsetI
thf(fact_3355_delete__bound__size__univ_H,axiom,
! [T2: vEBT_VEBT,N: nat,U: real,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( U
= ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_V1232361888498592333_e_t_e @ T2 @ X2 ) ) @ ( plus_plus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ U ) ) ) ) ) ) ).
% delete_bound_size_univ'
thf(fact_3356_delete__bound__size__univ,axiom,
! [T2: vEBT_VEBT,N: nat,U: real,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( U
= ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_T_d_e_l_e_t_e @ T2 @ X2 ) ) @ ( plus_plus_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ U ) ) ) ) ) ) ) ).
% delete_bound_size_univ
thf(fact_3357_succ__member,axiom,
! [T2: vEBT_VEBT,X2: nat,Y2: nat] :
( ( vEBT_is_succ_in_set @ ( vEBT_VEBT_set_vebt @ T2 ) @ X2 @ Y2 )
= ( ( vEBT_vebt_member @ T2 @ Y2 )
& ( ord_less_nat @ X2 @ Y2 )
& ! [Z5: nat] :
( ( ( vEBT_vebt_member @ T2 @ Z5 )
& ( ord_less_nat @ X2 @ Z5 ) )
=> ( ord_less_eq_nat @ Y2 @ Z5 ) ) ) ) ).
% succ_member
thf(fact_3358_pred__member,axiom,
! [T2: vEBT_VEBT,X2: nat,Y2: nat] :
( ( vEBT_is_pred_in_set @ ( vEBT_VEBT_set_vebt @ T2 ) @ X2 @ Y2 )
= ( ( vEBT_vebt_member @ T2 @ Y2 )
& ( ord_less_nat @ Y2 @ X2 )
& ! [Z5: nat] :
( ( ( vEBT_vebt_member @ T2 @ Z5 )
& ( ord_less_nat @ Z5 @ X2 ) )
=> ( ord_less_eq_nat @ Z5 @ Y2 ) ) ) ) ).
% pred_member
thf(fact_3359_verit__la__disequality,axiom,
! [A: rat,B: rat] :
( ( A = B )
| ~ ( ord_less_eq_rat @ A @ B )
| ~ ( ord_less_eq_rat @ B @ A ) ) ).
% verit_la_disequality
thf(fact_3360_verit__la__disequality,axiom,
! [A: num,B: num] :
( ( A = B )
| ~ ( ord_less_eq_num @ A @ B )
| ~ ( ord_less_eq_num @ B @ A ) ) ).
% verit_la_disequality
thf(fact_3361_verit__la__disequality,axiom,
! [A: nat,B: nat] :
( ( A = B )
| ~ ( ord_less_eq_nat @ A @ B )
| ~ ( ord_less_eq_nat @ B @ A ) ) ).
% verit_la_disequality
thf(fact_3362_verit__la__disequality,axiom,
! [A: int,B: int] :
( ( A = B )
| ~ ( ord_less_eq_int @ A @ B )
| ~ ( ord_less_eq_int @ B @ A ) ) ).
% verit_la_disequality
thf(fact_3363_verit__comp__simplify1_I2_J,axiom,
! [A: set_nat] : ( ord_less_eq_set_nat @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_3364_verit__comp__simplify1_I2_J,axiom,
! [A: rat] : ( ord_less_eq_rat @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_3365_verit__comp__simplify1_I2_J,axiom,
! [A: num] : ( ord_less_eq_num @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_3366_verit__comp__simplify1_I2_J,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_3367_verit__comp__simplify1_I2_J,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_3368_double__diff,axiom,
! [A2: set_nat,B4: set_nat,C5: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ B4 )
=> ( ( ord_less_eq_set_nat @ B4 @ C5 )
=> ( ( minus_minus_set_nat @ B4 @ ( minus_minus_set_nat @ C5 @ A2 ) )
= A2 ) ) ) ).
% double_diff
thf(fact_3369_Diff__subset,axiom,
! [A2: set_nat,B4: set_nat] : ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A2 @ B4 ) @ A2 ) ).
% Diff_subset
thf(fact_3370_Diff__mono,axiom,
! [A2: set_nat,C5: set_nat,D4: set_nat,B4: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ C5 )
=> ( ( ord_less_eq_set_nat @ D4 @ B4 )
=> ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A2 @ B4 ) @ ( minus_minus_set_nat @ C5 @ D4 ) ) ) ) ).
% Diff_mono
thf(fact_3371_Collect__mono__iff,axiom,
! [P: int > $o,Q: int > $o] :
( ( ord_less_eq_set_int @ ( collect_int @ P ) @ ( collect_int @ Q ) )
= ( ! [X: int] :
( ( P @ X )
=> ( Q @ X ) ) ) ) ).
% Collect_mono_iff
thf(fact_3372_Collect__mono__iff,axiom,
! [P: complex > $o,Q: complex > $o] :
( ( ord_le211207098394363844omplex @ ( collect_complex @ P ) @ ( collect_complex @ Q ) )
= ( ! [X: complex] :
( ( P @ X )
=> ( Q @ X ) ) ) ) ).
% Collect_mono_iff
thf(fact_3373_Collect__mono__iff,axiom,
! [P: product_prod_int_int > $o,Q: product_prod_int_int > $o] :
( ( ord_le2843351958646193337nt_int @ ( collec213857154873943460nt_int @ P ) @ ( collec213857154873943460nt_int @ Q ) )
= ( ! [X: product_prod_int_int] :
( ( P @ X )
=> ( Q @ X ) ) ) ) ).
% Collect_mono_iff
thf(fact_3374_Collect__mono__iff,axiom,
! [P: set_nat > $o,Q: set_nat > $o] :
( ( ord_le6893508408891458716et_nat @ ( collect_set_nat @ P ) @ ( collect_set_nat @ Q ) )
= ( ! [X: set_nat] :
( ( P @ X )
=> ( Q @ X ) ) ) ) ).
% Collect_mono_iff
thf(fact_3375_Collect__mono__iff,axiom,
! [P: nat > $o,Q: nat > $o] :
( ( ord_less_eq_set_nat @ ( collect_nat @ P ) @ ( collect_nat @ Q ) )
= ( ! [X: nat] :
( ( P @ X )
=> ( Q @ X ) ) ) ) ).
% Collect_mono_iff
thf(fact_3376_set__eq__subset,axiom,
( ( ^ [Y5: set_nat,Z3: set_nat] : ( Y5 = Z3 ) )
= ( ^ [A6: set_nat,B7: set_nat] :
( ( ord_less_eq_set_nat @ A6 @ B7 )
& ( ord_less_eq_set_nat @ B7 @ A6 ) ) ) ) ).
% set_eq_subset
thf(fact_3377_subset__trans,axiom,
! [A2: set_nat,B4: set_nat,C5: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ B4 )
=> ( ( ord_less_eq_set_nat @ B4 @ C5 )
=> ( ord_less_eq_set_nat @ A2 @ C5 ) ) ) ).
% subset_trans
thf(fact_3378_Collect__mono,axiom,
! [P: int > $o,Q: int > $o] :
( ! [X3: int] :
( ( P @ X3 )
=> ( Q @ X3 ) )
=> ( ord_less_eq_set_int @ ( collect_int @ P ) @ ( collect_int @ Q ) ) ) ).
% Collect_mono
thf(fact_3379_Collect__mono,axiom,
! [P: complex > $o,Q: complex > $o] :
( ! [X3: complex] :
( ( P @ X3 )
=> ( Q @ X3 ) )
=> ( ord_le211207098394363844omplex @ ( collect_complex @ P ) @ ( collect_complex @ Q ) ) ) ).
% Collect_mono
thf(fact_3380_Collect__mono,axiom,
! [P: product_prod_int_int > $o,Q: product_prod_int_int > $o] :
( ! [X3: product_prod_int_int] :
( ( P @ X3 )
=> ( Q @ X3 ) )
=> ( ord_le2843351958646193337nt_int @ ( collec213857154873943460nt_int @ P ) @ ( collec213857154873943460nt_int @ Q ) ) ) ).
% Collect_mono
thf(fact_3381_Collect__mono,axiom,
! [P: set_nat > $o,Q: set_nat > $o] :
( ! [X3: set_nat] :
( ( P @ X3 )
=> ( Q @ X3 ) )
=> ( ord_le6893508408891458716et_nat @ ( collect_set_nat @ P ) @ ( collect_set_nat @ Q ) ) ) ).
% Collect_mono
thf(fact_3382_Collect__mono,axiom,
! [P: nat > $o,Q: nat > $o] :
( ! [X3: nat] :
( ( P @ X3 )
=> ( Q @ X3 ) )
=> ( ord_less_eq_set_nat @ ( collect_nat @ P ) @ ( collect_nat @ Q ) ) ) ).
% Collect_mono
thf(fact_3383_subset__refl,axiom,
! [A2: set_nat] : ( ord_less_eq_set_nat @ A2 @ A2 ) ).
% subset_refl
thf(fact_3384_subset__iff,axiom,
( ord_less_eq_set_real
= ( ^ [A6: set_real,B7: set_real] :
! [T: real] :
( ( member_real @ T @ A6 )
=> ( member_real @ T @ B7 ) ) ) ) ).
% subset_iff
thf(fact_3385_subset__iff,axiom,
( ord_less_eq_set_int
= ( ^ [A6: set_int,B7: set_int] :
! [T: int] :
( ( member_int @ T @ A6 )
=> ( member_int @ T @ B7 ) ) ) ) ).
% subset_iff
thf(fact_3386_subset__iff,axiom,
( ord_le4337996190870823476T_VEBT
= ( ^ [A6: set_VEBT_VEBT,B7: set_VEBT_VEBT] :
! [T: vEBT_VEBT] :
( ( member_VEBT_VEBT @ T @ A6 )
=> ( member_VEBT_VEBT @ T @ B7 ) ) ) ) ).
% subset_iff
thf(fact_3387_subset__iff,axiom,
( ord_less_eq_set_nat
= ( ^ [A6: set_nat,B7: set_nat] :
! [T: nat] :
( ( member_nat @ T @ A6 )
=> ( member_nat @ T @ B7 ) ) ) ) ).
% subset_iff
thf(fact_3388_Set_OequalityD2,axiom,
! [A2: set_nat,B4: set_nat] :
( ( A2 = B4 )
=> ( ord_less_eq_set_nat @ B4 @ A2 ) ) ).
% Set.equalityD2
thf(fact_3389_equalityD1,axiom,
! [A2: set_nat,B4: set_nat] :
( ( A2 = B4 )
=> ( ord_less_eq_set_nat @ A2 @ B4 ) ) ).
% equalityD1
thf(fact_3390_subset__eq,axiom,
( ord_less_eq_set_real
= ( ^ [A6: set_real,B7: set_real] :
! [X: real] :
( ( member_real @ X @ A6 )
=> ( member_real @ X @ B7 ) ) ) ) ).
% subset_eq
thf(fact_3391_subset__eq,axiom,
( ord_less_eq_set_int
= ( ^ [A6: set_int,B7: set_int] :
! [X: int] :
( ( member_int @ X @ A6 )
=> ( member_int @ X @ B7 ) ) ) ) ).
% subset_eq
thf(fact_3392_subset__eq,axiom,
( ord_le4337996190870823476T_VEBT
= ( ^ [A6: set_VEBT_VEBT,B7: set_VEBT_VEBT] :
! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ A6 )
=> ( member_VEBT_VEBT @ X @ B7 ) ) ) ) ).
% subset_eq
thf(fact_3393_subset__eq,axiom,
( ord_less_eq_set_nat
= ( ^ [A6: set_nat,B7: set_nat] :
! [X: nat] :
( ( member_nat @ X @ A6 )
=> ( member_nat @ X @ B7 ) ) ) ) ).
% subset_eq
thf(fact_3394_equalityE,axiom,
! [A2: set_nat,B4: set_nat] :
( ( A2 = B4 )
=> ~ ( ( ord_less_eq_set_nat @ A2 @ B4 )
=> ~ ( ord_less_eq_set_nat @ B4 @ A2 ) ) ) ).
% equalityE
thf(fact_3395_subsetD,axiom,
! [A2: set_real,B4: set_real,C: real] :
( ( ord_less_eq_set_real @ A2 @ B4 )
=> ( ( member_real @ C @ A2 )
=> ( member_real @ C @ B4 ) ) ) ).
% subsetD
thf(fact_3396_subsetD,axiom,
! [A2: set_int,B4: set_int,C: int] :
( ( ord_less_eq_set_int @ A2 @ B4 )
=> ( ( member_int @ C @ A2 )
=> ( member_int @ C @ B4 ) ) ) ).
% subsetD
thf(fact_3397_subsetD,axiom,
! [A2: set_VEBT_VEBT,B4: set_VEBT_VEBT,C: vEBT_VEBT] :
( ( ord_le4337996190870823476T_VEBT @ A2 @ B4 )
=> ( ( member_VEBT_VEBT @ C @ A2 )
=> ( member_VEBT_VEBT @ C @ B4 ) ) ) ).
% subsetD
thf(fact_3398_subsetD,axiom,
! [A2: set_nat,B4: set_nat,C: nat] :
( ( ord_less_eq_set_nat @ A2 @ B4 )
=> ( ( member_nat @ C @ A2 )
=> ( member_nat @ C @ B4 ) ) ) ).
% subsetD
thf(fact_3399_in__mono,axiom,
! [A2: set_real,B4: set_real,X2: real] :
( ( ord_less_eq_set_real @ A2 @ B4 )
=> ( ( member_real @ X2 @ A2 )
=> ( member_real @ X2 @ B4 ) ) ) ).
% in_mono
thf(fact_3400_in__mono,axiom,
! [A2: set_int,B4: set_int,X2: int] :
( ( ord_less_eq_set_int @ A2 @ B4 )
=> ( ( member_int @ X2 @ A2 )
=> ( member_int @ X2 @ B4 ) ) ) ).
% in_mono
thf(fact_3401_in__mono,axiom,
! [A2: set_VEBT_VEBT,B4: set_VEBT_VEBT,X2: vEBT_VEBT] :
( ( ord_le4337996190870823476T_VEBT @ A2 @ B4 )
=> ( ( member_VEBT_VEBT @ X2 @ A2 )
=> ( member_VEBT_VEBT @ X2 @ B4 ) ) ) ).
% in_mono
thf(fact_3402_in__mono,axiom,
! [A2: set_nat,B4: set_nat,X2: nat] :
( ( ord_less_eq_set_nat @ A2 @ B4 )
=> ( ( member_nat @ X2 @ A2 )
=> ( member_nat @ X2 @ B4 ) ) ) ).
% in_mono
thf(fact_3403_nat__int__comparison_I1_J,axiom,
( ( ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 ) )
= ( ^ [A3: nat,B2: nat] :
( ( semiri1314217659103216013at_int @ A3 )
= ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(1)
thf(fact_3404_int__if,axiom,
! [P: $o,A: nat,B: nat] :
( ( P
=> ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
= ( semiri1314217659103216013at_int @ A ) ) )
& ( ~ P
=> ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
= ( semiri1314217659103216013at_int @ B ) ) ) ) ).
% int_if
thf(fact_3405_VEBT__internal_Omembermima_Osimps_I2_J,axiom,
! [Ux: list_VEBT_VEBT,Uy: vEBT_VEBT,Uz: nat] :
~ ( vEBT_VEBT_membermima @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux @ Uy ) @ Uz ) ).
% VEBT_internal.membermima.simps(2)
thf(fact_3406_less__eq__set__def,axiom,
( ord_less_eq_set_real
= ( ^ [A6: set_real,B7: set_real] :
( ord_less_eq_real_o
@ ^ [X: real] : ( member_real @ X @ A6 )
@ ^ [X: real] : ( member_real @ X @ B7 ) ) ) ) ).
% less_eq_set_def
thf(fact_3407_less__eq__set__def,axiom,
( ord_less_eq_set_int
= ( ^ [A6: set_int,B7: set_int] :
( ord_less_eq_int_o
@ ^ [X: int] : ( member_int @ X @ A6 )
@ ^ [X: int] : ( member_int @ X @ B7 ) ) ) ) ).
% less_eq_set_def
thf(fact_3408_less__eq__set__def,axiom,
( ord_le4337996190870823476T_VEBT
= ( ^ [A6: set_VEBT_VEBT,B7: set_VEBT_VEBT] :
( ord_le418104280809901481VEBT_o
@ ^ [X: vEBT_VEBT] : ( member_VEBT_VEBT @ X @ A6 )
@ ^ [X: vEBT_VEBT] : ( member_VEBT_VEBT @ X @ B7 ) ) ) ) ).
% less_eq_set_def
thf(fact_3409_less__eq__set__def,axiom,
( ord_less_eq_set_nat
= ( ^ [A6: set_nat,B7: set_nat] :
( ord_less_eq_nat_o
@ ^ [X: nat] : ( member_nat @ X @ A6 )
@ ^ [X: nat] : ( member_nat @ X @ B7 ) ) ) ) ).
% less_eq_set_def
thf(fact_3410_Collect__subset,axiom,
! [A2: set_real,P: real > $o] :
( ord_less_eq_set_real
@ ( collect_real
@ ^ [X: real] :
( ( member_real @ X @ A2 )
& ( P @ X ) ) )
@ A2 ) ).
% Collect_subset
thf(fact_3411_Collect__subset,axiom,
! [A2: set_VEBT_VEBT,P: vEBT_VEBT > $o] :
( ord_le4337996190870823476T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ A2 )
& ( P @ X ) ) )
@ A2 ) ).
% Collect_subset
thf(fact_3412_Collect__subset,axiom,
! [A2: set_int,P: int > $o] :
( ord_less_eq_set_int
@ ( collect_int
@ ^ [X: int] :
( ( member_int @ X @ A2 )
& ( P @ X ) ) )
@ A2 ) ).
% Collect_subset
thf(fact_3413_Collect__subset,axiom,
! [A2: set_complex,P: complex > $o] :
( ord_le211207098394363844omplex
@ ( collect_complex
@ ^ [X: complex] :
( ( member_complex @ X @ A2 )
& ( P @ X ) ) )
@ A2 ) ).
% Collect_subset
thf(fact_3414_Collect__subset,axiom,
! [A2: set_Pr958786334691620121nt_int,P: product_prod_int_int > $o] :
( ord_le2843351958646193337nt_int
@ ( collec213857154873943460nt_int
@ ^ [X: product_prod_int_int] :
( ( member5262025264175285858nt_int @ X @ A2 )
& ( P @ X ) ) )
@ A2 ) ).
% Collect_subset
thf(fact_3415_Collect__subset,axiom,
! [A2: set_set_nat,P: set_nat > $o] :
( ord_le6893508408891458716et_nat
@ ( collect_set_nat
@ ^ [X: set_nat] :
( ( member_set_nat @ X @ A2 )
& ( P @ X ) ) )
@ A2 ) ).
% Collect_subset
thf(fact_3416_Collect__subset,axiom,
! [A2: set_nat,P: nat > $o] :
( ord_less_eq_set_nat
@ ( collect_nat
@ ^ [X: nat] :
( ( member_nat @ X @ A2 )
& ( P @ X ) ) )
@ A2 ) ).
% Collect_subset
thf(fact_3417_less__set__def,axiom,
( ord_less_set_nat
= ( ^ [A6: set_nat,B7: set_nat] :
( ord_less_nat_o
@ ^ [X: nat] : ( member_nat @ X @ A6 )
@ ^ [X: nat] : ( member_nat @ X @ B7 ) ) ) ) ).
% less_set_def
thf(fact_3418_less__set__def,axiom,
( ord_less_set_real
= ( ^ [A6: set_real,B7: set_real] :
( ord_less_real_o
@ ^ [X: real] : ( member_real @ X @ A6 )
@ ^ [X: real] : ( member_real @ X @ B7 ) ) ) ) ).
% less_set_def
thf(fact_3419_less__set__def,axiom,
( ord_less_set_int
= ( ^ [A6: set_int,B7: set_int] :
( ord_less_int_o
@ ^ [X: int] : ( member_int @ X @ A6 )
@ ^ [X: int] : ( member_int @ X @ B7 ) ) ) ) ).
% less_set_def
thf(fact_3420_less__set__def,axiom,
( ord_le3480810397992357184T_VEBT
= ( ^ [A6: set_VEBT_VEBT,B7: set_VEBT_VEBT] :
( ord_less_VEBT_VEBT_o
@ ^ [X: vEBT_VEBT] : ( member_VEBT_VEBT @ X @ A6 )
@ ^ [X: vEBT_VEBT] : ( member_VEBT_VEBT @ X @ B7 ) ) ) ) ).
% less_set_def
thf(fact_3421_verit__comp__simplify1_I3_J,axiom,
! [B6: real,A5: real] :
( ( ~ ( ord_less_eq_real @ B6 @ A5 ) )
= ( ord_less_real @ A5 @ B6 ) ) ).
% verit_comp_simplify1(3)
thf(fact_3422_verit__comp__simplify1_I3_J,axiom,
! [B6: rat,A5: rat] :
( ( ~ ( ord_less_eq_rat @ B6 @ A5 ) )
= ( ord_less_rat @ A5 @ B6 ) ) ).
% verit_comp_simplify1(3)
thf(fact_3423_verit__comp__simplify1_I3_J,axiom,
! [B6: num,A5: num] :
( ( ~ ( ord_less_eq_num @ B6 @ A5 ) )
= ( ord_less_num @ A5 @ B6 ) ) ).
% verit_comp_simplify1(3)
thf(fact_3424_verit__comp__simplify1_I3_J,axiom,
! [B6: nat,A5: nat] :
( ( ~ ( ord_less_eq_nat @ B6 @ A5 ) )
= ( ord_less_nat @ A5 @ B6 ) ) ).
% verit_comp_simplify1(3)
thf(fact_3425_verit__comp__simplify1_I3_J,axiom,
! [B6: int,A5: int] :
( ( ~ ( ord_less_eq_int @ B6 @ A5 ) )
= ( ord_less_int @ A5 @ B6 ) ) ).
% verit_comp_simplify1(3)
thf(fact_3426_verit__sum__simplify,axiom,
! [A: complex] :
( ( plus_plus_complex @ A @ zero_zero_complex )
= A ) ).
% verit_sum_simplify
thf(fact_3427_verit__sum__simplify,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% verit_sum_simplify
thf(fact_3428_verit__sum__simplify,axiom,
! [A: rat] :
( ( plus_plus_rat @ A @ zero_zero_rat )
= A ) ).
% verit_sum_simplify
thf(fact_3429_verit__sum__simplify,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% verit_sum_simplify
thf(fact_3430_verit__sum__simplify,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% verit_sum_simplify
thf(fact_3431_verit__eq__simplify_I10_J,axiom,
! [X23: num] :
( one
!= ( bit0 @ X23 ) ) ).
% verit_eq_simplify(10)
thf(fact_3432_verit__eq__simplify_I14_J,axiom,
! [X23: num,X33: num] :
( ( bit0 @ X23 )
!= ( bit1 @ X33 ) ) ).
% verit_eq_simplify(14)
thf(fact_3433_verit__eq__simplify_I12_J,axiom,
! [X33: num] :
( one
!= ( bit1 @ X33 ) ) ).
% verit_eq_simplify(12)
thf(fact_3434_subset__iff__psubset__eq,axiom,
( ord_less_eq_set_nat
= ( ^ [A6: set_nat,B7: set_nat] :
( ( ord_less_set_nat @ A6 @ B7 )
| ( A6 = B7 ) ) ) ) ).
% subset_iff_psubset_eq
thf(fact_3435_subset__psubset__trans,axiom,
! [A2: set_nat,B4: set_nat,C5: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ B4 )
=> ( ( ord_less_set_nat @ B4 @ C5 )
=> ( ord_less_set_nat @ A2 @ C5 ) ) ) ).
% subset_psubset_trans
thf(fact_3436_subset__not__subset__eq,axiom,
( ord_less_set_nat
= ( ^ [A6: set_nat,B7: set_nat] :
( ( ord_less_eq_set_nat @ A6 @ B7 )
& ~ ( ord_less_eq_set_nat @ B7 @ A6 ) ) ) ) ).
% subset_not_subset_eq
thf(fact_3437_psubset__subset__trans,axiom,
! [A2: set_nat,B4: set_nat,C5: set_nat] :
( ( ord_less_set_nat @ A2 @ B4 )
=> ( ( ord_less_eq_set_nat @ B4 @ C5 )
=> ( ord_less_set_nat @ A2 @ C5 ) ) ) ).
% psubset_subset_trans
thf(fact_3438_psubset__imp__subset,axiom,
! [A2: set_nat,B4: set_nat] :
( ( ord_less_set_nat @ A2 @ B4 )
=> ( ord_less_eq_set_nat @ A2 @ B4 ) ) ).
% psubset_imp_subset
thf(fact_3439_psubset__eq,axiom,
( ord_less_set_nat
= ( ^ [A6: set_nat,B7: set_nat] :
( ( ord_less_eq_set_nat @ A6 @ B7 )
& ( A6 != B7 ) ) ) ) ).
% psubset_eq
thf(fact_3440_psubsetE,axiom,
! [A2: set_nat,B4: set_nat] :
( ( ord_less_set_nat @ A2 @ B4 )
=> ~ ( ( ord_less_eq_set_nat @ A2 @ B4 )
=> ( ord_less_eq_set_nat @ B4 @ A2 ) ) ) ).
% psubsetE
thf(fact_3441_int__ops_I3_J,axiom,
! [N: num] :
( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_int @ N ) ) ).
% int_ops(3)
thf(fact_3442_int__ops_I1_J,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% int_ops(1)
thf(fact_3443_nat__int__comparison_I2_J,axiom,
( ord_less_nat
= ( ^ [A3: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(2)
thf(fact_3444_nat__int__comparison_I3_J,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B2: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(3)
thf(fact_3445_int__ops_I2_J,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% int_ops(2)
thf(fact_3446_int__plus,axiom,
! [N: nat,M: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N @ M ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).
% int_plus
thf(fact_3447_int__ops_I5_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(5)
thf(fact_3448_int__ops_I7_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ A @ B ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(7)
thf(fact_3449_nat__less__as__int,axiom,
( ord_less_nat
= ( ^ [A3: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_less_as_int
thf(fact_3450_nat__leq__as__int,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B2: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_leq_as_int
thf(fact_3451_int__ops_I4_J,axiom,
! [A: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ A ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ one_one_int ) ) ).
% int_ops(4)
thf(fact_3452_int__Suc,axiom,
! [N: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ N ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ).
% int_Suc
thf(fact_3453_log__pow__cancel,axiom,
! [A: real,B: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( log @ A @ ( power_power_real @ A @ B ) )
= ( semiri5074537144036343181t_real @ B ) ) ) ) ).
% log_pow_cancel
thf(fact_3454_zero__le__log__cancel__iff,axiom,
! [A: real,X2: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( log @ A @ X2 ) )
= ( ord_less_eq_real @ one_one_real @ X2 ) ) ) ) ).
% zero_le_log_cancel_iff
thf(fact_3455_log__le__zero__cancel__iff,axiom,
! [A: real,X2: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ ( log @ A @ X2 ) @ zero_zero_real )
= ( ord_less_eq_real @ X2 @ one_one_real ) ) ) ) ).
% log_le_zero_cancel_iff
thf(fact_3456_one__le__log__cancel__iff,axiom,
! [A: real,X2: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ one_one_real @ ( log @ A @ X2 ) )
= ( ord_less_eq_real @ A @ X2 ) ) ) ) ).
% one_le_log_cancel_iff
thf(fact_3457_log__le__one__cancel__iff,axiom,
! [A: real,X2: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ ( log @ A @ X2 ) @ one_one_real )
= ( ord_less_eq_real @ X2 @ A ) ) ) ) ).
% log_le_one_cancel_iff
thf(fact_3458_log__le__cancel__iff,axiom,
! [A: real,X2: real,Y2: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_eq_real @ ( log @ A @ X2 ) @ ( log @ A @ Y2 ) )
= ( ord_less_eq_real @ X2 @ Y2 ) ) ) ) ) ).
% log_le_cancel_iff
thf(fact_3459_log2__of__power__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_eq_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).
% log2_of_power_le
thf(fact_3460_log__eq__one,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( log @ A @ A )
= one_one_real ) ) ) ).
% log_eq_one
thf(fact_3461_log__one,axiom,
! [A: real] :
( ( log @ A @ one_one_real )
= zero_zero_real ) ).
% log_one
thf(fact_3462_zero__less__log__cancel__iff,axiom,
! [A: real,X2: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ zero_zero_real @ ( log @ A @ X2 ) )
= ( ord_less_real @ one_one_real @ X2 ) ) ) ) ).
% zero_less_log_cancel_iff
thf(fact_3463_log__less__zero__cancel__iff,axiom,
! [A: real,X2: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ ( log @ A @ X2 ) @ zero_zero_real )
= ( ord_less_real @ X2 @ one_one_real ) ) ) ) ).
% log_less_zero_cancel_iff
thf(fact_3464_one__less__log__cancel__iff,axiom,
! [A: real,X2: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ one_one_real @ ( log @ A @ X2 ) )
= ( ord_less_real @ A @ X2 ) ) ) ) ).
% one_less_log_cancel_iff
thf(fact_3465_log__less__one__cancel__iff,axiom,
! [A: real,X2: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ ( log @ A @ X2 ) @ one_one_real )
= ( ord_less_real @ X2 @ A ) ) ) ) ).
% log_less_one_cancel_iff
thf(fact_3466_log__less__cancel__iff,axiom,
! [A: real,X2: real,Y2: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_real @ ( log @ A @ X2 ) @ ( log @ A @ Y2 ) )
= ( ord_less_real @ X2 @ Y2 ) ) ) ) ) ).
% log_less_cancel_iff
thf(fact_3467_minus__set__def,axiom,
( minus_minus_set_real
= ( ^ [A6: set_real,B7: set_real] :
( collect_real
@ ( minus_minus_real_o
@ ^ [X: real] : ( member_real @ X @ A6 )
@ ^ [X: real] : ( member_real @ X @ B7 ) ) ) ) ) ).
% minus_set_def
thf(fact_3468_minus__set__def,axiom,
( minus_5127226145743854075T_VEBT
= ( ^ [A6: set_VEBT_VEBT,B7: set_VEBT_VEBT] :
( collect_VEBT_VEBT
@ ( minus_2794559001203777698VEBT_o
@ ^ [X: vEBT_VEBT] : ( member_VEBT_VEBT @ X @ A6 )
@ ^ [X: vEBT_VEBT] : ( member_VEBT_VEBT @ X @ B7 ) ) ) ) ) ).
% minus_set_def
thf(fact_3469_minus__set__def,axiom,
( minus_minus_set_int
= ( ^ [A6: set_int,B7: set_int] :
( collect_int
@ ( minus_minus_int_o
@ ^ [X: int] : ( member_int @ X @ A6 )
@ ^ [X: int] : ( member_int @ X @ B7 ) ) ) ) ) ).
% minus_set_def
thf(fact_3470_minus__set__def,axiom,
( minus_811609699411566653omplex
= ( ^ [A6: set_complex,B7: set_complex] :
( collect_complex
@ ( minus_8727706125548526216plex_o
@ ^ [X: complex] : ( member_complex @ X @ A6 )
@ ^ [X: complex] : ( member_complex @ X @ B7 ) ) ) ) ) ).
% minus_set_def
thf(fact_3471_minus__set__def,axiom,
( minus_1052850069191792384nt_int
= ( ^ [A6: set_Pr958786334691620121nt_int,B7: set_Pr958786334691620121nt_int] :
( collec213857154873943460nt_int
@ ( minus_711738161318947805_int_o
@ ^ [X: product_prod_int_int] : ( member5262025264175285858nt_int @ X @ A6 )
@ ^ [X: product_prod_int_int] : ( member5262025264175285858nt_int @ X @ B7 ) ) ) ) ) ).
% minus_set_def
thf(fact_3472_minus__set__def,axiom,
( minus_2163939370556025621et_nat
= ( ^ [A6: set_set_nat,B7: set_set_nat] :
( collect_set_nat
@ ( minus_6910147592129066416_nat_o
@ ^ [X: set_nat] : ( member_set_nat @ X @ A6 )
@ ^ [X: set_nat] : ( member_set_nat @ X @ B7 ) ) ) ) ) ).
% minus_set_def
thf(fact_3473_minus__set__def,axiom,
( minus_minus_set_nat
= ( ^ [A6: set_nat,B7: set_nat] :
( collect_nat
@ ( minus_minus_nat_o
@ ^ [X: nat] : ( member_nat @ X @ A6 )
@ ^ [X: nat] : ( member_nat @ X @ B7 ) ) ) ) ) ).
% minus_set_def
thf(fact_3474_set__diff__eq,axiom,
( minus_minus_set_real
= ( ^ [A6: set_real,B7: set_real] :
( collect_real
@ ^ [X: real] :
( ( member_real @ X @ A6 )
& ~ ( member_real @ X @ B7 ) ) ) ) ) ).
% set_diff_eq
thf(fact_3475_set__diff__eq,axiom,
( minus_5127226145743854075T_VEBT
= ( ^ [A6: set_VEBT_VEBT,B7: set_VEBT_VEBT] :
( collect_VEBT_VEBT
@ ^ [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ A6 )
& ~ ( member_VEBT_VEBT @ X @ B7 ) ) ) ) ) ).
% set_diff_eq
thf(fact_3476_set__diff__eq,axiom,
( minus_minus_set_int
= ( ^ [A6: set_int,B7: set_int] :
( collect_int
@ ^ [X: int] :
( ( member_int @ X @ A6 )
& ~ ( member_int @ X @ B7 ) ) ) ) ) ).
% set_diff_eq
thf(fact_3477_set__diff__eq,axiom,
( minus_811609699411566653omplex
= ( ^ [A6: set_complex,B7: set_complex] :
( collect_complex
@ ^ [X: complex] :
( ( member_complex @ X @ A6 )
& ~ ( member_complex @ X @ B7 ) ) ) ) ) ).
% set_diff_eq
thf(fact_3478_set__diff__eq,axiom,
( minus_1052850069191792384nt_int
= ( ^ [A6: set_Pr958786334691620121nt_int,B7: set_Pr958786334691620121nt_int] :
( collec213857154873943460nt_int
@ ^ [X: product_prod_int_int] :
( ( member5262025264175285858nt_int @ X @ A6 )
& ~ ( member5262025264175285858nt_int @ X @ B7 ) ) ) ) ) ).
% set_diff_eq
thf(fact_3479_set__diff__eq,axiom,
( minus_2163939370556025621et_nat
= ( ^ [A6: set_set_nat,B7: set_set_nat] :
( collect_set_nat
@ ^ [X: set_nat] :
( ( member_set_nat @ X @ A6 )
& ~ ( member_set_nat @ X @ B7 ) ) ) ) ) ).
% set_diff_eq
thf(fact_3480_set__diff__eq,axiom,
( minus_minus_set_nat
= ( ^ [A6: set_nat,B7: set_nat] :
( collect_nat
@ ^ [X: nat] :
( ( member_nat @ X @ A6 )
& ~ ( member_nat @ X @ B7 ) ) ) ) ) ).
% set_diff_eq
thf(fact_3481_log__base__change,axiom,
! [A: real,B: real,X2: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( log @ B @ X2 )
= ( divide_divide_real @ ( log @ A @ X2 ) @ ( log @ A @ B ) ) ) ) ) ).
% log_base_change
thf(fact_3482_less__log__of__power,axiom,
! [B: real,N: nat,M: real] :
( ( ord_less_real @ ( power_power_real @ B @ N ) @ M )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ M ) ) ) ) ).
% less_log_of_power
thf(fact_3483_log__of__power__eq,axiom,
! [M: nat,B: real,N: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= ( power_power_real @ B @ N ) )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ( semiri5074537144036343181t_real @ N )
= ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) ) ) ) ).
% log_of_power_eq
thf(fact_3484_log__mult,axiom,
! [A: real,X2: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ zero_zero_real @ Y2 )
=> ( ( log @ A @ ( times_times_real @ X2 @ Y2 ) )
= ( plus_plus_real @ ( log @ A @ X2 ) @ ( log @ A @ Y2 ) ) ) ) ) ) ) ).
% log_mult
thf(fact_3485_le__log__of__power,axiom,
! [B: real,N: nat,M: real] :
( ( ord_less_eq_real @ ( power_power_real @ B @ N ) @ M )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ M ) ) ) ) ).
% le_log_of_power
thf(fact_3486_log__divide,axiom,
! [A: real,X2: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ zero_zero_real @ Y2 )
=> ( ( log @ A @ ( divide_divide_real @ X2 @ Y2 ) )
= ( minus_minus_real @ ( log @ A @ X2 ) @ ( log @ A @ Y2 ) ) ) ) ) ) ) ).
% log_divide
thf(fact_3487_log__base__pow,axiom,
! [A: real,N: nat,X2: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( log @ ( power_power_real @ A @ N ) @ X2 )
= ( divide_divide_real @ ( log @ A @ X2 ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).
% log_base_pow
thf(fact_3488_log__nat__power,axiom,
! [X2: real,B: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( log @ B @ ( power_power_real @ X2 @ N ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ X2 ) ) ) ) ).
% log_nat_power
thf(fact_3489_log2__of__power__eq,axiom,
! [M: nat,N: nat] :
( ( M
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( semiri5074537144036343181t_real @ N )
= ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).
% log2_of_power_eq
thf(fact_3490_log__of__power__less,axiom,
! [M: nat,B: real,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( power_power_real @ B @ N ) )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_real @ ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% log_of_power_less
thf(fact_3491_log__of__power__le,axiom,
! [M: nat,B: real,N: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( power_power_real @ B @ N ) )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_eq_real @ ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% log_of_power_le
thf(fact_3492_less__log2__of__power,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ M )
=> ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).
% less_log2_of_power
thf(fact_3493_le__log2__of__power,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ M )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).
% le_log2_of_power
thf(fact_3494_log2__of__power__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).
% log2_of_power_less
thf(fact_3495_arcosh__1,axiom,
( ( arcosh_real @ one_one_real )
= zero_zero_real ) ).
% arcosh_1
thf(fact_3496_inrange,axiom,
! [T2: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ord_less_eq_set_nat @ ( vEBT_VEBT_set_vebt @ T2 ) @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ) ).
% inrange
thf(fact_3497_pos__mult__pos__ge,axiom,
! [X2: int,N: int] :
( ( ord_less_int @ zero_zero_int @ X2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ N )
=> ( ord_less_eq_int @ ( times_times_int @ N @ one_one_int ) @ ( times_times_int @ N @ X2 ) ) ) ) ).
% pos_mult_pos_ge
thf(fact_3498_heigt__uplog__rel,axiom,
! [T2: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( semiri1314217659103216013at_int @ ( vEBT_VEBT_height @ T2 ) )
= ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% heigt_uplog_rel
thf(fact_3499_lemma__termdiff3,axiom,
! [H2: real,Z: real,K6: real,N: nat] :
( ( H2 != zero_zero_real )
=> ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z ) @ K6 )
=> ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ Z @ H2 ) ) @ K6 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ Z @ H2 ) @ N ) @ ( power_power_real @ Z @ N ) ) @ H2 ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ Z @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) @ ( power_power_real @ K6 @ ( minus_minus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( real_V7735802525324610683m_real @ H2 ) ) ) ) ) ) ).
% lemma_termdiff3
thf(fact_3500_lemma__termdiff3,axiom,
! [H2: complex,Z: complex,K6: real,N: nat] :
( ( H2 != zero_zero_complex )
=> ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z ) @ K6 )
=> ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ Z @ H2 ) ) @ K6 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ ( plus_plus_complex @ Z @ H2 ) @ N ) @ ( power_power_complex @ Z @ N ) ) @ H2 ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ ( power_power_complex @ Z @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) @ ( power_power_real @ K6 @ ( minus_minus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( real_V1022390504157884413omplex @ H2 ) ) ) ) ) ) ).
% lemma_termdiff3
thf(fact_3501_T_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_Osimps_I4_J,axiom,
! [Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,Uu: nat] :
( ( vEBT_T_d_e_l_e_t_e @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList @ Summary ) @ Uu )
= one_one_nat ) ).
% T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e.simps(4)
thf(fact_3502_VEBT__internal_OT_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_H_Osimps_I4_J,axiom,
! [Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,Uu: nat] :
( ( vEBT_V1232361888498592333_e_t_e @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList @ Summary ) @ Uu )
= one_one_nat ) ).
% VEBT_internal.T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e'.simps(4)
thf(fact_3503_valid__insert__both__member__options__add,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_insert @ T2 @ X2 ) @ X2 ) ) ) ).
% valid_insert_both_member_options_add
thf(fact_3504_both__member__options__equiv__member,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_V8194947554948674370ptions @ T2 @ X2 )
= ( vEBT_vebt_member @ T2 @ X2 ) ) ) ).
% both_member_options_equiv_member
thf(fact_3505_valid__member__both__member__options,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_V8194947554948674370ptions @ T2 @ X2 )
=> ( vEBT_vebt_member @ T2 @ X2 ) ) ) ).
% valid_member_both_member_options
thf(fact_3506_both__member__options__def,axiom,
( vEBT_V8194947554948674370ptions
= ( ^ [T: vEBT_VEBT,X: nat] :
( ( vEBT_V5719532721284313246member @ T @ X )
| ( vEBT_VEBT_membermima @ T @ X ) ) ) ) ).
% both_member_options_def
thf(fact_3507_valid__insert__both__member__options__pres,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat,Y2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( ord_less_nat @ Y2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( vEBT_V8194947554948674370ptions @ T2 @ X2 )
=> ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_insert @ T2 @ Y2 ) @ X2 ) ) ) ) ) ).
% valid_insert_both_member_options_pres
thf(fact_3508_ceiling__zero,axiom,
( ( archim2889992004027027881ng_rat @ zero_zero_rat )
= zero_zero_int ) ).
% ceiling_zero
thf(fact_3509_ceiling__zero,axiom,
( ( archim7802044766580827645g_real @ zero_zero_real )
= zero_zero_int ) ).
% ceiling_zero
thf(fact_3510_ceiling__numeral,axiom,
! [V: num] :
( ( archim7802044766580827645g_real @ ( numeral_numeral_real @ V ) )
= ( numeral_numeral_int @ V ) ) ).
% ceiling_numeral
thf(fact_3511_ceiling__numeral,axiom,
! [V: num] :
( ( archim2889992004027027881ng_rat @ ( numeral_numeral_rat @ V ) )
= ( numeral_numeral_int @ V ) ) ).
% ceiling_numeral
thf(fact_3512_ceiling__one,axiom,
( ( archim2889992004027027881ng_rat @ one_one_rat )
= one_one_int ) ).
% ceiling_one
thf(fact_3513_ceiling__one,axiom,
( ( archim7802044766580827645g_real @ one_one_real )
= one_one_int ) ).
% ceiling_one
thf(fact_3514_ceiling__of__nat,axiom,
! [N: nat] :
( ( archim7802044766580827645g_real @ ( semiri5074537144036343181t_real @ N ) )
= ( semiri1314217659103216013at_int @ N ) ) ).
% ceiling_of_nat
thf(fact_3515_ceiling__le__zero,axiom,
! [X2: real] :
( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X2 ) @ zero_zero_int )
= ( ord_less_eq_real @ X2 @ zero_zero_real ) ) ).
% ceiling_le_zero
thf(fact_3516_ceiling__le__zero,axiom,
! [X2: rat] :
( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X2 ) @ zero_zero_int )
= ( ord_less_eq_rat @ X2 @ zero_zero_rat ) ) ).
% ceiling_le_zero
thf(fact_3517_ceiling__le__numeral,axiom,
! [X2: real,V: num] :
( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X2 ) @ ( numeral_numeral_int @ V ) )
= ( ord_less_eq_real @ X2 @ ( numeral_numeral_real @ V ) ) ) ).
% ceiling_le_numeral
thf(fact_3518_ceiling__le__numeral,axiom,
! [X2: rat,V: num] :
( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X2 ) @ ( numeral_numeral_int @ V ) )
= ( ord_less_eq_rat @ X2 @ ( numeral_numeral_rat @ V ) ) ) ).
% ceiling_le_numeral
thf(fact_3519_zero__less__ceiling,axiom,
! [X2: rat] :
( ( ord_less_int @ zero_zero_int @ ( archim2889992004027027881ng_rat @ X2 ) )
= ( ord_less_rat @ zero_zero_rat @ X2 ) ) ).
% zero_less_ceiling
thf(fact_3520_zero__less__ceiling,axiom,
! [X2: real] :
( ( ord_less_int @ zero_zero_int @ ( archim7802044766580827645g_real @ X2 ) )
= ( ord_less_real @ zero_zero_real @ X2 ) ) ).
% zero_less_ceiling
thf(fact_3521_numeral__less__ceiling,axiom,
! [V: num,X2: real] :
( ( ord_less_int @ ( numeral_numeral_int @ V ) @ ( archim7802044766580827645g_real @ X2 ) )
= ( ord_less_real @ ( numeral_numeral_real @ V ) @ X2 ) ) ).
% numeral_less_ceiling
thf(fact_3522_numeral__less__ceiling,axiom,
! [V: num,X2: rat] :
( ( ord_less_int @ ( numeral_numeral_int @ V ) @ ( archim2889992004027027881ng_rat @ X2 ) )
= ( ord_less_rat @ ( numeral_numeral_rat @ V ) @ X2 ) ) ).
% numeral_less_ceiling
thf(fact_3523_ceiling__less__one,axiom,
! [X2: real] :
( ( ord_less_int @ ( archim7802044766580827645g_real @ X2 ) @ one_one_int )
= ( ord_less_eq_real @ X2 @ zero_zero_real ) ) ).
% ceiling_less_one
thf(fact_3524_ceiling__less__one,axiom,
! [X2: rat] :
( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X2 ) @ one_one_int )
= ( ord_less_eq_rat @ X2 @ zero_zero_rat ) ) ).
% ceiling_less_one
thf(fact_3525_one__le__ceiling,axiom,
! [X2: rat] :
( ( ord_less_eq_int @ one_one_int @ ( archim2889992004027027881ng_rat @ X2 ) )
= ( ord_less_rat @ zero_zero_rat @ X2 ) ) ).
% one_le_ceiling
thf(fact_3526_one__le__ceiling,axiom,
! [X2: real] :
( ( ord_less_eq_int @ one_one_int @ ( archim7802044766580827645g_real @ X2 ) )
= ( ord_less_real @ zero_zero_real @ X2 ) ) ).
% one_le_ceiling
thf(fact_3527_ceiling__add__numeral,axiom,
! [X2: real,V: num] :
( ( archim7802044766580827645g_real @ ( plus_plus_real @ X2 @ ( numeral_numeral_real @ V ) ) )
= ( plus_plus_int @ ( archim7802044766580827645g_real @ X2 ) @ ( numeral_numeral_int @ V ) ) ) ).
% ceiling_add_numeral
thf(fact_3528_ceiling__add__numeral,axiom,
! [X2: rat,V: num] :
( ( archim2889992004027027881ng_rat @ ( plus_plus_rat @ X2 @ ( numeral_numeral_rat @ V ) ) )
= ( plus_plus_int @ ( archim2889992004027027881ng_rat @ X2 ) @ ( numeral_numeral_int @ V ) ) ) ).
% ceiling_add_numeral
thf(fact_3529_ceiling__le__one,axiom,
! [X2: real] :
( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X2 ) @ one_one_int )
= ( ord_less_eq_real @ X2 @ one_one_real ) ) ).
% ceiling_le_one
thf(fact_3530_ceiling__le__one,axiom,
! [X2: rat] :
( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X2 ) @ one_one_int )
= ( ord_less_eq_rat @ X2 @ one_one_rat ) ) ).
% ceiling_le_one
thf(fact_3531_one__less__ceiling,axiom,
! [X2: rat] :
( ( ord_less_int @ one_one_int @ ( archim2889992004027027881ng_rat @ X2 ) )
= ( ord_less_rat @ one_one_rat @ X2 ) ) ).
% one_less_ceiling
thf(fact_3532_one__less__ceiling,axiom,
! [X2: real] :
( ( ord_less_int @ one_one_int @ ( archim7802044766580827645g_real @ X2 ) )
= ( ord_less_real @ one_one_real @ X2 ) ) ).
% one_less_ceiling
thf(fact_3533_ceiling__add__one,axiom,
! [X2: rat] :
( ( archim2889992004027027881ng_rat @ ( plus_plus_rat @ X2 @ one_one_rat ) )
= ( plus_plus_int @ ( archim2889992004027027881ng_rat @ X2 ) @ one_one_int ) ) ).
% ceiling_add_one
thf(fact_3534_ceiling__add__one,axiom,
! [X2: real] :
( ( archim7802044766580827645g_real @ ( plus_plus_real @ X2 @ one_one_real ) )
= ( plus_plus_int @ ( archim7802044766580827645g_real @ X2 ) @ one_one_int ) ) ).
% ceiling_add_one
thf(fact_3535_ceiling__diff__numeral,axiom,
! [X2: real,V: num] :
( ( archim7802044766580827645g_real @ ( minus_minus_real @ X2 @ ( numeral_numeral_real @ V ) ) )
= ( minus_minus_int @ ( archim7802044766580827645g_real @ X2 ) @ ( numeral_numeral_int @ V ) ) ) ).
% ceiling_diff_numeral
thf(fact_3536_ceiling__diff__numeral,axiom,
! [X2: rat,V: num] :
( ( archim2889992004027027881ng_rat @ ( minus_minus_rat @ X2 @ ( numeral_numeral_rat @ V ) ) )
= ( minus_minus_int @ ( archim2889992004027027881ng_rat @ X2 ) @ ( numeral_numeral_int @ V ) ) ) ).
% ceiling_diff_numeral
thf(fact_3537_ceiling__numeral__power,axiom,
! [X2: num,N: nat] :
( ( archim7802044766580827645g_real @ ( power_power_real @ ( numeral_numeral_real @ X2 ) @ N ) )
= ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ).
% ceiling_numeral_power
thf(fact_3538_ceiling__numeral__power,axiom,
! [X2: num,N: nat] :
( ( archim2889992004027027881ng_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X2 ) @ N ) )
= ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ).
% ceiling_numeral_power
thf(fact_3539_ceiling__diff__one,axiom,
! [X2: rat] :
( ( archim2889992004027027881ng_rat @ ( minus_minus_rat @ X2 @ one_one_rat ) )
= ( minus_minus_int @ ( archim2889992004027027881ng_rat @ X2 ) @ one_one_int ) ) ).
% ceiling_diff_one
thf(fact_3540_ceiling__diff__one,axiom,
! [X2: real] :
( ( archim7802044766580827645g_real @ ( minus_minus_real @ X2 @ one_one_real ) )
= ( minus_minus_int @ ( archim7802044766580827645g_real @ X2 ) @ one_one_int ) ) ).
% ceiling_diff_one
thf(fact_3541_ceiling__less__numeral,axiom,
! [X2: real,V: num] :
( ( ord_less_int @ ( archim7802044766580827645g_real @ X2 ) @ ( numeral_numeral_int @ V ) )
= ( ord_less_eq_real @ X2 @ ( minus_minus_real @ ( numeral_numeral_real @ V ) @ one_one_real ) ) ) ).
% ceiling_less_numeral
thf(fact_3542_ceiling__less__numeral,axiom,
! [X2: rat,V: num] :
( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X2 ) @ ( numeral_numeral_int @ V ) )
= ( ord_less_eq_rat @ X2 @ ( minus_minus_rat @ ( numeral_numeral_rat @ V ) @ one_one_rat ) ) ) ).
% ceiling_less_numeral
thf(fact_3543_numeral__le__ceiling,axiom,
! [V: num,X2: real] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ V ) @ ( archim7802044766580827645g_real @ X2 ) )
= ( ord_less_real @ ( minus_minus_real @ ( numeral_numeral_real @ V ) @ one_one_real ) @ X2 ) ) ).
% numeral_le_ceiling
thf(fact_3544_numeral__le__ceiling,axiom,
! [V: num,X2: rat] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ V ) @ ( archim2889992004027027881ng_rat @ X2 ) )
= ( ord_less_rat @ ( minus_minus_rat @ ( numeral_numeral_rat @ V ) @ one_one_rat ) @ X2 ) ) ).
% numeral_le_ceiling
thf(fact_3545_set__vebt__def,axiom,
( vEBT_set_vebt
= ( ^ [T: vEBT_VEBT] : ( collect_nat @ ( vEBT_V8194947554948674370ptions @ T ) ) ) ) ).
% set_vebt_def
thf(fact_3546_ceiling__mono,axiom,
! [Y2: real,X2: real] :
( ( ord_less_eq_real @ Y2 @ X2 )
=> ( ord_less_eq_int @ ( archim7802044766580827645g_real @ Y2 ) @ ( archim7802044766580827645g_real @ X2 ) ) ) ).
% ceiling_mono
thf(fact_3547_ceiling__mono,axiom,
! [Y2: rat,X2: rat] :
( ( ord_less_eq_rat @ Y2 @ X2 )
=> ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ Y2 ) @ ( archim2889992004027027881ng_rat @ X2 ) ) ) ).
% ceiling_mono
thf(fact_3548_all__nat__less,axiom,
! [N: nat,P: nat > $o] :
( ( ! [M5: nat] :
( ( ord_less_eq_nat @ M5 @ N )
=> ( P @ M5 ) ) )
= ( ! [X: nat] :
( ( member_nat @ X @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
=> ( P @ X ) ) ) ) ).
% all_nat_less
thf(fact_3549_ex__nat__less,axiom,
! [N: nat,P: nat > $o] :
( ( ? [M5: nat] :
( ( ord_less_eq_nat @ M5 @ N )
& ( P @ M5 ) ) )
= ( ? [X: nat] :
( ( member_nat @ X @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
& ( P @ X ) ) ) ) ).
% ex_nat_less
thf(fact_3550_ceiling__add__le,axiom,
! [X2: rat,Y2: rat] : ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ ( plus_plus_rat @ X2 @ Y2 ) ) @ ( plus_plus_int @ ( archim2889992004027027881ng_rat @ X2 ) @ ( archim2889992004027027881ng_rat @ Y2 ) ) ) ).
% ceiling_add_le
thf(fact_3551_ceiling__add__le,axiom,
! [X2: real,Y2: real] : ( ord_less_eq_int @ ( archim7802044766580827645g_real @ ( plus_plus_real @ X2 @ Y2 ) ) @ ( plus_plus_int @ ( archim7802044766580827645g_real @ X2 ) @ ( archim7802044766580827645g_real @ Y2 ) ) ) ).
% ceiling_add_le
thf(fact_3552_mult__ceiling__le,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_int @ ( archim7802044766580827645g_real @ ( times_times_real @ A @ B ) ) @ ( times_times_int @ ( archim7802044766580827645g_real @ A ) @ ( archim7802044766580827645g_real @ B ) ) ) ) ) ).
% mult_ceiling_le
thf(fact_3553_mult__ceiling__le,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ ( times_times_rat @ A @ B ) ) @ ( times_times_int @ ( archim2889992004027027881ng_rat @ A ) @ ( archim2889992004027027881ng_rat @ B ) ) ) ) ) ).
% mult_ceiling_le
thf(fact_3554_ceiling__log__nat__eq__if,axiom,
! [B: nat,N: nat,K: nat] :
( ( ord_less_nat @ ( power_power_nat @ B @ N ) @ K )
=> ( ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( archim7802044766580827645g_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ) ) ) ).
% ceiling_log_nat_eq_if
thf(fact_3555_ceiling__log2__div2,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) )
= ( plus_plus_int @ ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( divide_divide_nat @ ( minus_minus_nat @ N @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) @ one_one_int ) ) ) ).
% ceiling_log2_div2
thf(fact_3556_ceiling__log__nat__eq__powr__iff,axiom,
! [B: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( archim7802044766580827645g_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) )
= ( ( ord_less_nat @ ( power_power_nat @ B @ N ) @ K )
& ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) ) ) ) ).
% ceiling_log_nat_eq_powr_iff
thf(fact_3557_less__1__helper,axiom,
! [N: int,M: int] :
( ( ord_less_eq_int @ N @ M )
=> ( ord_less_int @ ( minus_minus_int @ N @ one_one_int ) @ M ) ) ).
% less_1_helper
thf(fact_3558_norm__divide__numeral,axiom,
! [A: real,W: num] :
( ( real_V7735802525324610683m_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ W ) ) )
= ( divide_divide_real @ ( real_V7735802525324610683m_real @ A ) @ ( numeral_numeral_real @ W ) ) ) ).
% norm_divide_numeral
thf(fact_3559_norm__divide__numeral,axiom,
! [A: complex,W: num] :
( ( real_V1022390504157884413omplex @ ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ W ) ) )
= ( divide_divide_real @ ( real_V1022390504157884413omplex @ A ) @ ( numeral_numeral_real @ W ) ) ) ).
% norm_divide_numeral
thf(fact_3560_norm__mult__numeral2,axiom,
! [A: real,W: num] :
( ( real_V7735802525324610683m_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) )
= ( times_times_real @ ( real_V7735802525324610683m_real @ A ) @ ( numeral_numeral_real @ W ) ) ) ).
% norm_mult_numeral2
thf(fact_3561_norm__mult__numeral2,axiom,
! [A: complex,W: num] :
( ( real_V1022390504157884413omplex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) ) )
= ( times_times_real @ ( real_V1022390504157884413omplex @ A ) @ ( numeral_numeral_real @ W ) ) ) ).
% norm_mult_numeral2
thf(fact_3562_norm__mult__numeral1,axiom,
! [W: num,A: real] :
( ( real_V7735802525324610683m_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ A ) )
= ( times_times_real @ ( numeral_numeral_real @ W ) @ ( real_V7735802525324610683m_real @ A ) ) ) ).
% norm_mult_numeral1
thf(fact_3563_norm__mult__numeral1,axiom,
! [W: num,A: complex] :
( ( real_V1022390504157884413omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ A ) )
= ( times_times_real @ ( numeral_numeral_real @ W ) @ ( real_V1022390504157884413omplex @ A ) ) ) ).
% norm_mult_numeral1
thf(fact_3564_norm__le__zero__iff,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ X2 ) @ zero_zero_real )
= ( X2 = zero_zero_real ) ) ).
% norm_le_zero_iff
thf(fact_3565_norm__le__zero__iff,axiom,
! [X2: complex] :
( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X2 ) @ zero_zero_real )
= ( X2 = zero_zero_complex ) ) ).
% norm_le_zero_iff
thf(fact_3566_zero__less__norm__iff,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ ( real_V7735802525324610683m_real @ X2 ) )
= ( X2 != zero_zero_real ) ) ).
% zero_less_norm_iff
thf(fact_3567_zero__less__norm__iff,axiom,
! [X2: complex] :
( ( ord_less_real @ zero_zero_real @ ( real_V1022390504157884413omplex @ X2 ) )
= ( X2 != zero_zero_complex ) ) ).
% zero_less_norm_iff
thf(fact_3568_norm__of__nat,axiom,
! [N: nat] :
( ( real_V7735802525324610683m_real @ ( semiri5074537144036343181t_real @ N ) )
= ( semiri5074537144036343181t_real @ N ) ) ).
% norm_of_nat
thf(fact_3569_norm__of__nat,axiom,
! [N: nat] :
( ( real_V1022390504157884413omplex @ ( semiri8010041392384452111omplex @ N ) )
= ( semiri5074537144036343181t_real @ N ) ) ).
% norm_of_nat
thf(fact_3570_norm__numeral,axiom,
! [W: num] :
( ( real_V7735802525324610683m_real @ ( numeral_numeral_real @ W ) )
= ( numeral_numeral_real @ W ) ) ).
% norm_numeral
thf(fact_3571_norm__numeral,axiom,
! [W: num] :
( ( real_V1022390504157884413omplex @ ( numera6690914467698888265omplex @ W ) )
= ( numeral_numeral_real @ W ) ) ).
% norm_numeral
thf(fact_3572_norm__one,axiom,
( ( real_V7735802525324610683m_real @ one_one_real )
= one_one_real ) ).
% norm_one
thf(fact_3573_norm__one,axiom,
( ( real_V1022390504157884413omplex @ one_one_complex )
= one_one_real ) ).
% norm_one
thf(fact_3574_norm__eq__zero,axiom,
! [X2: real] :
( ( ( real_V7735802525324610683m_real @ X2 )
= zero_zero_real )
= ( X2 = zero_zero_real ) ) ).
% norm_eq_zero
thf(fact_3575_norm__eq__zero,axiom,
! [X2: complex] :
( ( ( real_V1022390504157884413omplex @ X2 )
= zero_zero_real )
= ( X2 = zero_zero_complex ) ) ).
% norm_eq_zero
thf(fact_3576_norm__zero,axiom,
( ( real_V7735802525324610683m_real @ zero_zero_real )
= zero_zero_real ) ).
% norm_zero
thf(fact_3577_norm__zero,axiom,
( ( real_V1022390504157884413omplex @ zero_zero_complex )
= zero_zero_real ) ).
% norm_zero
thf(fact_3578_norm__not__less__zero,axiom,
! [X2: complex] :
~ ( ord_less_real @ ( real_V1022390504157884413omplex @ X2 ) @ zero_zero_real ) ).
% norm_not_less_zero
thf(fact_3579_norm__mult,axiom,
! [X2: real,Y2: real] :
( ( real_V7735802525324610683m_real @ ( times_times_real @ X2 @ Y2 ) )
= ( times_times_real @ ( real_V7735802525324610683m_real @ X2 ) @ ( real_V7735802525324610683m_real @ Y2 ) ) ) ).
% norm_mult
thf(fact_3580_norm__mult,axiom,
! [X2: complex,Y2: complex] :
( ( real_V1022390504157884413omplex @ ( times_times_complex @ X2 @ Y2 ) )
= ( times_times_real @ ( real_V1022390504157884413omplex @ X2 ) @ ( real_V1022390504157884413omplex @ Y2 ) ) ) ).
% norm_mult
thf(fact_3581_norm__ge__zero,axiom,
! [X2: complex] : ( ord_less_eq_real @ zero_zero_real @ ( real_V1022390504157884413omplex @ X2 ) ) ).
% norm_ge_zero
thf(fact_3582_norm__divide,axiom,
! [A: real,B: real] :
( ( real_V7735802525324610683m_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) ).
% norm_divide
thf(fact_3583_norm__divide,axiom,
! [A: complex,B: complex] :
( ( real_V1022390504157884413omplex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide_divide_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) ).
% norm_divide
thf(fact_3584_norm__power,axiom,
! [X2: real,N: nat] :
( ( real_V7735802525324610683m_real @ ( power_power_real @ X2 @ N ) )
= ( power_power_real @ ( real_V7735802525324610683m_real @ X2 ) @ N ) ) ).
% norm_power
thf(fact_3585_norm__power,axiom,
! [X2: complex,N: nat] :
( ( real_V1022390504157884413omplex @ ( power_power_complex @ X2 @ N ) )
= ( power_power_real @ ( real_V1022390504157884413omplex @ X2 ) @ N ) ) ).
% norm_power
thf(fact_3586_power__eq__imp__eq__norm,axiom,
! [W: real,N: nat,Z: real] :
( ( ( power_power_real @ W @ N )
= ( power_power_real @ Z @ N ) )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( real_V7735802525324610683m_real @ W )
= ( real_V7735802525324610683m_real @ Z ) ) ) ) ).
% power_eq_imp_eq_norm
thf(fact_3587_power__eq__imp__eq__norm,axiom,
! [W: complex,N: nat,Z: complex] :
( ( ( power_power_complex @ W @ N )
= ( power_power_complex @ Z @ N ) )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( real_V1022390504157884413omplex @ W )
= ( real_V1022390504157884413omplex @ Z ) ) ) ) ).
% power_eq_imp_eq_norm
thf(fact_3588_nonzero__norm__divide,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( real_V7735802525324610683m_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) ) ).
% nonzero_norm_divide
thf(fact_3589_nonzero__norm__divide,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( real_V1022390504157884413omplex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide_divide_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) ) ).
% nonzero_norm_divide
thf(fact_3590_norm__mult__less,axiom,
! [X2: real,R2: real,Y2: real,S3: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ X2 ) @ R2 )
=> ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Y2 ) @ S3 )
=> ( ord_less_real @ ( real_V7735802525324610683m_real @ ( times_times_real @ X2 @ Y2 ) ) @ ( times_times_real @ R2 @ S3 ) ) ) ) ).
% norm_mult_less
thf(fact_3591_norm__mult__less,axiom,
! [X2: complex,R2: real,Y2: complex,S3: real] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ X2 ) @ R2 )
=> ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Y2 ) @ S3 )
=> ( ord_less_real @ ( real_V1022390504157884413omplex @ ( times_times_complex @ X2 @ Y2 ) ) @ ( times_times_real @ R2 @ S3 ) ) ) ) ).
% norm_mult_less
thf(fact_3592_norm__mult__ineq,axiom,
! [X2: real,Y2: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( times_times_real @ X2 @ Y2 ) ) @ ( times_times_real @ ( real_V7735802525324610683m_real @ X2 ) @ ( real_V7735802525324610683m_real @ Y2 ) ) ) ).
% norm_mult_ineq
thf(fact_3593_norm__mult__ineq,axiom,
! [X2: complex,Y2: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( times_times_complex @ X2 @ Y2 ) ) @ ( times_times_real @ ( real_V1022390504157884413omplex @ X2 ) @ ( real_V1022390504157884413omplex @ Y2 ) ) ) ).
% norm_mult_ineq
thf(fact_3594_norm__triangle__lt,axiom,
! [X2: real,Y2: real,E: real] :
( ( ord_less_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X2 ) @ ( real_V7735802525324610683m_real @ Y2 ) ) @ E )
=> ( ord_less_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X2 @ Y2 ) ) @ E ) ) ).
% norm_triangle_lt
thf(fact_3595_norm__triangle__lt,axiom,
! [X2: complex,Y2: complex,E: real] :
( ( ord_less_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X2 ) @ ( real_V1022390504157884413omplex @ Y2 ) ) @ E )
=> ( ord_less_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X2 @ Y2 ) ) @ E ) ) ).
% norm_triangle_lt
thf(fact_3596_norm__add__less,axiom,
! [X2: real,R2: real,Y2: real,S3: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ X2 ) @ R2 )
=> ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Y2 ) @ S3 )
=> ( ord_less_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X2 @ Y2 ) ) @ ( plus_plus_real @ R2 @ S3 ) ) ) ) ).
% norm_add_less
thf(fact_3597_norm__add__less,axiom,
! [X2: complex,R2: real,Y2: complex,S3: real] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ X2 ) @ R2 )
=> ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Y2 ) @ S3 )
=> ( ord_less_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X2 @ Y2 ) ) @ ( plus_plus_real @ R2 @ S3 ) ) ) ) ).
% norm_add_less
thf(fact_3598_norm__triangle__mono,axiom,
! [A: real,R2: real,B: real,S3: real] :
( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ A ) @ R2 )
=> ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ B ) @ S3 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) @ ( plus_plus_real @ R2 @ S3 ) ) ) ) ).
% norm_triangle_mono
thf(fact_3599_norm__triangle__mono,axiom,
! [A: complex,R2: real,B: complex,S3: real] :
( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ A ) @ R2 )
=> ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ B ) @ S3 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) @ ( plus_plus_real @ R2 @ S3 ) ) ) ) ).
% norm_triangle_mono
thf(fact_3600_norm__triangle__ineq,axiom,
! [X2: real,Y2: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X2 @ Y2 ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X2 ) @ ( real_V7735802525324610683m_real @ Y2 ) ) ) ).
% norm_triangle_ineq
thf(fact_3601_norm__triangle__ineq,axiom,
! [X2: complex,Y2: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X2 @ Y2 ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X2 ) @ ( real_V1022390504157884413omplex @ Y2 ) ) ) ).
% norm_triangle_ineq
thf(fact_3602_norm__triangle__le,axiom,
! [X2: real,Y2: real,E: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X2 ) @ ( real_V7735802525324610683m_real @ Y2 ) ) @ E )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X2 @ Y2 ) ) @ E ) ) ).
% norm_triangle_le
thf(fact_3603_norm__triangle__le,axiom,
! [X2: complex,Y2: complex,E: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X2 ) @ ( real_V1022390504157884413omplex @ Y2 ) ) @ E )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X2 @ Y2 ) ) @ E ) ) ).
% norm_triangle_le
thf(fact_3604_norm__add__leD,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) @ C )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ B ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ A ) @ C ) ) ) ).
% norm_add_leD
thf(fact_3605_norm__add__leD,axiom,
! [A: complex,B: complex,C: real] :
( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) @ C )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ B ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ A ) @ C ) ) ) ).
% norm_add_leD
thf(fact_3606_norm__diff__triangle__less,axiom,
! [X2: real,Y2: real,E1: real,Z: real,E22: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X2 @ Y2 ) ) @ E1 )
=> ( ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Y2 @ Z ) ) @ E22 )
=> ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X2 @ Z ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).
% norm_diff_triangle_less
thf(fact_3607_norm__diff__triangle__less,axiom,
! [X2: complex,Y2: complex,E1: real,Z: complex,E22: real] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X2 @ Y2 ) ) @ E1 )
=> ( ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ Y2 @ Z ) ) @ E22 )
=> ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X2 @ Z ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).
% norm_diff_triangle_less
thf(fact_3608_norm__power__ineq,axiom,
! [X2: real,N: nat] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( power_power_real @ X2 @ N ) ) @ ( power_power_real @ ( real_V7735802525324610683m_real @ X2 ) @ N ) ) ).
% norm_power_ineq
thf(fact_3609_norm__power__ineq,axiom,
! [X2: complex,N: nat] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( power_power_complex @ X2 @ N ) ) @ ( power_power_real @ ( real_V1022390504157884413omplex @ X2 ) @ N ) ) ).
% norm_power_ineq
thf(fact_3610_norm__triangle__le__diff,axiom,
! [X2: real,Y2: real,E: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X2 ) @ ( real_V7735802525324610683m_real @ Y2 ) ) @ E )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X2 @ Y2 ) ) @ E ) ) ).
% norm_triangle_le_diff
thf(fact_3611_norm__triangle__le__diff,axiom,
! [X2: complex,Y2: complex,E: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X2 ) @ ( real_V1022390504157884413omplex @ Y2 ) ) @ E )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X2 @ Y2 ) ) @ E ) ) ).
% norm_triangle_le_diff
thf(fact_3612_norm__diff__triangle__le,axiom,
! [X2: real,Y2: real,E1: real,Z: real,E22: real] :
( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X2 @ Y2 ) ) @ E1 )
=> ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Y2 @ Z ) ) @ E22 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X2 @ Z ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).
% norm_diff_triangle_le
thf(fact_3613_norm__diff__triangle__le,axiom,
! [X2: complex,Y2: complex,E1: real,Z: complex,E22: real] :
( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X2 @ Y2 ) ) @ E1 )
=> ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ Y2 @ Z ) ) @ E22 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X2 @ Z ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).
% norm_diff_triangle_le
thf(fact_3614_norm__triangle__ineq4,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) ).
% norm_triangle_ineq4
thf(fact_3615_norm__triangle__ineq4,axiom,
! [A: complex,B: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) ).
% norm_triangle_ineq4
thf(fact_3616_norm__triangle__sub,axiom,
! [X2: real,Y2: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ X2 ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ Y2 ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X2 @ Y2 ) ) ) ) ).
% norm_triangle_sub
thf(fact_3617_norm__triangle__sub,axiom,
! [X2: complex,Y2: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X2 ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Y2 ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X2 @ Y2 ) ) ) ) ).
% norm_triangle_sub
thf(fact_3618_norm__diff__ineq,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) ) ).
% norm_diff_ineq
thf(fact_3619_norm__diff__ineq,axiom,
! [A: complex,B: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) ) ).
% norm_diff_ineq
thf(fact_3620_norm__triangle__ineq2,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) ) ).
% norm_triangle_ineq2
thf(fact_3621_norm__triangle__ineq2,axiom,
! [A: complex,B: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) ) ) ).
% norm_triangle_ineq2
thf(fact_3622_power__eq__1__iff,axiom,
! [W: real,N: nat] :
( ( ( power_power_real @ W @ N )
= one_one_real )
=> ( ( ( real_V7735802525324610683m_real @ W )
= one_one_real )
| ( N = zero_zero_nat ) ) ) ).
% power_eq_1_iff
thf(fact_3623_power__eq__1__iff,axiom,
! [W: complex,N: nat] :
( ( ( power_power_complex @ W @ N )
= one_one_complex )
=> ( ( ( real_V1022390504157884413omplex @ W )
= one_one_real )
| ( N = zero_zero_nat ) ) ) ).
% power_eq_1_iff
thf(fact_3624_norm__diff__triangle__ineq,axiom,
! [A: real,B: real,C: real,D2: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ C @ D2 ) ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ C ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ B @ D2 ) ) ) ) ).
% norm_diff_triangle_ineq
thf(fact_3625_norm__diff__triangle__ineq,axiom,
! [A: complex,B: complex,C: complex,D2: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( plus_plus_complex @ A @ B ) @ ( plus_plus_complex @ C @ D2 ) ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ C ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ B @ D2 ) ) ) ) ).
% norm_diff_triangle_ineq
thf(fact_3626_square__norm__one,axiom,
! [X2: real] :
( ( ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_real )
=> ( ( real_V7735802525324610683m_real @ X2 )
= one_one_real ) ) ).
% square_norm_one
thf(fact_3627_square__norm__one,axiom,
! [X2: complex] :
( ( ( power_power_complex @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_complex )
=> ( ( real_V1022390504157884413omplex @ X2 )
= one_one_real ) ) ).
% square_norm_one
thf(fact_3628_norm__power__diff,axiom,
! [Z: real,W: real,M: nat] :
( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ W ) @ one_one_real )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( power_power_real @ Z @ M ) @ ( power_power_real @ W @ M ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Z @ W ) ) ) ) ) ) ).
% norm_power_diff
thf(fact_3629_norm__power__diff,axiom,
! [Z: complex,W: complex,M: nat] :
( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ W ) @ one_one_real )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( power_power_complex @ Z @ M ) @ ( power_power_complex @ W @ M ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ Z @ W ) ) ) ) ) ) ).
% norm_power_diff
thf(fact_3630_atLeastatMost__subset__iff,axiom,
! [A: set_nat,B: set_nat,C: set_nat,D2: set_nat] :
( ( ord_le6893508408891458716et_nat @ ( set_or4548717258645045905et_nat @ A @ B ) @ ( set_or4548717258645045905et_nat @ C @ D2 ) )
= ( ~ ( ord_less_eq_set_nat @ A @ B )
| ( ( ord_less_eq_set_nat @ C @ A )
& ( ord_less_eq_set_nat @ B @ D2 ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_3631_atLeastatMost__subset__iff,axiom,
! [A: rat,B: rat,C: rat,D2: rat] :
( ( ord_less_eq_set_rat @ ( set_or633870826150836451st_rat @ A @ B ) @ ( set_or633870826150836451st_rat @ C @ D2 ) )
= ( ~ ( ord_less_eq_rat @ A @ B )
| ( ( ord_less_eq_rat @ C @ A )
& ( ord_less_eq_rat @ B @ D2 ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_3632_atLeastatMost__subset__iff,axiom,
! [A: num,B: num,C: num,D2: num] :
( ( ord_less_eq_set_num @ ( set_or7049704709247886629st_num @ A @ B ) @ ( set_or7049704709247886629st_num @ C @ D2 ) )
= ( ~ ( ord_less_eq_num @ A @ B )
| ( ( ord_less_eq_num @ C @ A )
& ( ord_less_eq_num @ B @ D2 ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_3633_atLeastatMost__subset__iff,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ord_less_eq_set_nat @ ( set_or1269000886237332187st_nat @ A @ B ) @ ( set_or1269000886237332187st_nat @ C @ D2 ) )
= ( ~ ( ord_less_eq_nat @ A @ B )
| ( ( ord_less_eq_nat @ C @ A )
& ( ord_less_eq_nat @ B @ D2 ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_3634_atLeastatMost__subset__iff,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ord_less_eq_set_int @ ( set_or1266510415728281911st_int @ A @ B ) @ ( set_or1266510415728281911st_int @ C @ D2 ) )
= ( ~ ( ord_less_eq_int @ A @ B )
| ( ( ord_less_eq_int @ C @ A )
& ( ord_less_eq_int @ B @ D2 ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_3635_atLeastatMost__subset__iff,axiom,
! [A: code_integer,B: code_integer,C: code_integer,D2: code_integer] :
( ( ord_le7084787975880047091nteger @ ( set_or189985376899183464nteger @ A @ B ) @ ( set_or189985376899183464nteger @ C @ D2 ) )
= ( ~ ( ord_le3102999989581377725nteger @ A @ B )
| ( ( ord_le3102999989581377725nteger @ C @ A )
& ( ord_le3102999989581377725nteger @ B @ D2 ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_3636_atLeastatMost__subset__iff,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ord_less_eq_set_real @ ( set_or1222579329274155063t_real @ A @ B ) @ ( set_or1222579329274155063t_real @ C @ D2 ) )
= ( ~ ( ord_less_eq_real @ A @ B )
| ( ( ord_less_eq_real @ C @ A )
& ( ord_less_eq_real @ B @ D2 ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_3637_log__ceil__idem,axiom,
! [X2: real] :
( ( ord_less_eq_real @ one_one_real @ X2 )
=> ( ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) )
= ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X2 ) ) ) ) ) ) ).
% log_ceil_idem
thf(fact_3638_Icc__eq__Icc,axiom,
! [L2: set_nat,H2: set_nat,L3: set_nat,H3: set_nat] :
( ( ( set_or4548717258645045905et_nat @ L2 @ H2 )
= ( set_or4548717258645045905et_nat @ L3 @ H3 ) )
= ( ( ( L2 = L3 )
& ( H2 = H3 ) )
| ( ~ ( ord_less_eq_set_nat @ L2 @ H2 )
& ~ ( ord_less_eq_set_nat @ L3 @ H3 ) ) ) ) ).
% Icc_eq_Icc
thf(fact_3639_Icc__eq__Icc,axiom,
! [L2: rat,H2: rat,L3: rat,H3: rat] :
( ( ( set_or633870826150836451st_rat @ L2 @ H2 )
= ( set_or633870826150836451st_rat @ L3 @ H3 ) )
= ( ( ( L2 = L3 )
& ( H2 = H3 ) )
| ( ~ ( ord_less_eq_rat @ L2 @ H2 )
& ~ ( ord_less_eq_rat @ L3 @ H3 ) ) ) ) ).
% Icc_eq_Icc
thf(fact_3640_Icc__eq__Icc,axiom,
! [L2: num,H2: num,L3: num,H3: num] :
( ( ( set_or7049704709247886629st_num @ L2 @ H2 )
= ( set_or7049704709247886629st_num @ L3 @ H3 ) )
= ( ( ( L2 = L3 )
& ( H2 = H3 ) )
| ( ~ ( ord_less_eq_num @ L2 @ H2 )
& ~ ( ord_less_eq_num @ L3 @ H3 ) ) ) ) ).
% Icc_eq_Icc
thf(fact_3641_Icc__eq__Icc,axiom,
! [L2: nat,H2: nat,L3: nat,H3: nat] :
( ( ( set_or1269000886237332187st_nat @ L2 @ H2 )
= ( set_or1269000886237332187st_nat @ L3 @ H3 ) )
= ( ( ( L2 = L3 )
& ( H2 = H3 ) )
| ( ~ ( ord_less_eq_nat @ L2 @ H2 )
& ~ ( ord_less_eq_nat @ L3 @ H3 ) ) ) ) ).
% Icc_eq_Icc
thf(fact_3642_Icc__eq__Icc,axiom,
! [L2: int,H2: int,L3: int,H3: int] :
( ( ( set_or1266510415728281911st_int @ L2 @ H2 )
= ( set_or1266510415728281911st_int @ L3 @ H3 ) )
= ( ( ( L2 = L3 )
& ( H2 = H3 ) )
| ( ~ ( ord_less_eq_int @ L2 @ H2 )
& ~ ( ord_less_eq_int @ L3 @ H3 ) ) ) ) ).
% Icc_eq_Icc
thf(fact_3643_Icc__eq__Icc,axiom,
! [L2: code_integer,H2: code_integer,L3: code_integer,H3: code_integer] :
( ( ( set_or189985376899183464nteger @ L2 @ H2 )
= ( set_or189985376899183464nteger @ L3 @ H3 ) )
= ( ( ( L2 = L3 )
& ( H2 = H3 ) )
| ( ~ ( ord_le3102999989581377725nteger @ L2 @ H2 )
& ~ ( ord_le3102999989581377725nteger @ L3 @ H3 ) ) ) ) ).
% Icc_eq_Icc
thf(fact_3644_Icc__eq__Icc,axiom,
! [L2: real,H2: real,L3: real,H3: real] :
( ( ( set_or1222579329274155063t_real @ L2 @ H2 )
= ( set_or1222579329274155063t_real @ L3 @ H3 ) )
= ( ( ( L2 = L3 )
& ( H2 = H3 ) )
| ( ~ ( ord_less_eq_real @ L2 @ H2 )
& ~ ( ord_less_eq_real @ L3 @ H3 ) ) ) ) ).
% Icc_eq_Icc
thf(fact_3645_atLeastAtMost__iff,axiom,
! [I: set_nat,L2: set_nat,U: set_nat] :
( ( member_set_nat @ I @ ( set_or4548717258645045905et_nat @ L2 @ U ) )
= ( ( ord_less_eq_set_nat @ L2 @ I )
& ( ord_less_eq_set_nat @ I @ U ) ) ) ).
% atLeastAtMost_iff
thf(fact_3646_atLeastAtMost__iff,axiom,
! [I: rat,L2: rat,U: rat] :
( ( member_rat @ I @ ( set_or633870826150836451st_rat @ L2 @ U ) )
= ( ( ord_less_eq_rat @ L2 @ I )
& ( ord_less_eq_rat @ I @ U ) ) ) ).
% atLeastAtMost_iff
thf(fact_3647_atLeastAtMost__iff,axiom,
! [I: num,L2: num,U: num] :
( ( member_num @ I @ ( set_or7049704709247886629st_num @ L2 @ U ) )
= ( ( ord_less_eq_num @ L2 @ I )
& ( ord_less_eq_num @ I @ U ) ) ) ).
% atLeastAtMost_iff
thf(fact_3648_atLeastAtMost__iff,axiom,
! [I: nat,L2: nat,U: nat] :
( ( member_nat @ I @ ( set_or1269000886237332187st_nat @ L2 @ U ) )
= ( ( ord_less_eq_nat @ L2 @ I )
& ( ord_less_eq_nat @ I @ U ) ) ) ).
% atLeastAtMost_iff
thf(fact_3649_atLeastAtMost__iff,axiom,
! [I: int,L2: int,U: int] :
( ( member_int @ I @ ( set_or1266510415728281911st_int @ L2 @ U ) )
= ( ( ord_less_eq_int @ L2 @ I )
& ( ord_less_eq_int @ I @ U ) ) ) ).
% atLeastAtMost_iff
thf(fact_3650_atLeastAtMost__iff,axiom,
! [I: code_integer,L2: code_integer,U: code_integer] :
( ( member_Code_integer @ I @ ( set_or189985376899183464nteger @ L2 @ U ) )
= ( ( ord_le3102999989581377725nteger @ L2 @ I )
& ( ord_le3102999989581377725nteger @ I @ U ) ) ) ).
% atLeastAtMost_iff
thf(fact_3651_atLeastAtMost__iff,axiom,
! [I: real,L2: real,U: real] :
( ( member_real @ I @ ( set_or1222579329274155063t_real @ L2 @ U ) )
= ( ( ord_less_eq_real @ L2 @ I )
& ( ord_less_eq_real @ I @ U ) ) ) ).
% atLeastAtMost_iff
thf(fact_3652_of__int__ceiling__cancel,axiom,
! [X2: rat] :
( ( ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ X2 ) )
= X2 )
= ( ? [N3: int] :
( X2
= ( ring_1_of_int_rat @ N3 ) ) ) ) ).
% of_int_ceiling_cancel
thf(fact_3653_of__int__ceiling__cancel,axiom,
! [X2: real] :
( ( ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X2 ) )
= X2 )
= ( ? [N3: int] :
( X2
= ( ring_1_of_int_real @ N3 ) ) ) ) ).
% of_int_ceiling_cancel
thf(fact_3654_of__int__0,axiom,
( ( ring_17405671764205052669omplex @ zero_zero_int )
= zero_zero_complex ) ).
% of_int_0
thf(fact_3655_of__int__0,axiom,
( ( ring_1_of_int_int @ zero_zero_int )
= zero_zero_int ) ).
% of_int_0
thf(fact_3656_of__int__0,axiom,
( ( ring_1_of_int_real @ zero_zero_int )
= zero_zero_real ) ).
% of_int_0
thf(fact_3657_of__int__0,axiom,
( ( ring_1_of_int_rat @ zero_zero_int )
= zero_zero_rat ) ).
% of_int_0
thf(fact_3658_of__int__0__eq__iff,axiom,
! [Z: int] :
( ( zero_zero_complex
= ( ring_17405671764205052669omplex @ Z ) )
= ( Z = zero_zero_int ) ) ).
% of_int_0_eq_iff
thf(fact_3659_of__int__0__eq__iff,axiom,
! [Z: int] :
( ( zero_zero_int
= ( ring_1_of_int_int @ Z ) )
= ( Z = zero_zero_int ) ) ).
% of_int_0_eq_iff
thf(fact_3660_of__int__0__eq__iff,axiom,
! [Z: int] :
( ( zero_zero_real
= ( ring_1_of_int_real @ Z ) )
= ( Z = zero_zero_int ) ) ).
% of_int_0_eq_iff
thf(fact_3661_of__int__0__eq__iff,axiom,
! [Z: int] :
( ( zero_zero_rat
= ( ring_1_of_int_rat @ Z ) )
= ( Z = zero_zero_int ) ) ).
% of_int_0_eq_iff
thf(fact_3662_of__int__eq__0__iff,axiom,
! [Z: int] :
( ( ( ring_17405671764205052669omplex @ Z )
= zero_zero_complex )
= ( Z = zero_zero_int ) ) ).
% of_int_eq_0_iff
thf(fact_3663_of__int__eq__0__iff,axiom,
! [Z: int] :
( ( ( ring_1_of_int_int @ Z )
= zero_zero_int )
= ( Z = zero_zero_int ) ) ).
% of_int_eq_0_iff
thf(fact_3664_of__int__eq__0__iff,axiom,
! [Z: int] :
( ( ( ring_1_of_int_real @ Z )
= zero_zero_real )
= ( Z = zero_zero_int ) ) ).
% of_int_eq_0_iff
thf(fact_3665_of__int__eq__0__iff,axiom,
! [Z: int] :
( ( ( ring_1_of_int_rat @ Z )
= zero_zero_rat )
= ( Z = zero_zero_int ) ) ).
% of_int_eq_0_iff
thf(fact_3666_of__int__eq__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ( ring_17405671764205052669omplex @ Z )
= ( numera6690914467698888265omplex @ N ) )
= ( Z
= ( numeral_numeral_int @ N ) ) ) ).
% of_int_eq_numeral_iff
thf(fact_3667_of__int__eq__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ( ring_1_of_int_real @ Z )
= ( numeral_numeral_real @ N ) )
= ( Z
= ( numeral_numeral_int @ N ) ) ) ).
% of_int_eq_numeral_iff
thf(fact_3668_of__int__eq__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ( ring_1_of_int_rat @ Z )
= ( numeral_numeral_rat @ N ) )
= ( Z
= ( numeral_numeral_int @ N ) ) ) ).
% of_int_eq_numeral_iff
thf(fact_3669_of__int__eq__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ( ring_1_of_int_int @ Z )
= ( numeral_numeral_int @ N ) )
= ( Z
= ( numeral_numeral_int @ N ) ) ) ).
% of_int_eq_numeral_iff
thf(fact_3670_of__int__numeral,axiom,
! [K: num] :
( ( ring_17405671764205052669omplex @ ( numeral_numeral_int @ K ) )
= ( numera6690914467698888265omplex @ K ) ) ).
% of_int_numeral
thf(fact_3671_of__int__numeral,axiom,
! [K: num] :
( ( ring_1_of_int_real @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_real @ K ) ) ).
% of_int_numeral
thf(fact_3672_of__int__numeral,axiom,
! [K: num] :
( ( ring_1_of_int_rat @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_rat @ K ) ) ).
% of_int_numeral
thf(fact_3673_of__int__numeral,axiom,
! [K: num] :
( ( ring_1_of_int_int @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_int @ K ) ) ).
% of_int_numeral
thf(fact_3674_of__int__le__iff,axiom,
! [W: int,Z: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) )
= ( ord_less_eq_int @ W @ Z ) ) ).
% of_int_le_iff
thf(fact_3675_of__int__le__iff,axiom,
! [W: int,Z: int] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z ) )
= ( ord_less_eq_int @ W @ Z ) ) ).
% of_int_le_iff
thf(fact_3676_of__int__le__iff,axiom,
! [W: int,Z: int] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) )
= ( ord_less_eq_int @ W @ Z ) ) ).
% of_int_le_iff
thf(fact_3677_of__int__1,axiom,
( ( ring_17405671764205052669omplex @ one_one_int )
= one_one_complex ) ).
% of_int_1
thf(fact_3678_of__int__1,axiom,
( ( ring_1_of_int_int @ one_one_int )
= one_one_int ) ).
% of_int_1
thf(fact_3679_of__int__1,axiom,
( ( ring_1_of_int_real @ one_one_int )
= one_one_real ) ).
% of_int_1
thf(fact_3680_of__int__1,axiom,
( ( ring_1_of_int_rat @ one_one_int )
= one_one_rat ) ).
% of_int_1
thf(fact_3681_of__int__eq__1__iff,axiom,
! [Z: int] :
( ( ( ring_17405671764205052669omplex @ Z )
= one_one_complex )
= ( Z = one_one_int ) ) ).
% of_int_eq_1_iff
thf(fact_3682_of__int__eq__1__iff,axiom,
! [Z: int] :
( ( ( ring_1_of_int_int @ Z )
= one_one_int )
= ( Z = one_one_int ) ) ).
% of_int_eq_1_iff
thf(fact_3683_of__int__eq__1__iff,axiom,
! [Z: int] :
( ( ( ring_1_of_int_real @ Z )
= one_one_real )
= ( Z = one_one_int ) ) ).
% of_int_eq_1_iff
thf(fact_3684_of__int__eq__1__iff,axiom,
! [Z: int] :
( ( ( ring_1_of_int_rat @ Z )
= one_one_rat )
= ( Z = one_one_int ) ) ).
% of_int_eq_1_iff
thf(fact_3685_of__int__add,axiom,
! [W: int,Z: int] :
( ( ring_1_of_int_int @ ( plus_plus_int @ W @ Z ) )
= ( plus_plus_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) ) ) ).
% of_int_add
thf(fact_3686_of__int__add,axiom,
! [W: int,Z: int] :
( ( ring_1_of_int_real @ ( plus_plus_int @ W @ Z ) )
= ( plus_plus_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) ) ) ).
% of_int_add
thf(fact_3687_of__int__add,axiom,
! [W: int,Z: int] :
( ( ring_1_of_int_rat @ ( plus_plus_int @ W @ Z ) )
= ( plus_plus_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z ) ) ) ).
% of_int_add
thf(fact_3688_of__int__mult,axiom,
! [W: int,Z: int] :
( ( ring_1_of_int_real @ ( times_times_int @ W @ Z ) )
= ( times_times_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) ) ) ).
% of_int_mult
thf(fact_3689_of__int__mult,axiom,
! [W: int,Z: int] :
( ( ring_1_of_int_rat @ ( times_times_int @ W @ Z ) )
= ( times_times_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z ) ) ) ).
% of_int_mult
thf(fact_3690_of__int__mult,axiom,
! [W: int,Z: int] :
( ( ring_1_of_int_int @ ( times_times_int @ W @ Z ) )
= ( times_times_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) ) ) ).
% of_int_mult
thf(fact_3691_of__int__of__nat__eq,axiom,
! [N: nat] :
( ( ring_1_of_int_rat @ ( semiri1314217659103216013at_int @ N ) )
= ( semiri681578069525770553at_rat @ N ) ) ).
% of_int_of_nat_eq
thf(fact_3692_of__int__of__nat__eq,axiom,
! [N: nat] :
( ( ring_1_of_int_real @ ( semiri1314217659103216013at_int @ N ) )
= ( semiri5074537144036343181t_real @ N ) ) ).
% of_int_of_nat_eq
thf(fact_3693_of__int__of__nat__eq,axiom,
! [N: nat] :
( ( ring_1_of_int_int @ ( semiri1314217659103216013at_int @ N ) )
= ( semiri1314217659103216013at_int @ N ) ) ).
% of_int_of_nat_eq
thf(fact_3694_of__int__power__eq__of__int__cancel__iff,axiom,
! [X2: int,B: int,W: nat] :
( ( ( ring_1_of_int_rat @ X2 )
= ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) )
= ( X2
= ( power_power_int @ B @ W ) ) ) ).
% of_int_power_eq_of_int_cancel_iff
thf(fact_3695_of__int__power__eq__of__int__cancel__iff,axiom,
! [X2: int,B: int,W: nat] :
( ( ( ring_1_of_int_real @ X2 )
= ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) )
= ( X2
= ( power_power_int @ B @ W ) ) ) ).
% of_int_power_eq_of_int_cancel_iff
thf(fact_3696_of__int__power__eq__of__int__cancel__iff,axiom,
! [X2: int,B: int,W: nat] :
( ( ( ring_1_of_int_int @ X2 )
= ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) )
= ( X2
= ( power_power_int @ B @ W ) ) ) ).
% of_int_power_eq_of_int_cancel_iff
thf(fact_3697_of__int__power__eq__of__int__cancel__iff,axiom,
! [X2: int,B: int,W: nat] :
( ( ( ring_17405671764205052669omplex @ X2 )
= ( power_power_complex @ ( ring_17405671764205052669omplex @ B ) @ W ) )
= ( X2
= ( power_power_int @ B @ W ) ) ) ).
% of_int_power_eq_of_int_cancel_iff
thf(fact_3698_of__int__power__eq__of__int__cancel__iff,axiom,
! [X2: int,B: int,W: nat] :
( ( ( ring_18347121197199848620nteger @ X2 )
= ( power_8256067586552552935nteger @ ( ring_18347121197199848620nteger @ B ) @ W ) )
= ( X2
= ( power_power_int @ B @ W ) ) ) ).
% of_int_power_eq_of_int_cancel_iff
thf(fact_3699_of__int__eq__of__int__power__cancel__iff,axiom,
! [B: int,W: nat,X2: int] :
( ( ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W )
= ( ring_1_of_int_rat @ X2 ) )
= ( ( power_power_int @ B @ W )
= X2 ) ) ).
% of_int_eq_of_int_power_cancel_iff
thf(fact_3700_of__int__eq__of__int__power__cancel__iff,axiom,
! [B: int,W: nat,X2: int] :
( ( ( power_power_real @ ( ring_1_of_int_real @ B ) @ W )
= ( ring_1_of_int_real @ X2 ) )
= ( ( power_power_int @ B @ W )
= X2 ) ) ).
% of_int_eq_of_int_power_cancel_iff
thf(fact_3701_of__int__eq__of__int__power__cancel__iff,axiom,
! [B: int,W: nat,X2: int] :
( ( ( power_power_int @ ( ring_1_of_int_int @ B ) @ W )
= ( ring_1_of_int_int @ X2 ) )
= ( ( power_power_int @ B @ W )
= X2 ) ) ).
% of_int_eq_of_int_power_cancel_iff
thf(fact_3702_of__int__eq__of__int__power__cancel__iff,axiom,
! [B: int,W: nat,X2: int] :
( ( ( power_power_complex @ ( ring_17405671764205052669omplex @ B ) @ W )
= ( ring_17405671764205052669omplex @ X2 ) )
= ( ( power_power_int @ B @ W )
= X2 ) ) ).
% of_int_eq_of_int_power_cancel_iff
thf(fact_3703_of__int__eq__of__int__power__cancel__iff,axiom,
! [B: int,W: nat,X2: int] :
( ( ( power_8256067586552552935nteger @ ( ring_18347121197199848620nteger @ B ) @ W )
= ( ring_18347121197199848620nteger @ X2 ) )
= ( ( power_power_int @ B @ W )
= X2 ) ) ).
% of_int_eq_of_int_power_cancel_iff
thf(fact_3704_of__int__power,axiom,
! [Z: int,N: nat] :
( ( ring_1_of_int_rat @ ( power_power_int @ Z @ N ) )
= ( power_power_rat @ ( ring_1_of_int_rat @ Z ) @ N ) ) ).
% of_int_power
thf(fact_3705_of__int__power,axiom,
! [Z: int,N: nat] :
( ( ring_1_of_int_real @ ( power_power_int @ Z @ N ) )
= ( power_power_real @ ( ring_1_of_int_real @ Z ) @ N ) ) ).
% of_int_power
thf(fact_3706_of__int__power,axiom,
! [Z: int,N: nat] :
( ( ring_1_of_int_int @ ( power_power_int @ Z @ N ) )
= ( power_power_int @ ( ring_1_of_int_int @ Z ) @ N ) ) ).
% of_int_power
thf(fact_3707_of__int__power,axiom,
! [Z: int,N: nat] :
( ( ring_17405671764205052669omplex @ ( power_power_int @ Z @ N ) )
= ( power_power_complex @ ( ring_17405671764205052669omplex @ Z ) @ N ) ) ).
% of_int_power
thf(fact_3708_of__int__power,axiom,
! [Z: int,N: nat] :
( ( ring_18347121197199848620nteger @ ( power_power_int @ Z @ N ) )
= ( power_8256067586552552935nteger @ ( ring_18347121197199848620nteger @ Z ) @ N ) ) ).
% of_int_power
thf(fact_3709_ceiling__add__of__int,axiom,
! [X2: rat,Z: int] :
( ( archim2889992004027027881ng_rat @ ( plus_plus_rat @ X2 @ ( ring_1_of_int_rat @ Z ) ) )
= ( plus_plus_int @ ( archim2889992004027027881ng_rat @ X2 ) @ Z ) ) ).
% ceiling_add_of_int
thf(fact_3710_ceiling__add__of__int,axiom,
! [X2: real,Z: int] :
( ( archim7802044766580827645g_real @ ( plus_plus_real @ X2 @ ( ring_1_of_int_real @ Z ) ) )
= ( plus_plus_int @ ( archim7802044766580827645g_real @ X2 ) @ Z ) ) ).
% ceiling_add_of_int
thf(fact_3711_of__int__le__0__iff,axiom,
! [Z: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ zero_zero_real )
= ( ord_less_eq_int @ Z @ zero_zero_int ) ) ).
% of_int_le_0_iff
thf(fact_3712_of__int__le__0__iff,axiom,
! [Z: int] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z ) @ zero_zero_rat )
= ( ord_less_eq_int @ Z @ zero_zero_int ) ) ).
% of_int_le_0_iff
thf(fact_3713_of__int__le__0__iff,axiom,
! [Z: int] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z ) @ zero_zero_int )
= ( ord_less_eq_int @ Z @ zero_zero_int ) ) ).
% of_int_le_0_iff
thf(fact_3714_of__int__0__le__iff,axiom,
! [Z: int] :
( ( ord_less_eq_real @ zero_zero_real @ ( ring_1_of_int_real @ Z ) )
= ( ord_less_eq_int @ zero_zero_int @ Z ) ) ).
% of_int_0_le_iff
thf(fact_3715_of__int__0__le__iff,axiom,
! [Z: int] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z ) )
= ( ord_less_eq_int @ zero_zero_int @ Z ) ) ).
% of_int_0_le_iff
thf(fact_3716_of__int__0__le__iff,axiom,
! [Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( ring_1_of_int_int @ Z ) )
= ( ord_less_eq_int @ zero_zero_int @ Z ) ) ).
% of_int_0_le_iff
thf(fact_3717_of__int__numeral__le__iff,axiom,
! [N: num,Z: int] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ ( ring_1_of_int_real @ Z ) )
= ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).
% of_int_numeral_le_iff
thf(fact_3718_of__int__numeral__le__iff,axiom,
! [N: num,Z: int] :
( ( ord_less_eq_rat @ ( numeral_numeral_rat @ N ) @ ( ring_1_of_int_rat @ Z ) )
= ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).
% of_int_numeral_le_iff
thf(fact_3719_of__int__numeral__le__iff,axiom,
! [N: num,Z: int] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ ( ring_1_of_int_int @ Z ) )
= ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).
% of_int_numeral_le_iff
thf(fact_3720_of__int__le__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_eq_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).
% of_int_le_numeral_iff
thf(fact_3721_of__int__le__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z ) @ ( numeral_numeral_rat @ N ) )
= ( ord_less_eq_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).
% of_int_le_numeral_iff
thf(fact_3722_of__int__le__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z ) @ ( numeral_numeral_int @ N ) )
= ( ord_less_eq_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).
% of_int_le_numeral_iff
thf(fact_3723_of__int__less__0__iff,axiom,
! [Z: int] :
( ( ord_less_real @ ( ring_1_of_int_real @ Z ) @ zero_zero_real )
= ( ord_less_int @ Z @ zero_zero_int ) ) ).
% of_int_less_0_iff
thf(fact_3724_of__int__less__0__iff,axiom,
! [Z: int] :
( ( ord_less_rat @ ( ring_1_of_int_rat @ Z ) @ zero_zero_rat )
= ( ord_less_int @ Z @ zero_zero_int ) ) ).
% of_int_less_0_iff
thf(fact_3725_of__int__less__0__iff,axiom,
! [Z: int] :
( ( ord_less_int @ ( ring_1_of_int_int @ Z ) @ zero_zero_int )
= ( ord_less_int @ Z @ zero_zero_int ) ) ).
% of_int_less_0_iff
thf(fact_3726_of__int__0__less__iff,axiom,
! [Z: int] :
( ( ord_less_real @ zero_zero_real @ ( ring_1_of_int_real @ Z ) )
= ( ord_less_int @ zero_zero_int @ Z ) ) ).
% of_int_0_less_iff
thf(fact_3727_of__int__0__less__iff,axiom,
! [Z: int] :
( ( ord_less_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z ) )
= ( ord_less_int @ zero_zero_int @ Z ) ) ).
% of_int_0_less_iff
thf(fact_3728_of__int__0__less__iff,axiom,
! [Z: int] :
( ( ord_less_int @ zero_zero_int @ ( ring_1_of_int_int @ Z ) )
= ( ord_less_int @ zero_zero_int @ Z ) ) ).
% of_int_0_less_iff
thf(fact_3729_of__int__less__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ord_less_real @ ( ring_1_of_int_real @ Z ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).
% of_int_less_numeral_iff
thf(fact_3730_of__int__less__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ord_less_rat @ ( ring_1_of_int_rat @ Z ) @ ( numeral_numeral_rat @ N ) )
= ( ord_less_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).
% of_int_less_numeral_iff
thf(fact_3731_of__int__less__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ord_less_int @ ( ring_1_of_int_int @ Z ) @ ( numeral_numeral_int @ N ) )
= ( ord_less_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).
% of_int_less_numeral_iff
thf(fact_3732_of__int__numeral__less__iff,axiom,
! [N: num,Z: int] :
( ( ord_less_real @ ( numeral_numeral_real @ N ) @ ( ring_1_of_int_real @ Z ) )
= ( ord_less_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).
% of_int_numeral_less_iff
thf(fact_3733_of__int__numeral__less__iff,axiom,
! [N: num,Z: int] :
( ( ord_less_rat @ ( numeral_numeral_rat @ N ) @ ( ring_1_of_int_rat @ Z ) )
= ( ord_less_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).
% of_int_numeral_less_iff
thf(fact_3734_of__int__numeral__less__iff,axiom,
! [N: num,Z: int] :
( ( ord_less_int @ ( numeral_numeral_int @ N ) @ ( ring_1_of_int_int @ Z ) )
= ( ord_less_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).
% of_int_numeral_less_iff
thf(fact_3735_of__int__le__1__iff,axiom,
! [Z: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ one_one_real )
= ( ord_less_eq_int @ Z @ one_one_int ) ) ).
% of_int_le_1_iff
thf(fact_3736_of__int__le__1__iff,axiom,
! [Z: int] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat )
= ( ord_less_eq_int @ Z @ one_one_int ) ) ).
% of_int_le_1_iff
thf(fact_3737_of__int__le__1__iff,axiom,
! [Z: int] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z ) @ one_one_int )
= ( ord_less_eq_int @ Z @ one_one_int ) ) ).
% of_int_le_1_iff
thf(fact_3738_of__int__1__le__iff,axiom,
! [Z: int] :
( ( ord_less_eq_real @ one_one_real @ ( ring_1_of_int_real @ Z ) )
= ( ord_less_eq_int @ one_one_int @ Z ) ) ).
% of_int_1_le_iff
thf(fact_3739_of__int__1__le__iff,axiom,
! [Z: int] :
( ( ord_less_eq_rat @ one_one_rat @ ( ring_1_of_int_rat @ Z ) )
= ( ord_less_eq_int @ one_one_int @ Z ) ) ).
% of_int_1_le_iff
thf(fact_3740_of__int__1__le__iff,axiom,
! [Z: int] :
( ( ord_less_eq_int @ one_one_int @ ( ring_1_of_int_int @ Z ) )
= ( ord_less_eq_int @ one_one_int @ Z ) ) ).
% of_int_1_le_iff
thf(fact_3741_of__int__less__1__iff,axiom,
! [Z: int] :
( ( ord_less_real @ ( ring_1_of_int_real @ Z ) @ one_one_real )
= ( ord_less_int @ Z @ one_one_int ) ) ).
% of_int_less_1_iff
thf(fact_3742_of__int__less__1__iff,axiom,
! [Z: int] :
( ( ord_less_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat )
= ( ord_less_int @ Z @ one_one_int ) ) ).
% of_int_less_1_iff
thf(fact_3743_of__int__less__1__iff,axiom,
! [Z: int] :
( ( ord_less_int @ ( ring_1_of_int_int @ Z ) @ one_one_int )
= ( ord_less_int @ Z @ one_one_int ) ) ).
% of_int_less_1_iff
thf(fact_3744_of__int__1__less__iff,axiom,
! [Z: int] :
( ( ord_less_real @ one_one_real @ ( ring_1_of_int_real @ Z ) )
= ( ord_less_int @ one_one_int @ Z ) ) ).
% of_int_1_less_iff
thf(fact_3745_of__int__1__less__iff,axiom,
! [Z: int] :
( ( ord_less_rat @ one_one_rat @ ( ring_1_of_int_rat @ Z ) )
= ( ord_less_int @ one_one_int @ Z ) ) ).
% of_int_1_less_iff
thf(fact_3746_of__int__1__less__iff,axiom,
! [Z: int] :
( ( ord_less_int @ one_one_int @ ( ring_1_of_int_int @ Z ) )
= ( ord_less_int @ one_one_int @ Z ) ) ).
% of_int_1_less_iff
thf(fact_3747_of__int__eq__numeral__power__cancel__iff,axiom,
! [Y2: int,X2: num,N: nat] :
( ( ( ring_18347121197199848620nteger @ Y2 )
= ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ X2 ) @ N ) )
= ( Y2
= ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).
% of_int_eq_numeral_power_cancel_iff
thf(fact_3748_of__int__eq__numeral__power__cancel__iff,axiom,
! [Y2: int,X2: num,N: nat] :
( ( ( ring_17405671764205052669omplex @ Y2 )
= ( power_power_complex @ ( numera6690914467698888265omplex @ X2 ) @ N ) )
= ( Y2
= ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).
% of_int_eq_numeral_power_cancel_iff
thf(fact_3749_of__int__eq__numeral__power__cancel__iff,axiom,
! [Y2: int,X2: num,N: nat] :
( ( ( ring_1_of_int_real @ Y2 )
= ( power_power_real @ ( numeral_numeral_real @ X2 ) @ N ) )
= ( Y2
= ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).
% of_int_eq_numeral_power_cancel_iff
thf(fact_3750_of__int__eq__numeral__power__cancel__iff,axiom,
! [Y2: int,X2: num,N: nat] :
( ( ( ring_1_of_int_rat @ Y2 )
= ( power_power_rat @ ( numeral_numeral_rat @ X2 ) @ N ) )
= ( Y2
= ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).
% of_int_eq_numeral_power_cancel_iff
thf(fact_3751_of__int__eq__numeral__power__cancel__iff,axiom,
! [Y2: int,X2: num,N: nat] :
( ( ( ring_1_of_int_int @ Y2 )
= ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) )
= ( Y2
= ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).
% of_int_eq_numeral_power_cancel_iff
thf(fact_3752_numeral__power__eq__of__int__cancel__iff,axiom,
! [X2: num,N: nat,Y2: int] :
( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ X2 ) @ N )
= ( ring_18347121197199848620nteger @ Y2 ) )
= ( ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N )
= Y2 ) ) ).
% numeral_power_eq_of_int_cancel_iff
thf(fact_3753_numeral__power__eq__of__int__cancel__iff,axiom,
! [X2: num,N: nat,Y2: int] :
( ( ( power_power_complex @ ( numera6690914467698888265omplex @ X2 ) @ N )
= ( ring_17405671764205052669omplex @ Y2 ) )
= ( ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N )
= Y2 ) ) ).
% numeral_power_eq_of_int_cancel_iff
thf(fact_3754_numeral__power__eq__of__int__cancel__iff,axiom,
! [X2: num,N: nat,Y2: int] :
( ( ( power_power_real @ ( numeral_numeral_real @ X2 ) @ N )
= ( ring_1_of_int_real @ Y2 ) )
= ( ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N )
= Y2 ) ) ).
% numeral_power_eq_of_int_cancel_iff
thf(fact_3755_numeral__power__eq__of__int__cancel__iff,axiom,
! [X2: num,N: nat,Y2: int] :
( ( ( power_power_rat @ ( numeral_numeral_rat @ X2 ) @ N )
= ( ring_1_of_int_rat @ Y2 ) )
= ( ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N )
= Y2 ) ) ).
% numeral_power_eq_of_int_cancel_iff
thf(fact_3756_numeral__power__eq__of__int__cancel__iff,axiom,
! [X2: num,N: nat,Y2: int] :
( ( ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N )
= ( ring_1_of_int_int @ Y2 ) )
= ( ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N )
= Y2 ) ) ).
% numeral_power_eq_of_int_cancel_iff
thf(fact_3757_of__int__power__le__of__int__cancel__iff,axiom,
! [X2: int,B: int,W: nat] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ X2 ) @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) )
= ( ord_less_eq_int @ X2 @ ( power_power_int @ B @ W ) ) ) ).
% of_int_power_le_of_int_cancel_iff
thf(fact_3758_of__int__power__le__of__int__cancel__iff,axiom,
! [X2: int,B: int,W: nat] :
( ( ord_le3102999989581377725nteger @ ( ring_18347121197199848620nteger @ X2 ) @ ( power_8256067586552552935nteger @ ( ring_18347121197199848620nteger @ B ) @ W ) )
= ( ord_less_eq_int @ X2 @ ( power_power_int @ B @ W ) ) ) ).
% of_int_power_le_of_int_cancel_iff
thf(fact_3759_of__int__power__le__of__int__cancel__iff,axiom,
! [X2: int,B: int,W: nat] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ X2 ) @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) )
= ( ord_less_eq_int @ X2 @ ( power_power_int @ B @ W ) ) ) ).
% of_int_power_le_of_int_cancel_iff
thf(fact_3760_of__int__power__le__of__int__cancel__iff,axiom,
! [X2: int,B: int,W: nat] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ X2 ) @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) )
= ( ord_less_eq_int @ X2 @ ( power_power_int @ B @ W ) ) ) ).
% of_int_power_le_of_int_cancel_iff
thf(fact_3761_of__int__le__of__int__power__cancel__iff,axiom,
! [B: int,W: nat,X2: int] :
( ( ord_less_eq_real @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) @ ( ring_1_of_int_real @ X2 ) )
= ( ord_less_eq_int @ ( power_power_int @ B @ W ) @ X2 ) ) ).
% of_int_le_of_int_power_cancel_iff
thf(fact_3762_of__int__le__of__int__power__cancel__iff,axiom,
! [B: int,W: nat,X2: int] :
( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ ( ring_18347121197199848620nteger @ B ) @ W ) @ ( ring_18347121197199848620nteger @ X2 ) )
= ( ord_less_eq_int @ ( power_power_int @ B @ W ) @ X2 ) ) ).
% of_int_le_of_int_power_cancel_iff
thf(fact_3763_of__int__le__of__int__power__cancel__iff,axiom,
! [B: int,W: nat,X2: int] :
( ( ord_less_eq_rat @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) @ ( ring_1_of_int_rat @ X2 ) )
= ( ord_less_eq_int @ ( power_power_int @ B @ W ) @ X2 ) ) ).
% of_int_le_of_int_power_cancel_iff
thf(fact_3764_of__int__le__of__int__power__cancel__iff,axiom,
! [B: int,W: nat,X2: int] :
( ( ord_less_eq_int @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) @ ( ring_1_of_int_int @ X2 ) )
= ( ord_less_eq_int @ ( power_power_int @ B @ W ) @ X2 ) ) ).
% of_int_le_of_int_power_cancel_iff
thf(fact_3765_of__int__less__of__int__power__cancel__iff,axiom,
! [B: int,W: nat,X2: int] :
( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ ( ring_18347121197199848620nteger @ B ) @ W ) @ ( ring_18347121197199848620nteger @ X2 ) )
= ( ord_less_int @ ( power_power_int @ B @ W ) @ X2 ) ) ).
% of_int_less_of_int_power_cancel_iff
thf(fact_3766_of__int__less__of__int__power__cancel__iff,axiom,
! [B: int,W: nat,X2: int] :
( ( ord_less_real @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) @ ( ring_1_of_int_real @ X2 ) )
= ( ord_less_int @ ( power_power_int @ B @ W ) @ X2 ) ) ).
% of_int_less_of_int_power_cancel_iff
thf(fact_3767_of__int__less__of__int__power__cancel__iff,axiom,
! [B: int,W: nat,X2: int] :
( ( ord_less_rat @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) @ ( ring_1_of_int_rat @ X2 ) )
= ( ord_less_int @ ( power_power_int @ B @ W ) @ X2 ) ) ).
% of_int_less_of_int_power_cancel_iff
thf(fact_3768_of__int__less__of__int__power__cancel__iff,axiom,
! [B: int,W: nat,X2: int] :
( ( ord_less_int @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) @ ( ring_1_of_int_int @ X2 ) )
= ( ord_less_int @ ( power_power_int @ B @ W ) @ X2 ) ) ).
% of_int_less_of_int_power_cancel_iff
thf(fact_3769_of__int__power__less__of__int__cancel__iff,axiom,
! [X2: int,B: int,W: nat] :
( ( ord_le6747313008572928689nteger @ ( ring_18347121197199848620nteger @ X2 ) @ ( power_8256067586552552935nteger @ ( ring_18347121197199848620nteger @ B ) @ W ) )
= ( ord_less_int @ X2 @ ( power_power_int @ B @ W ) ) ) ).
% of_int_power_less_of_int_cancel_iff
thf(fact_3770_of__int__power__less__of__int__cancel__iff,axiom,
! [X2: int,B: int,W: nat] :
( ( ord_less_real @ ( ring_1_of_int_real @ X2 ) @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) )
= ( ord_less_int @ X2 @ ( power_power_int @ B @ W ) ) ) ).
% of_int_power_less_of_int_cancel_iff
thf(fact_3771_of__int__power__less__of__int__cancel__iff,axiom,
! [X2: int,B: int,W: nat] :
( ( ord_less_rat @ ( ring_1_of_int_rat @ X2 ) @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) )
= ( ord_less_int @ X2 @ ( power_power_int @ B @ W ) ) ) ).
% of_int_power_less_of_int_cancel_iff
thf(fact_3772_of__int__power__less__of__int__cancel__iff,axiom,
! [X2: int,B: int,W: nat] :
( ( ord_less_int @ ( ring_1_of_int_int @ X2 ) @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) )
= ( ord_less_int @ X2 @ ( power_power_int @ B @ W ) ) ) ).
% of_int_power_less_of_int_cancel_iff
thf(fact_3773_of__int__le__numeral__power__cancel__iff,axiom,
! [A: int,X2: num,N: nat] :
( ( ord_le3102999989581377725nteger @ ( ring_18347121197199848620nteger @ A ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ X2 ) @ N ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).
% of_int_le_numeral_power_cancel_iff
thf(fact_3774_of__int__le__numeral__power__cancel__iff,axiom,
! [A: int,X2: num,N: nat] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( numeral_numeral_real @ X2 ) @ N ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).
% of_int_le_numeral_power_cancel_iff
thf(fact_3775_of__int__le__numeral__power__cancel__iff,axiom,
! [A: int,X2: num,N: nat] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( numeral_numeral_rat @ X2 ) @ N ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).
% of_int_le_numeral_power_cancel_iff
thf(fact_3776_of__int__le__numeral__power__cancel__iff,axiom,
! [A: int,X2: num,N: nat] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).
% of_int_le_numeral_power_cancel_iff
thf(fact_3777_numeral__power__le__of__int__cancel__iff,axiom,
! [X2: num,N: nat,A: int] :
( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ X2 ) @ N ) @ ( ring_18347121197199848620nteger @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) @ A ) ) ).
% numeral_power_le_of_int_cancel_iff
thf(fact_3778_numeral__power__le__of__int__cancel__iff,axiom,
! [X2: num,N: nat,A: int] :
( ( ord_less_eq_real @ ( power_power_real @ ( numeral_numeral_real @ X2 ) @ N ) @ ( ring_1_of_int_real @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) @ A ) ) ).
% numeral_power_le_of_int_cancel_iff
thf(fact_3779_numeral__power__le__of__int__cancel__iff,axiom,
! [X2: num,N: nat,A: int] :
( ( ord_less_eq_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X2 ) @ N ) @ ( ring_1_of_int_rat @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) @ A ) ) ).
% numeral_power_le_of_int_cancel_iff
thf(fact_3780_numeral__power__le__of__int__cancel__iff,axiom,
! [X2: num,N: nat,A: int] :
( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) @ ( ring_1_of_int_int @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) @ A ) ) ).
% numeral_power_le_of_int_cancel_iff
thf(fact_3781_of__int__less__numeral__power__cancel__iff,axiom,
! [A: int,X2: num,N: nat] :
( ( ord_le6747313008572928689nteger @ ( ring_18347121197199848620nteger @ A ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ X2 ) @ N ) )
= ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).
% of_int_less_numeral_power_cancel_iff
thf(fact_3782_of__int__less__numeral__power__cancel__iff,axiom,
! [A: int,X2: num,N: nat] :
( ( ord_less_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( numeral_numeral_real @ X2 ) @ N ) )
= ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).
% of_int_less_numeral_power_cancel_iff
thf(fact_3783_of__int__less__numeral__power__cancel__iff,axiom,
! [A: int,X2: num,N: nat] :
( ( ord_less_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( numeral_numeral_rat @ X2 ) @ N ) )
= ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).
% of_int_less_numeral_power_cancel_iff
thf(fact_3784_of__int__less__numeral__power__cancel__iff,axiom,
! [A: int,X2: num,N: nat] :
( ( ord_less_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) )
= ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).
% of_int_less_numeral_power_cancel_iff
thf(fact_3785_numeral__power__less__of__int__cancel__iff,axiom,
! [X2: num,N: nat,A: int] :
( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ X2 ) @ N ) @ ( ring_18347121197199848620nteger @ A ) )
= ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) @ A ) ) ).
% numeral_power_less_of_int_cancel_iff
thf(fact_3786_numeral__power__less__of__int__cancel__iff,axiom,
! [X2: num,N: nat,A: int] :
( ( ord_less_real @ ( power_power_real @ ( numeral_numeral_real @ X2 ) @ N ) @ ( ring_1_of_int_real @ A ) )
= ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) @ A ) ) ).
% numeral_power_less_of_int_cancel_iff
thf(fact_3787_numeral__power__less__of__int__cancel__iff,axiom,
! [X2: num,N: nat,A: int] :
( ( ord_less_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X2 ) @ N ) @ ( ring_1_of_int_rat @ A ) )
= ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) @ A ) ) ).
% numeral_power_less_of_int_cancel_iff
thf(fact_3788_numeral__power__less__of__int__cancel__iff,axiom,
! [X2: num,N: nat,A: int] :
( ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) @ ( ring_1_of_int_int @ A ) )
= ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) @ A ) ) ).
% numeral_power_less_of_int_cancel_iff
thf(fact_3789_ex__le__of__int,axiom,
! [X2: real] :
? [Z2: int] : ( ord_less_eq_real @ X2 @ ( ring_1_of_int_real @ Z2 ) ) ).
% ex_le_of_int
thf(fact_3790_ex__le__of__int,axiom,
! [X2: rat] :
? [Z2: int] : ( ord_less_eq_rat @ X2 @ ( ring_1_of_int_rat @ Z2 ) ) ).
% ex_le_of_int
thf(fact_3791_mult__of__int__commute,axiom,
! [X2: int,Y2: real] :
( ( times_times_real @ ( ring_1_of_int_real @ X2 ) @ Y2 )
= ( times_times_real @ Y2 @ ( ring_1_of_int_real @ X2 ) ) ) ).
% mult_of_int_commute
thf(fact_3792_mult__of__int__commute,axiom,
! [X2: int,Y2: rat] :
( ( times_times_rat @ ( ring_1_of_int_rat @ X2 ) @ Y2 )
= ( times_times_rat @ Y2 @ ( ring_1_of_int_rat @ X2 ) ) ) ).
% mult_of_int_commute
thf(fact_3793_mult__of__int__commute,axiom,
! [X2: int,Y2: int] :
( ( times_times_int @ ( ring_1_of_int_int @ X2 ) @ Y2 )
= ( times_times_int @ Y2 @ ( ring_1_of_int_int @ X2 ) ) ) ).
% mult_of_int_commute
thf(fact_3794_le__of__int__ceiling,axiom,
! [X2: real] : ( ord_less_eq_real @ X2 @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X2 ) ) ) ).
% le_of_int_ceiling
thf(fact_3795_le__of__int__ceiling,axiom,
! [X2: rat] : ( ord_less_eq_rat @ X2 @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ X2 ) ) ) ).
% le_of_int_ceiling
thf(fact_3796_bset_I1_J,axiom,
! [D4: int,B4: set_int,P: int > $o,Q: int > $o] :
( ! [X3: int] :
( ! [Xa: int] :
( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ B4 )
=> ( X3
!= ( plus_plus_int @ Xb @ Xa ) ) ) )
=> ( ( P @ X3 )
=> ( P @ ( minus_minus_int @ X3 @ D4 ) ) ) )
=> ( ! [X3: int] :
( ! [Xa: int] :
( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ B4 )
=> ( X3
!= ( plus_plus_int @ Xb @ Xa ) ) ) )
=> ( ( Q @ X3 )
=> ( Q @ ( minus_minus_int @ X3 @ D4 ) ) ) )
=> ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ B4 )
=> ( X4
!= ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
=> ( ( ( P @ X4 )
& ( Q @ X4 ) )
=> ( ( P @ ( minus_minus_int @ X4 @ D4 ) )
& ( Q @ ( minus_minus_int @ X4 @ D4 ) ) ) ) ) ) ) ).
% bset(1)
thf(fact_3797_bset_I2_J,axiom,
! [D4: int,B4: set_int,P: int > $o,Q: int > $o] :
( ! [X3: int] :
( ! [Xa: int] :
( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ B4 )
=> ( X3
!= ( plus_plus_int @ Xb @ Xa ) ) ) )
=> ( ( P @ X3 )
=> ( P @ ( minus_minus_int @ X3 @ D4 ) ) ) )
=> ( ! [X3: int] :
( ! [Xa: int] :
( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ B4 )
=> ( X3
!= ( plus_plus_int @ Xb @ Xa ) ) ) )
=> ( ( Q @ X3 )
=> ( Q @ ( minus_minus_int @ X3 @ D4 ) ) ) )
=> ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ B4 )
=> ( X4
!= ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
=> ( ( ( P @ X4 )
| ( Q @ X4 ) )
=> ( ( P @ ( minus_minus_int @ X4 @ D4 ) )
| ( Q @ ( minus_minus_int @ X4 @ D4 ) ) ) ) ) ) ) ).
% bset(2)
thf(fact_3798_aset_I1_J,axiom,
! [D4: int,A2: set_int,P: int > $o,Q: int > $o] :
( ! [X3: int] :
( ! [Xa: int] :
( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ A2 )
=> ( X3
!= ( minus_minus_int @ Xb @ Xa ) ) ) )
=> ( ( P @ X3 )
=> ( P @ ( plus_plus_int @ X3 @ D4 ) ) ) )
=> ( ! [X3: int] :
( ! [Xa: int] :
( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ A2 )
=> ( X3
!= ( minus_minus_int @ Xb @ Xa ) ) ) )
=> ( ( Q @ X3 )
=> ( Q @ ( plus_plus_int @ X3 @ D4 ) ) ) )
=> ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
=> ( ( ( P @ X4 )
& ( Q @ X4 ) )
=> ( ( P @ ( plus_plus_int @ X4 @ D4 ) )
& ( Q @ ( plus_plus_int @ X4 @ D4 ) ) ) ) ) ) ) ).
% aset(1)
thf(fact_3799_aset_I2_J,axiom,
! [D4: int,A2: set_int,P: int > $o,Q: int > $o] :
( ! [X3: int] :
( ! [Xa: int] :
( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ A2 )
=> ( X3
!= ( minus_minus_int @ Xb @ Xa ) ) ) )
=> ( ( P @ X3 )
=> ( P @ ( plus_plus_int @ X3 @ D4 ) ) ) )
=> ( ! [X3: int] :
( ! [Xa: int] :
( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ A2 )
=> ( X3
!= ( minus_minus_int @ Xb @ Xa ) ) ) )
=> ( ( Q @ X3 )
=> ( Q @ ( plus_plus_int @ X3 @ D4 ) ) ) )
=> ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
=> ( ( ( P @ X4 )
| ( Q @ X4 ) )
=> ( ( P @ ( plus_plus_int @ X4 @ D4 ) )
| ( Q @ ( plus_plus_int @ X4 @ D4 ) ) ) ) ) ) ) ).
% aset(2)
thf(fact_3800_ceiling__le,axiom,
! [X2: real,A: int] :
( ( ord_less_eq_real @ X2 @ ( ring_1_of_int_real @ A ) )
=> ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X2 ) @ A ) ) ).
% ceiling_le
thf(fact_3801_ceiling__le,axiom,
! [X2: rat,A: int] :
( ( ord_less_eq_rat @ X2 @ ( ring_1_of_int_rat @ A ) )
=> ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X2 ) @ A ) ) ).
% ceiling_le
thf(fact_3802_ceiling__le__iff,axiom,
! [X2: real,Z: int] :
( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X2 ) @ Z )
= ( ord_less_eq_real @ X2 @ ( ring_1_of_int_real @ Z ) ) ) ).
% ceiling_le_iff
thf(fact_3803_ceiling__le__iff,axiom,
! [X2: rat,Z: int] :
( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X2 ) @ Z )
= ( ord_less_eq_rat @ X2 @ ( ring_1_of_int_rat @ Z ) ) ) ).
% ceiling_le_iff
thf(fact_3804_real__of__int__div4,axiom,
! [N: int,X2: int] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( divide_divide_int @ N @ X2 ) ) @ ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ X2 ) ) ) ).
% real_of_int_div4
thf(fact_3805_real__of__int__div,axiom,
! [D2: int,N: int] :
( ( dvd_dvd_int @ D2 @ N )
=> ( ( ring_1_of_int_real @ ( divide_divide_int @ N @ D2 ) )
= ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ D2 ) ) ) ) ).
% real_of_int_div
thf(fact_3806_bounded__Max__nat,axiom,
! [P: nat > $o,X2: nat,M7: nat] :
( ( P @ X2 )
=> ( ! [X3: nat] :
( ( P @ X3 )
=> ( ord_less_eq_nat @ X3 @ M7 ) )
=> ~ ! [M3: nat] :
( ( P @ M3 )
=> ~ ! [X4: nat] :
( ( P @ X4 )
=> ( ord_less_eq_nat @ X4 @ M3 ) ) ) ) ) ).
% bounded_Max_nat
thf(fact_3807_of__int__nonneg,axiom,
! [Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ord_less_eq_real @ zero_zero_real @ ( ring_1_of_int_real @ Z ) ) ) ).
% of_int_nonneg
thf(fact_3808_of__int__nonneg,axiom,
! [Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z ) ) ) ).
% of_int_nonneg
thf(fact_3809_of__int__nonneg,axiom,
! [Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ord_less_eq_int @ zero_zero_int @ ( ring_1_of_int_int @ Z ) ) ) ).
% of_int_nonneg
thf(fact_3810_of__int__pos,axiom,
! [Z: int] :
( ( ord_less_int @ zero_zero_int @ Z )
=> ( ord_less_real @ zero_zero_real @ ( ring_1_of_int_real @ Z ) ) ) ).
% of_int_pos
thf(fact_3811_of__int__pos,axiom,
! [Z: int] :
( ( ord_less_int @ zero_zero_int @ Z )
=> ( ord_less_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z ) ) ) ).
% of_int_pos
thf(fact_3812_of__int__pos,axiom,
! [Z: int] :
( ( ord_less_int @ zero_zero_int @ Z )
=> ( ord_less_int @ zero_zero_int @ ( ring_1_of_int_int @ Z ) ) ) ).
% of_int_pos
thf(fact_3813_floor__exists,axiom,
! [X2: real] :
? [Z2: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z2 ) @ X2 )
& ( ord_less_real @ X2 @ ( ring_1_of_int_real @ ( plus_plus_int @ Z2 @ one_one_int ) ) ) ) ).
% floor_exists
thf(fact_3814_floor__exists,axiom,
! [X2: rat] :
? [Z2: int] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z2 ) @ X2 )
& ( ord_less_rat @ X2 @ ( ring_1_of_int_rat @ ( plus_plus_int @ Z2 @ one_one_int ) ) ) ) ).
% floor_exists
thf(fact_3815_floor__exists1,axiom,
! [X2: real] :
? [X3: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ X3 ) @ X2 )
& ( ord_less_real @ X2 @ ( ring_1_of_int_real @ ( plus_plus_int @ X3 @ one_one_int ) ) )
& ! [Y4: int] :
( ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Y4 ) @ X2 )
& ( ord_less_real @ X2 @ ( ring_1_of_int_real @ ( plus_plus_int @ Y4 @ one_one_int ) ) ) )
=> ( Y4 = X3 ) ) ) ).
% floor_exists1
thf(fact_3816_floor__exists1,axiom,
! [X2: rat] :
? [X3: int] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ X3 ) @ X2 )
& ( ord_less_rat @ X2 @ ( ring_1_of_int_rat @ ( plus_plus_int @ X3 @ one_one_int ) ) )
& ! [Y4: int] :
( ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Y4 ) @ X2 )
& ( ord_less_rat @ X2 @ ( ring_1_of_int_rat @ ( plus_plus_int @ Y4 @ one_one_int ) ) ) )
=> ( Y4 = X3 ) ) ) ).
% floor_exists1
thf(fact_3817_of__int__ceiling__le__add__one,axiom,
! [R2: real] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ R2 ) ) @ ( plus_plus_real @ R2 @ one_one_real ) ) ).
% of_int_ceiling_le_add_one
thf(fact_3818_of__int__ceiling__le__add__one,axiom,
! [R2: rat] : ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ R2 ) ) @ ( plus_plus_rat @ R2 @ one_one_rat ) ) ).
% of_int_ceiling_le_add_one
thf(fact_3819_of__int__ceiling__diff__one__le,axiom,
! [R2: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ R2 ) ) @ one_one_real ) @ R2 ) ).
% of_int_ceiling_diff_one_le
thf(fact_3820_of__int__ceiling__diff__one__le,axiom,
! [R2: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ R2 ) ) @ one_one_rat ) @ R2 ) ).
% of_int_ceiling_diff_one_le
thf(fact_3821_of__nat__less__of__int__iff,axiom,
! [N: nat,X2: int] :
( ( ord_less_rat @ ( semiri681578069525770553at_rat @ N ) @ ( ring_1_of_int_rat @ X2 ) )
= ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ X2 ) ) ).
% of_nat_less_of_int_iff
thf(fact_3822_of__nat__less__of__int__iff,axiom,
! [N: nat,X2: int] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( ring_1_of_int_real @ X2 ) )
= ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ X2 ) ) ).
% of_nat_less_of_int_iff
thf(fact_3823_of__nat__less__of__int__iff,axiom,
! [N: nat,X2: int] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( ring_1_of_int_int @ X2 ) )
= ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ X2 ) ) ).
% of_nat_less_of_int_iff
thf(fact_3824_bset_I9_J,axiom,
! [D2: int,D4: int,B4: set_int,T2: int] :
( ( dvd_dvd_int @ D2 @ D4 )
=> ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ B4 )
=> ( X4
!= ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
=> ( ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ T2 ) )
=> ( dvd_dvd_int @ D2 @ ( plus_plus_int @ ( minus_minus_int @ X4 @ D4 ) @ T2 ) ) ) ) ) ).
% bset(9)
thf(fact_3825_bset_I10_J,axiom,
! [D2: int,D4: int,B4: set_int,T2: int] :
( ( dvd_dvd_int @ D2 @ D4 )
=> ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ B4 )
=> ( X4
!= ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
=> ( ~ ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ T2 ) )
=> ~ ( dvd_dvd_int @ D2 @ ( plus_plus_int @ ( minus_minus_int @ X4 @ D4 ) @ T2 ) ) ) ) ) ).
% bset(10)
thf(fact_3826_aset_I9_J,axiom,
! [D2: int,D4: int,A2: set_int,T2: int] :
( ( dvd_dvd_int @ D2 @ D4 )
=> ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
=> ( ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ T2 ) )
=> ( dvd_dvd_int @ D2 @ ( plus_plus_int @ ( plus_plus_int @ X4 @ D4 ) @ T2 ) ) ) ) ) ).
% aset(9)
thf(fact_3827_aset_I10_J,axiom,
! [D2: int,D4: int,A2: set_int,T2: int] :
( ( dvd_dvd_int @ D2 @ D4 )
=> ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
=> ( ~ ( dvd_dvd_int @ D2 @ ( plus_plus_int @ X4 @ T2 ) )
=> ~ ( dvd_dvd_int @ D2 @ ( plus_plus_int @ ( plus_plus_int @ X4 @ D4 ) @ T2 ) ) ) ) ) ).
% aset(10)
thf(fact_3828_int__le__real__less,axiom,
( ord_less_eq_int
= ( ^ [N3: int,M5: int] : ( ord_less_real @ ( ring_1_of_int_real @ N3 ) @ ( plus_plus_real @ ( ring_1_of_int_real @ M5 ) @ one_one_real ) ) ) ) ).
% int_le_real_less
thf(fact_3829_int__less__real__le,axiom,
( ord_less_int
= ( ^ [N3: int,M5: int] : ( ord_less_eq_real @ ( plus_plus_real @ ( ring_1_of_int_real @ N3 ) @ one_one_real ) @ ( ring_1_of_int_real @ M5 ) ) ) ) ).
% int_less_real_le
thf(fact_3830_ceiling__split,axiom,
! [P: int > $o,T2: real] :
( ( P @ ( archim7802044766580827645g_real @ T2 ) )
= ( ! [I3: int] :
( ( ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ I3 ) @ one_one_real ) @ T2 )
& ( ord_less_eq_real @ T2 @ ( ring_1_of_int_real @ I3 ) ) )
=> ( P @ I3 ) ) ) ) ).
% ceiling_split
thf(fact_3831_ceiling__split,axiom,
! [P: int > $o,T2: rat] :
( ( P @ ( archim2889992004027027881ng_rat @ T2 ) )
= ( ! [I3: int] :
( ( ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ I3 ) @ one_one_rat ) @ T2 )
& ( ord_less_eq_rat @ T2 @ ( ring_1_of_int_rat @ I3 ) ) )
=> ( P @ I3 ) ) ) ) ).
% ceiling_split
thf(fact_3832_ceiling__eq__iff,axiom,
! [X2: real,A: int] :
( ( ( archim7802044766580827645g_real @ X2 )
= A )
= ( ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ A ) @ one_one_real ) @ X2 )
& ( ord_less_eq_real @ X2 @ ( ring_1_of_int_real @ A ) ) ) ) ).
% ceiling_eq_iff
thf(fact_3833_ceiling__eq__iff,axiom,
! [X2: rat,A: int] :
( ( ( archim2889992004027027881ng_rat @ X2 )
= A )
= ( ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ A ) @ one_one_rat ) @ X2 )
& ( ord_less_eq_rat @ X2 @ ( ring_1_of_int_rat @ A ) ) ) ) ).
% ceiling_eq_iff
thf(fact_3834_ceiling__unique,axiom,
! [Z: int,X2: real] :
( ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ Z ) @ one_one_real ) @ X2 )
=> ( ( ord_less_eq_real @ X2 @ ( ring_1_of_int_real @ Z ) )
=> ( ( archim7802044766580827645g_real @ X2 )
= Z ) ) ) ).
% ceiling_unique
thf(fact_3835_ceiling__unique,axiom,
! [Z: int,X2: rat] :
( ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat ) @ X2 )
=> ( ( ord_less_eq_rat @ X2 @ ( ring_1_of_int_rat @ Z ) )
=> ( ( archim2889992004027027881ng_rat @ X2 )
= Z ) ) ) ).
% ceiling_unique
thf(fact_3836_ceiling__correct,axiom,
! [X2: real] :
( ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X2 ) ) @ one_one_real ) @ X2 )
& ( ord_less_eq_real @ X2 @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X2 ) ) ) ) ).
% ceiling_correct
thf(fact_3837_ceiling__correct,axiom,
! [X2: rat] :
( ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ X2 ) ) @ one_one_rat ) @ X2 )
& ( ord_less_eq_rat @ X2 @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ X2 ) ) ) ) ).
% ceiling_correct
thf(fact_3838_ceiling__less__iff,axiom,
! [X2: real,Z: int] :
( ( ord_less_int @ ( archim7802044766580827645g_real @ X2 ) @ Z )
= ( ord_less_eq_real @ X2 @ ( minus_minus_real @ ( ring_1_of_int_real @ Z ) @ one_one_real ) ) ) ).
% ceiling_less_iff
thf(fact_3839_ceiling__less__iff,axiom,
! [X2: rat,Z: int] :
( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X2 ) @ Z )
= ( ord_less_eq_rat @ X2 @ ( minus_minus_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat ) ) ) ).
% ceiling_less_iff
thf(fact_3840_le__ceiling__iff,axiom,
! [Z: int,X2: rat] :
( ( ord_less_eq_int @ Z @ ( archim2889992004027027881ng_rat @ X2 ) )
= ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat ) @ X2 ) ) ).
% le_ceiling_iff
thf(fact_3841_le__ceiling__iff,axiom,
! [Z: int,X2: real] :
( ( ord_less_eq_int @ Z @ ( archim7802044766580827645g_real @ X2 ) )
= ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ Z ) @ one_one_real ) @ X2 ) ) ).
% le_ceiling_iff
thf(fact_3842_bset_I3_J,axiom,
! [D4: int,T2: int,B4: set_int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ( ( member_int @ ( minus_minus_int @ T2 @ one_one_int ) @ B4 )
=> ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ B4 )
=> ( X4
!= ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
=> ( ( X4 = T2 )
=> ( ( minus_minus_int @ X4 @ D4 )
= T2 ) ) ) ) ) ).
% bset(3)
thf(fact_3843_bset_I4_J,axiom,
! [D4: int,T2: int,B4: set_int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ( ( member_int @ T2 @ B4 )
=> ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ B4 )
=> ( X4
!= ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
=> ( ( X4 != T2 )
=> ( ( minus_minus_int @ X4 @ D4 )
!= T2 ) ) ) ) ) ).
% bset(4)
thf(fact_3844_bset_I5_J,axiom,
! [D4: int,B4: set_int,T2: int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ B4 )
=> ( X4
!= ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
=> ( ( ord_less_int @ X4 @ T2 )
=> ( ord_less_int @ ( minus_minus_int @ X4 @ D4 ) @ T2 ) ) ) ) ).
% bset(5)
thf(fact_3845_bset_I7_J,axiom,
! [D4: int,T2: int,B4: set_int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ( ( member_int @ T2 @ B4 )
=> ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ B4 )
=> ( X4
!= ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
=> ( ( ord_less_int @ T2 @ X4 )
=> ( ord_less_int @ T2 @ ( minus_minus_int @ X4 @ D4 ) ) ) ) ) ) ).
% bset(7)
thf(fact_3846_aset_I3_J,axiom,
! [D4: int,T2: int,A2: set_int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ( ( member_int @ ( plus_plus_int @ T2 @ one_one_int ) @ A2 )
=> ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
=> ( ( X4 = T2 )
=> ( ( plus_plus_int @ X4 @ D4 )
= T2 ) ) ) ) ) ).
% aset(3)
thf(fact_3847_aset_I4_J,axiom,
! [D4: int,T2: int,A2: set_int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ( ( member_int @ T2 @ A2 )
=> ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
=> ( ( X4 != T2 )
=> ( ( plus_plus_int @ X4 @ D4 )
!= T2 ) ) ) ) ) ).
% aset(4)
thf(fact_3848_aset_I5_J,axiom,
! [D4: int,T2: int,A2: set_int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ( ( member_int @ T2 @ A2 )
=> ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
=> ( ( ord_less_int @ X4 @ T2 )
=> ( ord_less_int @ ( plus_plus_int @ X4 @ D4 ) @ T2 ) ) ) ) ) ).
% aset(5)
thf(fact_3849_aset_I7_J,axiom,
! [D4: int,A2: set_int,T2: int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
=> ( ( ord_less_int @ T2 @ X4 )
=> ( ord_less_int @ T2 @ ( plus_plus_int @ X4 @ D4 ) ) ) ) ) ).
% aset(7)
thf(fact_3850_periodic__finite__ex,axiom,
! [D2: int,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D2 )
=> ( ! [X3: int,K3: int] :
( ( P @ X3 )
= ( P @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D2 ) ) ) )
=> ( ( ? [X6: int] : ( P @ X6 ) )
= ( ? [X: int] :
( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D2 ) )
& ( P @ X ) ) ) ) ) ) ).
% periodic_finite_ex
thf(fact_3851_real__of__int__div2,axiom,
! [N: int,X2: int] : ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ X2 ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ N @ X2 ) ) ) ) ).
% real_of_int_div2
thf(fact_3852_real__of__int__div3,axiom,
! [N: int,X2: int] : ( ord_less_eq_real @ ( minus_minus_real @ ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ X2 ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ N @ X2 ) ) ) @ one_one_real ) ).
% real_of_int_div3
thf(fact_3853_ceiling__divide__upper,axiom,
! [Q2: real,P2: real] :
( ( ord_less_real @ zero_zero_real @ Q2 )
=> ( ord_less_eq_real @ P2 @ ( times_times_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ ( divide_divide_real @ P2 @ Q2 ) ) ) @ Q2 ) ) ) ).
% ceiling_divide_upper
thf(fact_3854_ceiling__divide__upper,axiom,
! [Q2: rat,P2: rat] :
( ( ord_less_rat @ zero_zero_rat @ Q2 )
=> ( ord_less_eq_rat @ P2 @ ( times_times_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ ( divide_divide_rat @ P2 @ Q2 ) ) ) @ Q2 ) ) ) ).
% ceiling_divide_upper
thf(fact_3855_even__of__int__iff,axiom,
! [K: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( ring_1_of_int_int @ K ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ).
% even_of_int_iff
thf(fact_3856_bset_I6_J,axiom,
! [D4: int,B4: set_int,T2: int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ B4 )
=> ( X4
!= ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
=> ( ( ord_less_eq_int @ X4 @ T2 )
=> ( ord_less_eq_int @ ( minus_minus_int @ X4 @ D4 ) @ T2 ) ) ) ) ).
% bset(6)
thf(fact_3857_bset_I8_J,axiom,
! [D4: int,T2: int,B4: set_int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ( ( member_int @ ( minus_minus_int @ T2 @ one_one_int ) @ B4 )
=> ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ B4 )
=> ( X4
!= ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
=> ( ( ord_less_eq_int @ T2 @ X4 )
=> ( ord_less_eq_int @ T2 @ ( minus_minus_int @ X4 @ D4 ) ) ) ) ) ) ).
% bset(8)
thf(fact_3858_aset_I6_J,axiom,
! [D4: int,T2: int,A2: set_int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ( ( member_int @ ( plus_plus_int @ T2 @ one_one_int ) @ A2 )
=> ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
=> ( ( ord_less_eq_int @ X4 @ T2 )
=> ( ord_less_eq_int @ ( plus_plus_int @ X4 @ D4 ) @ T2 ) ) ) ) ) ).
% aset(6)
thf(fact_3859_aset_I8_J,axiom,
! [D4: int,A2: set_int,T2: int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
=> ( ( ord_less_eq_int @ T2 @ X4 )
=> ( ord_less_eq_int @ T2 @ ( plus_plus_int @ X4 @ D4 ) ) ) ) ) ).
% aset(8)
thf(fact_3860_cppi,axiom,
! [D4: int,P: int > $o,P4: int > $o,A2: set_int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ( ? [Z4: int] :
! [X3: int] :
( ( ord_less_int @ Z4 @ X3 )
=> ( ( P @ X3 )
= ( P4 @ X3 ) ) )
=> ( ! [X3: int] :
( ! [Xa: int] :
( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ A2 )
=> ( X3
!= ( minus_minus_int @ Xb @ Xa ) ) ) )
=> ( ( P @ X3 )
=> ( P @ ( plus_plus_int @ X3 @ D4 ) ) ) )
=> ( ! [X3: int,K3: int] :
( ( P4 @ X3 )
= ( P4 @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D4 ) ) ) )
=> ( ( ? [X6: int] : ( P @ X6 ) )
= ( ? [X: int] :
( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
& ( P4 @ X ) )
| ? [X: int] :
( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
& ? [Y: int] :
( ( member_int @ Y @ A2 )
& ( P @ ( minus_minus_int @ Y @ X ) ) ) ) ) ) ) ) ) ) ).
% cppi
thf(fact_3861_cpmi,axiom,
! [D4: int,P: int > $o,P4: int > $o,B4: set_int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ( ? [Z4: int] :
! [X3: int] :
( ( ord_less_int @ X3 @ Z4 )
=> ( ( P @ X3 )
= ( P4 @ X3 ) ) )
=> ( ! [X3: int] :
( ! [Xa: int] :
( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ B4 )
=> ( X3
!= ( plus_plus_int @ Xb @ Xa ) ) ) )
=> ( ( P @ X3 )
=> ( P @ ( minus_minus_int @ X3 @ D4 ) ) ) )
=> ( ! [X3: int,K3: int] :
( ( P4 @ X3 )
= ( P4 @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D4 ) ) ) )
=> ( ( ? [X6: int] : ( P @ X6 ) )
= ( ? [X: int] :
( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
& ( P4 @ X ) )
| ? [X: int] :
( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D4 ) )
& ? [Y: int] :
( ( member_int @ Y @ B4 )
& ( P @ ( plus_plus_int @ Y @ X ) ) ) ) ) ) ) ) ) ) ).
% cpmi
thf(fact_3862_ceiling__divide__lower,axiom,
! [Q2: real,P2: real] :
( ( ord_less_real @ zero_zero_real @ Q2 )
=> ( ord_less_real @ ( times_times_real @ ( minus_minus_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ ( divide_divide_real @ P2 @ Q2 ) ) ) @ one_one_real ) @ Q2 ) @ P2 ) ) ).
% ceiling_divide_lower
thf(fact_3863_ceiling__divide__lower,axiom,
! [Q2: rat,P2: rat] :
( ( ord_less_rat @ zero_zero_rat @ Q2 )
=> ( ord_less_rat @ ( times_times_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ ( divide_divide_rat @ P2 @ Q2 ) ) ) @ one_one_rat ) @ Q2 ) @ P2 ) ) ).
% ceiling_divide_lower
thf(fact_3864_ceiling__eq,axiom,
! [N: int,X2: real] :
( ( ord_less_real @ ( ring_1_of_int_real @ N ) @ X2 )
=> ( ( ord_less_eq_real @ X2 @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
=> ( ( archim7802044766580827645g_real @ X2 )
= ( plus_plus_int @ N @ one_one_int ) ) ) ) ).
% ceiling_eq
thf(fact_3865_ceiling__eq,axiom,
! [N: int,X2: rat] :
( ( ord_less_rat @ ( ring_1_of_int_rat @ N ) @ X2 )
=> ( ( ord_less_eq_rat @ X2 @ ( plus_plus_rat @ ( ring_1_of_int_rat @ N ) @ one_one_rat ) )
=> ( ( archim2889992004027027881ng_rat @ X2 )
= ( plus_plus_int @ N @ one_one_int ) ) ) ) ).
% ceiling_eq
thf(fact_3866_Abs__fnat__hom__add,axiom,
! [A: nat,B: nat] :
( ( plus_plus_rat @ ( semiri681578069525770553at_rat @ A ) @ ( semiri681578069525770553at_rat @ B ) )
= ( semiri681578069525770553at_rat @ ( plus_plus_nat @ A @ B ) ) ) ).
% Abs_fnat_hom_add
thf(fact_3867_Abs__fnat__hom__add,axiom,
! [A: nat,B: nat] :
( ( plus_plus_real @ ( semiri5074537144036343181t_real @ A ) @ ( semiri5074537144036343181t_real @ B ) )
= ( semiri5074537144036343181t_real @ ( plus_plus_nat @ A @ B ) ) ) ).
% Abs_fnat_hom_add
thf(fact_3868_Abs__fnat__hom__add,axiom,
! [A: nat,B: nat] :
( ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
= ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) ) ) ).
% Abs_fnat_hom_add
thf(fact_3869_Abs__fnat__hom__add,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ A ) @ ( semiri1316708129612266289at_nat @ B ) )
= ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ A @ B ) ) ) ).
% Abs_fnat_hom_add
thf(fact_3870_of__nat__gt__0,axiom,
! [K: nat] :
( ( ( semiri8010041392384452111omplex @ K )
!= zero_zero_complex )
=> ( ord_less_nat @ zero_zero_nat @ K ) ) ).
% of_nat_gt_0
thf(fact_3871_of__nat__gt__0,axiom,
! [K: nat] :
( ( ( semiri681578069525770553at_rat @ K )
!= zero_zero_rat )
=> ( ord_less_nat @ zero_zero_nat @ K ) ) ).
% of_nat_gt_0
thf(fact_3872_of__nat__gt__0,axiom,
! [K: nat] :
( ( ( semiri5074537144036343181t_real @ K )
!= zero_zero_real )
=> ( ord_less_nat @ zero_zero_nat @ K ) ) ).
% of_nat_gt_0
thf(fact_3873_of__nat__gt__0,axiom,
! [K: nat] :
( ( ( semiri1314217659103216013at_int @ K )
!= zero_zero_int )
=> ( ord_less_nat @ zero_zero_nat @ K ) ) ).
% of_nat_gt_0
thf(fact_3874_of__nat__gt__0,axiom,
! [K: nat] :
( ( ( semiri1316708129612266289at_nat @ K )
!= zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ K ) ) ).
% of_nat_gt_0
thf(fact_3875_atLeastatMost__psubset__iff,axiom,
! [A: set_nat,B: set_nat,C: set_nat,D2: set_nat] :
( ( ord_less_set_set_nat @ ( set_or4548717258645045905et_nat @ A @ B ) @ ( set_or4548717258645045905et_nat @ C @ D2 ) )
= ( ( ~ ( ord_less_eq_set_nat @ A @ B )
| ( ( ord_less_eq_set_nat @ C @ A )
& ( ord_less_eq_set_nat @ B @ D2 )
& ( ( ord_less_set_nat @ C @ A )
| ( ord_less_set_nat @ B @ D2 ) ) ) )
& ( ord_less_eq_set_nat @ C @ D2 ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_3876_atLeastatMost__psubset__iff,axiom,
! [A: rat,B: rat,C: rat,D2: rat] :
( ( ord_less_set_rat @ ( set_or633870826150836451st_rat @ A @ B ) @ ( set_or633870826150836451st_rat @ C @ D2 ) )
= ( ( ~ ( ord_less_eq_rat @ A @ B )
| ( ( ord_less_eq_rat @ C @ A )
& ( ord_less_eq_rat @ B @ D2 )
& ( ( ord_less_rat @ C @ A )
| ( ord_less_rat @ B @ D2 ) ) ) )
& ( ord_less_eq_rat @ C @ D2 ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_3877_atLeastatMost__psubset__iff,axiom,
! [A: num,B: num,C: num,D2: num] :
( ( ord_less_set_num @ ( set_or7049704709247886629st_num @ A @ B ) @ ( set_or7049704709247886629st_num @ C @ D2 ) )
= ( ( ~ ( ord_less_eq_num @ A @ B )
| ( ( ord_less_eq_num @ C @ A )
& ( ord_less_eq_num @ B @ D2 )
& ( ( ord_less_num @ C @ A )
| ( ord_less_num @ B @ D2 ) ) ) )
& ( ord_less_eq_num @ C @ D2 ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_3878_atLeastatMost__psubset__iff,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ord_less_set_nat @ ( set_or1269000886237332187st_nat @ A @ B ) @ ( set_or1269000886237332187st_nat @ C @ D2 ) )
= ( ( ~ ( ord_less_eq_nat @ A @ B )
| ( ( ord_less_eq_nat @ C @ A )
& ( ord_less_eq_nat @ B @ D2 )
& ( ( ord_less_nat @ C @ A )
| ( ord_less_nat @ B @ D2 ) ) ) )
& ( ord_less_eq_nat @ C @ D2 ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_3879_atLeastatMost__psubset__iff,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ord_less_set_int @ ( set_or1266510415728281911st_int @ A @ B ) @ ( set_or1266510415728281911st_int @ C @ D2 ) )
= ( ( ~ ( ord_less_eq_int @ A @ B )
| ( ( ord_less_eq_int @ C @ A )
& ( ord_less_eq_int @ B @ D2 )
& ( ( ord_less_int @ C @ A )
| ( ord_less_int @ B @ D2 ) ) ) )
& ( ord_less_eq_int @ C @ D2 ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_3880_atLeastatMost__psubset__iff,axiom,
! [A: code_integer,B: code_integer,C: code_integer,D2: code_integer] :
( ( ord_le1307284697595431911nteger @ ( set_or189985376899183464nteger @ A @ B ) @ ( set_or189985376899183464nteger @ C @ D2 ) )
= ( ( ~ ( ord_le3102999989581377725nteger @ A @ B )
| ( ( ord_le3102999989581377725nteger @ C @ A )
& ( ord_le3102999989581377725nteger @ B @ D2 )
& ( ( ord_le6747313008572928689nteger @ C @ A )
| ( ord_le6747313008572928689nteger @ B @ D2 ) ) ) )
& ( ord_le3102999989581377725nteger @ C @ D2 ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_3881_atLeastatMost__psubset__iff,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ord_less_set_real @ ( set_or1222579329274155063t_real @ A @ B ) @ ( set_or1222579329274155063t_real @ C @ D2 ) )
= ( ( ~ ( ord_less_eq_real @ A @ B )
| ( ( ord_less_eq_real @ C @ A )
& ( ord_less_eq_real @ B @ D2 )
& ( ( ord_less_real @ C @ A )
| ( ord_less_real @ B @ D2 ) ) ) )
& ( ord_less_eq_real @ C @ D2 ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_3882_vebt__insert_Osimps_I3_J,axiom,
! [Info: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S3: vEBT_VEBT,X2: nat] :
( ( vEBT_vebt_insert @ ( vEBT_Node @ Info @ ( suc @ zero_zero_nat ) @ Ts @ S3 ) @ X2 )
= ( vEBT_Node @ Info @ ( suc @ zero_zero_nat ) @ Ts @ S3 ) ) ).
% vebt_insert.simps(3)
thf(fact_3883_low__inv,axiom,
! [X2: nat,N: nat,Y2: nat] :
( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ Y2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ X2 ) @ N )
= X2 ) ) ).
% low_inv
thf(fact_3884_height__compose__child,axiom,
! [T2: vEBT_VEBT,TreeList: list_VEBT_VEBT,Info: option4927543243414619207at_nat,Deg: nat,Summary: vEBT_VEBT] :
( ( member_VEBT_VEBT @ T2 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ T2 ) ) @ ( vEBT_VEBT_height @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) ) ) ) ).
% height_compose_child
thf(fact_3885_round__unique,axiom,
! [X2: real,Y2: int] :
( ( ord_less_real @ ( minus_minus_real @ X2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_real @ Y2 ) )
=> ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Y2 ) @ ( plus_plus_real @ X2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
=> ( ( archim8280529875227126926d_real @ X2 )
= Y2 ) ) ) ).
% round_unique
thf(fact_3886_round__unique,axiom,
! [X2: rat,Y2: int] :
( ( ord_less_rat @ ( minus_minus_rat @ X2 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_rat @ Y2 ) )
=> ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Y2 ) @ ( plus_plus_rat @ X2 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) )
=> ( ( archim7778729529865785530nd_rat @ X2 )
= Y2 ) ) ) ).
% round_unique
thf(fact_3887_mult__le__cancel__iff2,axiom,
! [Z: real,X2: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ Z )
=> ( ( ord_less_eq_real @ ( times_times_real @ Z @ X2 ) @ ( times_times_real @ Z @ Y2 ) )
= ( ord_less_eq_real @ X2 @ Y2 ) ) ) ).
% mult_le_cancel_iff2
thf(fact_3888_mult__le__cancel__iff2,axiom,
! [Z: rat,X2: rat,Y2: rat] :
( ( ord_less_rat @ zero_zero_rat @ Z )
=> ( ( ord_less_eq_rat @ ( times_times_rat @ Z @ X2 ) @ ( times_times_rat @ Z @ Y2 ) )
= ( ord_less_eq_rat @ X2 @ Y2 ) ) ) ).
% mult_le_cancel_iff2
thf(fact_3889_mult__le__cancel__iff2,axiom,
! [Z: int,X2: int,Y2: int] :
( ( ord_less_int @ zero_zero_int @ Z )
=> ( ( ord_less_eq_int @ ( times_times_int @ Z @ X2 ) @ ( times_times_int @ Z @ Y2 ) )
= ( ord_less_eq_int @ X2 @ Y2 ) ) ) ).
% mult_le_cancel_iff2
thf(fact_3890_mult__le__cancel__iff1,axiom,
! [Z: real,X2: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ Z )
=> ( ( ord_less_eq_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ Y2 @ Z ) )
= ( ord_less_eq_real @ X2 @ Y2 ) ) ) ).
% mult_le_cancel_iff1
thf(fact_3891_mult__le__cancel__iff1,axiom,
! [Z: rat,X2: rat,Y2: rat] :
( ( ord_less_rat @ zero_zero_rat @ Z )
=> ( ( ord_less_eq_rat @ ( times_times_rat @ X2 @ Z ) @ ( times_times_rat @ Y2 @ Z ) )
= ( ord_less_eq_rat @ X2 @ Y2 ) ) ) ).
% mult_le_cancel_iff1
thf(fact_3892_mult__le__cancel__iff1,axiom,
! [Z: int,X2: int,Y2: int] :
( ( ord_less_int @ zero_zero_int @ Z )
=> ( ( ord_less_eq_int @ ( times_times_int @ X2 @ Z ) @ ( times_times_int @ Y2 @ Z ) )
= ( ord_less_eq_int @ X2 @ Y2 ) ) ) ).
% mult_le_cancel_iff1
thf(fact_3893_bit__split__inv,axiom,
! [X2: nat,D2: nat] :
( ( vEBT_VEBT_bit_concat @ ( vEBT_VEBT_high @ X2 @ D2 ) @ ( vEBT_VEBT_low @ X2 @ D2 ) @ D2 )
= X2 ) ).
% bit_split_inv
thf(fact_3894_Ball__set__replicate,axiom,
! [N: nat,A: real,P: real > $o] :
( ( ! [X: real] :
( ( member_real @ X @ ( set_real2 @ ( replicate_real @ N @ A ) ) )
=> ( P @ X ) ) )
= ( ( P @ A )
| ( N = zero_zero_nat ) ) ) ).
% Ball_set_replicate
thf(fact_3895_Ball__set__replicate,axiom,
! [N: nat,A: nat,P: nat > $o] :
( ( ! [X: nat] :
( ( member_nat @ X @ ( set_nat2 @ ( replicate_nat @ N @ A ) ) )
=> ( P @ X ) ) )
= ( ( P @ A )
| ( N = zero_zero_nat ) ) ) ).
% Ball_set_replicate
thf(fact_3896_Ball__set__replicate,axiom,
! [N: nat,A: int,P: int > $o] :
( ( ! [X: int] :
( ( member_int @ X @ ( set_int2 @ ( replicate_int @ N @ A ) ) )
=> ( P @ X ) ) )
= ( ( P @ A )
| ( N = zero_zero_nat ) ) ) ).
% Ball_set_replicate
thf(fact_3897_Ball__set__replicate,axiom,
! [N: nat,A: vEBT_VEBT,P: vEBT_VEBT > $o] :
( ( ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N @ A ) ) )
=> ( P @ X ) ) )
= ( ( P @ A )
| ( N = zero_zero_nat ) ) ) ).
% Ball_set_replicate
thf(fact_3898_Bex__set__replicate,axiom,
! [N: nat,A: real,P: real > $o] :
( ( ? [X: real] :
( ( member_real @ X @ ( set_real2 @ ( replicate_real @ N @ A ) ) )
& ( P @ X ) ) )
= ( ( P @ A )
& ( N != zero_zero_nat ) ) ) ).
% Bex_set_replicate
thf(fact_3899_Bex__set__replicate,axiom,
! [N: nat,A: nat,P: nat > $o] :
( ( ? [X: nat] :
( ( member_nat @ X @ ( set_nat2 @ ( replicate_nat @ N @ A ) ) )
& ( P @ X ) ) )
= ( ( P @ A )
& ( N != zero_zero_nat ) ) ) ).
% Bex_set_replicate
thf(fact_3900_Bex__set__replicate,axiom,
! [N: nat,A: int,P: int > $o] :
( ( ? [X: int] :
( ( member_int @ X @ ( set_int2 @ ( replicate_int @ N @ A ) ) )
& ( P @ X ) ) )
= ( ( P @ A )
& ( N != zero_zero_nat ) ) ) ).
% Bex_set_replicate
thf(fact_3901_Bex__set__replicate,axiom,
! [N: nat,A: vEBT_VEBT,P: vEBT_VEBT > $o] :
( ( ? [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N @ A ) ) )
& ( P @ X ) ) )
= ( ( P @ A )
& ( N != zero_zero_nat ) ) ) ).
% Bex_set_replicate
thf(fact_3902_in__set__replicate,axiom,
! [X2: real,N: nat,Y2: real] :
( ( member_real @ X2 @ ( set_real2 @ ( replicate_real @ N @ Y2 ) ) )
= ( ( X2 = Y2 )
& ( N != zero_zero_nat ) ) ) ).
% in_set_replicate
thf(fact_3903_in__set__replicate,axiom,
! [X2: nat,N: nat,Y2: nat] :
( ( member_nat @ X2 @ ( set_nat2 @ ( replicate_nat @ N @ Y2 ) ) )
= ( ( X2 = Y2 )
& ( N != zero_zero_nat ) ) ) ).
% in_set_replicate
thf(fact_3904_in__set__replicate,axiom,
! [X2: int,N: nat,Y2: int] :
( ( member_int @ X2 @ ( set_int2 @ ( replicate_int @ N @ Y2 ) ) )
= ( ( X2 = Y2 )
& ( N != zero_zero_nat ) ) ) ).
% in_set_replicate
thf(fact_3905_in__set__replicate,axiom,
! [X2: vEBT_VEBT,N: nat,Y2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N @ Y2 ) ) )
= ( ( X2 = Y2 )
& ( N != zero_zero_nat ) ) ) ).
% in_set_replicate
thf(fact_3906_round__0,axiom,
( ( archim8280529875227126926d_real @ zero_zero_real )
= zero_zero_int ) ).
% round_0
thf(fact_3907_round__0,axiom,
( ( archim7778729529865785530nd_rat @ zero_zero_rat )
= zero_zero_int ) ).
% round_0
thf(fact_3908_round__numeral,axiom,
! [N: num] :
( ( archim8280529875227126926d_real @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_int @ N ) ) ).
% round_numeral
thf(fact_3909_round__numeral,axiom,
! [N: num] :
( ( archim7778729529865785530nd_rat @ ( numeral_numeral_rat @ N ) )
= ( numeral_numeral_int @ N ) ) ).
% round_numeral
thf(fact_3910_round__1,axiom,
( ( archim8280529875227126926d_real @ one_one_real )
= one_one_int ) ).
% round_1
thf(fact_3911_round__1,axiom,
( ( archim7778729529865785530nd_rat @ one_one_rat )
= one_one_int ) ).
% round_1
thf(fact_3912_round__of__nat,axiom,
! [N: nat] :
( ( archim8280529875227126926d_real @ ( semiri5074537144036343181t_real @ N ) )
= ( semiri1314217659103216013at_int @ N ) ) ).
% round_of_nat
thf(fact_3913_subset__code_I1_J,axiom,
! [Xs2: list_VEBT_VEBT,B4: set_VEBT_VEBT] :
( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs2 ) @ B4 )
= ( ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ Xs2 ) )
=> ( member_VEBT_VEBT @ X @ B4 ) ) ) ) ).
% subset_code(1)
thf(fact_3914_subset__code_I1_J,axiom,
! [Xs2: list_real,B4: set_real] :
( ( ord_less_eq_set_real @ ( set_real2 @ Xs2 ) @ B4 )
= ( ! [X: real] :
( ( member_real @ X @ ( set_real2 @ Xs2 ) )
=> ( member_real @ X @ B4 ) ) ) ) ).
% subset_code(1)
thf(fact_3915_subset__code_I1_J,axiom,
! [Xs2: list_int,B4: set_int] :
( ( ord_less_eq_set_int @ ( set_int2 @ Xs2 ) @ B4 )
= ( ! [X: int] :
( ( member_int @ X @ ( set_int2 @ Xs2 ) )
=> ( member_int @ X @ B4 ) ) ) ) ).
% subset_code(1)
thf(fact_3916_subset__code_I1_J,axiom,
! [Xs2: list_nat,B4: set_nat] :
( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs2 ) @ B4 )
= ( ! [X: nat] :
( ( member_nat @ X @ ( set_nat2 @ Xs2 ) )
=> ( member_nat @ X @ B4 ) ) ) ) ).
% subset_code(1)
thf(fact_3917_round__mono,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_eq_rat @ X2 @ Y2 )
=> ( ord_less_eq_int @ ( archim7778729529865785530nd_rat @ X2 ) @ ( archim7778729529865785530nd_rat @ Y2 ) ) ) ).
% round_mono
thf(fact_3918_VEBT__internal_Oexp__split__high__low_I2_J,axiom,
! [X2: nat,N: nat,M: nat] :
( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( vEBT_VEBT_low @ X2 @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).
% VEBT_internal.exp_split_high_low(2)
thf(fact_3919_mult__less__iff1,axiom,
! [Z: real,X2: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ Z )
=> ( ( ord_less_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ Y2 @ Z ) )
= ( ord_less_real @ X2 @ Y2 ) ) ) ).
% mult_less_iff1
thf(fact_3920_mult__less__iff1,axiom,
! [Z: rat,X2: rat,Y2: rat] :
( ( ord_less_rat @ zero_zero_rat @ Z )
=> ( ( ord_less_rat @ ( times_times_rat @ X2 @ Z ) @ ( times_times_rat @ Y2 @ Z ) )
= ( ord_less_rat @ X2 @ Y2 ) ) ) ).
% mult_less_iff1
thf(fact_3921_mult__less__iff1,axiom,
! [Z: int,X2: int,Y2: int] :
( ( ord_less_int @ zero_zero_int @ Z )
=> ( ( ord_less_int @ ( times_times_int @ X2 @ Z ) @ ( times_times_int @ Y2 @ Z ) )
= ( ord_less_int @ X2 @ Y2 ) ) ) ).
% mult_less_iff1
thf(fact_3922_of__int__round__le,axiom,
! [X2: real] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X2 ) ) @ ( plus_plus_real @ X2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% of_int_round_le
thf(fact_3923_of__int__round__le,axiom,
! [X2: rat] : ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X2 ) ) @ ( plus_plus_rat @ X2 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).
% of_int_round_le
thf(fact_3924_of__int__round__ge,axiom,
! [X2: real] : ( ord_less_eq_real @ ( minus_minus_real @ X2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X2 ) ) ) ).
% of_int_round_ge
thf(fact_3925_of__int__round__ge,axiom,
! [X2: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ X2 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X2 ) ) ) ).
% of_int_round_ge
thf(fact_3926_of__int__round__gt,axiom,
! [X2: real] : ( ord_less_real @ ( minus_minus_real @ X2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X2 ) ) ) ).
% of_int_round_gt
thf(fact_3927_of__int__round__gt,axiom,
! [X2: rat] : ( ord_less_rat @ ( minus_minus_rat @ X2 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X2 ) ) ) ).
% of_int_round_gt
thf(fact_3928_vebt__insert_Osimps_I2_J,axiom,
! [Info: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S3: vEBT_VEBT,X2: nat] :
( ( vEBT_vebt_insert @ ( vEBT_Node @ Info @ zero_zero_nat @ Ts @ S3 ) @ X2 )
= ( vEBT_Node @ Info @ zero_zero_nat @ Ts @ S3 ) ) ).
% vebt_insert.simps(2)
thf(fact_3929_both__member__options__ding,axiom,
! [Info: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ N )
=> ( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
=> ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ X2 ) ) ) ) ).
% both_member_options_ding
thf(fact_3930_set__n__deg__not__0,axiom,
! [TreeList: list_VEBT_VEBT,N: nat,M: nat] :
( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ( vEBT_invar_vebt @ X3 @ N ) )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ord_less_eq_nat @ one_one_nat @ N ) ) ) ).
% set_n_deg_not_0
thf(fact_3931_artanh__0,axiom,
( ( artanh_real @ zero_zero_real )
= zero_zero_real ) ).
% artanh_0
thf(fact_3932_arsinh__0,axiom,
( ( arsinh_real @ zero_zero_real )
= zero_zero_real ) ).
% arsinh_0
thf(fact_3933_unset__bit__0,axiom,
! [A: int] :
( ( bit_se4203085406695923979it_int @ zero_zero_nat @ A )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% unset_bit_0
thf(fact_3934_unset__bit__0,axiom,
! [A: nat] :
( ( bit_se4205575877204974255it_nat @ zero_zero_nat @ A )
= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% unset_bit_0
thf(fact_3935_low__def,axiom,
( vEBT_VEBT_low
= ( ^ [X: nat,N3: nat] : ( modulo_modulo_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).
% low_def
thf(fact_3936_vebt__buildup_Oelims,axiom,
! [X2: nat,Y2: vEBT_VEBT] :
( ( ( vEBT_vebt_buildup @ X2 )
= Y2 )
=> ( ( ( X2 = zero_zero_nat )
=> ( Y2
!= ( vEBT_Leaf @ $false @ $false ) ) )
=> ( ( ( X2
= ( suc @ zero_zero_nat ) )
=> ( Y2
!= ( vEBT_Leaf @ $false @ $false ) ) )
=> ~ ! [Va2: nat] :
( ( X2
= ( suc @ ( suc @ Va2 ) ) )
=> ~ ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( Y2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va2 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( Y2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va2 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_buildup.elims
thf(fact_3937_intind,axiom,
! [I: nat,N: nat,P: nat > $o,X2: nat] :
( ( ord_less_nat @ I @ N )
=> ( ( P @ X2 )
=> ( P @ ( nth_nat @ ( replicate_nat @ N @ X2 ) @ I ) ) ) ) ).
% intind
thf(fact_3938_intind,axiom,
! [I: nat,N: nat,P: int > $o,X2: int] :
( ( ord_less_nat @ I @ N )
=> ( ( P @ X2 )
=> ( P @ ( nth_int @ ( replicate_int @ N @ X2 ) @ I ) ) ) ) ).
% intind
thf(fact_3939_intind,axiom,
! [I: nat,N: nat,P: vEBT_VEBT > $o,X2: vEBT_VEBT] :
( ( ord_less_nat @ I @ N )
=> ( ( P @ X2 )
=> ( P @ ( nth_VEBT_VEBT @ ( replicate_VEBT_VEBT @ N @ X2 ) @ I ) ) ) ) ).
% intind
thf(fact_3940_Leaf__0__not,axiom,
! [A: $o,B: $o] :
~ ( vEBT_invar_vebt @ ( vEBT_Leaf @ A @ B ) @ zero_zero_nat ) ).
% Leaf_0_not
thf(fact_3941_deg__1__Leafy,axiom,
! [T2: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( N = one_one_nat )
=> ? [A4: $o,B3: $o] :
( T2
= ( vEBT_Leaf @ A4 @ B3 ) ) ) ) ).
% deg_1_Leafy
thf(fact_3942_deg__1__Leaf,axiom,
! [T2: vEBT_VEBT] :
( ( vEBT_invar_vebt @ T2 @ one_one_nat )
=> ? [A4: $o,B3: $o] :
( T2
= ( vEBT_Leaf @ A4 @ B3 ) ) ) ).
% deg_1_Leaf
thf(fact_3943_deg1Leaf,axiom,
! [T2: vEBT_VEBT] :
( ( vEBT_invar_vebt @ T2 @ one_one_nat )
= ( ? [A3: $o,B2: $o] :
( T2
= ( vEBT_Leaf @ A3 @ B2 ) ) ) ) ).
% deg1Leaf
thf(fact_3944_inthall,axiom,
! [Xs2: list_VEBT_VEBT,P: vEBT_VEBT > $o,N: nat] :
( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ Xs2 ) )
=> ( P @ X3 ) )
=> ( ( ord_less_nat @ N @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
=> ( P @ ( nth_VEBT_VEBT @ Xs2 @ N ) ) ) ) ).
% inthall
thf(fact_3945_inthall,axiom,
! [Xs2: list_real,P: real > $o,N: nat] :
( ! [X3: real] :
( ( member_real @ X3 @ ( set_real2 @ Xs2 ) )
=> ( P @ X3 ) )
=> ( ( ord_less_nat @ N @ ( size_size_list_real @ Xs2 ) )
=> ( P @ ( nth_real @ Xs2 @ N ) ) ) ) ).
% inthall
thf(fact_3946_inthall,axiom,
! [Xs2: list_o,P: $o > $o,N: nat] :
( ! [X3: $o] :
( ( member_o @ X3 @ ( set_o2 @ Xs2 ) )
=> ( P @ X3 ) )
=> ( ( ord_less_nat @ N @ ( size_size_list_o @ Xs2 ) )
=> ( P @ ( nth_o @ Xs2 @ N ) ) ) ) ).
% inthall
thf(fact_3947_inthall,axiom,
! [Xs2: list_nat,P: nat > $o,N: nat] :
( ! [X3: nat] :
( ( member_nat @ X3 @ ( set_nat2 @ Xs2 ) )
=> ( P @ X3 ) )
=> ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs2 ) )
=> ( P @ ( nth_nat @ Xs2 @ N ) ) ) ) ).
% inthall
thf(fact_3948_inthall,axiom,
! [Xs2: list_int,P: int > $o,N: nat] :
( ! [X3: int] :
( ( member_int @ X3 @ ( set_int2 @ Xs2 ) )
=> ( P @ X3 ) )
=> ( ( ord_less_nat @ N @ ( size_size_list_int @ Xs2 ) )
=> ( P @ ( nth_int @ Xs2 @ N ) ) ) ) ).
% inthall
thf(fact_3949_mod__mod__trivial,axiom,
! [A: nat,B: nat] :
( ( modulo_modulo_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_mod_trivial
thf(fact_3950_mod__mod__trivial,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ ( modulo_modulo_int @ A @ B ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_mod_trivial
thf(fact_3951_mod__mod__trivial,axiom,
! [A: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% mod_mod_trivial
thf(fact_3952_VEBT_Oinject_I2_J,axiom,
! [X21: $o,X222: $o,Y21: $o,Y222: $o] :
( ( ( vEBT_Leaf @ X21 @ X222 )
= ( vEBT_Leaf @ Y21 @ Y222 ) )
= ( ( X21 = Y21 )
& ( X222 = Y222 ) ) ) ).
% VEBT.inject(2)
thf(fact_3953_bits__mod__0,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% bits_mod_0
thf(fact_3954_bits__mod__0,axiom,
! [A: int] :
( ( modulo_modulo_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% bits_mod_0
thf(fact_3955_bits__mod__0,axiom,
! [A: code_integer] :
( ( modulo364778990260209775nteger @ zero_z3403309356797280102nteger @ A )
= zero_z3403309356797280102nteger ) ).
% bits_mod_0
thf(fact_3956_mod__self,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ A @ A )
= zero_zero_nat ) ).
% mod_self
thf(fact_3957_mod__self,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ A )
= zero_zero_int ) ).
% mod_self
thf(fact_3958_mod__self,axiom,
! [A: code_integer] :
( ( modulo364778990260209775nteger @ A @ A )
= zero_z3403309356797280102nteger ) ).
% mod_self
thf(fact_3959_mod__by__0,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ A @ zero_zero_nat )
= A ) ).
% mod_by_0
thf(fact_3960_mod__by__0,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ zero_zero_int )
= A ) ).
% mod_by_0
thf(fact_3961_mod__by__0,axiom,
! [A: code_integer] :
( ( modulo364778990260209775nteger @ A @ zero_z3403309356797280102nteger )
= A ) ).
% mod_by_0
thf(fact_3962_mod__0,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% mod_0
thf(fact_3963_mod__0,axiom,
! [A: int] :
( ( modulo_modulo_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% mod_0
thf(fact_3964_mod__0,axiom,
! [A: code_integer] :
( ( modulo364778990260209775nteger @ zero_z3403309356797280102nteger @ A )
= zero_z3403309356797280102nteger ) ).
% mod_0
thf(fact_3965_mod__add__self1,axiom,
! [B: nat,A: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_add_self1
thf(fact_3966_mod__add__self1,axiom,
! [B: int,A: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ B @ A ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_add_self1
thf(fact_3967_mod__add__self1,axiom,
! [B: code_integer,A: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ B @ A ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% mod_add_self1
thf(fact_3968_mod__add__self2,axiom,
! [A: nat,B: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_add_self2
thf(fact_3969_mod__add__self2,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_add_self2
thf(fact_3970_mod__add__self2,axiom,
! [A: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% mod_add_self2
thf(fact_3971_minus__mod__self2,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% minus_mod_self2
thf(fact_3972_minus__mod__self2,axiom,
! [A: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% minus_mod_self2
thf(fact_3973_unset__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se4203085406695923979it_int @ N @ K ) )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% unset_bit_nonnegative_int_iff
thf(fact_3974_unset__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se4203085406695923979it_int @ N @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% unset_bit_negative_int_iff
thf(fact_3975_mod__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( modulo_modulo_nat @ M @ N )
= M ) ) ).
% mod_less
thf(fact_3976_length__replicate,axiom,
! [N: nat,X2: vEBT_VEBT] :
( ( size_s6755466524823107622T_VEBT @ ( replicate_VEBT_VEBT @ N @ X2 ) )
= N ) ).
% length_replicate
thf(fact_3977_length__replicate,axiom,
! [N: nat,X2: real] :
( ( size_size_list_real @ ( replicate_real @ N @ X2 ) )
= N ) ).
% length_replicate
thf(fact_3978_length__replicate,axiom,
! [N: nat,X2: $o] :
( ( size_size_list_o @ ( replicate_o @ N @ X2 ) )
= N ) ).
% length_replicate
thf(fact_3979_length__replicate,axiom,
! [N: nat,X2: nat] :
( ( size_size_list_nat @ ( replicate_nat @ N @ X2 ) )
= N ) ).
% length_replicate
thf(fact_3980_length__replicate,axiom,
! [N: nat,X2: int] :
( ( size_size_list_int @ ( replicate_int @ N @ X2 ) )
= N ) ).
% length_replicate
thf(fact_3981_bits__mod__by__1,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ A @ one_one_nat )
= zero_zero_nat ) ).
% bits_mod_by_1
thf(fact_3982_bits__mod__by__1,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ one_one_int )
= zero_zero_int ) ).
% bits_mod_by_1
thf(fact_3983_bits__mod__by__1,axiom,
! [A: code_integer] :
( ( modulo364778990260209775nteger @ A @ one_one_Code_integer )
= zero_z3403309356797280102nteger ) ).
% bits_mod_by_1
thf(fact_3984_mod__by__1,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ A @ one_one_nat )
= zero_zero_nat ) ).
% mod_by_1
thf(fact_3985_mod__by__1,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ one_one_int )
= zero_zero_int ) ).
% mod_by_1
thf(fact_3986_mod__by__1,axiom,
! [A: code_integer] :
( ( modulo364778990260209775nteger @ A @ one_one_Code_integer )
= zero_z3403309356797280102nteger ) ).
% mod_by_1
thf(fact_3987_mod__mult__self1__is__0,axiom,
! [B: nat,A: nat] :
( ( modulo_modulo_nat @ ( times_times_nat @ B @ A ) @ B )
= zero_zero_nat ) ).
% mod_mult_self1_is_0
thf(fact_3988_mod__mult__self1__is__0,axiom,
! [B: int,A: int] :
( ( modulo_modulo_int @ ( times_times_int @ B @ A ) @ B )
= zero_zero_int ) ).
% mod_mult_self1_is_0
thf(fact_3989_mod__mult__self1__is__0,axiom,
! [B: code_integer,A: code_integer] :
( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ B @ A ) @ B )
= zero_z3403309356797280102nteger ) ).
% mod_mult_self1_is_0
thf(fact_3990_mod__mult__self2__is__0,axiom,
! [A: nat,B: nat] :
( ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ B )
= zero_zero_nat ) ).
% mod_mult_self2_is_0
thf(fact_3991_mod__mult__self2__is__0,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ B )
= zero_zero_int ) ).
% mod_mult_self2_is_0
thf(fact_3992_mod__mult__self2__is__0,axiom,
! [A: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ B )
= zero_z3403309356797280102nteger ) ).
% mod_mult_self2_is_0
thf(fact_3993_mod__div__trivial,axiom,
! [A: nat,B: nat] :
( ( divide_divide_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
= zero_zero_nat ) ).
% mod_div_trivial
thf(fact_3994_mod__div__trivial,axiom,
! [A: int,B: int] :
( ( divide_divide_int @ ( modulo_modulo_int @ A @ B ) @ B )
= zero_zero_int ) ).
% mod_div_trivial
thf(fact_3995_mod__div__trivial,axiom,
! [A: code_integer,B: code_integer] :
( ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
= zero_z3403309356797280102nteger ) ).
% mod_div_trivial
thf(fact_3996_bits__mod__div__trivial,axiom,
! [A: nat,B: nat] :
( ( divide_divide_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
= zero_zero_nat ) ).
% bits_mod_div_trivial
thf(fact_3997_bits__mod__div__trivial,axiom,
! [A: int,B: int] :
( ( divide_divide_int @ ( modulo_modulo_int @ A @ B ) @ B )
= zero_zero_int ) ).
% bits_mod_div_trivial
thf(fact_3998_bits__mod__div__trivial,axiom,
! [A: code_integer,B: code_integer] :
( ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
= zero_z3403309356797280102nteger ) ).
% bits_mod_div_trivial
thf(fact_3999_mod__mult__self1,axiom,
! [A: nat,C: nat,B: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_mult_self1
thf(fact_4000_mod__mult__self1,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( times_times_int @ C @ B ) ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_mult_self1
thf(fact_4001_mod__mult__self1,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ C @ B ) ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% mod_mult_self1
thf(fact_4002_mod__mult__self2,axiom,
! [A: nat,B: nat,C: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_mult_self2
thf(fact_4003_mod__mult__self2,axiom,
! [A: int,B: int,C: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( times_times_int @ B @ C ) ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_mult_self2
thf(fact_4004_mod__mult__self2,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% mod_mult_self2
thf(fact_4005_mod__mult__self3,axiom,
! [C: nat,B: nat,A: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_mult_self3
thf(fact_4006_mod__mult__self3,axiom,
! [C: int,B: int,A: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_mult_self3
thf(fact_4007_mod__mult__self3,axiom,
! [C: code_integer,B: code_integer,A: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ C @ B ) @ A ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% mod_mult_self3
thf(fact_4008_mod__mult__self4,axiom,
! [B: nat,C: nat,A: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_mult_self4
thf(fact_4009_mod__mult__self4,axiom,
! [B: int,C: int,A: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_mult_self4
thf(fact_4010_mod__mult__self4,axiom,
! [B: code_integer,C: code_integer,A: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ C ) @ A ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% mod_mult_self4
thf(fact_4011_dvd__imp__mod__0,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( modulo_modulo_nat @ B @ A )
= zero_zero_nat ) ) ).
% dvd_imp_mod_0
thf(fact_4012_dvd__imp__mod__0,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( modulo_modulo_int @ B @ A )
= zero_zero_int ) ) ).
% dvd_imp_mod_0
thf(fact_4013_dvd__imp__mod__0,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ B )
=> ( ( modulo364778990260209775nteger @ B @ A )
= zero_z3403309356797280102nteger ) ) ).
% dvd_imp_mod_0
thf(fact_4014_mod__by__Suc__0,axiom,
! [M: nat] :
( ( modulo_modulo_nat @ M @ ( suc @ zero_zero_nat ) )
= zero_zero_nat ) ).
% mod_by_Suc_0
thf(fact_4015_nth__replicate,axiom,
! [I: nat,N: nat,X2: nat] :
( ( ord_less_nat @ I @ N )
=> ( ( nth_nat @ ( replicate_nat @ N @ X2 ) @ I )
= X2 ) ) ).
% nth_replicate
thf(fact_4016_nth__replicate,axiom,
! [I: nat,N: nat,X2: int] :
( ( ord_less_nat @ I @ N )
=> ( ( nth_int @ ( replicate_int @ N @ X2 ) @ I )
= X2 ) ) ).
% nth_replicate
thf(fact_4017_nth__replicate,axiom,
! [I: nat,N: nat,X2: vEBT_VEBT] :
( ( ord_less_nat @ I @ N )
=> ( ( nth_VEBT_VEBT @ ( replicate_VEBT_VEBT @ N @ X2 ) @ I )
= X2 ) ) ).
% nth_replicate
thf(fact_4018_Suc__mod__mult__self4,axiom,
! [N: nat,K: nat,M: nat] :
( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ ( times_times_nat @ N @ K ) @ M ) ) @ N )
= ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).
% Suc_mod_mult_self4
thf(fact_4019_Suc__mod__mult__self3,axiom,
! [K: nat,N: nat,M: nat] :
( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ ( times_times_nat @ K @ N ) @ M ) ) @ N )
= ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).
% Suc_mod_mult_self3
thf(fact_4020_Suc__mod__mult__self2,axiom,
! [M: nat,N: nat,K: nat] :
( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ M @ ( times_times_nat @ N @ K ) ) ) @ N )
= ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).
% Suc_mod_mult_self2
thf(fact_4021_Suc__mod__mult__self1,axiom,
! [M: nat,K: nat,N: nat] :
( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ M @ ( times_times_nat @ K @ N ) ) ) @ N )
= ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).
% Suc_mod_mult_self1
thf(fact_4022_one__mod__two__eq__one,axiom,
( ( modulo_modulo_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ).
% one_mod_two_eq_one
thf(fact_4023_one__mod__two__eq__one,axiom,
( ( modulo_modulo_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ).
% one_mod_two_eq_one
thf(fact_4024_one__mod__two__eq__one,axiom,
( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= one_one_Code_integer ) ).
% one_mod_two_eq_one
thf(fact_4025_bits__one__mod__two__eq__one,axiom,
( ( modulo_modulo_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ).
% bits_one_mod_two_eq_one
thf(fact_4026_bits__one__mod__two__eq__one,axiom,
( ( modulo_modulo_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ).
% bits_one_mod_two_eq_one
thf(fact_4027_bits__one__mod__two__eq__one,axiom,
( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= one_one_Code_integer ) ).
% bits_one_mod_two_eq_one
thf(fact_4028_even__mod__2__iff,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ).
% even_mod_2_iff
thf(fact_4029_even__mod__2__iff,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).
% even_mod_2_iff
thf(fact_4030_even__mod__2__iff,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
= ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).
% even_mod_2_iff
thf(fact_4031_mod2__Suc__Suc,axiom,
! [M: nat] :
( ( modulo_modulo_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% mod2_Suc_Suc
thf(fact_4032_Suc__times__numeral__mod__eq,axiom,
! [K: num,N: nat] :
( ( ( numeral_numeral_nat @ K )
!= one_one_nat )
=> ( ( modulo_modulo_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ K ) @ N ) ) @ ( numeral_numeral_nat @ K ) )
= one_one_nat ) ) ).
% Suc_times_numeral_mod_eq
thf(fact_4033_not__mod__2__eq__1__eq__0,axiom,
! [A: nat] :
( ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
!= one_one_nat )
= ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ) ).
% not_mod_2_eq_1_eq_0
thf(fact_4034_not__mod__2__eq__1__eq__0,axiom,
! [A: int] :
( ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
!= one_one_int )
= ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ) ).
% not_mod_2_eq_1_eq_0
thf(fact_4035_not__mod__2__eq__1__eq__0,axiom,
! [A: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
!= one_one_Code_integer )
= ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= zero_z3403309356797280102nteger ) ) ).
% not_mod_2_eq_1_eq_0
thf(fact_4036_not__mod__2__eq__0__eq__1,axiom,
! [A: nat] :
( ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
!= zero_zero_nat )
= ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ) ).
% not_mod_2_eq_0_eq_1
thf(fact_4037_not__mod__2__eq__0__eq__1,axiom,
! [A: int] :
( ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
!= zero_zero_int )
= ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ) ).
% not_mod_2_eq_0_eq_1
thf(fact_4038_not__mod__2__eq__0__eq__1,axiom,
! [A: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
!= zero_z3403309356797280102nteger )
= ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= one_one_Code_integer ) ) ).
% not_mod_2_eq_0_eq_1
thf(fact_4039_not__mod2__eq__Suc__0__eq__0,axiom,
! [N: nat] :
( ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
!= ( suc @ zero_zero_nat ) )
= ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ) ).
% not_mod2_eq_Suc_0_eq_0
thf(fact_4040_add__self__mod__2,axiom,
! [M: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% add_self_mod_2
thf(fact_4041_Suc__mod__eq__add3__mod__numeral,axiom,
! [M: nat,V: num] :
( ( modulo_modulo_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral_nat @ V ) )
= ( modulo_modulo_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ ( numeral_numeral_nat @ V ) ) ) ).
% Suc_mod_eq_add3_mod_numeral
thf(fact_4042_mod__Suc__eq__mod__add3,axiom,
! [M: nat,N: nat] :
( ( modulo_modulo_nat @ M @ ( suc @ ( suc @ ( suc @ N ) ) ) )
= ( modulo_modulo_nat @ M @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N ) ) ) ).
% mod_Suc_eq_mod_add3
thf(fact_4043_mod2__gr__0,axiom,
! [M: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ) ).
% mod2_gr_0
thf(fact_4044_even__succ__mod__exp,axiom,
! [A: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( modulo_modulo_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( plus_plus_nat @ one_one_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).
% even_succ_mod_exp
thf(fact_4045_even__succ__mod__exp,axiom,
! [A: int,N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( plus_plus_int @ one_one_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).
% even_succ_mod_exp
thf(fact_4046_even__succ__mod__exp,axiom,
! [A: code_integer,N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
= ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).
% even_succ_mod_exp
thf(fact_4047_of__nat__mod,axiom,
! [M: nat,N: nat] :
( ( semiri4939895301339042750nteger @ ( modulo_modulo_nat @ M @ N ) )
= ( modulo364778990260209775nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N ) ) ) ).
% of_nat_mod
thf(fact_4048_of__nat__mod,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N ) )
= ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_mod
thf(fact_4049_of__nat__mod,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( modulo_modulo_nat @ M @ N ) )
= ( modulo_modulo_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% of_nat_mod
thf(fact_4050_size__neq__size__imp__neq,axiom,
! [X2: list_real,Y2: list_real] :
( ( ( size_size_list_real @ X2 )
!= ( size_size_list_real @ Y2 ) )
=> ( X2 != Y2 ) ) ).
% size_neq_size_imp_neq
thf(fact_4051_size__neq__size__imp__neq,axiom,
! [X2: list_o,Y2: list_o] :
( ( ( size_size_list_o @ X2 )
!= ( size_size_list_o @ Y2 ) )
=> ( X2 != Y2 ) ) ).
% size_neq_size_imp_neq
thf(fact_4052_size__neq__size__imp__neq,axiom,
! [X2: list_nat,Y2: list_nat] :
( ( ( size_size_list_nat @ X2 )
!= ( size_size_list_nat @ Y2 ) )
=> ( X2 != Y2 ) ) ).
% size_neq_size_imp_neq
thf(fact_4053_size__neq__size__imp__neq,axiom,
! [X2: list_int,Y2: list_int] :
( ( ( size_size_list_int @ X2 )
!= ( size_size_list_int @ Y2 ) )
=> ( X2 != Y2 ) ) ).
% size_neq_size_imp_neq
thf(fact_4054_size__neq__size__imp__neq,axiom,
! [X2: num,Y2: num] :
( ( ( size_size_num @ X2 )
!= ( size_size_num @ Y2 ) )
=> ( X2 != Y2 ) ) ).
% size_neq_size_imp_neq
thf(fact_4055_mod__add__eq,axiom,
! [A: nat,C: nat,B: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C )
= ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).
% mod_add_eq
thf(fact_4056_mod__add__eq,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
= ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% mod_add_eq
thf(fact_4057_mod__add__eq,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
= ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C ) ) ).
% mod_add_eq
thf(fact_4058_mod__add__cong,axiom,
! [A: nat,C: nat,A5: nat,B: nat,B6: nat] :
( ( ( modulo_modulo_nat @ A @ C )
= ( modulo_modulo_nat @ A5 @ C ) )
=> ( ( ( modulo_modulo_nat @ B @ C )
= ( modulo_modulo_nat @ B6 @ C ) )
=> ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( modulo_modulo_nat @ ( plus_plus_nat @ A5 @ B6 ) @ C ) ) ) ) ).
% mod_add_cong
thf(fact_4059_mod__add__cong,axiom,
! [A: int,C: int,A5: int,B: int,B6: int] :
( ( ( modulo_modulo_int @ A @ C )
= ( modulo_modulo_int @ A5 @ C ) )
=> ( ( ( modulo_modulo_int @ B @ C )
= ( modulo_modulo_int @ B6 @ C ) )
=> ( ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C )
= ( modulo_modulo_int @ ( plus_plus_int @ A5 @ B6 ) @ C ) ) ) ) ).
% mod_add_cong
thf(fact_4060_mod__add__cong,axiom,
! [A: code_integer,C: code_integer,A5: code_integer,B: code_integer,B6: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ C )
= ( modulo364778990260209775nteger @ A5 @ C ) )
=> ( ( ( modulo364778990260209775nteger @ B @ C )
= ( modulo364778990260209775nteger @ B6 @ C ) )
=> ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
= ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A5 @ B6 ) @ C ) ) ) ) ).
% mod_add_cong
thf(fact_4061_mod__add__left__eq,axiom,
! [A: nat,C: nat,B: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ B ) @ C )
= ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).
% mod_add_left_eq
thf(fact_4062_mod__add__left__eq,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
= ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% mod_add_left_eq
thf(fact_4063_mod__add__left__eq,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ C ) @ B ) @ C )
= ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C ) ) ).
% mod_add_left_eq
thf(fact_4064_mod__add__right__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C )
= ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).
% mod_add_right_eq
thf(fact_4065_mod__add__right__eq,axiom,
! [A: int,B: int,C: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
= ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% mod_add_right_eq
thf(fact_4066_mod__add__right__eq,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
= ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C ) ) ).
% mod_add_right_eq
thf(fact_4067_mod__mult__right__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( modulo_modulo_nat @ ( times_times_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C )
= ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).
% mod_mult_right_eq
thf(fact_4068_mod__mult__right__eq,axiom,
! [A: int,B: int,C: int] :
( ( modulo_modulo_int @ ( times_times_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
= ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C ) ) ).
% mod_mult_right_eq
thf(fact_4069_mod__mult__right__eq,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
= ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ).
% mod_mult_right_eq
thf(fact_4070_mod__mult__left__eq,axiom,
! [A: nat,C: nat,B: nat] :
( ( modulo_modulo_nat @ ( times_times_nat @ ( modulo_modulo_nat @ A @ C ) @ B ) @ C )
= ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).
% mod_mult_left_eq
thf(fact_4071_mod__mult__left__eq,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( times_times_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
= ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C ) ) ).
% mod_mult_left_eq
thf(fact_4072_mod__mult__left__eq,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ C ) @ B ) @ C )
= ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ).
% mod_mult_left_eq
thf(fact_4073_mult__mod__right,axiom,
! [C: nat,A: nat,B: nat] :
( ( times_times_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
= ( modulo_modulo_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ).
% mult_mod_right
thf(fact_4074_mult__mod__right,axiom,
! [C: int,A: int,B: int] :
( ( times_times_int @ C @ ( modulo_modulo_int @ A @ B ) )
= ( modulo_modulo_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ).
% mult_mod_right
thf(fact_4075_mult__mod__right,axiom,
! [C: code_integer,A: code_integer,B: code_integer] :
( ( times_3573771949741848930nteger @ C @ ( modulo364778990260209775nteger @ A @ B ) )
= ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ C @ A ) @ ( times_3573771949741848930nteger @ C @ B ) ) ) ).
% mult_mod_right
thf(fact_4076_mod__mult__mult2,axiom,
! [A: nat,C: nat,B: nat] :
( ( modulo_modulo_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
= ( times_times_nat @ ( modulo_modulo_nat @ A @ B ) @ C ) ) ).
% mod_mult_mult2
thf(fact_4077_mod__mult__mult2,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( times_times_int @ ( modulo_modulo_int @ A @ B ) @ C ) ) ).
% mod_mult_mult2
thf(fact_4078_mod__mult__mult2,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ C ) )
= ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ B ) @ C ) ) ).
% mod_mult_mult2
thf(fact_4079_mod__mult__cong,axiom,
! [A: nat,C: nat,A5: nat,B: nat,B6: nat] :
( ( ( modulo_modulo_nat @ A @ C )
= ( modulo_modulo_nat @ A5 @ C ) )
=> ( ( ( modulo_modulo_nat @ B @ C )
= ( modulo_modulo_nat @ B6 @ C ) )
=> ( ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C )
= ( modulo_modulo_nat @ ( times_times_nat @ A5 @ B6 ) @ C ) ) ) ) ).
% mod_mult_cong
thf(fact_4080_mod__mult__cong,axiom,
! [A: int,C: int,A5: int,B: int,B6: int] :
( ( ( modulo_modulo_int @ A @ C )
= ( modulo_modulo_int @ A5 @ C ) )
=> ( ( ( modulo_modulo_int @ B @ C )
= ( modulo_modulo_int @ B6 @ C ) )
=> ( ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C )
= ( modulo_modulo_int @ ( times_times_int @ A5 @ B6 ) @ C ) ) ) ) ).
% mod_mult_cong
thf(fact_4081_mod__mult__cong,axiom,
! [A: code_integer,C: code_integer,A5: code_integer,B: code_integer,B6: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ C )
= ( modulo364778990260209775nteger @ A5 @ C ) )
=> ( ( ( modulo364778990260209775nteger @ B @ C )
= ( modulo364778990260209775nteger @ B6 @ C ) )
=> ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C )
= ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A5 @ B6 ) @ C ) ) ) ) ).
% mod_mult_cong
thf(fact_4082_mod__mult__eq,axiom,
! [A: nat,C: nat,B: nat] :
( ( modulo_modulo_nat @ ( times_times_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C )
= ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).
% mod_mult_eq
thf(fact_4083_mod__mult__eq,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( times_times_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
= ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C ) ) ).
% mod_mult_eq
thf(fact_4084_mod__mult__eq,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
= ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ).
% mod_mult_eq
thf(fact_4085_mod__diff__right__eq,axiom,
! [A: int,B: int,C: int] :
( ( modulo_modulo_int @ ( minus_minus_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
= ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).
% mod_diff_right_eq
thf(fact_4086_mod__diff__right__eq,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
= ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C ) ) ).
% mod_diff_right_eq
thf(fact_4087_mod__diff__left__eq,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( minus_minus_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
= ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).
% mod_diff_left_eq
thf(fact_4088_mod__diff__left__eq,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ C ) @ B ) @ C )
= ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C ) ) ).
% mod_diff_left_eq
thf(fact_4089_mod__diff__cong,axiom,
! [A: int,C: int,A5: int,B: int,B6: int] :
( ( ( modulo_modulo_int @ A @ C )
= ( modulo_modulo_int @ A5 @ C ) )
=> ( ( ( modulo_modulo_int @ B @ C )
= ( modulo_modulo_int @ B6 @ C ) )
=> ( ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C )
= ( modulo_modulo_int @ ( minus_minus_int @ A5 @ B6 ) @ C ) ) ) ) ).
% mod_diff_cong
thf(fact_4090_mod__diff__cong,axiom,
! [A: code_integer,C: code_integer,A5: code_integer,B: code_integer,B6: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ C )
= ( modulo364778990260209775nteger @ A5 @ C ) )
=> ( ( ( modulo364778990260209775nteger @ B @ C )
= ( modulo364778990260209775nteger @ B6 @ C ) )
=> ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C )
= ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A5 @ B6 ) @ C ) ) ) ) ).
% mod_diff_cong
thf(fact_4091_mod__diff__eq,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( minus_minus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
= ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).
% mod_diff_eq
thf(fact_4092_mod__diff__eq,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
= ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C ) ) ).
% mod_diff_eq
thf(fact_4093_power__mod,axiom,
! [A: nat,B: nat,N: nat] :
( ( modulo_modulo_nat @ ( power_power_nat @ ( modulo_modulo_nat @ A @ B ) @ N ) @ B )
= ( modulo_modulo_nat @ ( power_power_nat @ A @ N ) @ B ) ) ).
% power_mod
thf(fact_4094_power__mod,axiom,
! [A: int,B: int,N: nat] :
( ( modulo_modulo_int @ ( power_power_int @ ( modulo_modulo_int @ A @ B ) @ N ) @ B )
= ( modulo_modulo_int @ ( power_power_int @ A @ N ) @ B ) ) ).
% power_mod
thf(fact_4095_power__mod,axiom,
! [A: code_integer,B: code_integer,N: nat] :
( ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ ( modulo364778990260209775nteger @ A @ B ) @ N ) @ B )
= ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ A @ N ) @ B ) ) ).
% power_mod
thf(fact_4096_mod__mod__cancel,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( modulo_modulo_nat @ ( modulo_modulo_nat @ A @ B ) @ C )
= ( modulo_modulo_nat @ A @ C ) ) ) ).
% mod_mod_cancel
thf(fact_4097_mod__mod__cancel,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( modulo_modulo_int @ ( modulo_modulo_int @ A @ B ) @ C )
= ( modulo_modulo_int @ A @ C ) ) ) ).
% mod_mod_cancel
thf(fact_4098_mod__mod__cancel,axiom,
! [C: code_integer,B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ C @ B )
=> ( ( modulo364778990260209775nteger @ ( modulo364778990260209775nteger @ A @ B ) @ C )
= ( modulo364778990260209775nteger @ A @ C ) ) ) ).
% mod_mod_cancel
thf(fact_4099_dvd__mod,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ K @ M )
=> ( ( dvd_dvd_nat @ K @ N )
=> ( dvd_dvd_nat @ K @ ( modulo_modulo_nat @ M @ N ) ) ) ) ).
% dvd_mod
thf(fact_4100_dvd__mod,axiom,
! [K: int,M: int,N: int] :
( ( dvd_dvd_int @ K @ M )
=> ( ( dvd_dvd_int @ K @ N )
=> ( dvd_dvd_int @ K @ ( modulo_modulo_int @ M @ N ) ) ) ) ).
% dvd_mod
thf(fact_4101_dvd__mod,axiom,
! [K: code_integer,M: code_integer,N: code_integer] :
( ( dvd_dvd_Code_integer @ K @ M )
=> ( ( dvd_dvd_Code_integer @ K @ N )
=> ( dvd_dvd_Code_integer @ K @ ( modulo364778990260209775nteger @ M @ N ) ) ) ) ).
% dvd_mod
thf(fact_4102_dvd__mod__imp__dvd,axiom,
! [C: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( dvd_dvd_nat @ C @ A ) ) ) ).
% dvd_mod_imp_dvd
thf(fact_4103_dvd__mod__imp__dvd,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ ( modulo_modulo_int @ A @ B ) )
=> ( ( dvd_dvd_int @ C @ B )
=> ( dvd_dvd_int @ C @ A ) ) ) ).
% dvd_mod_imp_dvd
thf(fact_4104_dvd__mod__imp__dvd,axiom,
! [C: code_integer,A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ C @ ( modulo364778990260209775nteger @ A @ B ) )
=> ( ( dvd_dvd_Code_integer @ C @ B )
=> ( dvd_dvd_Code_integer @ C @ A ) ) ) ).
% dvd_mod_imp_dvd
thf(fact_4105_dvd__mod__iff,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( dvd_dvd_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
= ( dvd_dvd_nat @ C @ A ) ) ) ).
% dvd_mod_iff
thf(fact_4106_dvd__mod__iff,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( dvd_dvd_int @ C @ ( modulo_modulo_int @ A @ B ) )
= ( dvd_dvd_int @ C @ A ) ) ) ).
% dvd_mod_iff
thf(fact_4107_dvd__mod__iff,axiom,
! [C: code_integer,B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ C @ B )
=> ( ( dvd_dvd_Code_integer @ C @ ( modulo364778990260209775nteger @ A @ B ) )
= ( dvd_dvd_Code_integer @ C @ A ) ) ) ).
% dvd_mod_iff
thf(fact_4108_mod__Suc__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( modulo_modulo_nat @ ( suc @ ( suc @ ( modulo_modulo_nat @ M @ N ) ) ) @ N )
= ( modulo_modulo_nat @ ( suc @ ( suc @ M ) ) @ N ) ) ).
% mod_Suc_Suc_eq
thf(fact_4109_mod__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( modulo_modulo_nat @ ( suc @ ( modulo_modulo_nat @ M @ N ) ) @ N )
= ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).
% mod_Suc_eq
thf(fact_4110_VEBT_Oexhaust,axiom,
! [Y2: vEBT_VEBT] :
( ! [X112: option4927543243414619207at_nat,X122: nat,X132: list_VEBT_VEBT,X142: vEBT_VEBT] :
( Y2
!= ( vEBT_Node @ X112 @ X122 @ X132 @ X142 ) )
=> ~ ! [X212: $o,X223: $o] :
( Y2
!= ( vEBT_Leaf @ X212 @ X223 ) ) ) ).
% VEBT.exhaust
thf(fact_4111_VEBT_Odistinct_I1_J,axiom,
! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT,X21: $o,X222: $o] :
( ( vEBT_Node @ X11 @ X12 @ X13 @ X14 )
!= ( vEBT_Leaf @ X21 @ X222 ) ) ).
% VEBT.distinct(1)
thf(fact_4112_mod__plus__right,axiom,
! [A: nat,X2: nat,M: nat,B: nat] :
( ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ X2 ) @ M )
= ( modulo_modulo_nat @ ( plus_plus_nat @ B @ X2 ) @ M ) )
= ( ( modulo_modulo_nat @ A @ M )
= ( modulo_modulo_nat @ B @ M ) ) ) ).
% mod_plus_right
thf(fact_4113_mod__less__eq__dividend,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N ) @ M ) ).
% mod_less_eq_dividend
thf(fact_4114_VEBT__internal_Omembermima_Osimps_I1_J,axiom,
! [Uu: $o,Uv: $o,Uw: nat] :
~ ( vEBT_VEBT_membermima @ ( vEBT_Leaf @ Uu @ Uv ) @ Uw ) ).
% VEBT_internal.membermima.simps(1)
thf(fact_4115_unset__bit__less__eq,axiom,
! [N: nat,K: int] : ( ord_less_eq_int @ ( bit_se4203085406695923979it_int @ N @ K ) @ K ) ).
% unset_bit_less_eq
thf(fact_4116_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ord_le3102999989581377725nteger @ ( modulo364778990260209775nteger @ A @ B ) @ A ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_4117_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ ( modulo_modulo_nat @ A @ B ) @ A ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_4118_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ ( modulo_modulo_int @ A @ B ) @ A ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_4119_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ ( modulo_modulo_nat @ A @ B ) @ B ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_4120_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_4121_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
! [B: code_integer,A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
=> ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_4122_cong__exp__iff__simps_I9_J,axiom,
! [M: num,Q2: num,N: num] :
( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q2 ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(9)
thf(fact_4123_cong__exp__iff__simps_I9_J,axiom,
! [M: num,Q2: num,N: num] :
( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q2 ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(9)
thf(fact_4124_cong__exp__iff__simps_I9_J,axiom,
! [M: num,Q2: num,N: num] :
( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q2 ) )
= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(9)
thf(fact_4125_cong__exp__iff__simps_I4_J,axiom,
! [M: num,N: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ one ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ one ) ) ) ).
% cong_exp_iff_simps(4)
thf(fact_4126_cong__exp__iff__simps_I4_J,axiom,
! [M: num,N: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ one ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ one ) ) ) ).
% cong_exp_iff_simps(4)
thf(fact_4127_cong__exp__iff__simps_I4_J,axiom,
! [M: num,N: num] :
( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ one ) )
= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ one ) ) ) ).
% cong_exp_iff_simps(4)
thf(fact_4128_mod__eq__self__iff__div__eq__0,axiom,
! [A: nat,B: nat] :
( ( ( modulo_modulo_nat @ A @ B )
= A )
= ( ( divide_divide_nat @ A @ B )
= zero_zero_nat ) ) ).
% mod_eq_self_iff_div_eq_0
thf(fact_4129_mod__eq__self__iff__div__eq__0,axiom,
! [A: int,B: int] :
( ( ( modulo_modulo_int @ A @ B )
= A )
= ( ( divide_divide_int @ A @ B )
= zero_zero_int ) ) ).
% mod_eq_self_iff_div_eq_0
thf(fact_4130_mod__eq__self__iff__div__eq__0,axiom,
! [A: code_integer,B: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ B )
= A )
= ( ( divide6298287555418463151nteger @ A @ B )
= zero_z3403309356797280102nteger ) ) ).
% mod_eq_self_iff_div_eq_0
thf(fact_4131_mod__eqE,axiom,
! [A: int,C: int,B: int] :
( ( ( modulo_modulo_int @ A @ C )
= ( modulo_modulo_int @ B @ C ) )
=> ~ ! [D3: int] :
( B
!= ( plus_plus_int @ A @ ( times_times_int @ C @ D3 ) ) ) ) ).
% mod_eqE
thf(fact_4132_mod__eqE,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ C )
= ( modulo364778990260209775nteger @ B @ C ) )
=> ~ ! [D3: code_integer] :
( B
!= ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ C @ D3 ) ) ) ) ).
% mod_eqE
thf(fact_4133_div__add1__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) @ ( divide_divide_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C ) ) ) ).
% div_add1_eq
thf(fact_4134_div__add1__eq,axiom,
! [A: int,B: int,C: int] :
( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) @ ( divide_divide_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C ) ) ) ).
% div_add1_eq
thf(fact_4135_div__add1__eq,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
= ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) @ ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C ) ) ) ).
% div_add1_eq
thf(fact_4136_mod__0__imp__dvd,axiom,
! [A: nat,B: nat] :
( ( ( modulo_modulo_nat @ A @ B )
= zero_zero_nat )
=> ( dvd_dvd_nat @ B @ A ) ) ).
% mod_0_imp_dvd
thf(fact_4137_mod__0__imp__dvd,axiom,
! [A: int,B: int] :
( ( ( modulo_modulo_int @ A @ B )
= zero_zero_int )
=> ( dvd_dvd_int @ B @ A ) ) ).
% mod_0_imp_dvd
thf(fact_4138_mod__0__imp__dvd,axiom,
! [A: code_integer,B: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ B )
= zero_z3403309356797280102nteger )
=> ( dvd_dvd_Code_integer @ B @ A ) ) ).
% mod_0_imp_dvd
thf(fact_4139_dvd__eq__mod__eq__0,axiom,
( dvd_dvd_nat
= ( ^ [A3: nat,B2: nat] :
( ( modulo_modulo_nat @ B2 @ A3 )
= zero_zero_nat ) ) ) ).
% dvd_eq_mod_eq_0
thf(fact_4140_dvd__eq__mod__eq__0,axiom,
( dvd_dvd_int
= ( ^ [A3: int,B2: int] :
( ( modulo_modulo_int @ B2 @ A3 )
= zero_zero_int ) ) ) ).
% dvd_eq_mod_eq_0
thf(fact_4141_dvd__eq__mod__eq__0,axiom,
( dvd_dvd_Code_integer
= ( ^ [A3: code_integer,B2: code_integer] :
( ( modulo364778990260209775nteger @ B2 @ A3 )
= zero_z3403309356797280102nteger ) ) ) ).
% dvd_eq_mod_eq_0
thf(fact_4142_mod__eq__0__iff__dvd,axiom,
! [A: nat,B: nat] :
( ( ( modulo_modulo_nat @ A @ B )
= zero_zero_nat )
= ( dvd_dvd_nat @ B @ A ) ) ).
% mod_eq_0_iff_dvd
thf(fact_4143_mod__eq__0__iff__dvd,axiom,
! [A: int,B: int] :
( ( ( modulo_modulo_int @ A @ B )
= zero_zero_int )
= ( dvd_dvd_int @ B @ A ) ) ).
% mod_eq_0_iff_dvd
thf(fact_4144_mod__eq__0__iff__dvd,axiom,
! [A: code_integer,B: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ B )
= zero_z3403309356797280102nteger )
= ( dvd_dvd_Code_integer @ B @ A ) ) ).
% mod_eq_0_iff_dvd
thf(fact_4145_dvd__minus__mod,axiom,
! [B: nat,A: nat] : ( dvd_dvd_nat @ B @ ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) ) ) ).
% dvd_minus_mod
thf(fact_4146_dvd__minus__mod,axiom,
! [B: int,A: int] : ( dvd_dvd_int @ B @ ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) ) ) ).
% dvd_minus_mod
thf(fact_4147_dvd__minus__mod,axiom,
! [B: code_integer,A: code_integer] : ( dvd_dvd_Code_integer @ B @ ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).
% dvd_minus_mod
thf(fact_4148_mod__eq__dvd__iff,axiom,
! [A: int,C: int,B: int] :
( ( ( modulo_modulo_int @ A @ C )
= ( modulo_modulo_int @ B @ C ) )
= ( dvd_dvd_int @ C @ ( minus_minus_int @ A @ B ) ) ) ).
% mod_eq_dvd_iff
thf(fact_4149_mod__eq__dvd__iff,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ C )
= ( modulo364778990260209775nteger @ B @ C ) )
= ( dvd_dvd_Code_integer @ C @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).
% mod_eq_dvd_iff
thf(fact_4150_mod__Suc,axiom,
! [M: nat,N: nat] :
( ( ( ( suc @ ( modulo_modulo_nat @ M @ N ) )
= N )
=> ( ( modulo_modulo_nat @ ( suc @ M ) @ N )
= zero_zero_nat ) )
& ( ( ( suc @ ( modulo_modulo_nat @ M @ N ) )
!= N )
=> ( ( modulo_modulo_nat @ ( suc @ M ) @ N )
= ( suc @ ( modulo_modulo_nat @ M @ N ) ) ) ) ) ).
% mod_Suc
thf(fact_4151_mod__induct,axiom,
! [P: nat > $o,N: nat,P2: nat,M: nat] :
( ( P @ N )
=> ( ( ord_less_nat @ N @ P2 )
=> ( ( ord_less_nat @ M @ P2 )
=> ( ! [N2: nat] :
( ( ord_less_nat @ N2 @ P2 )
=> ( ( P @ N2 )
=> ( P @ ( modulo_modulo_nat @ ( suc @ N2 ) @ P2 ) ) ) )
=> ( P @ M ) ) ) ) ) ).
% mod_induct
thf(fact_4152_nat__mod__lem,axiom,
! [N: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ B @ N )
= ( ( modulo_modulo_nat @ B @ N )
= B ) ) ) ).
% nat_mod_lem
thf(fact_4153_gcd__nat__induct,axiom,
! [P: nat > nat > $o,M: nat,N: nat] :
( ! [M3: nat] : ( P @ M3 @ zero_zero_nat )
=> ( ! [M3: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( P @ N2 @ ( modulo_modulo_nat @ M3 @ N2 ) )
=> ( P @ M3 @ N2 ) ) )
=> ( P @ M @ N ) ) ) ).
% gcd_nat_induct
thf(fact_4154_mod__less__divisor,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ ( modulo_modulo_nat @ M @ N ) @ N ) ) ).
% mod_less_divisor
thf(fact_4155_mod__Suc__le__divisor,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ ( suc @ N ) ) @ N ) ).
% mod_Suc_le_divisor
thf(fact_4156_word__rot__lem,axiom,
! [L2: nat,K: nat,D2: nat,N: nat] :
( ( ( plus_plus_nat @ L2 @ K )
= ( plus_plus_nat @ D2 @ ( modulo_modulo_nat @ K @ L2 ) ) )
=> ( ( ord_less_nat @ N @ L2 )
=> ( ( modulo_modulo_nat @ ( plus_plus_nat @ D2 @ N ) @ L2 )
= N ) ) ) ).
% word_rot_lem
thf(fact_4157_nat__minus__mod,axiom,
! [N: nat,M: nat] :
( ( modulo_modulo_nat @ ( minus_minus_nat @ N @ ( modulo_modulo_nat @ N @ M ) ) @ M )
= zero_zero_nat ) ).
% nat_minus_mod
thf(fact_4158_mod__geq,axiom,
! [M: nat,N: nat] :
( ~ ( ord_less_nat @ M @ N )
=> ( ( modulo_modulo_nat @ M @ N )
= ( modulo_modulo_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ).
% mod_geq
thf(fact_4159_mod__if,axiom,
( modulo_modulo_nat
= ( ^ [M5: nat,N3: nat] : ( if_nat @ ( ord_less_nat @ M5 @ N3 ) @ M5 @ ( modulo_modulo_nat @ ( minus_minus_nat @ M5 @ N3 ) @ N3 ) ) ) ) ).
% mod_if
thf(fact_4160_mod__eq__0D,axiom,
! [M: nat,D2: nat] :
( ( ( modulo_modulo_nat @ M @ D2 )
= zero_zero_nat )
=> ? [Q3: nat] :
( M
= ( times_times_nat @ D2 @ Q3 ) ) ) ).
% mod_eq_0D
thf(fact_4161_nat__minus__mod__plus__right,axiom,
! [N: nat,X2: nat,M: nat] :
( ( modulo_modulo_nat @ ( minus_minus_nat @ ( plus_plus_nat @ N @ X2 ) @ ( modulo_modulo_nat @ N @ M ) ) @ M )
= ( modulo_modulo_nat @ X2 @ M ) ) ).
% nat_minus_mod_plus_right
thf(fact_4162_le__mod__geq,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( modulo_modulo_nat @ M @ N )
= ( modulo_modulo_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ).
% le_mod_geq
thf(fact_4163_msrevs_I2_J,axiom,
! [K: nat,N: nat,M: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ ( times_times_nat @ K @ N ) @ M ) @ N )
= ( modulo_modulo_nat @ M @ N ) ) ).
% msrevs(2)
thf(fact_4164_nat__mod__eq__iff,axiom,
! [X2: nat,N: nat,Y2: nat] :
( ( ( modulo_modulo_nat @ X2 @ N )
= ( modulo_modulo_nat @ Y2 @ N ) )
= ( ? [Q1: nat,Q22: nat] :
( ( plus_plus_nat @ X2 @ ( times_times_nat @ N @ Q1 ) )
= ( plus_plus_nat @ Y2 @ ( times_times_nat @ N @ Q22 ) ) ) ) ) ).
% nat_mod_eq_iff
thf(fact_4165_replicate__length__same,axiom,
! [Xs2: list_VEBT_VEBT,X2: vEBT_VEBT] :
( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ Xs2 ) )
=> ( X3 = X2 ) )
=> ( ( replicate_VEBT_VEBT @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ X2 )
= Xs2 ) ) ).
% replicate_length_same
thf(fact_4166_replicate__length__same,axiom,
! [Xs2: list_real,X2: real] :
( ! [X3: real] :
( ( member_real @ X3 @ ( set_real2 @ Xs2 ) )
=> ( X3 = X2 ) )
=> ( ( replicate_real @ ( size_size_list_real @ Xs2 ) @ X2 )
= Xs2 ) ) ).
% replicate_length_same
thf(fact_4167_replicate__length__same,axiom,
! [Xs2: list_o,X2: $o] :
( ! [X3: $o] :
( ( member_o @ X3 @ ( set_o2 @ Xs2 ) )
=> ( X3 = X2 ) )
=> ( ( replicate_o @ ( size_size_list_o @ Xs2 ) @ X2 )
= Xs2 ) ) ).
% replicate_length_same
thf(fact_4168_replicate__length__same,axiom,
! [Xs2: list_nat,X2: nat] :
( ! [X3: nat] :
( ( member_nat @ X3 @ ( set_nat2 @ Xs2 ) )
=> ( X3 = X2 ) )
=> ( ( replicate_nat @ ( size_size_list_nat @ Xs2 ) @ X2 )
= Xs2 ) ) ).
% replicate_length_same
thf(fact_4169_replicate__length__same,axiom,
! [Xs2: list_int,X2: int] :
( ! [X3: int] :
( ( member_int @ X3 @ ( set_int2 @ Xs2 ) )
=> ( X3 = X2 ) )
=> ( ( replicate_int @ ( size_size_list_int @ Xs2 ) @ X2 )
= Xs2 ) ) ).
% replicate_length_same
thf(fact_4170_replicate__eqI,axiom,
! [Xs2: list_VEBT_VEBT,N: nat,X2: vEBT_VEBT] :
( ( ( size_s6755466524823107622T_VEBT @ Xs2 )
= N )
=> ( ! [Y3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ Y3 @ ( set_VEBT_VEBT2 @ Xs2 ) )
=> ( Y3 = X2 ) )
=> ( Xs2
= ( replicate_VEBT_VEBT @ N @ X2 ) ) ) ) ).
% replicate_eqI
thf(fact_4171_replicate__eqI,axiom,
! [Xs2: list_real,N: nat,X2: real] :
( ( ( size_size_list_real @ Xs2 )
= N )
=> ( ! [Y3: real] :
( ( member_real @ Y3 @ ( set_real2 @ Xs2 ) )
=> ( Y3 = X2 ) )
=> ( Xs2
= ( replicate_real @ N @ X2 ) ) ) ) ).
% replicate_eqI
thf(fact_4172_replicate__eqI,axiom,
! [Xs2: list_o,N: nat,X2: $o] :
( ( ( size_size_list_o @ Xs2 )
= N )
=> ( ! [Y3: $o] :
( ( member_o @ Y3 @ ( set_o2 @ Xs2 ) )
=> ( Y3 = X2 ) )
=> ( Xs2
= ( replicate_o @ N @ X2 ) ) ) ) ).
% replicate_eqI
thf(fact_4173_replicate__eqI,axiom,
! [Xs2: list_nat,N: nat,X2: nat] :
( ( ( size_size_list_nat @ Xs2 )
= N )
=> ( ! [Y3: nat] :
( ( member_nat @ Y3 @ ( set_nat2 @ Xs2 ) )
=> ( Y3 = X2 ) )
=> ( Xs2
= ( replicate_nat @ N @ X2 ) ) ) ) ).
% replicate_eqI
thf(fact_4174_replicate__eqI,axiom,
! [Xs2: list_int,N: nat,X2: int] :
( ( ( size_size_list_int @ Xs2 )
= N )
=> ( ! [Y3: int] :
( ( member_int @ Y3 @ ( set_int2 @ Xs2 ) )
=> ( Y3 = X2 ) )
=> ( Xs2
= ( replicate_int @ N @ X2 ) ) ) ) ).
% replicate_eqI
thf(fact_4175_vebt__buildup_Osimps_I1_J,axiom,
( ( vEBT_vebt_buildup @ zero_zero_nat )
= ( vEBT_Leaf @ $false @ $false ) ) ).
% vebt_buildup.simps(1)
thf(fact_4176_VEBT__internal_Ocnt_Osimps_I1_J,axiom,
! [A: $o,B: $o] :
( ( vEBT_VEBT_cnt @ ( vEBT_Leaf @ A @ B ) )
= one_one_real ) ).
% VEBT_internal.cnt.simps(1)
thf(fact_4177_VEBT__internal_Ocnt_H_Osimps_I1_J,axiom,
! [A: $o,B: $o] :
( ( vEBT_VEBT_cnt2 @ ( vEBT_Leaf @ A @ B ) )
= one_one_nat ) ).
% VEBT_internal.cnt'.simps(1)
thf(fact_4178_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( ord_le6747313008572928689nteger @ A @ B )
=> ( ( modulo364778990260209775nteger @ A @ B )
= A ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_4179_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ B )
=> ( ( modulo_modulo_nat @ A @ B )
= A ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_4180_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ B )
=> ( ( modulo_modulo_int @ A @ B )
= A ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_4181_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
! [B: code_integer,A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
=> ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_4182_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( modulo_modulo_nat @ A @ B ) ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_4183_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ A @ B ) ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_4184_cong__exp__iff__simps_I2_J,axiom,
! [N: num,Q2: num] :
( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
= zero_zero_nat )
= ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q2 ) )
= zero_zero_nat ) ) ).
% cong_exp_iff_simps(2)
thf(fact_4185_cong__exp__iff__simps_I2_J,axiom,
! [N: num,Q2: num] :
( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
= zero_zero_int )
= ( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q2 ) )
= zero_zero_int ) ) ).
% cong_exp_iff_simps(2)
thf(fact_4186_cong__exp__iff__simps_I2_J,axiom,
! [N: num,Q2: num] :
( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
= zero_z3403309356797280102nteger )
= ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q2 ) )
= zero_z3403309356797280102nteger ) ) ).
% cong_exp_iff_simps(2)
thf(fact_4187_cong__exp__iff__simps_I1_J,axiom,
! [N: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ one ) )
= zero_zero_nat ) ).
% cong_exp_iff_simps(1)
thf(fact_4188_cong__exp__iff__simps_I1_J,axiom,
! [N: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ one ) )
= zero_zero_int ) ).
% cong_exp_iff_simps(1)
thf(fact_4189_cong__exp__iff__simps_I1_J,axiom,
! [N: num] :
( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ one ) )
= zero_z3403309356797280102nteger ) ).
% cong_exp_iff_simps(1)
thf(fact_4190_cong__exp__iff__simps_I6_J,axiom,
! [Q2: num,N: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
!= ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(6)
thf(fact_4191_cong__exp__iff__simps_I6_J,axiom,
! [Q2: num,N: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
!= ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(6)
thf(fact_4192_cong__exp__iff__simps_I6_J,axiom,
! [Q2: num,N: num] :
( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
!= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(6)
thf(fact_4193_cong__exp__iff__simps_I8_J,axiom,
! [M: num,Q2: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
!= ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(8)
thf(fact_4194_cong__exp__iff__simps_I8_J,axiom,
! [M: num,Q2: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
!= ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(8)
thf(fact_4195_cong__exp__iff__simps_I8_J,axiom,
! [M: num,Q2: num] :
( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
!= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(8)
thf(fact_4196_cong__exp__iff__simps_I10_J,axiom,
! [M: num,Q2: num,N: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
!= ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(10)
thf(fact_4197_cong__exp__iff__simps_I10_J,axiom,
! [M: num,Q2: num,N: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
!= ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(10)
thf(fact_4198_cong__exp__iff__simps_I10_J,axiom,
! [M: num,Q2: num,N: num] :
( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
!= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(10)
thf(fact_4199_cong__exp__iff__simps_I12_J,axiom,
! [M: num,Q2: num,N: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
!= ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(12)
thf(fact_4200_cong__exp__iff__simps_I12_J,axiom,
! [M: num,Q2: num,N: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
!= ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(12)
thf(fact_4201_cong__exp__iff__simps_I12_J,axiom,
! [M: num,Q2: num,N: num] :
( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
!= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(12)
thf(fact_4202_cong__exp__iff__simps_I13_J,axiom,
! [M: num,Q2: num,N: num] :
( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q2 ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(13)
thf(fact_4203_cong__exp__iff__simps_I13_J,axiom,
! [M: num,Q2: num,N: num] :
( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q2 ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(13)
thf(fact_4204_cong__exp__iff__simps_I13_J,axiom,
! [M: num,Q2: num,N: num] :
( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q2 ) )
= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(13)
thf(fact_4205_div__mult1__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) ) @ ( divide_divide_nat @ ( times_times_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C ) ) ) ).
% div_mult1_eq
thf(fact_4206_div__mult1__eq,axiom,
! [A: int,B: int,C: int] :
( ( divide_divide_int @ ( times_times_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ ( divide_divide_int @ B @ C ) ) @ ( divide_divide_int @ ( times_times_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C ) ) ) ).
% div_mult1_eq
thf(fact_4207_div__mult1__eq,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C )
= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) ) @ ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C ) ) ) ).
% div_mult1_eq
thf(fact_4208_mult__div__mod__eq,axiom,
! [B: nat,A: nat] :
( ( plus_plus_nat @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) @ ( modulo_modulo_nat @ A @ B ) )
= A ) ).
% mult_div_mod_eq
thf(fact_4209_mult__div__mod__eq,axiom,
! [B: int,A: int] :
( ( plus_plus_int @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) @ ( modulo_modulo_int @ A @ B ) )
= A ) ).
% mult_div_mod_eq
thf(fact_4210_mult__div__mod__eq,axiom,
! [B: code_integer,A: code_integer] :
( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) @ ( modulo364778990260209775nteger @ A @ B ) )
= A ) ).
% mult_div_mod_eq
thf(fact_4211_mod__mult__div__eq,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ ( modulo_modulo_nat @ A @ B ) @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) )
= A ) ).
% mod_mult_div_eq
thf(fact_4212_mod__mult__div__eq,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( modulo_modulo_int @ A @ B ) @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) )
= A ) ).
% mod_mult_div_eq
thf(fact_4213_mod__mult__div__eq,axiom,
! [A: code_integer,B: code_integer] :
( ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ B ) @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) )
= A ) ).
% mod_mult_div_eq
thf(fact_4214_mod__div__mult__eq,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ ( modulo_modulo_nat @ A @ B ) @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) )
= A ) ).
% mod_div_mult_eq
thf(fact_4215_mod__div__mult__eq,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( modulo_modulo_int @ A @ B ) @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) )
= A ) ).
% mod_div_mult_eq
thf(fact_4216_mod__div__mult__eq,axiom,
! [A: code_integer,B: code_integer] :
( ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ B ) @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) )
= A ) ).
% mod_div_mult_eq
thf(fact_4217_div__mult__mod__eq,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) )
= A ) ).
% div_mult_mod_eq
thf(fact_4218_div__mult__mod__eq,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) )
= A ) ).
% div_mult_mod_eq
thf(fact_4219_div__mult__mod__eq,axiom,
! [A: code_integer,B: code_integer] :
( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) @ ( modulo364778990260209775nteger @ A @ B ) )
= A ) ).
% div_mult_mod_eq
thf(fact_4220_mod__div__decomp,axiom,
! [A: nat,B: nat] :
( A
= ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) ) ) ).
% mod_div_decomp
thf(fact_4221_mod__div__decomp,axiom,
! [A: int,B: int] :
( A
= ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) ) ) ).
% mod_div_decomp
thf(fact_4222_mod__div__decomp,axiom,
! [A: code_integer,B: code_integer] :
( A
= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).
% mod_div_decomp
thf(fact_4223_cancel__div__mod__rules_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) ) @ C )
= ( plus_plus_nat @ A @ C ) ) ).
% cancel_div_mod_rules(1)
thf(fact_4224_cancel__div__mod__rules_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) ) @ C )
= ( plus_plus_int @ A @ C ) ) ).
% cancel_div_mod_rules(1)
thf(fact_4225_cancel__div__mod__rules_I1_J,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) @ ( modulo364778990260209775nteger @ A @ B ) ) @ C )
= ( plus_p5714425477246183910nteger @ A @ C ) ) ).
% cancel_div_mod_rules(1)
thf(fact_4226_cancel__div__mod__rules_I2_J,axiom,
! [B: nat,A: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) @ ( modulo_modulo_nat @ A @ B ) ) @ C )
= ( plus_plus_nat @ A @ C ) ) ).
% cancel_div_mod_rules(2)
thf(fact_4227_cancel__div__mod__rules_I2_J,axiom,
! [B: int,A: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) @ ( modulo_modulo_int @ A @ B ) ) @ C )
= ( plus_plus_int @ A @ C ) ) ).
% cancel_div_mod_rules(2)
thf(fact_4228_cancel__div__mod__rules_I2_J,axiom,
! [B: code_integer,A: code_integer,C: code_integer] :
( ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) @ ( modulo364778990260209775nteger @ A @ B ) ) @ C )
= ( plus_p5714425477246183910nteger @ A @ C ) ) ).
% cancel_div_mod_rules(2)
thf(fact_4229_unit__imp__mod__eq__0,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( modulo_modulo_nat @ A @ B )
= zero_zero_nat ) ) ).
% unit_imp_mod_eq_0
thf(fact_4230_unit__imp__mod__eq__0,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( modulo_modulo_int @ A @ B )
= zero_zero_int ) ) ).
% unit_imp_mod_eq_0
thf(fact_4231_unit__imp__mod__eq__0,axiom,
! [B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( modulo364778990260209775nteger @ A @ B )
= zero_z3403309356797280102nteger ) ) ).
% unit_imp_mod_eq_0
thf(fact_4232_zmde,axiom,
! [B: int,A: int] :
( ( times_times_int @ B @ ( divide_divide_int @ A @ B ) )
= ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) ) ) ).
% zmde
thf(fact_4233_zmde,axiom,
! [B: code_integer,A: code_integer] :
( ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) )
= ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).
% zmde
thf(fact_4234_minus__mult__div__eq__mod,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) )
= ( modulo_modulo_nat @ A @ B ) ) ).
% minus_mult_div_eq_mod
thf(fact_4235_minus__mult__div__eq__mod,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ A @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) )
= ( modulo_modulo_int @ A @ B ) ) ).
% minus_mult_div_eq_mod
thf(fact_4236_minus__mult__div__eq__mod,axiom,
! [A: code_integer,B: code_integer] :
( ( minus_8373710615458151222nteger @ A @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% minus_mult_div_eq_mod
thf(fact_4237_minus__mod__eq__mult__div,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) )
= ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) ) ).
% minus_mod_eq_mult_div
thf(fact_4238_minus__mod__eq__mult__div,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) )
= ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) ) ).
% minus_mod_eq_mult_div
thf(fact_4239_minus__mod__eq__mult__div,axiom,
! [A: code_integer,B: code_integer] :
( ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) )
= ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) ) ).
% minus_mod_eq_mult_div
thf(fact_4240_minus__mod__eq__div__mult,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) )
= ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) ) ).
% minus_mod_eq_div_mult
thf(fact_4241_minus__mod__eq__div__mult,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) )
= ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) ) ).
% minus_mod_eq_div_mult
thf(fact_4242_minus__mod__eq__div__mult,axiom,
! [A: code_integer,B: code_integer] :
( ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) )
= ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) ) ).
% minus_mod_eq_div_mult
thf(fact_4243_minus__div__mult__eq__mod,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) )
= ( modulo_modulo_nat @ A @ B ) ) ).
% minus_div_mult_eq_mod
thf(fact_4244_minus__div__mult__eq__mod,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ A @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) )
= ( modulo_modulo_int @ A @ B ) ) ).
% minus_div_mult_eq_mod
thf(fact_4245_minus__div__mult__eq__mod,axiom,
! [A: code_integer,B: code_integer] :
( ( minus_8373710615458151222nteger @ A @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% minus_div_mult_eq_mod
thf(fact_4246_mod__le__divisor,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N ) @ N ) ) ).
% mod_le_divisor
thf(fact_4247_div__less__mono,axiom,
! [A2: nat,B4: nat,N: nat] :
( ( ord_less_nat @ A2 @ B4 )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( modulo_modulo_nat @ A2 @ N )
= zero_zero_nat )
=> ( ( ( modulo_modulo_nat @ B4 @ N )
= zero_zero_nat )
=> ( ord_less_nat @ ( divide_divide_nat @ A2 @ N ) @ ( divide_divide_nat @ B4 @ N ) ) ) ) ) ) ).
% div_less_mono
thf(fact_4248_mod__nat__add,axiom,
! [X2: nat,Z: nat,Y2: nat] :
( ( ord_less_nat @ X2 @ Z )
=> ( ( ord_less_nat @ Y2 @ Z )
=> ( ( ( ord_less_nat @ ( plus_plus_nat @ X2 @ Y2 ) @ Z )
=> ( ( modulo_modulo_nat @ ( plus_plus_nat @ X2 @ Y2 ) @ Z )
= ( plus_plus_nat @ X2 @ Y2 ) ) )
& ( ~ ( ord_less_nat @ ( plus_plus_nat @ X2 @ Y2 ) @ Z )
=> ( ( modulo_modulo_nat @ ( plus_plus_nat @ X2 @ Y2 ) @ Z )
= ( minus_minus_nat @ ( plus_plus_nat @ X2 @ Y2 ) @ Z ) ) ) ) ) ) ).
% mod_nat_add
thf(fact_4249_invar__vebt_Ointros_I1_J,axiom,
! [A: $o,B: $o] : ( vEBT_invar_vebt @ ( vEBT_Leaf @ A @ B ) @ ( suc @ zero_zero_nat ) ) ).
% invar_vebt.intros(1)
thf(fact_4250_mod__greater__zero__iff__not__dvd,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( modulo_modulo_nat @ M @ N ) )
= ( ~ ( dvd_dvd_nat @ N @ M ) ) ) ).
% mod_greater_zero_iff_not_dvd
thf(fact_4251_nat__mod__eq__lemma,axiom,
! [X2: nat,N: nat,Y2: nat] :
( ( ( modulo_modulo_nat @ X2 @ N )
= ( modulo_modulo_nat @ Y2 @ N ) )
=> ( ( ord_less_eq_nat @ Y2 @ X2 )
=> ? [Q3: nat] :
( X2
= ( plus_plus_nat @ Y2 @ ( times_times_nat @ N @ Q3 ) ) ) ) ) ).
% nat_mod_eq_lemma
thf(fact_4252_mod__eq__nat2E,axiom,
! [M: nat,Q2: nat,N: nat] :
( ( ( modulo_modulo_nat @ M @ Q2 )
= ( modulo_modulo_nat @ N @ Q2 ) )
=> ( ( ord_less_eq_nat @ M @ N )
=> ~ ! [S2: nat] :
( N
!= ( plus_plus_nat @ M @ ( times_times_nat @ Q2 @ S2 ) ) ) ) ) ).
% mod_eq_nat2E
thf(fact_4253_mod__eq__nat1E,axiom,
! [M: nat,Q2: nat,N: nat] :
( ( ( modulo_modulo_nat @ M @ Q2 )
= ( modulo_modulo_nat @ N @ Q2 ) )
=> ( ( ord_less_eq_nat @ N @ M )
=> ~ ! [S2: nat] :
( M
!= ( plus_plus_nat @ N @ ( times_times_nat @ Q2 @ S2 ) ) ) ) ) ).
% mod_eq_nat1E
thf(fact_4254_length__pos__if__in__set,axiom,
! [X2: vEBT_VEBT,Xs2: list_VEBT_VEBT] :
( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ Xs2 ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) ) ) ).
% length_pos_if_in_set
thf(fact_4255_length__pos__if__in__set,axiom,
! [X2: real,Xs2: list_real] :
( ( member_real @ X2 @ ( set_real2 @ Xs2 ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_size_list_real @ Xs2 ) ) ) ).
% length_pos_if_in_set
thf(fact_4256_length__pos__if__in__set,axiom,
! [X2: $o,Xs2: list_o] :
( ( member_o @ X2 @ ( set_o2 @ Xs2 ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_size_list_o @ Xs2 ) ) ) ).
% length_pos_if_in_set
thf(fact_4257_length__pos__if__in__set,axiom,
! [X2: nat,Xs2: list_nat] :
( ( member_nat @ X2 @ ( set_nat2 @ Xs2 ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_size_list_nat @ Xs2 ) ) ) ).
% length_pos_if_in_set
thf(fact_4258_length__pos__if__in__set,axiom,
! [X2: int,Xs2: list_int] :
( ( member_int @ X2 @ ( set_int2 @ Xs2 ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_size_list_int @ Xs2 ) ) ) ).
% length_pos_if_in_set
thf(fact_4259_div__mod__decomp,axiom,
! [A2: nat,N: nat] :
( A2
= ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A2 @ N ) @ N ) @ ( modulo_modulo_nat @ A2 @ N ) ) ) ).
% div_mod_decomp
thf(fact_4260_mod__mult2__eq,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( modulo_modulo_nat @ M @ ( times_times_nat @ N @ Q2 ) )
= ( plus_plus_nat @ ( times_times_nat @ N @ ( modulo_modulo_nat @ ( divide_divide_nat @ M @ N ) @ Q2 ) ) @ ( modulo_modulo_nat @ M @ N ) ) ) ).
% mod_mult2_eq
thf(fact_4261_modulo__nat__def,axiom,
( modulo_modulo_nat
= ( ^ [M5: nat,N3: nat] : ( minus_minus_nat @ M5 @ ( times_times_nat @ ( divide_divide_nat @ M5 @ N3 ) @ N3 ) ) ) ) ).
% modulo_nat_def
thf(fact_4262_mod__eq__dvd__iff__nat,axiom,
! [N: nat,M: nat,Q2: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( ( modulo_modulo_nat @ M @ Q2 )
= ( modulo_modulo_nat @ N @ Q2 ) )
= ( dvd_dvd_nat @ Q2 @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% mod_eq_dvd_iff_nat
thf(fact_4263_vebt__buildup_Osimps_I2_J,axiom,
( ( vEBT_vebt_buildup @ ( suc @ zero_zero_nat ) )
= ( vEBT_Leaf @ $false @ $false ) ) ).
% vebt_buildup.simps(2)
thf(fact_4264_vebt__insert_Osimps_I1_J,axiom,
! [X2: nat,A: $o,B: $o] :
( ( ( X2 = zero_zero_nat )
=> ( ( vEBT_vebt_insert @ ( vEBT_Leaf @ A @ B ) @ X2 )
= ( vEBT_Leaf @ $true @ B ) ) )
& ( ( X2 != zero_zero_nat )
=> ( ( ( X2 = one_one_nat )
=> ( ( vEBT_vebt_insert @ ( vEBT_Leaf @ A @ B ) @ X2 )
= ( vEBT_Leaf @ A @ $true ) ) )
& ( ( X2 != one_one_nat )
=> ( ( vEBT_vebt_insert @ ( vEBT_Leaf @ A @ B ) @ X2 )
= ( vEBT_Leaf @ A @ B ) ) ) ) ) ) ).
% vebt_insert.simps(1)
thf(fact_4265_VEBT__internal_OT_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_H_Osimps_I3_J,axiom,
! [A: $o,B: $o,N: nat] :
( ( vEBT_V1232361888498592333_e_t_e @ ( vEBT_Leaf @ A @ B ) @ ( suc @ ( suc @ N ) ) )
= one_one_nat ) ).
% VEBT_internal.T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e'.simps(3)
thf(fact_4266_T_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_Osimps_I3_J,axiom,
! [A: $o,B: $o,N: nat] :
( ( vEBT_T_d_e_l_e_t_e @ ( vEBT_Leaf @ A @ B ) @ ( suc @ ( suc @ N ) ) )
= one_one_nat ) ).
% T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e.simps(3)
thf(fact_4267_VEBT__internal_OT_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_H_Osimps_I1_J,axiom,
! [A: $o,B: $o] :
( ( vEBT_V1232361888498592333_e_t_e @ ( vEBT_Leaf @ A @ B ) @ zero_zero_nat )
= one_one_nat ) ).
% VEBT_internal.T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e'.simps(1)
thf(fact_4268_T_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_Osimps_I1_J,axiom,
! [A: $o,B: $o] :
( ( vEBT_T_d_e_l_e_t_e @ ( vEBT_Leaf @ A @ B ) @ zero_zero_nat )
= one_one_nat ) ).
% T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e.simps(1)
thf(fact_4269_VEBT__internal_Onaive__member_Osimps_I1_J,axiom,
! [A: $o,B: $o,X2: nat] :
( ( vEBT_V5719532721284313246member @ ( vEBT_Leaf @ A @ B ) @ X2 )
= ( ( ( X2 = zero_zero_nat )
=> A )
& ( ( X2 != zero_zero_nat )
=> ( ( ( X2 = one_one_nat )
=> B )
& ( X2 = one_one_nat ) ) ) ) ) ).
% VEBT_internal.naive_member.simps(1)
thf(fact_4270_cong__exp__iff__simps_I3_J,axiom,
! [N: num,Q2: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
!= zero_zero_nat ) ).
% cong_exp_iff_simps(3)
thf(fact_4271_cong__exp__iff__simps_I3_J,axiom,
! [N: num,Q2: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
!= zero_zero_int ) ).
% cong_exp_iff_simps(3)
thf(fact_4272_cong__exp__iff__simps_I3_J,axiom,
! [N: num,Q2: num] :
( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
!= zero_z3403309356797280102nteger ) ).
% cong_exp_iff_simps(3)
thf(fact_4273_mod__mult2__eq_H,axiom,
! [A: code_integer,M: nat,N: nat] :
( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N ) ) )
= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ M ) @ ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ ( semiri4939895301339042750nteger @ M ) ) @ ( semiri4939895301339042750nteger @ N ) ) ) @ ( modulo364778990260209775nteger @ A @ ( semiri4939895301339042750nteger @ M ) ) ) ) ).
% mod_mult2_eq'
thf(fact_4274_mod__mult2__eq_H,axiom,
! [A: int,M: nat,N: nat] :
( ( modulo_modulo_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) )
= ( plus_plus_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( modulo_modulo_int @ ( divide_divide_int @ A @ ( semiri1314217659103216013at_int @ M ) ) @ ( semiri1314217659103216013at_int @ N ) ) ) @ ( modulo_modulo_int @ A @ ( semiri1314217659103216013at_int @ M ) ) ) ) ).
% mod_mult2_eq'
thf(fact_4275_mod__mult2__eq_H,axiom,
! [A: nat,M: nat,N: nat] :
( ( modulo_modulo_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) )
= ( plus_plus_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( modulo_modulo_nat @ ( divide_divide_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) @ ( semiri1316708129612266289at_nat @ N ) ) ) @ ( modulo_modulo_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) ) ) ).
% mod_mult2_eq'
thf(fact_4276_even__even__mod__4__iff,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ).
% even_even_mod_4_iff
thf(fact_4277_unset__bit__Suc,axiom,
! [N: nat,A: code_integer] :
( ( bit_se8260200283734997820nteger @ ( suc @ N ) @ A )
= ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se8260200283734997820nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% unset_bit_Suc
thf(fact_4278_unset__bit__Suc,axiom,
! [N: nat,A: int] :
( ( bit_se4203085406695923979it_int @ ( suc @ N ) @ A )
= ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se4203085406695923979it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).
% unset_bit_Suc
thf(fact_4279_unset__bit__Suc,axiom,
! [N: nat,A: nat] :
( ( bit_se4205575877204974255it_nat @ ( suc @ N ) @ A )
= ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se4205575877204974255it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% unset_bit_Suc
thf(fact_4280_field__char__0__class_Oof__nat__div,axiom,
! [M: nat,N: nat] :
( ( semiri8010041392384452111omplex @ ( divide_divide_nat @ M @ N ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ ( modulo_modulo_nat @ M @ N ) ) ) @ ( semiri8010041392384452111omplex @ N ) ) ) ).
% field_char_0_class.of_nat_div
thf(fact_4281_field__char__0__class_Oof__nat__div,axiom,
! [M: nat,N: nat] :
( ( semiri681578069525770553at_rat @ ( divide_divide_nat @ M @ N ) )
= ( divide_divide_rat @ ( minus_minus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ ( modulo_modulo_nat @ M @ N ) ) ) @ ( semiri681578069525770553at_rat @ N ) ) ) ).
% field_char_0_class.of_nat_div
thf(fact_4282_field__char__0__class_Oof__nat__div,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( divide_divide_nat @ M @ N ) )
= ( divide_divide_real @ ( minus_minus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ ( modulo_modulo_nat @ M @ N ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% field_char_0_class.of_nat_div
thf(fact_4283_mod__lemma,axiom,
! [C: nat,R2: nat,B: nat,Q2: nat] :
( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ( ord_less_nat @ R2 @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ ( modulo_modulo_nat @ Q2 @ C ) ) @ R2 ) @ ( times_times_nat @ B @ C ) ) ) ) ).
% mod_lemma
thf(fact_4284_split__mod,axiom,
! [P: nat > $o,M: nat,N: nat] :
( ( P @ ( modulo_modulo_nat @ M @ N ) )
= ( ( ( N = zero_zero_nat )
=> ( P @ M ) )
& ( ( N != zero_zero_nat )
=> ! [I3: nat,J3: nat] :
( ( ord_less_nat @ J3 @ N )
=> ( ( M
= ( plus_plus_nat @ ( times_times_nat @ N @ I3 ) @ J3 ) )
=> ( P @ J3 ) ) ) ) ) ) ).
% split_mod
thf(fact_4285_VEBT__internal_Onaive__member_Oelims_I1_J,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: $o] :
( ( ( vEBT_V5719532721284313246member @ X2 @ Xa3 )
= Y2 )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( Y2
= ( ~ ( ( ( Xa3 = zero_zero_nat )
=> A4 )
& ( ( Xa3 != zero_zero_nat )
=> ( ( ( Xa3 = one_one_nat )
=> B3 )
& ( Xa3 = one_one_nat ) ) ) ) ) ) )
=> ( ( ? [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
=> Y2 )
=> ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT] :
( ? [S2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S2 ) )
=> ( Y2
= ( ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.elims(1)
thf(fact_4286_VEBT__internal_Onaive__member_Oelims_I2_J,axiom,
! [X2: vEBT_VEBT,Xa3: nat] :
( ( vEBT_V5719532721284313246member @ X2 @ Xa3 )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ~ ( ( ( Xa3 = zero_zero_nat )
=> A4 )
& ( ( Xa3 != zero_zero_nat )
=> ( ( ( Xa3 = one_one_nat )
=> B3 )
& ( Xa3 = one_one_nat ) ) ) ) )
=> ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT] :
( ? [S2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S2 ) )
=> ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ).
% VEBT_internal.naive_member.elims(2)
thf(fact_4287_VEBT__internal_Onaive__member_Oelims_I3_J,axiom,
! [X2: vEBT_VEBT,Xa3: nat] :
( ~ ( vEBT_V5719532721284313246member @ X2 @ Xa3 )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( ( Xa3 = zero_zero_nat )
=> A4 )
& ( ( Xa3 != zero_zero_nat )
=> ( ( ( Xa3 = one_one_nat )
=> B3 )
& ( Xa3 = one_one_nat ) ) ) ) )
=> ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( X2
!= ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
=> ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT] :
( ? [S2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S2 ) )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.elims(3)
thf(fact_4288_diff__mod__le,axiom,
! [A: nat,D2: nat,B: nat] :
( ( ord_less_nat @ A @ D2 )
=> ( ( dvd_dvd_nat @ B @ D2 )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) ) @ ( minus_minus_nat @ D2 @ B ) ) ) ) ).
% diff_mod_le
thf(fact_4289_mod__nat__eqI,axiom,
! [R2: nat,N: nat,M: nat] :
( ( ord_less_nat @ R2 @ N )
=> ( ( ord_less_eq_nat @ R2 @ M )
=> ( ( dvd_dvd_nat @ N @ ( minus_minus_nat @ M @ R2 ) )
=> ( ( modulo_modulo_nat @ M @ N )
= R2 ) ) ) ) ).
% mod_nat_eqI
thf(fact_4290_real__of__nat__div__aux,axiom,
! [X2: nat,D2: nat] :
( ( divide_divide_real @ ( semiri5074537144036343181t_real @ X2 ) @ ( semiri5074537144036343181t_real @ D2 ) )
= ( plus_plus_real @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ X2 @ D2 ) ) @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ ( modulo_modulo_nat @ X2 @ D2 ) ) @ ( semiri5074537144036343181t_real @ D2 ) ) ) ) ).
% real_of_nat_div_aux
thf(fact_4291_T_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_Osimps_I2_J,axiom,
! [A: $o,B: $o] :
( ( vEBT_T_d_e_l_e_t_e @ ( vEBT_Leaf @ A @ B ) @ ( suc @ zero_zero_nat ) )
= one_one_nat ) ).
% T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e.simps(2)
thf(fact_4292_VEBT__internal_OT_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_H_Osimps_I2_J,axiom,
! [A: $o,B: $o] :
( ( vEBT_V1232361888498592333_e_t_e @ ( vEBT_Leaf @ A @ B ) @ ( suc @ zero_zero_nat ) )
= one_one_nat ) ).
% VEBT_internal.T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e'.simps(2)
thf(fact_4293_VEBT__internal_Ospace_H_Osimps_I1_J,axiom,
! [A: $o,B: $o] :
( ( vEBT_VEBT_space2 @ ( vEBT_Leaf @ A @ B ) )
= ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) ) ).
% VEBT_internal.space'.simps(1)
thf(fact_4294_VEBT__internal_Ospace_Osimps_I1_J,axiom,
! [A: $o,B: $o] :
( ( vEBT_VEBT_space @ ( vEBT_Leaf @ A @ B ) )
= ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ).
% VEBT_internal.space.simps(1)
thf(fact_4295_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
! [C: code_integer,A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ C )
=> ( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) @ ( modulo364778990260209775nteger @ A @ B ) ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_4296_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ( modulo_modulo_nat @ A @ ( times_times_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ B @ ( modulo_modulo_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) @ ( modulo_modulo_nat @ A @ B ) ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_4297_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( modulo_modulo_int @ A @ ( times_times_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ B @ ( modulo_modulo_int @ ( divide_divide_int @ A @ B ) @ C ) ) @ ( modulo_modulo_int @ A @ B ) ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_4298_cong__exp__iff__simps_I7_J,axiom,
! [Q2: num,N: num] :
( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q2 ) )
= zero_zero_nat ) ) ).
% cong_exp_iff_simps(7)
thf(fact_4299_cong__exp__iff__simps_I7_J,axiom,
! [Q2: num,N: num] :
( ( ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q2 ) )
= zero_zero_int ) ) ).
% cong_exp_iff_simps(7)
thf(fact_4300_cong__exp__iff__simps_I7_J,axiom,
! [Q2: num,N: num] :
( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q2 ) )
= zero_z3403309356797280102nteger ) ) ).
% cong_exp_iff_simps(7)
thf(fact_4301_cong__exp__iff__simps_I11_J,axiom,
! [M: num,Q2: num] :
( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q2 ) )
= zero_zero_nat ) ) ).
% cong_exp_iff_simps(11)
thf(fact_4302_cong__exp__iff__simps_I11_J,axiom,
! [M: num,Q2: num] :
( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q2 ) )
= zero_zero_int ) ) ).
% cong_exp_iff_simps(11)
thf(fact_4303_cong__exp__iff__simps_I11_J,axiom,
! [M: num,Q2: num] :
( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q2 ) )
= zero_z3403309356797280102nteger ) ) ).
% cong_exp_iff_simps(11)
thf(fact_4304_even__iff__mod__2__eq__zero,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
= ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ) ).
% even_iff_mod_2_eq_zero
thf(fact_4305_even__iff__mod__2__eq__zero,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
= ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ) ).
% even_iff_mod_2_eq_zero
thf(fact_4306_even__iff__mod__2__eq__zero,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
= ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= zero_z3403309356797280102nteger ) ) ).
% even_iff_mod_2_eq_zero
thf(fact_4307_odd__iff__mod__2__eq__one,axiom,
! [A: nat] :
( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
= ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ) ).
% odd_iff_mod_2_eq_one
thf(fact_4308_odd__iff__mod__2__eq__one,axiom,
! [A: int] :
( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
= ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ) ).
% odd_iff_mod_2_eq_one
thf(fact_4309_odd__iff__mod__2__eq__one,axiom,
! [A: code_integer] :
( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
= ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= one_one_Code_integer ) ) ).
% odd_iff_mod_2_eq_one
thf(fact_4310_Suc__mod__eq__add3__mod,axiom,
! [M: nat,N: nat] :
( ( modulo_modulo_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N )
= ( modulo_modulo_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ N ) ) ).
% Suc_mod_eq_add3_mod
thf(fact_4311_Suc__times__mod__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ( modulo_modulo_nat @ ( suc @ ( times_times_nat @ M @ N ) ) @ M )
= one_one_nat ) ) ).
% Suc_times_mod_eq
thf(fact_4312_VEBT__internal_Onaive__member_Osimps_I3_J,axiom,
! [Uy: option4927543243414619207at_nat,V: nat,TreeList: list_VEBT_VEBT,S3: vEBT_VEBT,X2: nat] :
( ( vEBT_V5719532721284313246member @ ( vEBT_Node @ Uy @ ( suc @ V ) @ TreeList @ S3 ) @ X2 )
= ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ).
% VEBT_internal.naive_member.simps(3)
thf(fact_4313_divmod__digit__0_I2_J,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
=> ( ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) )
= ( modulo_modulo_nat @ A @ B ) ) ) ) ).
% divmod_digit_0(2)
thf(fact_4314_divmod__digit__0_I2_J,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
=> ( ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) )
= ( modulo_modulo_int @ A @ B ) ) ) ) ).
% divmod_digit_0(2)
thf(fact_4315_divmod__digit__0_I2_J,axiom,
! [B: code_integer,A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
=> ( ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
=> ( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) )
= ( modulo364778990260209775nteger @ A @ B ) ) ) ) ).
% divmod_digit_0(2)
thf(fact_4316_bits__stable__imp__add__self,axiom,
! [A: nat] :
( ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= A )
=> ( ( plus_plus_nat @ A @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_nat ) ) ).
% bits_stable_imp_add_self
thf(fact_4317_bits__stable__imp__add__self,axiom,
! [A: int] :
( ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= A )
=> ( ( plus_plus_int @ A @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
= zero_zero_int ) ) ).
% bits_stable_imp_add_self
thf(fact_4318_bits__stable__imp__add__self,axiom,
! [A: code_integer] :
( ( ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= A )
=> ( ( plus_p5714425477246183910nteger @ A @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
= zero_z3403309356797280102nteger ) ) ).
% bits_stable_imp_add_self
thf(fact_4319_parity__cases,axiom,
! [A: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
!= zero_zero_nat ) )
=> ~ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
!= one_one_nat ) ) ) ).
% parity_cases
thf(fact_4320_parity__cases,axiom,
! [A: int] :
( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
!= zero_zero_int ) )
=> ~ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
!= one_one_int ) ) ) ).
% parity_cases
thf(fact_4321_parity__cases,axiom,
! [A: code_integer] :
( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
!= zero_z3403309356797280102nteger ) )
=> ~ ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
!= one_one_Code_integer ) ) ) ).
% parity_cases
thf(fact_4322_mod2__eq__if,axiom,
! [A: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ) ) ).
% mod2_eq_if
thf(fact_4323_mod2__eq__if,axiom,
! [A: int] :
( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) )
& ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ) ) ).
% mod2_eq_if
thf(fact_4324_mod2__eq__if,axiom,
! [A: code_integer] :
( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= zero_z3403309356797280102nteger ) )
& ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= one_one_Code_integer ) ) ) ).
% mod2_eq_if
thf(fact_4325_div__exp__mod__exp__eq,axiom,
! [A: nat,N: nat,M: nat] :
( ( modulo_modulo_nat @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
= ( divide_divide_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% div_exp_mod_exp_eq
thf(fact_4326_div__exp__mod__exp__eq,axiom,
! [A: int,N: nat,M: nat] :
( ( modulo_modulo_int @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
= ( divide_divide_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).
% div_exp_mod_exp_eq
thf(fact_4327_div__exp__mod__exp__eq,axiom,
! [A: code_integer,N: nat,M: nat] :
( ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
= ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ).
% div_exp_mod_exp_eq
thf(fact_4328_VEBT__internal_Omembermima_Osimps_I5_J,axiom,
! [V: nat,TreeList: list_VEBT_VEBT,Vd: vEBT_VEBT,X2: nat] :
( ( vEBT_VEBT_membermima @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V ) @ TreeList @ Vd ) @ X2 )
= ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ).
% VEBT_internal.membermima.simps(5)
thf(fact_4329_power__mod__div,axiom,
! [X2: nat,N: nat,M: nat] :
( ( divide_divide_nat @ ( modulo_modulo_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
= ( modulo_modulo_nat @ ( divide_divide_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ).
% power_mod_div
thf(fact_4330_verit__le__mono__div,axiom,
! [A2: nat,B4: nat,N: nat] :
( ( ord_less_nat @ A2 @ B4 )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_nat
@ ( plus_plus_nat @ ( divide_divide_nat @ A2 @ N )
@ ( if_nat
@ ( ( modulo_modulo_nat @ B4 @ N )
= zero_zero_nat )
@ one_one_nat
@ zero_zero_nat ) )
@ ( divide_divide_nat @ B4 @ N ) ) ) ) ).
% verit_le_mono_div
thf(fact_4331_divmod__digit__0_I1_J,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
=> ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
= ( divide_divide_nat @ A @ B ) ) ) ) ).
% divmod_digit_0(1)
thf(fact_4332_divmod__digit__0_I1_J,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
=> ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
= ( divide_divide_int @ A @ B ) ) ) ) ).
% divmod_digit_0(1)
thf(fact_4333_divmod__digit__0_I1_J,axiom,
! [B: code_integer,A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
=> ( ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
=> ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
= ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).
% divmod_digit_0(1)
thf(fact_4334_mult__exp__mod__exp__eq,axiom,
! [M: nat,N: nat,A: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( modulo_modulo_nat @ ( times_times_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) ).
% mult_exp_mod_exp_eq
thf(fact_4335_mult__exp__mod__exp__eq,axiom,
! [M: nat,N: nat,A: int] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( modulo_modulo_int @ ( times_times_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( times_times_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) ) ) ).
% mult_exp_mod_exp_eq
thf(fact_4336_mult__exp__mod__exp__eq,axiom,
! [M: nat,N: nat,A: code_integer] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
= ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) ) ) ).
% mult_exp_mod_exp_eq
thf(fact_4337_mod__double__modulus,axiom,
! [M: code_integer,X2: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ M )
=> ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X2 )
=> ( ( ( modulo364778990260209775nteger @ X2 @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
= ( modulo364778990260209775nteger @ X2 @ M ) )
| ( ( modulo364778990260209775nteger @ X2 @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
= ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ X2 @ M ) @ M ) ) ) ) ) ).
% mod_double_modulus
thf(fact_4338_mod__double__modulus,axiom,
! [M: nat,X2: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ X2 )
=> ( ( ( modulo_modulo_nat @ X2 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
= ( modulo_modulo_nat @ X2 @ M ) )
| ( ( modulo_modulo_nat @ X2 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
= ( plus_plus_nat @ ( modulo_modulo_nat @ X2 @ M ) @ M ) ) ) ) ) ).
% mod_double_modulus
thf(fact_4339_mod__double__modulus,axiom,
! [M: int,X2: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ord_less_eq_int @ zero_zero_int @ X2 )
=> ( ( ( modulo_modulo_int @ X2 @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
= ( modulo_modulo_int @ X2 @ M ) )
| ( ( modulo_modulo_int @ X2 @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
= ( plus_plus_int @ ( modulo_modulo_int @ X2 @ M ) @ M ) ) ) ) ) ).
% mod_double_modulus
thf(fact_4340_divmod__digit__1_I2_J,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
=> ( ( ord_le3102999989581377725nteger @ B @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
=> ( ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ) ) ) ).
% divmod_digit_1(2)
thf(fact_4341_divmod__digit__1_I2_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ B @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
=> ( ( minus_minus_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ) ) ) ).
% divmod_digit_1(2)
thf(fact_4342_divmod__digit__1_I2_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ B @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
=> ( ( minus_minus_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ) ) ) ).
% divmod_digit_1(2)
thf(fact_4343_set__bit__Suc,axiom,
! [N: nat,A: code_integer] :
( ( bit_se2793503036327961859nteger @ ( suc @ N ) @ A )
= ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se2793503036327961859nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% set_bit_Suc
thf(fact_4344_set__bit__Suc,axiom,
! [N: nat,A: int] :
( ( bit_se7879613467334960850it_int @ ( suc @ N ) @ A )
= ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se7879613467334960850it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).
% set_bit_Suc
thf(fact_4345_set__bit__Suc,axiom,
! [N: nat,A: nat] :
( ( bit_se7882103937844011126it_nat @ ( suc @ N ) @ A )
= ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se7882103937844011126it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% set_bit_Suc
thf(fact_4346_even__mod__4__div__2,axiom,
! [N: nat] :
( ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( suc @ zero_zero_nat ) )
=> ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% even_mod_4_div_2
thf(fact_4347_even__unset__bit__iff,axiom,
! [M: nat,A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se4203085406695923979it_int @ M @ A ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
| ( M = zero_zero_nat ) ) ) ).
% even_unset_bit_iff
thf(fact_4348_even__unset__bit__iff,axiom,
! [M: nat,A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se4205575877204974255it_nat @ M @ A ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
| ( M = zero_zero_nat ) ) ) ).
% even_unset_bit_iff
thf(fact_4349_odd__mod__4__div__2,axiom,
! [N: nat] :
( ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( numeral_numeral_nat @ ( bit1 @ one ) ) )
=> ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% odd_mod_4_div_2
thf(fact_4350_divmod__digit__1_I1_J,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
=> ( ( ord_le3102999989581377725nteger @ B @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
=> ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_Code_integer )
= ( divide6298287555418463151nteger @ A @ B ) ) ) ) ) ).
% divmod_digit_1(1)
thf(fact_4351_divmod__digit__1_I1_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ B @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
=> ( ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_nat )
= ( divide_divide_nat @ A @ B ) ) ) ) ) ).
% divmod_digit_1(1)
thf(fact_4352_divmod__digit__1_I1_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ B @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
=> ( ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_int )
= ( divide_divide_int @ A @ B ) ) ) ) ) ).
% divmod_digit_1(1)
thf(fact_4353_invar__vebt_Ointros_I2_J,axiom,
! [TreeList: list_VEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat] :
( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ( vEBT_invar_vebt @ X3 @ N ) )
=> ( ( vEBT_invar_vebt @ Summary @ M )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( M = N )
=> ( ( Deg
= ( plus_plus_nat @ N @ M ) )
=> ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_1 )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X_1 ) )
=> ( vEBT_invar_vebt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(2)
thf(fact_4354_invar__vebt_Ointros_I3_J,axiom,
! [TreeList: list_VEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat] :
( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ( vEBT_invar_vebt @ X3 @ N ) )
=> ( ( vEBT_invar_vebt @ Summary @ M )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( M
= ( suc @ N ) )
=> ( ( Deg
= ( plus_plus_nat @ N @ M ) )
=> ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_1 )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X_1 ) )
=> ( vEBT_invar_vebt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(3)
thf(fact_4355_in__children__def,axiom,
( vEBT_V5917875025757280293ildren
= ( ^ [N3: nat,TreeList3: list_VEBT_VEBT,X: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ X @ N3 ) ) @ ( vEBT_VEBT_low @ X @ N3 ) ) ) ) ).
% in_children_def
thf(fact_4356_mod__exhaust__less__4,axiom,
! [M: nat] :
( ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= zero_zero_nat )
| ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= one_one_nat )
| ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) )
| ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) ).
% mod_exhaust_less_4
thf(fact_4357_artanh__def,axiom,
( artanh_real
= ( ^ [X: real] : ( divide_divide_real @ ( ln_ln_real @ ( divide_divide_real @ ( plus_plus_real @ one_one_real @ X ) @ ( minus_minus_real @ one_one_real @ X ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% artanh_def
thf(fact_4358_vebt__member_Osimps_I1_J,axiom,
! [A: $o,B: $o,X2: nat] :
( ( vEBT_vebt_member @ ( vEBT_Leaf @ A @ B ) @ X2 )
= ( ( ( X2 = zero_zero_nat )
=> A )
& ( ( X2 != zero_zero_nat )
=> ( ( ( X2 = one_one_nat )
=> B )
& ( X2 = one_one_nat ) ) ) ) ) ).
% vebt_member.simps(1)
thf(fact_4359_flip__bit__Suc,axiom,
! [N: nat,A: code_integer] :
( ( bit_se1345352211410354436nteger @ ( suc @ N ) @ A )
= ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1345352211410354436nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% flip_bit_Suc
thf(fact_4360_flip__bit__Suc,axiom,
! [N: nat,A: int] :
( ( bit_se2159334234014336723it_int @ ( suc @ N ) @ A )
= ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2159334234014336723it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).
% flip_bit_Suc
thf(fact_4361_flip__bit__Suc,axiom,
! [N: nat,A: nat] :
( ( bit_se2161824704523386999it_nat @ ( suc @ N ) @ A )
= ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2161824704523386999it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% flip_bit_Suc
thf(fact_4362_is__succ__in__set__def,axiom,
( vEBT_is_succ_in_set
= ( ^ [Xs: set_nat,X: nat,Y: nat] :
( ( member_nat @ Y @ Xs )
& ( ord_less_nat @ X @ Y )
& ! [Z5: nat] :
( ( member_nat @ Z5 @ Xs )
=> ( ( ord_less_nat @ X @ Z5 )
=> ( ord_less_eq_nat @ Y @ Z5 ) ) ) ) ) ) ).
% is_succ_in_set_def
thf(fact_4363_is__pred__in__set__def,axiom,
( vEBT_is_pred_in_set
= ( ^ [Xs: set_nat,X: nat,Y: nat] :
( ( member_nat @ Y @ Xs )
& ( ord_less_nat @ Y @ X )
& ! [Z5: nat] :
( ( member_nat @ Z5 @ Xs )
=> ( ( ord_less_nat @ Z5 @ X )
=> ( ord_less_eq_nat @ Z5 @ Y ) ) ) ) ) ) ).
% is_pred_in_set_def
thf(fact_4364_ln__inj__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ zero_zero_real @ Y2 )
=> ( ( ( ln_ln_real @ X2 )
= ( ln_ln_real @ Y2 ) )
= ( X2 = Y2 ) ) ) ) ).
% ln_inj_iff
thf(fact_4365_ln__less__cancel__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_real @ ( ln_ln_real @ X2 ) @ ( ln_ln_real @ Y2 ) )
= ( ord_less_real @ X2 @ Y2 ) ) ) ) ).
% ln_less_cancel_iff
thf(fact_4366_flip__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se2159334234014336723it_int @ N @ K ) )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% flip_bit_nonnegative_int_iff
thf(fact_4367_flip__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se2159334234014336723it_int @ N @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% flip_bit_negative_int_iff
thf(fact_4368_ln__le__cancel__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_eq_real @ ( ln_ln_real @ X2 ) @ ( ln_ln_real @ Y2 ) )
= ( ord_less_eq_real @ X2 @ Y2 ) ) ) ) ).
% ln_le_cancel_iff
thf(fact_4369_ln__less__zero__iff,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ ( ln_ln_real @ X2 ) @ zero_zero_real )
= ( ord_less_real @ X2 @ one_one_real ) ) ) ).
% ln_less_zero_iff
thf(fact_4370_ln__gt__zero__iff,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X2 ) )
= ( ord_less_real @ one_one_real @ X2 ) ) ) ).
% ln_gt_zero_iff
thf(fact_4371_ln__eq__zero__iff,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ( ln_ln_real @ X2 )
= zero_zero_real )
= ( X2 = one_one_real ) ) ) ).
% ln_eq_zero_iff
thf(fact_4372_ln__one,axiom,
( ( ln_ln_real @ one_one_real )
= zero_zero_real ) ).
% ln_one
thf(fact_4373_mod__neg__neg__trivial,axiom,
! [K: int,L2: int] :
( ( ord_less_eq_int @ K @ zero_zero_int )
=> ( ( ord_less_int @ L2 @ K )
=> ( ( modulo_modulo_int @ K @ L2 )
= K ) ) ) ).
% mod_neg_neg_trivial
thf(fact_4374_mod__pos__pos__trivial,axiom,
! [K: int,L2: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ K @ L2 )
=> ( ( modulo_modulo_int @ K @ L2 )
= K ) ) ) ).
% mod_pos_pos_trivial
thf(fact_4375_zmod__numeral__Bit0,axiom,
! [V: num,W: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ) ).
% zmod_numeral_Bit0
thf(fact_4376_ln__ge__zero__iff,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X2 ) )
= ( ord_less_eq_real @ one_one_real @ X2 ) ) ) ).
% ln_ge_zero_iff
thf(fact_4377_ln__le__zero__iff,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ ( ln_ln_real @ X2 ) @ zero_zero_real )
= ( ord_less_eq_real @ X2 @ one_one_real ) ) ) ).
% ln_le_zero_iff
thf(fact_4378_one__mod__exp__eq__one,axiom,
! [N: nat] :
( ( modulo_modulo_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
= one_one_int ) ).
% one_mod_exp_eq_one
thf(fact_4379_zmod__numeral__Bit1,axiom,
! [V: num,W: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) @ one_one_int ) ) ).
% zmod_numeral_Bit1
thf(fact_4380_zmod__helper,axiom,
! [N: int,M: int,K: int,A: int] :
( ( ( modulo_modulo_int @ N @ M )
= K )
=> ( ( modulo_modulo_int @ ( plus_plus_int @ N @ A ) @ M )
= ( modulo_modulo_int @ ( plus_plus_int @ K @ A ) @ M ) ) ) ).
% zmod_helper
thf(fact_4381_mod__plus__cong,axiom,
! [B: int,B6: int,X2: int,X5: int,Y2: int,Y6: int,Z6: int] :
( ( B = B6 )
=> ( ( ( modulo_modulo_int @ X2 @ B6 )
= ( modulo_modulo_int @ X5 @ B6 ) )
=> ( ( ( modulo_modulo_int @ Y2 @ B6 )
= ( modulo_modulo_int @ Y6 @ B6 ) )
=> ( ( ( plus_plus_int @ X5 @ Y6 )
= Z6 )
=> ( ( modulo_modulo_int @ ( plus_plus_int @ X2 @ Y2 ) @ B )
= ( modulo_modulo_int @ Z6 @ B6 ) ) ) ) ) ) ).
% mod_plus_cong
thf(fact_4382_ln__less__self,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ord_less_real @ ( ln_ln_real @ X2 ) @ X2 ) ) ).
% ln_less_self
thf(fact_4383_log__def,axiom,
( log
= ( ^ [A3: real,X: real] : ( divide_divide_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ A3 ) ) ) ) ).
% log_def
thf(fact_4384_zmod__le__nonneg__dividend,axiom,
! [M: int,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ M )
=> ( ord_less_eq_int @ ( modulo_modulo_int @ M @ K ) @ M ) ) ).
% zmod_le_nonneg_dividend
thf(fact_4385_neg__mod__bound,axiom,
! [L2: int,K: int] :
( ( ord_less_int @ L2 @ zero_zero_int )
=> ( ord_less_int @ L2 @ ( modulo_modulo_int @ K @ L2 ) ) ) ).
% neg_mod_bound
thf(fact_4386_Euclidean__Division_Opos__mod__bound,axiom,
! [L2: int,K: int] :
( ( ord_less_int @ zero_zero_int @ L2 )
=> ( ord_less_int @ ( modulo_modulo_int @ K @ L2 ) @ L2 ) ) ).
% Euclidean_Division.pos_mod_bound
thf(fact_4387_zmod__eq__0__iff,axiom,
! [M: int,D2: int] :
( ( ( modulo_modulo_int @ M @ D2 )
= zero_zero_int )
= ( ? [Q4: int] :
( M
= ( times_times_int @ D2 @ Q4 ) ) ) ) ).
% zmod_eq_0_iff
thf(fact_4388_zmod__eq__0D,axiom,
! [M: int,D2: int] :
( ( ( modulo_modulo_int @ M @ D2 )
= zero_zero_int )
=> ? [Q3: int] :
( M
= ( times_times_int @ D2 @ Q3 ) ) ) ).
% zmod_eq_0D
thf(fact_4389_zmod__int,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ A @ B ) )
= ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% zmod_int
thf(fact_4390_ln__bound,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ord_less_eq_real @ ( ln_ln_real @ X2 ) @ X2 ) ) ).
% ln_bound
thf(fact_4391_ln__gt__zero__imp__gt__one,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X2 ) )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ord_less_real @ one_one_real @ X2 ) ) ) ).
% ln_gt_zero_imp_gt_one
thf(fact_4392_ln__less__zero,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ X2 @ one_one_real )
=> ( ord_less_real @ ( ln_ln_real @ X2 ) @ zero_zero_real ) ) ) ).
% ln_less_zero
thf(fact_4393_ln__gt__zero,axiom,
! [X2: real] :
( ( ord_less_real @ one_one_real @ X2 )
=> ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X2 ) ) ) ).
% ln_gt_zero
thf(fact_4394_ln__ge__zero,axiom,
! [X2: real] :
( ( ord_less_eq_real @ one_one_real @ X2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X2 ) ) ) ).
% ln_ge_zero
thf(fact_4395_int__mod__eq,axiom,
! [B: int,N: int,A: int] :
( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ N )
=> ( ( ( modulo_modulo_int @ A @ N )
= ( modulo_modulo_int @ B @ N ) )
=> ( ( modulo_modulo_int @ A @ N )
= B ) ) ) ) ).
% int_mod_eq
thf(fact_4396_int__mod__lem,axiom,
! [N: int,B: int] :
( ( ord_less_int @ zero_zero_int @ N )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ B )
& ( ord_less_int @ B @ N ) )
= ( ( modulo_modulo_int @ B @ N )
= B ) ) ) ).
% int_mod_lem
thf(fact_4397_neg__mod__sign,axiom,
! [L2: int,K: int] :
( ( ord_less_int @ L2 @ zero_zero_int )
=> ( ord_less_eq_int @ ( modulo_modulo_int @ K @ L2 ) @ zero_zero_int ) ) ).
% neg_mod_sign
thf(fact_4398_Euclidean__Division_Opos__mod__sign,axiom,
! [L2: int,K: int] :
( ( ord_less_int @ zero_zero_int @ L2 )
=> ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K @ L2 ) ) ) ).
% Euclidean_Division.pos_mod_sign
thf(fact_4399_zmod__trivial__iff,axiom,
! [I: int,K: int] :
( ( ( modulo_modulo_int @ I @ K )
= I )
= ( ( K = zero_zero_int )
| ( ( ord_less_eq_int @ zero_zero_int @ I )
& ( ord_less_int @ I @ K ) )
| ( ( ord_less_eq_int @ I @ zero_zero_int )
& ( ord_less_int @ K @ I ) ) ) ) ).
% zmod_trivial_iff
thf(fact_4400_pos__mod__conj,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ A @ B ) )
& ( ord_less_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ) ).
% pos_mod_conj
thf(fact_4401_neg__mod__conj,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ zero_zero_int )
=> ( ( ord_less_eq_int @ ( modulo_modulo_int @ A @ B ) @ zero_zero_int )
& ( ord_less_int @ B @ ( modulo_modulo_int @ A @ B ) ) ) ) ).
% neg_mod_conj
thf(fact_4402_int__mod__ge,axiom,
! [A: int,N: int] :
( ( ord_less_int @ A @ N )
=> ( ( ord_less_int @ zero_zero_int @ N )
=> ( ord_less_eq_int @ A @ ( modulo_modulo_int @ A @ N ) ) ) ) ).
% int_mod_ge
thf(fact_4403_int__mod__le_H,axiom,
! [B: int,N: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ B @ N ) )
=> ( ord_less_eq_int @ ( modulo_modulo_int @ B @ N ) @ ( minus_minus_int @ B @ N ) ) ) ).
% int_mod_le'
thf(fact_4404_nonneg__mod__div,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ A @ B ) )
& ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) ) ) ) ) ).
% nonneg_mod_div
thf(fact_4405_zdiv__mono__strict,axiom,
! [A2: int,B4: int,N: int] :
( ( ord_less_int @ A2 @ B4 )
=> ( ( ord_less_int @ zero_zero_int @ N )
=> ( ( ( modulo_modulo_int @ A2 @ N )
= zero_zero_int )
=> ( ( ( modulo_modulo_int @ B4 @ N )
= zero_zero_int )
=> ( ord_less_int @ ( divide_divide_int @ A2 @ N ) @ ( divide_divide_int @ B4 @ N ) ) ) ) ) ) ).
% zdiv_mono_strict
thf(fact_4406_div__mod__decomp__int,axiom,
! [A2: int,N: int] :
( A2
= ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A2 @ N ) @ N ) @ ( modulo_modulo_int @ A2 @ N ) ) ) ).
% div_mod_decomp_int
thf(fact_4407_mod__div__equality__div__eq,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( divide_divide_int @ A @ B ) @ B )
= ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) ) ) ).
% mod_div_equality_div_eq
thf(fact_4408_ln__2__less__1,axiom,
ord_less_real @ ( ln_ln_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ one_one_real ).
% ln_2_less_1
thf(fact_4409_num_Osize_I4_J,axiom,
( ( size_size_num @ one )
= zero_zero_nat ) ).
% num.size(4)
thf(fact_4410_ln__ge__zero__imp__ge__one,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X2 ) )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ord_less_eq_real @ one_one_real @ X2 ) ) ) ).
% ln_ge_zero_imp_ge_one
thf(fact_4411_VEBT_Osize_I4_J,axiom,
! [X21: $o,X222: $o] :
( ( size_size_VEBT_VEBT @ ( vEBT_Leaf @ X21 @ X222 ) )
= zero_zero_nat ) ).
% VEBT.size(4)
thf(fact_4412_ln__add__one__self__le__self,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X2 ) ) @ X2 ) ) ).
% ln_add_one_self_le_self
thf(fact_4413_ln__mult,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ zero_zero_real @ Y2 )
=> ( ( ln_ln_real @ ( times_times_real @ X2 @ Y2 ) )
= ( plus_plus_real @ ( ln_ln_real @ X2 ) @ ( ln_ln_real @ Y2 ) ) ) ) ) ).
% ln_mult
thf(fact_4414_ln__eq__minus__one,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ( ln_ln_real @ X2 )
= ( minus_minus_real @ X2 @ one_one_real ) )
=> ( X2 = one_one_real ) ) ) ).
% ln_eq_minus_one
thf(fact_4415_ln__div,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ zero_zero_real @ Y2 )
=> ( ( ln_ln_real @ ( divide_divide_real @ X2 @ Y2 ) )
= ( minus_minus_real @ ( ln_ln_real @ X2 ) @ ( ln_ln_real @ Y2 ) ) ) ) ) ).
% ln_div
thf(fact_4416_pos__mod__bound2,axiom,
! [A: int] : ( ord_less_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% pos_mod_bound2
thf(fact_4417_int__mod__ge_H,axiom,
! [B: int,N: int] :
( ( ord_less_int @ B @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ N )
=> ( ord_less_eq_int @ ( plus_plus_int @ B @ N ) @ ( modulo_modulo_int @ B @ N ) ) ) ) ).
% int_mod_ge'
thf(fact_4418_mod__pos__neg__trivial,axiom,
! [K: int,L2: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( ord_less_eq_int @ ( plus_plus_int @ K @ L2 ) @ zero_zero_int )
=> ( ( modulo_modulo_int @ K @ L2 )
= ( plus_plus_int @ K @ L2 ) ) ) ) ).
% mod_pos_neg_trivial
thf(fact_4419_mod__pos__geq,axiom,
! [L2: int,K: int] :
( ( ord_less_int @ zero_zero_int @ L2 )
=> ( ( ord_less_eq_int @ L2 @ K )
=> ( ( modulo_modulo_int @ K @ L2 )
= ( modulo_modulo_int @ ( minus_minus_int @ K @ L2 ) @ L2 ) ) ) ) ).
% mod_pos_geq
thf(fact_4420_mod__int__pos__iff,axiom,
! [K: int,L2: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K @ L2 ) )
= ( ( dvd_dvd_int @ L2 @ K )
| ( ( L2 = zero_zero_int )
& ( ord_less_eq_int @ zero_zero_int @ K ) )
| ( ord_less_int @ zero_zero_int @ L2 ) ) ) ).
% mod_int_pos_iff
thf(fact_4421_real__of__int__div__aux,axiom,
! [X2: int,D2: int] :
( ( divide_divide_real @ ( ring_1_of_int_real @ X2 ) @ ( ring_1_of_int_real @ D2 ) )
= ( plus_plus_real @ ( ring_1_of_int_real @ ( divide_divide_int @ X2 @ D2 ) ) @ ( divide_divide_real @ ( ring_1_of_int_real @ ( modulo_modulo_int @ X2 @ D2 ) ) @ ( ring_1_of_int_real @ D2 ) ) ) ) ).
% real_of_int_div_aux
thf(fact_4422_ln__le__minus__one,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ord_less_eq_real @ ( ln_ln_real @ X2 ) @ ( minus_minus_real @ X2 @ one_one_real ) ) ) ).
% ln_le_minus_one
thf(fact_4423_ln__diff__le,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ zero_zero_real @ Y2 )
=> ( ord_less_eq_real @ ( minus_minus_real @ ( ln_ln_real @ X2 ) @ ( ln_ln_real @ Y2 ) ) @ ( divide_divide_real @ ( minus_minus_real @ X2 @ Y2 ) @ Y2 ) ) ) ) ).
% ln_diff_le
thf(fact_4424_ln__realpow,axiom,
! [X2: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ln_ln_real @ ( power_power_real @ X2 @ N ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( ln_ln_real @ X2 ) ) ) ) ).
% ln_realpow
thf(fact_4425_pos__mod__sign2,axiom,
! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% pos_mod_sign2
thf(fact_4426_nmod2,axiom,
! [N: int] :
( ( ( modulo_modulo_int @ N @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int )
| ( ( modulo_modulo_int @ N @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ) ).
% nmod2
thf(fact_4427_mod__2__neq__1__eq__eq__0,axiom,
! [K: int] :
( ( ( modulo_modulo_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
!= one_one_int )
= ( ( modulo_modulo_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ) ).
% mod_2_neq_1_eq_eq_0
thf(fact_4428_mod__exp__less__eq__exp,axiom,
! [A: int,N: nat] : ( ord_less_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).
% mod_exp_less_eq_exp
thf(fact_4429_mod__power__lem,axiom,
! [A: int,M: nat,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ( ord_less_eq_nat @ M @ N )
=> ( ( modulo_modulo_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ M ) )
= zero_zero_int ) )
& ( ~ ( ord_less_eq_nat @ M @ N )
=> ( ( modulo_modulo_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ M ) )
= ( power_power_int @ A @ N ) ) ) ) ) ).
% mod_power_lem
thf(fact_4430_int__mod__pos__eq,axiom,
! [A: int,B: int,Q2: int,R2: int] :
( ( A
= ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ R2 )
=> ( ( ord_less_int @ R2 @ B )
=> ( ( modulo_modulo_int @ A @ B )
= R2 ) ) ) ) ).
% int_mod_pos_eq
thf(fact_4431_int__mod__neg__eq,axiom,
! [A: int,B: int,Q2: int,R2: int] :
( ( A
= ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
=> ( ( ord_less_eq_int @ R2 @ zero_zero_int )
=> ( ( ord_less_int @ B @ R2 )
=> ( ( modulo_modulo_int @ A @ B )
= R2 ) ) ) ) ).
% int_mod_neg_eq
thf(fact_4432_split__zmod,axiom,
! [P: int > $o,N: int,K: int] :
( ( P @ ( modulo_modulo_int @ N @ K ) )
= ( ( ( K = zero_zero_int )
=> ( P @ N ) )
& ( ( ord_less_int @ zero_zero_int @ K )
=> ! [I3: int,J3: int] :
( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
& ( ord_less_int @ J3 @ K )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I3 ) @ J3 ) ) )
=> ( P @ J3 ) ) )
& ( ( ord_less_int @ K @ zero_zero_int )
=> ! [I3: int,J3: int] :
( ( ( ord_less_int @ K @ J3 )
& ( ord_less_eq_int @ J3 @ zero_zero_int )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I3 ) @ J3 ) ) )
=> ( P @ J3 ) ) ) ) ) ).
% split_zmod
thf(fact_4433_mod__add__if__z,axiom,
! [X2: int,Z: int,Y2: int] :
( ( ord_less_int @ X2 @ Z )
=> ( ( ord_less_int @ Y2 @ Z )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ X2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ( ( ord_less_int @ ( plus_plus_int @ X2 @ Y2 ) @ Z )
=> ( ( modulo_modulo_int @ ( plus_plus_int @ X2 @ Y2 ) @ Z )
= ( plus_plus_int @ X2 @ Y2 ) ) )
& ( ~ ( ord_less_int @ ( plus_plus_int @ X2 @ Y2 ) @ Z )
=> ( ( modulo_modulo_int @ ( plus_plus_int @ X2 @ Y2 ) @ Z )
= ( minus_minus_int @ ( plus_plus_int @ X2 @ Y2 ) @ Z ) ) ) ) ) ) ) ) ) ).
% mod_add_if_z
thf(fact_4434_mod__sub__if__z,axiom,
! [X2: int,Z: int,Y2: int] :
( ( ord_less_int @ X2 @ Z )
=> ( ( ord_less_int @ Y2 @ Z )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ X2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ( ( ord_less_eq_int @ Y2 @ X2 )
=> ( ( modulo_modulo_int @ ( minus_minus_int @ X2 @ Y2 ) @ Z )
= ( minus_minus_int @ X2 @ Y2 ) ) )
& ( ~ ( ord_less_eq_int @ Y2 @ X2 )
=> ( ( modulo_modulo_int @ ( minus_minus_int @ X2 @ Y2 ) @ Z )
= ( plus_plus_int @ ( minus_minus_int @ X2 @ Y2 ) @ Z ) ) ) ) ) ) ) ) ) ).
% mod_sub_if_z
thf(fact_4435_zmod__zmult2__eq,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( modulo_modulo_int @ A @ ( times_times_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ B @ ( modulo_modulo_int @ ( divide_divide_int @ A @ B ) @ C ) ) @ ( modulo_modulo_int @ A @ B ) ) ) ) ).
% zmod_zmult2_eq
thf(fact_4436_log__eq__div__ln__mult__log,axiom,
! [A: real,B: real,X2: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ( B != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( log @ A @ X2 )
= ( times_times_real @ ( divide_divide_real @ ( ln_ln_real @ B ) @ ( ln_ln_real @ A ) ) @ ( log @ B @ X2 ) ) ) ) ) ) ) ) ).
% log_eq_div_ln_mult_log
thf(fact_4437_axxmod2,axiom,
! [X2: int] :
( ( ( modulo_modulo_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ X2 ) @ X2 ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int )
& ( ( modulo_modulo_int @ ( plus_plus_int @ ( plus_plus_int @ zero_zero_int @ X2 ) @ X2 ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ) ).
% axxmod2
thf(fact_4438_z1pmod2,axiom,
! [B: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ).
% z1pmod2
thf(fact_4439_verit__le__mono__div__int,axiom,
! [A2: int,B4: int,N: int] :
( ( ord_less_int @ A2 @ B4 )
=> ( ( ord_less_int @ zero_zero_int @ N )
=> ( ord_less_eq_int
@ ( plus_plus_int @ ( divide_divide_int @ A2 @ N )
@ ( if_int
@ ( ( modulo_modulo_int @ B4 @ N )
= zero_zero_int )
@ one_one_int
@ zero_zero_int ) )
@ ( divide_divide_int @ B4 @ N ) ) ) ) ).
% verit_le_mono_div_int
thf(fact_4440_split__pos__lemma,axiom,
! [K: int,P: int > int > $o,N: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( P @ ( divide_divide_int @ N @ K ) @ ( modulo_modulo_int @ N @ K ) )
= ( ! [I3: int,J3: int] :
( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
& ( ord_less_int @ J3 @ K )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I3 ) @ J3 ) ) )
=> ( P @ I3 @ J3 ) ) ) ) ) ).
% split_pos_lemma
thf(fact_4441_split__neg__lemma,axiom,
! [K: int,P: int > int > $o,N: int] :
( ( ord_less_int @ K @ zero_zero_int )
=> ( ( P @ ( divide_divide_int @ N @ K ) @ ( modulo_modulo_int @ N @ K ) )
= ( ! [I3: int,J3: int] :
( ( ( ord_less_int @ K @ J3 )
& ( ord_less_eq_int @ J3 @ zero_zero_int )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I3 ) @ J3 ) ) )
=> ( P @ I3 @ J3 ) ) ) ) ) ).
% split_neg_lemma
thf(fact_4442_num_Osize_I5_J,axiom,
! [X23: num] :
( ( size_size_num @ ( bit0 @ X23 ) )
= ( plus_plus_nat @ ( size_size_num @ X23 ) @ ( suc @ zero_zero_nat ) ) ) ).
% num.size(5)
thf(fact_4443_num_Osize_I6_J,axiom,
! [X33: num] :
( ( size_size_num @ ( bit1 @ X33 ) )
= ( plus_plus_nat @ ( size_size_num @ X33 ) @ ( suc @ zero_zero_nat ) ) ) ).
% num.size(6)
thf(fact_4444_p1mod22k,axiom,
! [B: int,N: nat] :
( ( modulo_modulo_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) @ one_one_int ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ B @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) @ one_one_int ) ) ).
% p1mod22k
thf(fact_4445_p1mod22k_H,axiom,
! [B: int,N: nat] :
( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ B @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).
% p1mod22k'
thf(fact_4446_eq__diff__eq_H,axiom,
! [X2: real,Y2: real,Z: real] :
( ( X2
= ( minus_minus_real @ Y2 @ Z ) )
= ( Y2
= ( plus_plus_real @ X2 @ Z ) ) ) ).
% eq_diff_eq'
thf(fact_4447_pos__zmod__mult__2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ B @ A ) ) ) ) ) ).
% pos_zmod_mult_2
thf(fact_4448_emep1,axiom,
! [N: int,D2: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
=> ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ D2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ D2 )
=> ( ( modulo_modulo_int @ ( plus_plus_int @ N @ one_one_int ) @ D2 )
= ( plus_plus_int @ ( modulo_modulo_int @ N @ D2 ) @ one_one_int ) ) ) ) ) ).
% emep1
thf(fact_4449_eme1p,axiom,
! [N: int,D2: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
=> ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ D2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ D2 )
=> ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ N ) @ D2 )
= ( plus_plus_int @ one_one_int @ ( modulo_modulo_int @ N @ D2 ) ) ) ) ) ) ).
% eme1p
thf(fact_4450_even__flip__bit__iff,axiom,
! [M: nat,A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2159334234014336723it_int @ M @ A ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
!= ( M = zero_zero_nat ) ) ) ).
% even_flip_bit_iff
thf(fact_4451_even__flip__bit__iff,axiom,
! [M: nat,A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2161824704523386999it_nat @ M @ A ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
!= ( M = zero_zero_nat ) ) ) ).
% even_flip_bit_iff
thf(fact_4452_ln__one__plus__pos__lower__bound,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ X2 @ one_one_real )
=> ( ord_less_eq_real @ ( minus_minus_real @ X2 @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X2 ) ) ) ) ) ).
% ln_one_plus_pos_lower_bound
thf(fact_4453_sb__inc__lem,axiom,
! [A: int,K: nat] :
( ( ord_less_int @ ( plus_plus_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) @ zero_zero_int )
=> ( ord_less_eq_int @ ( plus_plus_int @ ( plus_plus_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ K ) ) ) @ ( modulo_modulo_int @ ( plus_plus_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ K ) ) ) ) ) ).
% sb_inc_lem
thf(fact_4454_neg__zmod__mult__2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
= ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( plus_plus_int @ B @ one_one_int ) @ A ) ) @ one_one_int ) ) ) ).
% neg_zmod_mult_2
thf(fact_4455_vebt__member_Osimps_I2_J,axiom,
! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT,X2: nat] :
~ ( vEBT_vebt_member @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) @ X2 ) ).
% vebt_member.simps(2)
thf(fact_4456_foldr__zero,axiom,
! [Xs2: list_nat,D2: nat] :
( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( size_size_list_nat @ Xs2 ) )
=> ( ord_less_nat @ zero_zero_nat @ ( nth_nat @ Xs2 @ I2 ) ) )
=> ( ord_less_eq_nat @ ( size_size_list_nat @ Xs2 ) @ ( minus_minus_nat @ ( foldr_nat_nat @ plus_plus_nat @ Xs2 @ D2 ) @ D2 ) ) ) ).
% foldr_zero
thf(fact_4457_foldr__same,axiom,
! [Xs2: list_real,Y2: real] :
( ! [X3: real,Y3: real] :
( ( member_real @ X3 @ ( set_real2 @ Xs2 ) )
=> ( ( member_real @ Y3 @ ( set_real2 @ Xs2 ) )
=> ( X3 = Y3 ) ) )
=> ( ! [X3: real] :
( ( member_real @ X3 @ ( set_real2 @ Xs2 ) )
=> ( X3 = Y2 ) )
=> ( ( foldr_real_real @ plus_plus_real @ Xs2 @ zero_zero_real )
= ( times_times_real @ ( semiri5074537144036343181t_real @ ( size_size_list_real @ Xs2 ) ) @ Y2 ) ) ) ) ).
% foldr_same
thf(fact_4458_member__bound__size__univ,axiom,
! [T2: vEBT_VEBT,N: nat,U: real,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( U
= ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_T_m_e_m_b_e_r @ T2 @ X2 ) ) @ ( plus_plus_real @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ U ) ) ) ) ) ) ) ).
% member_bound_size_univ
thf(fact_4459_obtain__set__succ,axiom,
! [X2: nat,Z: nat,A2: set_nat,B4: set_nat] :
( ( ord_less_nat @ X2 @ Z )
=> ( ( vEBT_VEBT_max_in_set @ A2 @ Z )
=> ( ( finite_finite_nat @ B4 )
=> ( ( A2 = B4 )
=> ? [X_1: nat] : ( vEBT_is_succ_in_set @ A2 @ X2 @ X_1 ) ) ) ) ) ).
% obtain_set_succ
thf(fact_4460_obtain__set__pred,axiom,
! [Z: nat,X2: nat,A2: set_nat] :
( ( ord_less_nat @ Z @ X2 )
=> ( ( vEBT_VEBT_min_in_set @ A2 @ Z )
=> ( ( finite_finite_nat @ A2 )
=> ? [X_1: nat] : ( vEBT_is_pred_in_set @ A2 @ X2 @ X_1 ) ) ) ) ).
% obtain_set_pred
thf(fact_4461_ceiling__log__eq__powr__iff,axiom,
! [X2: real,B: real,K: nat] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ( ( archim7802044766580827645g_real @ ( log @ B @ X2 ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ K ) @ one_one_int ) )
= ( ( ord_less_real @ ( powr_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ X2 )
& ( ord_less_eq_real @ X2 @ ( powr_real @ B @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ K @ one_one_nat ) ) ) ) ) ) ) ) ).
% ceiling_log_eq_powr_iff
thf(fact_4462_foldr0,axiom,
! [Xs2: list_real,C: real,D2: real] :
( ( foldr_real_real @ plus_plus_real @ Xs2 @ ( plus_plus_real @ C @ D2 ) )
= ( plus_plus_real @ ( foldr_real_real @ plus_plus_real @ Xs2 @ D2 ) @ C ) ) ).
% foldr0
thf(fact_4463_foldr__one,axiom,
! [D2: nat,Ys: list_nat] : ( ord_less_eq_nat @ D2 @ ( foldr_nat_nat @ plus_plus_nat @ Ys @ D2 ) ) ).
% foldr_one
thf(fact_4464_set__vebt__finite,axiom,
! [T2: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( finite_finite_nat @ ( vEBT_VEBT_set_vebt @ T2 ) ) ) ).
% set_vebt_finite
thf(fact_4465_pred__none__empty,axiom,
! [Xs2: set_nat,A: nat] :
( ~ ? [X_1: nat] : ( vEBT_is_pred_in_set @ Xs2 @ A @ X_1 )
=> ( ( finite_finite_nat @ Xs2 )
=> ~ ? [X4: nat] :
( ( member_nat @ X4 @ Xs2 )
& ( ord_less_nat @ X4 @ A ) ) ) ) ).
% pred_none_empty
thf(fact_4466_succ__none__empty,axiom,
! [Xs2: set_nat,A: nat] :
( ~ ? [X_1: nat] : ( vEBT_is_succ_in_set @ Xs2 @ A @ X_1 )
=> ( ( finite_finite_nat @ Xs2 )
=> ~ ? [X4: nat] :
( ( member_nat @ X4 @ Xs2 )
& ( ord_less_nat @ A @ X4 ) ) ) ) ).
% succ_none_empty
thf(fact_4467_foldr__same__int,axiom,
! [Xs2: list_nat,Y2: nat] :
( ! [X3: nat,Y3: nat] :
( ( member_nat @ X3 @ ( set_nat2 @ Xs2 ) )
=> ( ( member_nat @ Y3 @ ( set_nat2 @ Xs2 ) )
=> ( X3 = Y3 ) ) )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ ( set_nat2 @ Xs2 ) )
=> ( X3 = Y2 ) )
=> ( ( foldr_nat_nat @ plus_plus_nat @ Xs2 @ zero_zero_nat )
= ( times_times_nat @ ( size_size_list_nat @ Xs2 ) @ Y2 ) ) ) ) ).
% foldr_same_int
thf(fact_4468_foldr__mono,axiom,
! [Xs2: list_nat,Ys: list_nat,C: nat,D2: nat] :
( ( ( size_size_list_nat @ Xs2 )
= ( size_size_list_nat @ Ys ) )
=> ( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( size_size_list_nat @ Xs2 ) )
=> ( ord_less_nat @ ( nth_nat @ Xs2 @ I2 ) @ ( nth_nat @ Ys @ I2 ) ) )
=> ( ( ord_less_eq_nat @ C @ D2 )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ ( foldr_nat_nat @ plus_plus_nat @ Xs2 @ C ) @ ( size_size_list_nat @ Ys ) ) @ ( foldr_nat_nat @ plus_plus_nat @ Ys @ D2 ) ) ) ) ) ).
% foldr_mono
thf(fact_4469_powr__0,axiom,
! [Z: real] :
( ( powr_real @ zero_zero_real @ Z )
= zero_zero_real ) ).
% powr_0
thf(fact_4470_powr__eq__0__iff,axiom,
! [W: real,Z: real] :
( ( ( powr_real @ W @ Z )
= zero_zero_real )
= ( W = zero_zero_real ) ) ).
% powr_eq_0_iff
thf(fact_4471_powr__one__eq__one,axiom,
! [A: real] :
( ( powr_real @ one_one_real @ A )
= one_one_real ) ).
% powr_one_eq_one
thf(fact_4472_powr__zero__eq__one,axiom,
! [X2: real] :
( ( ( X2 = zero_zero_real )
=> ( ( powr_real @ X2 @ zero_zero_real )
= zero_zero_real ) )
& ( ( X2 != zero_zero_real )
=> ( ( powr_real @ X2 @ zero_zero_real )
= one_one_real ) ) ) ).
% powr_zero_eq_one
thf(fact_4473_powr__gt__zero,axiom,
! [X2: real,A: real] :
( ( ord_less_real @ zero_zero_real @ ( powr_real @ X2 @ A ) )
= ( X2 != zero_zero_real ) ) ).
% powr_gt_zero
thf(fact_4474_powr__nonneg__iff,axiom,
! [A: real,X2: real] :
( ( ord_less_eq_real @ ( powr_real @ A @ X2 ) @ zero_zero_real )
= ( A = zero_zero_real ) ) ).
% powr_nonneg_iff
thf(fact_4475_powr__less__cancel__iff,axiom,
! [X2: real,A: real,B: real] :
( ( ord_less_real @ one_one_real @ X2 )
=> ( ( ord_less_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ X2 @ B ) )
= ( ord_less_real @ A @ B ) ) ) ).
% powr_less_cancel_iff
thf(fact_4476_powr__eq__one__iff,axiom,
! [A: real,X2: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ( powr_real @ A @ X2 )
= one_one_real )
= ( X2 = zero_zero_real ) ) ) ).
% powr_eq_one_iff
thf(fact_4477_powr__one__gt__zero__iff,axiom,
! [X2: real] :
( ( ( powr_real @ X2 @ one_one_real )
= X2 )
= ( ord_less_eq_real @ zero_zero_real @ X2 ) ) ).
% powr_one_gt_zero_iff
thf(fact_4478_powr__one,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( powr_real @ X2 @ one_one_real )
= X2 ) ) ).
% powr_one
thf(fact_4479_powr__le__cancel__iff,axiom,
! [X2: real,A: real,B: real] :
( ( ord_less_real @ one_one_real @ X2 )
=> ( ( ord_less_eq_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ X2 @ B ) )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% powr_le_cancel_iff
thf(fact_4480_numeral__powr__numeral__real,axiom,
! [M: num,N: num] :
( ( powr_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( power_power_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).
% numeral_powr_numeral_real
thf(fact_4481_foldr__length,axiom,
! [L2: list_real] :
( ( foldr_real_nat
@ ^ [X: real] : suc
@ L2
@ zero_zero_nat )
= ( size_size_list_real @ L2 ) ) ).
% foldr_length
thf(fact_4482_foldr__length,axiom,
! [L2: list_o] :
( ( foldr_o_nat
@ ^ [X: $o] : suc
@ L2
@ zero_zero_nat )
= ( size_size_list_o @ L2 ) ) ).
% foldr_length
thf(fact_4483_foldr__length,axiom,
! [L2: list_nat] :
( ( foldr_nat_nat
@ ^ [X: nat] : suc
@ L2
@ zero_zero_nat )
= ( size_size_list_nat @ L2 ) ) ).
% foldr_length
thf(fact_4484_foldr__length,axiom,
! [L2: list_int] :
( ( foldr_int_nat
@ ^ [X: int] : suc
@ L2
@ zero_zero_nat )
= ( size_size_list_int @ L2 ) ) ).
% foldr_length
thf(fact_4485_log__powr__cancel,axiom,
! [A: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( log @ A @ ( powr_real @ A @ Y2 ) )
= Y2 ) ) ) ).
% log_powr_cancel
thf(fact_4486_powr__log__cancel,axiom,
! [A: real,X2: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( powr_real @ A @ ( log @ A @ X2 ) )
= X2 ) ) ) ) ).
% powr_log_cancel
thf(fact_4487_powr__numeral,axiom,
! [X2: real,N: num] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( powr_real @ X2 @ ( numeral_numeral_real @ N ) )
= ( power_power_real @ X2 @ ( numeral_numeral_nat @ N ) ) ) ) ).
% powr_numeral
thf(fact_4488_finite__if__eq__beyond__finite,axiom,
! [S: set_int,S4: set_int] :
( ( finite_finite_int @ S )
=> ( finite6197958912794628473et_int
@ ( collect_set_int
@ ^ [S5: set_int] :
( ( minus_minus_set_int @ S5 @ S )
= ( minus_minus_set_int @ S4 @ S ) ) ) ) ) ).
% finite_if_eq_beyond_finite
thf(fact_4489_finite__if__eq__beyond__finite,axiom,
! [S: set_complex,S4: set_complex] :
( ( finite3207457112153483333omplex @ S )
=> ( finite6551019134538273531omplex
@ ( collect_set_complex
@ ^ [S5: set_complex] :
( ( minus_811609699411566653omplex @ S5 @ S )
= ( minus_811609699411566653omplex @ S4 @ S ) ) ) ) ) ).
% finite_if_eq_beyond_finite
thf(fact_4490_finite__if__eq__beyond__finite,axiom,
! [S: set_Code_integer,S4: set_Code_integer] :
( ( finite6017078050557962740nteger @ S )
=> ( finite6931041176100689706nteger
@ ( collec574505750873337192nteger
@ ^ [S5: set_Code_integer] :
( ( minus_2355218937544613996nteger @ S5 @ S )
= ( minus_2355218937544613996nteger @ S4 @ S ) ) ) ) ) ).
% finite_if_eq_beyond_finite
thf(fact_4491_finite__if__eq__beyond__finite,axiom,
! [S: set_nat,S4: set_nat] :
( ( finite_finite_nat @ S )
=> ( finite1152437895449049373et_nat
@ ( collect_set_nat
@ ^ [S5: set_nat] :
( ( minus_minus_set_nat @ S5 @ S )
= ( minus_minus_set_nat @ S4 @ S ) ) ) ) ) ).
% finite_if_eq_beyond_finite
thf(fact_4492_powr__powr,axiom,
! [X2: real,A: real,B: real] :
( ( powr_real @ ( powr_real @ X2 @ A ) @ B )
= ( powr_real @ X2 @ ( times_times_real @ A @ B ) ) ) ).
% powr_powr
thf(fact_4493_finite__nat__set__iff__bounded__le,axiom,
( finite_finite_nat
= ( ^ [N8: set_nat] :
? [M5: nat] :
! [X: nat] :
( ( member_nat @ X @ N8 )
=> ( ord_less_eq_nat @ X @ M5 ) ) ) ) ).
% finite_nat_set_iff_bounded_le
thf(fact_4494_finite__M__bounded__by__nat,axiom,
! [P: nat > $o,I: nat] :
( finite_finite_nat
@ ( collect_nat
@ ^ [K2: nat] :
( ( P @ K2 )
& ( ord_less_nat @ K2 @ I ) ) ) ) ).
% finite_M_bounded_by_nat
thf(fact_4495_finite__less__ub,axiom,
! [F: nat > nat,U: nat] :
( ! [N2: nat] : ( ord_less_eq_nat @ N2 @ ( F @ N2 ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ U ) ) ) ) ).
% finite_less_ub
thf(fact_4496_finite__lists__length__eq,axiom,
! [A2: set_VEBT_VEBT,N: nat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( finite3004134309566078307T_VEBT
@ ( collec5608196760682091941T_VEBT
@ ^ [Xs: list_VEBT_VEBT] :
( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs ) @ A2 )
& ( ( size_s6755466524823107622T_VEBT @ Xs )
= N ) ) ) ) ) ).
% finite_lists_length_eq
thf(fact_4497_finite__lists__length__eq,axiom,
! [A2: set_complex,N: nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( finite8712137658972009173omplex
@ ( collect_list_complex
@ ^ [Xs: list_complex] :
( ( ord_le211207098394363844omplex @ ( set_complex2 @ Xs ) @ A2 )
& ( ( size_s3451745648224563538omplex @ Xs )
= N ) ) ) ) ) ).
% finite_lists_length_eq
thf(fact_4498_finite__lists__length__eq,axiom,
! [A2: set_Code_integer,N: nat] :
( ( finite6017078050557962740nteger @ A2 )
=> ( finite1283093830868386564nteger
@ ( collec3483841146883906114nteger
@ ^ [Xs: list_Code_integer] :
( ( ord_le7084787975880047091nteger @ ( set_Code_integer2 @ Xs ) @ A2 )
& ( ( size_s3445333598471063425nteger @ Xs )
= N ) ) ) ) ) ).
% finite_lists_length_eq
thf(fact_4499_finite__lists__length__eq,axiom,
! [A2: set_real,N: nat] :
( ( finite_finite_real @ A2 )
=> ( finite306553202115118035t_real
@ ( collect_list_real
@ ^ [Xs: list_real] :
( ( ord_less_eq_set_real @ ( set_real2 @ Xs ) @ A2 )
& ( ( size_size_list_real @ Xs )
= N ) ) ) ) ) ).
% finite_lists_length_eq
thf(fact_4500_finite__lists__length__eq,axiom,
! [A2: set_o,N: nat] :
( ( finite_finite_o @ A2 )
=> ( finite_finite_list_o
@ ( collect_list_o
@ ^ [Xs: list_o] :
( ( ord_less_eq_set_o @ ( set_o2 @ Xs ) @ A2 )
& ( ( size_size_list_o @ Xs )
= N ) ) ) ) ) ).
% finite_lists_length_eq
thf(fact_4501_finite__lists__length__eq,axiom,
! [A2: set_int,N: nat] :
( ( finite_finite_int @ A2 )
=> ( finite3922522038869484883st_int
@ ( collect_list_int
@ ^ [Xs: list_int] :
( ( ord_less_eq_set_int @ ( set_int2 @ Xs ) @ A2 )
& ( ( size_size_list_int @ Xs )
= N ) ) ) ) ) ).
% finite_lists_length_eq
thf(fact_4502_finite__lists__length__eq,axiom,
! [A2: set_nat,N: nat] :
( ( finite_finite_nat @ A2 )
=> ( finite8100373058378681591st_nat
@ ( collect_list_nat
@ ^ [Xs: list_nat] :
( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs ) @ A2 )
& ( ( size_size_list_nat @ Xs )
= N ) ) ) ) ) ).
% finite_lists_length_eq
thf(fact_4503_powr__less__mono2__neg,axiom,
! [A: real,X2: real,Y2: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ X2 @ Y2 )
=> ( ord_less_real @ ( powr_real @ Y2 @ A ) @ ( powr_real @ X2 @ A ) ) ) ) ) ).
% powr_less_mono2_neg
thf(fact_4504_powr__non__neg,axiom,
! [A: real,X2: real] :
~ ( ord_less_real @ ( powr_real @ A @ X2 ) @ zero_zero_real ) ).
% powr_non_neg
thf(fact_4505_powr__mono2,axiom,
! [A: real,X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ X2 @ Y2 )
=> ( ord_less_eq_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ Y2 @ A ) ) ) ) ) ).
% powr_mono2
thf(fact_4506_powr__ge__pzero,axiom,
! [X2: real,Y2: real] : ( ord_less_eq_real @ zero_zero_real @ ( powr_real @ X2 @ Y2 ) ) ).
% powr_ge_pzero
thf(fact_4507_powr__less__cancel,axiom,
! [X2: real,A: real,B: real] :
( ( ord_less_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ X2 @ B ) )
=> ( ( ord_less_real @ one_one_real @ X2 )
=> ( ord_less_real @ A @ B ) ) ) ).
% powr_less_cancel
thf(fact_4508_powr__less__mono,axiom,
! [A: real,B: real,X2: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ one_one_real @ X2 )
=> ( ord_less_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ X2 @ B ) ) ) ) ).
% powr_less_mono
thf(fact_4509_powr__mono,axiom,
! [A: real,B: real,X2: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ one_one_real @ X2 )
=> ( ord_less_eq_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ X2 @ B ) ) ) ) ).
% powr_mono
thf(fact_4510_ln__powr,axiom,
! [X2: real,Y2: real] :
( ( X2 != zero_zero_real )
=> ( ( ln_ln_real @ ( powr_real @ X2 @ Y2 ) )
= ( times_times_real @ Y2 @ ( ln_ln_real @ X2 ) ) ) ) ).
% ln_powr
thf(fact_4511_finite__lists__length__le,axiom,
! [A2: set_VEBT_VEBT,N: nat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( finite3004134309566078307T_VEBT
@ ( collec5608196760682091941T_VEBT
@ ^ [Xs: list_VEBT_VEBT] :
( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs ) @ A2 )
& ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ N ) ) ) ) ) ).
% finite_lists_length_le
thf(fact_4512_finite__lists__length__le,axiom,
! [A2: set_complex,N: nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( finite8712137658972009173omplex
@ ( collect_list_complex
@ ^ [Xs: list_complex] :
( ( ord_le211207098394363844omplex @ ( set_complex2 @ Xs ) @ A2 )
& ( ord_less_eq_nat @ ( size_s3451745648224563538omplex @ Xs ) @ N ) ) ) ) ) ).
% finite_lists_length_le
thf(fact_4513_finite__lists__length__le,axiom,
! [A2: set_Code_integer,N: nat] :
( ( finite6017078050557962740nteger @ A2 )
=> ( finite1283093830868386564nteger
@ ( collec3483841146883906114nteger
@ ^ [Xs: list_Code_integer] :
( ( ord_le7084787975880047091nteger @ ( set_Code_integer2 @ Xs ) @ A2 )
& ( ord_less_eq_nat @ ( size_s3445333598471063425nteger @ Xs ) @ N ) ) ) ) ) ).
% finite_lists_length_le
thf(fact_4514_finite__lists__length__le,axiom,
! [A2: set_real,N: nat] :
( ( finite_finite_real @ A2 )
=> ( finite306553202115118035t_real
@ ( collect_list_real
@ ^ [Xs: list_real] :
( ( ord_less_eq_set_real @ ( set_real2 @ Xs ) @ A2 )
& ( ord_less_eq_nat @ ( size_size_list_real @ Xs ) @ N ) ) ) ) ) ).
% finite_lists_length_le
thf(fact_4515_finite__lists__length__le,axiom,
! [A2: set_o,N: nat] :
( ( finite_finite_o @ A2 )
=> ( finite_finite_list_o
@ ( collect_list_o
@ ^ [Xs: list_o] :
( ( ord_less_eq_set_o @ ( set_o2 @ Xs ) @ A2 )
& ( ord_less_eq_nat @ ( size_size_list_o @ Xs ) @ N ) ) ) ) ) ).
% finite_lists_length_le
thf(fact_4516_finite__lists__length__le,axiom,
! [A2: set_int,N: nat] :
( ( finite_finite_int @ A2 )
=> ( finite3922522038869484883st_int
@ ( collect_list_int
@ ^ [Xs: list_int] :
( ( ord_less_eq_set_int @ ( set_int2 @ Xs ) @ A2 )
& ( ord_less_eq_nat @ ( size_size_list_int @ Xs ) @ N ) ) ) ) ) ).
% finite_lists_length_le
thf(fact_4517_finite__lists__length__le,axiom,
! [A2: set_nat,N: nat] :
( ( finite_finite_nat @ A2 )
=> ( finite8100373058378681591st_nat
@ ( collect_list_nat
@ ^ [Xs: list_nat] :
( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs ) @ A2 )
& ( ord_less_eq_nat @ ( size_size_list_nat @ Xs ) @ N ) ) ) ) ) ).
% finite_lists_length_le
thf(fact_4518_powr__less__mono2,axiom,
! [A: real,X2: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ X2 @ Y2 )
=> ( ord_less_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ Y2 @ A ) ) ) ) ) ).
% powr_less_mono2
thf(fact_4519_powr__mono2_H,axiom,
! [A: real,X2: real,Y2: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ X2 @ Y2 )
=> ( ord_less_eq_real @ ( powr_real @ Y2 @ A ) @ ( powr_real @ X2 @ A ) ) ) ) ) ).
% powr_mono2'
thf(fact_4520_powr__inj,axiom,
! [A: real,X2: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ( powr_real @ A @ X2 )
= ( powr_real @ A @ Y2 ) )
= ( X2 = Y2 ) ) ) ) ).
% powr_inj
thf(fact_4521_gr__one__powr,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ one_one_real @ X2 )
=> ( ( ord_less_real @ zero_zero_real @ Y2 )
=> ( ord_less_real @ one_one_real @ ( powr_real @ X2 @ Y2 ) ) ) ) ).
% gr_one_powr
thf(fact_4522_ge__one__powr__ge__zero,axiom,
! [X2: real,A: real] :
( ( ord_less_eq_real @ one_one_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ one_one_real @ ( powr_real @ X2 @ A ) ) ) ) ).
% ge_one_powr_ge_zero
thf(fact_4523_powr__mono__both,axiom,
! [A: real,B: real,X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ one_one_real @ X2 )
=> ( ( ord_less_eq_real @ X2 @ Y2 )
=> ( ord_less_eq_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ Y2 @ B ) ) ) ) ) ) ).
% powr_mono_both
thf(fact_4524_powr__le1,axiom,
! [A: real,X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ X2 @ one_one_real )
=> ( ord_less_eq_real @ ( powr_real @ X2 @ A ) @ one_one_real ) ) ) ) ).
% powr_le1
thf(fact_4525_powr__divide,axiom,
! [X2: real,Y2: real,A: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( powr_real @ ( divide_divide_real @ X2 @ Y2 ) @ A )
= ( divide_divide_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ Y2 @ A ) ) ) ) ) ).
% powr_divide
thf(fact_4526_powr__mult,axiom,
! [X2: real,Y2: real,A: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( powr_real @ ( times_times_real @ X2 @ Y2 ) @ A )
= ( times_times_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ Y2 @ A ) ) ) ) ) ).
% powr_mult
thf(fact_4527_log__base__powr,axiom,
! [A: real,B: real,X2: real] :
( ( A != zero_zero_real )
=> ( ( log @ ( powr_real @ A @ B ) @ X2 )
= ( divide_divide_real @ ( log @ A @ X2 ) @ B ) ) ) ).
% log_base_powr
thf(fact_4528_log__powr,axiom,
! [X2: real,B: real,Y2: real] :
( ( X2 != zero_zero_real )
=> ( ( log @ B @ ( powr_real @ X2 @ Y2 ) )
= ( times_times_real @ Y2 @ ( log @ B @ X2 ) ) ) ) ).
% log_powr
thf(fact_4529_powr__add,axiom,
! [X2: real,A: real,B: real] :
( ( powr_real @ X2 @ ( plus_plus_real @ A @ B ) )
= ( times_times_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ X2 @ B ) ) ) ).
% powr_add
thf(fact_4530_powr__diff,axiom,
! [W: real,Z1: real,Z22: real] :
( ( powr_real @ W @ ( minus_minus_real @ Z1 @ Z22 ) )
= ( divide_divide_real @ ( powr_real @ W @ Z1 ) @ ( powr_real @ W @ Z22 ) ) ) ).
% powr_diff
thf(fact_4531_finite__divisors__nat,axiom,
! [M: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [D: nat] : ( dvd_dvd_nat @ D @ M ) ) ) ) ).
% finite_divisors_nat
thf(fact_4532_subset__eq__atLeast0__atMost__finite,axiom,
! [N5: set_nat,N: nat] :
( ( ord_less_eq_set_nat @ N5 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
=> ( finite_finite_nat @ N5 ) ) ).
% subset_eq_atLeast0_atMost_finite
thf(fact_4533_powr__realpow,axiom,
! [X2: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( powr_real @ X2 @ ( semiri5074537144036343181t_real @ N ) )
= ( power_power_real @ X2 @ N ) ) ) ).
% powr_realpow
thf(fact_4534_powr__less__iff,axiom,
! [B: real,X2: real,Y2: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ ( powr_real @ B @ Y2 ) @ X2 )
= ( ord_less_real @ Y2 @ ( log @ B @ X2 ) ) ) ) ) ).
% powr_less_iff
thf(fact_4535_less__powr__iff,axiom,
! [B: real,X2: real,Y2: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ X2 @ ( powr_real @ B @ Y2 ) )
= ( ord_less_real @ ( log @ B @ X2 ) @ Y2 ) ) ) ) ).
% less_powr_iff
thf(fact_4536_log__less__iff,axiom,
! [B: real,X2: real,Y2: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ ( log @ B @ X2 ) @ Y2 )
= ( ord_less_real @ X2 @ ( powr_real @ B @ Y2 ) ) ) ) ) ).
% log_less_iff
thf(fact_4537_less__log__iff,axiom,
! [B: real,X2: real,Y2: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ Y2 @ ( log @ B @ X2 ) )
= ( ord_less_real @ ( powr_real @ B @ Y2 ) @ X2 ) ) ) ) ).
% less_log_iff
thf(fact_4538_foldr__length__aux,axiom,
! [L2: list_real,A: nat] :
( ( foldr_real_nat
@ ^ [X: real] : suc
@ L2
@ A )
= ( plus_plus_nat @ A @ ( size_size_list_real @ L2 ) ) ) ).
% foldr_length_aux
thf(fact_4539_foldr__length__aux,axiom,
! [L2: list_o,A: nat] :
( ( foldr_o_nat
@ ^ [X: $o] : suc
@ L2
@ A )
= ( plus_plus_nat @ A @ ( size_size_list_o @ L2 ) ) ) ).
% foldr_length_aux
thf(fact_4540_foldr__length__aux,axiom,
! [L2: list_nat,A: nat] :
( ( foldr_nat_nat
@ ^ [X: nat] : suc
@ L2
@ A )
= ( plus_plus_nat @ A @ ( size_size_list_nat @ L2 ) ) ) ).
% foldr_length_aux
thf(fact_4541_foldr__length__aux,axiom,
! [L2: list_int,A: nat] :
( ( foldr_int_nat
@ ^ [X: int] : suc
@ L2
@ A )
= ( plus_plus_nat @ A @ ( size_size_list_int @ L2 ) ) ) ).
% foldr_length_aux
thf(fact_4542_finite__roots__unity,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( finite_finite_real
@ ( collect_real
@ ^ [Z5: real] :
( ( power_power_real @ Z5 @ N )
= one_one_real ) ) ) ) ).
% finite_roots_unity
thf(fact_4543_finite__roots__unity,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [Z5: complex] :
( ( power_power_complex @ Z5 @ N )
= one_one_complex ) ) ) ) ).
% finite_roots_unity
thf(fact_4544_ln__powr__bound,axiom,
! [X2: real,A: real] :
( ( ord_less_eq_real @ one_one_real @ X2 )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( ln_ln_real @ X2 ) @ ( divide_divide_real @ ( powr_real @ X2 @ A ) @ A ) ) ) ) ).
% ln_powr_bound
thf(fact_4545_ln__powr__bound2,axiom,
! [X2: real,A: real] :
( ( ord_less_real @ one_one_real @ X2 )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( powr_real @ ( ln_ln_real @ X2 ) @ A ) @ ( times_times_real @ ( powr_real @ A @ A ) @ X2 ) ) ) ) ).
% ln_powr_bound2
thf(fact_4546_powr__mult__base,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( times_times_real @ X2 @ ( powr_real @ X2 @ Y2 ) )
= ( powr_real @ X2 @ ( plus_plus_real @ one_one_real @ Y2 ) ) ) ) ).
% powr_mult_base
thf(fact_4547_powr__le__iff,axiom,
! [B: real,X2: real,Y2: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ ( powr_real @ B @ Y2 ) @ X2 )
= ( ord_less_eq_real @ Y2 @ ( log @ B @ X2 ) ) ) ) ) ).
% powr_le_iff
thf(fact_4548_le__powr__iff,axiom,
! [B: real,X2: real,Y2: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ X2 @ ( powr_real @ B @ Y2 ) )
= ( ord_less_eq_real @ ( log @ B @ X2 ) @ Y2 ) ) ) ) ).
% le_powr_iff
thf(fact_4549_log__le__iff,axiom,
! [B: real,X2: real,Y2: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ ( log @ B @ X2 ) @ Y2 )
= ( ord_less_eq_real @ X2 @ ( powr_real @ B @ Y2 ) ) ) ) ) ).
% log_le_iff
thf(fact_4550_le__log__iff,axiom,
! [B: real,X2: real,Y2: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ Y2 @ ( log @ B @ X2 ) )
= ( ord_less_eq_real @ ( powr_real @ B @ Y2 ) @ X2 ) ) ) ) ).
% le_log_iff
thf(fact_4551_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_Osimps_I2_J,axiom,
! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT,X2: nat] :
( ( vEBT_T_m_e_m_b_e_r @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) @ X2 )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r.simps(2)
thf(fact_4552_log__add__eq__powr,axiom,
! [B: real,X2: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( B != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( plus_plus_real @ ( log @ B @ X2 ) @ Y2 )
= ( log @ B @ ( times_times_real @ X2 @ ( powr_real @ B @ Y2 ) ) ) ) ) ) ) ).
% log_add_eq_powr
thf(fact_4553_add__log__eq__powr,axiom,
! [B: real,X2: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( B != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( plus_plus_real @ Y2 @ ( log @ B @ X2 ) )
= ( log @ B @ ( times_times_real @ ( powr_real @ B @ Y2 ) @ X2 ) ) ) ) ) ) ).
% add_log_eq_powr
thf(fact_4554_minus__log__eq__powr,axiom,
! [B: real,X2: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( B != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( minus_minus_real @ Y2 @ ( log @ B @ X2 ) )
= ( log @ B @ ( divide_divide_real @ ( powr_real @ B @ Y2 ) @ X2 ) ) ) ) ) ) ).
% minus_log_eq_powr
thf(fact_4555_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_Osimps_I1_J,axiom,
! [A: $o,B: $o,X2: nat] :
( ( vEBT_T_m_e_m_b_e_r @ ( vEBT_Leaf @ A @ B ) @ X2 )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( if_nat @ ( X2 = zero_zero_nat ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) ) ).
% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r.simps(1)
thf(fact_4556_member__bound__height,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ord_less_eq_nat @ ( vEBT_T_m_e_m_b_e_r @ T2 @ X2 ) @ ( times_times_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ T2 ) ) @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ).
% member_bound_height
thf(fact_4557_finite__Collect__le__nat,axiom,
! [K: nat] :
( finite_finite_nat
@ ( collect_nat
@ ^ [N3: nat] : ( ord_less_eq_nat @ N3 @ K ) ) ) ).
% finite_Collect_le_nat
thf(fact_4558_finite__Collect__less__nat,axiom,
! [K: nat] :
( finite_finite_nat
@ ( collect_nat
@ ^ [N3: nat] : ( ord_less_nat @ N3 @ K ) ) ) ).
% finite_Collect_less_nat
thf(fact_4559_finite__Collect__subsets,axiom,
! [A2: set_int] :
( ( finite_finite_int @ A2 )
=> ( finite6197958912794628473et_int
@ ( collect_set_int
@ ^ [B7: set_int] : ( ord_less_eq_set_int @ B7 @ A2 ) ) ) ) ).
% finite_Collect_subsets
thf(fact_4560_finite__Collect__subsets,axiom,
! [A2: set_complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ( finite6551019134538273531omplex
@ ( collect_set_complex
@ ^ [B7: set_complex] : ( ord_le211207098394363844omplex @ B7 @ A2 ) ) ) ) ).
% finite_Collect_subsets
thf(fact_4561_finite__Collect__subsets,axiom,
! [A2: set_Code_integer] :
( ( finite6017078050557962740nteger @ A2 )
=> ( finite6931041176100689706nteger
@ ( collec574505750873337192nteger
@ ^ [B7: set_Code_integer] : ( ord_le7084787975880047091nteger @ B7 @ A2 ) ) ) ) ).
% finite_Collect_subsets
thf(fact_4562_finite__Collect__subsets,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( finite1152437895449049373et_nat
@ ( collect_set_nat
@ ^ [B7: set_nat] : ( ord_less_eq_set_nat @ B7 @ A2 ) ) ) ) ).
% finite_Collect_subsets
thf(fact_4563_succ__bound__size__univ,axiom,
! [T2: vEBT_VEBT,N: nat,U: real,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( U
= ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_T_s_u_c_c @ T2 @ X2 ) ) @ ( plus_plus_real @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit1 @ one ) ) ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit1 @ one ) ) ) ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ U ) ) ) ) ) ) ) ).
% succ_bound_size_univ
thf(fact_4564_list__every__elemnt__bound__sum__bound__real,axiom,
! [Xs2: list_VEBT_VEBT,F: vEBT_VEBT > real,Bound: real,I: real] :
( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ Xs2 ) )
=> ( ord_less_eq_real @ ( F @ X3 ) @ Bound ) )
=> ( ord_less_eq_real @ ( foldr_real_real @ plus_plus_real @ ( map_VEBT_VEBT_real @ F @ Xs2 ) @ I ) @ ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( size_s6755466524823107622T_VEBT @ Xs2 ) ) @ Bound ) @ I ) ) ) ).
% list_every_elemnt_bound_sum_bound_real
thf(fact_4565_list__every__elemnt__bound__sum__bound__real,axiom,
! [Xs2: list_real,F: real > real,Bound: real,I: real] :
( ! [X3: real] :
( ( member_real @ X3 @ ( set_real2 @ Xs2 ) )
=> ( ord_less_eq_real @ ( F @ X3 ) @ Bound ) )
=> ( ord_less_eq_real @ ( foldr_real_real @ plus_plus_real @ ( map_real_real @ F @ Xs2 ) @ I ) @ ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( size_size_list_real @ Xs2 ) ) @ Bound ) @ I ) ) ) ).
% list_every_elemnt_bound_sum_bound_real
thf(fact_4566_list__every__elemnt__bound__sum__bound__real,axiom,
! [Xs2: list_o,F: $o > real,Bound: real,I: real] :
( ! [X3: $o] :
( ( member_o @ X3 @ ( set_o2 @ Xs2 ) )
=> ( ord_less_eq_real @ ( F @ X3 ) @ Bound ) )
=> ( ord_less_eq_real @ ( foldr_real_real @ plus_plus_real @ ( map_o_real @ F @ Xs2 ) @ I ) @ ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( size_size_list_o @ Xs2 ) ) @ Bound ) @ I ) ) ) ).
% list_every_elemnt_bound_sum_bound_real
thf(fact_4567_list__every__elemnt__bound__sum__bound__real,axiom,
! [Xs2: list_nat,F: nat > real,Bound: real,I: real] :
( ! [X3: nat] :
( ( member_nat @ X3 @ ( set_nat2 @ Xs2 ) )
=> ( ord_less_eq_real @ ( F @ X3 ) @ Bound ) )
=> ( ord_less_eq_real @ ( foldr_real_real @ plus_plus_real @ ( map_nat_real @ F @ Xs2 ) @ I ) @ ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( size_size_list_nat @ Xs2 ) ) @ Bound ) @ I ) ) ) ).
% list_every_elemnt_bound_sum_bound_real
thf(fact_4568_list__every__elemnt__bound__sum__bound__real,axiom,
! [Xs2: list_int,F: int > real,Bound: real,I: real] :
( ! [X3: int] :
( ( member_int @ X3 @ ( set_int2 @ Xs2 ) )
=> ( ord_less_eq_real @ ( F @ X3 ) @ Bound ) )
=> ( ord_less_eq_real @ ( foldr_real_real @ plus_plus_real @ ( map_int_real @ F @ Xs2 ) @ I ) @ ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( size_size_list_int @ Xs2 ) ) @ Bound ) @ I ) ) ) ).
% list_every_elemnt_bound_sum_bound_real
thf(fact_4569_insert__bound__size__univ,axiom,
! [T2: vEBT_VEBT,N: nat,U: real,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( U
= ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_T_i_n_s_e_r_t @ T2 @ X2 ) ) @ ( plus_plus_real @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ one ) ) ) ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ U ) ) ) ) ) ) ) ).
% insert_bound_size_univ
thf(fact_4570_pred__bound__size__univ,axiom,
! [T2: vEBT_VEBT,N: nat,U: real,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( U
= ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_T_p_r_e_d @ T2 @ X2 ) ) @ ( plus_plus_real @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ U ) ) ) ) ) ) ) ).
% pred_bound_size_univ
thf(fact_4571_finite__Collect__disjI,axiom,
! [P: product_prod_int_int > $o,Q: product_prod_int_int > $o] :
( ( finite2998713641127702882nt_int
@ ( collec213857154873943460nt_int
@ ^ [X: product_prod_int_int] :
( ( P @ X )
| ( Q @ X ) ) ) )
= ( ( finite2998713641127702882nt_int @ ( collec213857154873943460nt_int @ P ) )
& ( finite2998713641127702882nt_int @ ( collec213857154873943460nt_int @ Q ) ) ) ) ).
% finite_Collect_disjI
thf(fact_4572_finite__Collect__disjI,axiom,
! [P: set_nat > $o,Q: set_nat > $o] :
( ( finite1152437895449049373et_nat
@ ( collect_set_nat
@ ^ [X: set_nat] :
( ( P @ X )
| ( Q @ X ) ) ) )
= ( ( finite1152437895449049373et_nat @ ( collect_set_nat @ P ) )
& ( finite1152437895449049373et_nat @ ( collect_set_nat @ Q ) ) ) ) ).
% finite_Collect_disjI
thf(fact_4573_finite__Collect__disjI,axiom,
! [P: nat > $o,Q: nat > $o] :
( ( finite_finite_nat
@ ( collect_nat
@ ^ [X: nat] :
( ( P @ X )
| ( Q @ X ) ) ) )
= ( ( finite_finite_nat @ ( collect_nat @ P ) )
& ( finite_finite_nat @ ( collect_nat @ Q ) ) ) ) ).
% finite_Collect_disjI
thf(fact_4574_finite__Collect__disjI,axiom,
! [P: int > $o,Q: int > $o] :
( ( finite_finite_int
@ ( collect_int
@ ^ [X: int] :
( ( P @ X )
| ( Q @ X ) ) ) )
= ( ( finite_finite_int @ ( collect_int @ P ) )
& ( finite_finite_int @ ( collect_int @ Q ) ) ) ) ).
% finite_Collect_disjI
thf(fact_4575_finite__Collect__disjI,axiom,
! [P: complex > $o,Q: complex > $o] :
( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [X: complex] :
( ( P @ X )
| ( Q @ X ) ) ) )
= ( ( finite3207457112153483333omplex @ ( collect_complex @ P ) )
& ( finite3207457112153483333omplex @ ( collect_complex @ Q ) ) ) ) ).
% finite_Collect_disjI
thf(fact_4576_finite__Collect__disjI,axiom,
! [P: code_integer > $o,Q: code_integer > $o] :
( ( finite6017078050557962740nteger
@ ( collect_Code_integer
@ ^ [X: code_integer] :
( ( P @ X )
| ( Q @ X ) ) ) )
= ( ( finite6017078050557962740nteger @ ( collect_Code_integer @ P ) )
& ( finite6017078050557962740nteger @ ( collect_Code_integer @ Q ) ) ) ) ).
% finite_Collect_disjI
thf(fact_4577_finite__Collect__conjI,axiom,
! [P: product_prod_int_int > $o,Q: product_prod_int_int > $o] :
( ( ( finite2998713641127702882nt_int @ ( collec213857154873943460nt_int @ P ) )
| ( finite2998713641127702882nt_int @ ( collec213857154873943460nt_int @ Q ) ) )
=> ( finite2998713641127702882nt_int
@ ( collec213857154873943460nt_int
@ ^ [X: product_prod_int_int] :
( ( P @ X )
& ( Q @ X ) ) ) ) ) ).
% finite_Collect_conjI
thf(fact_4578_finite__Collect__conjI,axiom,
! [P: set_nat > $o,Q: set_nat > $o] :
( ( ( finite1152437895449049373et_nat @ ( collect_set_nat @ P ) )
| ( finite1152437895449049373et_nat @ ( collect_set_nat @ Q ) ) )
=> ( finite1152437895449049373et_nat
@ ( collect_set_nat
@ ^ [X: set_nat] :
( ( P @ X )
& ( Q @ X ) ) ) ) ) ).
% finite_Collect_conjI
thf(fact_4579_finite__Collect__conjI,axiom,
! [P: nat > $o,Q: nat > $o] :
( ( ( finite_finite_nat @ ( collect_nat @ P ) )
| ( finite_finite_nat @ ( collect_nat @ Q ) ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [X: nat] :
( ( P @ X )
& ( Q @ X ) ) ) ) ) ).
% finite_Collect_conjI
thf(fact_4580_finite__Collect__conjI,axiom,
! [P: int > $o,Q: int > $o] :
( ( ( finite_finite_int @ ( collect_int @ P ) )
| ( finite_finite_int @ ( collect_int @ Q ) ) )
=> ( finite_finite_int
@ ( collect_int
@ ^ [X: int] :
( ( P @ X )
& ( Q @ X ) ) ) ) ) ).
% finite_Collect_conjI
thf(fact_4581_finite__Collect__conjI,axiom,
! [P: complex > $o,Q: complex > $o] :
( ( ( finite3207457112153483333omplex @ ( collect_complex @ P ) )
| ( finite3207457112153483333omplex @ ( collect_complex @ Q ) ) )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [X: complex] :
( ( P @ X )
& ( Q @ X ) ) ) ) ) ).
% finite_Collect_conjI
thf(fact_4582_finite__Collect__conjI,axiom,
! [P: code_integer > $o,Q: code_integer > $o] :
( ( ( finite6017078050557962740nteger @ ( collect_Code_integer @ P ) )
| ( finite6017078050557962740nteger @ ( collect_Code_integer @ Q ) ) )
=> ( finite6017078050557962740nteger
@ ( collect_Code_integer
@ ^ [X: code_integer] :
( ( P @ X )
& ( Q @ X ) ) ) ) ) ).
% finite_Collect_conjI
thf(fact_4583_map__ident,axiom,
( ( map_nat_nat
@ ^ [X: nat] : X )
= ( ^ [Xs: list_nat] : Xs ) ) ).
% map_ident
thf(fact_4584_finite__interval__int1,axiom,
! [A: int,B: int] :
( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( ord_less_eq_int @ A @ I3 )
& ( ord_less_eq_int @ I3 @ B ) ) ) ) ).
% finite_interval_int1
thf(fact_4585_finite__interval__int4,axiom,
! [A: int,B: int] :
( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( ord_less_int @ A @ I3 )
& ( ord_less_int @ I3 @ B ) ) ) ) ).
% finite_interval_int4
thf(fact_4586_listsum__bound,axiom,
! [Xs2: list_VEBT_VEBT,F: vEBT_VEBT > real,Y2: real] :
( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ Xs2 ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
=> ( ord_less_eq_real @ Y2 @ ( foldr_real_real @ plus_plus_real @ ( map_VEBT_VEBT_real @ F @ Xs2 ) @ Y2 ) ) ) ).
% listsum_bound
thf(fact_4587_listsum__bound,axiom,
! [Xs2: list_real,F: real > real,Y2: real] :
( ! [X3: real] :
( ( member_real @ X3 @ ( set_real2 @ Xs2 ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
=> ( ord_less_eq_real @ Y2 @ ( foldr_real_real @ plus_plus_real @ ( map_real_real @ F @ Xs2 ) @ Y2 ) ) ) ).
% listsum_bound
thf(fact_4588_listsum__bound,axiom,
! [Xs2: list_nat,F: nat > real,Y2: real] :
( ! [X3: nat] :
( ( member_nat @ X3 @ ( set_nat2 @ Xs2 ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
=> ( ord_less_eq_real @ Y2 @ ( foldr_real_real @ plus_plus_real @ ( map_nat_real @ F @ Xs2 ) @ Y2 ) ) ) ).
% listsum_bound
thf(fact_4589_listsum__bound,axiom,
! [Xs2: list_int,F: int > real,Y2: real] :
( ! [X3: int] :
( ( member_int @ X3 @ ( set_int2 @ Xs2 ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
=> ( ord_less_eq_real @ Y2 @ ( foldr_real_real @ plus_plus_real @ ( map_int_real @ F @ Xs2 ) @ Y2 ) ) ) ).
% listsum_bound
thf(fact_4590_f__g__map__foldr__bound,axiom,
! [Xs2: list_VEBT_VEBT,F: vEBT_VEBT > real,C: real,G: vEBT_VEBT > real,D2: real] :
( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ Xs2 ) )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( times_times_real @ C @ ( G @ X3 ) ) ) )
=> ( ord_less_eq_real @ ( foldr_real_real @ plus_plus_real @ ( map_VEBT_VEBT_real @ F @ Xs2 ) @ D2 ) @ ( plus_plus_real @ ( times_times_real @ C @ ( foldr_real_real @ plus_plus_real @ ( map_VEBT_VEBT_real @ G @ Xs2 ) @ zero_zero_real ) ) @ D2 ) ) ) ).
% f_g_map_foldr_bound
thf(fact_4591_f__g__map__foldr__bound,axiom,
! [Xs2: list_real,F: real > real,C: real,G: real > real,D2: real] :
( ! [X3: real] :
( ( member_real @ X3 @ ( set_real2 @ Xs2 ) )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( times_times_real @ C @ ( G @ X3 ) ) ) )
=> ( ord_less_eq_real @ ( foldr_real_real @ plus_plus_real @ ( map_real_real @ F @ Xs2 ) @ D2 ) @ ( plus_plus_real @ ( times_times_real @ C @ ( foldr_real_real @ plus_plus_real @ ( map_real_real @ G @ Xs2 ) @ zero_zero_real ) ) @ D2 ) ) ) ).
% f_g_map_foldr_bound
thf(fact_4592_f__g__map__foldr__bound,axiom,
! [Xs2: list_nat,F: nat > real,C: real,G: nat > real,D2: real] :
( ! [X3: nat] :
( ( member_nat @ X3 @ ( set_nat2 @ Xs2 ) )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( times_times_real @ C @ ( G @ X3 ) ) ) )
=> ( ord_less_eq_real @ ( foldr_real_real @ plus_plus_real @ ( map_nat_real @ F @ Xs2 ) @ D2 ) @ ( plus_plus_real @ ( times_times_real @ C @ ( foldr_real_real @ plus_plus_real @ ( map_nat_real @ G @ Xs2 ) @ zero_zero_real ) ) @ D2 ) ) ) ).
% f_g_map_foldr_bound
thf(fact_4593_f__g__map__foldr__bound,axiom,
! [Xs2: list_int,F: int > real,C: real,G: int > real,D2: real] :
( ! [X3: int] :
( ( member_int @ X3 @ ( set_int2 @ Xs2 ) )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( times_times_real @ C @ ( G @ X3 ) ) ) )
=> ( ord_less_eq_real @ ( foldr_real_real @ plus_plus_real @ ( map_int_real @ F @ Xs2 ) @ D2 ) @ ( plus_plus_real @ ( times_times_real @ C @ ( foldr_real_real @ plus_plus_real @ ( map_int_real @ G @ Xs2 ) @ zero_zero_real ) ) @ D2 ) ) ) ).
% f_g_map_foldr_bound
thf(fact_4594_map__replicate,axiom,
! [F: nat > nat,N: nat,X2: nat] :
( ( map_nat_nat @ F @ ( replicate_nat @ N @ X2 ) )
= ( replicate_nat @ N @ ( F @ X2 ) ) ) ).
% map_replicate
thf(fact_4595_map__replicate,axiom,
! [F: nat > $o,N: nat,X2: nat] :
( ( map_nat_o @ F @ ( replicate_nat @ N @ X2 ) )
= ( replicate_o @ N @ ( F @ X2 ) ) ) ).
% map_replicate
thf(fact_4596_map__replicate,axiom,
! [F: vEBT_VEBT > real,N: nat,X2: vEBT_VEBT] :
( ( map_VEBT_VEBT_real @ F @ ( replicate_VEBT_VEBT @ N @ X2 ) )
= ( replicate_real @ N @ ( F @ X2 ) ) ) ).
% map_replicate
thf(fact_4597_map__replicate,axiom,
! [F: vEBT_VEBT > nat,N: nat,X2: vEBT_VEBT] :
( ( map_VEBT_VEBT_nat @ F @ ( replicate_VEBT_VEBT @ N @ X2 ) )
= ( replicate_nat @ N @ ( F @ X2 ) ) ) ).
% map_replicate
thf(fact_4598_map__replicate,axiom,
! [F: vEBT_VEBT > vEBT_VEBT,N: nat,X2: vEBT_VEBT] :
( ( map_VE8901447254227204932T_VEBT @ F @ ( replicate_VEBT_VEBT @ N @ X2 ) )
= ( replicate_VEBT_VEBT @ N @ ( F @ X2 ) ) ) ).
% map_replicate
thf(fact_4599_finite__interval__int3,axiom,
! [A: int,B: int] :
( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( ord_less_int @ A @ I3 )
& ( ord_less_eq_int @ I3 @ B ) ) ) ) ).
% finite_interval_int3
thf(fact_4600_finite__interval__int2,axiom,
! [A: int,B: int] :
( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( ord_less_eq_int @ A @ I3 )
& ( ord_less_int @ I3 @ B ) ) ) ) ).
% finite_interval_int2
thf(fact_4601_list_Omap__ident,axiom,
! [T2: list_nat] :
( ( map_nat_nat
@ ^ [X: nat] : X
@ T2 )
= T2 ) ).
% list.map_ident
thf(fact_4602_map__replicate__const,axiom,
! [K: real,Lst: list_VEBT_VEBT] :
( ( map_VEBT_VEBT_real
@ ^ [X: vEBT_VEBT] : K
@ Lst )
= ( replicate_real @ ( size_s6755466524823107622T_VEBT @ Lst ) @ K ) ) ).
% map_replicate_const
thf(fact_4603_map__replicate__const,axiom,
! [K: nat,Lst: list_VEBT_VEBT] :
( ( map_VEBT_VEBT_nat
@ ^ [X: vEBT_VEBT] : K
@ Lst )
= ( replicate_nat @ ( size_s6755466524823107622T_VEBT @ Lst ) @ K ) ) ).
% map_replicate_const
thf(fact_4604_map__replicate__const,axiom,
! [K: vEBT_VEBT,Lst: list_real] :
( ( map_real_VEBT_VEBT
@ ^ [X: real] : K
@ Lst )
= ( replicate_VEBT_VEBT @ ( size_size_list_real @ Lst ) @ K ) ) ).
% map_replicate_const
thf(fact_4605_map__replicate__const,axiom,
! [K: vEBT_VEBT,Lst: list_o] :
( ( map_o_VEBT_VEBT
@ ^ [X: $o] : K
@ Lst )
= ( replicate_VEBT_VEBT @ ( size_size_list_o @ Lst ) @ K ) ) ).
% map_replicate_const
thf(fact_4606_map__replicate__const,axiom,
! [K: nat,Lst: list_nat] :
( ( map_nat_nat
@ ^ [X: nat] : K
@ Lst )
= ( replicate_nat @ ( size_size_list_nat @ Lst ) @ K ) ) ).
% map_replicate_const
thf(fact_4607_map__replicate__const,axiom,
! [K: $o,Lst: list_nat] :
( ( map_nat_o
@ ^ [X: nat] : K
@ Lst )
= ( replicate_o @ ( size_size_list_nat @ Lst ) @ K ) ) ).
% map_replicate_const
thf(fact_4608_map__replicate__const,axiom,
! [K: vEBT_VEBT,Lst: list_nat] :
( ( map_nat_VEBT_VEBT
@ ^ [X: nat] : K
@ Lst )
= ( replicate_VEBT_VEBT @ ( size_size_list_nat @ Lst ) @ K ) ) ).
% map_replicate_const
thf(fact_4609_map__replicate__const,axiom,
! [K: vEBT_VEBT,Lst: list_int] :
( ( map_int_VEBT_VEBT
@ ^ [X: int] : K
@ Lst )
= ( replicate_VEBT_VEBT @ ( size_size_list_int @ Lst ) @ K ) ) ).
% map_replicate_const
thf(fact_4610_finite__divisors__int,axiom,
! [I: int] :
( ( I != zero_zero_int )
=> ( finite_finite_int
@ ( collect_int
@ ^ [D: int] : ( dvd_dvd_int @ D @ I ) ) ) ) ).
% finite_divisors_int
thf(fact_4611_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_Osimps_I2_J,axiom,
! [Info: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S3: vEBT_VEBT,X2: nat] :
( ( vEBT_T_i_n_s_e_r_t @ ( vEBT_Node @ Info @ zero_zero_nat @ Ts @ S3 ) @ X2 )
= one_one_nat ) ).
% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t.simps(2)
thf(fact_4612_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_Osimps_I1_J,axiom,
! [Uu: $o,Uv: $o] :
( ( vEBT_T_p_r_e_d @ ( vEBT_Leaf @ Uu @ Uv ) @ zero_zero_nat )
= one_one_nat ) ).
% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d.simps(1)
thf(fact_4613_pigeonhole__infinite__rel,axiom,
! [A2: set_real,B4: set_nat,R: real > nat > $o] :
( ~ ( finite_finite_real @ A2 )
=> ( ( finite_finite_nat @ B4 )
=> ( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ? [Xa: nat] :
( ( member_nat @ Xa @ B4 )
& ( R @ X3 @ Xa ) ) )
=> ? [X3: nat] :
( ( member_nat @ X3 @ B4 )
& ~ ( finite_finite_real
@ ( collect_real
@ ^ [A3: real] :
( ( member_real @ A3 @ A2 )
& ( R @ A3 @ X3 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_4614_pigeonhole__infinite__rel,axiom,
! [A2: set_VEBT_VEBT,B4: set_nat,R: vEBT_VEBT > nat > $o] :
( ~ ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( finite_finite_nat @ B4 )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ A2 )
=> ? [Xa: nat] :
( ( member_nat @ Xa @ B4 )
& ( R @ X3 @ Xa ) ) )
=> ? [X3: nat] :
( ( member_nat @ X3 @ B4 )
& ~ ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [A3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A3 @ A2 )
& ( R @ A3 @ X3 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_4615_pigeonhole__infinite__rel,axiom,
! [A2: set_real,B4: set_int,R: real > int > $o] :
( ~ ( finite_finite_real @ A2 )
=> ( ( finite_finite_int @ B4 )
=> ( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ? [Xa: int] :
( ( member_int @ Xa @ B4 )
& ( R @ X3 @ Xa ) ) )
=> ? [X3: int] :
( ( member_int @ X3 @ B4 )
& ~ ( finite_finite_real
@ ( collect_real
@ ^ [A3: real] :
( ( member_real @ A3 @ A2 )
& ( R @ A3 @ X3 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_4616_pigeonhole__infinite__rel,axiom,
! [A2: set_VEBT_VEBT,B4: set_int,R: vEBT_VEBT > int > $o] :
( ~ ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( finite_finite_int @ B4 )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ A2 )
=> ? [Xa: int] :
( ( member_int @ Xa @ B4 )
& ( R @ X3 @ Xa ) ) )
=> ? [X3: int] :
( ( member_int @ X3 @ B4 )
& ~ ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [A3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A3 @ A2 )
& ( R @ A3 @ X3 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_4617_pigeonhole__infinite__rel,axiom,
! [A2: set_real,B4: set_complex,R: real > complex > $o] :
( ~ ( finite_finite_real @ A2 )
=> ( ( finite3207457112153483333omplex @ B4 )
=> ( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ? [Xa: complex] :
( ( member_complex @ Xa @ B4 )
& ( R @ X3 @ Xa ) ) )
=> ? [X3: complex] :
( ( member_complex @ X3 @ B4 )
& ~ ( finite_finite_real
@ ( collect_real
@ ^ [A3: real] :
( ( member_real @ A3 @ A2 )
& ( R @ A3 @ X3 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_4618_pigeonhole__infinite__rel,axiom,
! [A2: set_VEBT_VEBT,B4: set_complex,R: vEBT_VEBT > complex > $o] :
( ~ ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( finite3207457112153483333omplex @ B4 )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ A2 )
=> ? [Xa: complex] :
( ( member_complex @ Xa @ B4 )
& ( R @ X3 @ Xa ) ) )
=> ? [X3: complex] :
( ( member_complex @ X3 @ B4 )
& ~ ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [A3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A3 @ A2 )
& ( R @ A3 @ X3 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_4619_pigeonhole__infinite__rel,axiom,
! [A2: set_real,B4: set_Code_integer,R: real > code_integer > $o] :
( ~ ( finite_finite_real @ A2 )
=> ( ( finite6017078050557962740nteger @ B4 )
=> ( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ? [Xa: code_integer] :
( ( member_Code_integer @ Xa @ B4 )
& ( R @ X3 @ Xa ) ) )
=> ? [X3: code_integer] :
( ( member_Code_integer @ X3 @ B4 )
& ~ ( finite_finite_real
@ ( collect_real
@ ^ [A3: real] :
( ( member_real @ A3 @ A2 )
& ( R @ A3 @ X3 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_4620_pigeonhole__infinite__rel,axiom,
! [A2: set_VEBT_VEBT,B4: set_Code_integer,R: vEBT_VEBT > code_integer > $o] :
( ~ ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( finite6017078050557962740nteger @ B4 )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ A2 )
=> ? [Xa: code_integer] :
( ( member_Code_integer @ Xa @ B4 )
& ( R @ X3 @ Xa ) ) )
=> ? [X3: code_integer] :
( ( member_Code_integer @ X3 @ B4 )
& ~ ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [A3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A3 @ A2 )
& ( R @ A3 @ X3 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_4621_pigeonhole__infinite__rel,axiom,
! [A2: set_nat,B4: set_nat,R: nat > nat > $o] :
( ~ ( finite_finite_nat @ A2 )
=> ( ( finite_finite_nat @ B4 )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ? [Xa: nat] :
( ( member_nat @ Xa @ B4 )
& ( R @ X3 @ Xa ) ) )
=> ? [X3: nat] :
( ( member_nat @ X3 @ B4 )
& ~ ( finite_finite_nat
@ ( collect_nat
@ ^ [A3: nat] :
( ( member_nat @ A3 @ A2 )
& ( R @ A3 @ X3 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_4622_pigeonhole__infinite__rel,axiom,
! [A2: set_nat,B4: set_int,R: nat > int > $o] :
( ~ ( finite_finite_nat @ A2 )
=> ( ( finite_finite_int @ B4 )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ? [Xa: int] :
( ( member_int @ Xa @ B4 )
& ( R @ X3 @ Xa ) ) )
=> ? [X3: int] :
( ( member_int @ X3 @ B4 )
& ~ ( finite_finite_nat
@ ( collect_nat
@ ^ [A3: nat] :
( ( member_nat @ A3 @ A2 )
& ( R @ A3 @ X3 ) ) ) ) ) ) ) ) ).
% pigeonhole_infinite_rel
thf(fact_4623_not__finite__existsD,axiom,
! [P: product_prod_int_int > $o] :
( ~ ( finite2998713641127702882nt_int @ ( collec213857154873943460nt_int @ P ) )
=> ? [X_1: product_prod_int_int] : ( P @ X_1 ) ) ).
% not_finite_existsD
thf(fact_4624_not__finite__existsD,axiom,
! [P: set_nat > $o] :
( ~ ( finite1152437895449049373et_nat @ ( collect_set_nat @ P ) )
=> ? [X_1: set_nat] : ( P @ X_1 ) ) ).
% not_finite_existsD
thf(fact_4625_not__finite__existsD,axiom,
! [P: nat > $o] :
( ~ ( finite_finite_nat @ ( collect_nat @ P ) )
=> ? [X_1: nat] : ( P @ X_1 ) ) ).
% not_finite_existsD
thf(fact_4626_not__finite__existsD,axiom,
! [P: int > $o] :
( ~ ( finite_finite_int @ ( collect_int @ P ) )
=> ? [X_1: int] : ( P @ X_1 ) ) ).
% not_finite_existsD
thf(fact_4627_not__finite__existsD,axiom,
! [P: complex > $o] :
( ~ ( finite3207457112153483333omplex @ ( collect_complex @ P ) )
=> ? [X_1: complex] : ( P @ X_1 ) ) ).
% not_finite_existsD
thf(fact_4628_not__finite__existsD,axiom,
! [P: code_integer > $o] :
( ~ ( finite6017078050557962740nteger @ ( collect_Code_integer @ P ) )
=> ? [X_1: code_integer] : ( P @ X_1 ) ) ).
% not_finite_existsD
thf(fact_4629_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_Osimps_I2_J,axiom,
! [Uv: $o,Uw: $o,N: nat] :
( ( vEBT_T_s_u_c_c @ ( vEBT_Leaf @ Uv @ Uw ) @ ( suc @ N ) )
= one_one_nat ) ).
% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c.simps(2)
thf(fact_4630_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_Osimps_I4_J,axiom,
! [Uy: nat,Uz: list_VEBT_VEBT,Va: vEBT_VEBT,Vb: nat] :
( ( vEBT_T_p_r_e_d @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy @ Uz @ Va ) @ Vb )
= one_one_nat ) ).
% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d.simps(4)
thf(fact_4631_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_Osimps_I3_J,axiom,
! [Ux: nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT,Va: nat] :
( ( vEBT_T_s_u_c_c @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux @ Uy @ Uz ) @ Va )
= one_one_nat ) ).
% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c.simps(3)
thf(fact_4632_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_Osimps_I3_J,axiom,
! [Info: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S3: vEBT_VEBT,X2: nat] :
( ( vEBT_T_i_n_s_e_r_t @ ( vEBT_Node @ Info @ ( suc @ zero_zero_nat ) @ Ts @ S3 ) @ X2 )
= one_one_nat ) ).
% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t.simps(3)
thf(fact_4633_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_Osimps_I3_J,axiom,
! [A: $o,B: $o,Va: nat] :
( ( vEBT_T_p_r_e_d @ ( vEBT_Leaf @ A @ B ) @ ( suc @ ( suc @ Va ) ) )
= ( plus_plus_nat @ one_one_nat @ ( if_nat @ B @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) ) ).
% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d.simps(3)
thf(fact_4634_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_Osimps_I1_J,axiom,
! [A: $o,B: $o,X2: nat] :
( ( vEBT_T_i_n_s_e_r_t @ ( vEBT_Leaf @ A @ B ) @ X2 )
= ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( X2 = zero_zero_nat ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) ) ).
% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t.simps(1)
thf(fact_4635_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_Osimps_I1_J,axiom,
! [Uu: $o,B: $o] :
( ( vEBT_T_s_u_c_c @ ( vEBT_Leaf @ Uu @ B ) @ zero_zero_nat )
= ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ).
% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c.simps(1)
thf(fact_4636_VEBT__internal_Ocnt_Osimps_I2_J,axiom,
! [Info: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( vEBT_VEBT_cnt @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) )
= ( plus_plus_real @ ( plus_plus_real @ one_one_real @ ( vEBT_VEBT_cnt @ Summary ) ) @ ( foldr_real_real @ plus_plus_real @ ( map_VEBT_VEBT_real @ vEBT_VEBT_cnt @ TreeList ) @ zero_zero_real ) ) ) ).
% VEBT_internal.cnt.simps(2)
thf(fact_4637_finite__has__minimal2,axiom,
! [A2: set_real,A: real] :
( ( finite_finite_real @ A2 )
=> ( ( member_real @ A @ A2 )
=> ? [X3: real] :
( ( member_real @ X3 @ A2 )
& ( ord_less_eq_real @ X3 @ A )
& ! [Xa: real] :
( ( member_real @ Xa @ A2 )
=> ( ( ord_less_eq_real @ Xa @ X3 )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_4638_finite__has__minimal2,axiom,
! [A2: set_Code_integer,A: code_integer] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( member_Code_integer @ A @ A2 )
=> ? [X3: code_integer] :
( ( member_Code_integer @ X3 @ A2 )
& ( ord_le3102999989581377725nteger @ X3 @ A )
& ! [Xa: code_integer] :
( ( member_Code_integer @ Xa @ A2 )
=> ( ( ord_le3102999989581377725nteger @ Xa @ X3 )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_4639_finite__has__minimal2,axiom,
! [A2: set_set_nat,A: set_nat] :
( ( finite1152437895449049373et_nat @ A2 )
=> ( ( member_set_nat @ A @ A2 )
=> ? [X3: set_nat] :
( ( member_set_nat @ X3 @ A2 )
& ( ord_less_eq_set_nat @ X3 @ A )
& ! [Xa: set_nat] :
( ( member_set_nat @ Xa @ A2 )
=> ( ( ord_less_eq_set_nat @ Xa @ X3 )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_4640_finite__has__minimal2,axiom,
! [A2: set_rat,A: rat] :
( ( finite_finite_rat @ A2 )
=> ( ( member_rat @ A @ A2 )
=> ? [X3: rat] :
( ( member_rat @ X3 @ A2 )
& ( ord_less_eq_rat @ X3 @ A )
& ! [Xa: rat] :
( ( member_rat @ Xa @ A2 )
=> ( ( ord_less_eq_rat @ Xa @ X3 )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_4641_finite__has__minimal2,axiom,
! [A2: set_num,A: num] :
( ( finite_finite_num @ A2 )
=> ( ( member_num @ A @ A2 )
=> ? [X3: num] :
( ( member_num @ X3 @ A2 )
& ( ord_less_eq_num @ X3 @ A )
& ! [Xa: num] :
( ( member_num @ Xa @ A2 )
=> ( ( ord_less_eq_num @ Xa @ X3 )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_4642_finite__has__minimal2,axiom,
! [A2: set_nat,A: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ A @ A2 )
=> ? [X3: nat] :
( ( member_nat @ X3 @ A2 )
& ( ord_less_eq_nat @ X3 @ A )
& ! [Xa: nat] :
( ( member_nat @ Xa @ A2 )
=> ( ( ord_less_eq_nat @ Xa @ X3 )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_4643_finite__has__minimal2,axiom,
! [A2: set_int,A: int] :
( ( finite_finite_int @ A2 )
=> ( ( member_int @ A @ A2 )
=> ? [X3: int] :
( ( member_int @ X3 @ A2 )
& ( ord_less_eq_int @ X3 @ A )
& ! [Xa: int] :
( ( member_int @ Xa @ A2 )
=> ( ( ord_less_eq_int @ Xa @ X3 )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_4644_finite__has__maximal2,axiom,
! [A2: set_real,A: real] :
( ( finite_finite_real @ A2 )
=> ( ( member_real @ A @ A2 )
=> ? [X3: real] :
( ( member_real @ X3 @ A2 )
& ( ord_less_eq_real @ A @ X3 )
& ! [Xa: real] :
( ( member_real @ Xa @ A2 )
=> ( ( ord_less_eq_real @ X3 @ Xa )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_4645_finite__has__maximal2,axiom,
! [A2: set_Code_integer,A: code_integer] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( member_Code_integer @ A @ A2 )
=> ? [X3: code_integer] :
( ( member_Code_integer @ X3 @ A2 )
& ( ord_le3102999989581377725nteger @ A @ X3 )
& ! [Xa: code_integer] :
( ( member_Code_integer @ Xa @ A2 )
=> ( ( ord_le3102999989581377725nteger @ X3 @ Xa )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_4646_finite__has__maximal2,axiom,
! [A2: set_set_nat,A: set_nat] :
( ( finite1152437895449049373et_nat @ A2 )
=> ( ( member_set_nat @ A @ A2 )
=> ? [X3: set_nat] :
( ( member_set_nat @ X3 @ A2 )
& ( ord_less_eq_set_nat @ A @ X3 )
& ! [Xa: set_nat] :
( ( member_set_nat @ Xa @ A2 )
=> ( ( ord_less_eq_set_nat @ X3 @ Xa )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_4647_finite__has__maximal2,axiom,
! [A2: set_rat,A: rat] :
( ( finite_finite_rat @ A2 )
=> ( ( member_rat @ A @ A2 )
=> ? [X3: rat] :
( ( member_rat @ X3 @ A2 )
& ( ord_less_eq_rat @ A @ X3 )
& ! [Xa: rat] :
( ( member_rat @ Xa @ A2 )
=> ( ( ord_less_eq_rat @ X3 @ Xa )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_4648_finite__has__maximal2,axiom,
! [A2: set_num,A: num] :
( ( finite_finite_num @ A2 )
=> ( ( member_num @ A @ A2 )
=> ? [X3: num] :
( ( member_num @ X3 @ A2 )
& ( ord_less_eq_num @ A @ X3 )
& ! [Xa: num] :
( ( member_num @ Xa @ A2 )
=> ( ( ord_less_eq_num @ X3 @ Xa )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_4649_finite__has__maximal2,axiom,
! [A2: set_nat,A: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ A @ A2 )
=> ? [X3: nat] :
( ( member_nat @ X3 @ A2 )
& ( ord_less_eq_nat @ A @ X3 )
& ! [Xa: nat] :
( ( member_nat @ Xa @ A2 )
=> ( ( ord_less_eq_nat @ X3 @ Xa )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_4650_finite__has__maximal2,axiom,
! [A2: set_int,A: int] :
( ( finite_finite_int @ A2 )
=> ( ( member_int @ A @ A2 )
=> ? [X3: int] :
( ( member_int @ X3 @ A2 )
& ( ord_less_eq_int @ A @ X3 )
& ! [Xa: int] :
( ( member_int @ Xa @ A2 )
=> ( ( ord_less_eq_int @ X3 @ Xa )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_4651_rev__finite__subset,axiom,
! [B4: set_int,A2: set_int] :
( ( finite_finite_int @ B4 )
=> ( ( ord_less_eq_set_int @ A2 @ B4 )
=> ( finite_finite_int @ A2 ) ) ) ).
% rev_finite_subset
thf(fact_4652_rev__finite__subset,axiom,
! [B4: set_complex,A2: set_complex] :
( ( finite3207457112153483333omplex @ B4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B4 )
=> ( finite3207457112153483333omplex @ A2 ) ) ) ).
% rev_finite_subset
thf(fact_4653_rev__finite__subset,axiom,
! [B4: set_Code_integer,A2: set_Code_integer] :
( ( finite6017078050557962740nteger @ B4 )
=> ( ( ord_le7084787975880047091nteger @ A2 @ B4 )
=> ( finite6017078050557962740nteger @ A2 ) ) ) ).
% rev_finite_subset
thf(fact_4654_rev__finite__subset,axiom,
! [B4: set_nat,A2: set_nat] :
( ( finite_finite_nat @ B4 )
=> ( ( ord_less_eq_set_nat @ A2 @ B4 )
=> ( finite_finite_nat @ A2 ) ) ) ).
% rev_finite_subset
thf(fact_4655_infinite__super,axiom,
! [S: set_int,T3: set_int] :
( ( ord_less_eq_set_int @ S @ T3 )
=> ( ~ ( finite_finite_int @ S )
=> ~ ( finite_finite_int @ T3 ) ) ) ).
% infinite_super
thf(fact_4656_infinite__super,axiom,
! [S: set_complex,T3: set_complex] :
( ( ord_le211207098394363844omplex @ S @ T3 )
=> ( ~ ( finite3207457112153483333omplex @ S )
=> ~ ( finite3207457112153483333omplex @ T3 ) ) ) ).
% infinite_super
thf(fact_4657_infinite__super,axiom,
! [S: set_Code_integer,T3: set_Code_integer] :
( ( ord_le7084787975880047091nteger @ S @ T3 )
=> ( ~ ( finite6017078050557962740nteger @ S )
=> ~ ( finite6017078050557962740nteger @ T3 ) ) ) ).
% infinite_super
thf(fact_4658_infinite__super,axiom,
! [S: set_nat,T3: set_nat] :
( ( ord_less_eq_set_nat @ S @ T3 )
=> ( ~ ( finite_finite_nat @ S )
=> ~ ( finite_finite_nat @ T3 ) ) ) ).
% infinite_super
thf(fact_4659_finite__subset,axiom,
! [A2: set_int,B4: set_int] :
( ( ord_less_eq_set_int @ A2 @ B4 )
=> ( ( finite_finite_int @ B4 )
=> ( finite_finite_int @ A2 ) ) ) ).
% finite_subset
thf(fact_4660_finite__subset,axiom,
! [A2: set_complex,B4: set_complex] :
( ( ord_le211207098394363844omplex @ A2 @ B4 )
=> ( ( finite3207457112153483333omplex @ B4 )
=> ( finite3207457112153483333omplex @ A2 ) ) ) ).
% finite_subset
thf(fact_4661_finite__subset,axiom,
! [A2: set_Code_integer,B4: set_Code_integer] :
( ( ord_le7084787975880047091nteger @ A2 @ B4 )
=> ( ( finite6017078050557962740nteger @ B4 )
=> ( finite6017078050557962740nteger @ A2 ) ) ) ).
% finite_subset
thf(fact_4662_finite__subset,axiom,
! [A2: set_nat,B4: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ B4 )
=> ( ( finite_finite_nat @ B4 )
=> ( finite_finite_nat @ A2 ) ) ) ).
% finite_subset
thf(fact_4663_VEBT__internal_Ocnt_Oelims,axiom,
! [X2: vEBT_VEBT,Y2: real] :
( ( ( vEBT_VEBT_cnt @ X2 )
= Y2 )
=> ( ( ? [A4: $o,B3: $o] :
( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( Y2 != one_one_real ) )
=> ~ ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( Y2
!= ( plus_plus_real @ ( plus_plus_real @ one_one_real @ ( vEBT_VEBT_cnt @ Summary2 ) ) @ ( foldr_real_real @ plus_plus_real @ ( map_VEBT_VEBT_real @ vEBT_VEBT_cnt @ TreeList2 ) @ zero_zero_real ) ) ) ) ) ) ).
% VEBT_internal.cnt.elims
thf(fact_4664_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_Osimps_I2_J,axiom,
! [A: $o,Uw: $o] :
( ( vEBT_T_p_r_e_d @ ( vEBT_Leaf @ A @ Uw ) @ ( suc @ zero_zero_nat ) )
= ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ).
% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d.simps(2)
thf(fact_4665_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_Osimps_I4_J,axiom,
! [V: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
( ( vEBT_T_i_n_s_e_r_t @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V ) ) @ TreeList @ Summary ) @ X2 )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t.simps(4)
thf(fact_4666_insersimp,axiom,
! [T2: vEBT_VEBT,N: nat,Y2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ T2 @ X_1 )
=> ( ord_less_eq_nat @ ( vEBT_T_i_n_s_e_r_t @ T2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) ) ).
% insersimp
thf(fact_4667_pred__bound__height,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ord_less_eq_nat @ ( vEBT_T_p_r_e_d @ T2 @ X2 ) @ ( times_times_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ T2 ) ) @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ).
% pred_bound_height
thf(fact_4668_insert__bound__height,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ord_less_eq_nat @ ( vEBT_T_i_n_s_e_r_t @ T2 @ X2 ) @ ( times_times_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ T2 ) ) @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% insert_bound_height
thf(fact_4669_succ__bound__height,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ord_less_eq_nat @ ( vEBT_T_s_u_c_c @ T2 @ X2 ) @ ( times_times_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ T2 ) ) @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit1 @ one ) ) ) ) ) ) ) ) ).
% succ_bound_height
thf(fact_4670_finite__nth__roots,axiom,
! [N: nat,C: complex] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [Z5: complex] :
( ( power_power_complex @ Z5 @ N )
= C ) ) ) ) ).
% finite_nth_roots
thf(fact_4671_real__nat__list,axiom,
! [F: vEBT_VEBT > nat,Xs2: list_VEBT_VEBT,C: nat] :
( ( semiri5074537144036343181t_real @ ( foldr_nat_nat @ plus_plus_nat @ ( map_VEBT_VEBT_nat @ F @ Xs2 ) @ C ) )
= ( foldr_real_real @ plus_plus_real
@ ( map_VEBT_VEBT_real
@ ^ [X: vEBT_VEBT] : ( semiri5074537144036343181t_real @ ( F @ X ) )
@ Xs2 )
@ ( semiri5074537144036343181t_real @ C ) ) ) ).
% real_nat_list
thf(fact_4672_real__nat__list,axiom,
! [F: nat > nat,Xs2: list_nat,C: nat] :
( ( semiri5074537144036343181t_real @ ( foldr_nat_nat @ plus_plus_nat @ ( map_nat_nat @ F @ Xs2 ) @ C ) )
= ( foldr_real_real @ plus_plus_real
@ ( map_nat_real
@ ^ [X: nat] : ( semiri5074537144036343181t_real @ ( F @ X ) )
@ Xs2 )
@ ( semiri5074537144036343181t_real @ C ) ) ) ).
% real_nat_list
thf(fact_4673_diff__preserves__multiset,axiom,
! [M7: product_prod_int_int > nat,N5: product_prod_int_int > nat] :
( ( finite2998713641127702882nt_int
@ ( collec213857154873943460nt_int
@ ^ [X: product_prod_int_int] : ( ord_less_nat @ zero_zero_nat @ ( M7 @ X ) ) ) )
=> ( finite2998713641127702882nt_int
@ ( collec213857154873943460nt_int
@ ^ [X: product_prod_int_int] : ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ ( M7 @ X ) @ ( N5 @ X ) ) ) ) ) ) ).
% diff_preserves_multiset
thf(fact_4674_diff__preserves__multiset,axiom,
! [M7: set_nat > nat,N5: set_nat > nat] :
( ( finite1152437895449049373et_nat
@ ( collect_set_nat
@ ^ [X: set_nat] : ( ord_less_nat @ zero_zero_nat @ ( M7 @ X ) ) ) )
=> ( finite1152437895449049373et_nat
@ ( collect_set_nat
@ ^ [X: set_nat] : ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ ( M7 @ X ) @ ( N5 @ X ) ) ) ) ) ) ).
% diff_preserves_multiset
thf(fact_4675_diff__preserves__multiset,axiom,
! [M7: nat > nat,N5: nat > nat] :
( ( finite_finite_nat
@ ( collect_nat
@ ^ [X: nat] : ( ord_less_nat @ zero_zero_nat @ ( M7 @ X ) ) ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [X: nat] : ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ ( M7 @ X ) @ ( N5 @ X ) ) ) ) ) ) ).
% diff_preserves_multiset
thf(fact_4676_diff__preserves__multiset,axiom,
! [M7: int > nat,N5: int > nat] :
( ( finite_finite_int
@ ( collect_int
@ ^ [X: int] : ( ord_less_nat @ zero_zero_nat @ ( M7 @ X ) ) ) )
=> ( finite_finite_int
@ ( collect_int
@ ^ [X: int] : ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ ( M7 @ X ) @ ( N5 @ X ) ) ) ) ) ) ).
% diff_preserves_multiset
thf(fact_4677_diff__preserves__multiset,axiom,
! [M7: complex > nat,N5: complex > nat] :
( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [X: complex] : ( ord_less_nat @ zero_zero_nat @ ( M7 @ X ) ) ) )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [X: complex] : ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ ( M7 @ X ) @ ( N5 @ X ) ) ) ) ) ) ).
% diff_preserves_multiset
thf(fact_4678_diff__preserves__multiset,axiom,
! [M7: code_integer > nat,N5: code_integer > nat] :
( ( finite6017078050557962740nteger
@ ( collect_Code_integer
@ ^ [X: code_integer] : ( ord_less_nat @ zero_zero_nat @ ( M7 @ X ) ) ) )
=> ( finite6017078050557962740nteger
@ ( collect_Code_integer
@ ^ [X: code_integer] : ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ ( M7 @ X ) @ ( N5 @ X ) ) ) ) ) ) ).
% diff_preserves_multiset
thf(fact_4679_add__mset__in__multiset,axiom,
! [M7: product_prod_int_int > nat,A: product_prod_int_int] :
( ( finite2998713641127702882nt_int
@ ( collec213857154873943460nt_int
@ ^ [X: product_prod_int_int] : ( ord_less_nat @ zero_zero_nat @ ( M7 @ X ) ) ) )
=> ( finite2998713641127702882nt_int
@ ( collec213857154873943460nt_int
@ ^ [X: product_prod_int_int] : ( ord_less_nat @ zero_zero_nat @ ( if_nat @ ( X = A ) @ ( suc @ ( M7 @ X ) ) @ ( M7 @ X ) ) ) ) ) ) ).
% add_mset_in_multiset
thf(fact_4680_add__mset__in__multiset,axiom,
! [M7: set_nat > nat,A: set_nat] :
( ( finite1152437895449049373et_nat
@ ( collect_set_nat
@ ^ [X: set_nat] : ( ord_less_nat @ zero_zero_nat @ ( M7 @ X ) ) ) )
=> ( finite1152437895449049373et_nat
@ ( collect_set_nat
@ ^ [X: set_nat] : ( ord_less_nat @ zero_zero_nat @ ( if_nat @ ( X = A ) @ ( suc @ ( M7 @ X ) ) @ ( M7 @ X ) ) ) ) ) ) ).
% add_mset_in_multiset
thf(fact_4681_add__mset__in__multiset,axiom,
! [M7: nat > nat,A: nat] :
( ( finite_finite_nat
@ ( collect_nat
@ ^ [X: nat] : ( ord_less_nat @ zero_zero_nat @ ( M7 @ X ) ) ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [X: nat] : ( ord_less_nat @ zero_zero_nat @ ( if_nat @ ( X = A ) @ ( suc @ ( M7 @ X ) ) @ ( M7 @ X ) ) ) ) ) ) ).
% add_mset_in_multiset
thf(fact_4682_add__mset__in__multiset,axiom,
! [M7: int > nat,A: int] :
( ( finite_finite_int
@ ( collect_int
@ ^ [X: int] : ( ord_less_nat @ zero_zero_nat @ ( M7 @ X ) ) ) )
=> ( finite_finite_int
@ ( collect_int
@ ^ [X: int] : ( ord_less_nat @ zero_zero_nat @ ( if_nat @ ( X = A ) @ ( suc @ ( M7 @ X ) ) @ ( M7 @ X ) ) ) ) ) ) ).
% add_mset_in_multiset
thf(fact_4683_add__mset__in__multiset,axiom,
! [M7: complex > nat,A: complex] :
( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [X: complex] : ( ord_less_nat @ zero_zero_nat @ ( M7 @ X ) ) ) )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [X: complex] : ( ord_less_nat @ zero_zero_nat @ ( if_nat @ ( X = A ) @ ( suc @ ( M7 @ X ) ) @ ( M7 @ X ) ) ) ) ) ) ).
% add_mset_in_multiset
thf(fact_4684_add__mset__in__multiset,axiom,
! [M7: code_integer > nat,A: code_integer] :
( ( finite6017078050557962740nteger
@ ( collect_Code_integer
@ ^ [X: code_integer] : ( ord_less_nat @ zero_zero_nat @ ( M7 @ X ) ) ) )
=> ( finite6017078050557962740nteger
@ ( collect_Code_integer
@ ^ [X: code_integer] : ( ord_less_nat @ zero_zero_nat @ ( if_nat @ ( X = A ) @ ( suc @ ( M7 @ X ) ) @ ( M7 @ X ) ) ) ) ) ) ).
% add_mset_in_multiset
thf(fact_4685_list__every__elemnt__bound__sum__bound,axiom,
! [Xs2: list_VEBT_VEBT,F: vEBT_VEBT > nat,Bound: nat,I: nat] :
( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ Xs2 ) )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ Bound ) )
=> ( ord_less_eq_nat @ ( foldr_nat_nat @ plus_plus_nat @ ( map_VEBT_VEBT_nat @ F @ Xs2 ) @ I ) @ ( plus_plus_nat @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ Bound ) @ I ) ) ) ).
% list_every_elemnt_bound_sum_bound
thf(fact_4686_list__every__elemnt__bound__sum__bound,axiom,
! [Xs2: list_real,F: real > nat,Bound: nat,I: nat] :
( ! [X3: real] :
( ( member_real @ X3 @ ( set_real2 @ Xs2 ) )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ Bound ) )
=> ( ord_less_eq_nat @ ( foldr_nat_nat @ plus_plus_nat @ ( map_real_nat @ F @ Xs2 ) @ I ) @ ( plus_plus_nat @ ( times_times_nat @ ( size_size_list_real @ Xs2 ) @ Bound ) @ I ) ) ) ).
% list_every_elemnt_bound_sum_bound
thf(fact_4687_list__every__elemnt__bound__sum__bound,axiom,
! [Xs2: list_o,F: $o > nat,Bound: nat,I: nat] :
( ! [X3: $o] :
( ( member_o @ X3 @ ( set_o2 @ Xs2 ) )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ Bound ) )
=> ( ord_less_eq_nat @ ( foldr_nat_nat @ plus_plus_nat @ ( map_o_nat @ F @ Xs2 ) @ I ) @ ( plus_plus_nat @ ( times_times_nat @ ( size_size_list_o @ Xs2 ) @ Bound ) @ I ) ) ) ).
% list_every_elemnt_bound_sum_bound
thf(fact_4688_list__every__elemnt__bound__sum__bound,axiom,
! [Xs2: list_nat,F: nat > nat,Bound: nat,I: nat] :
( ! [X3: nat] :
( ( member_nat @ X3 @ ( set_nat2 @ Xs2 ) )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ Bound ) )
=> ( ord_less_eq_nat @ ( foldr_nat_nat @ plus_plus_nat @ ( map_nat_nat @ F @ Xs2 ) @ I ) @ ( plus_plus_nat @ ( times_times_nat @ ( size_size_list_nat @ Xs2 ) @ Bound ) @ I ) ) ) ).
% list_every_elemnt_bound_sum_bound
thf(fact_4689_list__every__elemnt__bound__sum__bound,axiom,
! [Xs2: list_int,F: int > nat,Bound: nat,I: nat] :
( ! [X3: int] :
( ( member_int @ X3 @ ( set_int2 @ Xs2 ) )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ Bound ) )
=> ( ord_less_eq_nat @ ( foldr_nat_nat @ plus_plus_nat @ ( map_int_nat @ F @ Xs2 ) @ I ) @ ( plus_plus_nat @ ( times_times_nat @ ( size_size_list_int @ Xs2 ) @ Bound ) @ I ) ) ) ).
% list_every_elemnt_bound_sum_bound
thf(fact_4690_succ__bound__size__univ_H,axiom,
! [T2: vEBT_VEBT,N: nat,U: real,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( U
= ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_T_s_u_c_c2 @ T2 @ X2 ) ) @ ( plus_plus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ U ) ) ) ) ) ) ).
% succ_bound_size_univ'
thf(fact_4691_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_H_Osimps_I2_J,axiom,
! [Uv: $o,Uw: $o,N: nat] :
( ( vEBT_T_s_u_c_c2 @ ( vEBT_Leaf @ Uv @ Uw ) @ ( suc @ N ) )
= one_one_nat ) ).
% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c'.simps(2)
thf(fact_4692_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_H_Osimps_I1_J,axiom,
! [Uu: $o,B: $o] :
( ( vEBT_T_s_u_c_c2 @ ( vEBT_Leaf @ Uu @ B ) @ zero_zero_nat )
= one_one_nat ) ).
% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c'.simps(1)
thf(fact_4693_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_H_Osimps_I3_J,axiom,
! [Ux: nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT,Va: nat] :
( ( vEBT_T_s_u_c_c2 @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux @ Uy @ Uz ) @ Va )
= one_one_nat ) ).
% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c'.simps(3)
thf(fact_4694_VEBT__internal_Ocnt_H_Osimps_I2_J,axiom,
! [Info: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( vEBT_VEBT_cnt2 @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) )
= ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_cnt2 @ Summary ) ) @ ( foldr_nat_nat @ plus_plus_nat @ ( map_VEBT_VEBT_nat @ vEBT_VEBT_cnt2 @ TreeList ) @ zero_zero_nat ) ) ) ).
% VEBT_internal.cnt'.simps(2)
thf(fact_4695_VEBT__internal_Ocnt_H_Oelims,axiom,
! [X2: vEBT_VEBT,Y2: nat] :
( ( ( vEBT_VEBT_cnt2 @ X2 )
= Y2 )
=> ( ( ? [A4: $o,B3: $o] :
( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( Y2 != one_one_nat ) )
=> ~ ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( Y2
!= ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_cnt2 @ Summary2 ) ) @ ( foldr_nat_nat @ plus_plus_nat @ ( map_VEBT_VEBT_nat @ vEBT_VEBT_cnt2 @ TreeList2 ) @ zero_zero_nat ) ) ) ) ) ) ).
% VEBT_internal.cnt'.elims
thf(fact_4696_complex__mod__triangle__ineq2,axiom,
! [B: complex,A: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ B @ A ) ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ A ) ) ).
% complex_mod_triangle_ineq2
thf(fact_4697_succ_H__bound__height,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ord_less_eq_nat @ ( vEBT_T_s_u_c_c2 @ T2 @ X2 ) @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ T2 ) ) ) ) ).
% succ'_bound_height
thf(fact_4698_VEBT__internal_Ospace_H_Osimps_I2_J,axiom,
! [Info: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( vEBT_VEBT_space2 @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ one ) ) ) @ ( vEBT_VEBT_space2 @ Summary ) ) @ ( foldr_nat_nat @ plus_plus_nat @ ( map_VEBT_VEBT_nat @ vEBT_VEBT_space2 @ TreeList ) @ zero_zero_nat ) ) ) ).
% VEBT_internal.space'.simps(2)
thf(fact_4699_VEBT__internal_Ospace_H_Oelims,axiom,
! [X2: vEBT_VEBT,Y2: nat] :
( ( ( vEBT_VEBT_space2 @ X2 )
= Y2 )
=> ( ( ? [A4: $o,B3: $o] :
( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( Y2
!= ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) ) )
=> ~ ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( Y2
!= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ one ) ) ) @ ( vEBT_VEBT_space2 @ Summary2 ) ) @ ( foldr_nat_nat @ plus_plus_nat @ ( map_VEBT_VEBT_nat @ vEBT_VEBT_space2 @ TreeList2 ) @ zero_zero_nat ) ) ) ) ) ) ).
% VEBT_internal.space'.elims
thf(fact_4700_VEBT__internal_Ospace_Osimps_I2_J,axiom,
! [Info: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( vEBT_VEBT_space @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ one ) ) ) @ ( vEBT_VEBT_space @ Summary ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) @ ( foldr_nat_nat @ plus_plus_nat @ ( map_VEBT_VEBT_nat @ vEBT_VEBT_space @ TreeList ) @ zero_zero_nat ) ) ) ).
% VEBT_internal.space.simps(2)
thf(fact_4701_VEBT__internal_Ospace_Oelims,axiom,
! [X2: vEBT_VEBT,Y2: nat] :
( ( ( vEBT_VEBT_space @ X2 )
= Y2 )
=> ( ( ? [A4: $o,B3: $o] :
( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( Y2
!= ( numeral_numeral_nat @ ( bit1 @ one ) ) ) )
=> ~ ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( Y2
!= ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ one ) ) ) @ ( vEBT_VEBT_space @ Summary2 ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) @ ( foldr_nat_nat @ plus_plus_nat @ ( map_VEBT_VEBT_nat @ vEBT_VEBT_space @ TreeList2 ) @ zero_zero_nat ) ) ) ) ) ) ).
% VEBT_internal.space.elims
thf(fact_4702_filter__preserves__multiset,axiom,
! [M7: product_prod_int_int > nat,P: product_prod_int_int > $o] :
( ( finite2998713641127702882nt_int
@ ( collec213857154873943460nt_int
@ ^ [X: product_prod_int_int] : ( ord_less_nat @ zero_zero_nat @ ( M7 @ X ) ) ) )
=> ( finite2998713641127702882nt_int
@ ( collec213857154873943460nt_int
@ ^ [X: product_prod_int_int] : ( ord_less_nat @ zero_zero_nat @ ( if_nat @ ( P @ X ) @ ( M7 @ X ) @ zero_zero_nat ) ) ) ) ) ).
% filter_preserves_multiset
thf(fact_4703_filter__preserves__multiset,axiom,
! [M7: set_nat > nat,P: set_nat > $o] :
( ( finite1152437895449049373et_nat
@ ( collect_set_nat
@ ^ [X: set_nat] : ( ord_less_nat @ zero_zero_nat @ ( M7 @ X ) ) ) )
=> ( finite1152437895449049373et_nat
@ ( collect_set_nat
@ ^ [X: set_nat] : ( ord_less_nat @ zero_zero_nat @ ( if_nat @ ( P @ X ) @ ( M7 @ X ) @ zero_zero_nat ) ) ) ) ) ).
% filter_preserves_multiset
thf(fact_4704_filter__preserves__multiset,axiom,
! [M7: nat > nat,P: nat > $o] :
( ( finite_finite_nat
@ ( collect_nat
@ ^ [X: nat] : ( ord_less_nat @ zero_zero_nat @ ( M7 @ X ) ) ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [X: nat] : ( ord_less_nat @ zero_zero_nat @ ( if_nat @ ( P @ X ) @ ( M7 @ X ) @ zero_zero_nat ) ) ) ) ) ).
% filter_preserves_multiset
thf(fact_4705_filter__preserves__multiset,axiom,
! [M7: int > nat,P: int > $o] :
( ( finite_finite_int
@ ( collect_int
@ ^ [X: int] : ( ord_less_nat @ zero_zero_nat @ ( M7 @ X ) ) ) )
=> ( finite_finite_int
@ ( collect_int
@ ^ [X: int] : ( ord_less_nat @ zero_zero_nat @ ( if_nat @ ( P @ X ) @ ( M7 @ X ) @ zero_zero_nat ) ) ) ) ) ).
% filter_preserves_multiset
thf(fact_4706_filter__preserves__multiset,axiom,
! [M7: complex > nat,P: complex > $o] :
( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [X: complex] : ( ord_less_nat @ zero_zero_nat @ ( M7 @ X ) ) ) )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [X: complex] : ( ord_less_nat @ zero_zero_nat @ ( if_nat @ ( P @ X ) @ ( M7 @ X ) @ zero_zero_nat ) ) ) ) ) ).
% filter_preserves_multiset
thf(fact_4707_filter__preserves__multiset,axiom,
! [M7: code_integer > nat,P: code_integer > $o] :
( ( finite6017078050557962740nteger
@ ( collect_Code_integer
@ ^ [X: code_integer] : ( ord_less_nat @ zero_zero_nat @ ( M7 @ X ) ) ) )
=> ( finite6017078050557962740nteger
@ ( collect_Code_integer
@ ^ [X: code_integer] : ( ord_less_nat @ zero_zero_nat @ ( if_nat @ ( P @ X ) @ ( M7 @ X ) @ zero_zero_nat ) ) ) ) ) ).
% filter_preserves_multiset
thf(fact_4708_pred__bound__size__univ_H,axiom,
! [T2: vEBT_VEBT,N: nat,U: real,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( U
= ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_T_p_r_e_d2 @ T2 @ X2 ) ) @ ( plus_plus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ U ) ) ) ) ) ) ).
% pred_bound_size_univ'
thf(fact_4709_tanh__ln__real,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( tanh_real @ ( ln_ln_real @ X2 ) )
= ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ).
% tanh_ln_real
thf(fact_4710_ln__one__minus__pos__lower__bound,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( minus_minus_real @ ( uminus_uminus_real @ X2 ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( ln_ln_real @ ( minus_minus_real @ one_one_real @ X2 ) ) ) ) ) ).
% ln_one_minus_pos_lower_bound
thf(fact_4711_arcosh__def,axiom,
( arcosh_real
= ( ^ [X: real] : ( ln_ln_real @ ( plus_plus_real @ X @ ( powr_real @ ( minus_minus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) @ ( real_V1803761363581548252l_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% arcosh_def
thf(fact_4712_abs__ln__one__plus__x__minus__x__bound,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X2 ) ) @ X2 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% abs_ln_one_plus_x_minus_x_bound
thf(fact_4713_prod_Ofinite__Collect__op,axiom,
! [I5: set_real,X2: real > complex,Y2: real > complex] :
( ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( X2 @ I3 )
!= one_one_complex ) ) ) )
=> ( ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( Y2 @ I3 )
!= one_one_complex ) ) ) )
=> ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( times_times_complex @ ( X2 @ I3 ) @ ( Y2 @ I3 ) )
!= one_one_complex ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_4714_prod_Ofinite__Collect__op,axiom,
! [I5: set_VEBT_VEBT,X2: vEBT_VEBT > complex,Y2: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I5 )
& ( ( X2 @ I3 )
!= one_one_complex ) ) ) )
=> ( ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I5 )
& ( ( Y2 @ I3 )
!= one_one_complex ) ) ) )
=> ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I5 )
& ( ( times_times_complex @ ( X2 @ I3 ) @ ( Y2 @ I3 ) )
!= one_one_complex ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_4715_prod_Ofinite__Collect__op,axiom,
! [I5: set_nat,X2: nat > complex,Y2: nat > complex] :
( ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( X2 @ I3 )
!= one_one_complex ) ) ) )
=> ( ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( Y2 @ I3 )
!= one_one_complex ) ) ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( times_times_complex @ ( X2 @ I3 ) @ ( Y2 @ I3 ) )
!= one_one_complex ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_4716_prod_Ofinite__Collect__op,axiom,
! [I5: set_int,X2: int > complex,Y2: int > complex] :
( ( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( member_int @ I3 @ I5 )
& ( ( X2 @ I3 )
!= one_one_complex ) ) ) )
=> ( ( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( member_int @ I3 @ I5 )
& ( ( Y2 @ I3 )
!= one_one_complex ) ) ) )
=> ( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( member_int @ I3 @ I5 )
& ( ( times_times_complex @ ( X2 @ I3 ) @ ( Y2 @ I3 ) )
!= one_one_complex ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_4717_prod_Ofinite__Collect__op,axiom,
! [I5: set_complex,X2: complex > complex,Y2: complex > complex] :
( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I3: complex] :
( ( member_complex @ I3 @ I5 )
& ( ( X2 @ I3 )
!= one_one_complex ) ) ) )
=> ( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I3: complex] :
( ( member_complex @ I3 @ I5 )
& ( ( Y2 @ I3 )
!= one_one_complex ) ) ) )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I3: complex] :
( ( member_complex @ I3 @ I5 )
& ( ( times_times_complex @ ( X2 @ I3 ) @ ( Y2 @ I3 ) )
!= one_one_complex ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_4718_prod_Ofinite__Collect__op,axiom,
! [I5: set_Code_integer,X2: code_integer > complex,Y2: code_integer > complex] :
( ( finite6017078050557962740nteger
@ ( collect_Code_integer
@ ^ [I3: code_integer] :
( ( member_Code_integer @ I3 @ I5 )
& ( ( X2 @ I3 )
!= one_one_complex ) ) ) )
=> ( ( finite6017078050557962740nteger
@ ( collect_Code_integer
@ ^ [I3: code_integer] :
( ( member_Code_integer @ I3 @ I5 )
& ( ( Y2 @ I3 )
!= one_one_complex ) ) ) )
=> ( finite6017078050557962740nteger
@ ( collect_Code_integer
@ ^ [I3: code_integer] :
( ( member_Code_integer @ I3 @ I5 )
& ( ( times_times_complex @ ( X2 @ I3 ) @ ( Y2 @ I3 ) )
!= one_one_complex ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_4719_prod_Ofinite__Collect__op,axiom,
! [I5: set_real,X2: real > real,Y2: real > real] :
( ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( X2 @ I3 )
!= one_one_real ) ) ) )
=> ( ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( Y2 @ I3 )
!= one_one_real ) ) ) )
=> ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( times_times_real @ ( X2 @ I3 ) @ ( Y2 @ I3 ) )
!= one_one_real ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_4720_prod_Ofinite__Collect__op,axiom,
! [I5: set_VEBT_VEBT,X2: vEBT_VEBT > real,Y2: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I5 )
& ( ( X2 @ I3 )
!= one_one_real ) ) ) )
=> ( ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I5 )
& ( ( Y2 @ I3 )
!= one_one_real ) ) ) )
=> ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I5 )
& ( ( times_times_real @ ( X2 @ I3 ) @ ( Y2 @ I3 ) )
!= one_one_real ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_4721_prod_Ofinite__Collect__op,axiom,
! [I5: set_nat,X2: nat > real,Y2: nat > real] :
( ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( X2 @ I3 )
!= one_one_real ) ) ) )
=> ( ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( Y2 @ I3 )
!= one_one_real ) ) ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( times_times_real @ ( X2 @ I3 ) @ ( Y2 @ I3 ) )
!= one_one_real ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_4722_prod_Ofinite__Collect__op,axiom,
! [I5: set_int,X2: int > real,Y2: int > real] :
( ( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( member_int @ I3 @ I5 )
& ( ( X2 @ I3 )
!= one_one_real ) ) ) )
=> ( ( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( member_int @ I3 @ I5 )
& ( ( Y2 @ I3 )
!= one_one_real ) ) ) )
=> ( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( member_int @ I3 @ I5 )
& ( ( times_times_real @ ( X2 @ I3 ) @ ( Y2 @ I3 ) )
!= one_one_real ) ) ) ) ) ) ).
% prod.finite_Collect_op
thf(fact_4723_add_Oinverse__inverse,axiom,
! [A: real] :
( ( uminus_uminus_real @ ( uminus_uminus_real @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_4724_add_Oinverse__inverse,axiom,
! [A: int] :
( ( uminus_uminus_int @ ( uminus_uminus_int @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_4725_add_Oinverse__inverse,axiom,
! [A: complex] :
( ( uminus1482373934393186551omplex @ ( uminus1482373934393186551omplex @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_4726_add_Oinverse__inverse,axiom,
! [A: rat] :
( ( uminus_uminus_rat @ ( uminus_uminus_rat @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_4727_add_Oinverse__inverse,axiom,
! [A: code_integer] :
( ( uminus1351360451143612070nteger @ ( uminus1351360451143612070nteger @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_4728_neg__equal__iff__equal,axiom,
! [A: real,B: real] :
( ( ( uminus_uminus_real @ A )
= ( uminus_uminus_real @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_4729_neg__equal__iff__equal,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= ( uminus_uminus_int @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_4730_neg__equal__iff__equal,axiom,
! [A: complex,B: complex] :
( ( ( uminus1482373934393186551omplex @ A )
= ( uminus1482373934393186551omplex @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_4731_neg__equal__iff__equal,axiom,
! [A: rat,B: rat] :
( ( ( uminus_uminus_rat @ A )
= ( uminus_uminus_rat @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_4732_neg__equal__iff__equal,axiom,
! [A: code_integer,B: code_integer] :
( ( ( uminus1351360451143612070nteger @ A )
= ( uminus1351360451143612070nteger @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_4733_abs__abs,axiom,
! [A: real] :
( ( abs_abs_real @ ( abs_abs_real @ A ) )
= ( abs_abs_real @ A ) ) ).
% abs_abs
thf(fact_4734_abs__abs,axiom,
! [A: int] :
( ( abs_abs_int @ ( abs_abs_int @ A ) )
= ( abs_abs_int @ A ) ) ).
% abs_abs
thf(fact_4735_abs__abs,axiom,
! [A: rat] :
( ( abs_abs_rat @ ( abs_abs_rat @ A ) )
= ( abs_abs_rat @ A ) ) ).
% abs_abs
thf(fact_4736_abs__abs,axiom,
! [A: code_integer] :
( ( abs_abs_Code_integer @ ( abs_abs_Code_integer @ A ) )
= ( abs_abs_Code_integer @ A ) ) ).
% abs_abs
thf(fact_4737_abs__idempotent,axiom,
! [A: real] :
( ( abs_abs_real @ ( abs_abs_real @ A ) )
= ( abs_abs_real @ A ) ) ).
% abs_idempotent
thf(fact_4738_abs__idempotent,axiom,
! [A: int] :
( ( abs_abs_int @ ( abs_abs_int @ A ) )
= ( abs_abs_int @ A ) ) ).
% abs_idempotent
thf(fact_4739_abs__idempotent,axiom,
! [A: rat] :
( ( abs_abs_rat @ ( abs_abs_rat @ A ) )
= ( abs_abs_rat @ A ) ) ).
% abs_idempotent
thf(fact_4740_abs__idempotent,axiom,
! [A: code_integer] :
( ( abs_abs_Code_integer @ ( abs_abs_Code_integer @ A ) )
= ( abs_abs_Code_integer @ A ) ) ).
% abs_idempotent
thf(fact_4741_add_Oinverse__neutral,axiom,
( ( uminus_uminus_real @ zero_zero_real )
= zero_zero_real ) ).
% add.inverse_neutral
thf(fact_4742_add_Oinverse__neutral,axiom,
( ( uminus_uminus_int @ zero_zero_int )
= zero_zero_int ) ).
% add.inverse_neutral
thf(fact_4743_add_Oinverse__neutral,axiom,
( ( uminus1482373934393186551omplex @ zero_zero_complex )
= zero_zero_complex ) ).
% add.inverse_neutral
thf(fact_4744_add_Oinverse__neutral,axiom,
( ( uminus_uminus_rat @ zero_zero_rat )
= zero_zero_rat ) ).
% add.inverse_neutral
thf(fact_4745_add_Oinverse__neutral,axiom,
( ( uminus1351360451143612070nteger @ zero_z3403309356797280102nteger )
= zero_z3403309356797280102nteger ) ).
% add.inverse_neutral
thf(fact_4746_neg__0__equal__iff__equal,axiom,
! [A: real] :
( ( zero_zero_real
= ( uminus_uminus_real @ A ) )
= ( zero_zero_real = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_4747_neg__0__equal__iff__equal,axiom,
! [A: int] :
( ( zero_zero_int
= ( uminus_uminus_int @ A ) )
= ( zero_zero_int = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_4748_neg__0__equal__iff__equal,axiom,
! [A: complex] :
( ( zero_zero_complex
= ( uminus1482373934393186551omplex @ A ) )
= ( zero_zero_complex = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_4749_neg__0__equal__iff__equal,axiom,
! [A: rat] :
( ( zero_zero_rat
= ( uminus_uminus_rat @ A ) )
= ( zero_zero_rat = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_4750_neg__0__equal__iff__equal,axiom,
! [A: code_integer] :
( ( zero_z3403309356797280102nteger
= ( uminus1351360451143612070nteger @ A ) )
= ( zero_z3403309356797280102nteger = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_4751_neg__equal__0__iff__equal,axiom,
! [A: real] :
( ( ( uminus_uminus_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% neg_equal_0_iff_equal
thf(fact_4752_neg__equal__0__iff__equal,axiom,
! [A: int] :
( ( ( uminus_uminus_int @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% neg_equal_0_iff_equal
thf(fact_4753_neg__equal__0__iff__equal,axiom,
! [A: complex] :
( ( ( uminus1482373934393186551omplex @ A )
= zero_zero_complex )
= ( A = zero_zero_complex ) ) ).
% neg_equal_0_iff_equal
thf(fact_4754_neg__equal__0__iff__equal,axiom,
! [A: rat] :
( ( ( uminus_uminus_rat @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% neg_equal_0_iff_equal
thf(fact_4755_neg__equal__0__iff__equal,axiom,
! [A: code_integer] :
( ( ( uminus1351360451143612070nteger @ A )
= zero_z3403309356797280102nteger )
= ( A = zero_z3403309356797280102nteger ) ) ).
% neg_equal_0_iff_equal
thf(fact_4756_equal__neg__zero,axiom,
! [A: real] :
( ( A
= ( uminus_uminus_real @ A ) )
= ( A = zero_zero_real ) ) ).
% equal_neg_zero
thf(fact_4757_equal__neg__zero,axiom,
! [A: int] :
( ( A
= ( uminus_uminus_int @ A ) )
= ( A = zero_zero_int ) ) ).
% equal_neg_zero
thf(fact_4758_equal__neg__zero,axiom,
! [A: rat] :
( ( A
= ( uminus_uminus_rat @ A ) )
= ( A = zero_zero_rat ) ) ).
% equal_neg_zero
thf(fact_4759_equal__neg__zero,axiom,
! [A: code_integer] :
( ( A
= ( uminus1351360451143612070nteger @ A ) )
= ( A = zero_z3403309356797280102nteger ) ) ).
% equal_neg_zero
thf(fact_4760_neg__equal__zero,axiom,
! [A: real] :
( ( ( uminus_uminus_real @ A )
= A )
= ( A = zero_zero_real ) ) ).
% neg_equal_zero
thf(fact_4761_neg__equal__zero,axiom,
! [A: int] :
( ( ( uminus_uminus_int @ A )
= A )
= ( A = zero_zero_int ) ) ).
% neg_equal_zero
thf(fact_4762_neg__equal__zero,axiom,
! [A: rat] :
( ( ( uminus_uminus_rat @ A )
= A )
= ( A = zero_zero_rat ) ) ).
% neg_equal_zero
thf(fact_4763_neg__equal__zero,axiom,
! [A: code_integer] :
( ( ( uminus1351360451143612070nteger @ A )
= A )
= ( A = zero_z3403309356797280102nteger ) ) ).
% neg_equal_zero
thf(fact_4764_neg__le__iff__le,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_4765_neg__le__iff__le,axiom,
! [B: code_integer,A: code_integer] :
( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) )
= ( ord_le3102999989581377725nteger @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_4766_neg__le__iff__le,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) )
= ( ord_less_eq_rat @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_4767_neg__le__iff__le,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_4768_neg__less__iff__less,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_4769_neg__less__iff__less,axiom,
! [B: int,A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_4770_neg__less__iff__less,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) )
= ( ord_less_rat @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_4771_neg__less__iff__less,axiom,
! [B: code_integer,A: code_integer] :
( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) )
= ( ord_le6747313008572928689nteger @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_4772_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_4773_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_4774_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_4775_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_4776_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_4777_minus__add__distrib,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) ) ) ).
% minus_add_distrib
thf(fact_4778_minus__add__distrib,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) ) ) ).
% minus_add_distrib
thf(fact_4779_minus__add__distrib,axiom,
! [A: complex,B: complex] :
( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
= ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) ) ) ).
% minus_add_distrib
thf(fact_4780_minus__add__distrib,axiom,
! [A: rat,B: rat] :
( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
= ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) ) ) ).
% minus_add_distrib
thf(fact_4781_minus__add__distrib,axiom,
! [A: code_integer,B: code_integer] :
( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
= ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) ) ) ).
% minus_add_distrib
thf(fact_4782_minus__add__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( plus_plus_real @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_4783_minus__add__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( plus_plus_int @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_4784_minus__add__cancel,axiom,
! [A: complex,B: complex] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( plus_plus_complex @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_4785_minus__add__cancel,axiom,
! [A: rat,B: rat] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( plus_plus_rat @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_4786_minus__add__cancel,axiom,
! [A: code_integer,B: code_integer] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ ( plus_p5714425477246183910nteger @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_4787_add__minus__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ A @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_4788_add__minus__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ A @ ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_4789_add__minus__cancel,axiom,
! [A: complex,B: complex] :
( ( plus_plus_complex @ A @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_4790_add__minus__cancel,axiom,
! [A: rat,B: rat] :
( ( plus_plus_rat @ A @ ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_4791_add__minus__cancel,axiom,
! [A: code_integer,B: code_integer] :
( ( plus_p5714425477246183910nteger @ A @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_4792_mult__minus__left,axiom,
! [A: real,B: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
= ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_4793_mult__minus__left,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
= ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_4794_mult__minus__left,axiom,
! [A: complex,B: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
= ( uminus1482373934393186551omplex @ ( times_times_complex @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_4795_mult__minus__left,axiom,
! [A: rat,B: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ B )
= ( uminus_uminus_rat @ ( times_times_rat @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_4796_mult__minus__left,axiom,
! [A: code_integer,B: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( uminus1351360451143612070nteger @ ( times_3573771949741848930nteger @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_4797_minus__mult__minus,axiom,
! [A: real,B: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
= ( times_times_real @ A @ B ) ) ).
% minus_mult_minus
thf(fact_4798_minus__mult__minus,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
= ( times_times_int @ A @ B ) ) ).
% minus_mult_minus
thf(fact_4799_minus__mult__minus,axiom,
! [A: complex,B: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
= ( times_times_complex @ A @ B ) ) ).
% minus_mult_minus
thf(fact_4800_minus__mult__minus,axiom,
! [A: rat,B: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
= ( times_times_rat @ A @ B ) ) ).
% minus_mult_minus
thf(fact_4801_minus__mult__minus,axiom,
! [A: code_integer,B: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
= ( times_3573771949741848930nteger @ A @ B ) ) ).
% minus_mult_minus
thf(fact_4802_mult__minus__right,axiom,
! [A: real,B: real] :
( ( times_times_real @ A @ ( uminus_uminus_real @ B ) )
= ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_4803_mult__minus__right,axiom,
! [A: int,B: int] :
( ( times_times_int @ A @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_4804_mult__minus__right,axiom,
! [A: complex,B: complex] :
( ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ B ) )
= ( uminus1482373934393186551omplex @ ( times_times_complex @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_4805_mult__minus__right,axiom,
! [A: rat,B: rat] :
( ( times_times_rat @ A @ ( uminus_uminus_rat @ B ) )
= ( uminus_uminus_rat @ ( times_times_rat @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_4806_mult__minus__right,axiom,
! [A: code_integer,B: code_integer] :
( ( times_3573771949741848930nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( uminus1351360451143612070nteger @ ( times_3573771949741848930nteger @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_4807_minus__diff__eq,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) )
= ( minus_minus_real @ B @ A ) ) ).
% minus_diff_eq
thf(fact_4808_minus__diff__eq,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) )
= ( minus_minus_int @ B @ A ) ) ).
% minus_diff_eq
thf(fact_4809_minus__diff__eq,axiom,
! [A: complex,B: complex] :
( ( uminus1482373934393186551omplex @ ( minus_minus_complex @ A @ B ) )
= ( minus_minus_complex @ B @ A ) ) ).
% minus_diff_eq
thf(fact_4810_minus__diff__eq,axiom,
! [A: rat,B: rat] :
( ( uminus_uminus_rat @ ( minus_minus_rat @ A @ B ) )
= ( minus_minus_rat @ B @ A ) ) ).
% minus_diff_eq
thf(fact_4811_minus__diff__eq,axiom,
! [A: code_integer,B: code_integer] :
( ( uminus1351360451143612070nteger @ ( minus_8373710615458151222nteger @ A @ B ) )
= ( minus_8373710615458151222nteger @ B @ A ) ) ).
% minus_diff_eq
thf(fact_4812_div__minus__minus,axiom,
! [A: int,B: int] :
( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
= ( divide_divide_int @ A @ B ) ) ).
% div_minus_minus
thf(fact_4813_div__minus__minus,axiom,
! [A: code_integer,B: code_integer] :
( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
= ( divide6298287555418463151nteger @ A @ B ) ) ).
% div_minus_minus
thf(fact_4814_abs__0,axiom,
( ( abs_abs_Code_integer @ zero_z3403309356797280102nteger )
= zero_z3403309356797280102nteger ) ).
% abs_0
thf(fact_4815_abs__0,axiom,
( ( abs_abs_complex @ zero_zero_complex )
= zero_zero_complex ) ).
% abs_0
thf(fact_4816_abs__0,axiom,
( ( abs_abs_real @ zero_zero_real )
= zero_zero_real ) ).
% abs_0
thf(fact_4817_abs__0,axiom,
( ( abs_abs_rat @ zero_zero_rat )
= zero_zero_rat ) ).
% abs_0
thf(fact_4818_abs__0,axiom,
( ( abs_abs_int @ zero_zero_int )
= zero_zero_int ) ).
% abs_0
thf(fact_4819_abs__0__eq,axiom,
! [A: code_integer] :
( ( zero_z3403309356797280102nteger
= ( abs_abs_Code_integer @ A ) )
= ( A = zero_z3403309356797280102nteger ) ) ).
% abs_0_eq
thf(fact_4820_abs__0__eq,axiom,
! [A: real] :
( ( zero_zero_real
= ( abs_abs_real @ A ) )
= ( A = zero_zero_real ) ) ).
% abs_0_eq
thf(fact_4821_abs__0__eq,axiom,
! [A: rat] :
( ( zero_zero_rat
= ( abs_abs_rat @ A ) )
= ( A = zero_zero_rat ) ) ).
% abs_0_eq
thf(fact_4822_abs__0__eq,axiom,
! [A: int] :
( ( zero_zero_int
= ( abs_abs_int @ A ) )
= ( A = zero_zero_int ) ) ).
% abs_0_eq
thf(fact_4823_abs__eq__0,axiom,
! [A: code_integer] :
( ( ( abs_abs_Code_integer @ A )
= zero_z3403309356797280102nteger )
= ( A = zero_z3403309356797280102nteger ) ) ).
% abs_eq_0
thf(fact_4824_abs__eq__0,axiom,
! [A: real] :
( ( ( abs_abs_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% abs_eq_0
thf(fact_4825_abs__eq__0,axiom,
! [A: rat] :
( ( ( abs_abs_rat @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% abs_eq_0
thf(fact_4826_abs__eq__0,axiom,
! [A: int] :
( ( ( abs_abs_int @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% abs_eq_0
thf(fact_4827_abs__zero,axiom,
( ( abs_abs_Code_integer @ zero_z3403309356797280102nteger )
= zero_z3403309356797280102nteger ) ).
% abs_zero
thf(fact_4828_abs__zero,axiom,
( ( abs_abs_real @ zero_zero_real )
= zero_zero_real ) ).
% abs_zero
thf(fact_4829_abs__zero,axiom,
( ( abs_abs_rat @ zero_zero_rat )
= zero_zero_rat ) ).
% abs_zero
thf(fact_4830_abs__zero,axiom,
( ( abs_abs_int @ zero_zero_int )
= zero_zero_int ) ).
% abs_zero
thf(fact_4831_dvd__minus__iff,axiom,
! [X2: real,Y2: real] :
( ( dvd_dvd_real @ X2 @ ( uminus_uminus_real @ Y2 ) )
= ( dvd_dvd_real @ X2 @ Y2 ) ) ).
% dvd_minus_iff
thf(fact_4832_dvd__minus__iff,axiom,
! [X2: int,Y2: int] :
( ( dvd_dvd_int @ X2 @ ( uminus_uminus_int @ Y2 ) )
= ( dvd_dvd_int @ X2 @ Y2 ) ) ).
% dvd_minus_iff
thf(fact_4833_dvd__minus__iff,axiom,
! [X2: complex,Y2: complex] :
( ( dvd_dvd_complex @ X2 @ ( uminus1482373934393186551omplex @ Y2 ) )
= ( dvd_dvd_complex @ X2 @ Y2 ) ) ).
% dvd_minus_iff
thf(fact_4834_dvd__minus__iff,axiom,
! [X2: rat,Y2: rat] :
( ( dvd_dvd_rat @ X2 @ ( uminus_uminus_rat @ Y2 ) )
= ( dvd_dvd_rat @ X2 @ Y2 ) ) ).
% dvd_minus_iff
thf(fact_4835_dvd__minus__iff,axiom,
! [X2: code_integer,Y2: code_integer] :
( ( dvd_dvd_Code_integer @ X2 @ ( uminus1351360451143612070nteger @ Y2 ) )
= ( dvd_dvd_Code_integer @ X2 @ Y2 ) ) ).
% dvd_minus_iff
thf(fact_4836_minus__dvd__iff,axiom,
! [X2: real,Y2: real] :
( ( dvd_dvd_real @ ( uminus_uminus_real @ X2 ) @ Y2 )
= ( dvd_dvd_real @ X2 @ Y2 ) ) ).
% minus_dvd_iff
thf(fact_4837_minus__dvd__iff,axiom,
! [X2: int,Y2: int] :
( ( dvd_dvd_int @ ( uminus_uminus_int @ X2 ) @ Y2 )
= ( dvd_dvd_int @ X2 @ Y2 ) ) ).
% minus_dvd_iff
thf(fact_4838_minus__dvd__iff,axiom,
! [X2: complex,Y2: complex] :
( ( dvd_dvd_complex @ ( uminus1482373934393186551omplex @ X2 ) @ Y2 )
= ( dvd_dvd_complex @ X2 @ Y2 ) ) ).
% minus_dvd_iff
thf(fact_4839_minus__dvd__iff,axiom,
! [X2: rat,Y2: rat] :
( ( dvd_dvd_rat @ ( uminus_uminus_rat @ X2 ) @ Y2 )
= ( dvd_dvd_rat @ X2 @ Y2 ) ) ).
% minus_dvd_iff
thf(fact_4840_minus__dvd__iff,axiom,
! [X2: code_integer,Y2: code_integer] :
( ( dvd_dvd_Code_integer @ ( uminus1351360451143612070nteger @ X2 ) @ Y2 )
= ( dvd_dvd_Code_integer @ X2 @ Y2 ) ) ).
% minus_dvd_iff
thf(fact_4841_abs__numeral,axiom,
! [N: num] :
( ( abs_abs_Code_integer @ ( numera6620942414471956472nteger @ N ) )
= ( numera6620942414471956472nteger @ N ) ) ).
% abs_numeral
thf(fact_4842_abs__numeral,axiom,
! [N: num] :
( ( abs_abs_real @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ N ) ) ).
% abs_numeral
thf(fact_4843_abs__numeral,axiom,
! [N: num] :
( ( abs_abs_rat @ ( numeral_numeral_rat @ N ) )
= ( numeral_numeral_rat @ N ) ) ).
% abs_numeral
thf(fact_4844_abs__numeral,axiom,
! [N: num] :
( ( abs_abs_int @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ N ) ) ).
% abs_numeral
thf(fact_4845_abs__add__abs,axiom,
! [A: code_integer,B: code_integer] :
( ( abs_abs_Code_integer @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) )
= ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).
% abs_add_abs
thf(fact_4846_abs__add__abs,axiom,
! [A: real,B: real] :
( ( abs_abs_real @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) )
= ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_add_abs
thf(fact_4847_abs__add__abs,axiom,
! [A: rat,B: rat] :
( ( abs_abs_rat @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) )
= ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).
% abs_add_abs
thf(fact_4848_abs__add__abs,axiom,
! [A: int,B: int] :
( ( abs_abs_int @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) )
= ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).
% abs_add_abs
thf(fact_4849_abs__1,axiom,
( ( abs_abs_Code_integer @ one_one_Code_integer )
= one_one_Code_integer ) ).
% abs_1
thf(fact_4850_abs__1,axiom,
( ( abs_abs_complex @ one_one_complex )
= one_one_complex ) ).
% abs_1
thf(fact_4851_abs__1,axiom,
( ( abs_abs_real @ one_one_real )
= one_one_real ) ).
% abs_1
thf(fact_4852_abs__1,axiom,
( ( abs_abs_rat @ one_one_rat )
= one_one_rat ) ).
% abs_1
thf(fact_4853_abs__1,axiom,
( ( abs_abs_int @ one_one_int )
= one_one_int ) ).
% abs_1
thf(fact_4854_mod__minus__minus,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( modulo_modulo_int @ A @ B ) ) ) ).
% mod_minus_minus
thf(fact_4855_mod__minus__minus,axiom,
! [A: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
= ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).
% mod_minus_minus
thf(fact_4856_abs__mult__self__eq,axiom,
! [A: code_integer] :
( ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ A ) )
= ( times_3573771949741848930nteger @ A @ A ) ) ).
% abs_mult_self_eq
thf(fact_4857_abs__mult__self__eq,axiom,
! [A: real] :
( ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ A ) )
= ( times_times_real @ A @ A ) ) ).
% abs_mult_self_eq
thf(fact_4858_abs__mult__self__eq,axiom,
! [A: rat] :
( ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ A ) )
= ( times_times_rat @ A @ A ) ) ).
% abs_mult_self_eq
thf(fact_4859_abs__mult__self__eq,axiom,
! [A: int] :
( ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ A ) )
= ( times_times_int @ A @ A ) ) ).
% abs_mult_self_eq
thf(fact_4860_abs__divide,axiom,
! [A: complex,B: complex] :
( ( abs_abs_complex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide1717551699836669952omplex @ ( abs_abs_complex @ A ) @ ( abs_abs_complex @ B ) ) ) ).
% abs_divide
thf(fact_4861_abs__divide,axiom,
! [A: real,B: real] :
( ( abs_abs_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_divide
thf(fact_4862_abs__divide,axiom,
! [A: rat,B: rat] :
( ( abs_abs_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).
% abs_divide
thf(fact_4863_abs__minus,axiom,
! [A: real] :
( ( abs_abs_real @ ( uminus_uminus_real @ A ) )
= ( abs_abs_real @ A ) ) ).
% abs_minus
thf(fact_4864_abs__minus,axiom,
! [A: int] :
( ( abs_abs_int @ ( uminus_uminus_int @ A ) )
= ( abs_abs_int @ A ) ) ).
% abs_minus
thf(fact_4865_abs__minus,axiom,
! [A: complex] :
( ( abs_abs_complex @ ( uminus1482373934393186551omplex @ A ) )
= ( abs_abs_complex @ A ) ) ).
% abs_minus
thf(fact_4866_abs__minus,axiom,
! [A: rat] :
( ( abs_abs_rat @ ( uminus_uminus_rat @ A ) )
= ( abs_abs_rat @ A ) ) ).
% abs_minus
thf(fact_4867_abs__minus,axiom,
! [A: code_integer] :
( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ A ) )
= ( abs_abs_Code_integer @ A ) ) ).
% abs_minus
thf(fact_4868_abs__minus__cancel,axiom,
! [A: real] :
( ( abs_abs_real @ ( uminus_uminus_real @ A ) )
= ( abs_abs_real @ A ) ) ).
% abs_minus_cancel
thf(fact_4869_abs__minus__cancel,axiom,
! [A: int] :
( ( abs_abs_int @ ( uminus_uminus_int @ A ) )
= ( abs_abs_int @ A ) ) ).
% abs_minus_cancel
thf(fact_4870_abs__minus__cancel,axiom,
! [A: rat] :
( ( abs_abs_rat @ ( uminus_uminus_rat @ A ) )
= ( abs_abs_rat @ A ) ) ).
% abs_minus_cancel
thf(fact_4871_abs__minus__cancel,axiom,
! [A: code_integer] :
( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ A ) )
= ( abs_abs_Code_integer @ A ) ) ).
% abs_minus_cancel
thf(fact_4872_abs__dvd__iff,axiom,
! [M: real,K: real] :
( ( dvd_dvd_real @ ( abs_abs_real @ M ) @ K )
= ( dvd_dvd_real @ M @ K ) ) ).
% abs_dvd_iff
thf(fact_4873_abs__dvd__iff,axiom,
! [M: int,K: int] :
( ( dvd_dvd_int @ ( abs_abs_int @ M ) @ K )
= ( dvd_dvd_int @ M @ K ) ) ).
% abs_dvd_iff
thf(fact_4874_abs__dvd__iff,axiom,
! [M: rat,K: rat] :
( ( dvd_dvd_rat @ ( abs_abs_rat @ M ) @ K )
= ( dvd_dvd_rat @ M @ K ) ) ).
% abs_dvd_iff
thf(fact_4875_abs__dvd__iff,axiom,
! [M: code_integer,K: code_integer] :
( ( dvd_dvd_Code_integer @ ( abs_abs_Code_integer @ M ) @ K )
= ( dvd_dvd_Code_integer @ M @ K ) ) ).
% abs_dvd_iff
thf(fact_4876_dvd__abs__iff,axiom,
! [M: real,K: real] :
( ( dvd_dvd_real @ M @ ( abs_abs_real @ K ) )
= ( dvd_dvd_real @ M @ K ) ) ).
% dvd_abs_iff
thf(fact_4877_dvd__abs__iff,axiom,
! [M: int,K: int] :
( ( dvd_dvd_int @ M @ ( abs_abs_int @ K ) )
= ( dvd_dvd_int @ M @ K ) ) ).
% dvd_abs_iff
thf(fact_4878_dvd__abs__iff,axiom,
! [M: rat,K: rat] :
( ( dvd_dvd_rat @ M @ ( abs_abs_rat @ K ) )
= ( dvd_dvd_rat @ M @ K ) ) ).
% dvd_abs_iff
thf(fact_4879_dvd__abs__iff,axiom,
! [M: code_integer,K: code_integer] :
( ( dvd_dvd_Code_integer @ M @ ( abs_abs_Code_integer @ K ) )
= ( dvd_dvd_Code_integer @ M @ K ) ) ).
% dvd_abs_iff
thf(fact_4880_abs__of__nat,axiom,
! [N: nat] :
( ( abs_abs_rat @ ( semiri681578069525770553at_rat @ N ) )
= ( semiri681578069525770553at_rat @ N ) ) ).
% abs_of_nat
thf(fact_4881_abs__of__nat,axiom,
! [N: nat] :
( ( abs_abs_Code_integer @ ( semiri4939895301339042750nteger @ N ) )
= ( semiri4939895301339042750nteger @ N ) ) ).
% abs_of_nat
thf(fact_4882_abs__of__nat,axiom,
! [N: nat] :
( ( abs_abs_real @ ( semiri5074537144036343181t_real @ N ) )
= ( semiri5074537144036343181t_real @ N ) ) ).
% abs_of_nat
thf(fact_4883_abs__of__nat,axiom,
! [N: nat] :
( ( abs_abs_int @ ( semiri1314217659103216013at_int @ N ) )
= ( semiri1314217659103216013at_int @ N ) ) ).
% abs_of_nat
thf(fact_4884_tanh__0,axiom,
( ( tanh_complex @ zero_zero_complex )
= zero_zero_complex ) ).
% tanh_0
thf(fact_4885_tanh__0,axiom,
( ( tanh_real @ zero_zero_real )
= zero_zero_real ) ).
% tanh_0
thf(fact_4886_tanh__real__zero__iff,axiom,
! [X2: real] :
( ( ( tanh_real @ X2 )
= zero_zero_real )
= ( X2 = zero_zero_real ) ) ).
% tanh_real_zero_iff
thf(fact_4887_tanh__real__le__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( tanh_real @ X2 ) @ ( tanh_real @ Y2 ) )
= ( ord_less_eq_real @ X2 @ Y2 ) ) ).
% tanh_real_le_iff
thf(fact_4888_neg__0__le__iff__le,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% neg_0_le_iff_le
thf(fact_4889_neg__0__le__iff__le,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ A ) )
= ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) ) ).
% neg_0_le_iff_le
thf(fact_4890_neg__0__le__iff__le,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ A ) )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% neg_0_le_iff_le
thf(fact_4891_neg__0__le__iff__le,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% neg_0_le_iff_le
thf(fact_4892_neg__le__0__iff__le,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% neg_le_0_iff_le
thf(fact_4893_neg__le__0__iff__le,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ zero_z3403309356797280102nteger )
= ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).
% neg_le_0_iff_le
thf(fact_4894_neg__le__0__iff__le,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ zero_zero_rat )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% neg_le_0_iff_le
thf(fact_4895_neg__le__0__iff__le,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% neg_le_0_iff_le
thf(fact_4896_less__eq__neg__nonpos,axiom,
! [A: real] :
( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% less_eq_neg_nonpos
thf(fact_4897_less__eq__neg__nonpos,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
= ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) ) ).
% less_eq_neg_nonpos
thf(fact_4898_less__eq__neg__nonpos,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ A ) )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% less_eq_neg_nonpos
thf(fact_4899_less__eq__neg__nonpos,axiom,
! [A: int] :
( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% less_eq_neg_nonpos
thf(fact_4900_neg__less__eq__nonneg,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ A )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_4901_neg__less__eq__nonneg,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
= ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_4902_neg__less__eq__nonneg,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ A )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_4903_neg__less__eq__nonneg,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ A )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_4904_less__neg__neg,axiom,
! [A: real] :
( ( ord_less_real @ A @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% less_neg_neg
thf(fact_4905_less__neg__neg,axiom,
! [A: int] :
( ( ord_less_int @ A @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% less_neg_neg
thf(fact_4906_less__neg__neg,axiom,
! [A: rat] :
( ( ord_less_rat @ A @ ( uminus_uminus_rat @ A ) )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% less_neg_neg
thf(fact_4907_less__neg__neg,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
= ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).
% less_neg_neg
thf(fact_4908_neg__less__pos,axiom,
! [A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ A )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% neg_less_pos
thf(fact_4909_neg__less__pos,axiom,
! [A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ A )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% neg_less_pos
thf(fact_4910_neg__less__pos,axiom,
! [A: rat] :
( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ A )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% neg_less_pos
thf(fact_4911_neg__less__pos,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
= ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).
% neg_less_pos
thf(fact_4912_neg__0__less__iff__less,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% neg_0_less_iff_less
thf(fact_4913_neg__0__less__iff__less,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% neg_0_less_iff_less
thf(fact_4914_neg__0__less__iff__less,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ A ) )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% neg_0_less_iff_less
thf(fact_4915_neg__0__less__iff__less,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ A ) )
= ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).
% neg_0_less_iff_less
thf(fact_4916_neg__less__0__iff__less,axiom,
! [A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% neg_less_0_iff_less
thf(fact_4917_neg__less__0__iff__less,axiom,
! [A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% neg_less_0_iff_less
thf(fact_4918_neg__less__0__iff__less,axiom,
! [A: rat] :
( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ zero_zero_rat )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% neg_less_0_iff_less
thf(fact_4919_neg__less__0__iff__less,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ zero_z3403309356797280102nteger )
= ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).
% neg_less_0_iff_less
thf(fact_4920_add_Oright__inverse,axiom,
! [A: real] :
( ( plus_plus_real @ A @ ( uminus_uminus_real @ A ) )
= zero_zero_real ) ).
% add.right_inverse
thf(fact_4921_add_Oright__inverse,axiom,
! [A: int] :
( ( plus_plus_int @ A @ ( uminus_uminus_int @ A ) )
= zero_zero_int ) ).
% add.right_inverse
thf(fact_4922_add_Oright__inverse,axiom,
! [A: complex] :
( ( plus_plus_complex @ A @ ( uminus1482373934393186551omplex @ A ) )
= zero_zero_complex ) ).
% add.right_inverse
thf(fact_4923_add_Oright__inverse,axiom,
! [A: rat] :
( ( plus_plus_rat @ A @ ( uminus_uminus_rat @ A ) )
= zero_zero_rat ) ).
% add.right_inverse
thf(fact_4924_add_Oright__inverse,axiom,
! [A: code_integer] :
( ( plus_p5714425477246183910nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
= zero_z3403309356797280102nteger ) ).
% add.right_inverse
thf(fact_4925_ab__left__minus,axiom,
! [A: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
= zero_zero_real ) ).
% ab_left_minus
thf(fact_4926_ab__left__minus,axiom,
! [A: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
= zero_zero_int ) ).
% ab_left_minus
thf(fact_4927_ab__left__minus,axiom,
! [A: complex] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ A )
= zero_zero_complex ) ).
% ab_left_minus
thf(fact_4928_ab__left__minus,axiom,
! [A: rat] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ A )
= zero_zero_rat ) ).
% ab_left_minus
thf(fact_4929_ab__left__minus,axiom,
! [A: code_integer] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
= zero_z3403309356797280102nteger ) ).
% ab_left_minus
thf(fact_4930_diff__0,axiom,
! [A: real] :
( ( minus_minus_real @ zero_zero_real @ A )
= ( uminus_uminus_real @ A ) ) ).
% diff_0
thf(fact_4931_diff__0,axiom,
! [A: int] :
( ( minus_minus_int @ zero_zero_int @ A )
= ( uminus_uminus_int @ A ) ) ).
% diff_0
thf(fact_4932_diff__0,axiom,
! [A: complex] :
( ( minus_minus_complex @ zero_zero_complex @ A )
= ( uminus1482373934393186551omplex @ A ) ) ).
% diff_0
thf(fact_4933_diff__0,axiom,
! [A: rat] :
( ( minus_minus_rat @ zero_zero_rat @ A )
= ( uminus_uminus_rat @ A ) ) ).
% diff_0
thf(fact_4934_diff__0,axiom,
! [A: code_integer] :
( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ A )
= ( uminus1351360451143612070nteger @ A ) ) ).
% diff_0
thf(fact_4935_verit__minus__simplify_I3_J,axiom,
! [B: real] :
( ( minus_minus_real @ zero_zero_real @ B )
= ( uminus_uminus_real @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_4936_verit__minus__simplify_I3_J,axiom,
! [B: int] :
( ( minus_minus_int @ zero_zero_int @ B )
= ( uminus_uminus_int @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_4937_verit__minus__simplify_I3_J,axiom,
! [B: complex] :
( ( minus_minus_complex @ zero_zero_complex @ B )
= ( uminus1482373934393186551omplex @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_4938_verit__minus__simplify_I3_J,axiom,
! [B: rat] :
( ( minus_minus_rat @ zero_zero_rat @ B )
= ( uminus_uminus_rat @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_4939_verit__minus__simplify_I3_J,axiom,
! [B: code_integer] :
( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ B )
= ( uminus1351360451143612070nteger @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_4940_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( uminus_uminus_real @ ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_4941_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_4942_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( uminus1482373934393186551omplex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_4943_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( uminus_uminus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_4944_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ N ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_4945_mult__minus1__right,axiom,
! [Z: real] :
( ( times_times_real @ Z @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ Z ) ) ).
% mult_minus1_right
thf(fact_4946_mult__minus1__right,axiom,
! [Z: int] :
( ( times_times_int @ Z @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ Z ) ) ).
% mult_minus1_right
thf(fact_4947_mult__minus1__right,axiom,
! [Z: complex] :
( ( times_times_complex @ Z @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ Z ) ) ).
% mult_minus1_right
thf(fact_4948_mult__minus1__right,axiom,
! [Z: rat] :
( ( times_times_rat @ Z @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ Z ) ) ).
% mult_minus1_right
thf(fact_4949_mult__minus1__right,axiom,
! [Z: code_integer] :
( ( times_3573771949741848930nteger @ Z @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ Z ) ) ).
% mult_minus1_right
thf(fact_4950_mult__minus1,axiom,
! [Z: real] :
( ( times_times_real @ ( uminus_uminus_real @ one_one_real ) @ Z )
= ( uminus_uminus_real @ Z ) ) ).
% mult_minus1
thf(fact_4951_mult__minus1,axiom,
! [Z: int] :
( ( times_times_int @ ( uminus_uminus_int @ one_one_int ) @ Z )
= ( uminus_uminus_int @ Z ) ) ).
% mult_minus1
thf(fact_4952_mult__minus1,axiom,
! [Z: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ Z )
= ( uminus1482373934393186551omplex @ Z ) ) ).
% mult_minus1
thf(fact_4953_mult__minus1,axiom,
! [Z: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ one_one_rat ) @ Z )
= ( uminus_uminus_rat @ Z ) ) ).
% mult_minus1
thf(fact_4954_mult__minus1,axiom,
! [Z: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ Z )
= ( uminus1351360451143612070nteger @ Z ) ) ).
% mult_minus1
thf(fact_4955_diff__minus__eq__add,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ A @ ( uminus_uminus_real @ B ) )
= ( plus_plus_real @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_4956_diff__minus__eq__add,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ A @ ( uminus_uminus_int @ B ) )
= ( plus_plus_int @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_4957_diff__minus__eq__add,axiom,
! [A: complex,B: complex] :
( ( minus_minus_complex @ A @ ( uminus1482373934393186551omplex @ B ) )
= ( plus_plus_complex @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_4958_diff__minus__eq__add,axiom,
! [A: rat,B: rat] :
( ( minus_minus_rat @ A @ ( uminus_uminus_rat @ B ) )
= ( plus_plus_rat @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_4959_diff__minus__eq__add,axiom,
! [A: code_integer,B: code_integer] :
( ( minus_8373710615458151222nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( plus_p5714425477246183910nteger @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_4960_uminus__add__conv__diff,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B )
= ( minus_minus_real @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_4961_uminus__add__conv__diff,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B )
= ( minus_minus_int @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_4962_uminus__add__conv__diff,axiom,
! [A: complex,B: complex] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
= ( minus_minus_complex @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_4963_uminus__add__conv__diff,axiom,
! [A: rat,B: rat] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ B )
= ( minus_minus_rat @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_4964_uminus__add__conv__diff,axiom,
! [A: code_integer,B: code_integer] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( minus_8373710615458151222nteger @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_4965_divide__minus1,axiom,
! [X2: real] :
( ( divide_divide_real @ X2 @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ X2 ) ) ).
% divide_minus1
thf(fact_4966_divide__minus1,axiom,
! [X2: complex] :
( ( divide1717551699836669952omplex @ X2 @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ X2 ) ) ).
% divide_minus1
thf(fact_4967_divide__minus1,axiom,
! [X2: rat] :
( ( divide_divide_rat @ X2 @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ X2 ) ) ).
% divide_minus1
thf(fact_4968_div__minus1__right,axiom,
! [A: int] :
( ( divide_divide_int @ A @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ A ) ) ).
% div_minus1_right
thf(fact_4969_div__minus1__right,axiom,
! [A: code_integer] :
( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ A ) ) ).
% div_minus1_right
thf(fact_4970_abs__of__nonneg,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( abs_abs_Code_integer @ A )
= A ) ) ).
% abs_of_nonneg
thf(fact_4971_abs__of__nonneg,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( abs_abs_real @ A )
= A ) ) ).
% abs_of_nonneg
thf(fact_4972_abs__of__nonneg,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( abs_abs_rat @ A )
= A ) ) ).
% abs_of_nonneg
thf(fact_4973_abs__of__nonneg,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( abs_abs_int @ A )
= A ) ) ).
% abs_of_nonneg
thf(fact_4974_abs__le__self__iff,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ A )
= ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).
% abs_le_self_iff
thf(fact_4975_abs__le__self__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ A )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% abs_le_self_iff
thf(fact_4976_abs__le__self__iff,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ A )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% abs_le_self_iff
thf(fact_4977_abs__le__self__iff,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ A )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% abs_le_self_iff
thf(fact_4978_abs__le__zero__iff,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ zero_z3403309356797280102nteger )
= ( A = zero_z3403309356797280102nteger ) ) ).
% abs_le_zero_iff
thf(fact_4979_abs__le__zero__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ zero_zero_real )
= ( A = zero_zero_real ) ) ).
% abs_le_zero_iff
thf(fact_4980_abs__le__zero__iff,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% abs_le_zero_iff
thf(fact_4981_abs__le__zero__iff,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ zero_zero_int )
= ( A = zero_zero_int ) ) ).
% abs_le_zero_iff
thf(fact_4982_zero__less__abs__iff,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( abs_abs_Code_integer @ A ) )
= ( A != zero_z3403309356797280102nteger ) ) ).
% zero_less_abs_iff
thf(fact_4983_zero__less__abs__iff,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ A ) )
= ( A != zero_zero_real ) ) ).
% zero_less_abs_iff
thf(fact_4984_zero__less__abs__iff,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( abs_abs_rat @ A ) )
= ( A != zero_zero_rat ) ) ).
% zero_less_abs_iff
thf(fact_4985_zero__less__abs__iff,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( abs_abs_int @ A ) )
= ( A != zero_zero_int ) ) ).
% zero_less_abs_iff
thf(fact_4986_minus__mod__self1,axiom,
! [B: int,A: int] :
( ( modulo_modulo_int @ ( minus_minus_int @ B @ A ) @ B )
= ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B ) ) ).
% minus_mod_self1
thf(fact_4987_minus__mod__self1,axiom,
! [B: code_integer,A: code_integer] :
( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ B @ A ) @ B )
= ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).
% minus_mod_self1
thf(fact_4988_abs__neg__numeral,axiom,
! [N: num] :
( ( abs_abs_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( numeral_numeral_real @ N ) ) ).
% abs_neg_numeral
thf(fact_4989_abs__neg__numeral,axiom,
! [N: num] :
( ( abs_abs_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( numeral_numeral_int @ N ) ) ).
% abs_neg_numeral
thf(fact_4990_abs__neg__numeral,axiom,
! [N: num] :
( ( abs_abs_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( numeral_numeral_rat @ N ) ) ).
% abs_neg_numeral
thf(fact_4991_abs__neg__numeral,axiom,
! [N: num] :
( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( numera6620942414471956472nteger @ N ) ) ).
% abs_neg_numeral
thf(fact_4992_abs__neg__one,axiom,
( ( abs_abs_real @ ( uminus_uminus_real @ one_one_real ) )
= one_one_real ) ).
% abs_neg_one
thf(fact_4993_abs__neg__one,axiom,
( ( abs_abs_int @ ( uminus_uminus_int @ one_one_int ) )
= one_one_int ) ).
% abs_neg_one
thf(fact_4994_abs__neg__one,axiom,
( ( abs_abs_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= one_one_rat ) ).
% abs_neg_one
thf(fact_4995_abs__neg__one,axiom,
( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= one_one_Code_integer ) ).
% abs_neg_one
thf(fact_4996_abs__power__minus,axiom,
! [A: real,N: nat] :
( ( abs_abs_real @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N ) )
= ( abs_abs_real @ ( power_power_real @ A @ N ) ) ) ).
% abs_power_minus
thf(fact_4997_abs__power__minus,axiom,
! [A: int,N: nat] :
( ( abs_abs_int @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) )
= ( abs_abs_int @ ( power_power_int @ A @ N ) ) ) ).
% abs_power_minus
thf(fact_4998_abs__power__minus,axiom,
! [A: rat,N: nat] :
( ( abs_abs_rat @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N ) )
= ( abs_abs_rat @ ( power_power_rat @ A @ N ) ) ) ).
% abs_power_minus
thf(fact_4999_abs__power__minus,axiom,
! [A: code_integer,N: nat] :
( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N ) )
= ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).
% abs_power_minus
thf(fact_5000_of__real__eq__0__iff,axiom,
! [X2: real] :
( ( ( real_V1803761363581548252l_real @ X2 )
= zero_zero_real )
= ( X2 = zero_zero_real ) ) ).
% of_real_eq_0_iff
thf(fact_5001_of__real__eq__0__iff,axiom,
! [X2: real] :
( ( ( real_V4546457046886955230omplex @ X2 )
= zero_zero_complex )
= ( X2 = zero_zero_real ) ) ).
% of_real_eq_0_iff
thf(fact_5002_of__real__0,axiom,
( ( real_V1803761363581548252l_real @ zero_zero_real )
= zero_zero_real ) ).
% of_real_0
thf(fact_5003_of__real__0,axiom,
( ( real_V4546457046886955230omplex @ zero_zero_real )
= zero_zero_complex ) ).
% of_real_0
thf(fact_5004_of__real__eq__1__iff,axiom,
! [X2: real] :
( ( ( real_V1803761363581548252l_real @ X2 )
= one_one_real )
= ( X2 = one_one_real ) ) ).
% of_real_eq_1_iff
thf(fact_5005_of__real__eq__1__iff,axiom,
! [X2: real] :
( ( ( real_V4546457046886955230omplex @ X2 )
= one_one_complex )
= ( X2 = one_one_real ) ) ).
% of_real_eq_1_iff
thf(fact_5006_of__real__1,axiom,
( ( real_V1803761363581548252l_real @ one_one_real )
= one_one_real ) ).
% of_real_1
thf(fact_5007_of__real__1,axiom,
( ( real_V4546457046886955230omplex @ one_one_real )
= one_one_complex ) ).
% of_real_1
thf(fact_5008_of__real__numeral,axiom,
! [W: num] :
( ( real_V1803761363581548252l_real @ ( numeral_numeral_real @ W ) )
= ( numeral_numeral_real @ W ) ) ).
% of_real_numeral
thf(fact_5009_of__real__numeral,axiom,
! [W: num] :
( ( real_V4546457046886955230omplex @ ( numeral_numeral_real @ W ) )
= ( numera6690914467698888265omplex @ W ) ) ).
% of_real_numeral
thf(fact_5010_of__real__mult,axiom,
! [X2: real,Y2: real] :
( ( real_V1803761363581548252l_real @ ( times_times_real @ X2 @ Y2 ) )
= ( times_times_real @ ( real_V1803761363581548252l_real @ X2 ) @ ( real_V1803761363581548252l_real @ Y2 ) ) ) ).
% of_real_mult
thf(fact_5011_of__real__mult,axiom,
! [X2: real,Y2: real] :
( ( real_V4546457046886955230omplex @ ( times_times_real @ X2 @ Y2 ) )
= ( times_times_complex @ ( real_V4546457046886955230omplex @ X2 ) @ ( real_V4546457046886955230omplex @ Y2 ) ) ) ).
% of_real_mult
thf(fact_5012_of__real__divide,axiom,
! [X2: real,Y2: real] :
( ( real_V1803761363581548252l_real @ ( divide_divide_real @ X2 @ Y2 ) )
= ( divide_divide_real @ ( real_V1803761363581548252l_real @ X2 ) @ ( real_V1803761363581548252l_real @ Y2 ) ) ) ).
% of_real_divide
thf(fact_5013_of__real__divide,axiom,
! [X2: real,Y2: real] :
( ( real_V4546457046886955230omplex @ ( divide_divide_real @ X2 @ Y2 ) )
= ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ X2 ) @ ( real_V4546457046886955230omplex @ Y2 ) ) ) ).
% of_real_divide
thf(fact_5014_of__real__add,axiom,
! [X2: real,Y2: real] :
( ( real_V1803761363581548252l_real @ ( plus_plus_real @ X2 @ Y2 ) )
= ( plus_plus_real @ ( real_V1803761363581548252l_real @ X2 ) @ ( real_V1803761363581548252l_real @ Y2 ) ) ) ).
% of_real_add
thf(fact_5015_of__real__add,axiom,
! [X2: real,Y2: real] :
( ( real_V4546457046886955230omplex @ ( plus_plus_real @ X2 @ Y2 ) )
= ( plus_plus_complex @ ( real_V4546457046886955230omplex @ X2 ) @ ( real_V4546457046886955230omplex @ Y2 ) ) ) ).
% of_real_add
thf(fact_5016_of__real__power,axiom,
! [X2: real,N: nat] :
( ( real_V1803761363581548252l_real @ ( power_power_real @ X2 @ N ) )
= ( power_power_real @ ( real_V1803761363581548252l_real @ X2 ) @ N ) ) ).
% of_real_power
thf(fact_5017_of__real__power,axiom,
! [X2: real,N: nat] :
( ( real_V4546457046886955230omplex @ ( power_power_real @ X2 @ N ) )
= ( power_power_complex @ ( real_V4546457046886955230omplex @ X2 ) @ N ) ) ).
% of_real_power
thf(fact_5018_real__add__minus__iff,axiom,
! [X2: real,A: real] :
( ( ( plus_plus_real @ X2 @ ( uminus_uminus_real @ A ) )
= zero_zero_real )
= ( X2 = A ) ) ).
% real_add_minus_iff
thf(fact_5019_of__real__of__nat__eq,axiom,
! [N: nat] :
( ( real_V4546457046886955230omplex @ ( semiri5074537144036343181t_real @ N ) )
= ( semiri8010041392384452111omplex @ N ) ) ).
% of_real_of_nat_eq
thf(fact_5020_of__real__of__nat__eq,axiom,
! [N: nat] :
( ( real_V1803761363581548252l_real @ ( semiri5074537144036343181t_real @ N ) )
= ( semiri5074537144036343181t_real @ N ) ) ).
% of_real_of_nat_eq
thf(fact_5021_tanh__real__pos__iff,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ ( tanh_real @ X2 ) )
= ( ord_less_real @ zero_zero_real @ X2 ) ) ).
% tanh_real_pos_iff
thf(fact_5022_tanh__real__neg__iff,axiom,
! [X2: real] :
( ( ord_less_real @ ( tanh_real @ X2 ) @ zero_zero_real )
= ( ord_less_real @ X2 @ zero_zero_real ) ) ).
% tanh_real_neg_iff
thf(fact_5023_tanh__real__nonpos__iff,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( tanh_real @ X2 ) @ zero_zero_real )
= ( ord_less_eq_real @ X2 @ zero_zero_real ) ) ).
% tanh_real_nonpos_iff
thf(fact_5024_tanh__real__nonneg__iff,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( tanh_real @ X2 ) )
= ( ord_less_eq_real @ zero_zero_real @ X2 ) ) ).
% tanh_real_nonneg_iff
thf(fact_5025_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
= zero_zero_real ) ).
% add_neg_numeral_special(8)
thf(fact_5026_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
= zero_zero_int ) ).
% add_neg_numeral_special(8)
thf(fact_5027_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ one_one_complex )
= zero_zero_complex ) ).
% add_neg_numeral_special(8)
thf(fact_5028_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat )
= zero_zero_rat ) ).
% add_neg_numeral_special(8)
thf(fact_5029_add__neg__numeral__special_I8_J,axiom,
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer )
= zero_z3403309356797280102nteger ) ).
% add_neg_numeral_special(8)
thf(fact_5030_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
= zero_zero_real ) ).
% add_neg_numeral_special(7)
thf(fact_5031_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% add_neg_numeral_special(7)
thf(fact_5032_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= zero_zero_complex ) ).
% add_neg_numeral_special(7)
thf(fact_5033_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= zero_zero_rat ) ).
% add_neg_numeral_special(7)
thf(fact_5034_add__neg__numeral__special_I7_J,axiom,
( ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= zero_z3403309356797280102nteger ) ).
% add_neg_numeral_special(7)
thf(fact_5035_diff__numeral__special_I12_J,axiom,
( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
= zero_zero_real ) ).
% diff_numeral_special(12)
thf(fact_5036_diff__numeral__special_I12_J,axiom,
( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% diff_numeral_special(12)
thf(fact_5037_diff__numeral__special_I12_J,axiom,
( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= zero_zero_complex ) ).
% diff_numeral_special(12)
thf(fact_5038_diff__numeral__special_I12_J,axiom,
( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ one_one_rat ) )
= zero_zero_rat ) ).
% diff_numeral_special(12)
thf(fact_5039_diff__numeral__special_I12_J,axiom,
( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= zero_z3403309356797280102nteger ) ).
% diff_numeral_special(12)
thf(fact_5040_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_real @ one_one_real )
= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_5041_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_int @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_5042_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus1482373934393186551omplex @ one_one_complex )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_5043_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_rat @ one_one_rat )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_5044_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus1351360451143612070nteger @ one_one_Code_integer )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_5045_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_real @ ( numeral_numeral_real @ N ) )
= ( uminus_uminus_real @ one_one_real ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_5046_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_int @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ one_one_int ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_5047_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_5048_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) )
= ( uminus_uminus_rat @ one_one_rat ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_5049_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_5050_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) )
= one_one_real ) ).
% minus_one_mult_self
thf(fact_5051_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) )
= one_one_int ) ).
% minus_one_mult_self
thf(fact_5052_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) )
= one_one_complex ) ).
% minus_one_mult_self
thf(fact_5053_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) )
= one_one_rat ) ).
% minus_one_mult_self
thf(fact_5054_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) )
= one_one_Code_integer ) ).
% minus_one_mult_self
thf(fact_5055_left__minus__one__mult__self,axiom,
! [N: nat,A: real] :
( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_5056_left__minus__one__mult__self,axiom,
! [N: nat,A: int] :
( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_5057_left__minus__one__mult__self,axiom,
! [N: nat,A: complex] :
( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_5058_left__minus__one__mult__self,axiom,
! [N: nat,A: rat] :
( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_5059_left__minus__one__mult__self,axiom,
! [N: nat,A: code_integer] :
( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_5060_mod__minus1__right,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% mod_minus1_right
thf(fact_5061_mod__minus1__right,axiom,
! [A: code_integer] :
( ( modulo364778990260209775nteger @ A @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= zero_z3403309356797280102nteger ) ).
% mod_minus1_right
thf(fact_5062_divide__le__0__abs__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ A @ ( abs_abs_real @ B ) ) @ zero_zero_real )
= ( ( ord_less_eq_real @ A @ zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divide_le_0_abs_iff
thf(fact_5063_divide__le__0__abs__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ ( abs_abs_rat @ B ) ) @ zero_zero_rat )
= ( ( ord_less_eq_rat @ A @ zero_zero_rat )
| ( B = zero_zero_rat ) ) ) ).
% divide_le_0_abs_iff
thf(fact_5064_zero__le__divide__abs__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ ( abs_abs_real @ B ) ) )
= ( ( ord_less_eq_real @ zero_zero_real @ A )
| ( B = zero_zero_real ) ) ) ).
% zero_le_divide_abs_iff
thf(fact_5065_zero__le__divide__abs__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( abs_abs_rat @ B ) ) )
= ( ( ord_less_eq_rat @ zero_zero_rat @ A )
| ( B = zero_zero_rat ) ) ) ).
% zero_le_divide_abs_iff
thf(fact_5066_abs__of__nonpos,axiom,
! [A: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( abs_abs_real @ A )
= ( uminus_uminus_real @ A ) ) ) ).
% abs_of_nonpos
thf(fact_5067_abs__of__nonpos,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger )
=> ( ( abs_abs_Code_integer @ A )
= ( uminus1351360451143612070nteger @ A ) ) ) ).
% abs_of_nonpos
thf(fact_5068_abs__of__nonpos,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( abs_abs_rat @ A )
= ( uminus_uminus_rat @ A ) ) ) ).
% abs_of_nonpos
thf(fact_5069_abs__of__nonpos,axiom,
! [A: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( abs_abs_int @ A )
= ( uminus_uminus_int @ A ) ) ) ).
% abs_of_nonpos
thf(fact_5070_norm__neg__numeral,axiom,
! [W: num] :
( ( real_V7735802525324610683m_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= ( numeral_numeral_real @ W ) ) ).
% norm_neg_numeral
thf(fact_5071_norm__neg__numeral,axiom,
! [W: num] :
( ( real_V1022390504157884413omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
= ( numeral_numeral_real @ W ) ) ).
% norm_neg_numeral
thf(fact_5072_semiring__norm_I168_J,axiom,
! [V: num,W: num,Y2: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y2 ) )
= ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) ) @ Y2 ) ) ).
% semiring_norm(168)
thf(fact_5073_semiring__norm_I168_J,axiom,
! [V: num,W: num,Y2: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y2 ) )
= ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) ) @ Y2 ) ) ).
% semiring_norm(168)
thf(fact_5074_semiring__norm_I168_J,axiom,
! [V: num,W: num,Y2: complex] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y2 ) )
= ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ V @ W ) ) ) @ Y2 ) ) ).
% semiring_norm(168)
thf(fact_5075_semiring__norm_I168_J,axiom,
! [V: num,W: num,Y2: rat] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y2 ) )
= ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ V @ W ) ) ) @ Y2 ) ) ).
% semiring_norm(168)
thf(fact_5076_semiring__norm_I168_J,axiom,
! [V: num,W: num,Y2: code_integer] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y2 ) )
= ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ V @ W ) ) ) @ Y2 ) ) ).
% semiring_norm(168)
thf(fact_5077_ceiling__neg__numeral,axiom,
! [V: num] :
( ( archim7802044766580827645g_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) ).
% ceiling_neg_numeral
thf(fact_5078_ceiling__neg__numeral,axiom,
! [V: num] :
( ( archim2889992004027027881ng_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) ).
% ceiling_neg_numeral
thf(fact_5079_diff__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ) ).
% diff_numeral_simps(3)
thf(fact_5080_diff__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ) ).
% diff_numeral_simps(3)
thf(fact_5081_diff__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( numera6690914467698888265omplex @ N ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N ) ) ) ) ).
% diff_numeral_simps(3)
thf(fact_5082_diff__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% diff_numeral_simps(3)
thf(fact_5083_diff__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ N ) ) ) ) ).
% diff_numeral_simps(3)
thf(fact_5084_diff__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( minus_minus_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).
% diff_numeral_simps(2)
thf(fact_5085_diff__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( minus_minus_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).
% diff_numeral_simps(2)
thf(fact_5086_diff__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( minus_minus_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N ) ) ) ).
% diff_numeral_simps(2)
thf(fact_5087_diff__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( minus_minus_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( numeral_numeral_rat @ ( plus_plus_num @ M @ N ) ) ) ).
% diff_numeral_simps(2)
thf(fact_5088_diff__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( minus_8373710615458151222nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ N ) ) ) ).
% diff_numeral_simps(2)
thf(fact_5089_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_5090_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_5091_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_5092_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_times_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_5093_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_5094_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_5095_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_5096_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( numera6690914467698888265omplex @ N ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_5097_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_5098_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_5099_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_5100_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_5101_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_5102_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_5103_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( numera6620942414471956472nteger @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_5104_semiring__norm_I172_J,axiom,
! [V: num,W: num,Y2: real] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y2 ) )
= ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Y2 ) ) ).
% semiring_norm(172)
thf(fact_5105_semiring__norm_I172_J,axiom,
! [V: num,W: num,Y2: int] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y2 ) )
= ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Y2 ) ) ).
% semiring_norm(172)
thf(fact_5106_semiring__norm_I172_J,axiom,
! [V: num,W: num,Y2: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y2 ) )
= ( times_times_complex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) @ Y2 ) ) ).
% semiring_norm(172)
thf(fact_5107_semiring__norm_I172_J,axiom,
! [V: num,W: num,Y2: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y2 ) )
= ( times_times_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) @ Y2 ) ) ).
% semiring_norm(172)
thf(fact_5108_semiring__norm_I172_J,axiom,
! [V: num,W: num,Y2: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y2 ) )
= ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) @ Y2 ) ) ).
% semiring_norm(172)
thf(fact_5109_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y2: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y2 ) )
= ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).
% semiring_norm(171)
thf(fact_5110_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y2: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y2 ) )
= ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).
% semiring_norm(171)
thf(fact_5111_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y2: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y2 ) )
= ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).
% semiring_norm(171)
thf(fact_5112_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y2: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y2 ) )
= ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).
% semiring_norm(171)
thf(fact_5113_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y2: code_integer] :
( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ V ) @ ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y2 ) )
= ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).
% semiring_norm(171)
thf(fact_5114_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y2: real] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Y2 ) )
= ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).
% semiring_norm(170)
thf(fact_5115_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y2: int] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Y2 ) )
= ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).
% semiring_norm(170)
thf(fact_5116_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y2: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ Y2 ) )
= ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).
% semiring_norm(170)
thf(fact_5117_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y2: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ Y2 ) )
= ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).
% semiring_norm(170)
thf(fact_5118_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y2: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ W ) @ Y2 ) )
= ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).
% semiring_norm(170)
thf(fact_5119_artanh__minus__real,axiom,
! [X2: real] :
( ( ord_less_real @ ( abs_abs_real @ X2 ) @ one_one_real )
=> ( ( artanh_real @ ( uminus_uminus_real @ X2 ) )
= ( uminus_uminus_real @ ( artanh_real @ X2 ) ) ) ) ).
% artanh_minus_real
thf(fact_5120_neg__numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( ord_less_eq_num @ N @ M ) ) ).
% neg_numeral_le_iff
thf(fact_5121_neg__numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( ord_less_eq_num @ N @ M ) ) ).
% neg_numeral_le_iff
thf(fact_5122_neg__numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( ord_less_eq_num @ N @ M ) ) ).
% neg_numeral_le_iff
thf(fact_5123_neg__numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( ord_less_eq_num @ N @ M ) ) ).
% neg_numeral_le_iff
thf(fact_5124_neg__numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( ord_less_num @ N @ M ) ) ).
% neg_numeral_less_iff
thf(fact_5125_neg__numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( ord_less_num @ N @ M ) ) ).
% neg_numeral_less_iff
thf(fact_5126_neg__numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( ord_less_num @ N @ M ) ) ).
% neg_numeral_less_iff
thf(fact_5127_neg__numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( ord_less_num @ N @ M ) ) ).
% neg_numeral_less_iff
thf(fact_5128_round__neg__numeral,axiom,
! [N: num] :
( ( archim8280529875227126926d_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% round_neg_numeral
thf(fact_5129_round__neg__numeral,axiom,
! [N: num] :
( ( archim7778729529865785530nd_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% round_neg_numeral
thf(fact_5130_not__neg__one__le__neg__numeral__iff,axiom,
! [M: num] :
( ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) )
= ( M != one ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_5131_not__neg__one__le__neg__numeral__iff,axiom,
! [M: num] :
( ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) )
= ( M != one ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_5132_not__neg__one__le__neg__numeral__iff,axiom,
! [M: num] :
( ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) )
= ( M != one ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_5133_not__neg__one__le__neg__numeral__iff,axiom,
! [M: num] :
( ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) )
= ( M != one ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_5134_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_5135_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_5136_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_5137_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_5138_divide__eq__eq__numeral1_I2_J,axiom,
! [B: real,W: num,A: real] :
( ( ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= A )
= ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
!= zero_zero_real )
=> ( B
= ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) )
& ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral1(2)
thf(fact_5139_divide__eq__eq__numeral1_I2_J,axiom,
! [B: complex,W: num,A: complex] :
( ( ( divide1717551699836669952omplex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
= A )
= ( ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
!= zero_zero_complex )
=> ( B
= ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ) )
& ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
= zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% divide_eq_eq_numeral1(2)
thf(fact_5140_divide__eq__eq__numeral1_I2_J,axiom,
! [B: rat,W: num,A: rat] :
( ( ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
= A )
= ( ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
!= zero_zero_rat )
=> ( B
= ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) )
& ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
= zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% divide_eq_eq_numeral1(2)
thf(fact_5141_eq__divide__eq__numeral1_I2_J,axiom,
! [A: real,B: real,W: num] :
( ( A
= ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
= ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
!= zero_zero_real )
=> ( ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= B ) )
& ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral1(2)
thf(fact_5142_eq__divide__eq__numeral1_I2_J,axiom,
! [A: complex,B: complex,W: num] :
( ( A
= ( divide1717551699836669952omplex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) )
= ( ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
!= zero_zero_complex )
=> ( ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
= B ) )
& ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
= zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% eq_divide_eq_numeral1(2)
thf(fact_5143_eq__divide__eq__numeral1_I2_J,axiom,
! [A: rat,B: rat,W: num] :
( ( A
= ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
= ( ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
!= zero_zero_rat )
=> ( ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
= B ) )
& ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
= zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% eq_divide_eq_numeral1(2)
thf(fact_5144_divide__le__eq__numeral1_I2_J,axiom,
! [B: real,W: num,A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ A )
= ( ord_less_eq_real @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ B ) ) ).
% divide_le_eq_numeral1(2)
thf(fact_5145_divide__le__eq__numeral1_I2_J,axiom,
! [B: rat,W: num,A: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ A )
= ( ord_less_eq_rat @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ B ) ) ).
% divide_le_eq_numeral1(2)
thf(fact_5146_le__divide__eq__numeral1_I2_J,axiom,
! [A: real,B: real,W: num] :
( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
= ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ).
% le_divide_eq_numeral1(2)
thf(fact_5147_le__divide__eq__numeral1_I2_J,axiom,
! [A: rat,B: rat,W: num] :
( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
= ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ).
% le_divide_eq_numeral1(2)
thf(fact_5148_divide__less__eq__numeral1_I2_J,axiom,
! [B: real,W: num,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ A )
= ( ord_less_real @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ B ) ) ).
% divide_less_eq_numeral1(2)
thf(fact_5149_divide__less__eq__numeral1_I2_J,axiom,
! [B: rat,W: num,A: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ A )
= ( ord_less_rat @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ B ) ) ).
% divide_less_eq_numeral1(2)
thf(fact_5150_less__divide__eq__numeral1_I2_J,axiom,
! [A: real,B: real,W: num] :
( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
= ( ord_less_real @ B @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ).
% less_divide_eq_numeral1(2)
thf(fact_5151_less__divide__eq__numeral1_I2_J,axiom,
! [A: rat,B: rat,W: num] :
( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
= ( ord_less_rat @ B @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ).
% less_divide_eq_numeral1(2)
thf(fact_5152_power2__minus,axiom,
! [A: real] :
( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_minus
thf(fact_5153_power2__minus,axiom,
! [A: int] :
( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_minus
thf(fact_5154_power2__minus,axiom,
! [A: complex] :
( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_minus
thf(fact_5155_power2__minus,axiom,
! [A: rat] :
( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_minus
thf(fact_5156_power2__minus,axiom,
! [A: code_integer] :
( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_minus
thf(fact_5157_zero__less__power__abs__iff,axiom,
! [A: code_integer,N: nat] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N ) )
= ( ( A != zero_z3403309356797280102nteger )
| ( N = zero_zero_nat ) ) ) ).
% zero_less_power_abs_iff
thf(fact_5158_zero__less__power__abs__iff,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( abs_abs_real @ A ) @ N ) )
= ( ( A != zero_zero_real )
| ( N = zero_zero_nat ) ) ) ).
% zero_less_power_abs_iff
thf(fact_5159_zero__less__power__abs__iff,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ ( abs_abs_rat @ A ) @ N ) )
= ( ( A != zero_zero_rat )
| ( N = zero_zero_nat ) ) ) ).
% zero_less_power_abs_iff
thf(fact_5160_zero__less__power__abs__iff,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A ) @ N ) )
= ( ( A != zero_zero_int )
| ( N = zero_zero_nat ) ) ) ).
% zero_less_power_abs_iff
thf(fact_5161_abs__power2,axiom,
! [A: rat] :
( ( abs_abs_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% abs_power2
thf(fact_5162_abs__power2,axiom,
! [A: real] :
( ( abs_abs_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% abs_power2
thf(fact_5163_abs__power2,axiom,
! [A: int] :
( ( abs_abs_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% abs_power2
thf(fact_5164_abs__power2,axiom,
! [A: code_integer] :
( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% abs_power2
thf(fact_5165_power2__abs,axiom,
! [A: rat] :
( ( power_power_rat @ ( abs_abs_rat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_abs
thf(fact_5166_power2__abs,axiom,
! [A: real] :
( ( power_power_real @ ( abs_abs_real @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_abs
thf(fact_5167_power2__abs,axiom,
! [A: int] :
( ( power_power_int @ ( abs_abs_int @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_abs
thf(fact_5168_power2__abs,axiom,
! [A: code_integer] :
( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_abs
thf(fact_5169_of__real__neg__numeral,axiom,
! [W: num] :
( ( real_V1803761363581548252l_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ).
% of_real_neg_numeral
thf(fact_5170_of__real__neg__numeral,axiom,
! [W: num] :
( ( real_V4546457046886955230omplex @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ).
% of_real_neg_numeral
thf(fact_5171_add__neg__numeral__special_I9_J,axiom,
( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_5172_add__neg__numeral__special_I9_J,axiom,
( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_5173_add__neg__numeral__special_I9_J,axiom,
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_5174_add__neg__numeral__special_I9_J,axiom,
( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_5175_add__neg__numeral__special_I9_J,axiom,
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_5176_diff__numeral__special_I11_J,axiom,
( ( minus_minus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% diff_numeral_special(11)
thf(fact_5177_diff__numeral__special_I11_J,axiom,
( ( minus_minus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% diff_numeral_special(11)
thf(fact_5178_diff__numeral__special_I11_J,axiom,
( ( minus_minus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).
% diff_numeral_special(11)
thf(fact_5179_diff__numeral__special_I11_J,axiom,
( ( minus_minus_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).
% diff_numeral_special(11)
thf(fact_5180_diff__numeral__special_I11_J,axiom,
( ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ).
% diff_numeral_special(11)
thf(fact_5181_diff__numeral__special_I10_J,axiom,
( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_5182_diff__numeral__special_I10_J,axiom,
( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_5183_diff__numeral__special_I10_J,axiom,
( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ one_one_complex )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_5184_diff__numeral__special_I10_J,axiom,
( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_5185_diff__numeral__special_I10_J,axiom,
( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_5186_minus__1__div__2__eq,axiom,
( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% minus_1_div_2_eq
thf(fact_5187_minus__1__div__2__eq,axiom,
( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% minus_1_div_2_eq
thf(fact_5188_bits__minus__1__mod__2__eq,axiom,
( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ).
% bits_minus_1_mod_2_eq
thf(fact_5189_bits__minus__1__mod__2__eq,axiom,
( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= one_one_Code_integer ) ).
% bits_minus_1_mod_2_eq
thf(fact_5190_minus__1__mod__2__eq,axiom,
( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ).
% minus_1_mod_2_eq
thf(fact_5191_minus__1__mod__2__eq,axiom,
( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= one_one_Code_integer ) ).
% minus_1_mod_2_eq
thf(fact_5192_Power_Oring__1__class_Opower__minus__even,axiom,
! [A: real,N: nat] :
( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% Power.ring_1_class.power_minus_even
thf(fact_5193_Power_Oring__1__class_Opower__minus__even,axiom,
! [A: int,N: nat] :
( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% Power.ring_1_class.power_minus_even
thf(fact_5194_Power_Oring__1__class_Opower__minus__even,axiom,
! [A: complex,N: nat] :
( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% Power.ring_1_class.power_minus_even
thf(fact_5195_Power_Oring__1__class_Opower__minus__even,axiom,
! [A: rat,N: nat] :
( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% Power.ring_1_class.power_minus_even
thf(fact_5196_Power_Oring__1__class_Opower__minus__even,axiom,
! [A: code_integer,N: nat] :
( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_8256067586552552935nteger @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% Power.ring_1_class.power_minus_even
thf(fact_5197_power__minus__odd,axiom,
! [N: nat,A: real] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
= ( uminus_uminus_real @ ( power_power_real @ A @ N ) ) ) ) ).
% power_minus_odd
thf(fact_5198_power__minus__odd,axiom,
! [N: nat,A: int] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
= ( uminus_uminus_int @ ( power_power_int @ A @ N ) ) ) ) ).
% power_minus_odd
thf(fact_5199_power__minus__odd,axiom,
! [N: nat,A: complex] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
= ( uminus1482373934393186551omplex @ ( power_power_complex @ A @ N ) ) ) ) ).
% power_minus_odd
thf(fact_5200_power__minus__odd,axiom,
! [N: nat,A: rat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
= ( uminus_uminus_rat @ ( power_power_rat @ A @ N ) ) ) ) ).
% power_minus_odd
thf(fact_5201_power__minus__odd,axiom,
! [N: nat,A: code_integer] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
= ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ A @ N ) ) ) ) ).
% power_minus_odd
thf(fact_5202_Parity_Oring__1__class_Opower__minus__even,axiom,
! [N: nat,A: real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
= ( power_power_real @ A @ N ) ) ) ).
% Parity.ring_1_class.power_minus_even
thf(fact_5203_Parity_Oring__1__class_Opower__minus__even,axiom,
! [N: nat,A: int] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
= ( power_power_int @ A @ N ) ) ) ).
% Parity.ring_1_class.power_minus_even
thf(fact_5204_Parity_Oring__1__class_Opower__minus__even,axiom,
! [N: nat,A: complex] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
= ( power_power_complex @ A @ N ) ) ) ).
% Parity.ring_1_class.power_minus_even
thf(fact_5205_Parity_Oring__1__class_Opower__minus__even,axiom,
! [N: nat,A: rat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
= ( power_power_rat @ A @ N ) ) ) ).
% Parity.ring_1_class.power_minus_even
thf(fact_5206_Parity_Oring__1__class_Opower__minus__even,axiom,
! [N: nat,A: code_integer] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
= ( power_8256067586552552935nteger @ A @ N ) ) ) ).
% Parity.ring_1_class.power_minus_even
thf(fact_5207_power__even__abs__numeral,axiom,
! [W: num,A: rat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
=> ( ( power_power_rat @ ( abs_abs_rat @ A ) @ ( numeral_numeral_nat @ W ) )
= ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_even_abs_numeral
thf(fact_5208_power__even__abs__numeral,axiom,
! [W: num,A: real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
=> ( ( power_power_real @ ( abs_abs_real @ A ) @ ( numeral_numeral_nat @ W ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_even_abs_numeral
thf(fact_5209_power__even__abs__numeral,axiom,
! [W: num,A: int] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
=> ( ( power_power_int @ ( abs_abs_int @ A ) @ ( numeral_numeral_nat @ W ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_even_abs_numeral
thf(fact_5210_power__even__abs__numeral,axiom,
! [W: num,A: code_integer] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
=> ( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ ( numeral_numeral_nat @ W ) )
= ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_even_abs_numeral
thf(fact_5211_diff__numeral__special_I3_J,axiom,
! [N: num] :
( ( minus_minus_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( numeral_numeral_real @ ( plus_plus_num @ one @ N ) ) ) ).
% diff_numeral_special(3)
thf(fact_5212_diff__numeral__special_I3_J,axiom,
! [N: num] :
( ( minus_minus_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).
% diff_numeral_special(3)
thf(fact_5213_diff__numeral__special_I3_J,axiom,
! [N: num] :
( ( minus_minus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( numera6690914467698888265omplex @ ( plus_plus_num @ one @ N ) ) ) ).
% diff_numeral_special(3)
thf(fact_5214_diff__numeral__special_I3_J,axiom,
! [N: num] :
( ( minus_minus_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( numeral_numeral_rat @ ( plus_plus_num @ one @ N ) ) ) ).
% diff_numeral_special(3)
thf(fact_5215_diff__numeral__special_I3_J,axiom,
! [N: num] :
( ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( numera6620942414471956472nteger @ ( plus_plus_num @ one @ N ) ) ) ).
% diff_numeral_special(3)
thf(fact_5216_diff__numeral__special_I4_J,axiom,
! [M: num] :
( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ M @ one ) ) ) ) ).
% diff_numeral_special(4)
thf(fact_5217_diff__numeral__special_I4_J,axiom,
! [M: num] :
( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ M @ one ) ) ) ) ).
% diff_numeral_special(4)
thf(fact_5218_diff__numeral__special_I4_J,axiom,
! [M: num] :
( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ one_one_complex )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ one ) ) ) ) ).
% diff_numeral_special(4)
thf(fact_5219_diff__numeral__special_I4_J,axiom,
! [M: num] :
( ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ M @ one ) ) ) ) ).
% diff_numeral_special(4)
thf(fact_5220_diff__numeral__special_I4_J,axiom,
! [M: num] :
( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ one ) ) ) ) ).
% diff_numeral_special(4)
thf(fact_5221_of__int__eq__neg__numeral__power__cancel__iff,axiom,
! [Y2: int,X2: num,N: nat] :
( ( ( ring_1_of_int_real @ Y2 )
= ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X2 ) ) @ N ) )
= ( Y2
= ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).
% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_5222_of__int__eq__neg__numeral__power__cancel__iff,axiom,
! [Y2: int,X2: num,N: nat] :
( ( ( ring_1_of_int_int @ Y2 )
= ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) )
= ( Y2
= ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).
% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_5223_of__int__eq__neg__numeral__power__cancel__iff,axiom,
! [Y2: int,X2: num,N: nat] :
( ( ( ring_17405671764205052669omplex @ Y2 )
= ( power_power_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ X2 ) ) @ N ) )
= ( Y2
= ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).
% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_5224_of__int__eq__neg__numeral__power__cancel__iff,axiom,
! [Y2: int,X2: num,N: nat] :
( ( ( ring_1_of_int_rat @ Y2 )
= ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X2 ) ) @ N ) )
= ( Y2
= ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).
% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_5225_of__int__eq__neg__numeral__power__cancel__iff,axiom,
! [Y2: int,X2: num,N: nat] :
( ( ( ring_18347121197199848620nteger @ Y2 )
= ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X2 ) ) @ N ) )
= ( Y2
= ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).
% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_5226_neg__numeral__power__eq__of__int__cancel__iff,axiom,
! [X2: num,N: nat,Y2: int] :
( ( ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X2 ) ) @ N )
= ( ring_1_of_int_real @ Y2 ) )
= ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N )
= Y2 ) ) ).
% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_5227_neg__numeral__power__eq__of__int__cancel__iff,axiom,
! [X2: num,N: nat,Y2: int] :
( ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N )
= ( ring_1_of_int_int @ Y2 ) )
= ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N )
= Y2 ) ) ).
% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_5228_neg__numeral__power__eq__of__int__cancel__iff,axiom,
! [X2: num,N: nat,Y2: int] :
( ( ( power_power_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ X2 ) ) @ N )
= ( ring_17405671764205052669omplex @ Y2 ) )
= ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N )
= Y2 ) ) ).
% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_5229_neg__numeral__power__eq__of__int__cancel__iff,axiom,
! [X2: num,N: nat,Y2: int] :
( ( ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X2 ) ) @ N )
= ( ring_1_of_int_rat @ Y2 ) )
= ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N )
= Y2 ) ) ).
% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_5230_neg__numeral__power__eq__of__int__cancel__iff,axiom,
! [X2: num,N: nat,Y2: int] :
( ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X2 ) ) @ N )
= ( ring_18347121197199848620nteger @ Y2 ) )
= ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N )
= Y2 ) ) ).
% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_5231_ceiling__le__neg__numeral,axiom,
! [X2: real,V: num] :
( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( ord_less_eq_real @ X2 @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) ) ).
% ceiling_le_neg_numeral
thf(fact_5232_ceiling__le__neg__numeral,axiom,
! [X2: rat,V: num] :
( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( ord_less_eq_rat @ X2 @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) ) ).
% ceiling_le_neg_numeral
thf(fact_5233_neg__numeral__less__ceiling,axiom,
! [V: num,X2: real] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim7802044766580827645g_real @ X2 ) )
= ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ X2 ) ) ).
% neg_numeral_less_ceiling
thf(fact_5234_neg__numeral__less__ceiling,axiom,
! [V: num,X2: rat] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim2889992004027027881ng_rat @ X2 ) )
= ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ X2 ) ) ).
% neg_numeral_less_ceiling
thf(fact_5235_ceiling__less__zero,axiom,
! [X2: real] :
( ( ord_less_int @ ( archim7802044766580827645g_real @ X2 ) @ zero_zero_int )
= ( ord_less_eq_real @ X2 @ ( uminus_uminus_real @ one_one_real ) ) ) ).
% ceiling_less_zero
thf(fact_5236_ceiling__less__zero,axiom,
! [X2: rat] :
( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X2 ) @ zero_zero_int )
= ( ord_less_eq_rat @ X2 @ ( uminus_uminus_rat @ one_one_rat ) ) ) ).
% ceiling_less_zero
thf(fact_5237_zero__le__ceiling,axiom,
! [X2: real] :
( ( ord_less_eq_int @ zero_zero_int @ ( archim7802044766580827645g_real @ X2 ) )
= ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 ) ) ).
% zero_le_ceiling
thf(fact_5238_zero__le__ceiling,axiom,
! [X2: rat] :
( ( ord_less_eq_int @ zero_zero_int @ ( archim2889992004027027881ng_rat @ X2 ) )
= ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ X2 ) ) ).
% zero_le_ceiling
thf(fact_5239_power__minus1__even,axiom,
! [N: nat] :
( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= one_one_real ) ).
% power_minus1_even
thf(fact_5240_power__minus1__even,axiom,
! [N: nat] :
( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= one_one_int ) ).
% power_minus1_even
thf(fact_5241_power__minus1__even,axiom,
! [N: nat] :
( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= one_one_complex ) ).
% power_minus1_even
thf(fact_5242_power__minus1__even,axiom,
! [N: nat] :
( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= one_one_rat ) ).
% power_minus1_even
thf(fact_5243_power__minus1__even,axiom,
! [N: nat] :
( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= one_one_Code_integer ) ).
% power_minus1_even
thf(fact_5244_neg__one__odd__power,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
= ( uminus_uminus_real @ one_one_real ) ) ) ).
% neg_one_odd_power
thf(fact_5245_neg__one__odd__power,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
= ( uminus_uminus_int @ one_one_int ) ) ) ).
% neg_one_odd_power
thf(fact_5246_neg__one__odd__power,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ).
% neg_one_odd_power
thf(fact_5247_neg__one__odd__power,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
= ( uminus_uminus_rat @ one_one_rat ) ) ) ).
% neg_one_odd_power
thf(fact_5248_neg__one__odd__power,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ).
% neg_one_odd_power
thf(fact_5249_neg__one__even__power,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
= one_one_real ) ) ).
% neg_one_even_power
thf(fact_5250_neg__one__even__power,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
= one_one_int ) ) ).
% neg_one_even_power
thf(fact_5251_neg__one__even__power,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
= one_one_complex ) ) ).
% neg_one_even_power
thf(fact_5252_neg__one__even__power,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
= one_one_rat ) ) ).
% neg_one_even_power
thf(fact_5253_neg__one__even__power,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
= one_one_Code_integer ) ) ).
% neg_one_even_power
thf(fact_5254_norm__of__real__add1,axiom,
! [X2: real] :
( ( real_V7735802525324610683m_real @ ( plus_plus_real @ ( real_V1803761363581548252l_real @ X2 ) @ one_one_real ) )
= ( abs_abs_real @ ( plus_plus_real @ X2 @ one_one_real ) ) ) ).
% norm_of_real_add1
thf(fact_5255_norm__of__real__add1,axiom,
! [X2: real] :
( ( real_V1022390504157884413omplex @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ X2 ) @ one_one_complex ) )
= ( abs_abs_real @ ( plus_plus_real @ X2 @ one_one_real ) ) ) ).
% norm_of_real_add1
thf(fact_5256_norm__of__real__addn,axiom,
! [X2: real,B: num] :
( ( real_V7735802525324610683m_real @ ( plus_plus_real @ ( real_V1803761363581548252l_real @ X2 ) @ ( numeral_numeral_real @ B ) ) )
= ( abs_abs_real @ ( plus_plus_real @ X2 @ ( numeral_numeral_real @ B ) ) ) ) ).
% norm_of_real_addn
thf(fact_5257_norm__of__real__addn,axiom,
! [X2: real,B: num] :
( ( real_V1022390504157884413omplex @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ X2 ) @ ( numera6690914467698888265omplex @ B ) ) )
= ( abs_abs_real @ ( plus_plus_real @ X2 @ ( numeral_numeral_real @ B ) ) ) ) ).
% norm_of_real_addn
thf(fact_5258_ceiling__less__neg__numeral,axiom,
! [X2: real,V: num] :
( ( ord_less_int @ ( archim7802044766580827645g_real @ X2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( ord_less_eq_real @ X2 @ ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ one_one_real ) ) ) ).
% ceiling_less_neg_numeral
thf(fact_5259_ceiling__less__neg__numeral,axiom,
! [X2: rat,V: num] :
( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( ord_less_eq_rat @ X2 @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ one_one_rat ) ) ) ).
% ceiling_less_neg_numeral
thf(fact_5260_neg__numeral__le__ceiling,axiom,
! [V: num,X2: real] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim7802044766580827645g_real @ X2 ) )
= ( ord_less_real @ ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ one_one_real ) @ X2 ) ) ).
% neg_numeral_le_ceiling
thf(fact_5261_neg__numeral__le__ceiling,axiom,
! [V: num,X2: rat] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim2889992004027027881ng_rat @ X2 ) )
= ( ord_less_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ one_one_rat ) @ X2 ) ) ).
% neg_numeral_le_ceiling
thf(fact_5262_neg__numeral__power__le__of__int__cancel__iff,axiom,
! [X2: num,N: nat,A: int] :
( ( ord_less_eq_real @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X2 ) ) @ N ) @ ( ring_1_of_int_real @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) @ A ) ) ).
% neg_numeral_power_le_of_int_cancel_iff
thf(fact_5263_neg__numeral__power__le__of__int__cancel__iff,axiom,
! [X2: num,N: nat,A: int] :
( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X2 ) ) @ N ) @ ( ring_18347121197199848620nteger @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) @ A ) ) ).
% neg_numeral_power_le_of_int_cancel_iff
thf(fact_5264_neg__numeral__power__le__of__int__cancel__iff,axiom,
! [X2: num,N: nat,A: int] :
( ( ord_less_eq_rat @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X2 ) ) @ N ) @ ( ring_1_of_int_rat @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) @ A ) ) ).
% neg_numeral_power_le_of_int_cancel_iff
thf(fact_5265_neg__numeral__power__le__of__int__cancel__iff,axiom,
! [X2: num,N: nat,A: int] :
( ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) @ ( ring_1_of_int_int @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) @ A ) ) ).
% neg_numeral_power_le_of_int_cancel_iff
thf(fact_5266_of__int__le__neg__numeral__power__cancel__iff,axiom,
! [A: int,X2: num,N: nat] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X2 ) ) @ N ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).
% of_int_le_neg_numeral_power_cancel_iff
thf(fact_5267_of__int__le__neg__numeral__power__cancel__iff,axiom,
! [A: int,X2: num,N: nat] :
( ( ord_le3102999989581377725nteger @ ( ring_18347121197199848620nteger @ A ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X2 ) ) @ N ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).
% of_int_le_neg_numeral_power_cancel_iff
thf(fact_5268_of__int__le__neg__numeral__power__cancel__iff,axiom,
! [A: int,X2: num,N: nat] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X2 ) ) @ N ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).
% of_int_le_neg_numeral_power_cancel_iff
thf(fact_5269_of__int__le__neg__numeral__power__cancel__iff,axiom,
! [A: int,X2: num,N: nat] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).
% of_int_le_neg_numeral_power_cancel_iff
thf(fact_5270_of__int__less__neg__numeral__power__cancel__iff,axiom,
! [A: int,X2: num,N: nat] :
( ( ord_less_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X2 ) ) @ N ) )
= ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).
% of_int_less_neg_numeral_power_cancel_iff
thf(fact_5271_of__int__less__neg__numeral__power__cancel__iff,axiom,
! [A: int,X2: num,N: nat] :
( ( ord_less_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) )
= ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).
% of_int_less_neg_numeral_power_cancel_iff
thf(fact_5272_of__int__less__neg__numeral__power__cancel__iff,axiom,
! [A: int,X2: num,N: nat] :
( ( ord_less_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X2 ) ) @ N ) )
= ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).
% of_int_less_neg_numeral_power_cancel_iff
thf(fact_5273_of__int__less__neg__numeral__power__cancel__iff,axiom,
! [A: int,X2: num,N: nat] :
( ( ord_le6747313008572928689nteger @ ( ring_18347121197199848620nteger @ A ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X2 ) ) @ N ) )
= ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).
% of_int_less_neg_numeral_power_cancel_iff
thf(fact_5274_neg__numeral__power__less__of__int__cancel__iff,axiom,
! [X2: num,N: nat,A: int] :
( ( ord_less_real @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X2 ) ) @ N ) @ ( ring_1_of_int_real @ A ) )
= ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) @ A ) ) ).
% neg_numeral_power_less_of_int_cancel_iff
thf(fact_5275_neg__numeral__power__less__of__int__cancel__iff,axiom,
! [X2: num,N: nat,A: int] :
( ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) @ ( ring_1_of_int_int @ A ) )
= ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) @ A ) ) ).
% neg_numeral_power_less_of_int_cancel_iff
thf(fact_5276_neg__numeral__power__less__of__int__cancel__iff,axiom,
! [X2: num,N: nat,A: int] :
( ( ord_less_rat @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X2 ) ) @ N ) @ ( ring_1_of_int_rat @ A ) )
= ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) @ A ) ) ).
% neg_numeral_power_less_of_int_cancel_iff
thf(fact_5277_neg__numeral__power__less__of__int__cancel__iff,axiom,
! [X2: num,N: nat,A: int] :
( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X2 ) ) @ N ) @ ( ring_18347121197199848620nteger @ A ) )
= ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) @ A ) ) ).
% neg_numeral_power_less_of_int_cancel_iff
thf(fact_5278_square__powr__half,axiom,
! [X2: real] :
( ( powr_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= ( abs_abs_real @ X2 ) ) ).
% square_powr_half
thf(fact_5279_abs__eq__iff,axiom,
! [X2: real,Y2: real] :
( ( ( abs_abs_real @ X2 )
= ( abs_abs_real @ Y2 ) )
= ( ( X2 = Y2 )
| ( X2
= ( uminus_uminus_real @ Y2 ) ) ) ) ).
% abs_eq_iff
thf(fact_5280_abs__eq__iff,axiom,
! [X2: int,Y2: int] :
( ( ( abs_abs_int @ X2 )
= ( abs_abs_int @ Y2 ) )
= ( ( X2 = Y2 )
| ( X2
= ( uminus_uminus_int @ Y2 ) ) ) ) ).
% abs_eq_iff
thf(fact_5281_abs__eq__iff,axiom,
! [X2: rat,Y2: rat] :
( ( ( abs_abs_rat @ X2 )
= ( abs_abs_rat @ Y2 ) )
= ( ( X2 = Y2 )
| ( X2
= ( uminus_uminus_rat @ Y2 ) ) ) ) ).
% abs_eq_iff
thf(fact_5282_abs__eq__iff,axiom,
! [X2: code_integer,Y2: code_integer] :
( ( ( abs_abs_Code_integer @ X2 )
= ( abs_abs_Code_integer @ Y2 ) )
= ( ( X2 = Y2 )
| ( X2
= ( uminus1351360451143612070nteger @ Y2 ) ) ) ) ).
% abs_eq_iff
thf(fact_5283_equation__minus__iff,axiom,
! [A: real,B: real] :
( ( A
= ( uminus_uminus_real @ B ) )
= ( B
= ( uminus_uminus_real @ A ) ) ) ).
% equation_minus_iff
thf(fact_5284_equation__minus__iff,axiom,
! [A: int,B: int] :
( ( A
= ( uminus_uminus_int @ B ) )
= ( B
= ( uminus_uminus_int @ A ) ) ) ).
% equation_minus_iff
thf(fact_5285_equation__minus__iff,axiom,
! [A: complex,B: complex] :
( ( A
= ( uminus1482373934393186551omplex @ B ) )
= ( B
= ( uminus1482373934393186551omplex @ A ) ) ) ).
% equation_minus_iff
thf(fact_5286_equation__minus__iff,axiom,
! [A: rat,B: rat] :
( ( A
= ( uminus_uminus_rat @ B ) )
= ( B
= ( uminus_uminus_rat @ A ) ) ) ).
% equation_minus_iff
thf(fact_5287_equation__minus__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( A
= ( uminus1351360451143612070nteger @ B ) )
= ( B
= ( uminus1351360451143612070nteger @ A ) ) ) ).
% equation_minus_iff
thf(fact_5288_minus__equation__iff,axiom,
! [A: real,B: real] :
( ( ( uminus_uminus_real @ A )
= B )
= ( ( uminus_uminus_real @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_5289_minus__equation__iff,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= B )
= ( ( uminus_uminus_int @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_5290_minus__equation__iff,axiom,
! [A: complex,B: complex] :
( ( ( uminus1482373934393186551omplex @ A )
= B )
= ( ( uminus1482373934393186551omplex @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_5291_minus__equation__iff,axiom,
! [A: rat,B: rat] :
( ( ( uminus_uminus_rat @ A )
= B )
= ( ( uminus_uminus_rat @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_5292_minus__equation__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ( uminus1351360451143612070nteger @ A )
= B )
= ( ( uminus1351360451143612070nteger @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_5293_abs__less__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( abs_abs_real @ A ) @ B )
= ( ( ord_less_real @ A @ B )
& ( ord_less_real @ ( uminus_uminus_real @ A ) @ B ) ) ) ).
% abs_less_iff
thf(fact_5294_abs__less__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( abs_abs_int @ A ) @ B )
= ( ( ord_less_int @ A @ B )
& ( ord_less_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).
% abs_less_iff
thf(fact_5295_abs__less__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( abs_abs_rat @ A ) @ B )
= ( ( ord_less_rat @ A @ B )
& ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ) ).
% abs_less_iff
thf(fact_5296_abs__less__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ B )
= ( ( ord_le6747313008572928689nteger @ A @ B )
& ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).
% abs_less_iff
thf(fact_5297_abs__leI,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
=> ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B ) ) ) ).
% abs_leI
thf(fact_5298_abs__leI,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ A @ B )
=> ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
=> ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B ) ) ) ).
% abs_leI
thf(fact_5299_abs__leI,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B )
=> ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B ) ) ) ).
% abs_leI
thf(fact_5300_abs__leI,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
=> ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B ) ) ) ).
% abs_leI
thf(fact_5301_abs__le__D2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B ) ) ).
% abs_le_D2
thf(fact_5302_abs__le__D2,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
=> ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).
% abs_le_D2
thf(fact_5303_abs__le__D2,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
=> ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).
% abs_le_D2
thf(fact_5304_abs__le__D2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
=> ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B ) ) ).
% abs_le_D2
thf(fact_5305_abs__le__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
= ( ( ord_less_eq_real @ A @ B )
& ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B ) ) ) ).
% abs_le_iff
thf(fact_5306_abs__le__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
= ( ( ord_le3102999989581377725nteger @ A @ B )
& ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).
% abs_le_iff
thf(fact_5307_abs__le__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
= ( ( ord_less_eq_rat @ A @ B )
& ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ) ).
% abs_le_iff
thf(fact_5308_abs__le__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
= ( ( ord_less_eq_int @ A @ B )
& ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).
% abs_le_iff
thf(fact_5309_abs__ge__minus__self,axiom,
! [A: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ ( abs_abs_real @ A ) ) ).
% abs_ge_minus_self
thf(fact_5310_abs__ge__minus__self,axiom,
! [A: code_integer] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ ( abs_abs_Code_integer @ A ) ) ).
% abs_ge_minus_self
thf(fact_5311_abs__ge__minus__self,axiom,
! [A: rat] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ ( abs_abs_rat @ A ) ) ).
% abs_ge_minus_self
thf(fact_5312_abs__ge__minus__self,axiom,
! [A: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ ( abs_abs_int @ A ) ) ).
% abs_ge_minus_self
thf(fact_5313_abs__if__raw,axiom,
( abs_abs_real
= ( ^ [A3: real] : ( if_real @ ( ord_less_real @ A3 @ zero_zero_real ) @ ( uminus_uminus_real @ A3 ) @ A3 ) ) ) ).
% abs_if_raw
thf(fact_5314_abs__if__raw,axiom,
( abs_abs_int
= ( ^ [A3: int] : ( if_int @ ( ord_less_int @ A3 @ zero_zero_int ) @ ( uminus_uminus_int @ A3 ) @ A3 ) ) ) ).
% abs_if_raw
thf(fact_5315_abs__if__raw,axiom,
( abs_abs_rat
= ( ^ [A3: rat] : ( if_rat @ ( ord_less_rat @ A3 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A3 ) @ A3 ) ) ) ).
% abs_if_raw
thf(fact_5316_abs__if__raw,axiom,
( abs_abs_Code_integer
= ( ^ [A3: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ A3 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ A3 ) @ A3 ) ) ) ).
% abs_if_raw
thf(fact_5317_abs__if,axiom,
( abs_abs_real
= ( ^ [A3: real] : ( if_real @ ( ord_less_real @ A3 @ zero_zero_real ) @ ( uminus_uminus_real @ A3 ) @ A3 ) ) ) ).
% abs_if
thf(fact_5318_abs__if,axiom,
( abs_abs_int
= ( ^ [A3: int] : ( if_int @ ( ord_less_int @ A3 @ zero_zero_int ) @ ( uminus_uminus_int @ A3 ) @ A3 ) ) ) ).
% abs_if
thf(fact_5319_abs__if,axiom,
( abs_abs_rat
= ( ^ [A3: rat] : ( if_rat @ ( ord_less_rat @ A3 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A3 ) @ A3 ) ) ) ).
% abs_if
thf(fact_5320_abs__if,axiom,
( abs_abs_Code_integer
= ( ^ [A3: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ A3 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ A3 ) @ A3 ) ) ) ).
% abs_if
thf(fact_5321_abs__of__neg,axiom,
! [A: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( abs_abs_real @ A )
= ( uminus_uminus_real @ A ) ) ) ).
% abs_of_neg
thf(fact_5322_abs__of__neg,axiom,
! [A: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( abs_abs_int @ A )
= ( uminus_uminus_int @ A ) ) ) ).
% abs_of_neg
thf(fact_5323_abs__of__neg,axiom,
! [A: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( abs_abs_rat @ A )
= ( uminus_uminus_rat @ A ) ) ) ).
% abs_of_neg
thf(fact_5324_abs__of__neg,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger )
=> ( ( abs_abs_Code_integer @ A )
= ( uminus1351360451143612070nteger @ A ) ) ) ).
% abs_of_neg
thf(fact_5325_abs__minus__le__zero,axiom,
! [A: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( abs_abs_real @ A ) ) @ zero_zero_real ) ).
% abs_minus_le_zero
thf(fact_5326_abs__minus__le__zero,axiom,
! [A: code_integer] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( abs_abs_Code_integer @ A ) ) @ zero_z3403309356797280102nteger ) ).
% abs_minus_le_zero
thf(fact_5327_abs__minus__le__zero,axiom,
! [A: rat] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( abs_abs_rat @ A ) ) @ zero_zero_rat ) ).
% abs_minus_le_zero
thf(fact_5328_abs__minus__le__zero,axiom,
! [A: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( abs_abs_int @ A ) ) @ zero_zero_int ) ).
% abs_minus_le_zero
thf(fact_5329_eq__abs__iff_H,axiom,
! [A: real,B: real] :
( ( A
= ( abs_abs_real @ B ) )
= ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ( B = A )
| ( B
= ( uminus_uminus_real @ A ) ) ) ) ) ).
% eq_abs_iff'
thf(fact_5330_eq__abs__iff_H,axiom,
! [A: code_integer,B: code_integer] :
( ( A
= ( abs_abs_Code_integer @ B ) )
= ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
& ( ( B = A )
| ( B
= ( uminus1351360451143612070nteger @ A ) ) ) ) ) ).
% eq_abs_iff'
thf(fact_5331_eq__abs__iff_H,axiom,
! [A: rat,B: rat] :
( ( A
= ( abs_abs_rat @ B ) )
= ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ( B = A )
| ( B
= ( uminus_uminus_rat @ A ) ) ) ) ) ).
% eq_abs_iff'
thf(fact_5332_eq__abs__iff_H,axiom,
! [A: int,B: int] :
( ( A
= ( abs_abs_int @ B ) )
= ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ( B = A )
| ( B
= ( uminus_uminus_int @ A ) ) ) ) ) ).
% eq_abs_iff'
thf(fact_5333_abs__eq__iff_H,axiom,
! [A: real,B: real] :
( ( ( abs_abs_real @ A )
= B )
= ( ( ord_less_eq_real @ zero_zero_real @ B )
& ( ( A = B )
| ( A
= ( uminus_uminus_real @ B ) ) ) ) ) ).
% abs_eq_iff'
thf(fact_5334_abs__eq__iff_H,axiom,
! [A: code_integer,B: code_integer] :
( ( ( abs_abs_Code_integer @ A )
= B )
= ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
& ( ( A = B )
| ( A
= ( uminus1351360451143612070nteger @ B ) ) ) ) ) ).
% abs_eq_iff'
thf(fact_5335_abs__eq__iff_H,axiom,
! [A: rat,B: rat] :
( ( ( abs_abs_rat @ A )
= B )
= ( ( ord_less_eq_rat @ zero_zero_rat @ B )
& ( ( A = B )
| ( A
= ( uminus_uminus_rat @ B ) ) ) ) ) ).
% abs_eq_iff'
thf(fact_5336_abs__eq__iff_H,axiom,
! [A: int,B: int] :
( ( ( abs_abs_int @ A )
= B )
= ( ( ord_less_eq_int @ zero_zero_int @ B )
& ( ( A = B )
| ( A
= ( uminus_uminus_int @ B ) ) ) ) ) ).
% abs_eq_iff'
thf(fact_5337_abs__real__def,axiom,
( abs_abs_real
= ( ^ [A3: real] : ( if_real @ ( ord_less_real @ A3 @ zero_zero_real ) @ ( uminus_uminus_real @ A3 ) @ A3 ) ) ) ).
% abs_real_def
thf(fact_5338_abs__eq__0__iff,axiom,
! [A: code_integer] :
( ( ( abs_abs_Code_integer @ A )
= zero_z3403309356797280102nteger )
= ( A = zero_z3403309356797280102nteger ) ) ).
% abs_eq_0_iff
thf(fact_5339_abs__eq__0__iff,axiom,
! [A: complex] :
( ( ( abs_abs_complex @ A )
= zero_zero_complex )
= ( A = zero_zero_complex ) ) ).
% abs_eq_0_iff
thf(fact_5340_abs__eq__0__iff,axiom,
! [A: real] :
( ( ( abs_abs_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% abs_eq_0_iff
thf(fact_5341_abs__eq__0__iff,axiom,
! [A: rat] :
( ( ( abs_abs_rat @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% abs_eq_0_iff
thf(fact_5342_abs__eq__0__iff,axiom,
! [A: int] :
( ( ( abs_abs_int @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% abs_eq_0_iff
thf(fact_5343_abs__le__D1,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
=> ( ord_less_eq_real @ A @ B ) ) ).
% abs_le_D1
thf(fact_5344_abs__le__D1,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
=> ( ord_le3102999989581377725nteger @ A @ B ) ) ).
% abs_le_D1
thf(fact_5345_abs__le__D1,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
=> ( ord_less_eq_rat @ A @ B ) ) ).
% abs_le_D1
thf(fact_5346_abs__le__D1,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
=> ( ord_less_eq_int @ A @ B ) ) ).
% abs_le_D1
thf(fact_5347_abs__ge__self,axiom,
! [A: real] : ( ord_less_eq_real @ A @ ( abs_abs_real @ A ) ) ).
% abs_ge_self
thf(fact_5348_abs__ge__self,axiom,
! [A: code_integer] : ( ord_le3102999989581377725nteger @ A @ ( abs_abs_Code_integer @ A ) ) ).
% abs_ge_self
thf(fact_5349_abs__ge__self,axiom,
! [A: rat] : ( ord_less_eq_rat @ A @ ( abs_abs_rat @ A ) ) ).
% abs_ge_self
thf(fact_5350_abs__ge__self,axiom,
! [A: int] : ( ord_less_eq_int @ A @ ( abs_abs_int @ A ) ) ).
% abs_ge_self
thf(fact_5351_abs__one,axiom,
( ( abs_abs_Code_integer @ one_one_Code_integer )
= one_one_Code_integer ) ).
% abs_one
thf(fact_5352_abs__one,axiom,
( ( abs_abs_real @ one_one_real )
= one_one_real ) ).
% abs_one
thf(fact_5353_abs__one,axiom,
( ( abs_abs_rat @ one_one_rat )
= one_one_rat ) ).
% abs_one
thf(fact_5354_abs__one,axiom,
( ( abs_abs_int @ one_one_int )
= one_one_int ) ).
% abs_one
thf(fact_5355_abs__mult,axiom,
! [A: code_integer,B: code_integer] :
( ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) )
= ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).
% abs_mult
thf(fact_5356_abs__mult,axiom,
! [A: real,B: real] :
( ( abs_abs_real @ ( times_times_real @ A @ B ) )
= ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_mult
thf(fact_5357_abs__mult,axiom,
! [A: rat,B: rat] :
( ( abs_abs_rat @ ( times_times_rat @ A @ B ) )
= ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).
% abs_mult
thf(fact_5358_abs__mult,axiom,
! [A: int,B: int] :
( ( abs_abs_int @ ( times_times_int @ A @ B ) )
= ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).
% abs_mult
thf(fact_5359_abs__minus__commute,axiom,
! [A: code_integer,B: code_integer] :
( ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) )
= ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ A ) ) ) ).
% abs_minus_commute
thf(fact_5360_abs__minus__commute,axiom,
! [A: real,B: real] :
( ( abs_abs_real @ ( minus_minus_real @ A @ B ) )
= ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).
% abs_minus_commute
thf(fact_5361_abs__minus__commute,axiom,
! [A: rat,B: rat] :
( ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) )
= ( abs_abs_rat @ ( minus_minus_rat @ B @ A ) ) ) ).
% abs_minus_commute
thf(fact_5362_abs__minus__commute,axiom,
! [A: int,B: int] :
( ( abs_abs_int @ ( minus_minus_int @ A @ B ) )
= ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).
% abs_minus_commute
thf(fact_5363_power__abs,axiom,
! [A: rat,N: nat] :
( ( abs_abs_rat @ ( power_power_rat @ A @ N ) )
= ( power_power_rat @ ( abs_abs_rat @ A ) @ N ) ) ).
% power_abs
thf(fact_5364_power__abs,axiom,
! [A: real,N: nat] :
( ( abs_abs_real @ ( power_power_real @ A @ N ) )
= ( power_power_real @ ( abs_abs_real @ A ) @ N ) ) ).
% power_abs
thf(fact_5365_power__abs,axiom,
! [A: int,N: nat] :
( ( abs_abs_int @ ( power_power_int @ A @ N ) )
= ( power_power_int @ ( abs_abs_int @ A ) @ N ) ) ).
% power_abs
thf(fact_5366_power__abs,axiom,
! [A: code_integer,N: nat] :
( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) )
= ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N ) ) ).
% power_abs
thf(fact_5367_tanh__real__gt__neg1,axiom,
! [X2: real] : ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( tanh_real @ X2 ) ) ).
% tanh_real_gt_neg1
thf(fact_5368_dvd__if__abs__eq,axiom,
! [L2: real,K: real] :
( ( ( abs_abs_real @ L2 )
= ( abs_abs_real @ K ) )
=> ( dvd_dvd_real @ L2 @ K ) ) ).
% dvd_if_abs_eq
thf(fact_5369_dvd__if__abs__eq,axiom,
! [L2: int,K: int] :
( ( ( abs_abs_int @ L2 )
= ( abs_abs_int @ K ) )
=> ( dvd_dvd_int @ L2 @ K ) ) ).
% dvd_if_abs_eq
thf(fact_5370_dvd__if__abs__eq,axiom,
! [L2: rat,K: rat] :
( ( ( abs_abs_rat @ L2 )
= ( abs_abs_rat @ K ) )
=> ( dvd_dvd_rat @ L2 @ K ) ) ).
% dvd_if_abs_eq
thf(fact_5371_dvd__if__abs__eq,axiom,
! [L2: code_integer,K: code_integer] :
( ( ( abs_abs_Code_integer @ L2 )
= ( abs_abs_Code_integer @ K ) )
=> ( dvd_dvd_Code_integer @ L2 @ K ) ) ).
% dvd_if_abs_eq
thf(fact_5372_le__minus__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ B ) )
= ( ord_less_eq_real @ B @ ( uminus_uminus_real @ A ) ) ) ).
% le_minus_iff
thf(fact_5373_le__minus__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( ord_le3102999989581377725nteger @ B @ ( uminus1351360451143612070nteger @ A ) ) ) ).
% le_minus_iff
thf(fact_5374_le__minus__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ B ) )
= ( ord_less_eq_rat @ B @ ( uminus_uminus_rat @ A ) ) ) ).
% le_minus_iff
thf(fact_5375_le__minus__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ B ) )
= ( ord_less_eq_int @ B @ ( uminus_uminus_int @ A ) ) ) ).
% le_minus_iff
thf(fact_5376_minus__le__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
= ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ A ) ) ).
% minus_le_iff
thf(fact_5377_minus__le__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ A ) ) ).
% minus_le_iff
thf(fact_5378_minus__le__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B )
= ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ A ) ) ).
% minus_le_iff
thf(fact_5379_minus__le__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
= ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ A ) ) ).
% minus_le_iff
thf(fact_5380_le__imp__neg__le,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% le_imp_neg_le
thf(fact_5381_le__imp__neg__le,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ A @ B )
=> ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).
% le_imp_neg_le
thf(fact_5382_le__imp__neg__le,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).
% le_imp_neg_le
thf(fact_5383_le__imp__neg__le,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% le_imp_neg_le
thf(fact_5384_less__minus__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( uminus_uminus_real @ B ) )
= ( ord_less_real @ B @ ( uminus_uminus_real @ A ) ) ) ).
% less_minus_iff
thf(fact_5385_less__minus__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( uminus_uminus_int @ B ) )
= ( ord_less_int @ B @ ( uminus_uminus_int @ A ) ) ) ).
% less_minus_iff
thf(fact_5386_less__minus__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ ( uminus_uminus_rat @ B ) )
= ( ord_less_rat @ B @ ( uminus_uminus_rat @ A ) ) ) ).
% less_minus_iff
thf(fact_5387_less__minus__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le6747313008572928689nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( ord_le6747313008572928689nteger @ B @ ( uminus1351360451143612070nteger @ A ) ) ) ).
% less_minus_iff
thf(fact_5388_minus__less__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ B )
= ( ord_less_real @ ( uminus_uminus_real @ B ) @ A ) ) ).
% minus_less_iff
thf(fact_5389_minus__less__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ B )
= ( ord_less_int @ ( uminus_uminus_int @ B ) @ A ) ) ).
% minus_less_iff
thf(fact_5390_minus__less__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ B )
= ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ A ) ) ).
% minus_less_iff
thf(fact_5391_minus__less__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ A ) ) ).
% minus_less_iff
thf(fact_5392_neg__numeral__neq__numeral,axiom,
! [M: num,N: num] :
( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
!= ( numeral_numeral_real @ N ) ) ).
% neg_numeral_neq_numeral
thf(fact_5393_neg__numeral__neq__numeral,axiom,
! [M: num,N: num] :
( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
!= ( numeral_numeral_int @ N ) ) ).
% neg_numeral_neq_numeral
thf(fact_5394_neg__numeral__neq__numeral,axiom,
! [M: num,N: num] :
( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) )
!= ( numera6690914467698888265omplex @ N ) ) ).
% neg_numeral_neq_numeral
thf(fact_5395_neg__numeral__neq__numeral,axiom,
! [M: num,N: num] :
( ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) )
!= ( numeral_numeral_rat @ N ) ) ).
% neg_numeral_neq_numeral
thf(fact_5396_neg__numeral__neq__numeral,axiom,
! [M: num,N: num] :
( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) )
!= ( numera6620942414471956472nteger @ N ) ) ).
% neg_numeral_neq_numeral
thf(fact_5397_numeral__neq__neg__numeral,axiom,
! [M: num,N: num] :
( ( numeral_numeral_real @ M )
!= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_5398_numeral__neq__neg__numeral,axiom,
! [M: num,N: num] :
( ( numeral_numeral_int @ M )
!= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_5399_numeral__neq__neg__numeral,axiom,
! [M: num,N: num] :
( ( numera6690914467698888265omplex @ M )
!= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_5400_numeral__neq__neg__numeral,axiom,
! [M: num,N: num] :
( ( numeral_numeral_rat @ M )
!= ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_5401_numeral__neq__neg__numeral,axiom,
! [M: num,N: num] :
( ( numera6620942414471956472nteger @ M )
!= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_5402_add_Oinverse__distrib__swap,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_5403_add_Oinverse__distrib__swap,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_5404_add_Oinverse__distrib__swap,axiom,
! [A: complex,B: complex] :
( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
= ( plus_plus_complex @ ( uminus1482373934393186551omplex @ B ) @ ( uminus1482373934393186551omplex @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_5405_add_Oinverse__distrib__swap,axiom,
! [A: rat,B: rat] :
( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
= ( plus_plus_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_5406_add_Oinverse__distrib__swap,axiom,
! [A: code_integer,B: code_integer] :
( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
= ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_5407_group__cancel_Oneg1,axiom,
! [A2: real,K: real,A: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( uminus_uminus_real @ A2 )
= ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( uminus_uminus_real @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_5408_group__cancel_Oneg1,axiom,
! [A2: int,K: int,A: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( uminus_uminus_int @ A2 )
= ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( uminus_uminus_int @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_5409_group__cancel_Oneg1,axiom,
! [A2: complex,K: complex,A: complex] :
( ( A2
= ( plus_plus_complex @ K @ A ) )
=> ( ( uminus1482373934393186551omplex @ A2 )
= ( plus_plus_complex @ ( uminus1482373934393186551omplex @ K ) @ ( uminus1482373934393186551omplex @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_5410_group__cancel_Oneg1,axiom,
! [A2: rat,K: rat,A: rat] :
( ( A2
= ( plus_plus_rat @ K @ A ) )
=> ( ( uminus_uminus_rat @ A2 )
= ( plus_plus_rat @ ( uminus_uminus_rat @ K ) @ ( uminus_uminus_rat @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_5411_group__cancel_Oneg1,axiom,
! [A2: code_integer,K: code_integer,A: code_integer] :
( ( A2
= ( plus_p5714425477246183910nteger @ K @ A ) )
=> ( ( uminus1351360451143612070nteger @ A2 )
= ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ K ) @ ( uminus1351360451143612070nteger @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_5412_is__num__normalize_I8_J,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_5413_is__num__normalize_I8_J,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_5414_is__num__normalize_I8_J,axiom,
! [A: complex,B: complex] :
( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
= ( plus_plus_complex @ ( uminus1482373934393186551omplex @ B ) @ ( uminus1482373934393186551omplex @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_5415_is__num__normalize_I8_J,axiom,
! [A: rat,B: rat] :
( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
= ( plus_plus_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_5416_is__num__normalize_I8_J,axiom,
! [A: code_integer,B: code_integer] :
( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
= ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_5417_one__neq__neg__one,axiom,
( one_one_real
!= ( uminus_uminus_real @ one_one_real ) ) ).
% one_neq_neg_one
thf(fact_5418_one__neq__neg__one,axiom,
( one_one_int
!= ( uminus_uminus_int @ one_one_int ) ) ).
% one_neq_neg_one
thf(fact_5419_one__neq__neg__one,axiom,
( one_one_complex
!= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% one_neq_neg_one
thf(fact_5420_one__neq__neg__one,axiom,
( one_one_rat
!= ( uminus_uminus_rat @ one_one_rat ) ) ).
% one_neq_neg_one
thf(fact_5421_one__neq__neg__one,axiom,
( one_one_Code_integer
!= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% one_neq_neg_one
thf(fact_5422_square__eq__iff,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ A )
= ( times_times_real @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus_uminus_real @ B ) ) ) ) ).
% square_eq_iff
thf(fact_5423_square__eq__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ A )
= ( times_times_int @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus_uminus_int @ B ) ) ) ) ).
% square_eq_iff
thf(fact_5424_square__eq__iff,axiom,
! [A: complex,B: complex] :
( ( ( times_times_complex @ A @ A )
= ( times_times_complex @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus1482373934393186551omplex @ B ) ) ) ) ).
% square_eq_iff
thf(fact_5425_square__eq__iff,axiom,
! [A: rat,B: rat] :
( ( ( times_times_rat @ A @ A )
= ( times_times_rat @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus_uminus_rat @ B ) ) ) ) ).
% square_eq_iff
thf(fact_5426_square__eq__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ( times_3573771949741848930nteger @ A @ A )
= ( times_3573771949741848930nteger @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus1351360451143612070nteger @ B ) ) ) ) ).
% square_eq_iff
thf(fact_5427_minus__mult__commute,axiom,
! [A: real,B: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
= ( times_times_real @ A @ ( uminus_uminus_real @ B ) ) ) ).
% minus_mult_commute
thf(fact_5428_minus__mult__commute,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
= ( times_times_int @ A @ ( uminus_uminus_int @ B ) ) ) ).
% minus_mult_commute
thf(fact_5429_minus__mult__commute,axiom,
! [A: complex,B: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
= ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ).
% minus_mult_commute
thf(fact_5430_minus__mult__commute,axiom,
! [A: rat,B: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ B )
= ( times_times_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ).
% minus_mult_commute
thf(fact_5431_minus__mult__commute,axiom,
! [A: code_integer,B: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( times_3573771949741848930nteger @ A @ ( uminus1351360451143612070nteger @ B ) ) ) ).
% minus_mult_commute
thf(fact_5432_minus__diff__commute,axiom,
! [B: real,A: real] :
( ( minus_minus_real @ ( uminus_uminus_real @ B ) @ A )
= ( minus_minus_real @ ( uminus_uminus_real @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_5433_minus__diff__commute,axiom,
! [B: int,A: int] :
( ( minus_minus_int @ ( uminus_uminus_int @ B ) @ A )
= ( minus_minus_int @ ( uminus_uminus_int @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_5434_minus__diff__commute,axiom,
! [B: complex,A: complex] :
( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ B ) @ A )
= ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_5435_minus__diff__commute,axiom,
! [B: rat,A: rat] :
( ( minus_minus_rat @ ( uminus_uminus_rat @ B ) @ A )
= ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_5436_minus__diff__commute,axiom,
! [B: code_integer,A: code_integer] :
( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ B ) @ A )
= ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_5437_minus__diff__minus,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
= ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) ) ) ).
% minus_diff_minus
thf(fact_5438_minus__diff__minus,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) ) ) ).
% minus_diff_minus
thf(fact_5439_minus__diff__minus,axiom,
! [A: complex,B: complex] :
( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
= ( uminus1482373934393186551omplex @ ( minus_minus_complex @ A @ B ) ) ) ).
% minus_diff_minus
thf(fact_5440_minus__diff__minus,axiom,
! [A: rat,B: rat] :
( ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
= ( uminus_uminus_rat @ ( minus_minus_rat @ A @ B ) ) ) ).
% minus_diff_minus
thf(fact_5441_minus__diff__minus,axiom,
! [A: code_integer,B: code_integer] :
( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
= ( uminus1351360451143612070nteger @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).
% minus_diff_minus
thf(fact_5442_minus__divide__right,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) ) ) ).
% minus_divide_right
thf(fact_5443_minus__divide__right,axiom,
! [A: complex,B: complex] :
( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ).
% minus_divide_right
thf(fact_5444_minus__divide__right,axiom,
! [A: rat,B: rat] :
( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ).
% minus_divide_right
thf(fact_5445_minus__divide__divide,axiom,
! [A: real,B: real] :
( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
= ( divide_divide_real @ A @ B ) ) ).
% minus_divide_divide
thf(fact_5446_minus__divide__divide,axiom,
! [A: complex,B: complex] :
( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ).
% minus_divide_divide
thf(fact_5447_minus__divide__divide,axiom,
! [A: rat,B: rat] :
( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
= ( divide_divide_rat @ A @ B ) ) ).
% minus_divide_divide
thf(fact_5448_minus__divide__left,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ ( uminus_uminus_real @ A ) @ B ) ) ).
% minus_divide_left
thf(fact_5449_minus__divide__left,axiom,
! [A: complex,B: complex] :
( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ B ) ) ).
% minus_divide_left
thf(fact_5450_minus__divide__left,axiom,
! [A: rat,B: rat] :
( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).
% minus_divide_left
thf(fact_5451_div__minus__right,axiom,
! [A: int,B: int] :
( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
= ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B ) ) ).
% div_minus_right
thf(fact_5452_div__minus__right,axiom,
! [A: code_integer,B: code_integer] :
( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).
% div_minus_right
thf(fact_5453_mod__minus__eq,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ ( uminus_uminus_int @ ( modulo_modulo_int @ A @ B ) ) @ B )
= ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B ) ) ).
% mod_minus_eq
thf(fact_5454_mod__minus__eq,axiom,
! [A: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ B ) ) @ B )
= ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).
% mod_minus_eq
thf(fact_5455_euclidean__ring__cancel__class_Omod__minus__cong,axiom,
! [A: int,B: int,A5: int] :
( ( ( modulo_modulo_int @ A @ B )
= ( modulo_modulo_int @ A5 @ B ) )
=> ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
= ( modulo_modulo_int @ ( uminus_uminus_int @ A5 ) @ B ) ) ) ).
% euclidean_ring_cancel_class.mod_minus_cong
thf(fact_5456_euclidean__ring__cancel__class_Omod__minus__cong,axiom,
! [A: code_integer,B: code_integer,A5: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ B )
= ( modulo364778990260209775nteger @ A5 @ B ) )
=> ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A5 ) @ B ) ) ) ).
% euclidean_ring_cancel_class.mod_minus_cong
thf(fact_5457_mod__minus__right,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).
% mod_minus_right
thf(fact_5458_mod__minus__right,axiom,
! [A: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).
% mod_minus_right
thf(fact_5459_complex__mod__minus__le__complex__mod,axiom,
! [X2: complex] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( real_V1022390504157884413omplex @ X2 ) ) @ ( real_V1022390504157884413omplex @ X2 ) ) ).
% complex_mod_minus_le_complex_mod
thf(fact_5460_of__int__neg__numeral,axiom,
! [K: num] :
( ( ring_1_of_int_real @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) ) ).
% of_int_neg_numeral
thf(fact_5461_of__int__neg__numeral,axiom,
! [K: num] :
( ( ring_1_of_int_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) ).
% of_int_neg_numeral
thf(fact_5462_of__int__neg__numeral,axiom,
! [K: num] :
( ( ring_17405671764205052669omplex @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) ) ).
% of_int_neg_numeral
thf(fact_5463_of__int__neg__numeral,axiom,
! [K: num] :
( ( ring_1_of_int_rat @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) ) ).
% of_int_neg_numeral
thf(fact_5464_of__int__neg__numeral,axiom,
! [K: num] :
( ( ring_18347121197199848620nteger @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) ) ).
% of_int_neg_numeral
thf(fact_5465_norm__of__real__diff,axiom,
! [B: real,A: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( real_V1803761363581548252l_real @ B ) @ ( real_V1803761363581548252l_real @ A ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).
% norm_of_real_diff
thf(fact_5466_norm__of__real__diff,axiom,
! [B: real,A: real] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( real_V4546457046886955230omplex @ B ) @ ( real_V4546457046886955230omplex @ A ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).
% norm_of_real_diff
thf(fact_5467_abs__ge__zero,axiom,
! [A: code_integer] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( abs_abs_Code_integer @ A ) ) ).
% abs_ge_zero
thf(fact_5468_abs__ge__zero,axiom,
! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( abs_abs_real @ A ) ) ).
% abs_ge_zero
thf(fact_5469_abs__ge__zero,axiom,
! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( abs_abs_rat @ A ) ) ).
% abs_ge_zero
thf(fact_5470_abs__ge__zero,axiom,
! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( abs_abs_int @ A ) ) ).
% abs_ge_zero
thf(fact_5471_abs__of__pos,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( abs_abs_Code_integer @ A )
= A ) ) ).
% abs_of_pos
thf(fact_5472_abs__of__pos,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( abs_abs_real @ A )
= A ) ) ).
% abs_of_pos
thf(fact_5473_abs__of__pos,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( abs_abs_rat @ A )
= A ) ) ).
% abs_of_pos
thf(fact_5474_abs__of__pos,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( abs_abs_int @ A )
= A ) ) ).
% abs_of_pos
thf(fact_5475_abs__not__less__zero,axiom,
! [A: code_integer] :
~ ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ zero_z3403309356797280102nteger ) ).
% abs_not_less_zero
thf(fact_5476_abs__not__less__zero,axiom,
! [A: real] :
~ ( ord_less_real @ ( abs_abs_real @ A ) @ zero_zero_real ) ).
% abs_not_less_zero
thf(fact_5477_abs__not__less__zero,axiom,
! [A: rat] :
~ ( ord_less_rat @ ( abs_abs_rat @ A ) @ zero_zero_rat ) ).
% abs_not_less_zero
thf(fact_5478_abs__not__less__zero,axiom,
! [A: int] :
~ ( ord_less_int @ ( abs_abs_int @ A ) @ zero_zero_int ) ).
% abs_not_less_zero
thf(fact_5479_abs__triangle__ineq,axiom,
! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( plus_p5714425477246183910nteger @ A @ B ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).
% abs_triangle_ineq
thf(fact_5480_abs__triangle__ineq,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( plus_plus_real @ A @ B ) ) @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_triangle_ineq
thf(fact_5481_abs__triangle__ineq,axiom,
! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( plus_plus_rat @ A @ B ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).
% abs_triangle_ineq
thf(fact_5482_abs__triangle__ineq,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( plus_plus_int @ A @ B ) ) @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).
% abs_triangle_ineq
thf(fact_5483_abs__mult__less,axiom,
! [A: code_integer,C: code_integer,B: code_integer,D2: code_integer] :
( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ C )
=> ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ B ) @ D2 )
=> ( ord_le6747313008572928689nteger @ ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( times_3573771949741848930nteger @ C @ D2 ) ) ) ) ).
% abs_mult_less
thf(fact_5484_abs__mult__less,axiom,
! [A: real,C: real,B: real,D2: real] :
( ( ord_less_real @ ( abs_abs_real @ A ) @ C )
=> ( ( ord_less_real @ ( abs_abs_real @ B ) @ D2 )
=> ( ord_less_real @ ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( times_times_real @ C @ D2 ) ) ) ) ).
% abs_mult_less
thf(fact_5485_abs__mult__less,axiom,
! [A: rat,C: rat,B: rat,D2: rat] :
( ( ord_less_rat @ ( abs_abs_rat @ A ) @ C )
=> ( ( ord_less_rat @ ( abs_abs_rat @ B ) @ D2 )
=> ( ord_less_rat @ ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( times_times_rat @ C @ D2 ) ) ) ) ).
% abs_mult_less
thf(fact_5486_abs__mult__less,axiom,
! [A: int,C: int,B: int,D2: int] :
( ( ord_less_int @ ( abs_abs_int @ A ) @ C )
=> ( ( ord_less_int @ ( abs_abs_int @ B ) @ D2 )
=> ( ord_less_int @ ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( times_times_int @ C @ D2 ) ) ) ) ).
% abs_mult_less
thf(fact_5487_abs__triangle__ineq2,axiom,
! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).
% abs_triangle_ineq2
thf(fact_5488_abs__triangle__ineq2,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).
% abs_triangle_ineq2
thf(fact_5489_abs__triangle__ineq2,axiom,
! [A: rat,B: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) ) ).
% abs_triangle_ineq2
thf(fact_5490_abs__triangle__ineq2,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).
% abs_triangle_ineq2
thf(fact_5491_abs__triangle__ineq3,axiom,
! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).
% abs_triangle_ineq3
thf(fact_5492_abs__triangle__ineq3,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).
% abs_triangle_ineq3
thf(fact_5493_abs__triangle__ineq3,axiom,
! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) ) ).
% abs_triangle_ineq3
thf(fact_5494_abs__triangle__ineq3,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).
% abs_triangle_ineq3
thf(fact_5495_abs__triangle__ineq2__sym,axiom,
! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ A ) ) ) ).
% abs_triangle_ineq2_sym
thf(fact_5496_abs__triangle__ineq2__sym,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).
% abs_triangle_ineq2_sym
thf(fact_5497_abs__triangle__ineq2__sym,axiom,
! [A: rat,B: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ B @ A ) ) ) ).
% abs_triangle_ineq2_sym
thf(fact_5498_abs__triangle__ineq2__sym,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).
% abs_triangle_ineq2_sym
thf(fact_5499_nonzero__abs__divide,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( abs_abs_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ) ).
% nonzero_abs_divide
thf(fact_5500_nonzero__abs__divide,axiom,
! [B: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( abs_abs_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ) ).
% nonzero_abs_divide
thf(fact_5501_zero__neq__neg__numeral,axiom,
! [N: num] :
( zero_zero_real
!= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% zero_neq_neg_numeral
thf(fact_5502_zero__neq__neg__numeral,axiom,
! [N: num] :
( zero_zero_int
!= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% zero_neq_neg_numeral
thf(fact_5503_zero__neq__neg__numeral,axiom,
! [N: num] :
( zero_zero_complex
!= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) ) ).
% zero_neq_neg_numeral
thf(fact_5504_zero__neq__neg__numeral,axiom,
! [N: num] :
( zero_zero_rat
!= ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).
% zero_neq_neg_numeral
thf(fact_5505_zero__neq__neg__numeral,axiom,
! [N: num] :
( zero_z3403309356797280102nteger
!= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).
% zero_neq_neg_numeral
thf(fact_5506_neg__numeral__le__numeral,axiom,
! [M: num,N: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) ) ).
% neg_numeral_le_numeral
thf(fact_5507_neg__numeral__le__numeral,axiom,
! [M: num,N: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) ) ).
% neg_numeral_le_numeral
thf(fact_5508_neg__numeral__le__numeral,axiom,
! [M: num,N: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) ) ).
% neg_numeral_le_numeral
thf(fact_5509_neg__numeral__le__numeral,axiom,
! [M: num,N: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) ) ).
% neg_numeral_le_numeral
thf(fact_5510_not__numeral__le__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% not_numeral_le_neg_numeral
thf(fact_5511_not__numeral__le__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).
% not_numeral_le_neg_numeral
thf(fact_5512_not__numeral__le__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).
% not_numeral_le_neg_numeral
thf(fact_5513_not__numeral__le__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% not_numeral_le_neg_numeral
thf(fact_5514_not__numeral__less__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% not_numeral_less_neg_numeral
thf(fact_5515_not__numeral__less__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% not_numeral_less_neg_numeral
thf(fact_5516_not__numeral__less__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).
% not_numeral_less_neg_numeral
thf(fact_5517_not__numeral__less__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_le6747313008572928689nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).
% not_numeral_less_neg_numeral
thf(fact_5518_neg__numeral__less__numeral,axiom,
! [M: num,N: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) ) ).
% neg_numeral_less_numeral
thf(fact_5519_neg__numeral__less__numeral,axiom,
! [M: num,N: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) ) ).
% neg_numeral_less_numeral
thf(fact_5520_neg__numeral__less__numeral,axiom,
! [M: num,N: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) ) ).
% neg_numeral_less_numeral
thf(fact_5521_neg__numeral__less__numeral,axiom,
! [M: num,N: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) ) ).
% neg_numeral_less_numeral
thf(fact_5522_add__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( plus_plus_real @ A @ B )
= zero_zero_real )
= ( B
= ( uminus_uminus_real @ A ) ) ) ).
% add_eq_0_iff
thf(fact_5523_add__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= zero_zero_int )
= ( B
= ( uminus_uminus_int @ A ) ) ) ).
% add_eq_0_iff
thf(fact_5524_add__eq__0__iff,axiom,
! [A: complex,B: complex] :
( ( ( plus_plus_complex @ A @ B )
= zero_zero_complex )
= ( B
= ( uminus1482373934393186551omplex @ A ) ) ) ).
% add_eq_0_iff
thf(fact_5525_add__eq__0__iff,axiom,
! [A: rat,B: rat] :
( ( ( plus_plus_rat @ A @ B )
= zero_zero_rat )
= ( B
= ( uminus_uminus_rat @ A ) ) ) ).
% add_eq_0_iff
thf(fact_5526_add__eq__0__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ( plus_p5714425477246183910nteger @ A @ B )
= zero_z3403309356797280102nteger )
= ( B
= ( uminus1351360451143612070nteger @ A ) ) ) ).
% add_eq_0_iff
thf(fact_5527_ab__group__add__class_Oab__left__minus,axiom,
! [A: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
= zero_zero_real ) ).
% ab_group_add_class.ab_left_minus
thf(fact_5528_ab__group__add__class_Oab__left__minus,axiom,
! [A: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
= zero_zero_int ) ).
% ab_group_add_class.ab_left_minus
thf(fact_5529_ab__group__add__class_Oab__left__minus,axiom,
! [A: complex] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ A )
= zero_zero_complex ) ).
% ab_group_add_class.ab_left_minus
thf(fact_5530_ab__group__add__class_Oab__left__minus,axiom,
! [A: rat] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ A )
= zero_zero_rat ) ).
% ab_group_add_class.ab_left_minus
thf(fact_5531_ab__group__add__class_Oab__left__minus,axiom,
! [A: code_integer] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
= zero_z3403309356797280102nteger ) ).
% ab_group_add_class.ab_left_minus
thf(fact_5532_add_Oinverse__unique,axiom,
! [A: real,B: real] :
( ( ( plus_plus_real @ A @ B )
= zero_zero_real )
=> ( ( uminus_uminus_real @ A )
= B ) ) ).
% add.inverse_unique
thf(fact_5533_add_Oinverse__unique,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= zero_zero_int )
=> ( ( uminus_uminus_int @ A )
= B ) ) ).
% add.inverse_unique
thf(fact_5534_add_Oinverse__unique,axiom,
! [A: complex,B: complex] :
( ( ( plus_plus_complex @ A @ B )
= zero_zero_complex )
=> ( ( uminus1482373934393186551omplex @ A )
= B ) ) ).
% add.inverse_unique
thf(fact_5535_add_Oinverse__unique,axiom,
! [A: rat,B: rat] :
( ( ( plus_plus_rat @ A @ B )
= zero_zero_rat )
=> ( ( uminus_uminus_rat @ A )
= B ) ) ).
% add.inverse_unique
thf(fact_5536_add_Oinverse__unique,axiom,
! [A: code_integer,B: code_integer] :
( ( ( plus_p5714425477246183910nteger @ A @ B )
= zero_z3403309356797280102nteger )
=> ( ( uminus1351360451143612070nteger @ A )
= B ) ) ).
% add.inverse_unique
thf(fact_5537_eq__neg__iff__add__eq__0,axiom,
! [A: real,B: real] :
( ( A
= ( uminus_uminus_real @ B ) )
= ( ( plus_plus_real @ A @ B )
= zero_zero_real ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_5538_eq__neg__iff__add__eq__0,axiom,
! [A: int,B: int] :
( ( A
= ( uminus_uminus_int @ B ) )
= ( ( plus_plus_int @ A @ B )
= zero_zero_int ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_5539_eq__neg__iff__add__eq__0,axiom,
! [A: complex,B: complex] :
( ( A
= ( uminus1482373934393186551omplex @ B ) )
= ( ( plus_plus_complex @ A @ B )
= zero_zero_complex ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_5540_eq__neg__iff__add__eq__0,axiom,
! [A: rat,B: rat] :
( ( A
= ( uminus_uminus_rat @ B ) )
= ( ( plus_plus_rat @ A @ B )
= zero_zero_rat ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_5541_eq__neg__iff__add__eq__0,axiom,
! [A: code_integer,B: code_integer] :
( ( A
= ( uminus1351360451143612070nteger @ B ) )
= ( ( plus_p5714425477246183910nteger @ A @ B )
= zero_z3403309356797280102nteger ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_5542_neg__eq__iff__add__eq__0,axiom,
! [A: real,B: real] :
( ( ( uminus_uminus_real @ A )
= B )
= ( ( plus_plus_real @ A @ B )
= zero_zero_real ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_5543_neg__eq__iff__add__eq__0,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= B )
= ( ( plus_plus_int @ A @ B )
= zero_zero_int ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_5544_neg__eq__iff__add__eq__0,axiom,
! [A: complex,B: complex] :
( ( ( uminus1482373934393186551omplex @ A )
= B )
= ( ( plus_plus_complex @ A @ B )
= zero_zero_complex ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_5545_neg__eq__iff__add__eq__0,axiom,
! [A: rat,B: rat] :
( ( ( uminus_uminus_rat @ A )
= B )
= ( ( plus_plus_rat @ A @ B )
= zero_zero_rat ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_5546_neg__eq__iff__add__eq__0,axiom,
! [A: code_integer,B: code_integer] :
( ( ( uminus1351360451143612070nteger @ A )
= B )
= ( ( plus_p5714425477246183910nteger @ A @ B )
= zero_z3403309356797280102nteger ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_5547_zero__neq__neg__one,axiom,
( zero_zero_real
!= ( uminus_uminus_real @ one_one_real ) ) ).
% zero_neq_neg_one
thf(fact_5548_zero__neq__neg__one,axiom,
( zero_zero_int
!= ( uminus_uminus_int @ one_one_int ) ) ).
% zero_neq_neg_one
thf(fact_5549_zero__neq__neg__one,axiom,
( zero_zero_complex
!= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% zero_neq_neg_one
thf(fact_5550_zero__neq__neg__one,axiom,
( zero_zero_rat
!= ( uminus_uminus_rat @ one_one_rat ) ) ).
% zero_neq_neg_one
thf(fact_5551_zero__neq__neg__one,axiom,
( zero_z3403309356797280102nteger
!= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% zero_neq_neg_one
thf(fact_5552_le__minus__one__simps_I2_J,axiom,
ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).
% le_minus_one_simps(2)
thf(fact_5553_le__minus__one__simps_I2_J,axiom,
ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ).
% le_minus_one_simps(2)
thf(fact_5554_le__minus__one__simps_I2_J,axiom,
ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat ).
% le_minus_one_simps(2)
thf(fact_5555_le__minus__one__simps_I2_J,axiom,
ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).
% le_minus_one_simps(2)
thf(fact_5556_le__minus__one__simps_I4_J,axiom,
~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% le_minus_one_simps(4)
thf(fact_5557_le__minus__one__simps_I4_J,axiom,
~ ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% le_minus_one_simps(4)
thf(fact_5558_le__minus__one__simps_I4_J,axiom,
~ ( ord_less_eq_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% le_minus_one_simps(4)
thf(fact_5559_le__minus__one__simps_I4_J,axiom,
~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% le_minus_one_simps(4)
thf(fact_5560_less__minus__one__simps_I4_J,axiom,
~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% less_minus_one_simps(4)
thf(fact_5561_less__minus__one__simps_I4_J,axiom,
~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% less_minus_one_simps(4)
thf(fact_5562_less__minus__one__simps_I4_J,axiom,
~ ( ord_less_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% less_minus_one_simps(4)
thf(fact_5563_less__minus__one__simps_I4_J,axiom,
~ ( ord_le6747313008572928689nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% less_minus_one_simps(4)
thf(fact_5564_less__minus__one__simps_I2_J,axiom,
ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).
% less_minus_one_simps(2)
thf(fact_5565_less__minus__one__simps_I2_J,axiom,
ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).
% less_minus_one_simps(2)
thf(fact_5566_less__minus__one__simps_I2_J,axiom,
ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat ).
% less_minus_one_simps(2)
thf(fact_5567_less__minus__one__simps_I2_J,axiom,
ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ).
% less_minus_one_simps(2)
thf(fact_5568_one__neq__neg__numeral,axiom,
! [N: num] :
( one_one_real
!= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% one_neq_neg_numeral
thf(fact_5569_one__neq__neg__numeral,axiom,
! [N: num] :
( one_one_int
!= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% one_neq_neg_numeral
thf(fact_5570_one__neq__neg__numeral,axiom,
! [N: num] :
( one_one_complex
!= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) ) ).
% one_neq_neg_numeral
thf(fact_5571_one__neq__neg__numeral,axiom,
! [N: num] :
( one_one_rat
!= ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).
% one_neq_neg_numeral
thf(fact_5572_one__neq__neg__numeral,axiom,
! [N: num] :
( one_one_Code_integer
!= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).
% one_neq_neg_numeral
thf(fact_5573_numeral__neq__neg__one,axiom,
! [N: num] :
( ( numeral_numeral_real @ N )
!= ( uminus_uminus_real @ one_one_real ) ) ).
% numeral_neq_neg_one
thf(fact_5574_numeral__neq__neg__one,axiom,
! [N: num] :
( ( numeral_numeral_int @ N )
!= ( uminus_uminus_int @ one_one_int ) ) ).
% numeral_neq_neg_one
thf(fact_5575_numeral__neq__neg__one,axiom,
! [N: num] :
( ( numera6690914467698888265omplex @ N )
!= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% numeral_neq_neg_one
thf(fact_5576_numeral__neq__neg__one,axiom,
! [N: num] :
( ( numeral_numeral_rat @ N )
!= ( uminus_uminus_rat @ one_one_rat ) ) ).
% numeral_neq_neg_one
thf(fact_5577_numeral__neq__neg__one,axiom,
! [N: num] :
( ( numera6620942414471956472nteger @ N )
!= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% numeral_neq_neg_one
thf(fact_5578_numeral__times__minus__swap,axiom,
! [W: num,X2: real] :
( ( times_times_real @ ( numeral_numeral_real @ W ) @ ( uminus_uminus_real @ X2 ) )
= ( times_times_real @ X2 @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ).
% numeral_times_minus_swap
thf(fact_5579_numeral__times__minus__swap,axiom,
! [W: num,X2: int] :
( ( times_times_int @ ( numeral_numeral_int @ W ) @ ( uminus_uminus_int @ X2 ) )
= ( times_times_int @ X2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) ) ) ).
% numeral_times_minus_swap
thf(fact_5580_numeral__times__minus__swap,axiom,
! [W: num,X2: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ ( uminus1482373934393186551omplex @ X2 ) )
= ( times_times_complex @ X2 @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ) ).
% numeral_times_minus_swap
thf(fact_5581_numeral__times__minus__swap,axiom,
! [W: num,X2: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ W ) @ ( uminus_uminus_rat @ X2 ) )
= ( times_times_rat @ X2 @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ).
% numeral_times_minus_swap
thf(fact_5582_numeral__times__minus__swap,axiom,
! [W: num,X2: code_integer] :
( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ W ) @ ( uminus1351360451143612070nteger @ X2 ) )
= ( times_3573771949741848930nteger @ X2 @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) ) ) ).
% numeral_times_minus_swap
thf(fact_5583_nonzero__minus__divide__right,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) ) ) ) ).
% nonzero_minus_divide_right
thf(fact_5584_nonzero__minus__divide__right,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ) ).
% nonzero_minus_divide_right
thf(fact_5585_nonzero__minus__divide__right,axiom,
! [B: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ) ).
% nonzero_minus_divide_right
thf(fact_5586_nonzero__minus__divide__divide,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_minus_divide_divide
thf(fact_5587_nonzero__minus__divide__divide,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ).
% nonzero_minus_divide_divide
thf(fact_5588_nonzero__minus__divide__divide,axiom,
! [B: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
= ( divide_divide_rat @ A @ B ) ) ) ).
% nonzero_minus_divide_divide
thf(fact_5589_square__eq__1__iff,axiom,
! [X2: real] :
( ( ( times_times_real @ X2 @ X2 )
= one_one_real )
= ( ( X2 = one_one_real )
| ( X2
= ( uminus_uminus_real @ one_one_real ) ) ) ) ).
% square_eq_1_iff
thf(fact_5590_square__eq__1__iff,axiom,
! [X2: int] :
( ( ( times_times_int @ X2 @ X2 )
= one_one_int )
= ( ( X2 = one_one_int )
| ( X2
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% square_eq_1_iff
thf(fact_5591_square__eq__1__iff,axiom,
! [X2: complex] :
( ( ( times_times_complex @ X2 @ X2 )
= one_one_complex )
= ( ( X2 = one_one_complex )
| ( X2
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).
% square_eq_1_iff
thf(fact_5592_square__eq__1__iff,axiom,
! [X2: rat] :
( ( ( times_times_rat @ X2 @ X2 )
= one_one_rat )
= ( ( X2 = one_one_rat )
| ( X2
= ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).
% square_eq_1_iff
thf(fact_5593_square__eq__1__iff,axiom,
! [X2: code_integer] :
( ( ( times_3573771949741848930nteger @ X2 @ X2 )
= one_one_Code_integer )
= ( ( X2 = one_one_Code_integer )
| ( X2
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).
% square_eq_1_iff
thf(fact_5594_group__cancel_Osub2,axiom,
! [B4: real,K: real,B: real,A: real] :
( ( B4
= ( plus_plus_real @ K @ B ) )
=> ( ( minus_minus_real @ A @ B4 )
= ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( minus_minus_real @ A @ B ) ) ) ) ).
% group_cancel.sub2
thf(fact_5595_group__cancel_Osub2,axiom,
! [B4: int,K: int,B: int,A: int] :
( ( B4
= ( plus_plus_int @ K @ B ) )
=> ( ( minus_minus_int @ A @ B4 )
= ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( minus_minus_int @ A @ B ) ) ) ) ).
% group_cancel.sub2
thf(fact_5596_group__cancel_Osub2,axiom,
! [B4: complex,K: complex,B: complex,A: complex] :
( ( B4
= ( plus_plus_complex @ K @ B ) )
=> ( ( minus_minus_complex @ A @ B4 )
= ( plus_plus_complex @ ( uminus1482373934393186551omplex @ K ) @ ( minus_minus_complex @ A @ B ) ) ) ) ).
% group_cancel.sub2
thf(fact_5597_group__cancel_Osub2,axiom,
! [B4: rat,K: rat,B: rat,A: rat] :
( ( B4
= ( plus_plus_rat @ K @ B ) )
=> ( ( minus_minus_rat @ A @ B4 )
= ( plus_plus_rat @ ( uminus_uminus_rat @ K ) @ ( minus_minus_rat @ A @ B ) ) ) ) ).
% group_cancel.sub2
thf(fact_5598_group__cancel_Osub2,axiom,
! [B4: code_integer,K: code_integer,B: code_integer,A: code_integer] :
( ( B4
= ( plus_p5714425477246183910nteger @ K @ B ) )
=> ( ( minus_8373710615458151222nteger @ A @ B4 )
= ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ K ) @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ) ).
% group_cancel.sub2
thf(fact_5599_diff__conv__add__uminus,axiom,
( minus_minus_real
= ( ^ [A3: real,B2: real] : ( plus_plus_real @ A3 @ ( uminus_uminus_real @ B2 ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_5600_diff__conv__add__uminus,axiom,
( minus_minus_int
= ( ^ [A3: int,B2: int] : ( plus_plus_int @ A3 @ ( uminus_uminus_int @ B2 ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_5601_diff__conv__add__uminus,axiom,
( minus_minus_complex
= ( ^ [A3: complex,B2: complex] : ( plus_plus_complex @ A3 @ ( uminus1482373934393186551omplex @ B2 ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_5602_diff__conv__add__uminus,axiom,
( minus_minus_rat
= ( ^ [A3: rat,B2: rat] : ( plus_plus_rat @ A3 @ ( uminus_uminus_rat @ B2 ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_5603_diff__conv__add__uminus,axiom,
( minus_8373710615458151222nteger
= ( ^ [A3: code_integer,B2: code_integer] : ( plus_p5714425477246183910nteger @ A3 @ ( uminus1351360451143612070nteger @ B2 ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_5604_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
( minus_minus_real
= ( ^ [A3: real,B2: real] : ( plus_plus_real @ A3 @ ( uminus_uminus_real @ B2 ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5605_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
( minus_minus_int
= ( ^ [A3: int,B2: int] : ( plus_plus_int @ A3 @ ( uminus_uminus_int @ B2 ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5606_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
( minus_minus_complex
= ( ^ [A3: complex,B2: complex] : ( plus_plus_complex @ A3 @ ( uminus1482373934393186551omplex @ B2 ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5607_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
( minus_minus_rat
= ( ^ [A3: rat,B2: rat] : ( plus_plus_rat @ A3 @ ( uminus_uminus_rat @ B2 ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5608_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
( minus_8373710615458151222nteger
= ( ^ [A3: code_integer,B2: code_integer] : ( plus_p5714425477246183910nteger @ A3 @ ( uminus1351360451143612070nteger @ B2 ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5609_dvd__div__neg,axiom,
! [B: real,A: real] :
( ( dvd_dvd_real @ B @ A )
=> ( ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) )
= ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) ) ) ).
% dvd_div_neg
thf(fact_5610_dvd__div__neg,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ A )
=> ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) ) ).
% dvd_div_neg
thf(fact_5611_dvd__div__neg,axiom,
! [B: complex,A: complex] :
( ( dvd_dvd_complex @ B @ A )
=> ( ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) )
= ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).
% dvd_div_neg
thf(fact_5612_dvd__div__neg,axiom,
! [B: rat,A: rat] :
( ( dvd_dvd_rat @ B @ A )
=> ( ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) )
= ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) ) ) ).
% dvd_div_neg
thf(fact_5613_dvd__div__neg,axiom,
! [B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ B @ A )
=> ( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( uminus1351360451143612070nteger @ ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).
% dvd_div_neg
thf(fact_5614_dvd__neg__div,axiom,
! [B: real,A: real] :
( ( dvd_dvd_real @ B @ A )
=> ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ B )
= ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) ) ) ).
% dvd_neg_div
thf(fact_5615_dvd__neg__div,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ A )
=> ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
= ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) ) ).
% dvd_neg_div
thf(fact_5616_dvd__neg__div,axiom,
! [B: complex,A: complex] :
( ( dvd_dvd_complex @ B @ A )
=> ( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ B )
= ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).
% dvd_neg_div
thf(fact_5617_dvd__neg__div,axiom,
! [B: rat,A: rat] :
( ( dvd_dvd_rat @ B @ A )
=> ( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ B )
= ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) ) ) ).
% dvd_neg_div
thf(fact_5618_dvd__neg__div,axiom,
! [B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ B @ A )
=> ( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( uminus1351360451143612070nteger @ ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).
% dvd_neg_div
thf(fact_5619_real__minus__mult__self__le,axiom,
! [U: real,X2: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( times_times_real @ U @ U ) ) @ ( times_times_real @ X2 @ X2 ) ) ).
% real_minus_mult_self_le
thf(fact_5620_minus__real__def,axiom,
( minus_minus_real
= ( ^ [X: real,Y: real] : ( plus_plus_real @ X @ ( uminus_uminus_real @ Y ) ) ) ) ).
% minus_real_def
thf(fact_5621_tanh__real__lt__1,axiom,
! [X2: real] : ( ord_less_real @ ( tanh_real @ X2 ) @ one_one_real ) ).
% tanh_real_lt_1
thf(fact_5622_dense__eq0__I,axiom,
! [X2: real] :
( ! [E2: real] :
( ( ord_less_real @ zero_zero_real @ E2 )
=> ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ E2 ) )
=> ( X2 = zero_zero_real ) ) ).
% dense_eq0_I
thf(fact_5623_dense__eq0__I,axiom,
! [X2: rat] :
( ! [E2: rat] :
( ( ord_less_rat @ zero_zero_rat @ E2 )
=> ( ord_less_eq_rat @ ( abs_abs_rat @ X2 ) @ E2 ) )
=> ( X2 = zero_zero_rat ) ) ).
% dense_eq0_I
thf(fact_5624_abs__mult__pos,axiom,
! [X2: code_integer,Y2: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X2 )
=> ( ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ Y2 ) @ X2 )
= ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ Y2 @ X2 ) ) ) ) ).
% abs_mult_pos
thf(fact_5625_abs__mult__pos,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( times_times_real @ ( abs_abs_real @ Y2 ) @ X2 )
= ( abs_abs_real @ ( times_times_real @ Y2 @ X2 ) ) ) ) ).
% abs_mult_pos
thf(fact_5626_abs__mult__pos,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
=> ( ( times_times_rat @ ( abs_abs_rat @ Y2 ) @ X2 )
= ( abs_abs_rat @ ( times_times_rat @ Y2 @ X2 ) ) ) ) ).
% abs_mult_pos
thf(fact_5627_abs__mult__pos,axiom,
! [X2: int,Y2: int] :
( ( ord_less_eq_int @ zero_zero_int @ X2 )
=> ( ( times_times_int @ ( abs_abs_int @ Y2 ) @ X2 )
= ( abs_abs_int @ ( times_times_int @ Y2 @ X2 ) ) ) ) ).
% abs_mult_pos
thf(fact_5628_abs__eq__mult,axiom,
! [A: code_integer,B: code_integer] :
( ( ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
| ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) )
& ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
| ( ord_le3102999989581377725nteger @ B @ zero_z3403309356797280102nteger ) ) )
=> ( ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) )
= ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ) ).
% abs_eq_mult
thf(fact_5629_abs__eq__mult,axiom,
! [A: real,B: real] :
( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
| ( ord_less_eq_real @ A @ zero_zero_real ) )
& ( ( ord_less_eq_real @ zero_zero_real @ B )
| ( ord_less_eq_real @ B @ zero_zero_real ) ) )
=> ( ( abs_abs_real @ ( times_times_real @ A @ B ) )
= ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ) ).
% abs_eq_mult
thf(fact_5630_abs__eq__mult,axiom,
! [A: rat,B: rat] :
( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
| ( ord_less_eq_rat @ A @ zero_zero_rat ) )
& ( ( ord_less_eq_rat @ zero_zero_rat @ B )
| ( ord_less_eq_rat @ B @ zero_zero_rat ) ) )
=> ( ( abs_abs_rat @ ( times_times_rat @ A @ B ) )
= ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ) ).
% abs_eq_mult
thf(fact_5631_abs__eq__mult,axiom,
! [A: int,B: int] :
( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
| ( ord_less_eq_int @ A @ zero_zero_int ) )
& ( ( ord_less_eq_int @ zero_zero_int @ B )
| ( ord_less_eq_int @ B @ zero_zero_int ) ) )
=> ( ( abs_abs_int @ ( times_times_int @ A @ B ) )
= ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ) ).
% abs_eq_mult
thf(fact_5632_zero__le__power__abs,axiom,
! [A: real,N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ ( abs_abs_real @ A ) @ N ) ) ).
% zero_le_power_abs
thf(fact_5633_zero__le__power__abs,axiom,
! [A: code_integer,N: nat] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N ) ) ).
% zero_le_power_abs
thf(fact_5634_zero__le__power__abs,axiom,
! [A: rat,N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ ( abs_abs_rat @ A ) @ N ) ) ).
% zero_le_power_abs
thf(fact_5635_zero__le__power__abs,axiom,
! [A: int,N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A ) @ N ) ) ).
% zero_le_power_abs
thf(fact_5636_abs__div__pos,axiom,
! [Y2: real,X2: real] :
( ( ord_less_real @ zero_zero_real @ Y2 )
=> ( ( divide_divide_real @ ( abs_abs_real @ X2 ) @ Y2 )
= ( abs_abs_real @ ( divide_divide_real @ X2 @ Y2 ) ) ) ) ).
% abs_div_pos
thf(fact_5637_abs__div__pos,axiom,
! [Y2: rat,X2: rat] :
( ( ord_less_rat @ zero_zero_rat @ Y2 )
=> ( ( divide_divide_rat @ ( abs_abs_rat @ X2 ) @ Y2 )
= ( abs_abs_rat @ ( divide_divide_rat @ X2 @ Y2 ) ) ) ) ).
% abs_div_pos
thf(fact_5638_abs__diff__triangle__ineq,axiom,
! [A: code_integer,B: code_integer,C: code_integer,D2: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ ( plus_p5714425477246183910nteger @ C @ D2 ) ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ C ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ D2 ) ) ) ) ).
% abs_diff_triangle_ineq
thf(fact_5639_abs__diff__triangle__ineq,axiom,
! [A: real,B: real,C: real,D2: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ C @ D2 ) ) ) @ ( plus_plus_real @ ( abs_abs_real @ ( minus_minus_real @ A @ C ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ D2 ) ) ) ) ).
% abs_diff_triangle_ineq
thf(fact_5640_abs__diff__triangle__ineq,axiom,
! [A: rat,B: rat,C: rat,D2: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ C @ D2 ) ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ ( minus_minus_rat @ A @ C ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ B @ D2 ) ) ) ) ).
% abs_diff_triangle_ineq
thf(fact_5641_abs__diff__triangle__ineq,axiom,
! [A: int,B: int,C: int,D2: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ ( plus_plus_int @ C @ D2 ) ) ) @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ A @ C ) ) @ ( abs_abs_int @ ( minus_minus_int @ B @ D2 ) ) ) ) ).
% abs_diff_triangle_ineq
thf(fact_5642_abs__triangle__ineq4,axiom,
! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).
% abs_triangle_ineq4
thf(fact_5643_abs__triangle__ineq4,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_triangle_ineq4
thf(fact_5644_abs__triangle__ineq4,axiom,
! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).
% abs_triangle_ineq4
thf(fact_5645_abs__triangle__ineq4,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).
% abs_triangle_ineq4
thf(fact_5646_abs__diff__le__iff,axiom,
! [X2: code_integer,A: code_integer,R2: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ X2 @ A ) ) @ R2 )
= ( ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ A @ R2 ) @ X2 )
& ( ord_le3102999989581377725nteger @ X2 @ ( plus_p5714425477246183910nteger @ A @ R2 ) ) ) ) ).
% abs_diff_le_iff
thf(fact_5647_abs__diff__le__iff,axiom,
! [X2: real,A: real,R2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ A ) ) @ R2 )
= ( ( ord_less_eq_real @ ( minus_minus_real @ A @ R2 ) @ X2 )
& ( ord_less_eq_real @ X2 @ ( plus_plus_real @ A @ R2 ) ) ) ) ).
% abs_diff_le_iff
thf(fact_5648_abs__diff__le__iff,axiom,
! [X2: rat,A: rat,R2: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X2 @ A ) ) @ R2 )
= ( ( ord_less_eq_rat @ ( minus_minus_rat @ A @ R2 ) @ X2 )
& ( ord_less_eq_rat @ X2 @ ( plus_plus_rat @ A @ R2 ) ) ) ) ).
% abs_diff_le_iff
thf(fact_5649_abs__diff__le__iff,axiom,
! [X2: int,A: int,R2: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ X2 @ A ) ) @ R2 )
= ( ( ord_less_eq_int @ ( minus_minus_int @ A @ R2 ) @ X2 )
& ( ord_less_eq_int @ X2 @ ( plus_plus_int @ A @ R2 ) ) ) ) ).
% abs_diff_le_iff
thf(fact_5650_abs__diff__less__iff,axiom,
! [X2: code_integer,A: code_integer,R2: code_integer] :
( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ X2 @ A ) ) @ R2 )
= ( ( ord_le6747313008572928689nteger @ ( minus_8373710615458151222nteger @ A @ R2 ) @ X2 )
& ( ord_le6747313008572928689nteger @ X2 @ ( plus_p5714425477246183910nteger @ A @ R2 ) ) ) ) ).
% abs_diff_less_iff
thf(fact_5651_abs__diff__less__iff,axiom,
! [X2: real,A: real,R2: real] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ A ) ) @ R2 )
= ( ( ord_less_real @ ( minus_minus_real @ A @ R2 ) @ X2 )
& ( ord_less_real @ X2 @ ( plus_plus_real @ A @ R2 ) ) ) ) ).
% abs_diff_less_iff
thf(fact_5652_abs__diff__less__iff,axiom,
! [X2: rat,A: rat,R2: rat] :
( ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X2 @ A ) ) @ R2 )
= ( ( ord_less_rat @ ( minus_minus_rat @ A @ R2 ) @ X2 )
& ( ord_less_rat @ X2 @ ( plus_plus_rat @ A @ R2 ) ) ) ) ).
% abs_diff_less_iff
thf(fact_5653_abs__diff__less__iff,axiom,
! [X2: int,A: int,R2: int] :
( ( ord_less_int @ ( abs_abs_int @ ( minus_minus_int @ X2 @ A ) ) @ R2 )
= ( ( ord_less_int @ ( minus_minus_int @ A @ R2 ) @ X2 )
& ( ord_less_int @ X2 @ ( plus_plus_int @ A @ R2 ) ) ) ) ).
% abs_diff_less_iff
thf(fact_5654_nonzero__of__real__divide,axiom,
! [Y2: real,X2: real] :
( ( Y2 != zero_zero_real )
=> ( ( real_V1803761363581548252l_real @ ( divide_divide_real @ X2 @ Y2 ) )
= ( divide_divide_real @ ( real_V1803761363581548252l_real @ X2 ) @ ( real_V1803761363581548252l_real @ Y2 ) ) ) ) ).
% nonzero_of_real_divide
thf(fact_5655_nonzero__of__real__divide,axiom,
! [Y2: real,X2: real] :
( ( Y2 != zero_zero_real )
=> ( ( real_V4546457046886955230omplex @ ( divide_divide_real @ X2 @ Y2 ) )
= ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ X2 ) @ ( real_V4546457046886955230omplex @ Y2 ) ) ) ) ).
% nonzero_of_real_divide
thf(fact_5656_neg__numeral__le__zero,axiom,
! [N: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) @ zero_zero_real ) ).
% neg_numeral_le_zero
thf(fact_5657_neg__numeral__le__zero,axiom,
! [N: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) @ zero_z3403309356797280102nteger ) ).
% neg_numeral_le_zero
thf(fact_5658_neg__numeral__le__zero,axiom,
! [N: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) @ zero_zero_rat ) ).
% neg_numeral_le_zero
thf(fact_5659_neg__numeral__le__zero,axiom,
! [N: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ zero_zero_int ) ).
% neg_numeral_le_zero
thf(fact_5660_not__zero__le__neg__numeral,axiom,
! [N: num] :
~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% not_zero_le_neg_numeral
thf(fact_5661_not__zero__le__neg__numeral,axiom,
! [N: num] :
~ ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).
% not_zero_le_neg_numeral
thf(fact_5662_not__zero__le__neg__numeral,axiom,
! [N: num] :
~ ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).
% not_zero_le_neg_numeral
thf(fact_5663_not__zero__le__neg__numeral,axiom,
! [N: num] :
~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% not_zero_le_neg_numeral
thf(fact_5664_not__zero__less__neg__numeral,axiom,
! [N: num] :
~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% not_zero_less_neg_numeral
thf(fact_5665_not__zero__less__neg__numeral,axiom,
! [N: num] :
~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% not_zero_less_neg_numeral
thf(fact_5666_not__zero__less__neg__numeral,axiom,
! [N: num] :
~ ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).
% not_zero_less_neg_numeral
thf(fact_5667_not__zero__less__neg__numeral,axiom,
! [N: num] :
~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).
% not_zero_less_neg_numeral
thf(fact_5668_neg__numeral__less__zero,axiom,
! [N: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) @ zero_zero_real ) ).
% neg_numeral_less_zero
thf(fact_5669_neg__numeral__less__zero,axiom,
! [N: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ zero_zero_int ) ).
% neg_numeral_less_zero
thf(fact_5670_neg__numeral__less__zero,axiom,
! [N: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) @ zero_zero_rat ) ).
% neg_numeral_less_zero
thf(fact_5671_neg__numeral__less__zero,axiom,
! [N: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) @ zero_z3403309356797280102nteger ) ).
% neg_numeral_less_zero
thf(fact_5672_le__minus__one__simps_I3_J,axiom,
~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% le_minus_one_simps(3)
thf(fact_5673_le__minus__one__simps_I3_J,axiom,
~ ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% le_minus_one_simps(3)
thf(fact_5674_le__minus__one__simps_I3_J,axiom,
~ ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% le_minus_one_simps(3)
thf(fact_5675_le__minus__one__simps_I3_J,axiom,
~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% le_minus_one_simps(3)
thf(fact_5676_le__minus__one__simps_I1_J,axiom,
ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).
% le_minus_one_simps(1)
thf(fact_5677_le__minus__one__simps_I1_J,axiom,
ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ zero_z3403309356797280102nteger ).
% le_minus_one_simps(1)
thf(fact_5678_le__minus__one__simps_I1_J,axiom,
ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ zero_zero_rat ).
% le_minus_one_simps(1)
thf(fact_5679_le__minus__one__simps_I1_J,axiom,
ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).
% le_minus_one_simps(1)
thf(fact_5680_less__minus__one__simps_I3_J,axiom,
~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% less_minus_one_simps(3)
thf(fact_5681_less__minus__one__simps_I3_J,axiom,
~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% less_minus_one_simps(3)
thf(fact_5682_less__minus__one__simps_I3_J,axiom,
~ ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% less_minus_one_simps(3)
thf(fact_5683_less__minus__one__simps_I3_J,axiom,
~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% less_minus_one_simps(3)
thf(fact_5684_less__minus__one__simps_I1_J,axiom,
ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).
% less_minus_one_simps(1)
thf(fact_5685_less__minus__one__simps_I1_J,axiom,
ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).
% less_minus_one_simps(1)
thf(fact_5686_less__minus__one__simps_I1_J,axiom,
ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ zero_zero_rat ).
% less_minus_one_simps(1)
thf(fact_5687_less__minus__one__simps_I1_J,axiom,
ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ zero_z3403309356797280102nteger ).
% less_minus_one_simps(1)
thf(fact_5688_neg__numeral__le__one,axiom,
! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).
% neg_numeral_le_one
thf(fact_5689_neg__numeral__le__one,axiom,
! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer ) ).
% neg_numeral_le_one
thf(fact_5690_neg__numeral__le__one,axiom,
! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat ) ).
% neg_numeral_le_one
thf(fact_5691_neg__numeral__le__one,axiom,
! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).
% neg_numeral_le_one
thf(fact_5692_neg__one__le__numeral,axiom,
! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).
% neg_one_le_numeral
thf(fact_5693_neg__one__le__numeral,axiom,
! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ M ) ) ).
% neg_one_le_numeral
thf(fact_5694_neg__one__le__numeral,axiom,
! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ M ) ) ).
% neg_one_le_numeral
thf(fact_5695_neg__one__le__numeral,axiom,
! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).
% neg_one_le_numeral
thf(fact_5696_neg__numeral__le__neg__one,axiom,
! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) ) ).
% neg_numeral_le_neg_one
thf(fact_5697_neg__numeral__le__neg__one,axiom,
! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% neg_numeral_le_neg_one
thf(fact_5698_neg__numeral__le__neg__one,axiom,
! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% neg_numeral_le_neg_one
thf(fact_5699_neg__numeral__le__neg__one,axiom,
! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) ) ).
% neg_numeral_le_neg_one
thf(fact_5700_not__numeral__le__neg__one,axiom,
! [M: num] :
~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).
% not_numeral_le_neg_one
thf(fact_5701_not__numeral__le__neg__one,axiom,
! [M: num] :
~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% not_numeral_le_neg_one
thf(fact_5702_not__numeral__le__neg__one,axiom,
! [M: num] :
~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% not_numeral_le_neg_one
thf(fact_5703_not__numeral__le__neg__one,axiom,
! [M: num] :
~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).
% not_numeral_le_neg_one
thf(fact_5704_not__one__le__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).
% not_one_le_neg_numeral
thf(fact_5705_not__one__le__neg__numeral,axiom,
! [M: num] :
~ ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).
% not_one_le_neg_numeral
thf(fact_5706_not__one__le__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_eq_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).
% not_one_le_neg_numeral
thf(fact_5707_not__one__le__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).
% not_one_le_neg_numeral
thf(fact_5708_not__neg__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).
% not_neg_one_less_neg_numeral
thf(fact_5709_not__neg__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).
% not_neg_one_less_neg_numeral
thf(fact_5710_not__neg__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).
% not_neg_one_less_neg_numeral
thf(fact_5711_not__neg__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).
% not_neg_one_less_neg_numeral
thf(fact_5712_not__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).
% not_one_less_neg_numeral
thf(fact_5713_not__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).
% not_one_less_neg_numeral
thf(fact_5714_not__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).
% not_one_less_neg_numeral
thf(fact_5715_not__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_le6747313008572928689nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).
% not_one_less_neg_numeral
thf(fact_5716_not__numeral__less__neg__one,axiom,
! [M: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).
% not_numeral_less_neg_one
thf(fact_5717_not__numeral__less__neg__one,axiom,
! [M: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).
% not_numeral_less_neg_one
thf(fact_5718_not__numeral__less__neg__one,axiom,
! [M: num] :
~ ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% not_numeral_less_neg_one
thf(fact_5719_not__numeral__less__neg__one,axiom,
! [M: num] :
~ ( ord_le6747313008572928689nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% not_numeral_less_neg_one
thf(fact_5720_neg__one__less__numeral,axiom,
! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).
% neg_one_less_numeral
thf(fact_5721_neg__one__less__numeral,axiom,
! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).
% neg_one_less_numeral
thf(fact_5722_neg__one__less__numeral,axiom,
! [M: num] : ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ M ) ) ).
% neg_one_less_numeral
thf(fact_5723_neg__one__less__numeral,axiom,
! [M: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ M ) ) ).
% neg_one_less_numeral
thf(fact_5724_neg__numeral__less__one,axiom,
! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).
% neg_numeral_less_one
thf(fact_5725_neg__numeral__less__one,axiom,
! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).
% neg_numeral_less_one
thf(fact_5726_neg__numeral__less__one,axiom,
! [M: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat ) ).
% neg_numeral_less_one
thf(fact_5727_neg__numeral__less__one,axiom,
! [M: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer ) ).
% neg_numeral_less_one
thf(fact_5728_uminus__numeral__One,axiom,
( ( uminus_uminus_real @ ( numeral_numeral_real @ one ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% uminus_numeral_One
thf(fact_5729_uminus__numeral__One,axiom,
( ( uminus_uminus_int @ ( numeral_numeral_int @ one ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% uminus_numeral_One
thf(fact_5730_uminus__numeral__One,axiom,
( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% uminus_numeral_One
thf(fact_5731_uminus__numeral__One,axiom,
( ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) )
= ( uminus_uminus_rat @ one_one_rat ) ) ).
% uminus_numeral_One
thf(fact_5732_uminus__numeral__One,axiom,
( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% uminus_numeral_One
thf(fact_5733_mult__1s__ring__1_I2_J,axiom,
! [B: real] :
( ( times_times_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ one ) ) )
= ( uminus_uminus_real @ B ) ) ).
% mult_1s_ring_1(2)
thf(fact_5734_mult__1s__ring__1_I2_J,axiom,
! [B: int] :
( ( times_times_int @ B @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) )
= ( uminus_uminus_int @ B ) ) ).
% mult_1s_ring_1(2)
thf(fact_5735_mult__1s__ring__1_I2_J,axiom,
! [B: complex] :
( ( times_times_complex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) ) )
= ( uminus1482373934393186551omplex @ B ) ) ).
% mult_1s_ring_1(2)
thf(fact_5736_mult__1s__ring__1_I2_J,axiom,
! [B: rat] :
( ( times_times_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) ) )
= ( uminus_uminus_rat @ B ) ) ).
% mult_1s_ring_1(2)
thf(fact_5737_mult__1s__ring__1_I2_J,axiom,
! [B: code_integer] :
( ( times_3573771949741848930nteger @ B @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) ) )
= ( uminus1351360451143612070nteger @ B ) ) ).
% mult_1s_ring_1(2)
thf(fact_5738_mult__1s__ring__1_I1_J,axiom,
! [B: real] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ one ) ) @ B )
= ( uminus_uminus_real @ B ) ) ).
% mult_1s_ring_1(1)
thf(fact_5739_mult__1s__ring__1_I1_J,axiom,
! [B: int] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) @ B )
= ( uminus_uminus_int @ B ) ) ).
% mult_1s_ring_1(1)
thf(fact_5740_mult__1s__ring__1_I1_J,axiom,
! [B: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) ) @ B )
= ( uminus1482373934393186551omplex @ B ) ) ).
% mult_1s_ring_1(1)
thf(fact_5741_mult__1s__ring__1_I1_J,axiom,
! [B: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) ) @ B )
= ( uminus_uminus_rat @ B ) ) ).
% mult_1s_ring_1(1)
thf(fact_5742_mult__1s__ring__1_I1_J,axiom,
! [B: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) ) @ B )
= ( uminus1351360451143612070nteger @ B ) ) ).
% mult_1s_ring_1(1)
thf(fact_5743_divide__eq__minus__1__iff,axiom,
! [A: real,B: real] :
( ( ( divide_divide_real @ A @ B )
= ( uminus_uminus_real @ one_one_real ) )
= ( ( B != zero_zero_real )
& ( A
= ( uminus_uminus_real @ B ) ) ) ) ).
% divide_eq_minus_1_iff
thf(fact_5744_divide__eq__minus__1__iff,axiom,
! [A: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ A @ B )
= ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( ( B != zero_zero_complex )
& ( A
= ( uminus1482373934393186551omplex @ B ) ) ) ) ).
% divide_eq_minus_1_iff
thf(fact_5745_divide__eq__minus__1__iff,axiom,
! [A: rat,B: rat] :
( ( ( divide_divide_rat @ A @ B )
= ( uminus_uminus_rat @ one_one_rat ) )
= ( ( B != zero_zero_rat )
& ( A
= ( uminus_uminus_rat @ B ) ) ) ) ).
% divide_eq_minus_1_iff
thf(fact_5746_eq__minus__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( A
= ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ A @ C )
= ( uminus_uminus_real @ B ) ) )
& ( ( C = zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_minus_divide_eq
thf(fact_5747_eq__minus__divide__eq,axiom,
! [A: complex,B: complex,C: complex] :
( ( A
= ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ B @ C ) ) )
= ( ( ( C != zero_zero_complex )
=> ( ( times_times_complex @ A @ C )
= ( uminus1482373934393186551omplex @ B ) ) )
& ( ( C = zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% eq_minus_divide_eq
thf(fact_5748_eq__minus__divide__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( A
= ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ( ( C != zero_zero_rat )
=> ( ( times_times_rat @ A @ C )
= ( uminus_uminus_rat @ B ) ) )
& ( ( C = zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% eq_minus_divide_eq
thf(fact_5749_minus__divide__eq__eq,axiom,
! [B: real,C: real,A: real] :
( ( ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) )
= A )
= ( ( ( C != zero_zero_real )
=> ( ( uminus_uminus_real @ B )
= ( times_times_real @ A @ C ) ) )
& ( ( C = zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% minus_divide_eq_eq
thf(fact_5750_minus__divide__eq__eq,axiom,
! [B: complex,C: complex,A: complex] :
( ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ B @ C ) )
= A )
= ( ( ( C != zero_zero_complex )
=> ( ( uminus1482373934393186551omplex @ B )
= ( times_times_complex @ A @ C ) ) )
& ( ( C = zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% minus_divide_eq_eq
thf(fact_5751_minus__divide__eq__eq,axiom,
! [B: rat,C: rat,A: rat] :
( ( ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) )
= A )
= ( ( ( C != zero_zero_rat )
=> ( ( uminus_uminus_rat @ B )
= ( times_times_rat @ A @ C ) ) )
& ( ( C = zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% minus_divide_eq_eq
thf(fact_5752_nonzero__neg__divide__eq__eq,axiom,
! [B: real,A: real,C: real] :
( ( B != zero_zero_real )
=> ( ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
= C )
= ( ( uminus_uminus_real @ A )
= ( times_times_real @ C @ B ) ) ) ) ).
% nonzero_neg_divide_eq_eq
thf(fact_5753_nonzero__neg__divide__eq__eq,axiom,
! [B: complex,A: complex,C: complex] :
( ( B != zero_zero_complex )
=> ( ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
= C )
= ( ( uminus1482373934393186551omplex @ A )
= ( times_times_complex @ C @ B ) ) ) ) ).
% nonzero_neg_divide_eq_eq
thf(fact_5754_nonzero__neg__divide__eq__eq,axiom,
! [B: rat,A: rat,C: rat] :
( ( B != zero_zero_rat )
=> ( ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
= C )
= ( ( uminus_uminus_rat @ A )
= ( times_times_rat @ C @ B ) ) ) ) ).
% nonzero_neg_divide_eq_eq
thf(fact_5755_nonzero__neg__divide__eq__eq2,axiom,
! [B: real,C: real,A: real] :
( ( B != zero_zero_real )
=> ( ( C
= ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) )
= ( ( times_times_real @ C @ B )
= ( uminus_uminus_real @ A ) ) ) ) ).
% nonzero_neg_divide_eq_eq2
thf(fact_5756_nonzero__neg__divide__eq__eq2,axiom,
! [B: complex,C: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( C
= ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) )
= ( ( times_times_complex @ C @ B )
= ( uminus1482373934393186551omplex @ A ) ) ) ) ).
% nonzero_neg_divide_eq_eq2
thf(fact_5757_nonzero__neg__divide__eq__eq2,axiom,
! [B: rat,C: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( C
= ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) )
= ( ( times_times_rat @ C @ B )
= ( uminus_uminus_rat @ A ) ) ) ) ).
% nonzero_neg_divide_eq_eq2
thf(fact_5758_power__minus,axiom,
! [A: real,N: nat] :
( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( power_power_real @ A @ N ) ) ) ).
% power_minus
thf(fact_5759_power__minus,axiom,
! [A: int,N: nat] :
( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
= ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( power_power_int @ A @ N ) ) ) ).
% power_minus
thf(fact_5760_power__minus,axiom,
! [A: complex,N: nat] :
( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
= ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( power_power_complex @ A @ N ) ) ) ).
% power_minus
thf(fact_5761_power__minus,axiom,
! [A: rat,N: nat] :
( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
= ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( power_power_rat @ A @ N ) ) ) ).
% power_minus
thf(fact_5762_power__minus,axiom,
! [A: code_integer,N: nat] :
( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
= ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).
% power_minus
thf(fact_5763_power__minus__Bit0,axiom,
! [X2: real,K: num] :
( ( power_power_real @ ( uminus_uminus_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
= ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).
% power_minus_Bit0
thf(fact_5764_power__minus__Bit0,axiom,
! [X2: int,K: num] :
( ( power_power_int @ ( uminus_uminus_int @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
= ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).
% power_minus_Bit0
thf(fact_5765_power__minus__Bit0,axiom,
! [X2: complex,K: num] :
( ( power_power_complex @ ( uminus1482373934393186551omplex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
= ( power_power_complex @ X2 @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).
% power_minus_Bit0
thf(fact_5766_power__minus__Bit0,axiom,
! [X2: rat,K: num] :
( ( power_power_rat @ ( uminus_uminus_rat @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
= ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).
% power_minus_Bit0
thf(fact_5767_power__minus__Bit0,axiom,
! [X2: code_integer,K: num] :
( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
= ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).
% power_minus_Bit0
thf(fact_5768_power__minus__Bit1,axiom,
! [X2: real,K: num] :
( ( power_power_real @ ( uminus_uminus_real @ X2 ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
= ( uminus_uminus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).
% power_minus_Bit1
thf(fact_5769_power__minus__Bit1,axiom,
! [X2: int,K: num] :
( ( power_power_int @ ( uminus_uminus_int @ X2 ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
= ( uminus_uminus_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).
% power_minus_Bit1
thf(fact_5770_power__minus__Bit1,axiom,
! [X2: complex,K: num] :
( ( power_power_complex @ ( uminus1482373934393186551omplex @ X2 ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
= ( uminus1482373934393186551omplex @ ( power_power_complex @ X2 @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).
% power_minus_Bit1
thf(fact_5771_power__minus__Bit1,axiom,
! [X2: rat,K: num] :
( ( power_power_rat @ ( uminus_uminus_rat @ X2 ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
= ( uminus_uminus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).
% power_minus_Bit1
thf(fact_5772_power__minus__Bit1,axiom,
! [X2: code_integer,K: num] :
( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ X2 ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
= ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).
% power_minus_Bit1
thf(fact_5773_lemma__interval__lt,axiom,
! [A: real,X2: real,B: real] :
( ( ord_less_real @ A @ X2 )
=> ( ( ord_less_real @ X2 @ B )
=> ? [D3: real] :
( ( ord_less_real @ zero_zero_real @ D3 )
& ! [Y4: real] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ Y4 ) ) @ D3 )
=> ( ( ord_less_real @ A @ Y4 )
& ( ord_less_real @ Y4 @ B ) ) ) ) ) ) ).
% lemma_interval_lt
thf(fact_5774_norm__uminus__minus,axiom,
! [X2: real,Y2: real] :
( ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( uminus_uminus_real @ X2 ) @ Y2 ) )
= ( real_V7735802525324610683m_real @ ( plus_plus_real @ X2 @ Y2 ) ) ) ).
% norm_uminus_minus
thf(fact_5775_norm__uminus__minus,axiom,
! [X2: complex,Y2: complex] :
( ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ X2 ) @ Y2 ) )
= ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X2 @ Y2 ) ) ) ).
% norm_uminus_minus
thf(fact_5776_sin__bound__lemma,axiom,
! [X2: real,Y2: real,U: real,V: real] :
( ( X2 = Y2 )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ U ) @ V )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( plus_plus_real @ X2 @ U ) @ Y2 ) ) @ V ) ) ) ).
% sin_bound_lemma
thf(fact_5777_powr__minus__divide,axiom,
! [X2: real,A: real] :
( ( powr_real @ X2 @ ( uminus_uminus_real @ A ) )
= ( divide_divide_real @ one_one_real @ ( powr_real @ X2 @ A ) ) ) ).
% powr_minus_divide
thf(fact_5778_real__0__less__add__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X2 @ Y2 ) )
= ( ord_less_real @ ( uminus_uminus_real @ X2 ) @ Y2 ) ) ).
% real_0_less_add_iff
thf(fact_5779_real__add__less__0__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ ( plus_plus_real @ X2 @ Y2 ) @ zero_zero_real )
= ( ord_less_real @ Y2 @ ( uminus_uminus_real @ X2 ) ) ) ).
% real_add_less_0_iff
thf(fact_5780_real__add__le__0__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ X2 @ Y2 ) @ zero_zero_real )
= ( ord_less_eq_real @ Y2 @ ( uminus_uminus_real @ X2 ) ) ) ).
% real_add_le_0_iff
thf(fact_5781_real__0__le__add__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ X2 @ Y2 ) )
= ( ord_less_eq_real @ ( uminus_uminus_real @ X2 ) @ Y2 ) ) ).
% real_0_le_add_iff
thf(fact_5782_divide__powr__uminus,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ A @ ( powr_real @ B @ C ) )
= ( times_times_real @ A @ ( powr_real @ B @ ( uminus_uminus_real @ C ) ) ) ) ).
% divide_powr_uminus
thf(fact_5783_abs__add__one__gt__zero,axiom,
! [X2: code_integer] : ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( abs_abs_Code_integer @ X2 ) ) ) ).
% abs_add_one_gt_zero
thf(fact_5784_abs__add__one__gt__zero,axiom,
! [X2: real] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ ( abs_abs_real @ X2 ) ) ) ).
% abs_add_one_gt_zero
thf(fact_5785_abs__add__one__gt__zero,axiom,
! [X2: rat] : ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ one_one_rat @ ( abs_abs_rat @ X2 ) ) ) ).
% abs_add_one_gt_zero
thf(fact_5786_abs__add__one__gt__zero,axiom,
! [X2: int] : ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ ( abs_abs_int @ X2 ) ) ) ).
% abs_add_one_gt_zero
thf(fact_5787_norm__less__p1,axiom,
! [X2: real] : ( ord_less_real @ ( real_V7735802525324610683m_real @ X2 ) @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ ( real_V1803761363581548252l_real @ ( real_V7735802525324610683m_real @ X2 ) ) @ one_one_real ) ) ) ).
% norm_less_p1
thf(fact_5788_norm__less__p1,axiom,
! [X2: complex] : ( ord_less_real @ ( real_V1022390504157884413omplex @ X2 ) @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( real_V1022390504157884413omplex @ X2 ) ) @ one_one_complex ) ) ) ).
% norm_less_p1
thf(fact_5789_of__int__leD,axiom,
! [N: int,X2: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( ring_18347121197199848620nteger @ N ) ) @ X2 )
=> ( ( N = zero_zero_int )
| ( ord_le3102999989581377725nteger @ one_one_Code_integer @ X2 ) ) ) ).
% of_int_leD
thf(fact_5790_of__int__leD,axiom,
! [N: int,X2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ ( ring_1_of_int_real @ N ) ) @ X2 )
=> ( ( N = zero_zero_int )
| ( ord_less_eq_real @ one_one_real @ X2 ) ) ) ).
% of_int_leD
thf(fact_5791_of__int__leD,axiom,
! [N: int,X2: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ ( ring_1_of_int_rat @ N ) ) @ X2 )
=> ( ( N = zero_zero_int )
| ( ord_less_eq_rat @ one_one_rat @ X2 ) ) ) ).
% of_int_leD
thf(fact_5792_of__int__leD,axiom,
! [N: int,X2: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ ( ring_1_of_int_int @ N ) ) @ X2 )
=> ( ( N = zero_zero_int )
| ( ord_less_eq_int @ one_one_int @ X2 ) ) ) ).
% of_int_leD
thf(fact_5793_of__int__lessD,axiom,
! [N: int,X2: code_integer] :
( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ ( ring_18347121197199848620nteger @ N ) ) @ X2 )
=> ( ( N = zero_zero_int )
| ( ord_le6747313008572928689nteger @ one_one_Code_integer @ X2 ) ) ) ).
% of_int_lessD
thf(fact_5794_of__int__lessD,axiom,
! [N: int,X2: real] :
( ( ord_less_real @ ( abs_abs_real @ ( ring_1_of_int_real @ N ) ) @ X2 )
=> ( ( N = zero_zero_int )
| ( ord_less_real @ one_one_real @ X2 ) ) ) ).
% of_int_lessD
thf(fact_5795_of__int__lessD,axiom,
! [N: int,X2: rat] :
( ( ord_less_rat @ ( abs_abs_rat @ ( ring_1_of_int_rat @ N ) ) @ X2 )
=> ( ( N = zero_zero_int )
| ( ord_less_rat @ one_one_rat @ X2 ) ) ) ).
% of_int_lessD
thf(fact_5796_of__int__lessD,axiom,
! [N: int,X2: int] :
( ( ord_less_int @ ( abs_abs_int @ ( ring_1_of_int_int @ N ) ) @ X2 )
=> ( ( N = zero_zero_int )
| ( ord_less_int @ one_one_int @ X2 ) ) ) ).
% of_int_lessD
thf(fact_5797_pos__minus__divide__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).
% pos_minus_divide_less_eq
thf(fact_5798_pos__minus__divide__less__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
= ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).
% pos_minus_divide_less_eq
thf(fact_5799_pos__less__minus__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).
% pos_less_minus_divide_eq
thf(fact_5800_pos__less__minus__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).
% pos_less_minus_divide_eq
thf(fact_5801_neg__minus__divide__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).
% neg_minus_divide_less_eq
thf(fact_5802_neg__minus__divide__less__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
= ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).
% neg_minus_divide_less_eq
thf(fact_5803_neg__less__minus__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).
% neg_less_minus_divide_eq
thf(fact_5804_neg__less__minus__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).
% neg_less_minus_divide_eq
thf(fact_5805_minus__divide__less__eq,axiom,
! [B: real,C: real,A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ A ) ) ) ) ) ) ).
% minus_divide_less_eq
thf(fact_5806_minus__divide__less__eq,axiom,
! [B: rat,C: rat,A: rat] :
( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).
% minus_divide_less_eq
thf(fact_5807_less__minus__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ A @ zero_zero_real ) ) ) ) ) ) ).
% less_minus_divide_eq
thf(fact_5808_less__minus__divide__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).
% less_minus_divide_eq
thf(fact_5809_divide__eq__eq__numeral_I2_J,axiom,
! [B: real,C: real,W: num] :
( ( ( divide_divide_real @ B @ C )
= ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= ( ( ( C != zero_zero_real )
=> ( B
= ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
& ( ( C = zero_zero_real )
=> ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
= zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral(2)
thf(fact_5810_divide__eq__eq__numeral_I2_J,axiom,
! [B: complex,C: complex,W: num] :
( ( ( divide1717551699836669952omplex @ B @ C )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
= ( ( ( C != zero_zero_complex )
=> ( B
= ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ C ) ) )
& ( ( C = zero_zero_complex )
=> ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
= zero_zero_complex ) ) ) ) ).
% divide_eq_eq_numeral(2)
thf(fact_5811_divide__eq__eq__numeral_I2_J,axiom,
! [B: rat,C: rat,W: num] :
( ( ( divide_divide_rat @ B @ C )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
= ( ( ( C != zero_zero_rat )
=> ( B
= ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
& ( ( C = zero_zero_rat )
=> ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
= zero_zero_rat ) ) ) ) ).
% divide_eq_eq_numeral(2)
thf(fact_5812_eq__divide__eq__numeral_I2_J,axiom,
! [W: num,B: real,C: real] :
( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
= ( divide_divide_real @ B @ C ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C )
= B ) )
& ( ( C = zero_zero_real )
=> ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
= zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral(2)
thf(fact_5813_eq__divide__eq__numeral_I2_J,axiom,
! [W: num,B: complex,C: complex] :
( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
= ( divide1717551699836669952omplex @ B @ C ) )
= ( ( ( C != zero_zero_complex )
=> ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ C )
= B ) )
& ( ( C = zero_zero_complex )
=> ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
= zero_zero_complex ) ) ) ) ).
% eq_divide_eq_numeral(2)
thf(fact_5814_eq__divide__eq__numeral_I2_J,axiom,
! [W: num,B: rat,C: rat] :
( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
= ( divide_divide_rat @ B @ C ) )
= ( ( ( C != zero_zero_rat )
=> ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C )
= B ) )
& ( ( C = zero_zero_rat )
=> ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
= zero_zero_rat ) ) ) ) ).
% eq_divide_eq_numeral(2)
thf(fact_5815_add__divide__eq__if__simps_I3_J,axiom,
! [Z: real,A: real,B: real] :
( ( ( Z = zero_zero_real )
=> ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
= B ) )
& ( ( Z != zero_zero_real )
=> ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
= ( divide_divide_real @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(3)
thf(fact_5816_add__divide__eq__if__simps_I3_J,axiom,
! [Z: complex,A: complex,B: complex] :
( ( ( Z = zero_zero_complex )
=> ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z ) ) @ B )
= B ) )
& ( ( Z != zero_zero_complex )
=> ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z ) ) @ B )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(3)
thf(fact_5817_add__divide__eq__if__simps_I3_J,axiom,
! [Z: rat,A: rat,B: rat] :
( ( ( Z = zero_zero_rat )
=> ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z ) ) @ B )
= B ) )
& ( ( Z != zero_zero_rat )
=> ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z ) ) @ B )
= ( divide_divide_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_rat @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(3)
thf(fact_5818_minus__divide__add__eq__iff,axiom,
! [Z: real,X2: real,Y2: real] :
( ( Z != zero_zero_real )
=> ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ X2 @ Z ) ) @ Y2 )
= ( divide_divide_real @ ( plus_plus_real @ ( uminus_uminus_real @ X2 ) @ ( times_times_real @ Y2 @ Z ) ) @ Z ) ) ) ).
% minus_divide_add_eq_iff
thf(fact_5819_minus__divide__add__eq__iff,axiom,
! [Z: complex,X2: complex,Y2: complex] :
( ( Z != zero_zero_complex )
=> ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ X2 @ Z ) ) @ Y2 )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ X2 ) @ ( times_times_complex @ Y2 @ Z ) ) @ Z ) ) ) ).
% minus_divide_add_eq_iff
thf(fact_5820_minus__divide__add__eq__iff,axiom,
! [Z: rat,X2: rat,Y2: rat] :
( ( Z != zero_zero_rat )
=> ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ X2 @ Z ) ) @ Y2 )
= ( divide_divide_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ X2 ) @ ( times_times_rat @ Y2 @ Z ) ) @ Z ) ) ) ).
% minus_divide_add_eq_iff
thf(fact_5821_minus__divide__diff__eq__iff,axiom,
! [Z: real,X2: real,Y2: real] :
( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ X2 @ Z ) ) @ Y2 )
= ( divide_divide_real @ ( minus_minus_real @ ( uminus_uminus_real @ X2 ) @ ( times_times_real @ Y2 @ Z ) ) @ Z ) ) ) ).
% minus_divide_diff_eq_iff
thf(fact_5822_minus__divide__diff__eq__iff,axiom,
! [Z: complex,X2: complex,Y2: complex] :
( ( Z != zero_zero_complex )
=> ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ X2 @ Z ) ) @ Y2 )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ X2 ) @ ( times_times_complex @ Y2 @ Z ) ) @ Z ) ) ) ).
% minus_divide_diff_eq_iff
thf(fact_5823_minus__divide__diff__eq__iff,axiom,
! [Z: rat,X2: rat,Y2: rat] :
( ( Z != zero_zero_rat )
=> ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ X2 @ Z ) ) @ Y2 )
= ( divide_divide_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ X2 ) @ ( times_times_rat @ Y2 @ Z ) ) @ Z ) ) ) ).
% minus_divide_diff_eq_iff
thf(fact_5824_add__divide__eq__if__simps_I5_J,axiom,
! [Z: real,A: real,B: real] :
( ( ( Z = zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ A @ Z ) @ B )
= ( uminus_uminus_real @ B ) ) )
& ( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ A @ Z ) @ B )
= ( divide_divide_real @ ( minus_minus_real @ A @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(5)
thf(fact_5825_add__divide__eq__if__simps_I5_J,axiom,
! [Z: complex,A: complex,B: complex] :
( ( ( Z = zero_zero_complex )
=> ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
= ( uminus1482373934393186551omplex @ B ) ) )
& ( ( Z != zero_zero_complex )
=> ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ A @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(5)
thf(fact_5826_add__divide__eq__if__simps_I5_J,axiom,
! [Z: rat,A: rat,B: rat] :
( ( ( Z = zero_zero_rat )
=> ( ( minus_minus_rat @ ( divide_divide_rat @ A @ Z ) @ B )
= ( uminus_uminus_rat @ B ) ) )
& ( ( Z != zero_zero_rat )
=> ( ( minus_minus_rat @ ( divide_divide_rat @ A @ Z ) @ B )
= ( divide_divide_rat @ ( minus_minus_rat @ A @ ( times_times_rat @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(5)
thf(fact_5827_add__divide__eq__if__simps_I6_J,axiom,
! [Z: real,A: real,B: real] :
( ( ( Z = zero_zero_real )
=> ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
= ( uminus_uminus_real @ B ) ) )
& ( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
= ( divide_divide_real @ ( minus_minus_real @ ( uminus_uminus_real @ A ) @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(6)
thf(fact_5828_add__divide__eq__if__simps_I6_J,axiom,
! [Z: complex,A: complex,B: complex] :
( ( ( Z = zero_zero_complex )
=> ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z ) ) @ B )
= ( uminus1482373934393186551omplex @ B ) ) )
& ( ( Z != zero_zero_complex )
=> ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z ) ) @ B )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(6)
thf(fact_5829_add__divide__eq__if__simps_I6_J,axiom,
! [Z: rat,A: rat,B: rat] :
( ( ( Z = zero_zero_rat )
=> ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z ) ) @ B )
= ( uminus_uminus_rat @ B ) ) )
& ( ( Z != zero_zero_rat )
=> ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z ) ) @ B )
= ( divide_divide_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_rat @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(6)
thf(fact_5830_even__minus,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( uminus_uminus_int @ A ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).
% even_minus
thf(fact_5831_even__minus,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( uminus1351360451143612070nteger @ A ) )
= ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).
% even_minus
thf(fact_5832_power2__eq__iff,axiom,
! [X2: real,Y2: real] :
( ( ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ( X2 = Y2 )
| ( X2
= ( uminus_uminus_real @ Y2 ) ) ) ) ).
% power2_eq_iff
thf(fact_5833_power2__eq__iff,axiom,
! [X2: int,Y2: int] :
( ( ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ( X2 = Y2 )
| ( X2
= ( uminus_uminus_int @ Y2 ) ) ) ) ).
% power2_eq_iff
thf(fact_5834_power2__eq__iff,axiom,
! [X2: complex,Y2: complex] :
( ( ( power_power_complex @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_complex @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ( X2 = Y2 )
| ( X2
= ( uminus1482373934393186551omplex @ Y2 ) ) ) ) ).
% power2_eq_iff
thf(fact_5835_power2__eq__iff,axiom,
! [X2: rat,Y2: rat] :
( ( ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ( X2 = Y2 )
| ( X2
= ( uminus_uminus_rat @ Y2 ) ) ) ) ).
% power2_eq_iff
thf(fact_5836_power2__eq__iff,axiom,
! [X2: code_integer,Y2: code_integer] :
( ( ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_8256067586552552935nteger @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ( X2 = Y2 )
| ( X2
= ( uminus1351360451143612070nteger @ Y2 ) ) ) ) ).
% power2_eq_iff
thf(fact_5837_lemma__interval,axiom,
! [A: real,X2: real,B: real] :
( ( ord_less_real @ A @ X2 )
=> ( ( ord_less_real @ X2 @ B )
=> ? [D3: real] :
( ( ord_less_real @ zero_zero_real @ D3 )
& ! [Y4: real] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ Y4 ) ) @ D3 )
=> ( ( ord_less_eq_real @ A @ Y4 )
& ( ord_less_eq_real @ Y4 @ B ) ) ) ) ) ) ).
% lemma_interval
thf(fact_5838_round__diff__minimal,axiom,
! [Z: real,M: int] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ Z ) ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ Z @ ( ring_1_of_int_real @ M ) ) ) ) ).
% round_diff_minimal
thf(fact_5839_round__diff__minimal,axiom,
! [Z: rat,M: int] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ Z @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ Z ) ) ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ Z @ ( ring_1_of_int_rat @ M ) ) ) ) ).
% round_diff_minimal
thf(fact_5840_norm__triangle__ineq3,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) ) ).
% norm_triangle_ineq3
thf(fact_5841_norm__triangle__ineq3,axiom,
! [A: complex,B: complex] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) ) ) ).
% norm_triangle_ineq3
thf(fact_5842_abs__le__square__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ ( abs_abs_real @ Y2 ) )
= ( ord_less_eq_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_le_square_iff
thf(fact_5843_abs__le__square__iff,axiom,
! [X2: code_integer,Y2: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X2 ) @ ( abs_abs_Code_integer @ Y2 ) )
= ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_le_square_iff
thf(fact_5844_abs__le__square__iff,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ X2 ) @ ( abs_abs_rat @ Y2 ) )
= ( ord_less_eq_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_le_square_iff
thf(fact_5845_abs__le__square__iff,axiom,
! [X2: int,Y2: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ X2 ) @ ( abs_abs_int @ Y2 ) )
= ( ord_less_eq_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_le_square_iff
thf(fact_5846_abs__square__eq__1,axiom,
! [X2: rat] :
( ( ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_rat )
= ( ( abs_abs_rat @ X2 )
= one_one_rat ) ) ).
% abs_square_eq_1
thf(fact_5847_abs__square__eq__1,axiom,
! [X2: real] :
( ( ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_real )
= ( ( abs_abs_real @ X2 )
= one_one_real ) ) ).
% abs_square_eq_1
thf(fact_5848_abs__square__eq__1,axiom,
! [X2: int] :
( ( ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_int )
= ( ( abs_abs_int @ X2 )
= one_one_int ) ) ).
% abs_square_eq_1
thf(fact_5849_abs__square__eq__1,axiom,
! [X2: code_integer] :
( ( ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_Code_integer )
= ( ( abs_abs_Code_integer @ X2 )
= one_one_Code_integer ) ) ).
% abs_square_eq_1
thf(fact_5850_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_H_Osimps_I3_J,axiom,
! [A: $o,B: $o,Va: nat] :
( ( vEBT_T_p_r_e_d2 @ ( vEBT_Leaf @ A @ B ) @ ( suc @ ( suc @ Va ) ) )
= one_one_nat ) ).
% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d'.simps(3)
thf(fact_5851_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_H_Osimps_I1_J,axiom,
! [Uu: $o,Uv: $o] :
( ( vEBT_T_p_r_e_d2 @ ( vEBT_Leaf @ Uu @ Uv ) @ zero_zero_nat )
= one_one_nat ) ).
% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d'.simps(1)
thf(fact_5852_power__even__abs,axiom,
! [N: nat,A: rat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( abs_abs_rat @ A ) @ N )
= ( power_power_rat @ A @ N ) ) ) ).
% power_even_abs
thf(fact_5853_power__even__abs,axiom,
! [N: nat,A: real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( abs_abs_real @ A ) @ N )
= ( power_power_real @ A @ N ) ) ) ).
% power_even_abs
thf(fact_5854_power__even__abs,axiom,
! [N: nat,A: int] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( abs_abs_int @ A ) @ N )
= ( power_power_int @ A @ N ) ) ) ).
% power_even_abs
thf(fact_5855_power__even__abs,axiom,
! [N: nat,A: code_integer] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N )
= ( power_8256067586552552935nteger @ A @ N ) ) ) ).
% power_even_abs
thf(fact_5856_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_H_Osimps_I4_J,axiom,
! [Uy: nat,Uz: list_VEBT_VEBT,Va: vEBT_VEBT,Vb: nat] :
( ( vEBT_T_p_r_e_d2 @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy @ Uz @ Va ) @ Vb )
= one_one_nat ) ).
% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d'.simps(4)
thf(fact_5857_le__minus__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ A @ zero_zero_real ) ) ) ) ) ) ).
% le_minus_divide_eq
thf(fact_5858_le__minus__divide__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).
% le_minus_divide_eq
thf(fact_5859_minus__divide__le__eq,axiom,
! [B: real,C: real,A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ) ) ).
% minus_divide_le_eq
thf(fact_5860_minus__divide__le__eq,axiom,
! [B: rat,C: rat,A: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).
% minus_divide_le_eq
thf(fact_5861_neg__le__minus__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).
% neg_le_minus_divide_eq
thf(fact_5862_neg__le__minus__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).
% neg_le_minus_divide_eq
thf(fact_5863_neg__minus__divide__le__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).
% neg_minus_divide_le_eq
thf(fact_5864_neg__minus__divide__le__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
= ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).
% neg_minus_divide_le_eq
thf(fact_5865_pos__le__minus__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).
% pos_le_minus_divide_eq
thf(fact_5866_pos__le__minus__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).
% pos_le_minus_divide_eq
thf(fact_5867_pos__minus__divide__le__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).
% pos_minus_divide_le_eq
thf(fact_5868_pos__minus__divide__le__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
= ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).
% pos_minus_divide_le_eq
thf(fact_5869_divide__less__eq__numeral_I2_J,axiom,
! [B: real,C: real,W: num] :
( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ) ).
% divide_less_eq_numeral(2)
thf(fact_5870_divide__less__eq__numeral_I2_J,axiom,
! [B: rat,C: rat,W: num] :
( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ) ).
% divide_less_eq_numeral(2)
thf(fact_5871_less__divide__eq__numeral_I2_J,axiom,
! [W: num,B: real,C: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ zero_zero_real ) ) ) ) ) ) ).
% less_divide_eq_numeral(2)
thf(fact_5872_less__divide__eq__numeral_I2_J,axiom,
! [W: num,B: rat,C: rat] :
( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ zero_zero_rat ) ) ) ) ) ) ).
% less_divide_eq_numeral(2)
thf(fact_5873_power2__eq__1__iff,axiom,
! [A: real] :
( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_real )
= ( ( A = one_one_real )
| ( A
= ( uminus_uminus_real @ one_one_real ) ) ) ) ).
% power2_eq_1_iff
thf(fact_5874_power2__eq__1__iff,axiom,
! [A: int] :
( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_int )
= ( ( A = one_one_int )
| ( A
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% power2_eq_1_iff
thf(fact_5875_power2__eq__1__iff,axiom,
! [A: complex] :
( ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_complex )
= ( ( A = one_one_complex )
| ( A
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).
% power2_eq_1_iff
thf(fact_5876_power2__eq__1__iff,axiom,
! [A: rat] :
( ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_rat )
= ( ( A = one_one_rat )
| ( A
= ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).
% power2_eq_1_iff
thf(fact_5877_power2__eq__1__iff,axiom,
! [A: code_integer] :
( ( ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_Code_integer )
= ( ( A = one_one_Code_integer )
| ( A
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).
% power2_eq_1_iff
thf(fact_5878_uminus__power__if,axiom,
! [N: nat,A: real] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
= ( power_power_real @ A @ N ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
= ( uminus_uminus_real @ ( power_power_real @ A @ N ) ) ) ) ) ).
% uminus_power_if
thf(fact_5879_uminus__power__if,axiom,
! [N: nat,A: int] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
= ( power_power_int @ A @ N ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
= ( uminus_uminus_int @ ( power_power_int @ A @ N ) ) ) ) ) ).
% uminus_power_if
thf(fact_5880_uminus__power__if,axiom,
! [N: nat,A: complex] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
= ( power_power_complex @ A @ N ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
= ( uminus1482373934393186551omplex @ ( power_power_complex @ A @ N ) ) ) ) ) ).
% uminus_power_if
thf(fact_5881_uminus__power__if,axiom,
! [N: nat,A: rat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
= ( power_power_rat @ A @ N ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
= ( uminus_uminus_rat @ ( power_power_rat @ A @ N ) ) ) ) ) ).
% uminus_power_if
thf(fact_5882_uminus__power__if,axiom,
! [N: nat,A: code_integer] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
= ( power_8256067586552552935nteger @ A @ N ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
= ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ A @ N ) ) ) ) ) ).
% uminus_power_if
thf(fact_5883_neg__one__power__add__eq__neg__one__power__diff,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( plus_plus_nat @ N @ K ) )
= ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).
% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5884_neg__one__power__add__eq__neg__one__power__diff,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( plus_plus_nat @ N @ K ) )
= ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).
% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5885_neg__one__power__add__eq__neg__one__power__diff,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( plus_plus_nat @ N @ K ) )
= ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).
% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5886_neg__one__power__add__eq__neg__one__power__diff,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( plus_plus_nat @ N @ K ) )
= ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).
% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5887_neg__one__power__add__eq__neg__one__power__diff,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( plus_plus_nat @ N @ K ) )
= ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).
% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5888_realpow__square__minus__le,axiom,
! [U: real,X2: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( power_power_real @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% realpow_square_minus_le
thf(fact_5889_powr__neg__one,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( powr_real @ X2 @ ( uminus_uminus_real @ one_one_real ) )
= ( divide_divide_real @ one_one_real @ X2 ) ) ) ).
% powr_neg_one
thf(fact_5890_ln__add__one__self__le__self2,axiom,
! [X2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
=> ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X2 ) ) @ X2 ) ) ).
% ln_add_one_self_le_self2
thf(fact_5891_power2__le__iff__abs__le,axiom,
! [Y2: real,X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_eq_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ Y2 ) ) ) ).
% power2_le_iff_abs_le
thf(fact_5892_power2__le__iff__abs__le,axiom,
! [Y2: code_integer,X2: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ Y2 )
=> ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X2 ) @ Y2 ) ) ) ).
% power2_le_iff_abs_le
thf(fact_5893_power2__le__iff__abs__le,axiom,
! [Y2: rat,X2: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
=> ( ( ord_less_eq_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_rat @ ( abs_abs_rat @ X2 ) @ Y2 ) ) ) ).
% power2_le_iff_abs_le
thf(fact_5894_power2__le__iff__abs__le,axiom,
! [Y2: int,X2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Y2 )
=> ( ( ord_less_eq_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_int @ ( abs_abs_int @ X2 ) @ Y2 ) ) ) ).
% power2_le_iff_abs_le
thf(fact_5895_abs__sqrt__wlog,axiom,
! [P: real > real > $o,X2: real] :
( ! [X3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( P @ X3 @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ ( abs_abs_real @ X2 ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_sqrt_wlog
thf(fact_5896_abs__sqrt__wlog,axiom,
! [P: code_integer > code_integer > $o,X2: code_integer] :
( ! [X3: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X3 )
=> ( P @ X3 @ ( power_8256067586552552935nteger @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ ( abs_abs_Code_integer @ X2 ) @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_sqrt_wlog
thf(fact_5897_abs__sqrt__wlog,axiom,
! [P: rat > rat > $o,X2: rat] :
( ! [X3: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
=> ( P @ X3 @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ ( abs_abs_rat @ X2 ) @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_sqrt_wlog
thf(fact_5898_abs__sqrt__wlog,axiom,
! [P: int > int > $o,X2: int] :
( ! [X3: int] :
( ( ord_less_eq_int @ zero_zero_int @ X3 )
=> ( P @ X3 @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ ( abs_abs_int @ X2 ) @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_sqrt_wlog
thf(fact_5899_abs__square__le__1,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real )
= ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real ) ) ).
% abs_square_le_1
thf(fact_5900_abs__square__le__1,axiom,
! [X2: code_integer] :
( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer )
= ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X2 ) @ one_one_Code_integer ) ) ).
% abs_square_le_1
thf(fact_5901_abs__square__le__1,axiom,
! [X2: rat] :
( ( ord_less_eq_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat )
= ( ord_less_eq_rat @ ( abs_abs_rat @ X2 ) @ one_one_rat ) ) ).
% abs_square_le_1
thf(fact_5902_abs__square__le__1,axiom,
! [X2: int] :
( ( ord_less_eq_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int )
= ( ord_less_eq_int @ ( abs_abs_int @ X2 ) @ one_one_int ) ) ).
% abs_square_le_1
thf(fact_5903_abs__square__less__1,axiom,
! [X2: code_integer] :
( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer )
= ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ X2 ) @ one_one_Code_integer ) ) ).
% abs_square_less_1
thf(fact_5904_abs__square__less__1,axiom,
! [X2: real] :
( ( ord_less_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real )
= ( ord_less_real @ ( abs_abs_real @ X2 ) @ one_one_real ) ) ).
% abs_square_less_1
thf(fact_5905_abs__square__less__1,axiom,
! [X2: rat] :
( ( ord_less_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat )
= ( ord_less_rat @ ( abs_abs_rat @ X2 ) @ one_one_rat ) ) ).
% abs_square_less_1
thf(fact_5906_abs__square__less__1,axiom,
! [X2: int] :
( ( ord_less_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int )
= ( ord_less_int @ ( abs_abs_int @ X2 ) @ one_one_int ) ) ).
% abs_square_less_1
thf(fact_5907_power__mono__even,axiom,
! [N: nat,A: real,B: real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).
% power_mono_even
thf(fact_5908_power__mono__even,axiom,
! [N: nat,A: code_integer,B: code_integer] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) )
=> ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( power_8256067586552552935nteger @ B @ N ) ) ) ) ).
% power_mono_even
thf(fact_5909_power__mono__even,axiom,
! [N: nat,A: rat,B: rat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ).
% power_mono_even
thf(fact_5910_power__mono__even,axiom,
! [N: nat,A: int,B: int] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).
% power_mono_even
thf(fact_5911_divide__le__eq__numeral_I2_J,axiom,
! [B: real,C: real,W: num] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ) ).
% divide_le_eq_numeral(2)
thf(fact_5912_divide__le__eq__numeral_I2_J,axiom,
! [B: rat,C: rat,W: num] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ) ).
% divide_le_eq_numeral(2)
thf(fact_5913_le__divide__eq__numeral_I2_J,axiom,
! [W: num,B: real,C: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ zero_zero_real ) ) ) ) ) ) ).
% le_divide_eq_numeral(2)
thf(fact_5914_le__divide__eq__numeral_I2_J,axiom,
! [W: num,B: rat,C: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ zero_zero_rat ) ) ) ) ) ) ).
% le_divide_eq_numeral(2)
thf(fact_5915_square__le__1,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
=> ( ( ord_less_eq_real @ X2 @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ).
% square_le_1
thf(fact_5916_square__le__1,axiom,
! [X2: code_integer] :
( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ X2 )
=> ( ( ord_le3102999989581377725nteger @ X2 @ one_one_Code_integer )
=> ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer ) ) ) ).
% square_le_1
thf(fact_5917_square__le__1,axiom,
! [X2: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ X2 )
=> ( ( ord_less_eq_rat @ X2 @ one_one_rat )
=> ( ord_less_eq_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat ) ) ) ).
% square_le_1
thf(fact_5918_square__le__1,axiom,
! [X2: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ X2 )
=> ( ( ord_less_eq_int @ X2 @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).
% square_le_1
thf(fact_5919_minus__power__mult__self,axiom,
! [A: real,N: nat] :
( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N ) @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N ) )
= ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% minus_power_mult_self
thf(fact_5920_minus__power__mult__self,axiom,
! [A: int,N: nat] :
( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) )
= ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% minus_power_mult_self
thf(fact_5921_minus__power__mult__self,axiom,
! [A: complex,N: nat] :
( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N ) )
= ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% minus_power_mult_self
thf(fact_5922_minus__power__mult__self,axiom,
! [A: rat,N: nat] :
( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N ) @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N ) )
= ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% minus_power_mult_self
thf(fact_5923_minus__power__mult__self,axiom,
! [A: code_integer,N: nat] :
( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N ) )
= ( power_8256067586552552935nteger @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% minus_power_mult_self
thf(fact_5924_minus__one__power__iff,axiom,
! [N: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
= one_one_real ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
= ( uminus_uminus_real @ one_one_real ) ) ) ) ).
% minus_one_power_iff
thf(fact_5925_minus__one__power__iff,axiom,
! [N: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
= one_one_int ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% minus_one_power_iff
thf(fact_5926_minus__one__power__iff,axiom,
! [N: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
= one_one_complex ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).
% minus_one_power_iff
thf(fact_5927_minus__one__power__iff,axiom,
! [N: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
= one_one_rat ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
= ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).
% minus_one_power_iff
thf(fact_5928_minus__one__power__iff,axiom,
! [N: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
= one_one_Code_integer ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).
% minus_one_power_iff
thf(fact_5929_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_H_Osimps_I2_J,axiom,
! [A: $o,Uw: $o] :
( ( vEBT_T_p_r_e_d2 @ ( vEBT_Leaf @ A @ Uw ) @ ( suc @ zero_zero_nat ) )
= one_one_nat ) ).
% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d'.simps(2)
thf(fact_5930_Bernoulli__inequality,axiom,
! [X2: real,N: nat] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
=> ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X2 ) ) @ ( power_power_real @ ( plus_plus_real @ one_one_real @ X2 ) @ N ) ) ) ).
% Bernoulli_inequality
thf(fact_5931_ln__one__minus__pos__upper__bound,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ X2 @ one_one_real )
=> ( ord_less_eq_real @ ( ln_ln_real @ ( minus_minus_real @ one_one_real @ X2 ) ) @ ( uminus_uminus_real @ X2 ) ) ) ) ).
% ln_one_minus_pos_upper_bound
thf(fact_5932_abs__ln__one__plus__x__minus__x__bound__nonpos,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
=> ( ( ord_less_eq_real @ X2 @ zero_zero_real )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X2 ) ) @ X2 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% abs_ln_one_plus_x_minus_x_bound_nonpos
thf(fact_5933_power__minus1__odd,axiom,
! [N: nat] :
( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% power_minus1_odd
thf(fact_5934_power__minus1__odd,axiom,
! [N: nat] :
( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% power_minus1_odd
thf(fact_5935_power__minus1__odd,axiom,
! [N: nat] :
( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% power_minus1_odd
thf(fact_5936_power__minus1__odd,axiom,
! [N: nat] :
( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( uminus_uminus_rat @ one_one_rat ) ) ).
% power_minus1_odd
thf(fact_5937_power__minus1__odd,axiom,
! [N: nat] :
( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% power_minus1_odd
thf(fact_5938_log__minus__eq__powr,axiom,
! [B: real,X2: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( B != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( minus_minus_real @ ( log @ B @ X2 ) @ Y2 )
= ( log @ B @ ( times_times_real @ X2 @ ( powr_real @ B @ ( uminus_uminus_real @ Y2 ) ) ) ) ) ) ) ) ).
% log_minus_eq_powr
thf(fact_5939_pred__bound__height_H,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ord_less_eq_nat @ ( vEBT_T_p_r_e_d2 @ T2 @ X2 ) @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ T2 ) ) ) ) ).
% pred_bound_height'
thf(fact_5940_powr__neg__numeral,axiom,
! [X2: real,N: num] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( powr_real @ X2 @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( divide_divide_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ N ) ) ) ) ) ).
% powr_neg_numeral
thf(fact_5941_of__int__round__abs__le,axiom,
! [X2: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X2 ) ) @ X2 ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% of_int_round_abs_le
thf(fact_5942_of__int__round__abs__le,axiom,
! [X2: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X2 ) ) @ X2 ) ) @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).
% of_int_round_abs_le
thf(fact_5943_round__unique_H,axiom,
! [X2: real,N: int] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ ( ring_1_of_int_real @ N ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( archim8280529875227126926d_real @ X2 )
= N ) ) ).
% round_unique'
thf(fact_5944_round__unique_H,axiom,
! [X2: rat,N: int] :
( ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X2 @ ( ring_1_of_int_rat @ N ) ) ) @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
=> ( ( archim7778729529865785530nd_rat @ X2 )
= N ) ) ).
% round_unique'
thf(fact_5945_abs__ln__one__plus__x__minus__x__bound__nonneg,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ X2 @ one_one_real )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X2 ) ) @ X2 ) ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% abs_ln_one_plus_x_minus_x_bound_nonneg
thf(fact_5946_arsinh__def,axiom,
( arsinh_real
= ( ^ [X: real] : ( ln_ln_real @ ( plus_plus_real @ X @ ( powr_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) @ ( real_V1803761363581548252l_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% arsinh_def
thf(fact_5947_sum_Ofinite__Collect__op,axiom,
! [I5: set_real,X2: real > complex,Y2: real > complex] :
( ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( X2 @ I3 )
!= zero_zero_complex ) ) ) )
=> ( ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( Y2 @ I3 )
!= zero_zero_complex ) ) ) )
=> ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( plus_plus_complex @ ( X2 @ I3 ) @ ( Y2 @ I3 ) )
!= zero_zero_complex ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_5948_sum_Ofinite__Collect__op,axiom,
! [I5: set_VEBT_VEBT,X2: vEBT_VEBT > complex,Y2: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I5 )
& ( ( X2 @ I3 )
!= zero_zero_complex ) ) ) )
=> ( ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I5 )
& ( ( Y2 @ I3 )
!= zero_zero_complex ) ) ) )
=> ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I5 )
& ( ( plus_plus_complex @ ( X2 @ I3 ) @ ( Y2 @ I3 ) )
!= zero_zero_complex ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_5949_sum_Ofinite__Collect__op,axiom,
! [I5: set_nat,X2: nat > complex,Y2: nat > complex] :
( ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( X2 @ I3 )
!= zero_zero_complex ) ) ) )
=> ( ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( Y2 @ I3 )
!= zero_zero_complex ) ) ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( plus_plus_complex @ ( X2 @ I3 ) @ ( Y2 @ I3 ) )
!= zero_zero_complex ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_5950_sum_Ofinite__Collect__op,axiom,
! [I5: set_int,X2: int > complex,Y2: int > complex] :
( ( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( member_int @ I3 @ I5 )
& ( ( X2 @ I3 )
!= zero_zero_complex ) ) ) )
=> ( ( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( member_int @ I3 @ I5 )
& ( ( Y2 @ I3 )
!= zero_zero_complex ) ) ) )
=> ( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( member_int @ I3 @ I5 )
& ( ( plus_plus_complex @ ( X2 @ I3 ) @ ( Y2 @ I3 ) )
!= zero_zero_complex ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_5951_sum_Ofinite__Collect__op,axiom,
! [I5: set_complex,X2: complex > complex,Y2: complex > complex] :
( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I3: complex] :
( ( member_complex @ I3 @ I5 )
& ( ( X2 @ I3 )
!= zero_zero_complex ) ) ) )
=> ( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I3: complex] :
( ( member_complex @ I3 @ I5 )
& ( ( Y2 @ I3 )
!= zero_zero_complex ) ) ) )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [I3: complex] :
( ( member_complex @ I3 @ I5 )
& ( ( plus_plus_complex @ ( X2 @ I3 ) @ ( Y2 @ I3 ) )
!= zero_zero_complex ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_5952_sum_Ofinite__Collect__op,axiom,
! [I5: set_Code_integer,X2: code_integer > complex,Y2: code_integer > complex] :
( ( finite6017078050557962740nteger
@ ( collect_Code_integer
@ ^ [I3: code_integer] :
( ( member_Code_integer @ I3 @ I5 )
& ( ( X2 @ I3 )
!= zero_zero_complex ) ) ) )
=> ( ( finite6017078050557962740nteger
@ ( collect_Code_integer
@ ^ [I3: code_integer] :
( ( member_Code_integer @ I3 @ I5 )
& ( ( Y2 @ I3 )
!= zero_zero_complex ) ) ) )
=> ( finite6017078050557962740nteger
@ ( collect_Code_integer
@ ^ [I3: code_integer] :
( ( member_Code_integer @ I3 @ I5 )
& ( ( plus_plus_complex @ ( X2 @ I3 ) @ ( Y2 @ I3 ) )
!= zero_zero_complex ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_5953_sum_Ofinite__Collect__op,axiom,
! [I5: set_real,X2: real > real,Y2: real > real] :
( ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( X2 @ I3 )
!= zero_zero_real ) ) ) )
=> ( ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( Y2 @ I3 )
!= zero_zero_real ) ) ) )
=> ( finite_finite_real
@ ( collect_real
@ ^ [I3: real] :
( ( member_real @ I3 @ I5 )
& ( ( plus_plus_real @ ( X2 @ I3 ) @ ( Y2 @ I3 ) )
!= zero_zero_real ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_5954_sum_Ofinite__Collect__op,axiom,
! [I5: set_VEBT_VEBT,X2: vEBT_VEBT > real,Y2: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I5 )
& ( ( X2 @ I3 )
!= zero_zero_real ) ) ) )
=> ( ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I5 )
& ( ( Y2 @ I3 )
!= zero_zero_real ) ) ) )
=> ( finite5795047828879050333T_VEBT
@ ( collect_VEBT_VEBT
@ ^ [I3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I3 @ I5 )
& ( ( plus_plus_real @ ( X2 @ I3 ) @ ( Y2 @ I3 ) )
!= zero_zero_real ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_5955_sum_Ofinite__Collect__op,axiom,
! [I5: set_nat,X2: nat > real,Y2: nat > real] :
( ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( X2 @ I3 )
!= zero_zero_real ) ) ) )
=> ( ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( Y2 @ I3 )
!= zero_zero_real ) ) ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [I3: nat] :
( ( member_nat @ I3 @ I5 )
& ( ( plus_plus_real @ ( X2 @ I3 ) @ ( Y2 @ I3 ) )
!= zero_zero_real ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_5956_sum_Ofinite__Collect__op,axiom,
! [I5: set_int,X2: int > real,Y2: int > real] :
( ( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( member_int @ I3 @ I5 )
& ( ( X2 @ I3 )
!= zero_zero_real ) ) ) )
=> ( ( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( member_int @ I3 @ I5 )
& ( ( Y2 @ I3 )
!= zero_zero_real ) ) ) )
=> ( finite_finite_int
@ ( collect_int
@ ^ [I3: int] :
( ( member_int @ I3 @ I5 )
& ( ( plus_plus_real @ ( X2 @ I3 ) @ ( Y2 @ I3 ) )
!= zero_zero_real ) ) ) ) ) ) ).
% sum.finite_Collect_op
thf(fact_5957_of__int__code__if,axiom,
( ring_1_of_int_real
= ( ^ [K2: int] :
( if_real @ ( K2 = zero_zero_int ) @ zero_zero_real
@ ( if_real @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus_uminus_real @ ( ring_1_of_int_real @ ( uminus_uminus_int @ K2 ) ) )
@ ( if_real
@ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int )
@ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
@ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_real ) ) ) ) ) ) ).
% of_int_code_if
thf(fact_5958_of__int__code__if,axiom,
( ring_1_of_int_int
= ( ^ [K2: int] :
( if_int @ ( K2 = zero_zero_int ) @ zero_zero_int
@ ( if_int @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus_uminus_int @ ( ring_1_of_int_int @ ( uminus_uminus_int @ K2 ) ) )
@ ( if_int
@ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( ring_1_of_int_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
@ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( ring_1_of_int_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_int ) ) ) ) ) ) ).
% of_int_code_if
thf(fact_5959_of__int__code__if,axiom,
( ring_17405671764205052669omplex
= ( ^ [K2: int] :
( if_complex @ ( K2 = zero_zero_int ) @ zero_zero_complex
@ ( if_complex @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus1482373934393186551omplex @ ( ring_17405671764205052669omplex @ ( uminus_uminus_int @ K2 ) ) )
@ ( if_complex
@ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int )
@ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( ring_17405671764205052669omplex @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
@ ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( ring_17405671764205052669omplex @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_complex ) ) ) ) ) ) ).
% of_int_code_if
thf(fact_5960_of__int__code__if,axiom,
( ring_1_of_int_rat
= ( ^ [K2: int] :
( if_rat @ ( K2 = zero_zero_int ) @ zero_zero_rat
@ ( if_rat @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus_uminus_rat @ ( ring_1_of_int_rat @ ( uminus_uminus_int @ K2 ) ) )
@ ( if_rat
@ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int )
@ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( ring_1_of_int_rat @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
@ ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( ring_1_of_int_rat @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_rat ) ) ) ) ) ) ).
% of_int_code_if
thf(fact_5961_of__int__code__if,axiom,
( ring_18347121197199848620nteger
= ( ^ [K2: int] :
( if_Code_integer @ ( K2 = zero_zero_int ) @ zero_z3403309356797280102nteger
@ ( if_Code_integer @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus1351360451143612070nteger @ ( ring_18347121197199848620nteger @ ( uminus_uminus_int @ K2 ) ) )
@ ( if_Code_integer
@ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int )
@ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( ring_18347121197199848620nteger @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
@ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( ring_18347121197199848620nteger @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_Code_integer ) ) ) ) ) ) ).
% of_int_code_if
thf(fact_5962_compl__le__compl__iff,axiom,
! [X2: set_nat,Y2: set_nat] :
( ( ord_less_eq_set_nat @ ( uminus5710092332889474511et_nat @ X2 ) @ ( uminus5710092332889474511et_nat @ Y2 ) )
= ( ord_less_eq_set_nat @ Y2 @ X2 ) ) ).
% compl_le_compl_iff
thf(fact_5963_monoseq__arctan__series,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
=> ( topolo6980174941875973593q_real
@ ^ [N3: nat] : ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X2 @ ( plus_plus_nat @ ( times_times_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ).
% monoseq_arctan_series
thf(fact_5964_ln__series,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ X2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
=> ( ( ln_ln_real @ X2 )
= ( suminf_real
@ ^ [N3: nat] : ( times_times_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N3 ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ) @ ( power_power_real @ ( minus_minus_real @ X2 @ one_one_real ) @ ( suc @ N3 ) ) ) ) ) ) ) ).
% ln_series
thf(fact_5965_dbl__dec__simps_I4_J,axiom,
( ( neg_nu6075765906172075777c_real @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_5966_dbl__dec__simps_I4_J,axiom,
( ( neg_nu3811975205180677377ec_int @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ one ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_5967_dbl__dec__simps_I4_J,axiom,
( ( neg_nu6511756317524482435omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_5968_dbl__dec__simps_I4_J,axiom,
( ( neg_nu3179335615603231917ec_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit1 @ one ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_5969_dbl__dec__simps_I4_J,axiom,
( ( neg_nu7757733837767384882nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit1 @ one ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_5970_signed__take__bit__rec,axiom,
( bit_ri6519982836138164636nteger
= ( ^ [N3: nat,A3: code_integer] : ( if_Code_integer @ ( N3 = zero_zero_nat ) @ ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( divide6298287555418463151nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% signed_take_bit_rec
thf(fact_5971_signed__take__bit__rec,axiom,
( bit_ri631733984087533419it_int
= ( ^ [N3: nat,A3: int] : ( if_int @ ( N3 = zero_zero_nat ) @ ( uminus_uminus_int @ ( modulo_modulo_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( plus_plus_int @ ( modulo_modulo_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( divide_divide_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% signed_take_bit_rec
thf(fact_5972_Compl__subset__Compl__iff,axiom,
! [A2: set_nat,B4: set_nat] :
( ( ord_less_eq_set_nat @ ( uminus5710092332889474511et_nat @ A2 ) @ ( uminus5710092332889474511et_nat @ B4 ) )
= ( ord_less_eq_set_nat @ B4 @ A2 ) ) ).
% Compl_subset_Compl_iff
thf(fact_5973_Compl__anti__mono,axiom,
! [A2: set_nat,B4: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ B4 )
=> ( ord_less_eq_set_nat @ ( uminus5710092332889474511et_nat @ B4 ) @ ( uminus5710092332889474511et_nat @ A2 ) ) ) ).
% Compl_anti_mono
thf(fact_5974_signed__take__bit__of__0,axiom,
! [N: nat] :
( ( bit_ri631733984087533419it_int @ N @ zero_zero_int )
= zero_zero_int ) ).
% signed_take_bit_of_0
thf(fact_5975_zdvd1__eq,axiom,
! [X2: int] :
( ( dvd_dvd_int @ X2 @ one_one_int )
= ( ( abs_abs_int @ X2 )
= one_one_int ) ) ).
% zdvd1_eq
thf(fact_5976_dbl__dec__simps_I3_J,axiom,
( ( neg_nu6511756317524482435omplex @ one_one_complex )
= one_one_complex ) ).
% dbl_dec_simps(3)
thf(fact_5977_dbl__dec__simps_I3_J,axiom,
( ( neg_nu6075765906172075777c_real @ one_one_real )
= one_one_real ) ).
% dbl_dec_simps(3)
thf(fact_5978_dbl__dec__simps_I3_J,axiom,
( ( neg_nu3179335615603231917ec_rat @ one_one_rat )
= one_one_rat ) ).
% dbl_dec_simps(3)
thf(fact_5979_dbl__dec__simps_I3_J,axiom,
( ( neg_nu3811975205180677377ec_int @ one_one_int )
= one_one_int ) ).
% dbl_dec_simps(3)
thf(fact_5980_signed__take__bit__Suc__1,axiom,
! [N: nat] :
( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ one_one_int )
= one_one_int ) ).
% signed_take_bit_Suc_1
thf(fact_5981_signed__take__bit__numeral__of__1,axiom,
! [K: num] :
( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ K ) @ one_one_int )
= one_one_int ) ).
% signed_take_bit_numeral_of_1
thf(fact_5982_signed__take__bit__of__minus__1,axiom,
! [N: nat] :
( ( bit_ri6519982836138164636nteger @ N @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% signed_take_bit_of_minus_1
thf(fact_5983_signed__take__bit__of__minus__1,axiom,
! [N: nat] :
( ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% signed_take_bit_of_minus_1
thf(fact_5984_negative__eq__positive,axiom,
! [N: nat,M: nat] :
( ( ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) )
= ( semiri1314217659103216013at_int @ M ) )
= ( ( N = zero_zero_nat )
& ( M = zero_zero_nat ) ) ) ).
% negative_eq_positive
thf(fact_5985_zabs__less__one__iff,axiom,
! [Z: int] :
( ( ord_less_int @ ( abs_abs_int @ Z ) @ one_one_int )
= ( Z = zero_zero_int ) ) ).
% zabs_less_one_iff
thf(fact_5986_negative__zle,axiom,
! [N: nat,M: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).
% negative_zle
thf(fact_5987_negative__zless,axiom,
! [N: nat,M: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).
% negative_zless
thf(fact_5988_dbl__dec__simps_I2_J,axiom,
( ( neg_nu6075765906172075777c_real @ zero_zero_real )
= ( uminus_uminus_real @ one_one_real ) ) ).
% dbl_dec_simps(2)
thf(fact_5989_dbl__dec__simps_I2_J,axiom,
( ( neg_nu3811975205180677377ec_int @ zero_zero_int )
= ( uminus_uminus_int @ one_one_int ) ) ).
% dbl_dec_simps(2)
thf(fact_5990_dbl__dec__simps_I2_J,axiom,
( ( neg_nu6511756317524482435omplex @ zero_zero_complex )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% dbl_dec_simps(2)
thf(fact_5991_dbl__dec__simps_I2_J,axiom,
( ( neg_nu3179335615603231917ec_rat @ zero_zero_rat )
= ( uminus_uminus_rat @ one_one_rat ) ) ).
% dbl_dec_simps(2)
thf(fact_5992_dbl__dec__simps_I2_J,axiom,
( ( neg_nu7757733837767384882nteger @ zero_z3403309356797280102nteger )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% dbl_dec_simps(2)
thf(fact_5993_signed__take__bit__Suc__bit0,axiom,
! [N: nat,K: num] :
( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
= ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% signed_take_bit_Suc_bit0
thf(fact_5994_int__div__minus__is__minus1,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ( divide_divide_int @ A @ B )
= ( uminus_uminus_int @ A ) )
= ( B
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% int_div_minus_is_minus1
thf(fact_5995_powser__zero,axiom,
! [F: nat > complex] :
( ( suminf_complex
@ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ zero_zero_complex @ N3 ) ) )
= ( F @ zero_zero_nat ) ) ).
% powser_zero
thf(fact_5996_powser__zero,axiom,
! [F: nat > real] :
( ( suminf_real
@ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ zero_zero_real @ N3 ) ) )
= ( F @ zero_zero_nat ) ) ).
% powser_zero
thf(fact_5997_signed__take__bit__Suc__minus__bit0,axiom,
! [N: nat,K: num] :
( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
= ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% signed_take_bit_Suc_minus_bit0
thf(fact_5998_ceiling__divide__eq__div__numeral,axiom,
! [A: num,B: num] :
( ( archim7802044766580827645g_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) )
= ( uminus_uminus_int @ ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ A ) ) @ ( numeral_numeral_int @ B ) ) ) ) ).
% ceiling_divide_eq_div_numeral
thf(fact_5999_signed__take__bit__0,axiom,
! [A: code_integer] :
( ( bit_ri6519982836138164636nteger @ zero_zero_nat @ A )
= ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).
% signed_take_bit_0
thf(fact_6000_signed__take__bit__0,axiom,
! [A: int] :
( ( bit_ri631733984087533419it_int @ zero_zero_nat @ A )
= ( uminus_uminus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% signed_take_bit_0
thf(fact_6001_ceiling__minus__divide__eq__div__numeral,axiom,
! [A: num,B: num] :
( ( archim7802044766580827645g_real @ ( uminus_uminus_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) ) )
= ( uminus_uminus_int @ ( divide_divide_int @ ( numeral_numeral_int @ A ) @ ( numeral_numeral_int @ B ) ) ) ) ).
% ceiling_minus_divide_eq_div_numeral
thf(fact_6002_signed__take__bit__Suc__bit1,axiom,
! [N: nat,K: num] :
( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
= ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).
% signed_take_bit_Suc_bit1
thf(fact_6003_signed__take__bit__Suc__minus__bit1,axiom,
! [N: nat,K: num] :
( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
= ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).
% signed_take_bit_Suc_minus_bit1
thf(fact_6004_signed__take__bit__minus,axiom,
! [N: nat,K: int] :
( ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ ( bit_ri631733984087533419it_int @ N @ K ) ) )
= ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ K ) ) ) ).
% signed_take_bit_minus
thf(fact_6005_zabs__def,axiom,
( abs_abs_int
= ( ^ [I3: int] : ( if_int @ ( ord_less_int @ I3 @ zero_zero_int ) @ ( uminus_uminus_int @ I3 ) @ I3 ) ) ) ).
% zabs_def
thf(fact_6006_signed__take__bit__add,axiom,
! [N: nat,K: int,L2: int] :
( ( bit_ri631733984087533419it_int @ N @ ( plus_plus_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( bit_ri631733984087533419it_int @ N @ L2 ) ) )
= ( bit_ri631733984087533419it_int @ N @ ( plus_plus_int @ K @ L2 ) ) ) ).
% signed_take_bit_add
thf(fact_6007_signed__take__bit__mult,axiom,
! [N: nat,K: int,L2: int] :
( ( bit_ri631733984087533419it_int @ N @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( bit_ri631733984087533419it_int @ N @ L2 ) ) )
= ( bit_ri631733984087533419it_int @ N @ ( times_times_int @ K @ L2 ) ) ) ).
% signed_take_bit_mult
thf(fact_6008_signed__take__bit__diff,axiom,
! [N: nat,K: int,L2: int] :
( ( bit_ri631733984087533419it_int @ N @ ( minus_minus_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( bit_ri631733984087533419it_int @ N @ L2 ) ) )
= ( bit_ri631733984087533419it_int @ N @ ( minus_minus_int @ K @ L2 ) ) ) ).
% signed_take_bit_diff
thf(fact_6009_uminus__int__code_I1_J,axiom,
( ( uminus_uminus_int @ zero_zero_int )
= zero_zero_int ) ).
% uminus_int_code(1)
thf(fact_6010_int__cases2,axiom,
! [Z: int] :
( ! [N2: nat] :
( Z
!= ( semiri1314217659103216013at_int @ N2 ) )
=> ~ ! [N2: nat] :
( Z
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).
% int_cases2
thf(fact_6011_abs__zmult__eq__1,axiom,
! [M: int,N: int] :
( ( ( abs_abs_int @ ( times_times_int @ M @ N ) )
= one_one_int )
=> ( ( abs_abs_int @ M )
= one_one_int ) ) ).
% abs_zmult_eq_1
thf(fact_6012_int__of__nat__induct,axiom,
! [P: int > $o,Z: int] :
( ! [N2: nat] : ( P @ ( semiri1314217659103216013at_int @ N2 ) )
=> ( ! [N2: nat] : ( P @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) )
=> ( P @ Z ) ) ) ).
% int_of_nat_induct
thf(fact_6013_int__cases,axiom,
! [Z: int] :
( ! [N2: nat] :
( Z
!= ( semiri1314217659103216013at_int @ N2 ) )
=> ~ ! [N2: nat] :
( Z
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ) ).
% int_cases
thf(fact_6014_abs__div,axiom,
! [Y2: int,X2: int] :
( ( dvd_dvd_int @ Y2 @ X2 )
=> ( ( abs_abs_int @ ( divide_divide_int @ X2 @ Y2 ) )
= ( divide_divide_int @ ( abs_abs_int @ X2 ) @ ( abs_abs_int @ Y2 ) ) ) ) ).
% abs_div
thf(fact_6015_zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( ( ( times_times_int @ M @ N )
= one_one_int )
= ( ( ( M = one_one_int )
& ( N = one_one_int ) )
| ( ( M
= ( uminus_uminus_int @ one_one_int ) )
& ( N
= ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).
% zmult_eq_1_iff
thf(fact_6016_pos__zmult__eq__1__iff__lemma,axiom,
! [M: int,N: int] :
( ( ( times_times_int @ M @ N )
= one_one_int )
=> ( ( M = one_one_int )
| ( M
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff_lemma
thf(fact_6017_minus__int__code_I2_J,axiom,
! [L2: int] :
( ( minus_minus_int @ zero_zero_int @ L2 )
= ( uminus_uminus_int @ L2 ) ) ).
% minus_int_code(2)
thf(fact_6018_zmod__zminus1__not__zero,axiom,
! [K: int,L2: int] :
( ( ( modulo_modulo_int @ ( uminus_uminus_int @ K ) @ L2 )
!= zero_zero_int )
=> ( ( modulo_modulo_int @ K @ L2 )
!= zero_zero_int ) ) ).
% zmod_zminus1_not_zero
thf(fact_6019_zmod__zminus2__not__zero,axiom,
! [K: int,L2: int] :
( ( ( modulo_modulo_int @ K @ ( uminus_uminus_int @ L2 ) )
!= zero_zero_int )
=> ( ( modulo_modulo_int @ K @ L2 )
!= zero_zero_int ) ) ).
% zmod_zminus2_not_zero
thf(fact_6020_not__int__zless__negative,axiom,
! [N: nat,M: nat] :
~ ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).
% not_int_zless_negative
thf(fact_6021_signed__take__bit__int__less__eq__self__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ K )
= ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K ) ) ).
% signed_take_bit_int_less_eq_self_iff
thf(fact_6022_signed__take__bit__int__greater__eq__minus__exp,axiom,
! [N: nat,K: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( bit_ri631733984087533419it_int @ N @ K ) ) ).
% signed_take_bit_int_greater_eq_minus_exp
thf(fact_6023_signed__take__bit__int__greater__self__iff,axiom,
! [K: int,N: nat] :
( ( ord_less_int @ K @ ( bit_ri631733984087533419it_int @ N @ K ) )
= ( ord_less_int @ K @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% signed_take_bit_int_greater_self_iff
thf(fact_6024_signed__take__bit__int__eq__self__iff,axiom,
! [N: nat,K: int] :
( ( ( bit_ri631733984087533419it_int @ N @ K )
= K )
= ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K )
& ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% signed_take_bit_int_eq_self_iff
thf(fact_6025_signed__take__bit__int__eq__self,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K )
=> ( ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
=> ( ( bit_ri631733984087533419it_int @ N @ K )
= K ) ) ) ).
% signed_take_bit_int_eq_self
thf(fact_6026_abs__mod__less,axiom,
! [L2: int,K: int] :
( ( L2 != zero_zero_int )
=> ( ord_less_int @ ( abs_abs_int @ ( modulo_modulo_int @ K @ L2 ) ) @ ( abs_abs_int @ L2 ) ) ) ).
% abs_mod_less
thf(fact_6027_dvd__imp__le__int,axiom,
! [I: int,D2: int] :
( ( I != zero_zero_int )
=> ( ( dvd_dvd_int @ D2 @ I )
=> ( ord_less_eq_int @ ( abs_abs_int @ D2 ) @ ( abs_abs_int @ I ) ) ) ) ).
% dvd_imp_le_int
thf(fact_6028_int__cases4,axiom,
! [M: int] :
( ! [N2: nat] :
( M
!= ( semiri1314217659103216013at_int @ N2 ) )
=> ~ ! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( M
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).
% int_cases4
thf(fact_6029_int__zle__neg,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) )
= ( ( N = zero_zero_nat )
& ( M = zero_zero_nat ) ) ) ).
% int_zle_neg
thf(fact_6030_nonpos__int__cases,axiom,
! [K: int] :
( ( ord_less_eq_int @ K @ zero_zero_int )
=> ~ ! [N2: nat] :
( K
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).
% nonpos_int_cases
thf(fact_6031_negative__zle__0,axiom,
! [N: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ zero_zero_int ) ).
% negative_zle_0
thf(fact_6032_zmod__zminus1__eq__if,axiom,
! [A: int,B: int] :
( ( ( ( modulo_modulo_int @ A @ B )
= zero_zero_int )
=> ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
= zero_zero_int ) )
& ( ( ( modulo_modulo_int @ A @ B )
!= zero_zero_int )
=> ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
= ( minus_minus_int @ B @ ( modulo_modulo_int @ A @ B ) ) ) ) ) ).
% zmod_zminus1_eq_if
thf(fact_6033_zmod__zminus2__eq__if,axiom,
! [A: int,B: int] :
( ( ( ( modulo_modulo_int @ A @ B )
= zero_zero_int )
=> ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
= zero_zero_int ) )
& ( ( ( modulo_modulo_int @ A @ B )
!= zero_zero_int )
=> ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
= ( minus_minus_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ) ) ).
% zmod_zminus2_eq_if
thf(fact_6034_signed__take__bit__int__greater__eq,axiom,
! [K: int,N: nat] :
( ( ord_less_int @ K @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N ) ) ) @ ( bit_ri631733984087533419it_int @ N @ K ) ) ) ).
% signed_take_bit_int_greater_eq
thf(fact_6035_zdvd__mult__cancel1,axiom,
! [M: int,N: int] :
( ( M != zero_zero_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ M @ N ) @ M )
= ( ( abs_abs_int @ N )
= one_one_int ) ) ) ).
% zdvd_mult_cancel1
thf(fact_6036_int__cases3,axiom,
! [K: int] :
( ( K != zero_zero_int )
=> ( ! [N2: nat] :
( ( K
= ( semiri1314217659103216013at_int @ N2 ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
=> ~ ! [N2: nat] :
( ( K
= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ) ).
% int_cases3
thf(fact_6037_not__zle__0__negative,axiom,
! [N: nat] :
~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) ) ).
% not_zle_0_negative
thf(fact_6038_negD,axiom,
! [X2: int] :
( ( ord_less_int @ X2 @ zero_zero_int )
=> ? [N2: nat] :
( X2
= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ) ).
% negD
thf(fact_6039_negative__zless__0,axiom,
! [N: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) @ zero_zero_int ) ).
% negative_zless_0
thf(fact_6040_verit__less__mono__div__int2,axiom,
! [A2: int,B4: int,N: int] :
( ( ord_less_eq_int @ A2 @ B4 )
=> ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ N ) )
=> ( ord_less_eq_int @ ( divide_divide_int @ B4 @ N ) @ ( divide_divide_int @ A2 @ N ) ) ) ) ).
% verit_less_mono_div_int2
thf(fact_6041_div__eq__minus1,axiom,
! [B: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ B )
= ( uminus_uminus_int @ one_one_int ) ) ) ).
% div_eq_minus1
thf(fact_6042_ceiling__divide__eq__div,axiom,
! [A: int,B: int] :
( ( archim7802044766580827645g_real @ ( divide_divide_real @ ( ring_1_of_int_real @ A ) @ ( ring_1_of_int_real @ B ) ) )
= ( uminus_uminus_int @ ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).
% ceiling_divide_eq_div
thf(fact_6043_ceiling__divide__eq__div,axiom,
! [A: int,B: int] :
( ( archim2889992004027027881ng_rat @ ( divide_divide_rat @ ( ring_1_of_int_rat @ A ) @ ( ring_1_of_int_rat @ B ) ) )
= ( uminus_uminus_int @ ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).
% ceiling_divide_eq_div
thf(fact_6044_signed__take__bit__int__less__exp,axiom,
! [N: nat,K: int] : ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).
% signed_take_bit_int_less_exp
thf(fact_6045_even__signed__take__bit__iff,axiom,
! [M: nat,A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ M @ A ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).
% even_signed_take_bit_iff
thf(fact_6046_even__abs__add__iff,axiom,
! [K: int,L2: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ ( abs_abs_int @ K ) @ L2 ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L2 ) ) ) ).
% even_abs_add_iff
thf(fact_6047_even__add__abs__iff,axiom,
! [K: int,L2: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ ( abs_abs_int @ L2 ) ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L2 ) ) ) ).
% even_add_abs_iff
thf(fact_6048_neg__int__cases,axiom,
! [K: int] :
( ( ord_less_int @ K @ zero_zero_int )
=> ~ ! [N2: nat] :
( ( K
= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% neg_int_cases
thf(fact_6049_minus__mod__int__eq,axiom,
! [L2: int,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ L2 )
=> ( ( modulo_modulo_int @ ( uminus_uminus_int @ K ) @ L2 )
= ( minus_minus_int @ ( minus_minus_int @ L2 @ one_one_int ) @ ( modulo_modulo_int @ ( minus_minus_int @ K @ one_one_int ) @ L2 ) ) ) ) ).
% minus_mod_int_eq
thf(fact_6050_zmod__minus1,axiom,
! [B: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ B )
= ( minus_minus_int @ B @ one_one_int ) ) ) ).
% zmod_minus1
thf(fact_6051_zdiv__zminus1__eq__if,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( ( ( modulo_modulo_int @ A @ B )
= zero_zero_int )
=> ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
= ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) )
& ( ( ( modulo_modulo_int @ A @ B )
!= zero_zero_int )
=> ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
= ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) @ one_one_int ) ) ) ) ) ).
% zdiv_zminus1_eq_if
thf(fact_6052_zdiv__zminus2__eq__if,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( ( ( modulo_modulo_int @ A @ B )
= zero_zero_int )
=> ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) )
& ( ( ( modulo_modulo_int @ A @ B )
!= zero_zero_int )
=> ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
= ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) @ one_one_int ) ) ) ) ) ).
% zdiv_zminus2_eq_if
thf(fact_6053_monoseq__realpow,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ X2 @ one_one_real )
=> ( topolo6980174941875973593q_real @ ( power_power_real @ X2 ) ) ) ) ).
% monoseq_realpow
thf(fact_6054_signed__take__bit__int__less__self__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ K )
= ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K ) ) ).
% signed_take_bit_int_less_self_iff
thf(fact_6055_signed__take__bit__int__greater__eq__self__iff,axiom,
! [K: int,N: nat] :
( ( ord_less_eq_int @ K @ ( bit_ri631733984087533419it_int @ N @ K ) )
= ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).
% signed_take_bit_int_greater_eq_self_iff
thf(fact_6056_nat__intermed__int__val,axiom,
! [M: nat,N: nat,F: nat > int,K: int] :
( ! [I2: nat] :
( ( ( ord_less_eq_nat @ M @ I2 )
& ( ord_less_nat @ I2 @ N ) )
=> ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I2 ) ) @ ( F @ I2 ) ) ) @ one_one_int ) )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_eq_int @ ( F @ M ) @ K )
=> ( ( ord_less_eq_int @ K @ ( F @ N ) )
=> ? [I2: nat] :
( ( ord_less_eq_nat @ M @ I2 )
& ( ord_less_eq_nat @ I2 @ N )
& ( ( F @ I2 )
= K ) ) ) ) ) ) ).
% nat_intermed_int_val
thf(fact_6057_dbl__dec__def,axiom,
( neg_nu6511756317524482435omplex
= ( ^ [X: complex] : ( minus_minus_complex @ ( plus_plus_complex @ X @ X ) @ one_one_complex ) ) ) ).
% dbl_dec_def
thf(fact_6058_dbl__dec__def,axiom,
( neg_nu6075765906172075777c_real
= ( ^ [X: real] : ( minus_minus_real @ ( plus_plus_real @ X @ X ) @ one_one_real ) ) ) ).
% dbl_dec_def
thf(fact_6059_dbl__dec__def,axiom,
( neg_nu3179335615603231917ec_rat
= ( ^ [X: rat] : ( minus_minus_rat @ ( plus_plus_rat @ X @ X ) @ one_one_rat ) ) ) ).
% dbl_dec_def
thf(fact_6060_dbl__dec__def,axiom,
( neg_nu3811975205180677377ec_int
= ( ^ [X: int] : ( minus_minus_int @ ( plus_plus_int @ X @ X ) @ one_one_int ) ) ) ).
% dbl_dec_def
thf(fact_6061_incr__lemma,axiom,
! [D2: int,Z: int,X2: int] :
( ( ord_less_int @ zero_zero_int @ D2 )
=> ( ord_less_int @ Z @ ( plus_plus_int @ X2 @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X2 @ Z ) ) @ one_one_int ) @ D2 ) ) ) ) ).
% incr_lemma
thf(fact_6062_decr__lemma,axiom,
! [D2: int,X2: int,Z: int] :
( ( ord_less_int @ zero_zero_int @ D2 )
=> ( ord_less_int @ ( minus_minus_int @ X2 @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X2 @ Z ) ) @ one_one_int ) @ D2 ) ) @ Z ) ) ).
% decr_lemma
thf(fact_6063_minus__1__div__exp__eq__int,axiom,
! [N: nat] :
( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% minus_1_div_exp_eq_int
thf(fact_6064_div__pos__neg__trivial,axiom,
! [K: int,L2: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( ord_less_eq_int @ ( plus_plus_int @ K @ L2 ) @ zero_zero_int )
=> ( ( divide_divide_int @ K @ L2 )
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% div_pos_neg_trivial
thf(fact_6065_compl__mono,axiom,
! [X2: set_nat,Y2: set_nat] :
( ( ord_less_eq_set_nat @ X2 @ Y2 )
=> ( ord_less_eq_set_nat @ ( uminus5710092332889474511et_nat @ Y2 ) @ ( uminus5710092332889474511et_nat @ X2 ) ) ) ).
% compl_mono
thf(fact_6066_compl__le__swap1,axiom,
! [Y2: set_nat,X2: set_nat] :
( ( ord_less_eq_set_nat @ Y2 @ ( uminus5710092332889474511et_nat @ X2 ) )
=> ( ord_less_eq_set_nat @ X2 @ ( uminus5710092332889474511et_nat @ Y2 ) ) ) ).
% compl_le_swap1
thf(fact_6067_compl__le__swap2,axiom,
! [Y2: set_nat,X2: set_nat] :
( ( ord_less_eq_set_nat @ ( uminus5710092332889474511et_nat @ Y2 ) @ X2 )
=> ( ord_less_eq_set_nat @ ( uminus5710092332889474511et_nat @ X2 ) @ Y2 ) ) ).
% compl_le_swap2
thf(fact_6068_signed__take__bit__int__less__eq,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K )
=> ( ord_less_eq_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( minus_minus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N ) ) ) ) ) ).
% signed_take_bit_int_less_eq
thf(fact_6069_nat__ivt__aux,axiom,
! [N: nat,F: nat > int,K: int] :
( ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I2 ) ) @ ( F @ I2 ) ) ) @ one_one_int ) )
=> ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
=> ( ( ord_less_eq_int @ K @ ( F @ N ) )
=> ? [I2: nat] :
( ( ord_less_eq_nat @ I2 @ N )
& ( ( F @ I2 )
= K ) ) ) ) ) ).
% nat_ivt_aux
thf(fact_6070_int__bit__induct,axiom,
! [P: int > $o,K: int] :
( ( P @ zero_zero_int )
=> ( ( P @ ( uminus_uminus_int @ one_one_int ) )
=> ( ! [K3: int] :
( ( P @ K3 )
=> ( ( K3 != zero_zero_int )
=> ( P @ ( times_times_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) )
=> ( ! [K3: int] :
( ( P @ K3 )
=> ( ( K3
!= ( uminus_uminus_int @ one_one_int ) )
=> ( P @ ( plus_plus_int @ one_one_int @ ( times_times_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) )
=> ( P @ K ) ) ) ) ) ).
% int_bit_induct
thf(fact_6071_m1mod2k,axiom,
! [N: nat] :
( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int ) ) ).
% m1mod2k
thf(fact_6072_nat0__intermed__int__val,axiom,
! [N: nat,F: nat > int,K: int] :
( ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( plus_plus_nat @ I2 @ one_one_nat ) ) @ ( F @ I2 ) ) ) @ one_one_int ) )
=> ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
=> ( ( ord_less_eq_int @ K @ ( F @ N ) )
=> ? [I2: nat] :
( ( ord_less_eq_nat @ I2 @ N )
& ( ( F @ I2 )
= K ) ) ) ) ) ).
% nat0_intermed_int_val
thf(fact_6073_sb__dec__lem_H,axiom,
! [K: nat,A: int] :
( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) @ A )
=> ( ord_less_eq_int @ ( modulo_modulo_int @ ( plus_plus_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ) @ ( plus_plus_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) @ A ) ) ) ).
% sb_dec_lem'
thf(fact_6074_m1mod22k,axiom,
! [N: nat] :
( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
= ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ one_one_int ) ) ).
% m1mod22k
thf(fact_6075_sb__inc__lem_H,axiom,
! [A: int,K: nat] :
( ( ord_less_int @ A @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ ( plus_plus_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ K ) ) ) @ ( modulo_modulo_int @ ( plus_plus_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ K ) ) ) ) ) ).
% sb_inc_lem'
thf(fact_6076_sb__dec__lem,axiom,
! [K: nat,A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) @ A ) )
=> ( ord_less_eq_int @ ( modulo_modulo_int @ ( plus_plus_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ) @ ( plus_plus_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) @ A ) ) ) ).
% sb_dec_lem
thf(fact_6077_signed__take__bit__Suc,axiom,
! [N: nat,A: code_integer] :
( ( bit_ri6519982836138164636nteger @ ( suc @ N ) @ A )
= ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% signed_take_bit_Suc
thf(fact_6078_signed__take__bit__Suc,axiom,
! [N: nat,A: int] :
( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ A )
= ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).
% signed_take_bit_Suc
thf(fact_6079_suminf__geometric,axiom,
! [C: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real )
=> ( ( suminf_real @ ( power_power_real @ C ) )
= ( divide_divide_real @ one_one_real @ ( minus_minus_real @ one_one_real @ C ) ) ) ) ).
% suminf_geometric
thf(fact_6080_suminf__geometric,axiom,
! [C: complex] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real )
=> ( ( suminf_complex @ ( power_power_complex @ C ) )
= ( divide1717551699836669952omplex @ one_one_complex @ ( minus_minus_complex @ one_one_complex @ C ) ) ) ) ).
% suminf_geometric
thf(fact_6081_suminf__zero,axiom,
( ( suminf_complex
@ ^ [N3: nat] : zero_zero_complex )
= zero_zero_complex ) ).
% suminf_zero
thf(fact_6082_suminf__zero,axiom,
( ( suminf_real
@ ^ [N3: nat] : zero_zero_real )
= zero_zero_real ) ).
% suminf_zero
thf(fact_6083_suminf__zero,axiom,
( ( suminf_nat
@ ^ [N3: nat] : zero_zero_nat )
= zero_zero_nat ) ).
% suminf_zero
thf(fact_6084_suminf__zero,axiom,
( ( suminf_int
@ ^ [N3: nat] : zero_zero_int )
= zero_zero_int ) ).
% suminf_zero
thf(fact_6085_arctan__series,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
=> ( ( arctan @ X2 )
= ( suminf_real
@ ^ [K2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X2 @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ) ) ).
% arctan_series
thf(fact_6086_pi__series,axiom,
( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( suminf_real
@ ^ [K2: nat] : ( divide_divide_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ).
% pi_series
thf(fact_6087_dbl__simps_I4_J,axiom,
( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_6088_dbl__simps_I4_J,axiom,
( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_6089_dbl__simps_I4_J,axiom,
( ( neg_nu7009210354673126013omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_6090_dbl__simps_I4_J,axiom,
( ( neg_numeral_dbl_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_6091_dbl__simps_I4_J,axiom,
( ( neg_nu8804712462038260780nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_6092_summable__arctan__series,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
=> ( summable_real
@ ^ [K2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X2 @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ) ).
% summable_arctan_series
thf(fact_6093_arctan__eq__zero__iff,axiom,
! [X2: real] :
( ( ( arctan @ X2 )
= zero_zero_real )
= ( X2 = zero_zero_real ) ) ).
% arctan_eq_zero_iff
thf(fact_6094_arctan__zero__zero,axiom,
( ( arctan @ zero_zero_real )
= zero_zero_real ) ).
% arctan_zero_zero
thf(fact_6095_dbl__simps_I2_J,axiom,
( ( neg_nu7009210354673126013omplex @ zero_zero_complex )
= zero_zero_complex ) ).
% dbl_simps(2)
thf(fact_6096_dbl__simps_I2_J,axiom,
( ( neg_numeral_dbl_real @ zero_zero_real )
= zero_zero_real ) ).
% dbl_simps(2)
thf(fact_6097_dbl__simps_I2_J,axiom,
( ( neg_numeral_dbl_rat @ zero_zero_rat )
= zero_zero_rat ) ).
% dbl_simps(2)
thf(fact_6098_dbl__simps_I2_J,axiom,
( ( neg_numeral_dbl_int @ zero_zero_int )
= zero_zero_int ) ).
% dbl_simps(2)
thf(fact_6099_summable__single,axiom,
! [I: nat,F: nat > complex] :
( summable_complex
@ ^ [R5: nat] : ( if_complex @ ( R5 = I ) @ ( F @ R5 ) @ zero_zero_complex ) ) ).
% summable_single
thf(fact_6100_summable__single,axiom,
! [I: nat,F: nat > real] :
( summable_real
@ ^ [R5: nat] : ( if_real @ ( R5 = I ) @ ( F @ R5 ) @ zero_zero_real ) ) ).
% summable_single
thf(fact_6101_summable__single,axiom,
! [I: nat,F: nat > nat] :
( summable_nat
@ ^ [R5: nat] : ( if_nat @ ( R5 = I ) @ ( F @ R5 ) @ zero_zero_nat ) ) ).
% summable_single
thf(fact_6102_summable__single,axiom,
! [I: nat,F: nat > int] :
( summable_int
@ ^ [R5: nat] : ( if_int @ ( R5 = I ) @ ( F @ R5 ) @ zero_zero_int ) ) ).
% summable_single
thf(fact_6103_summable__zero,axiom,
( summable_complex
@ ^ [N3: nat] : zero_zero_complex ) ).
% summable_zero
thf(fact_6104_summable__zero,axiom,
( summable_real
@ ^ [N3: nat] : zero_zero_real ) ).
% summable_zero
thf(fact_6105_summable__zero,axiom,
( summable_nat
@ ^ [N3: nat] : zero_zero_nat ) ).
% summable_zero
thf(fact_6106_summable__zero,axiom,
( summable_int
@ ^ [N3: nat] : zero_zero_int ) ).
% summable_zero
thf(fact_6107_summable__iff__shift,axiom,
! [F: nat > real,K: nat] :
( ( summable_real
@ ^ [N3: nat] : ( F @ ( plus_plus_nat @ N3 @ K ) ) )
= ( summable_real @ F ) ) ).
% summable_iff_shift
thf(fact_6108_summable__iff__shift,axiom,
! [F: nat > complex,K: nat] :
( ( summable_complex
@ ^ [N3: nat] : ( F @ ( plus_plus_nat @ N3 @ K ) ) )
= ( summable_complex @ F ) ) ).
% summable_iff_shift
thf(fact_6109_zero__less__arctan__iff,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ ( arctan @ X2 ) )
= ( ord_less_real @ zero_zero_real @ X2 ) ) ).
% zero_less_arctan_iff
thf(fact_6110_arctan__less__zero__iff,axiom,
! [X2: real] :
( ( ord_less_real @ ( arctan @ X2 ) @ zero_zero_real )
= ( ord_less_real @ X2 @ zero_zero_real ) ) ).
% arctan_less_zero_iff
thf(fact_6111_zero__le__arctan__iff,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( arctan @ X2 ) )
= ( ord_less_eq_real @ zero_zero_real @ X2 ) ) ).
% zero_le_arctan_iff
thf(fact_6112_arctan__le__zero__iff,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( arctan @ X2 ) @ zero_zero_real )
= ( ord_less_eq_real @ X2 @ zero_zero_real ) ) ).
% arctan_le_zero_iff
thf(fact_6113_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu7009210354673126013omplex @ ( numera6690914467698888265omplex @ K ) )
= ( numera6690914467698888265omplex @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_6114_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) )
= ( numeral_numeral_real @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_6115_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_rat @ ( numeral_numeral_rat @ K ) )
= ( numeral_numeral_rat @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_6116_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_int @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_6117_summable__cmult__iff,axiom,
! [C: complex,F: nat > complex] :
( ( summable_complex
@ ^ [N3: nat] : ( times_times_complex @ C @ ( F @ N3 ) ) )
= ( ( C = zero_zero_complex )
| ( summable_complex @ F ) ) ) ).
% summable_cmult_iff
thf(fact_6118_summable__cmult__iff,axiom,
! [C: real,F: nat > real] :
( ( summable_real
@ ^ [N3: nat] : ( times_times_real @ C @ ( F @ N3 ) ) )
= ( ( C = zero_zero_real )
| ( summable_real @ F ) ) ) ).
% summable_cmult_iff
thf(fact_6119_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
= ( uminus_uminus_real @ ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_6120_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_int @ ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_6121_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu7009210354673126013omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
= ( uminus1482373934393186551omplex @ ( neg_nu7009210354673126013omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_6122_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
= ( uminus_uminus_rat @ ( neg_numeral_dbl_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_6123_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu8804712462038260780nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
= ( uminus1351360451143612070nteger @ ( neg_nu8804712462038260780nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_6124_summable__divide__iff,axiom,
! [F: nat > complex,C: complex] :
( ( summable_complex
@ ^ [N3: nat] : ( divide1717551699836669952omplex @ ( F @ N3 ) @ C ) )
= ( ( C = zero_zero_complex )
| ( summable_complex @ F ) ) ) ).
% summable_divide_iff
thf(fact_6125_summable__divide__iff,axiom,
! [F: nat > real,C: real] :
( ( summable_real
@ ^ [N3: nat] : ( divide_divide_real @ ( F @ N3 ) @ C ) )
= ( ( C = zero_zero_real )
| ( summable_real @ F ) ) ) ).
% summable_divide_iff
thf(fact_6126_summable__If__finite__set,axiom,
! [A2: set_nat,F: nat > complex] :
( ( finite_finite_nat @ A2 )
=> ( summable_complex
@ ^ [R5: nat] : ( if_complex @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_complex ) ) ) ).
% summable_If_finite_set
thf(fact_6127_summable__If__finite__set,axiom,
! [A2: set_nat,F: nat > real] :
( ( finite_finite_nat @ A2 )
=> ( summable_real
@ ^ [R5: nat] : ( if_real @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_real ) ) ) ).
% summable_If_finite_set
thf(fact_6128_summable__If__finite__set,axiom,
! [A2: set_nat,F: nat > nat] :
( ( finite_finite_nat @ A2 )
=> ( summable_nat
@ ^ [R5: nat] : ( if_nat @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_nat ) ) ) ).
% summable_If_finite_set
thf(fact_6129_summable__If__finite__set,axiom,
! [A2: set_nat,F: nat > int] :
( ( finite_finite_nat @ A2 )
=> ( summable_int
@ ^ [R5: nat] : ( if_int @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_int ) ) ) ).
% summable_If_finite_set
thf(fact_6130_summable__If__finite,axiom,
! [P: nat > $o,F: nat > complex] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( summable_complex
@ ^ [R5: nat] : ( if_complex @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_complex ) ) ) ).
% summable_If_finite
thf(fact_6131_summable__If__finite,axiom,
! [P: nat > $o,F: nat > real] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( summable_real
@ ^ [R5: nat] : ( if_real @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_real ) ) ) ).
% summable_If_finite
thf(fact_6132_summable__If__finite,axiom,
! [P: nat > $o,F: nat > nat] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( summable_nat
@ ^ [R5: nat] : ( if_nat @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_nat ) ) ) ).
% summable_If_finite
thf(fact_6133_summable__If__finite,axiom,
! [P: nat > $o,F: nat > int] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( summable_int
@ ^ [R5: nat] : ( if_int @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_int ) ) ) ).
% summable_If_finite
thf(fact_6134_dbl__simps_I3_J,axiom,
( ( neg_nu7009210354673126013omplex @ one_one_complex )
= ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_6135_dbl__simps_I3_J,axiom,
( ( neg_numeral_dbl_real @ one_one_real )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_6136_dbl__simps_I3_J,axiom,
( ( neg_numeral_dbl_rat @ one_one_rat )
= ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_6137_dbl__simps_I3_J,axiom,
( ( neg_numeral_dbl_int @ one_one_int )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_6138_summable__geometric__iff,axiom,
! [C: real] :
( ( summable_real @ ( power_power_real @ C ) )
= ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real ) ) ).
% summable_geometric_iff
thf(fact_6139_summable__geometric__iff,axiom,
! [C: complex] :
( ( summable_complex @ ( power_power_complex @ C ) )
= ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real ) ) ).
% summable_geometric_iff
thf(fact_6140_Compl__eq,axiom,
( uminus612125837232591019t_real
= ( ^ [A6: set_real] :
( collect_real
@ ^ [X: real] :
~ ( member_real @ X @ A6 ) ) ) ) ).
% Compl_eq
thf(fact_6141_Compl__eq,axiom,
( uminus8041839845116263051T_VEBT
= ( ^ [A6: set_VEBT_VEBT] :
( collect_VEBT_VEBT
@ ^ [X: vEBT_VEBT] :
~ ( member_VEBT_VEBT @ X @ A6 ) ) ) ) ).
% Compl_eq
thf(fact_6142_Compl__eq,axiom,
( uminus5710092332889474511et_nat
= ( ^ [A6: set_nat] :
( collect_nat
@ ^ [X: nat] :
~ ( member_nat @ X @ A6 ) ) ) ) ).
% Compl_eq
thf(fact_6143_Compl__eq,axiom,
( uminus1532241313380277803et_int
= ( ^ [A6: set_int] :
( collect_int
@ ^ [X: int] :
~ ( member_int @ X @ A6 ) ) ) ) ).
% Compl_eq
thf(fact_6144_Compl__eq,axiom,
( uminus8566677241136511917omplex
= ( ^ [A6: set_complex] :
( collect_complex
@ ^ [X: complex] :
~ ( member_complex @ X @ A6 ) ) ) ) ).
% Compl_eq
thf(fact_6145_Compl__eq,axiom,
( uminus6221592323253981072nt_int
= ( ^ [A6: set_Pr958786334691620121nt_int] :
( collec213857154873943460nt_int
@ ^ [X: product_prod_int_int] :
~ ( member5262025264175285858nt_int @ X @ A6 ) ) ) ) ).
% Compl_eq
thf(fact_6146_Compl__eq,axiom,
( uminus613421341184616069et_nat
= ( ^ [A6: set_set_nat] :
( collect_set_nat
@ ^ [X: set_nat] :
~ ( member_set_nat @ X @ A6 ) ) ) ) ).
% Compl_eq
thf(fact_6147_Collect__neg__eq,axiom,
! [P: nat > $o] :
( ( collect_nat
@ ^ [X: nat] :
~ ( P @ X ) )
= ( uminus5710092332889474511et_nat @ ( collect_nat @ P ) ) ) ).
% Collect_neg_eq
thf(fact_6148_Collect__neg__eq,axiom,
! [P: int > $o] :
( ( collect_int
@ ^ [X: int] :
~ ( P @ X ) )
= ( uminus1532241313380277803et_int @ ( collect_int @ P ) ) ) ).
% Collect_neg_eq
thf(fact_6149_Collect__neg__eq,axiom,
! [P: complex > $o] :
( ( collect_complex
@ ^ [X: complex] :
~ ( P @ X ) )
= ( uminus8566677241136511917omplex @ ( collect_complex @ P ) ) ) ).
% Collect_neg_eq
thf(fact_6150_Collect__neg__eq,axiom,
! [P: product_prod_int_int > $o] :
( ( collec213857154873943460nt_int
@ ^ [X: product_prod_int_int] :
~ ( P @ X ) )
= ( uminus6221592323253981072nt_int @ ( collec213857154873943460nt_int @ P ) ) ) ).
% Collect_neg_eq
thf(fact_6151_Collect__neg__eq,axiom,
! [P: set_nat > $o] :
( ( collect_set_nat
@ ^ [X: set_nat] :
~ ( P @ X ) )
= ( uminus613421341184616069et_nat @ ( collect_set_nat @ P ) ) ) ).
% Collect_neg_eq
thf(fact_6152_uminus__set__def,axiom,
( uminus612125837232591019t_real
= ( ^ [A6: set_real] :
( collect_real
@ ( uminus_uminus_real_o
@ ^ [X: real] : ( member_real @ X @ A6 ) ) ) ) ) ).
% uminus_set_def
thf(fact_6153_uminus__set__def,axiom,
( uminus8041839845116263051T_VEBT
= ( ^ [A6: set_VEBT_VEBT] :
( collect_VEBT_VEBT
@ ( uminus2746543603091002386VEBT_o
@ ^ [X: vEBT_VEBT] : ( member_VEBT_VEBT @ X @ A6 ) ) ) ) ) ).
% uminus_set_def
thf(fact_6154_uminus__set__def,axiom,
( uminus5710092332889474511et_nat
= ( ^ [A6: set_nat] :
( collect_nat
@ ( uminus_uminus_nat_o
@ ^ [X: nat] : ( member_nat @ X @ A6 ) ) ) ) ) ).
% uminus_set_def
thf(fact_6155_uminus__set__def,axiom,
( uminus1532241313380277803et_int
= ( ^ [A6: set_int] :
( collect_int
@ ( uminus_uminus_int_o
@ ^ [X: int] : ( member_int @ X @ A6 ) ) ) ) ) ).
% uminus_set_def
thf(fact_6156_uminus__set__def,axiom,
( uminus8566677241136511917omplex
= ( ^ [A6: set_complex] :
( collect_complex
@ ( uminus1680532995456772888plex_o
@ ^ [X: complex] : ( member_complex @ X @ A6 ) ) ) ) ) ).
% uminus_set_def
thf(fact_6157_uminus__set__def,axiom,
( uminus6221592323253981072nt_int
= ( ^ [A6: set_Pr958786334691620121nt_int] :
( collec213857154873943460nt_int
@ ( uminus7117520113953359693_int_o
@ ^ [X: product_prod_int_int] : ( member5262025264175285858nt_int @ X @ A6 ) ) ) ) ) ).
% uminus_set_def
thf(fact_6158_uminus__set__def,axiom,
( uminus613421341184616069et_nat
= ( ^ [A6: set_set_nat] :
( collect_set_nat
@ ( uminus6401447641752708672_nat_o
@ ^ [X: set_nat] : ( member_set_nat @ X @ A6 ) ) ) ) ) ).
% uminus_set_def
thf(fact_6159_summable__rabs__cancel,axiom,
! [F: nat > real] :
( ( summable_real
@ ^ [N3: nat] : ( abs_abs_real @ ( F @ N3 ) ) )
=> ( summable_real @ F ) ) ).
% summable_rabs_cancel
thf(fact_6160_summable__minus__iff,axiom,
! [F: nat > real] :
( ( summable_real
@ ^ [N3: nat] : ( uminus_uminus_real @ ( F @ N3 ) ) )
= ( summable_real @ F ) ) ).
% summable_minus_iff
thf(fact_6161_summable__minus__iff,axiom,
! [F: nat > complex] :
( ( summable_complex
@ ^ [N3: nat] : ( uminus1482373934393186551omplex @ ( F @ N3 ) ) )
= ( summable_complex @ F ) ) ).
% summable_minus_iff
thf(fact_6162_summable__minus,axiom,
! [F: nat > real] :
( ( summable_real @ F )
=> ( summable_real
@ ^ [N3: nat] : ( uminus_uminus_real @ ( F @ N3 ) ) ) ) ).
% summable_minus
thf(fact_6163_summable__minus,axiom,
! [F: nat > complex] :
( ( summable_complex @ F )
=> ( summable_complex
@ ^ [N3: nat] : ( uminus1482373934393186551omplex @ ( F @ N3 ) ) ) ) ).
% summable_minus
thf(fact_6164_summable__comparison__test_H,axiom,
! [G: nat > real,N5: nat,F: nat > real] :
( ( summable_real @ G )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ N5 @ N2 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ N2 ) ) @ ( G @ N2 ) ) )
=> ( summable_real @ F ) ) ) ).
% summable_comparison_test'
thf(fact_6165_summable__comparison__test_H,axiom,
! [G: nat > real,N5: nat,F: nat > complex] :
( ( summable_real @ G )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ N5 @ N2 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ N2 ) ) @ ( G @ N2 ) ) )
=> ( summable_complex @ F ) ) ) ).
% summable_comparison_test'
thf(fact_6166_summable__comparison__test,axiom,
! [F: nat > real,G: nat > real] :
( ? [N9: nat] :
! [N2: nat] :
( ( ord_less_eq_nat @ N9 @ N2 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ N2 ) ) @ ( G @ N2 ) ) )
=> ( ( summable_real @ G )
=> ( summable_real @ F ) ) ) ).
% summable_comparison_test
thf(fact_6167_summable__comparison__test,axiom,
! [F: nat > complex,G: nat > real] :
( ? [N9: nat] :
! [N2: nat] :
( ( ord_less_eq_nat @ N9 @ N2 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ N2 ) ) @ ( G @ N2 ) ) )
=> ( ( summable_real @ G )
=> ( summable_complex @ F ) ) ) ).
% summable_comparison_test
thf(fact_6168_summable__mult2,axiom,
! [F: nat > complex,C: complex] :
( ( summable_complex @ F )
=> ( summable_complex
@ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ C ) ) ) ).
% summable_mult2
thf(fact_6169_summable__mult2,axiom,
! [F: nat > real,C: real] :
( ( summable_real @ F )
=> ( summable_real
@ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ C ) ) ) ).
% summable_mult2
thf(fact_6170_summable__mult,axiom,
! [F: nat > complex,C: complex] :
( ( summable_complex @ F )
=> ( summable_complex
@ ^ [N3: nat] : ( times_times_complex @ C @ ( F @ N3 ) ) ) ) ).
% summable_mult
thf(fact_6171_summable__mult,axiom,
! [F: nat > real,C: real] :
( ( summable_real @ F )
=> ( summable_real
@ ^ [N3: nat] : ( times_times_real @ C @ ( F @ N3 ) ) ) ) ).
% summable_mult
thf(fact_6172_summable__divide,axiom,
! [F: nat > complex,C: complex] :
( ( summable_complex @ F )
=> ( summable_complex
@ ^ [N3: nat] : ( divide1717551699836669952omplex @ ( F @ N3 ) @ C ) ) ) ).
% summable_divide
thf(fact_6173_summable__divide,axiom,
! [F: nat > real,C: real] :
( ( summable_real @ F )
=> ( summable_real
@ ^ [N3: nat] : ( divide_divide_real @ ( F @ N3 ) @ C ) ) ) ).
% summable_divide
thf(fact_6174_summable__Suc__iff,axiom,
! [F: nat > real] :
( ( summable_real
@ ^ [N3: nat] : ( F @ ( suc @ N3 ) ) )
= ( summable_real @ F ) ) ).
% summable_Suc_iff
thf(fact_6175_summable__Suc__iff,axiom,
! [F: nat > complex] :
( ( summable_complex
@ ^ [N3: nat] : ( F @ ( suc @ N3 ) ) )
= ( summable_complex @ F ) ) ).
% summable_Suc_iff
thf(fact_6176_summable__diff,axiom,
! [F: nat > complex,G: nat > complex] :
( ( summable_complex @ F )
=> ( ( summable_complex @ G )
=> ( summable_complex
@ ^ [N3: nat] : ( minus_minus_complex @ ( F @ N3 ) @ ( G @ N3 ) ) ) ) ) ).
% summable_diff
thf(fact_6177_summable__diff,axiom,
! [F: nat > real,G: nat > real] :
( ( summable_real @ F )
=> ( ( summable_real @ G )
=> ( summable_real
@ ^ [N3: nat] : ( minus_minus_real @ ( F @ N3 ) @ ( G @ N3 ) ) ) ) ) ).
% summable_diff
thf(fact_6178_summable__ignore__initial__segment,axiom,
! [F: nat > real,K: nat] :
( ( summable_real @ F )
=> ( summable_real
@ ^ [N3: nat] : ( F @ ( plus_plus_nat @ N3 @ K ) ) ) ) ).
% summable_ignore_initial_segment
thf(fact_6179_summable__ignore__initial__segment,axiom,
! [F: nat > complex,K: nat] :
( ( summable_complex @ F )
=> ( summable_complex
@ ^ [N3: nat] : ( F @ ( plus_plus_nat @ N3 @ K ) ) ) ) ).
% summable_ignore_initial_segment
thf(fact_6180_summable__of__real,axiom,
! [X7: nat > real] :
( ( summable_real @ X7 )
=> ( summable_real
@ ^ [N3: nat] : ( real_V1803761363581548252l_real @ ( X7 @ N3 ) ) ) ) ).
% summable_of_real
thf(fact_6181_summable__of__real,axiom,
! [X7: nat > real] :
( ( summable_real @ X7 )
=> ( summable_complex
@ ^ [N3: nat] : ( real_V4546457046886955230omplex @ ( X7 @ N3 ) ) ) ) ).
% summable_of_real
thf(fact_6182_summable__norm__cancel,axiom,
! [F: nat > real] :
( ( summable_real
@ ^ [N3: nat] : ( real_V7735802525324610683m_real @ ( F @ N3 ) ) )
=> ( summable_real @ F ) ) ).
% summable_norm_cancel
thf(fact_6183_summable__norm__cancel,axiom,
! [F: nat > complex] :
( ( summable_real
@ ^ [N3: nat] : ( real_V1022390504157884413omplex @ ( F @ N3 ) ) )
=> ( summable_complex @ F ) ) ).
% summable_norm_cancel
thf(fact_6184_summable__add,axiom,
! [F: nat > complex,G: nat > complex] :
( ( summable_complex @ F )
=> ( ( summable_complex @ G )
=> ( summable_complex
@ ^ [N3: nat] : ( plus_plus_complex @ ( F @ N3 ) @ ( G @ N3 ) ) ) ) ) ).
% summable_add
thf(fact_6185_summable__add,axiom,
! [F: nat > real,G: nat > real] :
( ( summable_real @ F )
=> ( ( summable_real @ G )
=> ( summable_real
@ ^ [N3: nat] : ( plus_plus_real @ ( F @ N3 ) @ ( G @ N3 ) ) ) ) ) ).
% summable_add
thf(fact_6186_summable__add,axiom,
! [F: nat > nat,G: nat > nat] :
( ( summable_nat @ F )
=> ( ( summable_nat @ G )
=> ( summable_nat
@ ^ [N3: nat] : ( plus_plus_nat @ ( F @ N3 ) @ ( G @ N3 ) ) ) ) ) ).
% summable_add
thf(fact_6187_summable__add,axiom,
! [F: nat > int,G: nat > int] :
( ( summable_int @ F )
=> ( ( summable_int @ G )
=> ( summable_int
@ ^ [N3: nat] : ( plus_plus_int @ ( F @ N3 ) @ ( G @ N3 ) ) ) ) ) ).
% summable_add
thf(fact_6188_summable__const__iff,axiom,
! [C: complex] :
( ( summable_complex
@ ^ [Uu3: nat] : C )
= ( C = zero_zero_complex ) ) ).
% summable_const_iff
thf(fact_6189_summable__const__iff,axiom,
! [C: real] :
( ( summable_real
@ ^ [Uu3: nat] : C )
= ( C = zero_zero_real ) ) ).
% summable_const_iff
thf(fact_6190_pi__neq__zero,axiom,
pi != zero_zero_real ).
% pi_neq_zero
thf(fact_6191_arctan__le__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( arctan @ X2 ) @ ( arctan @ Y2 ) )
= ( ord_less_eq_real @ X2 @ Y2 ) ) ).
% arctan_le_iff
thf(fact_6192_arctan__monotone_H,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ X2 @ Y2 )
=> ( ord_less_eq_real @ ( arctan @ X2 ) @ ( arctan @ Y2 ) ) ) ).
% arctan_monotone'
thf(fact_6193_suminf__le,axiom,
! [F: nat > real,G: nat > real] :
( ! [N2: nat] : ( ord_less_eq_real @ ( F @ N2 ) @ ( G @ N2 ) )
=> ( ( summable_real @ F )
=> ( ( summable_real @ G )
=> ( ord_less_eq_real @ ( suminf_real @ F ) @ ( suminf_real @ G ) ) ) ) ) ).
% suminf_le
thf(fact_6194_suminf__le,axiom,
! [F: nat > nat,G: nat > nat] :
( ! [N2: nat] : ( ord_less_eq_nat @ ( F @ N2 ) @ ( G @ N2 ) )
=> ( ( summable_nat @ F )
=> ( ( summable_nat @ G )
=> ( ord_less_eq_nat @ ( suminf_nat @ F ) @ ( suminf_nat @ G ) ) ) ) ) ).
% suminf_le
thf(fact_6195_suminf__le,axiom,
! [F: nat > int,G: nat > int] :
( ! [N2: nat] : ( ord_less_eq_int @ ( F @ N2 ) @ ( G @ N2 ) )
=> ( ( summable_int @ F )
=> ( ( summable_int @ G )
=> ( ord_less_eq_int @ ( suminf_int @ F ) @ ( suminf_int @ G ) ) ) ) ) ).
% suminf_le
thf(fact_6196_summable__finite,axiom,
! [N5: set_nat,F: nat > complex] :
( ( finite_finite_nat @ N5 )
=> ( ! [N2: nat] :
( ~ ( member_nat @ N2 @ N5 )
=> ( ( F @ N2 )
= zero_zero_complex ) )
=> ( summable_complex @ F ) ) ) ).
% summable_finite
thf(fact_6197_summable__finite,axiom,
! [N5: set_nat,F: nat > real] :
( ( finite_finite_nat @ N5 )
=> ( ! [N2: nat] :
( ~ ( member_nat @ N2 @ N5 )
=> ( ( F @ N2 )
= zero_zero_real ) )
=> ( summable_real @ F ) ) ) ).
% summable_finite
thf(fact_6198_summable__finite,axiom,
! [N5: set_nat,F: nat > nat] :
( ( finite_finite_nat @ N5 )
=> ( ! [N2: nat] :
( ~ ( member_nat @ N2 @ N5 )
=> ( ( F @ N2 )
= zero_zero_nat ) )
=> ( summable_nat @ F ) ) ) ).
% summable_finite
thf(fact_6199_summable__finite,axiom,
! [N5: set_nat,F: nat > int] :
( ( finite_finite_nat @ N5 )
=> ( ! [N2: nat] :
( ~ ( member_nat @ N2 @ N5 )
=> ( ( F @ N2 )
= zero_zero_int ) )
=> ( summable_int @ F ) ) ) ).
% summable_finite
thf(fact_6200_summable__mult__D,axiom,
! [C: complex,F: nat > complex] :
( ( summable_complex
@ ^ [N3: nat] : ( times_times_complex @ C @ ( F @ N3 ) ) )
=> ( ( C != zero_zero_complex )
=> ( summable_complex @ F ) ) ) ).
% summable_mult_D
thf(fact_6201_summable__mult__D,axiom,
! [C: real,F: nat > real] :
( ( summable_real
@ ^ [N3: nat] : ( times_times_real @ C @ ( F @ N3 ) ) )
=> ( ( C != zero_zero_real )
=> ( summable_real @ F ) ) ) ).
% summable_mult_D
thf(fact_6202_summable__zero__power,axiom,
summable_real @ ( power_power_real @ zero_zero_real ) ).
% summable_zero_power
thf(fact_6203_summable__zero__power,axiom,
summable_int @ ( power_power_int @ zero_zero_int ) ).
% summable_zero_power
thf(fact_6204_summable__zero__power,axiom,
summable_complex @ ( power_power_complex @ zero_zero_complex ) ).
% summable_zero_power
thf(fact_6205_suminf__add,axiom,
! [F: nat > complex,G: nat > complex] :
( ( summable_complex @ F )
=> ( ( summable_complex @ G )
=> ( ( plus_plus_complex @ ( suminf_complex @ F ) @ ( suminf_complex @ G ) )
= ( suminf_complex
@ ^ [N3: nat] : ( plus_plus_complex @ ( F @ N3 ) @ ( G @ N3 ) ) ) ) ) ) ).
% suminf_add
thf(fact_6206_suminf__add,axiom,
! [F: nat > real,G: nat > real] :
( ( summable_real @ F )
=> ( ( summable_real @ G )
=> ( ( plus_plus_real @ ( suminf_real @ F ) @ ( suminf_real @ G ) )
= ( suminf_real
@ ^ [N3: nat] : ( plus_plus_real @ ( F @ N3 ) @ ( G @ N3 ) ) ) ) ) ) ).
% suminf_add
thf(fact_6207_suminf__add,axiom,
! [F: nat > nat,G: nat > nat] :
( ( summable_nat @ F )
=> ( ( summable_nat @ G )
=> ( ( plus_plus_nat @ ( suminf_nat @ F ) @ ( suminf_nat @ G ) )
= ( suminf_nat
@ ^ [N3: nat] : ( plus_plus_nat @ ( F @ N3 ) @ ( G @ N3 ) ) ) ) ) ) ).
% suminf_add
thf(fact_6208_suminf__add,axiom,
! [F: nat > int,G: nat > int] :
( ( summable_int @ F )
=> ( ( summable_int @ G )
=> ( ( plus_plus_int @ ( suminf_int @ F ) @ ( suminf_int @ G ) )
= ( suminf_int
@ ^ [N3: nat] : ( plus_plus_int @ ( F @ N3 ) @ ( G @ N3 ) ) ) ) ) ) ).
% suminf_add
thf(fact_6209_suminf__mult2,axiom,
! [F: nat > complex,C: complex] :
( ( summable_complex @ F )
=> ( ( times_times_complex @ ( suminf_complex @ F ) @ C )
= ( suminf_complex
@ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ C ) ) ) ) ).
% suminf_mult2
thf(fact_6210_suminf__mult2,axiom,
! [F: nat > real,C: real] :
( ( summable_real @ F )
=> ( ( times_times_real @ ( suminf_real @ F ) @ C )
= ( suminf_real
@ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ C ) ) ) ) ).
% suminf_mult2
thf(fact_6211_suminf__mult,axiom,
! [F: nat > complex,C: complex] :
( ( summable_complex @ F )
=> ( ( suminf_complex
@ ^ [N3: nat] : ( times_times_complex @ C @ ( F @ N3 ) ) )
= ( times_times_complex @ C @ ( suminf_complex @ F ) ) ) ) ).
% suminf_mult
thf(fact_6212_suminf__mult,axiom,
! [F: nat > real,C: real] :
( ( summable_real @ F )
=> ( ( suminf_real
@ ^ [N3: nat] : ( times_times_real @ C @ ( F @ N3 ) ) )
= ( times_times_real @ C @ ( suminf_real @ F ) ) ) ) ).
% suminf_mult
thf(fact_6213_suminf__diff,axiom,
! [F: nat > complex,G: nat > complex] :
( ( summable_complex @ F )
=> ( ( summable_complex @ G )
=> ( ( minus_minus_complex @ ( suminf_complex @ F ) @ ( suminf_complex @ G ) )
= ( suminf_complex
@ ^ [N3: nat] : ( minus_minus_complex @ ( F @ N3 ) @ ( G @ N3 ) ) ) ) ) ) ).
% suminf_diff
thf(fact_6214_suminf__diff,axiom,
! [F: nat > real,G: nat > real] :
( ( summable_real @ F )
=> ( ( summable_real @ G )
=> ( ( minus_minus_real @ ( suminf_real @ F ) @ ( suminf_real @ G ) )
= ( suminf_real
@ ^ [N3: nat] : ( minus_minus_real @ ( F @ N3 ) @ ( G @ N3 ) ) ) ) ) ) ).
% suminf_diff
thf(fact_6215_suminf__divide,axiom,
! [F: nat > complex,C: complex] :
( ( summable_complex @ F )
=> ( ( suminf_complex
@ ^ [N3: nat] : ( divide1717551699836669952omplex @ ( F @ N3 ) @ C ) )
= ( divide1717551699836669952omplex @ ( suminf_complex @ F ) @ C ) ) ) ).
% suminf_divide
thf(fact_6216_suminf__divide,axiom,
! [F: nat > real,C: real] :
( ( summable_real @ F )
=> ( ( suminf_real
@ ^ [N3: nat] : ( divide_divide_real @ ( F @ N3 ) @ C ) )
= ( divide_divide_real @ ( suminf_real @ F ) @ C ) ) ) ).
% suminf_divide
thf(fact_6217_suminf__minus,axiom,
! [F: nat > real] :
( ( summable_real @ F )
=> ( ( suminf_real
@ ^ [N3: nat] : ( uminus_uminus_real @ ( F @ N3 ) ) )
= ( uminus_uminus_real @ ( suminf_real @ F ) ) ) ) ).
% suminf_minus
thf(fact_6218_suminf__minus,axiom,
! [F: nat > complex] :
( ( summable_complex @ F )
=> ( ( suminf_complex
@ ^ [N3: nat] : ( uminus1482373934393186551omplex @ ( F @ N3 ) ) )
= ( uminus1482373934393186551omplex @ ( suminf_complex @ F ) ) ) ) ).
% suminf_minus
thf(fact_6219_powser__insidea,axiom,
! [F: nat > real,X2: real,Z: real] :
( ( summable_real
@ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ X2 @ N3 ) ) )
=> ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Z ) @ ( real_V7735802525324610683m_real @ X2 ) )
=> ( summable_real
@ ^ [N3: nat] : ( real_V7735802525324610683m_real @ ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) ) ) ) ) ).
% powser_insidea
thf(fact_6220_powser__insidea,axiom,
! [F: nat > complex,X2: complex,Z: complex] :
( ( summable_complex
@ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ X2 @ N3 ) ) )
=> ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Z ) @ ( real_V1022390504157884413omplex @ X2 ) )
=> ( summable_real
@ ^ [N3: nat] : ( real_V1022390504157884413omplex @ ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) ) ) ) ) ).
% powser_insidea
thf(fact_6221_suminf__nonneg,axiom,
! [F: nat > real] :
( ( summable_real @ F )
=> ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N2 ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( suminf_real @ F ) ) ) ) ).
% suminf_nonneg
thf(fact_6222_suminf__nonneg,axiom,
! [F: nat > nat] :
( ( summable_nat @ F )
=> ( ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N2 ) )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( suminf_nat @ F ) ) ) ) ).
% suminf_nonneg
thf(fact_6223_suminf__nonneg,axiom,
! [F: nat > int] :
( ( summable_int @ F )
=> ( ! [N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N2 ) )
=> ( ord_less_eq_int @ zero_zero_int @ ( suminf_int @ F ) ) ) ) ).
% suminf_nonneg
thf(fact_6224_suminf__eq__zero__iff,axiom,
! [F: nat > real] :
( ( summable_real @ F )
=> ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N2 ) )
=> ( ( ( suminf_real @ F )
= zero_zero_real )
= ( ! [N3: nat] :
( ( F @ N3 )
= zero_zero_real ) ) ) ) ) ).
% suminf_eq_zero_iff
thf(fact_6225_suminf__eq__zero__iff,axiom,
! [F: nat > nat] :
( ( summable_nat @ F )
=> ( ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N2 ) )
=> ( ( ( suminf_nat @ F )
= zero_zero_nat )
= ( ! [N3: nat] :
( ( F @ N3 )
= zero_zero_nat ) ) ) ) ) ).
% suminf_eq_zero_iff
thf(fact_6226_suminf__eq__zero__iff,axiom,
! [F: nat > int] :
( ( summable_int @ F )
=> ( ! [N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N2 ) )
=> ( ( ( suminf_int @ F )
= zero_zero_int )
= ( ! [N3: nat] :
( ( F @ N3 )
= zero_zero_int ) ) ) ) ) ).
% suminf_eq_zero_iff
thf(fact_6227_suminf__pos,axiom,
! [F: nat > real] :
( ( summable_real @ F )
=> ( ! [N2: nat] : ( ord_less_real @ zero_zero_real @ ( F @ N2 ) )
=> ( ord_less_real @ zero_zero_real @ ( suminf_real @ F ) ) ) ) ).
% suminf_pos
thf(fact_6228_suminf__pos,axiom,
! [F: nat > nat] :
( ( summable_nat @ F )
=> ( ! [N2: nat] : ( ord_less_nat @ zero_zero_nat @ ( F @ N2 ) )
=> ( ord_less_nat @ zero_zero_nat @ ( suminf_nat @ F ) ) ) ) ).
% suminf_pos
thf(fact_6229_suminf__pos,axiom,
! [F: nat > int] :
( ( summable_int @ F )
=> ( ! [N2: nat] : ( ord_less_int @ zero_zero_int @ ( F @ N2 ) )
=> ( ord_less_int @ zero_zero_int @ ( suminf_int @ F ) ) ) ) ).
% suminf_pos
thf(fact_6230_summable__0__powser,axiom,
! [F: nat > complex] :
( summable_complex
@ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ zero_zero_complex @ N3 ) ) ) ).
% summable_0_powser
thf(fact_6231_summable__0__powser,axiom,
! [F: nat > real] :
( summable_real
@ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ zero_zero_real @ N3 ) ) ) ).
% summable_0_powser
thf(fact_6232_summable__zero__power_H,axiom,
! [F: nat > complex] :
( summable_complex
@ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ zero_zero_complex @ N3 ) ) ) ).
% summable_zero_power'
thf(fact_6233_summable__zero__power_H,axiom,
! [F: nat > real] :
( summable_real
@ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ zero_zero_real @ N3 ) ) ) ).
% summable_zero_power'
thf(fact_6234_summable__zero__power_H,axiom,
! [F: nat > int] :
( summable_int
@ ^ [N3: nat] : ( times_times_int @ ( F @ N3 ) @ ( power_power_int @ zero_zero_int @ N3 ) ) ) ).
% summable_zero_power'
thf(fact_6235_powser__split__head_I3_J,axiom,
! [F: nat > complex,Z: complex] :
( ( summable_complex
@ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) )
=> ( summable_complex
@ ^ [N3: nat] : ( times_times_complex @ ( F @ ( suc @ N3 ) ) @ ( power_power_complex @ Z @ N3 ) ) ) ) ).
% powser_split_head(3)
thf(fact_6236_powser__split__head_I3_J,axiom,
! [F: nat > real,Z: real] :
( ( summable_real
@ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) )
=> ( summable_real
@ ^ [N3: nat] : ( times_times_real @ ( F @ ( suc @ N3 ) ) @ ( power_power_real @ Z @ N3 ) ) ) ) ).
% powser_split_head(3)
thf(fact_6237_summable__powser__split__head,axiom,
! [F: nat > complex,Z: complex] :
( ( summable_complex
@ ^ [N3: nat] : ( times_times_complex @ ( F @ ( suc @ N3 ) ) @ ( power_power_complex @ Z @ N3 ) ) )
= ( summable_complex
@ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) ) ) ).
% summable_powser_split_head
thf(fact_6238_summable__powser__split__head,axiom,
! [F: nat > real,Z: real] :
( ( summable_real
@ ^ [N3: nat] : ( times_times_real @ ( F @ ( suc @ N3 ) ) @ ( power_power_real @ Z @ N3 ) ) )
= ( summable_real
@ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) ) ) ).
% summable_powser_split_head
thf(fact_6239_summable__powser__ignore__initial__segment,axiom,
! [F: nat > complex,M: nat,Z: complex] :
( ( summable_complex
@ ^ [N3: nat] : ( times_times_complex @ ( F @ ( plus_plus_nat @ N3 @ M ) ) @ ( power_power_complex @ Z @ N3 ) ) )
= ( summable_complex
@ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) ) ) ).
% summable_powser_ignore_initial_segment
thf(fact_6240_summable__powser__ignore__initial__segment,axiom,
! [F: nat > real,M: nat,Z: real] :
( ( summable_real
@ ^ [N3: nat] : ( times_times_real @ ( F @ ( plus_plus_nat @ N3 @ M ) ) @ ( power_power_real @ Z @ N3 ) ) )
= ( summable_real
@ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) ) ) ).
% summable_powser_ignore_initial_segment
thf(fact_6241_pi__gt__zero,axiom,
ord_less_real @ zero_zero_real @ pi ).
% pi_gt_zero
thf(fact_6242_pi__not__less__zero,axiom,
~ ( ord_less_real @ pi @ zero_zero_real ) ).
% pi_not_less_zero
thf(fact_6243_pi__ge__zero,axiom,
ord_less_eq_real @ zero_zero_real @ pi ).
% pi_ge_zero
thf(fact_6244_dbl__def,axiom,
( neg_numeral_dbl_real
= ( ^ [X: real] : ( plus_plus_real @ X @ X ) ) ) ).
% dbl_def
thf(fact_6245_dbl__def,axiom,
( neg_numeral_dbl_rat
= ( ^ [X: rat] : ( plus_plus_rat @ X @ X ) ) ) ).
% dbl_def
thf(fact_6246_dbl__def,axiom,
( neg_numeral_dbl_int
= ( ^ [X: int] : ( plus_plus_int @ X @ X ) ) ) ).
% dbl_def
thf(fact_6247_summable__norm__comparison__test,axiom,
! [F: nat > complex,G: nat > real] :
( ? [N9: nat] :
! [N2: nat] :
( ( ord_less_eq_nat @ N9 @ N2 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ N2 ) ) @ ( G @ N2 ) ) )
=> ( ( summable_real @ G )
=> ( summable_real
@ ^ [N3: nat] : ( real_V1022390504157884413omplex @ ( F @ N3 ) ) ) ) ) ).
% summable_norm_comparison_test
thf(fact_6248_summable__rabs__comparison__test,axiom,
! [F: nat > real,G: nat > real] :
( ? [N9: nat] :
! [N2: nat] :
( ( ord_less_eq_nat @ N9 @ N2 )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( F @ N2 ) ) @ ( G @ N2 ) ) )
=> ( ( summable_real @ G )
=> ( summable_real
@ ^ [N3: nat] : ( abs_abs_real @ ( F @ N3 ) ) ) ) ) ).
% summable_rabs_comparison_test
thf(fact_6249_summable__rabs,axiom,
! [F: nat > real] :
( ( summable_real
@ ^ [N3: nat] : ( abs_abs_real @ ( F @ N3 ) ) )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( suminf_real @ F ) )
@ ( suminf_real
@ ^ [N3: nat] : ( abs_abs_real @ ( F @ N3 ) ) ) ) ) ).
% summable_rabs
thf(fact_6250_suminf__of__real,axiom,
! [X7: nat > real] :
( ( summable_real @ X7 )
=> ( ( real_V1803761363581548252l_real @ ( suminf_real @ X7 ) )
= ( suminf_real
@ ^ [N3: nat] : ( real_V1803761363581548252l_real @ ( X7 @ N3 ) ) ) ) ) ).
% suminf_of_real
thf(fact_6251_suminf__of__real,axiom,
! [X7: nat > real] :
( ( summable_real @ X7 )
=> ( ( real_V4546457046886955230omplex @ ( suminf_real @ X7 ) )
= ( suminf_complex
@ ^ [N3: nat] : ( real_V4546457046886955230omplex @ ( X7 @ N3 ) ) ) ) ) ).
% suminf_of_real
thf(fact_6252_arctan__ubound,axiom,
! [Y2: real] : ( ord_less_real @ ( arctan @ Y2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% arctan_ubound
thf(fact_6253_arctan__one,axiom,
( ( arctan @ one_one_real )
= ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ).
% arctan_one
thf(fact_6254_suminf__pos__iff,axiom,
! [F: nat > real] :
( ( summable_real @ F )
=> ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N2 ) )
=> ( ( ord_less_real @ zero_zero_real @ ( suminf_real @ F ) )
= ( ? [I3: nat] : ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) ) ) ) ) ).
% suminf_pos_iff
thf(fact_6255_suminf__pos__iff,axiom,
! [F: nat > nat] :
( ( summable_nat @ F )
=> ( ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N2 ) )
=> ( ( ord_less_nat @ zero_zero_nat @ ( suminf_nat @ F ) )
= ( ? [I3: nat] : ( ord_less_nat @ zero_zero_nat @ ( F @ I3 ) ) ) ) ) ) ).
% suminf_pos_iff
thf(fact_6256_suminf__pos__iff,axiom,
! [F: nat > int] :
( ( summable_int @ F )
=> ( ! [N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N2 ) )
=> ( ( ord_less_int @ zero_zero_int @ ( suminf_int @ F ) )
= ( ? [I3: nat] : ( ord_less_int @ zero_zero_int @ ( F @ I3 ) ) ) ) ) ) ).
% suminf_pos_iff
thf(fact_6257_suminf__pos2,axiom,
! [F: nat > real,I: nat] :
( ( summable_real @ F )
=> ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N2 ) )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
=> ( ord_less_real @ zero_zero_real @ ( suminf_real @ F ) ) ) ) ) ).
% suminf_pos2
thf(fact_6258_suminf__pos2,axiom,
! [F: nat > nat,I: nat] :
( ( summable_nat @ F )
=> ( ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N2 ) )
=> ( ( ord_less_nat @ zero_zero_nat @ ( F @ I ) )
=> ( ord_less_nat @ zero_zero_nat @ ( suminf_nat @ F ) ) ) ) ) ).
% suminf_pos2
thf(fact_6259_suminf__pos2,axiom,
! [F: nat > int,I: nat] :
( ( summable_int @ F )
=> ( ! [N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N2 ) )
=> ( ( ord_less_int @ zero_zero_int @ ( F @ I ) )
=> ( ord_less_int @ zero_zero_int @ ( suminf_int @ F ) ) ) ) ) ).
% suminf_pos2
thf(fact_6260_suminf__split__head,axiom,
! [F: nat > complex] :
( ( summable_complex @ F )
=> ( ( suminf_complex
@ ^ [N3: nat] : ( F @ ( suc @ N3 ) ) )
= ( minus_minus_complex @ ( suminf_complex @ F ) @ ( F @ zero_zero_nat ) ) ) ) ).
% suminf_split_head
thf(fact_6261_suminf__split__head,axiom,
! [F: nat > real] :
( ( summable_real @ F )
=> ( ( suminf_real
@ ^ [N3: nat] : ( F @ ( suc @ N3 ) ) )
= ( minus_minus_real @ ( suminf_real @ F ) @ ( F @ zero_zero_nat ) ) ) ) ).
% suminf_split_head
thf(fact_6262_summable__geometric,axiom,
! [C: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real )
=> ( summable_real @ ( power_power_real @ C ) ) ) ).
% summable_geometric
thf(fact_6263_summable__geometric,axiom,
! [C: complex] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real )
=> ( summable_complex @ ( power_power_complex @ C ) ) ) ).
% summable_geometric
thf(fact_6264_complete__algebra__summable__geometric,axiom,
! [X2: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ X2 ) @ one_one_real )
=> ( summable_real @ ( power_power_real @ X2 ) ) ) ).
% complete_algebra_summable_geometric
thf(fact_6265_complete__algebra__summable__geometric,axiom,
! [X2: complex] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ X2 ) @ one_one_real )
=> ( summable_complex @ ( power_power_complex @ X2 ) ) ) ).
% complete_algebra_summable_geometric
thf(fact_6266_arctan__bounded,axiom,
! [Y2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y2 ) )
& ( ord_less_real @ ( arctan @ Y2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% arctan_bounded
thf(fact_6267_arctan__lbound,axiom,
! [Y2: real] : ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y2 ) ) ).
% arctan_lbound
thf(fact_6268_summable__norm,axiom,
! [F: nat > real] :
( ( summable_real
@ ^ [N3: nat] : ( real_V7735802525324610683m_real @ ( F @ N3 ) ) )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( suminf_real @ F ) )
@ ( suminf_real
@ ^ [N3: nat] : ( real_V7735802525324610683m_real @ ( F @ N3 ) ) ) ) ) ).
% summable_norm
thf(fact_6269_summable__norm,axiom,
! [F: nat > complex] :
( ( summable_real
@ ^ [N3: nat] : ( real_V1022390504157884413omplex @ ( F @ N3 ) ) )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( suminf_complex @ F ) )
@ ( suminf_real
@ ^ [N3: nat] : ( real_V1022390504157884413omplex @ ( F @ N3 ) ) ) ) ) ).
% summable_norm
thf(fact_6270_powser__inside,axiom,
! [F: nat > real,X2: real,Z: real] :
( ( summable_real
@ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ X2 @ N3 ) ) )
=> ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Z ) @ ( real_V7735802525324610683m_real @ X2 ) )
=> ( summable_real
@ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) ) ) ) ).
% powser_inside
thf(fact_6271_powser__inside,axiom,
! [F: nat > complex,X2: complex,Z: complex] :
( ( summable_complex
@ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ X2 @ N3 ) ) )
=> ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Z ) @ ( real_V1022390504157884413omplex @ X2 ) )
=> ( summable_complex
@ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) ) ) ) ).
% powser_inside
thf(fact_6272_machin__Euler,axiom,
( ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ one ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
= ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ).
% machin_Euler
thf(fact_6273_machin,axiom,
( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).
% machin
thf(fact_6274_pi__less__4,axiom,
ord_less_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ).
% pi_less_4
thf(fact_6275_pi__ge__two,axiom,
ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ).
% pi_ge_two
thf(fact_6276_pi__half__neq__two,axiom,
( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
!= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% pi_half_neq_two
thf(fact_6277_powser__split__head_I1_J,axiom,
! [F: nat > complex,Z: complex] :
( ( summable_complex
@ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) )
=> ( ( suminf_complex
@ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) )
= ( plus_plus_complex @ ( F @ zero_zero_nat )
@ ( times_times_complex
@ ( suminf_complex
@ ^ [N3: nat] : ( times_times_complex @ ( F @ ( suc @ N3 ) ) @ ( power_power_complex @ Z @ N3 ) ) )
@ Z ) ) ) ) ).
% powser_split_head(1)
thf(fact_6278_powser__split__head_I1_J,axiom,
! [F: nat > real,Z: real] :
( ( summable_real
@ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) )
=> ( ( suminf_real
@ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) )
= ( plus_plus_real @ ( F @ zero_zero_nat )
@ ( times_times_real
@ ( suminf_real
@ ^ [N3: nat] : ( times_times_real @ ( F @ ( suc @ N3 ) ) @ ( power_power_real @ Z @ N3 ) ) )
@ Z ) ) ) ) ).
% powser_split_head(1)
thf(fact_6279_powser__split__head_I2_J,axiom,
! [F: nat > complex,Z: complex] :
( ( summable_complex
@ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) )
=> ( ( times_times_complex
@ ( suminf_complex
@ ^ [N3: nat] : ( times_times_complex @ ( F @ ( suc @ N3 ) ) @ ( power_power_complex @ Z @ N3 ) ) )
@ Z )
= ( minus_minus_complex
@ ( suminf_complex
@ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) )
@ ( F @ zero_zero_nat ) ) ) ) ).
% powser_split_head(2)
thf(fact_6280_powser__split__head_I2_J,axiom,
! [F: nat > real,Z: real] :
( ( summable_real
@ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) )
=> ( ( times_times_real
@ ( suminf_real
@ ^ [N3: nat] : ( times_times_real @ ( F @ ( suc @ N3 ) ) @ ( power_power_real @ Z @ N3 ) ) )
@ Z )
= ( minus_minus_real
@ ( suminf_real
@ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) )
@ ( F @ zero_zero_nat ) ) ) ) ).
% powser_split_head(2)
thf(fact_6281_suminf__exist__split,axiom,
! [R2: real,F: nat > real] :
( ( ord_less_real @ zero_zero_real @ R2 )
=> ( ( summable_real @ F )
=> ? [N10: nat] :
! [N11: nat] :
( ( ord_less_eq_nat @ N10 @ N11 )
=> ( ord_less_real
@ ( real_V7735802525324610683m_real
@ ( suminf_real
@ ^ [I3: nat] : ( F @ ( plus_plus_nat @ I3 @ N11 ) ) ) )
@ R2 ) ) ) ) ).
% suminf_exist_split
thf(fact_6282_suminf__exist__split,axiom,
! [R2: real,F: nat > complex] :
( ( ord_less_real @ zero_zero_real @ R2 )
=> ( ( summable_complex @ F )
=> ? [N10: nat] :
! [N11: nat] :
( ( ord_less_eq_nat @ N10 @ N11 )
=> ( ord_less_real
@ ( real_V1022390504157884413omplex
@ ( suminf_complex
@ ^ [I3: nat] : ( F @ ( plus_plus_nat @ I3 @ N11 ) ) ) )
@ R2 ) ) ) ) ).
% suminf_exist_split
thf(fact_6283_summable__power__series,axiom,
! [F: nat > real,Z: real] :
( ! [I2: nat] : ( ord_less_eq_real @ ( F @ I2 ) @ one_one_real )
=> ( ! [I2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ Z )
=> ( ( ord_less_real @ Z @ one_one_real )
=> ( summable_real
@ ^ [I3: nat] : ( times_times_real @ ( F @ I3 ) @ ( power_power_real @ Z @ I3 ) ) ) ) ) ) ) ).
% summable_power_series
thf(fact_6284_Abel__lemma,axiom,
! [R2: real,R0: real,A: nat > complex,M7: real] :
( ( ord_less_eq_real @ zero_zero_real @ R2 )
=> ( ( ord_less_real @ R2 @ R0 )
=> ( ! [N2: nat] : ( ord_less_eq_real @ ( times_times_real @ ( real_V1022390504157884413omplex @ ( A @ N2 ) ) @ ( power_power_real @ R0 @ N2 ) ) @ M7 )
=> ( summable_real
@ ^ [N3: nat] : ( times_times_real @ ( real_V1022390504157884413omplex @ ( A @ N3 ) ) @ ( power_power_real @ R2 @ N3 ) ) ) ) ) ) ).
% Abel_lemma
thf(fact_6285_summable__ratio__test,axiom,
! [C: real,N5: nat,F: nat > real] :
( ( ord_less_real @ C @ one_one_real )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ N5 @ N2 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ ( suc @ N2 ) ) ) @ ( times_times_real @ C @ ( real_V7735802525324610683m_real @ ( F @ N2 ) ) ) ) )
=> ( summable_real @ F ) ) ) ).
% summable_ratio_test
thf(fact_6286_summable__ratio__test,axiom,
! [C: real,N5: nat,F: nat > complex] :
( ( ord_less_real @ C @ one_one_real )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ N5 @ N2 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ ( suc @ N2 ) ) ) @ ( times_times_real @ C @ ( real_V1022390504157884413omplex @ ( F @ N2 ) ) ) ) )
=> ( summable_complex @ F ) ) ) ).
% summable_ratio_test
thf(fact_6287_pi__half__neq__zero,axiom,
( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
!= zero_zero_real ) ).
% pi_half_neq_zero
thf(fact_6288_pi__half__less__two,axiom,
ord_less_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).
% pi_half_less_two
thf(fact_6289_pi__half__le__two,axiom,
ord_less_eq_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).
% pi_half_le_two
thf(fact_6290_pi__half__gt__zero,axiom,
ord_less_real @ zero_zero_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% pi_half_gt_zero
thf(fact_6291_pi__half__ge__zero,axiom,
ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% pi_half_ge_zero
thf(fact_6292_m2pi__less__pi,axiom,
ord_less_real @ ( uminus_uminus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) @ pi ).
% m2pi_less_pi
thf(fact_6293_minus__pi__half__less__zero,axiom,
ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ zero_zero_real ).
% minus_pi_half_less_zero
thf(fact_6294_arctan__add,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
=> ( ( ord_less_real @ ( abs_abs_real @ Y2 ) @ one_one_real )
=> ( ( plus_plus_real @ ( arctan @ X2 ) @ ( arctan @ Y2 ) )
= ( arctan @ ( divide_divide_real @ ( plus_plus_real @ X2 @ Y2 ) @ ( minus_minus_real @ one_one_real @ ( times_times_real @ X2 @ Y2 ) ) ) ) ) ) ) ).
% arctan_add
thf(fact_6295_arctan__double,axiom,
! [X2: real] :
( ( ord_less_real @ ( abs_abs_real @ X2 ) @ one_one_real )
=> ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ X2 ) )
= ( arctan @ ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% arctan_double
thf(fact_6296_sin__cos__npi,axiom,
! [N: nat] :
( ( sin_real @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) ) ).
% sin_cos_npi
thf(fact_6297_signed__take__bit__numeral__minus__bit1,axiom,
! [L2: num,K: num] :
( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
= ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L2 ) @ ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).
% signed_take_bit_numeral_minus_bit1
thf(fact_6298_cos__pi__eq__zero,axiom,
! [M: nat] :
( ( cos_real @ ( divide_divide_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= zero_zero_real ) ).
% cos_pi_eq_zero
thf(fact_6299_sum__gp,axiom,
! [N: nat,M: nat,X2: complex] :
( ( ( ord_less_nat @ N @ M )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= zero_zero_complex ) )
& ( ~ ( ord_less_nat @ N @ M )
=> ( ( ( X2 = one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( semiri8010041392384452111omplex @ ( minus_minus_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ M ) ) ) )
& ( ( X2 != one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ X2 @ M ) @ ( power_power_complex @ X2 @ ( suc @ N ) ) ) @ ( minus_minus_complex @ one_one_complex @ X2 ) ) ) ) ) ) ) ).
% sum_gp
thf(fact_6300_sum__gp,axiom,
! [N: nat,M: nat,X2: rat] :
( ( ( ord_less_nat @ N @ M )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= zero_zero_rat ) )
& ( ~ ( ord_less_nat @ N @ M )
=> ( ( ( X2 = one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( semiri681578069525770553at_rat @ ( minus_minus_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ M ) ) ) )
& ( ( X2 != one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( divide_divide_rat @ ( minus_minus_rat @ ( power_power_rat @ X2 @ M ) @ ( power_power_rat @ X2 @ ( suc @ N ) ) ) @ ( minus_minus_rat @ one_one_rat @ X2 ) ) ) ) ) ) ) ).
% sum_gp
thf(fact_6301_sum__gp,axiom,
! [N: nat,M: nat,X2: real] :
( ( ( ord_less_nat @ N @ M )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= zero_zero_real ) )
& ( ~ ( ord_less_nat @ N @ M )
=> ( ( ( X2 = one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( semiri5074537144036343181t_real @ ( minus_minus_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ M ) ) ) )
& ( ( X2 != one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ X2 @ M ) @ ( power_power_real @ X2 @ ( suc @ N ) ) ) @ ( minus_minus_real @ one_one_real @ X2 ) ) ) ) ) ) ) ).
% sum_gp
thf(fact_6302_signed__take__bit__numeral__bit1,axiom,
! [L2: num,K: num] :
( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L2 ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
= ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L2 ) @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).
% signed_take_bit_numeral_bit1
thf(fact_6303_summable__complex__of__real,axiom,
! [F: nat > real] :
( ( summable_complex
@ ^ [N3: nat] : ( real_V4546457046886955230omplex @ ( F @ N3 ) ) )
= ( summable_real @ F ) ) ).
% summable_complex_of_real
thf(fact_6304_sin__zero,axiom,
( ( sin_complex @ zero_zero_complex )
= zero_zero_complex ) ).
% sin_zero
thf(fact_6305_sin__zero,axiom,
( ( sin_real @ zero_zero_real )
= zero_zero_real ) ).
% sin_zero
thf(fact_6306_sum_Oneutral__const,axiom,
! [A2: set_nat] :
( ( groups3542108847815614940at_nat
@ ^ [Uu3: nat] : zero_zero_nat
@ A2 )
= zero_zero_nat ) ).
% sum.neutral_const
thf(fact_6307_sum_Oneutral__const,axiom,
! [A2: set_complex] :
( ( groups7754918857620584856omplex
@ ^ [Uu3: complex] : zero_zero_complex
@ A2 )
= zero_zero_complex ) ).
% sum.neutral_const
thf(fact_6308_sum_Oneutral__const,axiom,
! [A2: set_nat] :
( ( groups6591440286371151544t_real
@ ^ [Uu3: nat] : zero_zero_real
@ A2 )
= zero_zero_real ) ).
% sum.neutral_const
thf(fact_6309_sum_Oneutral__const,axiom,
! [A2: set_int] :
( ( groups4538972089207619220nt_int
@ ^ [Uu3: int] : zero_zero_int
@ A2 )
= zero_zero_int ) ).
% sum.neutral_const
thf(fact_6310_of__nat__sum,axiom,
! [F: complex > nat,A2: set_complex] :
( ( semiri8010041392384452111omplex @ ( groups5693394587270226106ex_nat @ F @ A2 ) )
= ( groups7754918857620584856omplex
@ ^ [X: complex] : ( semiri8010041392384452111omplex @ ( F @ X ) )
@ A2 ) ) ).
% of_nat_sum
thf(fact_6311_of__nat__sum,axiom,
! [F: int > nat,A2: set_int] :
( ( semiri1314217659103216013at_int @ ( groups4541462559716669496nt_nat @ F @ A2 ) )
= ( groups4538972089207619220nt_int
@ ^ [X: int] : ( semiri1314217659103216013at_int @ ( F @ X ) )
@ A2 ) ) ).
% of_nat_sum
thf(fact_6312_of__nat__sum,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri1314217659103216013at_int @ ( groups3542108847815614940at_nat @ F @ A2 ) )
= ( groups3539618377306564664at_int
@ ^ [X: nat] : ( semiri1314217659103216013at_int @ ( F @ X ) )
@ A2 ) ) ).
% of_nat_sum
thf(fact_6313_of__nat__sum,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri1316708129612266289at_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) )
= ( groups3542108847815614940at_nat
@ ^ [X: nat] : ( semiri1316708129612266289at_nat @ ( F @ X ) )
@ A2 ) ) ).
% of_nat_sum
thf(fact_6314_of__nat__sum,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri5074537144036343181t_real @ ( groups3542108847815614940at_nat @ F @ A2 ) )
= ( groups6591440286371151544t_real
@ ^ [X: nat] : ( semiri5074537144036343181t_real @ ( F @ X ) )
@ A2 ) ) ).
% of_nat_sum
thf(fact_6315_of__int__sum,axiom,
! [F: complex > int,A2: set_complex] :
( ( ring_17405671764205052669omplex @ ( groups5690904116761175830ex_int @ F @ A2 ) )
= ( groups7754918857620584856omplex
@ ^ [X: complex] : ( ring_17405671764205052669omplex @ ( F @ X ) )
@ A2 ) ) ).
% of_int_sum
thf(fact_6316_of__int__sum,axiom,
! [F: nat > int,A2: set_nat] :
( ( ring_1_of_int_real @ ( groups3539618377306564664at_int @ F @ A2 ) )
= ( groups6591440286371151544t_real
@ ^ [X: nat] : ( ring_1_of_int_real @ ( F @ X ) )
@ A2 ) ) ).
% of_int_sum
thf(fact_6317_of__int__sum,axiom,
! [F: int > int,A2: set_int] :
( ( ring_1_of_int_real @ ( groups4538972089207619220nt_int @ F @ A2 ) )
= ( groups8778361861064173332t_real
@ ^ [X: int] : ( ring_1_of_int_real @ ( F @ X ) )
@ A2 ) ) ).
% of_int_sum
thf(fact_6318_of__int__sum,axiom,
! [F: int > int,A2: set_int] :
( ( ring_1_of_int_rat @ ( groups4538972089207619220nt_int @ F @ A2 ) )
= ( groups3906332499630173760nt_rat
@ ^ [X: int] : ( ring_1_of_int_rat @ ( F @ X ) )
@ A2 ) ) ).
% of_int_sum
thf(fact_6319_of__int__sum,axiom,
! [F: int > int,A2: set_int] :
( ( ring_1_of_int_int @ ( groups4538972089207619220nt_int @ F @ A2 ) )
= ( groups4538972089207619220nt_int
@ ^ [X: int] : ( ring_1_of_int_int @ ( F @ X ) )
@ A2 ) ) ).
% of_int_sum
thf(fact_6320_abs__sum__abs,axiom,
! [F: nat > real,A2: set_nat] :
( ( abs_abs_real
@ ( groups6591440286371151544t_real
@ ^ [A3: nat] : ( abs_abs_real @ ( F @ A3 ) )
@ A2 ) )
= ( groups6591440286371151544t_real
@ ^ [A3: nat] : ( abs_abs_real @ ( F @ A3 ) )
@ A2 ) ) ).
% abs_sum_abs
thf(fact_6321_abs__sum__abs,axiom,
! [F: int > int,A2: set_int] :
( ( abs_abs_int
@ ( groups4538972089207619220nt_int
@ ^ [A3: int] : ( abs_abs_int @ ( F @ A3 ) )
@ A2 ) )
= ( groups4538972089207619220nt_int
@ ^ [A3: int] : ( abs_abs_int @ ( F @ A3 ) )
@ A2 ) ) ).
% abs_sum_abs
thf(fact_6322_of__real__sum,axiom,
! [F: complex > real,S3: set_complex] :
( ( real_V4546457046886955230omplex @ ( groups5808333547571424918x_real @ F @ S3 ) )
= ( groups7754918857620584856omplex
@ ^ [X: complex] : ( real_V4546457046886955230omplex @ ( F @ X ) )
@ S3 ) ) ).
% of_real_sum
thf(fact_6323_of__real__sum,axiom,
! [F: nat > real,S3: set_nat] :
( ( real_V4546457046886955230omplex @ ( groups6591440286371151544t_real @ F @ S3 ) )
= ( groups2073611262835488442omplex
@ ^ [X: nat] : ( real_V4546457046886955230omplex @ ( F @ X ) )
@ S3 ) ) ).
% of_real_sum
thf(fact_6324_of__real__sum,axiom,
! [F: nat > real,S3: set_nat] :
( ( real_V1803761363581548252l_real @ ( groups6591440286371151544t_real @ F @ S3 ) )
= ( groups6591440286371151544t_real
@ ^ [X: nat] : ( real_V1803761363581548252l_real @ ( F @ X ) )
@ S3 ) ) ).
% of_real_sum
thf(fact_6325_sum_Oinfinite,axiom,
! [A2: set_nat,G: nat > complex] :
( ~ ( finite_finite_nat @ A2 )
=> ( ( groups2073611262835488442omplex @ G @ A2 )
= zero_zero_complex ) ) ).
% sum.infinite
thf(fact_6326_sum_Oinfinite,axiom,
! [A2: set_int,G: int > complex] :
( ~ ( finite_finite_int @ A2 )
=> ( ( groups3049146728041665814omplex @ G @ A2 )
= zero_zero_complex ) ) ).
% sum.infinite
thf(fact_6327_sum_Oinfinite,axiom,
! [A2: set_Code_integer,G: code_integer > complex] :
( ~ ( finite6017078050557962740nteger @ A2 )
=> ( ( groups8024822376189712711omplex @ G @ A2 )
= zero_zero_complex ) ) ).
% sum.infinite
thf(fact_6328_sum_Oinfinite,axiom,
! [A2: set_int,G: int > real] :
( ~ ( finite_finite_int @ A2 )
=> ( ( groups8778361861064173332t_real @ G @ A2 )
= zero_zero_real ) ) ).
% sum.infinite
thf(fact_6329_sum_Oinfinite,axiom,
! [A2: set_complex,G: complex > real] :
( ~ ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5808333547571424918x_real @ G @ A2 )
= zero_zero_real ) ) ).
% sum.infinite
thf(fact_6330_sum_Oinfinite,axiom,
! [A2: set_Code_integer,G: code_integer > real] :
( ~ ( finite6017078050557962740nteger @ A2 )
=> ( ( groups1270011288395367621r_real @ G @ A2 )
= zero_zero_real ) ) ).
% sum.infinite
thf(fact_6331_sum_Oinfinite,axiom,
! [A2: set_nat,G: nat > rat] :
( ~ ( finite_finite_nat @ A2 )
=> ( ( groups2906978787729119204at_rat @ G @ A2 )
= zero_zero_rat ) ) ).
% sum.infinite
thf(fact_6332_sum_Oinfinite,axiom,
! [A2: set_int,G: int > rat] :
( ~ ( finite_finite_int @ A2 )
=> ( ( groups3906332499630173760nt_rat @ G @ A2 )
= zero_zero_rat ) ) ).
% sum.infinite
thf(fact_6333_sum_Oinfinite,axiom,
! [A2: set_complex,G: complex > rat] :
( ~ ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5058264527183730370ex_rat @ G @ A2 )
= zero_zero_rat ) ) ).
% sum.infinite
thf(fact_6334_sum_Oinfinite,axiom,
! [A2: set_Code_integer,G: code_integer > rat] :
( ~ ( finite6017078050557962740nteger @ A2 )
=> ( ( groups6602215022474089585er_rat @ G @ A2 )
= zero_zero_rat ) ) ).
% sum.infinite
thf(fact_6335_sum__eq__0__iff,axiom,
! [F2: set_int,F: int > nat] :
( ( finite_finite_int @ F2 )
=> ( ( ( groups4541462559716669496nt_nat @ F @ F2 )
= zero_zero_nat )
= ( ! [X: int] :
( ( member_int @ X @ F2 )
=> ( ( F @ X )
= zero_zero_nat ) ) ) ) ) ).
% sum_eq_0_iff
thf(fact_6336_sum__eq__0__iff,axiom,
! [F2: set_complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ F2 )
=> ( ( ( groups5693394587270226106ex_nat @ F @ F2 )
= zero_zero_nat )
= ( ! [X: complex] :
( ( member_complex @ X @ F2 )
=> ( ( F @ X )
= zero_zero_nat ) ) ) ) ) ).
% sum_eq_0_iff
thf(fact_6337_sum__eq__0__iff,axiom,
! [F2: set_Code_integer,F: code_integer > nat] :
( ( finite6017078050557962740nteger @ F2 )
=> ( ( ( groups7237345082560585321er_nat @ F @ F2 )
= zero_zero_nat )
= ( ! [X: code_integer] :
( ( member_Code_integer @ X @ F2 )
=> ( ( F @ X )
= zero_zero_nat ) ) ) ) ) ).
% sum_eq_0_iff
thf(fact_6338_sum__eq__0__iff,axiom,
! [F2: set_nat,F: nat > nat] :
( ( finite_finite_nat @ F2 )
=> ( ( ( groups3542108847815614940at_nat @ F @ F2 )
= zero_zero_nat )
= ( ! [X: nat] :
( ( member_nat @ X @ F2 )
=> ( ( F @ X )
= zero_zero_nat ) ) ) ) ) ).
% sum_eq_0_iff
thf(fact_6339_cos__zero,axiom,
( ( cos_complex @ zero_zero_complex )
= one_one_complex ) ).
% cos_zero
thf(fact_6340_cos__zero,axiom,
( ( cos_real @ zero_zero_real )
= one_one_real ) ).
% cos_zero
thf(fact_6341_pred__numeral__simps_I1_J,axiom,
( ( pred_numeral @ one )
= zero_zero_nat ) ).
% pred_numeral_simps(1)
thf(fact_6342_eq__numeral__Suc,axiom,
! [K: num,N: nat] :
( ( ( numeral_numeral_nat @ K )
= ( suc @ N ) )
= ( ( pred_numeral @ K )
= N ) ) ).
% eq_numeral_Suc
thf(fact_6343_Suc__eq__numeral,axiom,
! [N: nat,K: num] :
( ( ( suc @ N )
= ( numeral_numeral_nat @ K ) )
= ( N
= ( pred_numeral @ K ) ) ) ).
% Suc_eq_numeral
thf(fact_6344_sin__pi,axiom,
( ( sin_real @ pi )
= zero_zero_real ) ).
% sin_pi
thf(fact_6345_sum_Odelta,axiom,
! [S: set_real,A: real,B: real > complex] :
( ( finite_finite_real @ S )
=> ( ( ( member_real @ A @ S )
=> ( ( groups5754745047067104278omplex
@ ^ [K2: real] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_real @ A @ S )
=> ( ( groups5754745047067104278omplex
@ ^ [K2: real] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
@ S )
= zero_zero_complex ) ) ) ) ).
% sum.delta
thf(fact_6346_sum_Odelta,axiom,
! [S: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ S )
=> ( ( ( member_VEBT_VEBT @ A @ S )
=> ( ( groups1794756597179926696omplex
@ ^ [K2: vEBT_VEBT] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ S )
=> ( ( groups1794756597179926696omplex
@ ^ [K2: vEBT_VEBT] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
@ S )
= zero_zero_complex ) ) ) ) ).
% sum.delta
thf(fact_6347_sum_Odelta,axiom,
! [S: set_nat,A: nat,B: nat > complex] :
( ( finite_finite_nat @ S )
=> ( ( ( member_nat @ A @ S )
=> ( ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_nat @ A @ S )
=> ( ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
@ S )
= zero_zero_complex ) ) ) ) ).
% sum.delta
thf(fact_6348_sum_Odelta,axiom,
! [S: set_int,A: int,B: int > complex] :
( ( finite_finite_int @ S )
=> ( ( ( member_int @ A @ S )
=> ( ( groups3049146728041665814omplex
@ ^ [K2: int] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_int @ A @ S )
=> ( ( groups3049146728041665814omplex
@ ^ [K2: int] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
@ S )
= zero_zero_complex ) ) ) ) ).
% sum.delta
thf(fact_6349_sum_Odelta,axiom,
! [S: set_Code_integer,A: code_integer,B: code_integer > complex] :
( ( finite6017078050557962740nteger @ S )
=> ( ( ( member_Code_integer @ A @ S )
=> ( ( groups8024822376189712711omplex
@ ^ [K2: code_integer] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_Code_integer @ A @ S )
=> ( ( groups8024822376189712711omplex
@ ^ [K2: code_integer] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
@ S )
= zero_zero_complex ) ) ) ) ).
% sum.delta
thf(fact_6350_sum_Odelta,axiom,
! [S: set_real,A: real,B: real > real] :
( ( finite_finite_real @ S )
=> ( ( ( member_real @ A @ S )
=> ( ( groups8097168146408367636l_real
@ ^ [K2: real] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_real @ A @ S )
=> ( ( groups8097168146408367636l_real
@ ^ [K2: real] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
@ S )
= zero_zero_real ) ) ) ) ).
% sum.delta
thf(fact_6351_sum_Odelta,axiom,
! [S: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ S )
=> ( ( ( member_VEBT_VEBT @ A @ S )
=> ( ( groups2240296850493347238T_real
@ ^ [K2: vEBT_VEBT] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ S )
=> ( ( groups2240296850493347238T_real
@ ^ [K2: vEBT_VEBT] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
@ S )
= zero_zero_real ) ) ) ) ).
% sum.delta
thf(fact_6352_sum_Odelta,axiom,
! [S: set_int,A: int,B: int > real] :
( ( finite_finite_int @ S )
=> ( ( ( member_int @ A @ S )
=> ( ( groups8778361861064173332t_real
@ ^ [K2: int] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_int @ A @ S )
=> ( ( groups8778361861064173332t_real
@ ^ [K2: int] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
@ S )
= zero_zero_real ) ) ) ) ).
% sum.delta
thf(fact_6353_sum_Odelta,axiom,
! [S: set_complex,A: complex,B: complex > real] :
( ( finite3207457112153483333omplex @ S )
=> ( ( ( member_complex @ A @ S )
=> ( ( groups5808333547571424918x_real
@ ^ [K2: complex] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_complex @ A @ S )
=> ( ( groups5808333547571424918x_real
@ ^ [K2: complex] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
@ S )
= zero_zero_real ) ) ) ) ).
% sum.delta
thf(fact_6354_sum_Odelta,axiom,
! [S: set_Code_integer,A: code_integer,B: code_integer > real] :
( ( finite6017078050557962740nteger @ S )
=> ( ( ( member_Code_integer @ A @ S )
=> ( ( groups1270011288395367621r_real
@ ^ [K2: code_integer] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_Code_integer @ A @ S )
=> ( ( groups1270011288395367621r_real
@ ^ [K2: code_integer] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
@ S )
= zero_zero_real ) ) ) ) ).
% sum.delta
thf(fact_6355_sum_Odelta_H,axiom,
! [S: set_real,A: real,B: real > complex] :
( ( finite_finite_real @ S )
=> ( ( ( member_real @ A @ S )
=> ( ( groups5754745047067104278omplex
@ ^ [K2: real] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_real @ A @ S )
=> ( ( groups5754745047067104278omplex
@ ^ [K2: real] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
@ S )
= zero_zero_complex ) ) ) ) ).
% sum.delta'
thf(fact_6356_sum_Odelta_H,axiom,
! [S: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ S )
=> ( ( ( member_VEBT_VEBT @ A @ S )
=> ( ( groups1794756597179926696omplex
@ ^ [K2: vEBT_VEBT] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ S )
=> ( ( groups1794756597179926696omplex
@ ^ [K2: vEBT_VEBT] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
@ S )
= zero_zero_complex ) ) ) ) ).
% sum.delta'
thf(fact_6357_sum_Odelta_H,axiom,
! [S: set_nat,A: nat,B: nat > complex] :
( ( finite_finite_nat @ S )
=> ( ( ( member_nat @ A @ S )
=> ( ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_nat @ A @ S )
=> ( ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
@ S )
= zero_zero_complex ) ) ) ) ).
% sum.delta'
thf(fact_6358_sum_Odelta_H,axiom,
! [S: set_int,A: int,B: int > complex] :
( ( finite_finite_int @ S )
=> ( ( ( member_int @ A @ S )
=> ( ( groups3049146728041665814omplex
@ ^ [K2: int] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_int @ A @ S )
=> ( ( groups3049146728041665814omplex
@ ^ [K2: int] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
@ S )
= zero_zero_complex ) ) ) ) ).
% sum.delta'
thf(fact_6359_sum_Odelta_H,axiom,
! [S: set_Code_integer,A: code_integer,B: code_integer > complex] :
( ( finite6017078050557962740nteger @ S )
=> ( ( ( member_Code_integer @ A @ S )
=> ( ( groups8024822376189712711omplex
@ ^ [K2: code_integer] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_Code_integer @ A @ S )
=> ( ( groups8024822376189712711omplex
@ ^ [K2: code_integer] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
@ S )
= zero_zero_complex ) ) ) ) ).
% sum.delta'
thf(fact_6360_sum_Odelta_H,axiom,
! [S: set_real,A: real,B: real > real] :
( ( finite_finite_real @ S )
=> ( ( ( member_real @ A @ S )
=> ( ( groups8097168146408367636l_real
@ ^ [K2: real] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_real @ A @ S )
=> ( ( groups8097168146408367636l_real
@ ^ [K2: real] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
@ S )
= zero_zero_real ) ) ) ) ).
% sum.delta'
thf(fact_6361_sum_Odelta_H,axiom,
! [S: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ S )
=> ( ( ( member_VEBT_VEBT @ A @ S )
=> ( ( groups2240296850493347238T_real
@ ^ [K2: vEBT_VEBT] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ S )
=> ( ( groups2240296850493347238T_real
@ ^ [K2: vEBT_VEBT] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
@ S )
= zero_zero_real ) ) ) ) ).
% sum.delta'
thf(fact_6362_sum_Odelta_H,axiom,
! [S: set_int,A: int,B: int > real] :
( ( finite_finite_int @ S )
=> ( ( ( member_int @ A @ S )
=> ( ( groups8778361861064173332t_real
@ ^ [K2: int] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_int @ A @ S )
=> ( ( groups8778361861064173332t_real
@ ^ [K2: int] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
@ S )
= zero_zero_real ) ) ) ) ).
% sum.delta'
thf(fact_6363_sum_Odelta_H,axiom,
! [S: set_complex,A: complex,B: complex > real] :
( ( finite3207457112153483333omplex @ S )
=> ( ( ( member_complex @ A @ S )
=> ( ( groups5808333547571424918x_real
@ ^ [K2: complex] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_complex @ A @ S )
=> ( ( groups5808333547571424918x_real
@ ^ [K2: complex] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
@ S )
= zero_zero_real ) ) ) ) ).
% sum.delta'
thf(fact_6364_sum_Odelta_H,axiom,
! [S: set_Code_integer,A: code_integer,B: code_integer > real] :
( ( finite6017078050557962740nteger @ S )
=> ( ( ( member_Code_integer @ A @ S )
=> ( ( groups1270011288395367621r_real
@ ^ [K2: code_integer] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_Code_integer @ A @ S )
=> ( ( groups1270011288395367621r_real
@ ^ [K2: code_integer] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
@ S )
= zero_zero_real ) ) ) ) ).
% sum.delta'
thf(fact_6365_sum__abs,axiom,
! [F: nat > real,A2: set_nat] :
( ord_less_eq_real @ ( abs_abs_real @ ( groups6591440286371151544t_real @ F @ A2 ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( abs_abs_real @ ( F @ I3 ) )
@ A2 ) ) ).
% sum_abs
thf(fact_6366_sum__abs,axiom,
! [F: int > int,A2: set_int] :
( ord_less_eq_int @ ( abs_abs_int @ ( groups4538972089207619220nt_int @ F @ A2 ) )
@ ( groups4538972089207619220nt_int
@ ^ [I3: int] : ( abs_abs_int @ ( F @ I3 ) )
@ A2 ) ) ).
% sum_abs
thf(fact_6367_pred__numeral__simps_I3_J,axiom,
! [K: num] :
( ( pred_numeral @ ( bit1 @ K ) )
= ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ).
% pred_numeral_simps(3)
thf(fact_6368_less__numeral__Suc,axiom,
! [K: num,N: nat] :
( ( ord_less_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
= ( ord_less_nat @ ( pred_numeral @ K ) @ N ) ) ).
% less_numeral_Suc
thf(fact_6369_less__Suc__numeral,axiom,
! [N: nat,K: num] :
( ( ord_less_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
= ( ord_less_nat @ N @ ( pred_numeral @ K ) ) ) ).
% less_Suc_numeral
thf(fact_6370_le__numeral__Suc,axiom,
! [K: num,N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
= ( ord_less_eq_nat @ ( pred_numeral @ K ) @ N ) ) ).
% le_numeral_Suc
thf(fact_6371_le__Suc__numeral,axiom,
! [N: nat,K: num] :
( ( ord_less_eq_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
= ( ord_less_eq_nat @ N @ ( pred_numeral @ K ) ) ) ).
% le_Suc_numeral
thf(fact_6372_diff__numeral__Suc,axiom,
! [K: num,N: nat] :
( ( minus_minus_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
= ( minus_minus_nat @ ( pred_numeral @ K ) @ N ) ) ).
% diff_numeral_Suc
thf(fact_6373_diff__Suc__numeral,axiom,
! [N: nat,K: num] :
( ( minus_minus_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
= ( minus_minus_nat @ N @ ( pred_numeral @ K ) ) ) ).
% diff_Suc_numeral
thf(fact_6374_sin__of__real__pi,axiom,
( ( sin_real @ ( real_V1803761363581548252l_real @ pi ) )
= zero_zero_real ) ).
% sin_of_real_pi
thf(fact_6375_sin__of__real__pi,axiom,
( ( sin_complex @ ( real_V4546457046886955230omplex @ pi ) )
= zero_zero_complex ) ).
% sin_of_real_pi
thf(fact_6376_cos__pi,axiom,
( ( cos_real @ pi )
= ( uminus_uminus_real @ one_one_real ) ) ).
% cos_pi
thf(fact_6377_cos__periodic__pi2,axiom,
! [X2: real] :
( ( cos_real @ ( plus_plus_real @ pi @ X2 ) )
= ( uminus_uminus_real @ ( cos_real @ X2 ) ) ) ).
% cos_periodic_pi2
thf(fact_6378_cos__periodic__pi,axiom,
! [X2: real] :
( ( cos_real @ ( plus_plus_real @ X2 @ pi ) )
= ( uminus_uminus_real @ ( cos_real @ X2 ) ) ) ).
% cos_periodic_pi
thf(fact_6379_sin__periodic__pi2,axiom,
! [X2: real] :
( ( sin_real @ ( plus_plus_real @ pi @ X2 ) )
= ( uminus_uminus_real @ ( sin_real @ X2 ) ) ) ).
% sin_periodic_pi2
thf(fact_6380_sin__periodic__pi,axiom,
! [X2: real] :
( ( sin_real @ ( plus_plus_real @ X2 @ pi ) )
= ( uminus_uminus_real @ ( sin_real @ X2 ) ) ) ).
% sin_periodic_pi
thf(fact_6381_sum__abs__ge__zero,axiom,
! [F: nat > real,A2: set_nat] :
( ord_less_eq_real @ zero_zero_real
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( abs_abs_real @ ( F @ I3 ) )
@ A2 ) ) ).
% sum_abs_ge_zero
thf(fact_6382_sum__abs__ge__zero,axiom,
! [F: int > int,A2: set_int] :
( ord_less_eq_int @ zero_zero_int
@ ( groups4538972089207619220nt_int
@ ^ [I3: int] : ( abs_abs_int @ ( F @ I3 ) )
@ A2 ) ) ).
% sum_abs_ge_zero
thf(fact_6383_sin__cos__squared__add3,axiom,
! [X2: complex] :
( ( plus_plus_complex @ ( times_times_complex @ ( cos_complex @ X2 ) @ ( cos_complex @ X2 ) ) @ ( times_times_complex @ ( sin_complex @ X2 ) @ ( sin_complex @ X2 ) ) )
= one_one_complex ) ).
% sin_cos_squared_add3
thf(fact_6384_sin__cos__squared__add3,axiom,
! [X2: real] :
( ( plus_plus_real @ ( times_times_real @ ( cos_real @ X2 ) @ ( cos_real @ X2 ) ) @ ( times_times_real @ ( sin_real @ X2 ) @ ( sin_real @ X2 ) ) )
= one_one_real ) ).
% sin_cos_squared_add3
thf(fact_6385_cos__of__real__pi,axiom,
( ( cos_real @ ( real_V1803761363581548252l_real @ pi ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% cos_of_real_pi
thf(fact_6386_cos__of__real__pi,axiom,
( ( cos_complex @ ( real_V4546457046886955230omplex @ pi ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% cos_of_real_pi
thf(fact_6387_sin__npi2,axiom,
! [N: nat] :
( ( sin_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) )
= zero_zero_real ) ).
% sin_npi2
thf(fact_6388_sin__npi,axiom,
! [N: nat] :
( ( sin_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
= zero_zero_real ) ).
% sin_npi
thf(fact_6389_sin__npi__int,axiom,
! [N: int] :
( ( sin_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N ) ) )
= zero_zero_real ) ).
% sin_npi_int
thf(fact_6390_sum_Ocl__ivl__Suc,axiom,
! [N: nat,M: nat,G: nat > complex] :
( ( ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups2073611262835488442omplex @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= zero_zero_complex ) )
& ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups2073611262835488442omplex @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( plus_plus_complex @ ( groups2073611262835488442omplex @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).
% sum.cl_ivl_Suc
thf(fact_6391_sum_Ocl__ivl__Suc,axiom,
! [N: nat,M: nat,G: nat > rat] :
( ( ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= zero_zero_rat ) )
& ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).
% sum.cl_ivl_Suc
thf(fact_6392_sum_Ocl__ivl__Suc,axiom,
! [N: nat,M: nat,G: nat > int] :
( ( ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= zero_zero_int ) )
& ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).
% sum.cl_ivl_Suc
thf(fact_6393_sum_Ocl__ivl__Suc,axiom,
! [N: nat,M: nat,G: nat > nat] :
( ( ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= zero_zero_nat ) )
& ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).
% sum.cl_ivl_Suc
thf(fact_6394_sum_Ocl__ivl__Suc,axiom,
! [N: nat,M: nat,G: nat > real] :
( ( ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= zero_zero_real ) )
& ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).
% sum.cl_ivl_Suc
thf(fact_6395_sum__zero__power,axiom,
! [A2: set_nat,C: nat > complex] :
( ( ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ zero_zero_complex @ I3 ) )
@ A2 )
= ( C @ zero_zero_nat ) ) )
& ( ~ ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ zero_zero_complex @ I3 ) )
@ A2 )
= zero_zero_complex ) ) ) ).
% sum_zero_power
thf(fact_6396_sum__zero__power,axiom,
! [A2: set_nat,C: nat > rat] :
( ( ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( C @ I3 ) @ ( power_power_rat @ zero_zero_rat @ I3 ) )
@ A2 )
= ( C @ zero_zero_nat ) ) )
& ( ~ ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( C @ I3 ) @ ( power_power_rat @ zero_zero_rat @ I3 ) )
@ A2 )
= zero_zero_rat ) ) ) ).
% sum_zero_power
thf(fact_6397_sum__zero__power,axiom,
! [A2: set_nat,C: nat > real] :
( ( ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ zero_zero_real @ I3 ) )
@ A2 )
= ( C @ zero_zero_nat ) ) )
& ( ~ ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ zero_zero_real @ I3 ) )
@ A2 )
= zero_zero_real ) ) ) ).
% sum_zero_power
thf(fact_6398_cos__pi__half,axiom,
( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= zero_zero_real ) ).
% cos_pi_half
thf(fact_6399_sin__two__pi,axiom,
( ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
= zero_zero_real ) ).
% sin_two_pi
thf(fact_6400_cos__two__pi,axiom,
( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
= one_one_real ) ).
% cos_two_pi
thf(fact_6401_sin__pi__half,axiom,
( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= one_one_real ) ).
% sin_pi_half
thf(fact_6402_signed__take__bit__numeral__bit0,axiom,
! [L2: num,K: num] :
( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L2 ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
= ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L2 ) @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% signed_take_bit_numeral_bit0
thf(fact_6403_cos__periodic,axiom,
! [X2: real] :
( ( cos_real @ ( plus_plus_real @ X2 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
= ( cos_real @ X2 ) ) ).
% cos_periodic
thf(fact_6404_sin__periodic,axiom,
! [X2: real] :
( ( sin_real @ ( plus_plus_real @ X2 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
= ( sin_real @ X2 ) ) ).
% sin_periodic
thf(fact_6405_cos__2pi__minus,axiom,
! [X2: real] :
( ( cos_real @ ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ X2 ) )
= ( cos_real @ X2 ) ) ).
% cos_2pi_minus
thf(fact_6406_cos__npi2,axiom,
! [N: nat] :
( ( cos_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) )
= ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) ) ).
% cos_npi2
thf(fact_6407_cos__npi,axiom,
! [N: nat] :
( ( cos_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
= ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) ) ).
% cos_npi
thf(fact_6408_sum__zero__power_H,axiom,
! [A2: set_nat,C: nat > complex,D2: nat > complex] :
( ( ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( divide1717551699836669952omplex @ ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ zero_zero_complex @ I3 ) ) @ ( D2 @ I3 ) )
@ A2 )
= ( divide1717551699836669952omplex @ ( C @ zero_zero_nat ) @ ( D2 @ zero_zero_nat ) ) ) )
& ( ~ ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( divide1717551699836669952omplex @ ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ zero_zero_complex @ I3 ) ) @ ( D2 @ I3 ) )
@ A2 )
= zero_zero_complex ) ) ) ).
% sum_zero_power'
thf(fact_6409_sum__zero__power_H,axiom,
! [A2: set_nat,C: nat > rat,D2: nat > rat] :
( ( ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( divide_divide_rat @ ( times_times_rat @ ( C @ I3 ) @ ( power_power_rat @ zero_zero_rat @ I3 ) ) @ ( D2 @ I3 ) )
@ A2 )
= ( divide_divide_rat @ ( C @ zero_zero_nat ) @ ( D2 @ zero_zero_nat ) ) ) )
& ( ~ ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( divide_divide_rat @ ( times_times_rat @ ( C @ I3 ) @ ( power_power_rat @ zero_zero_rat @ I3 ) ) @ ( D2 @ I3 ) )
@ A2 )
= zero_zero_rat ) ) ) ).
% sum_zero_power'
thf(fact_6410_sum__zero__power_H,axiom,
! [A2: set_nat,C: nat > real,D2: nat > real] :
( ( ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( divide_divide_real @ ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ zero_zero_real @ I3 ) ) @ ( D2 @ I3 ) )
@ A2 )
= ( divide_divide_real @ ( C @ zero_zero_nat ) @ ( D2 @ zero_zero_nat ) ) ) )
& ( ~ ( ( finite_finite_nat @ A2 )
& ( member_nat @ zero_zero_nat @ A2 ) )
=> ( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( divide_divide_real @ ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ zero_zero_real @ I3 ) ) @ ( D2 @ I3 ) )
@ A2 )
= zero_zero_real ) ) ) ).
% sum_zero_power'
thf(fact_6411_sin__cos__squared__add2,axiom,
! [X2: real] :
( ( plus_plus_real @ ( power_power_real @ ( cos_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( sin_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_real ) ).
% sin_cos_squared_add2
thf(fact_6412_sin__cos__squared__add2,axiom,
! [X2: complex] :
( ( plus_plus_complex @ ( power_power_complex @ ( cos_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( sin_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_complex ) ).
% sin_cos_squared_add2
thf(fact_6413_sin__cos__squared__add,axiom,
! [X2: real] :
( ( plus_plus_real @ ( power_power_real @ ( sin_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( cos_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_real ) ).
% sin_cos_squared_add
thf(fact_6414_sin__cos__squared__add,axiom,
! [X2: complex] :
( ( plus_plus_complex @ ( power_power_complex @ ( sin_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( cos_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_complex ) ).
% sin_cos_squared_add
thf(fact_6415_cos__of__real__pi__half,axiom,
( ( cos_real @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= zero_zero_real ) ).
% cos_of_real_pi_half
thf(fact_6416_cos__of__real__pi__half,axiom,
( ( cos_complex @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) )
= zero_zero_complex ) ).
% cos_of_real_pi_half
thf(fact_6417_sin__of__real__pi__half,axiom,
( ( sin_real @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= one_one_real ) ).
% sin_of_real_pi_half
thf(fact_6418_sin__of__real__pi__half,axiom,
( ( sin_complex @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) )
= one_one_complex ) ).
% sin_of_real_pi_half
thf(fact_6419_signed__take__bit__numeral__minus__bit0,axiom,
! [L2: num,K: num] :
( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
= ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% signed_take_bit_numeral_minus_bit0
thf(fact_6420_sin__2npi,axiom,
! [N: nat] :
( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) )
= zero_zero_real ) ).
% sin_2npi
thf(fact_6421_cos__2npi,axiom,
! [N: nat] :
( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) )
= one_one_real ) ).
% cos_2npi
thf(fact_6422_sin__2pi__minus,axiom,
! [X2: real] :
( ( sin_real @ ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ X2 ) )
= ( uminus_uminus_real @ ( sin_real @ X2 ) ) ) ).
% sin_2pi_minus
thf(fact_6423_sin__int__2pin,axiom,
! [N: int] :
( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( ring_1_of_int_real @ N ) ) )
= zero_zero_real ) ).
% sin_int_2pin
thf(fact_6424_cos__int__2pin,axiom,
! [N: int] :
( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( ring_1_of_int_real @ N ) ) )
= one_one_real ) ).
% cos_int_2pin
thf(fact_6425_cos__3over2__pi,axiom,
( ( cos_real @ ( times_times_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
= zero_zero_real ) ).
% cos_3over2_pi
thf(fact_6426_sin__3over2__pi,axiom,
( ( sin_real @ ( times_times_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% sin_3over2_pi
thf(fact_6427_cos__npi__int,axiom,
! [N: int] :
( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
=> ( ( cos_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N ) ) )
= one_one_real ) )
& ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
=> ( ( cos_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N ) ) )
= ( uminus_uminus_real @ one_one_real ) ) ) ) ).
% cos_npi_int
thf(fact_6428_dvd__sum,axiom,
! [A2: set_real,D2: nat,F: real > nat] :
( ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( dvd_dvd_nat @ D2 @ ( F @ A4 ) ) )
=> ( dvd_dvd_nat @ D2 @ ( groups1935376822645274424al_nat @ F @ A2 ) ) ) ).
% dvd_sum
thf(fact_6429_dvd__sum,axiom,
! [A2: set_int,D2: nat,F: int > nat] :
( ! [A4: int] :
( ( member_int @ A4 @ A2 )
=> ( dvd_dvd_nat @ D2 @ ( F @ A4 ) ) )
=> ( dvd_dvd_nat @ D2 @ ( groups4541462559716669496nt_nat @ F @ A2 ) ) ) ).
% dvd_sum
thf(fact_6430_dvd__sum,axiom,
! [A2: set_VEBT_VEBT,D2: nat,F: vEBT_VEBT > nat] :
( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ A2 )
=> ( dvd_dvd_nat @ D2 @ ( F @ A4 ) ) )
=> ( dvd_dvd_nat @ D2 @ ( groups771621172384141258BT_nat @ F @ A2 ) ) ) ).
% dvd_sum
thf(fact_6431_dvd__sum,axiom,
! [A2: set_nat,D2: int,F: nat > int] :
( ! [A4: nat] :
( ( member_nat @ A4 @ A2 )
=> ( dvd_dvd_int @ D2 @ ( F @ A4 ) ) )
=> ( dvd_dvd_int @ D2 @ ( groups3539618377306564664at_int @ F @ A2 ) ) ) ).
% dvd_sum
thf(fact_6432_dvd__sum,axiom,
! [A2: set_real,D2: int,F: real > int] :
( ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( dvd_dvd_int @ D2 @ ( F @ A4 ) ) )
=> ( dvd_dvd_int @ D2 @ ( groups1932886352136224148al_int @ F @ A2 ) ) ) ).
% dvd_sum
thf(fact_6433_dvd__sum,axiom,
! [A2: set_VEBT_VEBT,D2: int,F: vEBT_VEBT > int] :
( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ A2 )
=> ( dvd_dvd_int @ D2 @ ( F @ A4 ) ) )
=> ( dvd_dvd_int @ D2 @ ( groups769130701875090982BT_int @ F @ A2 ) ) ) ).
% dvd_sum
thf(fact_6434_dvd__sum,axiom,
! [A2: set_nat,D2: nat,F: nat > nat] :
( ! [A4: nat] :
( ( member_nat @ A4 @ A2 )
=> ( dvd_dvd_nat @ D2 @ ( F @ A4 ) ) )
=> ( dvd_dvd_nat @ D2 @ ( groups3542108847815614940at_nat @ F @ A2 ) ) ) ).
% dvd_sum
thf(fact_6435_dvd__sum,axiom,
! [A2: set_complex,D2: complex,F: complex > complex] :
( ! [A4: complex] :
( ( member_complex @ A4 @ A2 )
=> ( dvd_dvd_complex @ D2 @ ( F @ A4 ) ) )
=> ( dvd_dvd_complex @ D2 @ ( groups7754918857620584856omplex @ F @ A2 ) ) ) ).
% dvd_sum
thf(fact_6436_dvd__sum,axiom,
! [A2: set_nat,D2: real,F: nat > real] :
( ! [A4: nat] :
( ( member_nat @ A4 @ A2 )
=> ( dvd_dvd_real @ D2 @ ( F @ A4 ) ) )
=> ( dvd_dvd_real @ D2 @ ( groups6591440286371151544t_real @ F @ A2 ) ) ) ).
% dvd_sum
thf(fact_6437_dvd__sum,axiom,
! [A2: set_int,D2: int,F: int > int] :
( ! [A4: int] :
( ( member_int @ A4 @ A2 )
=> ( dvd_dvd_int @ D2 @ ( F @ A4 ) ) )
=> ( dvd_dvd_int @ D2 @ ( groups4538972089207619220nt_int @ F @ A2 ) ) ) ).
% dvd_sum
thf(fact_6438_sin__add,axiom,
! [X2: real,Y2: real] :
( ( sin_real @ ( plus_plus_real @ X2 @ Y2 ) )
= ( plus_plus_real @ ( times_times_real @ ( sin_real @ X2 ) @ ( cos_real @ Y2 ) ) @ ( times_times_real @ ( cos_real @ X2 ) @ ( sin_real @ Y2 ) ) ) ) ).
% sin_add
thf(fact_6439_sin__diff,axiom,
! [X2: real,Y2: real] :
( ( sin_real @ ( minus_minus_real @ X2 @ Y2 ) )
= ( minus_minus_real @ ( times_times_real @ ( sin_real @ X2 ) @ ( cos_real @ Y2 ) ) @ ( times_times_real @ ( cos_real @ X2 ) @ ( sin_real @ Y2 ) ) ) ) ).
% sin_diff
thf(fact_6440_sum_Oswap,axiom,
! [G: nat > nat > nat,B4: set_nat,A2: set_nat] :
( ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( groups3542108847815614940at_nat @ ( G @ I3 ) @ B4 )
@ A2 )
= ( groups3542108847815614940at_nat
@ ^ [J3: nat] :
( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( G @ I3 @ J3 )
@ A2 )
@ B4 ) ) ).
% sum.swap
thf(fact_6441_sum_Oswap,axiom,
! [G: complex > complex > complex,B4: set_complex,A2: set_complex] :
( ( groups7754918857620584856omplex
@ ^ [I3: complex] : ( groups7754918857620584856omplex @ ( G @ I3 ) @ B4 )
@ A2 )
= ( groups7754918857620584856omplex
@ ^ [J3: complex] :
( groups7754918857620584856omplex
@ ^ [I3: complex] : ( G @ I3 @ J3 )
@ A2 )
@ B4 ) ) ).
% sum.swap
thf(fact_6442_sum_Oswap,axiom,
! [G: nat > nat > real,B4: set_nat,A2: set_nat] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( groups6591440286371151544t_real @ ( G @ I3 ) @ B4 )
@ A2 )
= ( groups6591440286371151544t_real
@ ^ [J3: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( G @ I3 @ J3 )
@ A2 )
@ B4 ) ) ).
% sum.swap
thf(fact_6443_sum_Oswap,axiom,
! [G: int > int > int,B4: set_int,A2: set_int] :
( ( groups4538972089207619220nt_int
@ ^ [I3: int] : ( groups4538972089207619220nt_int @ ( G @ I3 ) @ B4 )
@ A2 )
= ( groups4538972089207619220nt_int
@ ^ [J3: int] :
( groups4538972089207619220nt_int
@ ^ [I3: int] : ( G @ I3 @ J3 )
@ A2 )
@ B4 ) ) ).
% sum.swap
thf(fact_6444_cos__one__sin__zero,axiom,
! [X2: complex] :
( ( ( cos_complex @ X2 )
= one_one_complex )
=> ( ( sin_complex @ X2 )
= zero_zero_complex ) ) ).
% cos_one_sin_zero
thf(fact_6445_cos__one__sin__zero,axiom,
! [X2: real] :
( ( ( cos_real @ X2 )
= one_one_real )
=> ( ( sin_real @ X2 )
= zero_zero_real ) ) ).
% cos_one_sin_zero
thf(fact_6446_sum__norm__le,axiom,
! [S: set_real,F: real > complex,G: real > real] :
( ! [X3: real] :
( ( member_real @ X3 @ S )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X3 ) ) @ ( G @ X3 ) ) )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups5754745047067104278omplex @ F @ S ) ) @ ( groups8097168146408367636l_real @ G @ S ) ) ) ).
% sum_norm_le
thf(fact_6447_sum__norm__le,axiom,
! [S: set_int,F: int > complex,G: int > real] :
( ! [X3: int] :
( ( member_int @ X3 @ S )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X3 ) ) @ ( G @ X3 ) ) )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups3049146728041665814omplex @ F @ S ) ) @ ( groups8778361861064173332t_real @ G @ S ) ) ) ).
% sum_norm_le
thf(fact_6448_sum__norm__le,axiom,
! [S: set_VEBT_VEBT,F: vEBT_VEBT > complex,G: vEBT_VEBT > real] :
( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ S )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X3 ) ) @ ( G @ X3 ) ) )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups1794756597179926696omplex @ F @ S ) ) @ ( groups2240296850493347238T_real @ G @ S ) ) ) ).
% sum_norm_le
thf(fact_6449_sum__norm__le,axiom,
! [S: set_nat,F: nat > complex,G: nat > real] :
( ! [X3: nat] :
( ( member_nat @ X3 @ S )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X3 ) ) @ ( G @ X3 ) ) )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups2073611262835488442omplex @ F @ S ) ) @ ( groups6591440286371151544t_real @ G @ S ) ) ) ).
% sum_norm_le
thf(fact_6450_sum__norm__le,axiom,
! [S: set_complex,F: complex > complex,G: complex > real] :
( ! [X3: complex] :
( ( member_complex @ X3 @ S )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X3 ) ) @ ( G @ X3 ) ) )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups7754918857620584856omplex @ F @ S ) ) @ ( groups5808333547571424918x_real @ G @ S ) ) ) ).
% sum_norm_le
thf(fact_6451_sum__norm__le,axiom,
! [S: set_nat,F: nat > real,G: nat > real] :
( ! [X3: nat] :
( ( member_nat @ X3 @ S )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ X3 ) ) @ ( G @ X3 ) ) )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( groups6591440286371151544t_real @ F @ S ) ) @ ( groups6591440286371151544t_real @ G @ S ) ) ) ).
% sum_norm_le
thf(fact_6452_polar__Ex,axiom,
! [X2: real,Y2: real] :
? [R3: real,A4: real] :
( ( X2
= ( times_times_real @ R3 @ ( cos_real @ A4 ) ) )
& ( Y2
= ( times_times_real @ R3 @ ( sin_real @ A4 ) ) ) ) ).
% polar_Ex
thf(fact_6453_sum_Oneutral,axiom,
! [A2: set_nat,G: nat > nat] :
( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ( G @ X3 )
= zero_zero_nat ) )
=> ( ( groups3542108847815614940at_nat @ G @ A2 )
= zero_zero_nat ) ) ).
% sum.neutral
thf(fact_6454_sum_Oneutral,axiom,
! [A2: set_complex,G: complex > complex] :
( ! [X3: complex] :
( ( member_complex @ X3 @ A2 )
=> ( ( G @ X3 )
= zero_zero_complex ) )
=> ( ( groups7754918857620584856omplex @ G @ A2 )
= zero_zero_complex ) ) ).
% sum.neutral
thf(fact_6455_sum_Oneutral,axiom,
! [A2: set_nat,G: nat > real] :
( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ( G @ X3 )
= zero_zero_real ) )
=> ( ( groups6591440286371151544t_real @ G @ A2 )
= zero_zero_real ) ) ).
% sum.neutral
thf(fact_6456_sum_Oneutral,axiom,
! [A2: set_int,G: int > int] :
( ! [X3: int] :
( ( member_int @ X3 @ A2 )
=> ( ( G @ X3 )
= zero_zero_int ) )
=> ( ( groups4538972089207619220nt_int @ G @ A2 )
= zero_zero_int ) ) ).
% sum.neutral
thf(fact_6457_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: nat > complex,A2: set_nat] :
( ( ( groups2073611262835488442omplex @ G @ A2 )
!= zero_zero_complex )
=> ~ ! [A4: nat] :
( ( member_nat @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_zero_complex ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_6458_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: real > complex,A2: set_real] :
( ( ( groups5754745047067104278omplex @ G @ A2 )
!= zero_zero_complex )
=> ~ ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_zero_complex ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_6459_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: int > complex,A2: set_int] :
( ( ( groups3049146728041665814omplex @ G @ A2 )
!= zero_zero_complex )
=> ~ ! [A4: int] :
( ( member_int @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_zero_complex ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_6460_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: vEBT_VEBT > complex,A2: set_VEBT_VEBT] :
( ( ( groups1794756597179926696omplex @ G @ A2 )
!= zero_zero_complex )
=> ~ ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_zero_complex ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_6461_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: real > real,A2: set_real] :
( ( ( groups8097168146408367636l_real @ G @ A2 )
!= zero_zero_real )
=> ~ ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_zero_real ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_6462_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: int > real,A2: set_int] :
( ( ( groups8778361861064173332t_real @ G @ A2 )
!= zero_zero_real )
=> ~ ! [A4: int] :
( ( member_int @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_zero_real ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_6463_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: vEBT_VEBT > real,A2: set_VEBT_VEBT] :
( ( ( groups2240296850493347238T_real @ G @ A2 )
!= zero_zero_real )
=> ~ ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_zero_real ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_6464_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: nat > rat,A2: set_nat] :
( ( ( groups2906978787729119204at_rat @ G @ A2 )
!= zero_zero_rat )
=> ~ ! [A4: nat] :
( ( member_nat @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_zero_rat ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_6465_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: real > rat,A2: set_real] :
( ( ( groups1300246762558778688al_rat @ G @ A2 )
!= zero_zero_rat )
=> ~ ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_zero_rat ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_6466_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: int > rat,A2: set_int] :
( ( ( groups3906332499630173760nt_rat @ G @ A2 )
!= zero_zero_rat )
=> ~ ! [A4: int] :
( ( member_int @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_zero_rat ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_6467_norm__sum,axiom,
! [F: nat > complex,A2: set_nat] :
( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups2073611262835488442omplex @ F @ A2 ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( real_V1022390504157884413omplex @ ( F @ I3 ) )
@ A2 ) ) ).
% norm_sum
thf(fact_6468_norm__sum,axiom,
! [F: complex > complex,A2: set_complex] :
( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups7754918857620584856omplex @ F @ A2 ) )
@ ( groups5808333547571424918x_real
@ ^ [I3: complex] : ( real_V1022390504157884413omplex @ ( F @ I3 ) )
@ A2 ) ) ).
% norm_sum
thf(fact_6469_norm__sum,axiom,
! [F: nat > real,A2: set_nat] :
( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( groups6591440286371151544t_real @ F @ A2 ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( real_V7735802525324610683m_real @ ( F @ I3 ) )
@ A2 ) ) ).
% norm_sum
thf(fact_6470_cos__add,axiom,
! [X2: real,Y2: real] :
( ( cos_real @ ( plus_plus_real @ X2 @ Y2 ) )
= ( minus_minus_real @ ( times_times_real @ ( cos_real @ X2 ) @ ( cos_real @ Y2 ) ) @ ( times_times_real @ ( sin_real @ X2 ) @ ( sin_real @ Y2 ) ) ) ) ).
% cos_add
thf(fact_6471_cos__diff,axiom,
! [X2: real,Y2: real] :
( ( cos_real @ ( minus_minus_real @ X2 @ Y2 ) )
= ( plus_plus_real @ ( times_times_real @ ( cos_real @ X2 ) @ ( cos_real @ Y2 ) ) @ ( times_times_real @ ( sin_real @ X2 ) @ ( sin_real @ Y2 ) ) ) ) ).
% cos_diff
thf(fact_6472_sin__zero__norm__cos__one,axiom,
! [X2: real] :
( ( ( sin_real @ X2 )
= zero_zero_real )
=> ( ( real_V7735802525324610683m_real @ ( cos_real @ X2 ) )
= one_one_real ) ) ).
% sin_zero_norm_cos_one
thf(fact_6473_sin__zero__norm__cos__one,axiom,
! [X2: complex] :
( ( ( sin_complex @ X2 )
= zero_zero_complex )
=> ( ( real_V1022390504157884413omplex @ ( cos_complex @ X2 ) )
= one_one_real ) ) ).
% sin_zero_norm_cos_one
thf(fact_6474_sum__mono,axiom,
! [K6: set_nat,F: nat > rat,G: nat > rat] :
( ! [I2: nat] :
( ( member_nat @ I2 @ K6 )
=> ( ord_less_eq_rat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ K6 ) @ ( groups2906978787729119204at_rat @ G @ K6 ) ) ) ).
% sum_mono
thf(fact_6475_sum__mono,axiom,
! [K6: set_real,F: real > rat,G: real > rat] :
( ! [I2: real] :
( ( member_real @ I2 @ K6 )
=> ( ord_less_eq_rat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq_rat @ ( groups1300246762558778688al_rat @ F @ K6 ) @ ( groups1300246762558778688al_rat @ G @ K6 ) ) ) ).
% sum_mono
thf(fact_6476_sum__mono,axiom,
! [K6: set_int,F: int > rat,G: int > rat] :
( ! [I2: int] :
( ( member_int @ I2 @ K6 )
=> ( ord_less_eq_rat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ K6 ) @ ( groups3906332499630173760nt_rat @ G @ K6 ) ) ) ).
% sum_mono
thf(fact_6477_sum__mono,axiom,
! [K6: set_VEBT_VEBT,F: vEBT_VEBT > rat,G: vEBT_VEBT > rat] :
( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ K6 )
=> ( ord_less_eq_rat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq_rat @ ( groups136491112297645522BT_rat @ F @ K6 ) @ ( groups136491112297645522BT_rat @ G @ K6 ) ) ) ).
% sum_mono
thf(fact_6478_sum__mono,axiom,
! [K6: set_real,F: real > nat,G: real > nat] :
( ! [I2: real] :
( ( member_real @ I2 @ K6 )
=> ( ord_less_eq_nat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq_nat @ ( groups1935376822645274424al_nat @ F @ K6 ) @ ( groups1935376822645274424al_nat @ G @ K6 ) ) ) ).
% sum_mono
thf(fact_6479_sum__mono,axiom,
! [K6: set_int,F: int > nat,G: int > nat] :
( ! [I2: int] :
( ( member_int @ I2 @ K6 )
=> ( ord_less_eq_nat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq_nat @ ( groups4541462559716669496nt_nat @ F @ K6 ) @ ( groups4541462559716669496nt_nat @ G @ K6 ) ) ) ).
% sum_mono
thf(fact_6480_sum__mono,axiom,
! [K6: set_VEBT_VEBT,F: vEBT_VEBT > nat,G: vEBT_VEBT > nat] :
( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ K6 )
=> ( ord_less_eq_nat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq_nat @ ( groups771621172384141258BT_nat @ F @ K6 ) @ ( groups771621172384141258BT_nat @ G @ K6 ) ) ) ).
% sum_mono
thf(fact_6481_sum__mono,axiom,
! [K6: set_nat,F: nat > int,G: nat > int] :
( ! [I2: nat] :
( ( member_nat @ I2 @ K6 )
=> ( ord_less_eq_int @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ K6 ) @ ( groups3539618377306564664at_int @ G @ K6 ) ) ) ).
% sum_mono
thf(fact_6482_sum__mono,axiom,
! [K6: set_real,F: real > int,G: real > int] :
( ! [I2: real] :
( ( member_real @ I2 @ K6 )
=> ( ord_less_eq_int @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq_int @ ( groups1932886352136224148al_int @ F @ K6 ) @ ( groups1932886352136224148al_int @ G @ K6 ) ) ) ).
% sum_mono
thf(fact_6483_sum__mono,axiom,
! [K6: set_VEBT_VEBT,F: vEBT_VEBT > int,G: vEBT_VEBT > int] :
( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ K6 )
=> ( ord_less_eq_int @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq_int @ ( groups769130701875090982BT_int @ F @ K6 ) @ ( groups769130701875090982BT_int @ G @ K6 ) ) ) ).
% sum_mono
thf(fact_6484_sum_Odistrib,axiom,
! [G: nat > nat,H2: nat > nat,A2: set_nat] :
( ( groups3542108847815614940at_nat
@ ^ [X: nat] : ( plus_plus_nat @ ( G @ X ) @ ( H2 @ X ) )
@ A2 )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ A2 ) @ ( groups3542108847815614940at_nat @ H2 @ A2 ) ) ) ).
% sum.distrib
thf(fact_6485_sum_Odistrib,axiom,
! [G: complex > complex,H2: complex > complex,A2: set_complex] :
( ( groups7754918857620584856omplex
@ ^ [X: complex] : ( plus_plus_complex @ ( G @ X ) @ ( H2 @ X ) )
@ A2 )
= ( plus_plus_complex @ ( groups7754918857620584856omplex @ G @ A2 ) @ ( groups7754918857620584856omplex @ H2 @ A2 ) ) ) ).
% sum.distrib
thf(fact_6486_sum_Odistrib,axiom,
! [G: nat > real,H2: nat > real,A2: set_nat] :
( ( groups6591440286371151544t_real
@ ^ [X: nat] : ( plus_plus_real @ ( G @ X ) @ ( H2 @ X ) )
@ A2 )
= ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ A2 ) @ ( groups6591440286371151544t_real @ H2 @ A2 ) ) ) ).
% sum.distrib
thf(fact_6487_sum_Odistrib,axiom,
! [G: int > int,H2: int > int,A2: set_int] :
( ( groups4538972089207619220nt_int
@ ^ [X: int] : ( plus_plus_int @ ( G @ X ) @ ( H2 @ X ) )
@ A2 )
= ( plus_plus_int @ ( groups4538972089207619220nt_int @ G @ A2 ) @ ( groups4538972089207619220nt_int @ H2 @ A2 ) ) ) ).
% sum.distrib
thf(fact_6488_sum__distrib__left,axiom,
! [R2: nat,F: nat > nat,A2: set_nat] :
( ( times_times_nat @ R2 @ ( groups3542108847815614940at_nat @ F @ A2 ) )
= ( groups3542108847815614940at_nat
@ ^ [N3: nat] : ( times_times_nat @ R2 @ ( F @ N3 ) )
@ A2 ) ) ).
% sum_distrib_left
thf(fact_6489_sum__distrib__left,axiom,
! [R2: complex,F: complex > complex,A2: set_complex] :
( ( times_times_complex @ R2 @ ( groups7754918857620584856omplex @ F @ A2 ) )
= ( groups7754918857620584856omplex
@ ^ [N3: complex] : ( times_times_complex @ R2 @ ( F @ N3 ) )
@ A2 ) ) ).
% sum_distrib_left
thf(fact_6490_sum__distrib__left,axiom,
! [R2: real,F: nat > real,A2: set_nat] :
( ( times_times_real @ R2 @ ( groups6591440286371151544t_real @ F @ A2 ) )
= ( groups6591440286371151544t_real
@ ^ [N3: nat] : ( times_times_real @ R2 @ ( F @ N3 ) )
@ A2 ) ) ).
% sum_distrib_left
thf(fact_6491_sum__distrib__left,axiom,
! [R2: int,F: int > int,A2: set_int] :
( ( times_times_int @ R2 @ ( groups4538972089207619220nt_int @ F @ A2 ) )
= ( groups4538972089207619220nt_int
@ ^ [N3: int] : ( times_times_int @ R2 @ ( F @ N3 ) )
@ A2 ) ) ).
% sum_distrib_left
thf(fact_6492_sum__distrib__right,axiom,
! [F: nat > nat,A2: set_nat,R2: nat] :
( ( times_times_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ R2 )
= ( groups3542108847815614940at_nat
@ ^ [N3: nat] : ( times_times_nat @ ( F @ N3 ) @ R2 )
@ A2 ) ) ).
% sum_distrib_right
thf(fact_6493_sum__distrib__right,axiom,
! [F: complex > complex,A2: set_complex,R2: complex] :
( ( times_times_complex @ ( groups7754918857620584856omplex @ F @ A2 ) @ R2 )
= ( groups7754918857620584856omplex
@ ^ [N3: complex] : ( times_times_complex @ ( F @ N3 ) @ R2 )
@ A2 ) ) ).
% sum_distrib_right
thf(fact_6494_sum__distrib__right,axiom,
! [F: nat > real,A2: set_nat,R2: real] :
( ( times_times_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ R2 )
= ( groups6591440286371151544t_real
@ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ R2 )
@ A2 ) ) ).
% sum_distrib_right
thf(fact_6495_sum__distrib__right,axiom,
! [F: int > int,A2: set_int,R2: int] :
( ( times_times_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ R2 )
= ( groups4538972089207619220nt_int
@ ^ [N3: int] : ( times_times_int @ ( F @ N3 ) @ R2 )
@ A2 ) ) ).
% sum_distrib_right
thf(fact_6496_sum__product,axiom,
! [F: nat > nat,A2: set_nat,G: nat > nat,B4: set_nat] :
( ( times_times_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ ( groups3542108847815614940at_nat @ G @ B4 ) )
= ( groups3542108847815614940at_nat
@ ^ [I3: nat] :
( groups3542108847815614940at_nat
@ ^ [J3: nat] : ( times_times_nat @ ( F @ I3 ) @ ( G @ J3 ) )
@ B4 )
@ A2 ) ) ).
% sum_product
thf(fact_6497_sum__product,axiom,
! [F: complex > complex,A2: set_complex,G: complex > complex,B4: set_complex] :
( ( times_times_complex @ ( groups7754918857620584856omplex @ F @ A2 ) @ ( groups7754918857620584856omplex @ G @ B4 ) )
= ( groups7754918857620584856omplex
@ ^ [I3: complex] :
( groups7754918857620584856omplex
@ ^ [J3: complex] : ( times_times_complex @ ( F @ I3 ) @ ( G @ J3 ) )
@ B4 )
@ A2 ) ) ).
% sum_product
thf(fact_6498_sum__product,axiom,
! [F: nat > real,A2: set_nat,G: nat > real,B4: set_nat] :
( ( times_times_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ ( groups6591440286371151544t_real @ G @ B4 ) )
= ( groups6591440286371151544t_real
@ ^ [I3: nat] :
( groups6591440286371151544t_real
@ ^ [J3: nat] : ( times_times_real @ ( F @ I3 ) @ ( G @ J3 ) )
@ B4 )
@ A2 ) ) ).
% sum_product
thf(fact_6499_sum__product,axiom,
! [F: int > int,A2: set_int,G: int > int,B4: set_int] :
( ( times_times_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ ( groups4538972089207619220nt_int @ G @ B4 ) )
= ( groups4538972089207619220nt_int
@ ^ [I3: int] :
( groups4538972089207619220nt_int
@ ^ [J3: int] : ( times_times_int @ ( F @ I3 ) @ ( G @ J3 ) )
@ B4 )
@ A2 ) ) ).
% sum_product
thf(fact_6500_sum__subtractf,axiom,
! [F: complex > complex,G: complex > complex,A2: set_complex] :
( ( groups7754918857620584856omplex
@ ^ [X: complex] : ( minus_minus_complex @ ( F @ X ) @ ( G @ X ) )
@ A2 )
= ( minus_minus_complex @ ( groups7754918857620584856omplex @ F @ A2 ) @ ( groups7754918857620584856omplex @ G @ A2 ) ) ) ).
% sum_subtractf
thf(fact_6501_sum__subtractf,axiom,
! [F: nat > real,G: nat > real,A2: set_nat] :
( ( groups6591440286371151544t_real
@ ^ [X: nat] : ( minus_minus_real @ ( F @ X ) @ ( G @ X ) )
@ A2 )
= ( minus_minus_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ ( groups6591440286371151544t_real @ G @ A2 ) ) ) ).
% sum_subtractf
thf(fact_6502_sum__subtractf,axiom,
! [F: int > int,G: int > int,A2: set_int] :
( ( groups4538972089207619220nt_int
@ ^ [X: int] : ( minus_minus_int @ ( F @ X ) @ ( G @ X ) )
@ A2 )
= ( minus_minus_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ ( groups4538972089207619220nt_int @ G @ A2 ) ) ) ).
% sum_subtractf
thf(fact_6503_sum__divide__distrib,axiom,
! [F: complex > complex,A2: set_complex,R2: complex] :
( ( divide1717551699836669952omplex @ ( groups7754918857620584856omplex @ F @ A2 ) @ R2 )
= ( groups7754918857620584856omplex
@ ^ [N3: complex] : ( divide1717551699836669952omplex @ ( F @ N3 ) @ R2 )
@ A2 ) ) ).
% sum_divide_distrib
thf(fact_6504_sum__divide__distrib,axiom,
! [F: nat > real,A2: set_nat,R2: real] :
( ( divide_divide_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ R2 )
= ( groups6591440286371151544t_real
@ ^ [N3: nat] : ( divide_divide_real @ ( F @ N3 ) @ R2 )
@ A2 ) ) ).
% sum_divide_distrib
thf(fact_6505_sum__negf,axiom,
! [F: complex > complex,A2: set_complex] :
( ( groups7754918857620584856omplex
@ ^ [X: complex] : ( uminus1482373934393186551omplex @ ( F @ X ) )
@ A2 )
= ( uminus1482373934393186551omplex @ ( groups7754918857620584856omplex @ F @ A2 ) ) ) ).
% sum_negf
thf(fact_6506_sum__negf,axiom,
! [F: nat > real,A2: set_nat] :
( ( groups6591440286371151544t_real
@ ^ [X: nat] : ( uminus_uminus_real @ ( F @ X ) )
@ A2 )
= ( uminus_uminus_real @ ( groups6591440286371151544t_real @ F @ A2 ) ) ) ).
% sum_negf
thf(fact_6507_sum__negf,axiom,
! [F: int > int,A2: set_int] :
( ( groups4538972089207619220nt_int
@ ^ [X: int] : ( uminus_uminus_int @ ( F @ X ) )
@ A2 )
= ( uminus_uminus_int @ ( groups4538972089207619220nt_int @ F @ A2 ) ) ) ).
% sum_negf
thf(fact_6508_sum_Oswap__restrict,axiom,
! [A2: set_real,B4: set_nat,G: real > nat > nat,R: real > nat > $o] :
( ( finite_finite_real @ A2 )
=> ( ( finite_finite_nat @ B4 )
=> ( ( groups1935376822645274424al_nat
@ ^ [X: real] :
( groups3542108847815614940at_nat @ ( G @ X )
@ ( collect_nat
@ ^ [Y: nat] :
( ( member_nat @ Y @ B4 )
& ( R @ X @ Y ) ) ) )
@ A2 )
= ( groups3542108847815614940at_nat
@ ^ [Y: nat] :
( groups1935376822645274424al_nat
@ ^ [X: real] : ( G @ X @ Y )
@ ( collect_real
@ ^ [X: real] :
( ( member_real @ X @ A2 )
& ( R @ X @ Y ) ) ) )
@ B4 ) ) ) ) ).
% sum.swap_restrict
thf(fact_6509_sum_Oswap__restrict,axiom,
! [A2: set_VEBT_VEBT,B4: set_nat,G: vEBT_VEBT > nat > nat,R: vEBT_VEBT > nat > $o] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( finite_finite_nat @ B4 )
=> ( ( groups771621172384141258BT_nat
@ ^ [X: vEBT_VEBT] :
( groups3542108847815614940at_nat @ ( G @ X )
@ ( collect_nat
@ ^ [Y: nat] :
( ( member_nat @ Y @ B4 )
& ( R @ X @ Y ) ) ) )
@ A2 )
= ( groups3542108847815614940at_nat
@ ^ [Y: nat] :
( groups771621172384141258BT_nat
@ ^ [X: vEBT_VEBT] : ( G @ X @ Y )
@ ( collect_VEBT_VEBT
@ ^ [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ A2 )
& ( R @ X @ Y ) ) ) )
@ B4 ) ) ) ) ).
% sum.swap_restrict
thf(fact_6510_sum_Oswap__restrict,axiom,
! [A2: set_int,B4: set_nat,G: int > nat > nat,R: int > nat > $o] :
( ( finite_finite_int @ A2 )
=> ( ( finite_finite_nat @ B4 )
=> ( ( groups4541462559716669496nt_nat
@ ^ [X: int] :
( groups3542108847815614940at_nat @ ( G @ X )
@ ( collect_nat
@ ^ [Y: nat] :
( ( member_nat @ Y @ B4 )
& ( R @ X @ Y ) ) ) )
@ A2 )
= ( groups3542108847815614940at_nat
@ ^ [Y: nat] :
( groups4541462559716669496nt_nat
@ ^ [X: int] : ( G @ X @ Y )
@ ( collect_int
@ ^ [X: int] :
( ( member_int @ X @ A2 )
& ( R @ X @ Y ) ) ) )
@ B4 ) ) ) ) ).
% sum.swap_restrict
thf(fact_6511_sum_Oswap__restrict,axiom,
! [A2: set_complex,B4: set_nat,G: complex > nat > nat,R: complex > nat > $o] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( finite_finite_nat @ B4 )
=> ( ( groups5693394587270226106ex_nat
@ ^ [X: complex] :
( groups3542108847815614940at_nat @ ( G @ X )
@ ( collect_nat
@ ^ [Y: nat] :
( ( member_nat @ Y @ B4 )
& ( R @ X @ Y ) ) ) )
@ A2 )
= ( groups3542108847815614940at_nat
@ ^ [Y: nat] :
( groups5693394587270226106ex_nat
@ ^ [X: complex] : ( G @ X @ Y )
@ ( collect_complex
@ ^ [X: complex] :
( ( member_complex @ X @ A2 )
& ( R @ X @ Y ) ) ) )
@ B4 ) ) ) ) ).
% sum.swap_restrict
thf(fact_6512_sum_Oswap__restrict,axiom,
! [A2: set_Code_integer,B4: set_nat,G: code_integer > nat > nat,R: code_integer > nat > $o] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( finite_finite_nat @ B4 )
=> ( ( groups7237345082560585321er_nat
@ ^ [X: code_integer] :
( groups3542108847815614940at_nat @ ( G @ X )
@ ( collect_nat
@ ^ [Y: nat] :
( ( member_nat @ Y @ B4 )
& ( R @ X @ Y ) ) ) )
@ A2 )
= ( groups3542108847815614940at_nat
@ ^ [Y: nat] :
( groups7237345082560585321er_nat
@ ^ [X: code_integer] : ( G @ X @ Y )
@ ( collect_Code_integer
@ ^ [X: code_integer] :
( ( member_Code_integer @ X @ A2 )
& ( R @ X @ Y ) ) ) )
@ B4 ) ) ) ) ).
% sum.swap_restrict
thf(fact_6513_sum_Oswap__restrict,axiom,
! [A2: set_real,B4: set_complex,G: real > complex > complex,R: real > complex > $o] :
( ( finite_finite_real @ A2 )
=> ( ( finite3207457112153483333omplex @ B4 )
=> ( ( groups5754745047067104278omplex
@ ^ [X: real] :
( groups7754918857620584856omplex @ ( G @ X )
@ ( collect_complex
@ ^ [Y: complex] :
( ( member_complex @ Y @ B4 )
& ( R @ X @ Y ) ) ) )
@ A2 )
= ( groups7754918857620584856omplex
@ ^ [Y: complex] :
( groups5754745047067104278omplex
@ ^ [X: real] : ( G @ X @ Y )
@ ( collect_real
@ ^ [X: real] :
( ( member_real @ X @ A2 )
& ( R @ X @ Y ) ) ) )
@ B4 ) ) ) ) ).
% sum.swap_restrict
thf(fact_6514_sum_Oswap__restrict,axiom,
! [A2: set_VEBT_VEBT,B4: set_complex,G: vEBT_VEBT > complex > complex,R: vEBT_VEBT > complex > $o] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( finite3207457112153483333omplex @ B4 )
=> ( ( groups1794756597179926696omplex
@ ^ [X: vEBT_VEBT] :
( groups7754918857620584856omplex @ ( G @ X )
@ ( collect_complex
@ ^ [Y: complex] :
( ( member_complex @ Y @ B4 )
& ( R @ X @ Y ) ) ) )
@ A2 )
= ( groups7754918857620584856omplex
@ ^ [Y: complex] :
( groups1794756597179926696omplex
@ ^ [X: vEBT_VEBT] : ( G @ X @ Y )
@ ( collect_VEBT_VEBT
@ ^ [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ A2 )
& ( R @ X @ Y ) ) ) )
@ B4 ) ) ) ) ).
% sum.swap_restrict
thf(fact_6515_sum_Oswap__restrict,axiom,
! [A2: set_nat,B4: set_complex,G: nat > complex > complex,R: nat > complex > $o] :
( ( finite_finite_nat @ A2 )
=> ( ( finite3207457112153483333omplex @ B4 )
=> ( ( groups2073611262835488442omplex
@ ^ [X: nat] :
( groups7754918857620584856omplex @ ( G @ X )
@ ( collect_complex
@ ^ [Y: complex] :
( ( member_complex @ Y @ B4 )
& ( R @ X @ Y ) ) ) )
@ A2 )
= ( groups7754918857620584856omplex
@ ^ [Y: complex] :
( groups2073611262835488442omplex
@ ^ [X: nat] : ( G @ X @ Y )
@ ( collect_nat
@ ^ [X: nat] :
( ( member_nat @ X @ A2 )
& ( R @ X @ Y ) ) ) )
@ B4 ) ) ) ) ).
% sum.swap_restrict
thf(fact_6516_sum_Oswap__restrict,axiom,
! [A2: set_int,B4: set_complex,G: int > complex > complex,R: int > complex > $o] :
( ( finite_finite_int @ A2 )
=> ( ( finite3207457112153483333omplex @ B4 )
=> ( ( groups3049146728041665814omplex
@ ^ [X: int] :
( groups7754918857620584856omplex @ ( G @ X )
@ ( collect_complex
@ ^ [Y: complex] :
( ( member_complex @ Y @ B4 )
& ( R @ X @ Y ) ) ) )
@ A2 )
= ( groups7754918857620584856omplex
@ ^ [Y: complex] :
( groups3049146728041665814omplex
@ ^ [X: int] : ( G @ X @ Y )
@ ( collect_int
@ ^ [X: int] :
( ( member_int @ X @ A2 )
& ( R @ X @ Y ) ) ) )
@ B4 ) ) ) ) ).
% sum.swap_restrict
thf(fact_6517_sum_Oswap__restrict,axiom,
! [A2: set_Code_integer,B4: set_complex,G: code_integer > complex > complex,R: code_integer > complex > $o] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( finite3207457112153483333omplex @ B4 )
=> ( ( groups8024822376189712711omplex
@ ^ [X: code_integer] :
( groups7754918857620584856omplex @ ( G @ X )
@ ( collect_complex
@ ^ [Y: complex] :
( ( member_complex @ Y @ B4 )
& ( R @ X @ Y ) ) ) )
@ A2 )
= ( groups7754918857620584856omplex
@ ^ [Y: complex] :
( groups8024822376189712711omplex
@ ^ [X: code_integer] : ( G @ X @ Y )
@ ( collect_Code_integer
@ ^ [X: code_integer] :
( ( member_Code_integer @ X @ A2 )
& ( R @ X @ Y ) ) ) )
@ B4 ) ) ) ) ).
% sum.swap_restrict
thf(fact_6518_mod__sum__eq,axiom,
! [F: nat > nat,A: nat,A2: set_nat] :
( ( modulo_modulo_nat
@ ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( modulo_modulo_nat @ ( F @ I3 ) @ A )
@ A2 )
@ A )
= ( modulo_modulo_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ A ) ) ).
% mod_sum_eq
thf(fact_6519_mod__sum__eq,axiom,
! [F: int > int,A: int,A2: set_int] :
( ( modulo_modulo_int
@ ( groups4538972089207619220nt_int
@ ^ [I3: int] : ( modulo_modulo_int @ ( F @ I3 ) @ A )
@ A2 )
@ A )
= ( modulo_modulo_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ A ) ) ).
% mod_sum_eq
thf(fact_6520_sin__zero__abs__cos__one,axiom,
! [X2: real] :
( ( ( sin_real @ X2 )
= zero_zero_real )
=> ( ( abs_abs_real @ ( cos_real @ X2 ) )
= one_one_real ) ) ).
% sin_zero_abs_cos_one
thf(fact_6521_summable__sum,axiom,
! [I5: set_real,F: real > nat > real] :
( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( summable_real @ ( F @ I2 ) ) )
=> ( summable_real
@ ^ [N3: nat] :
( groups8097168146408367636l_real
@ ^ [I3: real] : ( F @ I3 @ N3 )
@ I5 ) ) ) ).
% summable_sum
thf(fact_6522_summable__sum,axiom,
! [I5: set_int,F: int > nat > real] :
( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( summable_real @ ( F @ I2 ) ) )
=> ( summable_real
@ ^ [N3: nat] :
( groups8778361861064173332t_real
@ ^ [I3: int] : ( F @ I3 @ N3 )
@ I5 ) ) ) ).
% summable_sum
thf(fact_6523_summable__sum,axiom,
! [I5: set_VEBT_VEBT,F: vEBT_VEBT > nat > real] :
( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ I5 )
=> ( summable_real @ ( F @ I2 ) ) )
=> ( summable_real
@ ^ [N3: nat] :
( groups2240296850493347238T_real
@ ^ [I3: vEBT_VEBT] : ( F @ I3 @ N3 )
@ I5 ) ) ) ).
% summable_sum
thf(fact_6524_summable__sum,axiom,
! [I5: set_nat,F: nat > nat > complex] :
( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( summable_complex @ ( F @ I2 ) ) )
=> ( summable_complex
@ ^ [N3: nat] :
( groups2073611262835488442omplex
@ ^ [I3: nat] : ( F @ I3 @ N3 )
@ I5 ) ) ) ).
% summable_sum
thf(fact_6525_summable__sum,axiom,
! [I5: set_real,F: real > nat > complex] :
( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( summable_complex @ ( F @ I2 ) ) )
=> ( summable_complex
@ ^ [N3: nat] :
( groups5754745047067104278omplex
@ ^ [I3: real] : ( F @ I3 @ N3 )
@ I5 ) ) ) ).
% summable_sum
thf(fact_6526_summable__sum,axiom,
! [I5: set_int,F: int > nat > complex] :
( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( summable_complex @ ( F @ I2 ) ) )
=> ( summable_complex
@ ^ [N3: nat] :
( groups3049146728041665814omplex
@ ^ [I3: int] : ( F @ I3 @ N3 )
@ I5 ) ) ) ).
% summable_sum
thf(fact_6527_summable__sum,axiom,
! [I5: set_VEBT_VEBT,F: vEBT_VEBT > nat > complex] :
( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ I5 )
=> ( summable_complex @ ( F @ I2 ) ) )
=> ( summable_complex
@ ^ [N3: nat] :
( groups1794756597179926696omplex
@ ^ [I3: vEBT_VEBT] : ( F @ I3 @ N3 )
@ I5 ) ) ) ).
% summable_sum
thf(fact_6528_summable__sum,axiom,
! [I5: set_nat,F: nat > nat > nat] :
( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( summable_nat @ ( F @ I2 ) ) )
=> ( summable_nat
@ ^ [N3: nat] :
( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( F @ I3 @ N3 )
@ I5 ) ) ) ).
% summable_sum
thf(fact_6529_summable__sum,axiom,
! [I5: set_complex,F: complex > nat > complex] :
( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( summable_complex @ ( F @ I2 ) ) )
=> ( summable_complex
@ ^ [N3: nat] :
( groups7754918857620584856omplex
@ ^ [I3: complex] : ( F @ I3 @ N3 )
@ I5 ) ) ) ).
% summable_sum
thf(fact_6530_summable__sum,axiom,
! [I5: set_nat,F: nat > nat > real] :
( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( summable_real @ ( F @ I2 ) ) )
=> ( summable_real
@ ^ [N3: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( F @ I3 @ N3 )
@ I5 ) ) ) ).
% summable_sum
thf(fact_6531_sin__double,axiom,
! [X2: complex] :
( ( sin_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X2 ) )
= ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ X2 ) ) @ ( cos_complex @ X2 ) ) ) ).
% sin_double
thf(fact_6532_sin__double,axiom,
! [X2: real] :
( ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) )
= ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ X2 ) ) @ ( cos_real @ X2 ) ) ) ).
% sin_double
thf(fact_6533_sum__nonpos,axiom,
! [A2: set_real,F: real > real] :
( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ zero_zero_real ) )
=> ( ord_less_eq_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ zero_zero_real ) ) ).
% sum_nonpos
thf(fact_6534_sum__nonpos,axiom,
! [A2: set_int,F: int > real] :
( ! [X3: int] :
( ( member_int @ X3 @ A2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ zero_zero_real ) )
=> ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ zero_zero_real ) ) ).
% sum_nonpos
thf(fact_6535_sum__nonpos,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > real] :
( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ zero_zero_real ) )
=> ( ord_less_eq_real @ ( groups2240296850493347238T_real @ F @ A2 ) @ zero_zero_real ) ) ).
% sum_nonpos
thf(fact_6536_sum__nonpos,axiom,
! [A2: set_nat,F: nat > rat] :
( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ord_less_eq_rat @ ( F @ X3 ) @ zero_zero_rat ) )
=> ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ zero_zero_rat ) ) ).
% sum_nonpos
thf(fact_6537_sum__nonpos,axiom,
! [A2: set_real,F: real > rat] :
( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( ord_less_eq_rat @ ( F @ X3 ) @ zero_zero_rat ) )
=> ( ord_less_eq_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ zero_zero_rat ) ) ).
% sum_nonpos
thf(fact_6538_sum__nonpos,axiom,
! [A2: set_int,F: int > rat] :
( ! [X3: int] :
( ( member_int @ X3 @ A2 )
=> ( ord_less_eq_rat @ ( F @ X3 ) @ zero_zero_rat ) )
=> ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ zero_zero_rat ) ) ).
% sum_nonpos
thf(fact_6539_sum__nonpos,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ord_less_eq_rat @ ( F @ X3 ) @ zero_zero_rat ) )
=> ( ord_less_eq_rat @ ( groups136491112297645522BT_rat @ F @ A2 ) @ zero_zero_rat ) ) ).
% sum_nonpos
thf(fact_6540_sum__nonpos,axiom,
! [A2: set_real,F: real > nat] :
( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ zero_zero_nat ) )
=> ( ord_less_eq_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ zero_zero_nat ) ) ).
% sum_nonpos
thf(fact_6541_sum__nonpos,axiom,
! [A2: set_int,F: int > nat] :
( ! [X3: int] :
( ( member_int @ X3 @ A2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ zero_zero_nat ) )
=> ( ord_less_eq_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) @ zero_zero_nat ) ) ).
% sum_nonpos
thf(fact_6542_sum__nonpos,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > nat] :
( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ zero_zero_nat ) )
=> ( ord_less_eq_nat @ ( groups771621172384141258BT_nat @ F @ A2 ) @ zero_zero_nat ) ) ).
% sum_nonpos
thf(fact_6543_sum__nonneg,axiom,
! [A2: set_real,F: real > real] :
( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( groups8097168146408367636l_real @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_6544_sum__nonneg,axiom,
! [A2: set_int,F: int > real] :
( ! [X3: int] :
( ( member_int @ X3 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( groups8778361861064173332t_real @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_6545_sum__nonneg,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > real] :
( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( groups2240296850493347238T_real @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_6546_sum__nonneg,axiom,
! [A2: set_nat,F: nat > rat] :
( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_6547_sum__nonneg,axiom,
! [A2: set_real,F: real > rat] :
( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_6548_sum__nonneg,axiom,
! [A2: set_int,F: int > rat] :
( ! [X3: int] :
( ( member_int @ X3 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_6549_sum__nonneg,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( groups136491112297645522BT_rat @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_6550_sum__nonneg,axiom,
! [A2: set_real,F: real > nat] :
( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X3 ) ) )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_6551_sum__nonneg,axiom,
! [A2: set_int,F: int > nat] :
( ! [X3: int] :
( ( member_int @ X3 @ A2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X3 ) ) )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_6552_sum__nonneg,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > nat] :
( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X3 ) ) )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( groups771621172384141258BT_nat @ F @ A2 ) ) ) ).
% sum_nonneg
thf(fact_6553_sincos__principal__value,axiom,
! [X2: real] :
? [Y3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ Y3 )
& ( ord_less_eq_real @ Y3 @ pi )
& ( ( sin_real @ Y3 )
= ( sin_real @ X2 ) )
& ( ( cos_real @ Y3 )
= ( cos_real @ X2 ) ) ) ).
% sincos_principal_value
thf(fact_6554_sum__mono__inv,axiom,
! [F: real > rat,I5: set_real,G: real > rat,I: real] :
( ( ( groups1300246762558778688al_rat @ F @ I5 )
= ( groups1300246762558778688al_rat @ G @ I5 ) )
=> ( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_eq_rat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ( member_real @ I @ I5 )
=> ( ( finite_finite_real @ I5 )
=> ( ( F @ I )
= ( G @ I ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_6555_sum__mono__inv,axiom,
! [F: vEBT_VEBT > rat,I5: set_VEBT_VEBT,G: vEBT_VEBT > rat,I: vEBT_VEBT] :
( ( ( groups136491112297645522BT_rat @ F @ I5 )
= ( groups136491112297645522BT_rat @ G @ I5 ) )
=> ( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ I5 )
=> ( ord_less_eq_rat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ( member_VEBT_VEBT @ I @ I5 )
=> ( ( finite5795047828879050333T_VEBT @ I5 )
=> ( ( F @ I )
= ( G @ I ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_6556_sum__mono__inv,axiom,
! [F: nat > rat,I5: set_nat,G: nat > rat,I: nat] :
( ( ( groups2906978787729119204at_rat @ F @ I5 )
= ( groups2906978787729119204at_rat @ G @ I5 ) )
=> ( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( ord_less_eq_rat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ( member_nat @ I @ I5 )
=> ( ( finite_finite_nat @ I5 )
=> ( ( F @ I )
= ( G @ I ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_6557_sum__mono__inv,axiom,
! [F: int > rat,I5: set_int,G: int > rat,I: int] :
( ( ( groups3906332499630173760nt_rat @ F @ I5 )
= ( groups3906332499630173760nt_rat @ G @ I5 ) )
=> ( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_eq_rat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ( member_int @ I @ I5 )
=> ( ( finite_finite_int @ I5 )
=> ( ( F @ I )
= ( G @ I ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_6558_sum__mono__inv,axiom,
! [F: complex > rat,I5: set_complex,G: complex > rat,I: complex] :
( ( ( groups5058264527183730370ex_rat @ F @ I5 )
= ( groups5058264527183730370ex_rat @ G @ I5 ) )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( ord_less_eq_rat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ( member_complex @ I @ I5 )
=> ( ( finite3207457112153483333omplex @ I5 )
=> ( ( F @ I )
= ( G @ I ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_6559_sum__mono__inv,axiom,
! [F: code_integer > rat,I5: set_Code_integer,G: code_integer > rat,I: code_integer] :
( ( ( groups6602215022474089585er_rat @ F @ I5 )
= ( groups6602215022474089585er_rat @ G @ I5 ) )
=> ( ! [I2: code_integer] :
( ( member_Code_integer @ I2 @ I5 )
=> ( ord_less_eq_rat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ( member_Code_integer @ I @ I5 )
=> ( ( finite6017078050557962740nteger @ I5 )
=> ( ( F @ I )
= ( G @ I ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_6560_sum__mono__inv,axiom,
! [F: real > nat,I5: set_real,G: real > nat,I: real] :
( ( ( groups1935376822645274424al_nat @ F @ I5 )
= ( groups1935376822645274424al_nat @ G @ I5 ) )
=> ( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_eq_nat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ( member_real @ I @ I5 )
=> ( ( finite_finite_real @ I5 )
=> ( ( F @ I )
= ( G @ I ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_6561_sum__mono__inv,axiom,
! [F: vEBT_VEBT > nat,I5: set_VEBT_VEBT,G: vEBT_VEBT > nat,I: vEBT_VEBT] :
( ( ( groups771621172384141258BT_nat @ F @ I5 )
= ( groups771621172384141258BT_nat @ G @ I5 ) )
=> ( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ I5 )
=> ( ord_less_eq_nat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ( member_VEBT_VEBT @ I @ I5 )
=> ( ( finite5795047828879050333T_VEBT @ I5 )
=> ( ( F @ I )
= ( G @ I ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_6562_sum__mono__inv,axiom,
! [F: int > nat,I5: set_int,G: int > nat,I: int] :
( ( ( groups4541462559716669496nt_nat @ F @ I5 )
= ( groups4541462559716669496nt_nat @ G @ I5 ) )
=> ( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_eq_nat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ( member_int @ I @ I5 )
=> ( ( finite_finite_int @ I5 )
=> ( ( F @ I )
= ( G @ I ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_6563_sum__mono__inv,axiom,
! [F: complex > nat,I5: set_complex,G: complex > nat,I: complex] :
( ( ( groups5693394587270226106ex_nat @ F @ I5 )
= ( groups5693394587270226106ex_nat @ G @ I5 ) )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( ord_less_eq_nat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ( member_complex @ I @ I5 )
=> ( ( finite3207457112153483333omplex @ I5 )
=> ( ( F @ I )
= ( G @ I ) ) ) ) ) ) ).
% sum_mono_inv
thf(fact_6564_sum__cong__Suc,axiom,
! [A2: set_nat,F: nat > nat,G: nat > nat] :
( ~ ( member_nat @ zero_zero_nat @ A2 )
=> ( ! [X3: nat] :
( ( member_nat @ ( suc @ X3 ) @ A2 )
=> ( ( F @ ( suc @ X3 ) )
= ( G @ ( suc @ X3 ) ) ) )
=> ( ( groups3542108847815614940at_nat @ F @ A2 )
= ( groups3542108847815614940at_nat @ G @ A2 ) ) ) ) ).
% sum_cong_Suc
thf(fact_6565_sum__cong__Suc,axiom,
! [A2: set_nat,F: nat > real,G: nat > real] :
( ~ ( member_nat @ zero_zero_nat @ A2 )
=> ( ! [X3: nat] :
( ( member_nat @ ( suc @ X3 ) @ A2 )
=> ( ( F @ ( suc @ X3 ) )
= ( G @ ( suc @ X3 ) ) ) )
=> ( ( groups6591440286371151544t_real @ F @ A2 )
= ( groups6591440286371151544t_real @ G @ A2 ) ) ) ) ).
% sum_cong_Suc
thf(fact_6566_sin__x__le__x,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ord_less_eq_real @ ( sin_real @ X2 ) @ X2 ) ) ).
% sin_x_le_x
thf(fact_6567_sin__le__one,axiom,
! [X2: real] : ( ord_less_eq_real @ ( sin_real @ X2 ) @ one_one_real ) ).
% sin_le_one
thf(fact_6568_cos__le__one,axiom,
! [X2: real] : ( ord_less_eq_real @ ( cos_real @ X2 ) @ one_one_real ) ).
% cos_le_one
thf(fact_6569_abs__sin__x__le__abs__x,axiom,
! [X2: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( sin_real @ X2 ) ) @ ( abs_abs_real @ X2 ) ) ).
% abs_sin_x_le_abs_x
thf(fact_6570_cos__arctan__not__zero,axiom,
! [X2: real] :
( ( cos_real @ ( arctan @ X2 ) )
!= zero_zero_real ) ).
% cos_arctan_not_zero
thf(fact_6571_numeral__eq__Suc,axiom,
( numeral_numeral_nat
= ( ^ [K2: num] : ( suc @ ( pred_numeral @ K2 ) ) ) ) ).
% numeral_eq_Suc
thf(fact_6572_sum_Ointer__filter,axiom,
! [A2: set_real,G: real > complex,P: real > $o] :
( ( finite_finite_real @ A2 )
=> ( ( groups5754745047067104278omplex @ G
@ ( collect_real
@ ^ [X: real] :
( ( member_real @ X @ A2 )
& ( P @ X ) ) ) )
= ( groups5754745047067104278omplex
@ ^ [X: real] : ( if_complex @ ( P @ X ) @ ( G @ X ) @ zero_zero_complex )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_6573_sum_Ointer__filter,axiom,
! [A2: set_VEBT_VEBT,G: vEBT_VEBT > complex,P: vEBT_VEBT > $o] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( groups1794756597179926696omplex @ G
@ ( collect_VEBT_VEBT
@ ^ [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ A2 )
& ( P @ X ) ) ) )
= ( groups1794756597179926696omplex
@ ^ [X: vEBT_VEBT] : ( if_complex @ ( P @ X ) @ ( G @ X ) @ zero_zero_complex )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_6574_sum_Ointer__filter,axiom,
! [A2: set_nat,G: nat > complex,P: nat > $o] :
( ( finite_finite_nat @ A2 )
=> ( ( groups2073611262835488442omplex @ G
@ ( collect_nat
@ ^ [X: nat] :
( ( member_nat @ X @ A2 )
& ( P @ X ) ) ) )
= ( groups2073611262835488442omplex
@ ^ [X: nat] : ( if_complex @ ( P @ X ) @ ( G @ X ) @ zero_zero_complex )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_6575_sum_Ointer__filter,axiom,
! [A2: set_int,G: int > complex,P: int > $o] :
( ( finite_finite_int @ A2 )
=> ( ( groups3049146728041665814omplex @ G
@ ( collect_int
@ ^ [X: int] :
( ( member_int @ X @ A2 )
& ( P @ X ) ) ) )
= ( groups3049146728041665814omplex
@ ^ [X: int] : ( if_complex @ ( P @ X ) @ ( G @ X ) @ zero_zero_complex )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_6576_sum_Ointer__filter,axiom,
! [A2: set_Code_integer,G: code_integer > complex,P: code_integer > $o] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( groups8024822376189712711omplex @ G
@ ( collect_Code_integer
@ ^ [X: code_integer] :
( ( member_Code_integer @ X @ A2 )
& ( P @ X ) ) ) )
= ( groups8024822376189712711omplex
@ ^ [X: code_integer] : ( if_complex @ ( P @ X ) @ ( G @ X ) @ zero_zero_complex )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_6577_sum_Ointer__filter,axiom,
! [A2: set_real,G: real > real,P: real > $o] :
( ( finite_finite_real @ A2 )
=> ( ( groups8097168146408367636l_real @ G
@ ( collect_real
@ ^ [X: real] :
( ( member_real @ X @ A2 )
& ( P @ X ) ) ) )
= ( groups8097168146408367636l_real
@ ^ [X: real] : ( if_real @ ( P @ X ) @ ( G @ X ) @ zero_zero_real )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_6578_sum_Ointer__filter,axiom,
! [A2: set_VEBT_VEBT,G: vEBT_VEBT > real,P: vEBT_VEBT > $o] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( groups2240296850493347238T_real @ G
@ ( collect_VEBT_VEBT
@ ^ [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ A2 )
& ( P @ X ) ) ) )
= ( groups2240296850493347238T_real
@ ^ [X: vEBT_VEBT] : ( if_real @ ( P @ X ) @ ( G @ X ) @ zero_zero_real )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_6579_sum_Ointer__filter,axiom,
! [A2: set_int,G: int > real,P: int > $o] :
( ( finite_finite_int @ A2 )
=> ( ( groups8778361861064173332t_real @ G
@ ( collect_int
@ ^ [X: int] :
( ( member_int @ X @ A2 )
& ( P @ X ) ) ) )
= ( groups8778361861064173332t_real
@ ^ [X: int] : ( if_real @ ( P @ X ) @ ( G @ X ) @ zero_zero_real )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_6580_sum_Ointer__filter,axiom,
! [A2: set_complex,G: complex > real,P: complex > $o] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5808333547571424918x_real @ G
@ ( collect_complex
@ ^ [X: complex] :
( ( member_complex @ X @ A2 )
& ( P @ X ) ) ) )
= ( groups5808333547571424918x_real
@ ^ [X: complex] : ( if_real @ ( P @ X ) @ ( G @ X ) @ zero_zero_real )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_6581_sum_Ointer__filter,axiom,
! [A2: set_Code_integer,G: code_integer > real,P: code_integer > $o] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( groups1270011288395367621r_real @ G
@ ( collect_Code_integer
@ ^ [X: code_integer] :
( ( member_Code_integer @ X @ A2 )
& ( P @ X ) ) ) )
= ( groups1270011288395367621r_real
@ ^ [X: code_integer] : ( if_real @ ( P @ X ) @ ( G @ X ) @ zero_zero_real )
@ A2 ) ) ) ).
% sum.inter_filter
thf(fact_6582_cos__int__times__real,axiom,
! [M: int,X2: real] :
( ( cos_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ ( real_V1803761363581548252l_real @ X2 ) ) )
= ( real_V1803761363581548252l_real @ ( cos_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ X2 ) ) ) ) ).
% cos_int_times_real
thf(fact_6583_cos__int__times__real,axiom,
! [M: int,X2: real] :
( ( cos_complex @ ( times_times_complex @ ( ring_17405671764205052669omplex @ M ) @ ( real_V4546457046886955230omplex @ X2 ) ) )
= ( real_V4546457046886955230omplex @ ( cos_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ X2 ) ) ) ) ).
% cos_int_times_real
thf(fact_6584_sin__cos__le1,axiom,
! [X2: real,Y2: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( plus_plus_real @ ( times_times_real @ ( sin_real @ X2 ) @ ( sin_real @ Y2 ) ) @ ( times_times_real @ ( cos_real @ X2 ) @ ( cos_real @ Y2 ) ) ) ) @ one_one_real ) ).
% sin_cos_le1
thf(fact_6585_sum_Oshift__bounds__cl__Suc__ivl,axiom,
! [G: nat > nat,M: nat,N: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( suc @ N ) ) )
= ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% sum.shift_bounds_cl_Suc_ivl
thf(fact_6586_sum_Oshift__bounds__cl__Suc__ivl,axiom,
! [G: nat > real,M: nat,N: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( suc @ N ) ) )
= ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% sum.shift_bounds_cl_Suc_ivl
thf(fact_6587_sin__int__times__real,axiom,
! [M: int,X2: real] :
( ( sin_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ ( real_V1803761363581548252l_real @ X2 ) ) )
= ( real_V1803761363581548252l_real @ ( sin_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ X2 ) ) ) ) ).
% sin_int_times_real
thf(fact_6588_sin__int__times__real,axiom,
! [M: int,X2: real] :
( ( sin_complex @ ( times_times_complex @ ( ring_17405671764205052669omplex @ M ) @ ( real_V4546457046886955230omplex @ X2 ) ) )
= ( real_V4546457046886955230omplex @ ( sin_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ X2 ) ) ) ) ).
% sin_int_times_real
thf(fact_6589_sum_Oshift__bounds__cl__nat__ivl,axiom,
! [G: nat > nat,M: nat,K: nat,N: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) ) )
= ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( G @ ( plus_plus_nat @ I3 @ K ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% sum.shift_bounds_cl_nat_ivl
thf(fact_6590_sum_Oshift__bounds__cl__nat__ivl,axiom,
! [G: nat > real,M: nat,K: nat,N: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) ) )
= ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( G @ ( plus_plus_nat @ I3 @ K ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% sum.shift_bounds_cl_nat_ivl
thf(fact_6591_suminf__sum,axiom,
! [I5: set_real,F: real > nat > real] :
( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( summable_real @ ( F @ I2 ) ) )
=> ( ( suminf_real
@ ^ [N3: nat] :
( groups8097168146408367636l_real
@ ^ [I3: real] : ( F @ I3 @ N3 )
@ I5 ) )
= ( groups8097168146408367636l_real
@ ^ [I3: real] : ( suminf_real @ ( F @ I3 ) )
@ I5 ) ) ) ).
% suminf_sum
thf(fact_6592_suminf__sum,axiom,
! [I5: set_int,F: int > nat > real] :
( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( summable_real @ ( F @ I2 ) ) )
=> ( ( suminf_real
@ ^ [N3: nat] :
( groups8778361861064173332t_real
@ ^ [I3: int] : ( F @ I3 @ N3 )
@ I5 ) )
= ( groups8778361861064173332t_real
@ ^ [I3: int] : ( suminf_real @ ( F @ I3 ) )
@ I5 ) ) ) ).
% suminf_sum
thf(fact_6593_suminf__sum,axiom,
! [I5: set_VEBT_VEBT,F: vEBT_VEBT > nat > real] :
( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ I5 )
=> ( summable_real @ ( F @ I2 ) ) )
=> ( ( suminf_real
@ ^ [N3: nat] :
( groups2240296850493347238T_real
@ ^ [I3: vEBT_VEBT] : ( F @ I3 @ N3 )
@ I5 ) )
= ( groups2240296850493347238T_real
@ ^ [I3: vEBT_VEBT] : ( suminf_real @ ( F @ I3 ) )
@ I5 ) ) ) ).
% suminf_sum
thf(fact_6594_suminf__sum,axiom,
! [I5: set_nat,F: nat > nat > complex] :
( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( summable_complex @ ( F @ I2 ) ) )
=> ( ( suminf_complex
@ ^ [N3: nat] :
( groups2073611262835488442omplex
@ ^ [I3: nat] : ( F @ I3 @ N3 )
@ I5 ) )
= ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( suminf_complex @ ( F @ I3 ) )
@ I5 ) ) ) ).
% suminf_sum
thf(fact_6595_suminf__sum,axiom,
! [I5: set_real,F: real > nat > complex] :
( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( summable_complex @ ( F @ I2 ) ) )
=> ( ( suminf_complex
@ ^ [N3: nat] :
( groups5754745047067104278omplex
@ ^ [I3: real] : ( F @ I3 @ N3 )
@ I5 ) )
= ( groups5754745047067104278omplex
@ ^ [I3: real] : ( suminf_complex @ ( F @ I3 ) )
@ I5 ) ) ) ).
% suminf_sum
thf(fact_6596_suminf__sum,axiom,
! [I5: set_int,F: int > nat > complex] :
( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( summable_complex @ ( F @ I2 ) ) )
=> ( ( suminf_complex
@ ^ [N3: nat] :
( groups3049146728041665814omplex
@ ^ [I3: int] : ( F @ I3 @ N3 )
@ I5 ) )
= ( groups3049146728041665814omplex
@ ^ [I3: int] : ( suminf_complex @ ( F @ I3 ) )
@ I5 ) ) ) ).
% suminf_sum
thf(fact_6597_suminf__sum,axiom,
! [I5: set_VEBT_VEBT,F: vEBT_VEBT > nat > complex] :
( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ I5 )
=> ( summable_complex @ ( F @ I2 ) ) )
=> ( ( suminf_complex
@ ^ [N3: nat] :
( groups1794756597179926696omplex
@ ^ [I3: vEBT_VEBT] : ( F @ I3 @ N3 )
@ I5 ) )
= ( groups1794756597179926696omplex
@ ^ [I3: vEBT_VEBT] : ( suminf_complex @ ( F @ I3 ) )
@ I5 ) ) ) ).
% suminf_sum
thf(fact_6598_suminf__sum,axiom,
! [I5: set_nat,F: nat > nat > nat] :
( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( summable_nat @ ( F @ I2 ) ) )
=> ( ( suminf_nat
@ ^ [N3: nat] :
( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( F @ I3 @ N3 )
@ I5 ) )
= ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( suminf_nat @ ( F @ I3 ) )
@ I5 ) ) ) ).
% suminf_sum
thf(fact_6599_suminf__sum,axiom,
! [I5: set_complex,F: complex > nat > complex] :
( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( summable_complex @ ( F @ I2 ) ) )
=> ( ( suminf_complex
@ ^ [N3: nat] :
( groups7754918857620584856omplex
@ ^ [I3: complex] : ( F @ I3 @ N3 )
@ I5 ) )
= ( groups7754918857620584856omplex
@ ^ [I3: complex] : ( suminf_complex @ ( F @ I3 ) )
@ I5 ) ) ) ).
% suminf_sum
thf(fact_6600_suminf__sum,axiom,
! [I5: set_nat,F: nat > nat > real] :
( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( summable_real @ ( F @ I2 ) ) )
=> ( ( suminf_real
@ ^ [N3: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( F @ I3 @ N3 )
@ I5 ) )
= ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( suminf_real @ ( F @ I3 ) )
@ I5 ) ) ) ).
% suminf_sum
thf(fact_6601_sin__squared__eq,axiom,
! [X2: complex] :
( ( power_power_complex @ ( sin_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ ( cos_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sin_squared_eq
thf(fact_6602_sin__squared__eq,axiom,
! [X2: real] :
( ( power_power_real @ ( sin_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_real @ one_one_real @ ( power_power_real @ ( cos_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sin_squared_eq
thf(fact_6603_cos__squared__eq,axiom,
! [X2: complex] :
( ( power_power_complex @ ( cos_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ ( sin_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% cos_squared_eq
thf(fact_6604_cos__squared__eq,axiom,
! [X2: real] :
( ( power_power_real @ ( cos_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_real @ one_one_real @ ( power_power_real @ ( sin_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% cos_squared_eq
thf(fact_6605_sum__le__included,axiom,
! [S3: set_int,T2: set_int,G: int > real,I: int > int,F: int > real] :
( ( finite_finite_int @ S3 )
=> ( ( finite_finite_int @ T2 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ T2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( G @ X3 ) ) )
=> ( ! [X3: int] :
( ( member_int @ X3 @ S3 )
=> ? [Xa: int] :
( ( member_int @ Xa @ T2 )
& ( ( I @ Xa )
= X3 )
& ( ord_less_eq_real @ ( F @ X3 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ S3 ) @ ( groups8778361861064173332t_real @ G @ T2 ) ) ) ) ) ) ).
% sum_le_included
thf(fact_6606_sum__le__included,axiom,
! [S3: set_int,T2: set_complex,G: complex > real,I: complex > int,F: int > real] :
( ( finite_finite_int @ S3 )
=> ( ( finite3207457112153483333omplex @ T2 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ T2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( G @ X3 ) ) )
=> ( ! [X3: int] :
( ( member_int @ X3 @ S3 )
=> ? [Xa: complex] :
( ( member_complex @ Xa @ T2 )
& ( ( I @ Xa )
= X3 )
& ( ord_less_eq_real @ ( F @ X3 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ S3 ) @ ( groups5808333547571424918x_real @ G @ T2 ) ) ) ) ) ) ).
% sum_le_included
thf(fact_6607_sum__le__included,axiom,
! [S3: set_int,T2: set_Code_integer,G: code_integer > real,I: code_integer > int,F: int > real] :
( ( finite_finite_int @ S3 )
=> ( ( finite6017078050557962740nteger @ T2 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ T2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( G @ X3 ) ) )
=> ( ! [X3: int] :
( ( member_int @ X3 @ S3 )
=> ? [Xa: code_integer] :
( ( member_Code_integer @ Xa @ T2 )
& ( ( I @ Xa )
= X3 )
& ( ord_less_eq_real @ ( F @ X3 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ S3 ) @ ( groups1270011288395367621r_real @ G @ T2 ) ) ) ) ) ) ).
% sum_le_included
thf(fact_6608_sum__le__included,axiom,
! [S3: set_complex,T2: set_int,G: int > real,I: int > complex,F: complex > real] :
( ( finite3207457112153483333omplex @ S3 )
=> ( ( finite_finite_int @ T2 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ T2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( G @ X3 ) ) )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ S3 )
=> ? [Xa: int] :
( ( member_int @ Xa @ T2 )
& ( ( I @ Xa )
= X3 )
& ( ord_less_eq_real @ ( F @ X3 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ S3 ) @ ( groups8778361861064173332t_real @ G @ T2 ) ) ) ) ) ) ).
% sum_le_included
thf(fact_6609_sum__le__included,axiom,
! [S3: set_complex,T2: set_complex,G: complex > real,I: complex > complex,F: complex > real] :
( ( finite3207457112153483333omplex @ S3 )
=> ( ( finite3207457112153483333omplex @ T2 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ T2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( G @ X3 ) ) )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ S3 )
=> ? [Xa: complex] :
( ( member_complex @ Xa @ T2 )
& ( ( I @ Xa )
= X3 )
& ( ord_less_eq_real @ ( F @ X3 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ S3 ) @ ( groups5808333547571424918x_real @ G @ T2 ) ) ) ) ) ) ).
% sum_le_included
thf(fact_6610_sum__le__included,axiom,
! [S3: set_complex,T2: set_Code_integer,G: code_integer > real,I: code_integer > complex,F: complex > real] :
( ( finite3207457112153483333omplex @ S3 )
=> ( ( finite6017078050557962740nteger @ T2 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ T2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( G @ X3 ) ) )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ S3 )
=> ? [Xa: code_integer] :
( ( member_Code_integer @ Xa @ T2 )
& ( ( I @ Xa )
= X3 )
& ( ord_less_eq_real @ ( F @ X3 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ S3 ) @ ( groups1270011288395367621r_real @ G @ T2 ) ) ) ) ) ) ).
% sum_le_included
thf(fact_6611_sum__le__included,axiom,
! [S3: set_Code_integer,T2: set_int,G: int > real,I: int > code_integer,F: code_integer > real] :
( ( finite6017078050557962740nteger @ S3 )
=> ( ( finite_finite_int @ T2 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ T2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( G @ X3 ) ) )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ S3 )
=> ? [Xa: int] :
( ( member_int @ Xa @ T2 )
& ( ( I @ Xa )
= X3 )
& ( ord_less_eq_real @ ( F @ X3 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_real @ ( groups1270011288395367621r_real @ F @ S3 ) @ ( groups8778361861064173332t_real @ G @ T2 ) ) ) ) ) ) ).
% sum_le_included
thf(fact_6612_sum__le__included,axiom,
! [S3: set_Code_integer,T2: set_complex,G: complex > real,I: complex > code_integer,F: code_integer > real] :
( ( finite6017078050557962740nteger @ S3 )
=> ( ( finite3207457112153483333omplex @ T2 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ T2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( G @ X3 ) ) )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ S3 )
=> ? [Xa: complex] :
( ( member_complex @ Xa @ T2 )
& ( ( I @ Xa )
= X3 )
& ( ord_less_eq_real @ ( F @ X3 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_real @ ( groups1270011288395367621r_real @ F @ S3 ) @ ( groups5808333547571424918x_real @ G @ T2 ) ) ) ) ) ) ).
% sum_le_included
thf(fact_6613_sum__le__included,axiom,
! [S3: set_Code_integer,T2: set_Code_integer,G: code_integer > real,I: code_integer > code_integer,F: code_integer > real] :
( ( finite6017078050557962740nteger @ S3 )
=> ( ( finite6017078050557962740nteger @ T2 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ T2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( G @ X3 ) ) )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ S3 )
=> ? [Xa: code_integer] :
( ( member_Code_integer @ Xa @ T2 )
& ( ( I @ Xa )
= X3 )
& ( ord_less_eq_real @ ( F @ X3 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_real @ ( groups1270011288395367621r_real @ F @ S3 ) @ ( groups1270011288395367621r_real @ G @ T2 ) ) ) ) ) ) ).
% sum_le_included
thf(fact_6614_sum__le__included,axiom,
! [S3: set_nat,T2: set_nat,G: nat > rat,I: nat > nat,F: nat > rat] :
( ( finite_finite_nat @ S3 )
=> ( ( finite_finite_nat @ T2 )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ T2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X3 ) ) )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ S3 )
=> ? [Xa: nat] :
( ( member_nat @ Xa @ T2 )
& ( ( I @ Xa )
= X3 )
& ( ord_less_eq_rat @ ( F @ X3 ) @ ( G @ Xa ) ) ) )
=> ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ S3 ) @ ( groups2906978787729119204at_rat @ G @ T2 ) ) ) ) ) ) ).
% sum_le_included
thf(fact_6615_sum__nonneg__eq__0__iff,axiom,
! [A2: set_real,F: real > real] :
( ( finite_finite_real @ A2 )
=> ( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
=> ( ( ( groups8097168146408367636l_real @ F @ A2 )
= zero_zero_real )
= ( ! [X: real] :
( ( member_real @ X @ A2 )
=> ( ( F @ X )
= zero_zero_real ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_6616_sum__nonneg__eq__0__iff,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
=> ( ( ( groups2240296850493347238T_real @ F @ A2 )
= zero_zero_real )
= ( ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ A2 )
=> ( ( F @ X )
= zero_zero_real ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_6617_sum__nonneg__eq__0__iff,axiom,
! [A2: set_int,F: int > real] :
( ( finite_finite_int @ A2 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
=> ( ( ( groups8778361861064173332t_real @ F @ A2 )
= zero_zero_real )
= ( ! [X: int] :
( ( member_int @ X @ A2 )
=> ( ( F @ X )
= zero_zero_real ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_6618_sum__nonneg__eq__0__iff,axiom,
! [A2: set_complex,F: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
=> ( ( ( groups5808333547571424918x_real @ F @ A2 )
= zero_zero_real )
= ( ! [X: complex] :
( ( member_complex @ X @ A2 )
=> ( ( F @ X )
= zero_zero_real ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_6619_sum__nonneg__eq__0__iff,axiom,
! [A2: set_Code_integer,F: code_integer > real] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
=> ( ( ( groups1270011288395367621r_real @ F @ A2 )
= zero_zero_real )
= ( ! [X: code_integer] :
( ( member_Code_integer @ X @ A2 )
=> ( ( F @ X )
= zero_zero_real ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_6620_sum__nonneg__eq__0__iff,axiom,
! [A2: set_real,F: real > rat] :
( ( finite_finite_real @ A2 )
=> ( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
=> ( ( ( groups1300246762558778688al_rat @ F @ A2 )
= zero_zero_rat )
= ( ! [X: real] :
( ( member_real @ X @ A2 )
=> ( ( F @ X )
= zero_zero_rat ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_6621_sum__nonneg__eq__0__iff,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
=> ( ( ( groups136491112297645522BT_rat @ F @ A2 )
= zero_zero_rat )
= ( ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ A2 )
=> ( ( F @ X )
= zero_zero_rat ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_6622_sum__nonneg__eq__0__iff,axiom,
! [A2: set_nat,F: nat > rat] :
( ( finite_finite_nat @ A2 )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
=> ( ( ( groups2906978787729119204at_rat @ F @ A2 )
= zero_zero_rat )
= ( ! [X: nat] :
( ( member_nat @ X @ A2 )
=> ( ( F @ X )
= zero_zero_rat ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_6623_sum__nonneg__eq__0__iff,axiom,
! [A2: set_int,F: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
=> ( ( ( groups3906332499630173760nt_rat @ F @ A2 )
= zero_zero_rat )
= ( ! [X: int] :
( ( member_int @ X @ A2 )
=> ( ( F @ X )
= zero_zero_rat ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_6624_sum__nonneg__eq__0__iff,axiom,
! [A2: set_complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
=> ( ( ( groups5058264527183730370ex_rat @ F @ A2 )
= zero_zero_rat )
= ( ! [X: complex] :
( ( member_complex @ X @ A2 )
=> ( ( F @ X )
= zero_zero_rat ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
thf(fact_6625_sum__strict__mono__ex1,axiom,
! [A2: set_int,F: int > real,G: int > real] :
( ( finite_finite_int @ A2 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ A2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( G @ X3 ) ) )
=> ( ? [X4: int] :
( ( member_int @ X4 @ A2 )
& ( ord_less_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ ( groups8778361861064173332t_real @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_6626_sum__strict__mono__ex1,axiom,
! [A2: set_complex,F: complex > real,G: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ A2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( G @ X3 ) ) )
=> ( ? [X4: complex] :
( ( member_complex @ X4 @ A2 )
& ( ord_less_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_6627_sum__strict__mono__ex1,axiom,
! [A2: set_Code_integer,F: code_integer > real,G: code_integer > real] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ A2 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( G @ X3 ) ) )
=> ( ? [X4: code_integer] :
( ( member_Code_integer @ X4 @ A2 )
& ( ord_less_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_real @ ( groups1270011288395367621r_real @ F @ A2 ) @ ( groups1270011288395367621r_real @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_6628_sum__strict__mono__ex1,axiom,
! [A2: set_nat,F: nat > rat,G: nat > rat] :
( ( finite_finite_nat @ A2 )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ord_less_eq_rat @ ( F @ X3 ) @ ( G @ X3 ) ) )
=> ( ? [X4: nat] :
( ( member_nat @ X4 @ A2 )
& ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_6629_sum__strict__mono__ex1,axiom,
! [A2: set_int,F: int > rat,G: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ A2 )
=> ( ord_less_eq_rat @ ( F @ X3 ) @ ( G @ X3 ) ) )
=> ( ? [X4: int] :
( ( member_int @ X4 @ A2 )
& ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ ( groups3906332499630173760nt_rat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_6630_sum__strict__mono__ex1,axiom,
! [A2: set_complex,F: complex > rat,G: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ A2 )
=> ( ord_less_eq_rat @ ( F @ X3 ) @ ( G @ X3 ) ) )
=> ( ? [X4: complex] :
( ( member_complex @ X4 @ A2 )
& ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_6631_sum__strict__mono__ex1,axiom,
! [A2: set_Code_integer,F: code_integer > rat,G: code_integer > rat] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ A2 )
=> ( ord_less_eq_rat @ ( F @ X3 ) @ ( G @ X3 ) ) )
=> ( ? [X4: code_integer] :
( ( member_Code_integer @ X4 @ A2 )
& ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_rat @ ( groups6602215022474089585er_rat @ F @ A2 ) @ ( groups6602215022474089585er_rat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_6632_sum__strict__mono__ex1,axiom,
! [A2: set_int,F: int > nat,G: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ A2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( G @ X3 ) ) )
=> ( ? [X4: int] :
( ( member_int @ X4 @ A2 )
& ( ord_less_nat @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) @ ( groups4541462559716669496nt_nat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_6633_sum__strict__mono__ex1,axiom,
! [A2: set_complex,F: complex > nat,G: complex > nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ A2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( G @ X3 ) ) )
=> ( ? [X4: complex] :
( ( member_complex @ X4 @ A2 )
& ( ord_less_nat @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_6634_sum__strict__mono__ex1,axiom,
! [A2: set_Code_integer,F: code_integer > nat,G: code_integer > nat] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ A2 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( G @ X3 ) ) )
=> ( ? [X4: code_integer] :
( ( member_Code_integer @ X4 @ A2 )
& ( ord_less_nat @ ( F @ X4 ) @ ( G @ X4 ) ) )
=> ( ord_less_nat @ ( groups7237345082560585321er_nat @ F @ A2 ) @ ( groups7237345082560585321er_nat @ G @ A2 ) ) ) ) ) ).
% sum_strict_mono_ex1
thf(fact_6635_sum_Orelated,axiom,
! [R: complex > complex > $o,S: set_nat,H2: nat > complex,G: nat > complex] :
( ( R @ zero_zero_complex @ zero_zero_complex )
=> ( ! [X1: complex,Y1: complex,X22: complex,Y23: complex] :
( ( ( R @ X1 @ X22 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( plus_plus_complex @ X1 @ Y1 ) @ ( plus_plus_complex @ X22 @ Y23 ) ) )
=> ( ( finite_finite_nat @ S )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ S )
=> ( R @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
=> ( R @ ( groups2073611262835488442omplex @ H2 @ S ) @ ( groups2073611262835488442omplex @ G @ S ) ) ) ) ) ) ).
% sum.related
thf(fact_6636_sum_Orelated,axiom,
! [R: complex > complex > $o,S: set_int,H2: int > complex,G: int > complex] :
( ( R @ zero_zero_complex @ zero_zero_complex )
=> ( ! [X1: complex,Y1: complex,X22: complex,Y23: complex] :
( ( ( R @ X1 @ X22 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( plus_plus_complex @ X1 @ Y1 ) @ ( plus_plus_complex @ X22 @ Y23 ) ) )
=> ( ( finite_finite_int @ S )
=> ( ! [X3: int] :
( ( member_int @ X3 @ S )
=> ( R @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
=> ( R @ ( groups3049146728041665814omplex @ H2 @ S ) @ ( groups3049146728041665814omplex @ G @ S ) ) ) ) ) ) ).
% sum.related
thf(fact_6637_sum_Orelated,axiom,
! [R: complex > complex > $o,S: set_Code_integer,H2: code_integer > complex,G: code_integer > complex] :
( ( R @ zero_zero_complex @ zero_zero_complex )
=> ( ! [X1: complex,Y1: complex,X22: complex,Y23: complex] :
( ( ( R @ X1 @ X22 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( plus_plus_complex @ X1 @ Y1 ) @ ( plus_plus_complex @ X22 @ Y23 ) ) )
=> ( ( finite6017078050557962740nteger @ S )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ S )
=> ( R @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
=> ( R @ ( groups8024822376189712711omplex @ H2 @ S ) @ ( groups8024822376189712711omplex @ G @ S ) ) ) ) ) ) ).
% sum.related
thf(fact_6638_sum_Orelated,axiom,
! [R: real > real > $o,S: set_int,H2: int > real,G: int > real] :
( ( R @ zero_zero_real @ zero_zero_real )
=> ( ! [X1: real,Y1: real,X22: real,Y23: real] :
( ( ( R @ X1 @ X22 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( plus_plus_real @ X1 @ Y1 ) @ ( plus_plus_real @ X22 @ Y23 ) ) )
=> ( ( finite_finite_int @ S )
=> ( ! [X3: int] :
( ( member_int @ X3 @ S )
=> ( R @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
=> ( R @ ( groups8778361861064173332t_real @ H2 @ S ) @ ( groups8778361861064173332t_real @ G @ S ) ) ) ) ) ) ).
% sum.related
thf(fact_6639_sum_Orelated,axiom,
! [R: real > real > $o,S: set_complex,H2: complex > real,G: complex > real] :
( ( R @ zero_zero_real @ zero_zero_real )
=> ( ! [X1: real,Y1: real,X22: real,Y23: real] :
( ( ( R @ X1 @ X22 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( plus_plus_real @ X1 @ Y1 ) @ ( plus_plus_real @ X22 @ Y23 ) ) )
=> ( ( finite3207457112153483333omplex @ S )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ S )
=> ( R @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
=> ( R @ ( groups5808333547571424918x_real @ H2 @ S ) @ ( groups5808333547571424918x_real @ G @ S ) ) ) ) ) ) ).
% sum.related
thf(fact_6640_sum_Orelated,axiom,
! [R: real > real > $o,S: set_Code_integer,H2: code_integer > real,G: code_integer > real] :
( ( R @ zero_zero_real @ zero_zero_real )
=> ( ! [X1: real,Y1: real,X22: real,Y23: real] :
( ( ( R @ X1 @ X22 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( plus_plus_real @ X1 @ Y1 ) @ ( plus_plus_real @ X22 @ Y23 ) ) )
=> ( ( finite6017078050557962740nteger @ S )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ S )
=> ( R @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
=> ( R @ ( groups1270011288395367621r_real @ H2 @ S ) @ ( groups1270011288395367621r_real @ G @ S ) ) ) ) ) ) ).
% sum.related
thf(fact_6641_sum_Orelated,axiom,
! [R: rat > rat > $o,S: set_nat,H2: nat > rat,G: nat > rat] :
( ( R @ zero_zero_rat @ zero_zero_rat )
=> ( ! [X1: rat,Y1: rat,X22: rat,Y23: rat] :
( ( ( R @ X1 @ X22 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( plus_plus_rat @ X1 @ Y1 ) @ ( plus_plus_rat @ X22 @ Y23 ) ) )
=> ( ( finite_finite_nat @ S )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ S )
=> ( R @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
=> ( R @ ( groups2906978787729119204at_rat @ H2 @ S ) @ ( groups2906978787729119204at_rat @ G @ S ) ) ) ) ) ) ).
% sum.related
thf(fact_6642_sum_Orelated,axiom,
! [R: rat > rat > $o,S: set_int,H2: int > rat,G: int > rat] :
( ( R @ zero_zero_rat @ zero_zero_rat )
=> ( ! [X1: rat,Y1: rat,X22: rat,Y23: rat] :
( ( ( R @ X1 @ X22 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( plus_plus_rat @ X1 @ Y1 ) @ ( plus_plus_rat @ X22 @ Y23 ) ) )
=> ( ( finite_finite_int @ S )
=> ( ! [X3: int] :
( ( member_int @ X3 @ S )
=> ( R @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
=> ( R @ ( groups3906332499630173760nt_rat @ H2 @ S ) @ ( groups3906332499630173760nt_rat @ G @ S ) ) ) ) ) ) ).
% sum.related
thf(fact_6643_sum_Orelated,axiom,
! [R: rat > rat > $o,S: set_complex,H2: complex > rat,G: complex > rat] :
( ( R @ zero_zero_rat @ zero_zero_rat )
=> ( ! [X1: rat,Y1: rat,X22: rat,Y23: rat] :
( ( ( R @ X1 @ X22 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( plus_plus_rat @ X1 @ Y1 ) @ ( plus_plus_rat @ X22 @ Y23 ) ) )
=> ( ( finite3207457112153483333omplex @ S )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ S )
=> ( R @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
=> ( R @ ( groups5058264527183730370ex_rat @ H2 @ S ) @ ( groups5058264527183730370ex_rat @ G @ S ) ) ) ) ) ) ).
% sum.related
thf(fact_6644_sum_Orelated,axiom,
! [R: rat > rat > $o,S: set_Code_integer,H2: code_integer > rat,G: code_integer > rat] :
( ( R @ zero_zero_rat @ zero_zero_rat )
=> ( ! [X1: rat,Y1: rat,X22: rat,Y23: rat] :
( ( ( R @ X1 @ X22 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( plus_plus_rat @ X1 @ Y1 ) @ ( plus_plus_rat @ X22 @ Y23 ) ) )
=> ( ( finite6017078050557962740nteger @ S )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ S )
=> ( R @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
=> ( R @ ( groups6602215022474089585er_rat @ H2 @ S ) @ ( groups6602215022474089585er_rat @ G @ S ) ) ) ) ) ) ).
% sum.related
thf(fact_6645_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S6: set_real,T4: set_real,S: set_real,I: real > real,J: real > real,T3: set_real,G: real > complex,H2: real > complex] :
( ( finite_finite_real @ S6 )
=> ( ( finite_finite_real @ T4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S @ S6 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S @ S6 ) )
=> ( member_real @ ( J @ A4 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( ( J @ ( I @ B3 ) )
= B3 ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( member_real @ ( I @ B3 ) @ ( minus_minus_set_real @ S @ S6 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S6 )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ T4 )
=> ( ( H2 @ B3 )
= zero_zero_complex ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups5754745047067104278omplex @ G @ S )
= ( groups5754745047067104278omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_6646_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S6: set_real,T4: set_VEBT_VEBT,S: set_real,I: vEBT_VEBT > real,J: real > vEBT_VEBT,T3: set_VEBT_VEBT,G: real > complex,H2: vEBT_VEBT > complex] :
( ( finite_finite_real @ S6 )
=> ( ( finite5795047828879050333T_VEBT @ T4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S @ S6 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S @ S6 ) )
=> ( member_VEBT_VEBT @ ( J @ A4 ) @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) ) )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
=> ( ( J @ ( I @ B3 ) )
= B3 ) )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
=> ( member_real @ ( I @ B3 ) @ ( minus_minus_set_real @ S @ S6 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S6 )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ T4 )
=> ( ( H2 @ B3 )
= zero_zero_complex ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups5754745047067104278omplex @ G @ S )
= ( groups1794756597179926696omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_6647_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S6: set_VEBT_VEBT,T4: set_real,S: set_VEBT_VEBT,I: real > vEBT_VEBT,J: vEBT_VEBT > real,T3: set_real,G: vEBT_VEBT > complex,H2: real > complex] :
( ( finite5795047828879050333T_VEBT @ S6 )
=> ( ( finite_finite_real @ T4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) )
=> ( member_real @ ( J @ A4 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( ( J @ ( I @ B3 ) )
= B3 ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( member_VEBT_VEBT @ ( I @ B3 ) @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S6 )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ T4 )
=> ( ( H2 @ B3 )
= zero_zero_complex ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups1794756597179926696omplex @ G @ S )
= ( groups5754745047067104278omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_6648_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S6: set_VEBT_VEBT,T4: set_VEBT_VEBT,S: set_VEBT_VEBT,I: vEBT_VEBT > vEBT_VEBT,J: vEBT_VEBT > vEBT_VEBT,T3: set_VEBT_VEBT,G: vEBT_VEBT > complex,H2: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ S6 )
=> ( ( finite5795047828879050333T_VEBT @ T4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) )
=> ( member_VEBT_VEBT @ ( J @ A4 ) @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) ) )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
=> ( ( J @ ( I @ B3 ) )
= B3 ) )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
=> ( member_VEBT_VEBT @ ( I @ B3 ) @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S6 )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ T4 )
=> ( ( H2 @ B3 )
= zero_zero_complex ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups1794756597179926696omplex @ G @ S )
= ( groups1794756597179926696omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_6649_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S6: set_real,T4: set_int,S: set_real,I: int > real,J: real > int,T3: set_int,G: real > complex,H2: int > complex] :
( ( finite_finite_real @ S6 )
=> ( ( finite_finite_int @ T4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S @ S6 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S @ S6 ) )
=> ( member_int @ ( J @ A4 ) @ ( minus_minus_set_int @ T3 @ T4 ) ) )
=> ( ! [B3: int] :
( ( member_int @ B3 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( ( J @ ( I @ B3 ) )
= B3 ) )
=> ( ! [B3: int] :
( ( member_int @ B3 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( member_real @ ( I @ B3 ) @ ( minus_minus_set_real @ S @ S6 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S6 )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B3: int] :
( ( member_int @ B3 @ T4 )
=> ( ( H2 @ B3 )
= zero_zero_complex ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups5754745047067104278omplex @ G @ S )
= ( groups3049146728041665814omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_6650_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S6: set_VEBT_VEBT,T4: set_int,S: set_VEBT_VEBT,I: int > vEBT_VEBT,J: vEBT_VEBT > int,T3: set_int,G: vEBT_VEBT > complex,H2: int > complex] :
( ( finite5795047828879050333T_VEBT @ S6 )
=> ( ( finite_finite_int @ T4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) )
=> ( member_int @ ( J @ A4 ) @ ( minus_minus_set_int @ T3 @ T4 ) ) )
=> ( ! [B3: int] :
( ( member_int @ B3 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( ( J @ ( I @ B3 ) )
= B3 ) )
=> ( ! [B3: int] :
( ( member_int @ B3 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( member_VEBT_VEBT @ ( I @ B3 ) @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S6 )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B3: int] :
( ( member_int @ B3 @ T4 )
=> ( ( H2 @ B3 )
= zero_zero_complex ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups1794756597179926696omplex @ G @ S )
= ( groups3049146728041665814omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_6651_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S6: set_real,T4: set_Code_integer,S: set_real,I: code_integer > real,J: real > code_integer,T3: set_Code_integer,G: real > complex,H2: code_integer > complex] :
( ( finite_finite_real @ S6 )
=> ( ( finite6017078050557962740nteger @ T4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S @ S6 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S @ S6 ) )
=> ( member_Code_integer @ ( J @ A4 ) @ ( minus_2355218937544613996nteger @ T3 @ T4 ) ) )
=> ( ! [B3: code_integer] :
( ( member_Code_integer @ B3 @ ( minus_2355218937544613996nteger @ T3 @ T4 ) )
=> ( ( J @ ( I @ B3 ) )
= B3 ) )
=> ( ! [B3: code_integer] :
( ( member_Code_integer @ B3 @ ( minus_2355218937544613996nteger @ T3 @ T4 ) )
=> ( member_real @ ( I @ B3 ) @ ( minus_minus_set_real @ S @ S6 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S6 )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B3: code_integer] :
( ( member_Code_integer @ B3 @ T4 )
=> ( ( H2 @ B3 )
= zero_zero_complex ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups5754745047067104278omplex @ G @ S )
= ( groups8024822376189712711omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_6652_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S6: set_VEBT_VEBT,T4: set_Code_integer,S: set_VEBT_VEBT,I: code_integer > vEBT_VEBT,J: vEBT_VEBT > code_integer,T3: set_Code_integer,G: vEBT_VEBT > complex,H2: code_integer > complex] :
( ( finite5795047828879050333T_VEBT @ S6 )
=> ( ( finite6017078050557962740nteger @ T4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) )
=> ( member_Code_integer @ ( J @ A4 ) @ ( minus_2355218937544613996nteger @ T3 @ T4 ) ) )
=> ( ! [B3: code_integer] :
( ( member_Code_integer @ B3 @ ( minus_2355218937544613996nteger @ T3 @ T4 ) )
=> ( ( J @ ( I @ B3 ) )
= B3 ) )
=> ( ! [B3: code_integer] :
( ( member_Code_integer @ B3 @ ( minus_2355218937544613996nteger @ T3 @ T4 ) )
=> ( member_VEBT_VEBT @ ( I @ B3 ) @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S6 )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B3: code_integer] :
( ( member_Code_integer @ B3 @ T4 )
=> ( ( H2 @ B3 )
= zero_zero_complex ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups1794756597179926696omplex @ G @ S )
= ( groups8024822376189712711omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_6653_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S6: set_int,T4: set_real,S: set_int,I: real > int,J: int > real,T3: set_real,G: int > complex,H2: real > complex] :
( ( finite_finite_int @ S6 )
=> ( ( finite_finite_real @ T4 )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ S @ S6 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ S @ S6 ) )
=> ( member_real @ ( J @ A4 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( ( J @ ( I @ B3 ) )
= B3 ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( member_int @ ( I @ B3 ) @ ( minus_minus_set_int @ S @ S6 ) ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ S6 )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ T4 )
=> ( ( H2 @ B3 )
= zero_zero_complex ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ S )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups3049146728041665814omplex @ G @ S )
= ( groups5754745047067104278omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_6654_sum_Oreindex__bij__witness__not__neutral,axiom,
! [S6: set_int,T4: set_VEBT_VEBT,S: set_int,I: vEBT_VEBT > int,J: int > vEBT_VEBT,T3: set_VEBT_VEBT,G: int > complex,H2: vEBT_VEBT > complex] :
( ( finite_finite_int @ S6 )
=> ( ( finite5795047828879050333T_VEBT @ T4 )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ S @ S6 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ S @ S6 ) )
=> ( member_VEBT_VEBT @ ( J @ A4 ) @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) ) )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
=> ( ( J @ ( I @ B3 ) )
= B3 ) )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
=> ( member_int @ ( I @ B3 ) @ ( minus_minus_set_int @ S @ S6 ) ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ S6 )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ T4 )
=> ( ( H2 @ B3 )
= zero_zero_complex ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ S )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups3049146728041665814omplex @ G @ S )
= ( groups1794756597179926696omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
thf(fact_6655_sin__gt__zero,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ X2 @ pi )
=> ( ord_less_real @ zero_zero_real @ ( sin_real @ X2 ) ) ) ) ).
% sin_gt_zero
thf(fact_6656_sin__x__ge__neg__x,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ X2 ) @ ( sin_real @ X2 ) ) ) ).
% sin_x_ge_neg_x
thf(fact_6657_sin__ge__zero,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ X2 @ pi )
=> ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ X2 ) ) ) ) ).
% sin_ge_zero
thf(fact_6658_sin__ge__minus__one,axiom,
! [X2: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( sin_real @ X2 ) ) ).
% sin_ge_minus_one
thf(fact_6659_cos__monotone__0__pi__le,axiom,
! [Y2: real,X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ X2 )
=> ( ( ord_less_eq_real @ X2 @ pi )
=> ( ord_less_eq_real @ ( cos_real @ X2 ) @ ( cos_real @ Y2 ) ) ) ) ) ).
% cos_monotone_0_pi_le
thf(fact_6660_cos__mono__le__eq,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ X2 @ pi )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ pi )
=> ( ( ord_less_eq_real @ ( cos_real @ X2 ) @ ( cos_real @ Y2 ) )
= ( ord_less_eq_real @ Y2 @ X2 ) ) ) ) ) ) ).
% cos_mono_le_eq
thf(fact_6661_cos__inj__pi,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ X2 @ pi )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ pi )
=> ( ( ( cos_real @ X2 )
= ( cos_real @ Y2 ) )
=> ( X2 = Y2 ) ) ) ) ) ) ).
% cos_inj_pi
thf(fact_6662_cos__ge__minus__one,axiom,
! [X2: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( cos_real @ X2 ) ) ).
% cos_ge_minus_one
thf(fact_6663_abs__sin__le__one,axiom,
! [X2: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( sin_real @ X2 ) ) @ one_one_real ) ).
% abs_sin_le_one
thf(fact_6664_abs__cos__le__one,axiom,
! [X2: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( cos_real @ X2 ) ) @ one_one_real ) ).
% abs_cos_le_one
thf(fact_6665_sin__times__sin,axiom,
! [W: complex,Z: complex] :
( ( times_times_complex @ ( sin_complex @ W ) @ ( sin_complex @ Z ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( cos_complex @ ( minus_minus_complex @ W @ Z ) ) @ ( cos_complex @ ( plus_plus_complex @ W @ Z ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% sin_times_sin
thf(fact_6666_sin__times__sin,axiom,
! [W: real,Z: real] :
( ( times_times_real @ ( sin_real @ W ) @ ( sin_real @ Z ) )
= ( divide_divide_real @ ( minus_minus_real @ ( cos_real @ ( minus_minus_real @ W @ Z ) ) @ ( cos_real @ ( plus_plus_real @ W @ Z ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% sin_times_sin
thf(fact_6667_sin__times__cos,axiom,
! [W: complex,Z: complex] :
( ( times_times_complex @ ( sin_complex @ W ) @ ( cos_complex @ Z ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( sin_complex @ ( plus_plus_complex @ W @ Z ) ) @ ( sin_complex @ ( minus_minus_complex @ W @ Z ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% sin_times_cos
thf(fact_6668_sin__times__cos,axiom,
! [W: real,Z: real] :
( ( times_times_real @ ( sin_real @ W ) @ ( cos_real @ Z ) )
= ( divide_divide_real @ ( plus_plus_real @ ( sin_real @ ( plus_plus_real @ W @ Z ) ) @ ( sin_real @ ( minus_minus_real @ W @ Z ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% sin_times_cos
thf(fact_6669_cos__times__sin,axiom,
! [W: complex,Z: complex] :
( ( times_times_complex @ ( cos_complex @ W ) @ ( sin_complex @ Z ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( sin_complex @ ( plus_plus_complex @ W @ Z ) ) @ ( sin_complex @ ( minus_minus_complex @ W @ Z ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% cos_times_sin
thf(fact_6670_cos__times__sin,axiom,
! [W: real,Z: real] :
( ( times_times_real @ ( cos_real @ W ) @ ( sin_real @ Z ) )
= ( divide_divide_real @ ( minus_minus_real @ ( sin_real @ ( plus_plus_real @ W @ Z ) ) @ ( sin_real @ ( minus_minus_real @ W @ Z ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% cos_times_sin
thf(fact_6671_sin__plus__sin,axiom,
! [W: complex,Z: complex] :
( ( plus_plus_complex @ ( sin_complex @ W ) @ ( sin_complex @ Z ) )
= ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).
% sin_plus_sin
thf(fact_6672_sin__plus__sin,axiom,
! [W: real,Z: real] :
( ( plus_plus_real @ ( sin_real @ W ) @ ( sin_real @ Z ) )
= ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( cos_real @ ( divide_divide_real @ ( minus_minus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% sin_plus_sin
thf(fact_6673_sin__diff__sin,axiom,
! [W: complex,Z: complex] :
( ( minus_minus_complex @ ( sin_complex @ W ) @ ( sin_complex @ Z ) )
= ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).
% sin_diff_sin
thf(fact_6674_sin__diff__sin,axiom,
! [W: real,Z: real] :
( ( minus_minus_real @ ( sin_real @ W ) @ ( sin_real @ Z ) )
= ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ ( divide_divide_real @ ( minus_minus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( cos_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% sin_diff_sin
thf(fact_6675_cos__diff__cos,axiom,
! [W: complex,Z: complex] :
( ( minus_minus_complex @ ( cos_complex @ W ) @ ( cos_complex @ Z ) )
= ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ Z @ W ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).
% cos_diff_cos
thf(fact_6676_cos__diff__cos,axiom,
! [W: real,Z: real] :
( ( minus_minus_real @ ( cos_real @ W ) @ ( cos_real @ Z ) )
= ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( sin_real @ ( divide_divide_real @ ( minus_minus_real @ Z @ W ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% cos_diff_cos
thf(fact_6677_cos__double,axiom,
! [X2: complex] :
( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X2 ) )
= ( minus_minus_complex @ ( power_power_complex @ ( cos_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( sin_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% cos_double
thf(fact_6678_cos__double,axiom,
! [X2: real] :
( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) )
= ( minus_minus_real @ ( power_power_real @ ( cos_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( sin_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% cos_double
thf(fact_6679_sum__nonneg__0,axiom,
! [S3: set_real,F: real > real,I: real] :
( ( finite_finite_real @ S3 )
=> ( ! [I2: real] :
( ( member_real @ I2 @ S3 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ( ( groups8097168146408367636l_real @ F @ S3 )
= zero_zero_real )
=> ( ( member_real @ I @ S3 )
=> ( ( F @ I )
= zero_zero_real ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6680_sum__nonneg__0,axiom,
! [S3: set_VEBT_VEBT,F: vEBT_VEBT > real,I: vEBT_VEBT] :
( ( finite5795047828879050333T_VEBT @ S3 )
=> ( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ S3 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ( ( groups2240296850493347238T_real @ F @ S3 )
= zero_zero_real )
=> ( ( member_VEBT_VEBT @ I @ S3 )
=> ( ( F @ I )
= zero_zero_real ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6681_sum__nonneg__0,axiom,
! [S3: set_int,F: int > real,I: int] :
( ( finite_finite_int @ S3 )
=> ( ! [I2: int] :
( ( member_int @ I2 @ S3 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ( ( groups8778361861064173332t_real @ F @ S3 )
= zero_zero_real )
=> ( ( member_int @ I @ S3 )
=> ( ( F @ I )
= zero_zero_real ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6682_sum__nonneg__0,axiom,
! [S3: set_complex,F: complex > real,I: complex] :
( ( finite3207457112153483333omplex @ S3 )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ S3 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ( ( groups5808333547571424918x_real @ F @ S3 )
= zero_zero_real )
=> ( ( member_complex @ I @ S3 )
=> ( ( F @ I )
= zero_zero_real ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6683_sum__nonneg__0,axiom,
! [S3: set_Code_integer,F: code_integer > real,I: code_integer] :
( ( finite6017078050557962740nteger @ S3 )
=> ( ! [I2: code_integer] :
( ( member_Code_integer @ I2 @ S3 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ( ( groups1270011288395367621r_real @ F @ S3 )
= zero_zero_real )
=> ( ( member_Code_integer @ I @ S3 )
=> ( ( F @ I )
= zero_zero_real ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6684_sum__nonneg__0,axiom,
! [S3: set_real,F: real > rat,I: real] :
( ( finite_finite_real @ S3 )
=> ( ! [I2: real] :
( ( member_real @ I2 @ S3 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ( ( groups1300246762558778688al_rat @ F @ S3 )
= zero_zero_rat )
=> ( ( member_real @ I @ S3 )
=> ( ( F @ I )
= zero_zero_rat ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6685_sum__nonneg__0,axiom,
! [S3: set_VEBT_VEBT,F: vEBT_VEBT > rat,I: vEBT_VEBT] :
( ( finite5795047828879050333T_VEBT @ S3 )
=> ( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ S3 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ( ( groups136491112297645522BT_rat @ F @ S3 )
= zero_zero_rat )
=> ( ( member_VEBT_VEBT @ I @ S3 )
=> ( ( F @ I )
= zero_zero_rat ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6686_sum__nonneg__0,axiom,
! [S3: set_nat,F: nat > rat,I: nat] :
( ( finite_finite_nat @ S3 )
=> ( ! [I2: nat] :
( ( member_nat @ I2 @ S3 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ( ( groups2906978787729119204at_rat @ F @ S3 )
= zero_zero_rat )
=> ( ( member_nat @ I @ S3 )
=> ( ( F @ I )
= zero_zero_rat ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6687_sum__nonneg__0,axiom,
! [S3: set_int,F: int > rat,I: int] :
( ( finite_finite_int @ S3 )
=> ( ! [I2: int] :
( ( member_int @ I2 @ S3 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ( ( groups3906332499630173760nt_rat @ F @ S3 )
= zero_zero_rat )
=> ( ( member_int @ I @ S3 )
=> ( ( F @ I )
= zero_zero_rat ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6688_sum__nonneg__0,axiom,
! [S3: set_complex,F: complex > rat,I: complex] :
( ( finite3207457112153483333omplex @ S3 )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ S3 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ( ( groups5058264527183730370ex_rat @ F @ S3 )
= zero_zero_rat )
=> ( ( member_complex @ I @ S3 )
=> ( ( F @ I )
= zero_zero_rat ) ) ) ) ) ).
% sum_nonneg_0
thf(fact_6689_sum__nonneg__leq__bound,axiom,
! [S3: set_real,F: real > real,B4: real,I: real] :
( ( finite_finite_real @ S3 )
=> ( ! [I2: real] :
( ( member_real @ I2 @ S3 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ( ( groups8097168146408367636l_real @ F @ S3 )
= B4 )
=> ( ( member_real @ I @ S3 )
=> ( ord_less_eq_real @ ( F @ I ) @ B4 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6690_sum__nonneg__leq__bound,axiom,
! [S3: set_VEBT_VEBT,F: vEBT_VEBT > real,B4: real,I: vEBT_VEBT] :
( ( finite5795047828879050333T_VEBT @ S3 )
=> ( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ S3 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ( ( groups2240296850493347238T_real @ F @ S3 )
= B4 )
=> ( ( member_VEBT_VEBT @ I @ S3 )
=> ( ord_less_eq_real @ ( F @ I ) @ B4 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6691_sum__nonneg__leq__bound,axiom,
! [S3: set_int,F: int > real,B4: real,I: int] :
( ( finite_finite_int @ S3 )
=> ( ! [I2: int] :
( ( member_int @ I2 @ S3 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ( ( groups8778361861064173332t_real @ F @ S3 )
= B4 )
=> ( ( member_int @ I @ S3 )
=> ( ord_less_eq_real @ ( F @ I ) @ B4 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6692_sum__nonneg__leq__bound,axiom,
! [S3: set_complex,F: complex > real,B4: real,I: complex] :
( ( finite3207457112153483333omplex @ S3 )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ S3 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ( ( groups5808333547571424918x_real @ F @ S3 )
= B4 )
=> ( ( member_complex @ I @ S3 )
=> ( ord_less_eq_real @ ( F @ I ) @ B4 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6693_sum__nonneg__leq__bound,axiom,
! [S3: set_Code_integer,F: code_integer > real,B4: real,I: code_integer] :
( ( finite6017078050557962740nteger @ S3 )
=> ( ! [I2: code_integer] :
( ( member_Code_integer @ I2 @ S3 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ( ( groups1270011288395367621r_real @ F @ S3 )
= B4 )
=> ( ( member_Code_integer @ I @ S3 )
=> ( ord_less_eq_real @ ( F @ I ) @ B4 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6694_sum__nonneg__leq__bound,axiom,
! [S3: set_real,F: real > rat,B4: rat,I: real] :
( ( finite_finite_real @ S3 )
=> ( ! [I2: real] :
( ( member_real @ I2 @ S3 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ( ( groups1300246762558778688al_rat @ F @ S3 )
= B4 )
=> ( ( member_real @ I @ S3 )
=> ( ord_less_eq_rat @ ( F @ I ) @ B4 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6695_sum__nonneg__leq__bound,axiom,
! [S3: set_VEBT_VEBT,F: vEBT_VEBT > rat,B4: rat,I: vEBT_VEBT] :
( ( finite5795047828879050333T_VEBT @ S3 )
=> ( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ S3 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ( ( groups136491112297645522BT_rat @ F @ S3 )
= B4 )
=> ( ( member_VEBT_VEBT @ I @ S3 )
=> ( ord_less_eq_rat @ ( F @ I ) @ B4 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6696_sum__nonneg__leq__bound,axiom,
! [S3: set_nat,F: nat > rat,B4: rat,I: nat] :
( ( finite_finite_nat @ S3 )
=> ( ! [I2: nat] :
( ( member_nat @ I2 @ S3 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ( ( groups2906978787729119204at_rat @ F @ S3 )
= B4 )
=> ( ( member_nat @ I @ S3 )
=> ( ord_less_eq_rat @ ( F @ I ) @ B4 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6697_sum__nonneg__leq__bound,axiom,
! [S3: set_int,F: int > rat,B4: rat,I: int] :
( ( finite_finite_int @ S3 )
=> ( ! [I2: int] :
( ( member_int @ I2 @ S3 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ( ( groups3906332499630173760nt_rat @ F @ S3 )
= B4 )
=> ( ( member_int @ I @ S3 )
=> ( ord_less_eq_rat @ ( F @ I ) @ B4 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6698_sum__nonneg__leq__bound,axiom,
! [S3: set_complex,F: complex > rat,B4: rat,I: complex] :
( ( finite3207457112153483333omplex @ S3 )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ S3 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ( ( groups5058264527183730370ex_rat @ F @ S3 )
= B4 )
=> ( ( member_complex @ I @ S3 )
=> ( ord_less_eq_rat @ ( F @ I ) @ B4 ) ) ) ) ) ).
% sum_nonneg_leq_bound
thf(fact_6699_sin__cos__eq,axiom,
( sin_real
= ( ^ [X: real] : ( cos_real @ ( minus_minus_real @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X ) ) ) ) ).
% sin_cos_eq
thf(fact_6700_sin__cos__eq,axiom,
( sin_complex
= ( ^ [X: complex] : ( cos_complex @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ X ) ) ) ) ).
% sin_cos_eq
thf(fact_6701_cos__sin__eq,axiom,
( cos_real
= ( ^ [X: real] : ( sin_real @ ( minus_minus_real @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X ) ) ) ) ).
% cos_sin_eq
thf(fact_6702_cos__sin__eq,axiom,
( cos_complex
= ( ^ [X: complex] : ( sin_complex @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ X ) ) ) ) ).
% cos_sin_eq
thf(fact_6703_sum_Osetdiff__irrelevant,axiom,
! [A2: set_int,G: int > complex] :
( ( finite_finite_int @ A2 )
=> ( ( groups3049146728041665814omplex @ G
@ ( minus_minus_set_int @ A2
@ ( collect_int
@ ^ [X: int] :
( ( G @ X )
= zero_zero_complex ) ) ) )
= ( groups3049146728041665814omplex @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6704_sum_Osetdiff__irrelevant,axiom,
! [A2: set_Code_integer,G: code_integer > complex] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( groups8024822376189712711omplex @ G
@ ( minus_2355218937544613996nteger @ A2
@ ( collect_Code_integer
@ ^ [X: code_integer] :
( ( G @ X )
= zero_zero_complex ) ) ) )
= ( groups8024822376189712711omplex @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6705_sum_Osetdiff__irrelevant,axiom,
! [A2: set_int,G: int > real] :
( ( finite_finite_int @ A2 )
=> ( ( groups8778361861064173332t_real @ G
@ ( minus_minus_set_int @ A2
@ ( collect_int
@ ^ [X: int] :
( ( G @ X )
= zero_zero_real ) ) ) )
= ( groups8778361861064173332t_real @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6706_sum_Osetdiff__irrelevant,axiom,
! [A2: set_complex,G: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5808333547571424918x_real @ G
@ ( minus_811609699411566653omplex @ A2
@ ( collect_complex
@ ^ [X: complex] :
( ( G @ X )
= zero_zero_real ) ) ) )
= ( groups5808333547571424918x_real @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6707_sum_Osetdiff__irrelevant,axiom,
! [A2: set_Code_integer,G: code_integer > real] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( groups1270011288395367621r_real @ G
@ ( minus_2355218937544613996nteger @ A2
@ ( collect_Code_integer
@ ^ [X: code_integer] :
( ( G @ X )
= zero_zero_real ) ) ) )
= ( groups1270011288395367621r_real @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6708_sum_Osetdiff__irrelevant,axiom,
! [A2: set_int,G: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ( groups3906332499630173760nt_rat @ G
@ ( minus_minus_set_int @ A2
@ ( collect_int
@ ^ [X: int] :
( ( G @ X )
= zero_zero_rat ) ) ) )
= ( groups3906332499630173760nt_rat @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6709_sum_Osetdiff__irrelevant,axiom,
! [A2: set_complex,G: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5058264527183730370ex_rat @ G
@ ( minus_811609699411566653omplex @ A2
@ ( collect_complex
@ ^ [X: complex] :
( ( G @ X )
= zero_zero_rat ) ) ) )
= ( groups5058264527183730370ex_rat @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6710_sum_Osetdiff__irrelevant,axiom,
! [A2: set_Code_integer,G: code_integer > rat] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( groups6602215022474089585er_rat @ G
@ ( minus_2355218937544613996nteger @ A2
@ ( collect_Code_integer
@ ^ [X: code_integer] :
( ( G @ X )
= zero_zero_rat ) ) ) )
= ( groups6602215022474089585er_rat @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6711_sum_Osetdiff__irrelevant,axiom,
! [A2: set_int,G: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ( groups4541462559716669496nt_nat @ G
@ ( minus_minus_set_int @ A2
@ ( collect_int
@ ^ [X: int] :
( ( G @ X )
= zero_zero_nat ) ) ) )
= ( groups4541462559716669496nt_nat @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6712_sum_Osetdiff__irrelevant,axiom,
! [A2: set_complex,G: complex > nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5693394587270226106ex_nat @ G
@ ( minus_811609699411566653omplex @ A2
@ ( collect_complex
@ ^ [X: complex] :
( ( G @ X )
= zero_zero_nat ) ) ) )
= ( groups5693394587270226106ex_nat @ G @ A2 ) ) ) ).
% sum.setdiff_irrelevant
thf(fact_6713_pred__numeral__def,axiom,
( pred_numeral
= ( ^ [K2: num] : ( minus_minus_nat @ ( numeral_numeral_nat @ K2 ) @ one_one_nat ) ) ) ).
% pred_numeral_def
thf(fact_6714_sum__power__add,axiom,
! [X2: complex,M: nat,I5: set_nat] :
( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( power_power_complex @ X2 @ ( plus_plus_nat @ M @ I3 ) )
@ I5 )
= ( times_times_complex @ ( power_power_complex @ X2 @ M ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ I5 ) ) ) ).
% sum_power_add
thf(fact_6715_sum__power__add,axiom,
! [X2: code_integer,M: nat,I5: set_nat] :
( ( groups7501900531339628137nteger
@ ^ [I3: nat] : ( power_8256067586552552935nteger @ X2 @ ( plus_plus_nat @ M @ I3 ) )
@ I5 )
= ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ X2 @ M ) @ ( groups7501900531339628137nteger @ ( power_8256067586552552935nteger @ X2 ) @ I5 ) ) ) ).
% sum_power_add
thf(fact_6716_sum__power__add,axiom,
! [X2: rat,M: nat,I5: set_nat] :
( ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( power_power_rat @ X2 @ ( plus_plus_nat @ M @ I3 ) )
@ I5 )
= ( times_times_rat @ ( power_power_rat @ X2 @ M ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ I5 ) ) ) ).
% sum_power_add
thf(fact_6717_sum__power__add,axiom,
! [X2: int,M: nat,I5: set_nat] :
( ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( power_power_int @ X2 @ ( plus_plus_nat @ M @ I3 ) )
@ I5 )
= ( times_times_int @ ( power_power_int @ X2 @ M ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X2 ) @ I5 ) ) ) ).
% sum_power_add
thf(fact_6718_sum__power__add,axiom,
! [X2: real,M: nat,I5: set_nat] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( power_power_real @ X2 @ ( plus_plus_nat @ M @ I3 ) )
@ I5 )
= ( times_times_real @ ( power_power_real @ X2 @ M ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ I5 ) ) ) ).
% sum_power_add
thf(fact_6719_sum_OatLeastAtMost__rev,axiom,
! [G: nat > nat,N: nat,M: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ N @ M ) )
= ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( G @ ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ I3 ) )
@ ( set_or1269000886237332187st_nat @ N @ M ) ) ) ).
% sum.atLeastAtMost_rev
thf(fact_6720_sum_OatLeastAtMost__rev,axiom,
! [G: nat > real,N: nat,M: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ N @ M ) )
= ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( G @ ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ I3 ) )
@ ( set_or1269000886237332187st_nat @ N @ M ) ) ) ).
% sum.atLeastAtMost_rev
thf(fact_6721_suminf__finite,axiom,
! [N5: set_nat,F: nat > complex] :
( ( finite_finite_nat @ N5 )
=> ( ! [N2: nat] :
( ~ ( member_nat @ N2 @ N5 )
=> ( ( F @ N2 )
= zero_zero_complex ) )
=> ( ( suminf_complex @ F )
= ( groups2073611262835488442omplex @ F @ N5 ) ) ) ) ).
% suminf_finite
thf(fact_6722_suminf__finite,axiom,
! [N5: set_nat,F: nat > int] :
( ( finite_finite_nat @ N5 )
=> ( ! [N2: nat] :
( ~ ( member_nat @ N2 @ N5 )
=> ( ( F @ N2 )
= zero_zero_int ) )
=> ( ( suminf_int @ F )
= ( groups3539618377306564664at_int @ F @ N5 ) ) ) ) ).
% suminf_finite
thf(fact_6723_suminf__finite,axiom,
! [N5: set_nat,F: nat > nat] :
( ( finite_finite_nat @ N5 )
=> ( ! [N2: nat] :
( ~ ( member_nat @ N2 @ N5 )
=> ( ( F @ N2 )
= zero_zero_nat ) )
=> ( ( suminf_nat @ F )
= ( groups3542108847815614940at_nat @ F @ N5 ) ) ) ) ).
% suminf_finite
thf(fact_6724_suminf__finite,axiom,
! [N5: set_nat,F: nat > real] :
( ( finite_finite_nat @ N5 )
=> ( ! [N2: nat] :
( ~ ( member_nat @ N2 @ N5 )
=> ( ( F @ N2 )
= zero_zero_real ) )
=> ( ( suminf_real @ F )
= ( groups6591440286371151544t_real @ F @ N5 ) ) ) ) ).
% suminf_finite
thf(fact_6725_cos__double__sin,axiom,
! [W: complex] :
( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ W ) )
= ( minus_minus_complex @ one_one_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( power_power_complex @ ( sin_complex @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% cos_double_sin
thf(fact_6726_cos__double__sin,axiom,
! [W: real] :
( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ W ) )
= ( minus_minus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( sin_real @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% cos_double_sin
thf(fact_6727_minus__sin__cos__eq,axiom,
! [X2: real] :
( ( uminus_uminus_real @ ( sin_real @ X2 ) )
= ( cos_real @ ( plus_plus_real @ X2 @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% minus_sin_cos_eq
thf(fact_6728_minus__sin__cos__eq,axiom,
! [X2: complex] :
( ( uminus1482373934393186551omplex @ ( sin_complex @ X2 ) )
= ( cos_complex @ ( plus_plus_complex @ X2 @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).
% minus_sin_cos_eq
thf(fact_6729_sum__pos2,axiom,
! [I5: set_real,I: real,F: real > real] :
( ( finite_finite_real @ I5 )
=> ( ( member_real @ I @ I5 )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
=> ( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ord_less_real @ zero_zero_real @ ( groups8097168146408367636l_real @ F @ I5 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6730_sum__pos2,axiom,
! [I5: set_VEBT_VEBT,I: vEBT_VEBT,F: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ I5 )
=> ( ( member_VEBT_VEBT @ I @ I5 )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
=> ( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ I5 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ord_less_real @ zero_zero_real @ ( groups2240296850493347238T_real @ F @ I5 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6731_sum__pos2,axiom,
! [I5: set_int,I: int,F: int > real] :
( ( finite_finite_int @ I5 )
=> ( ( member_int @ I @ I5 )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
=> ( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ord_less_real @ zero_zero_real @ ( groups8778361861064173332t_real @ F @ I5 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6732_sum__pos2,axiom,
! [I5: set_complex,I: complex,F: complex > real] :
( ( finite3207457112153483333omplex @ I5 )
=> ( ( member_complex @ I @ I5 )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ord_less_real @ zero_zero_real @ ( groups5808333547571424918x_real @ F @ I5 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6733_sum__pos2,axiom,
! [I5: set_Code_integer,I: code_integer,F: code_integer > real] :
( ( finite6017078050557962740nteger @ I5 )
=> ( ( member_Code_integer @ I @ I5 )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
=> ( ! [I2: code_integer] :
( ( member_Code_integer @ I2 @ I5 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ord_less_real @ zero_zero_real @ ( groups1270011288395367621r_real @ F @ I5 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6734_sum__pos2,axiom,
! [I5: set_real,I: real,F: real > rat] :
( ( finite_finite_real @ I5 )
=> ( ( member_real @ I @ I5 )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ I ) )
=> ( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ord_less_rat @ zero_zero_rat @ ( groups1300246762558778688al_rat @ F @ I5 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6735_sum__pos2,axiom,
! [I5: set_VEBT_VEBT,I: vEBT_VEBT,F: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ I5 )
=> ( ( member_VEBT_VEBT @ I @ I5 )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ I ) )
=> ( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ I5 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ord_less_rat @ zero_zero_rat @ ( groups136491112297645522BT_rat @ F @ I5 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6736_sum__pos2,axiom,
! [I5: set_nat,I: nat,F: nat > rat] :
( ( finite_finite_nat @ I5 )
=> ( ( member_nat @ I @ I5 )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ I ) )
=> ( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ord_less_rat @ zero_zero_rat @ ( groups2906978787729119204at_rat @ F @ I5 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6737_sum__pos2,axiom,
! [I5: set_int,I: int,F: int > rat] :
( ( finite_finite_int @ I5 )
=> ( ( member_int @ I @ I5 )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ I ) )
=> ( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ord_less_rat @ zero_zero_rat @ ( groups3906332499630173760nt_rat @ F @ I5 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6738_sum__pos2,axiom,
! [I5: set_complex,I: complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ I5 )
=> ( ( member_complex @ I @ I5 )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ I ) )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) ) )
=> ( ord_less_rat @ zero_zero_rat @ ( groups5058264527183730370ex_rat @ F @ I5 ) ) ) ) ) ) ).
% sum_pos2
thf(fact_6739_sum_Omono__neutral__cong__right,axiom,
! [T3: set_real,S: set_real,G: real > complex,H2: real > complex] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S @ T3 )
=> ( ! [X3: real] :
( ( member_real @ X3 @ ( minus_minus_set_real @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_complex ) )
=> ( ! [X3: real] :
( ( member_real @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups5754745047067104278omplex @ G @ T3 )
= ( groups5754745047067104278omplex @ H2 @ S ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6740_sum_Omono__neutral__cong__right,axiom,
! [T3: set_VEBT_VEBT,S: set_VEBT_VEBT,G: vEBT_VEBT > complex,H2: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ T3 )
=> ( ( ord_le4337996190870823476T_VEBT @ S @ T3 )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( minus_5127226145743854075T_VEBT @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_complex ) )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups1794756597179926696omplex @ G @ T3 )
= ( groups1794756597179926696omplex @ H2 @ S ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6741_sum_Omono__neutral__cong__right,axiom,
! [T3: set_int,S: set_int,G: int > complex,H2: int > complex] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S @ T3 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_complex ) )
=> ( ! [X3: int] :
( ( member_int @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups3049146728041665814omplex @ G @ T3 )
= ( groups3049146728041665814omplex @ H2 @ S ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6742_sum_Omono__neutral__cong__right,axiom,
! [T3: set_Code_integer,S: set_Code_integer,G: code_integer > complex,H2: code_integer > complex] :
( ( finite6017078050557962740nteger @ T3 )
=> ( ( ord_le7084787975880047091nteger @ S @ T3 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ ( minus_2355218937544613996nteger @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_complex ) )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups8024822376189712711omplex @ G @ T3 )
= ( groups8024822376189712711omplex @ H2 @ S ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6743_sum_Omono__neutral__cong__right,axiom,
! [T3: set_real,S: set_real,G: real > real,H2: real > real] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S @ T3 )
=> ( ! [X3: real] :
( ( member_real @ X3 @ ( minus_minus_set_real @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_real ) )
=> ( ! [X3: real] :
( ( member_real @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups8097168146408367636l_real @ G @ T3 )
= ( groups8097168146408367636l_real @ H2 @ S ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6744_sum_Omono__neutral__cong__right,axiom,
! [T3: set_VEBT_VEBT,S: set_VEBT_VEBT,G: vEBT_VEBT > real,H2: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ T3 )
=> ( ( ord_le4337996190870823476T_VEBT @ S @ T3 )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( minus_5127226145743854075T_VEBT @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_real ) )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups2240296850493347238T_real @ G @ T3 )
= ( groups2240296850493347238T_real @ H2 @ S ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6745_sum_Omono__neutral__cong__right,axiom,
! [T3: set_int,S: set_int,G: int > real,H2: int > real] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S @ T3 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_real ) )
=> ( ! [X3: int] :
( ( member_int @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups8778361861064173332t_real @ G @ T3 )
= ( groups8778361861064173332t_real @ H2 @ S ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6746_sum_Omono__neutral__cong__right,axiom,
! [T3: set_complex,S: set_complex,G: complex > real,H2: complex > real] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S @ T3 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_real ) )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups5808333547571424918x_real @ G @ T3 )
= ( groups5808333547571424918x_real @ H2 @ S ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6747_sum_Omono__neutral__cong__right,axiom,
! [T3: set_Code_integer,S: set_Code_integer,G: code_integer > real,H2: code_integer > real] :
( ( finite6017078050557962740nteger @ T3 )
=> ( ( ord_le7084787975880047091nteger @ S @ T3 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ ( minus_2355218937544613996nteger @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_real ) )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups1270011288395367621r_real @ G @ T3 )
= ( groups1270011288395367621r_real @ H2 @ S ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6748_sum_Omono__neutral__cong__right,axiom,
! [T3: set_real,S: set_real,G: real > rat,H2: real > rat] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S @ T3 )
=> ( ! [X3: real] :
( ( member_real @ X3 @ ( minus_minus_set_real @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_rat ) )
=> ( ! [X3: real] :
( ( member_real @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups1300246762558778688al_rat @ G @ T3 )
= ( groups1300246762558778688al_rat @ H2 @ S ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
thf(fact_6749_sum_Omono__neutral__cong__left,axiom,
! [T3: set_real,S: set_real,H2: real > complex,G: real > complex] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S @ T3 )
=> ( ! [X3: real] :
( ( member_real @ X3 @ ( minus_minus_set_real @ T3 @ S ) )
=> ( ( H2 @ X3 )
= zero_zero_complex ) )
=> ( ! [X3: real] :
( ( member_real @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups5754745047067104278omplex @ G @ S )
= ( groups5754745047067104278omplex @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6750_sum_Omono__neutral__cong__left,axiom,
! [T3: set_VEBT_VEBT,S: set_VEBT_VEBT,H2: vEBT_VEBT > complex,G: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ T3 )
=> ( ( ord_le4337996190870823476T_VEBT @ S @ T3 )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( minus_5127226145743854075T_VEBT @ T3 @ S ) )
=> ( ( H2 @ X3 )
= zero_zero_complex ) )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups1794756597179926696omplex @ G @ S )
= ( groups1794756597179926696omplex @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6751_sum_Omono__neutral__cong__left,axiom,
! [T3: set_int,S: set_int,H2: int > complex,G: int > complex] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S @ T3 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S ) )
=> ( ( H2 @ X3 )
= zero_zero_complex ) )
=> ( ! [X3: int] :
( ( member_int @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups3049146728041665814omplex @ G @ S )
= ( groups3049146728041665814omplex @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6752_sum_Omono__neutral__cong__left,axiom,
! [T3: set_Code_integer,S: set_Code_integer,H2: code_integer > complex,G: code_integer > complex] :
( ( finite6017078050557962740nteger @ T3 )
=> ( ( ord_le7084787975880047091nteger @ S @ T3 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ ( minus_2355218937544613996nteger @ T3 @ S ) )
=> ( ( H2 @ X3 )
= zero_zero_complex ) )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups8024822376189712711omplex @ G @ S )
= ( groups8024822376189712711omplex @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6753_sum_Omono__neutral__cong__left,axiom,
! [T3: set_real,S: set_real,H2: real > real,G: real > real] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S @ T3 )
=> ( ! [X3: real] :
( ( member_real @ X3 @ ( minus_minus_set_real @ T3 @ S ) )
=> ( ( H2 @ X3 )
= zero_zero_real ) )
=> ( ! [X3: real] :
( ( member_real @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups8097168146408367636l_real @ G @ S )
= ( groups8097168146408367636l_real @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6754_sum_Omono__neutral__cong__left,axiom,
! [T3: set_VEBT_VEBT,S: set_VEBT_VEBT,H2: vEBT_VEBT > real,G: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ T3 )
=> ( ( ord_le4337996190870823476T_VEBT @ S @ T3 )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( minus_5127226145743854075T_VEBT @ T3 @ S ) )
=> ( ( H2 @ X3 )
= zero_zero_real ) )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups2240296850493347238T_real @ G @ S )
= ( groups2240296850493347238T_real @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6755_sum_Omono__neutral__cong__left,axiom,
! [T3: set_int,S: set_int,H2: int > real,G: int > real] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S @ T3 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S ) )
=> ( ( H2 @ X3 )
= zero_zero_real ) )
=> ( ! [X3: int] :
( ( member_int @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups8778361861064173332t_real @ G @ S )
= ( groups8778361861064173332t_real @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6756_sum_Omono__neutral__cong__left,axiom,
! [T3: set_complex,S: set_complex,H2: complex > real,G: complex > real] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S @ T3 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S ) )
=> ( ( H2 @ X3 )
= zero_zero_real ) )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups5808333547571424918x_real @ G @ S )
= ( groups5808333547571424918x_real @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6757_sum_Omono__neutral__cong__left,axiom,
! [T3: set_Code_integer,S: set_Code_integer,H2: code_integer > real,G: code_integer > real] :
( ( finite6017078050557962740nteger @ T3 )
=> ( ( ord_le7084787975880047091nteger @ S @ T3 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ ( minus_2355218937544613996nteger @ T3 @ S ) )
=> ( ( H2 @ X3 )
= zero_zero_real ) )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups1270011288395367621r_real @ G @ S )
= ( groups1270011288395367621r_real @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6758_sum_Omono__neutral__cong__left,axiom,
! [T3: set_real,S: set_real,H2: real > rat,G: real > rat] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S @ T3 )
=> ( ! [X3: real] :
( ( member_real @ X3 @ ( minus_minus_set_real @ T3 @ S ) )
=> ( ( H2 @ X3 )
= zero_zero_rat ) )
=> ( ! [X3: real] :
( ( member_real @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups1300246762558778688al_rat @ G @ S )
= ( groups1300246762558778688al_rat @ H2 @ T3 ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
thf(fact_6759_sum_Omono__neutral__right,axiom,
! [T3: set_int,S: set_int,G: int > complex] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S @ T3 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_complex ) )
=> ( ( groups3049146728041665814omplex @ G @ T3 )
= ( groups3049146728041665814omplex @ G @ S ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6760_sum_Omono__neutral__right,axiom,
! [T3: set_Code_integer,S: set_Code_integer,G: code_integer > complex] :
( ( finite6017078050557962740nteger @ T3 )
=> ( ( ord_le7084787975880047091nteger @ S @ T3 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ ( minus_2355218937544613996nteger @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_complex ) )
=> ( ( groups8024822376189712711omplex @ G @ T3 )
= ( groups8024822376189712711omplex @ G @ S ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6761_sum_Omono__neutral__right,axiom,
! [T3: set_int,S: set_int,G: int > real] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S @ T3 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_real ) )
=> ( ( groups8778361861064173332t_real @ G @ T3 )
= ( groups8778361861064173332t_real @ G @ S ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6762_sum_Omono__neutral__right,axiom,
! [T3: set_complex,S: set_complex,G: complex > real] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S @ T3 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_real ) )
=> ( ( groups5808333547571424918x_real @ G @ T3 )
= ( groups5808333547571424918x_real @ G @ S ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6763_sum_Omono__neutral__right,axiom,
! [T3: set_Code_integer,S: set_Code_integer,G: code_integer > real] :
( ( finite6017078050557962740nteger @ T3 )
=> ( ( ord_le7084787975880047091nteger @ S @ T3 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ ( minus_2355218937544613996nteger @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_real ) )
=> ( ( groups1270011288395367621r_real @ G @ T3 )
= ( groups1270011288395367621r_real @ G @ S ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6764_sum_Omono__neutral__right,axiom,
! [T3: set_int,S: set_int,G: int > rat] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S @ T3 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_rat ) )
=> ( ( groups3906332499630173760nt_rat @ G @ T3 )
= ( groups3906332499630173760nt_rat @ G @ S ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6765_sum_Omono__neutral__right,axiom,
! [T3: set_complex,S: set_complex,G: complex > rat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S @ T3 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_rat ) )
=> ( ( groups5058264527183730370ex_rat @ G @ T3 )
= ( groups5058264527183730370ex_rat @ G @ S ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6766_sum_Omono__neutral__right,axiom,
! [T3: set_Code_integer,S: set_Code_integer,G: code_integer > rat] :
( ( finite6017078050557962740nteger @ T3 )
=> ( ( ord_le7084787975880047091nteger @ S @ T3 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ ( minus_2355218937544613996nteger @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_rat ) )
=> ( ( groups6602215022474089585er_rat @ G @ T3 )
= ( groups6602215022474089585er_rat @ G @ S ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6767_sum_Omono__neutral__right,axiom,
! [T3: set_int,S: set_int,G: int > nat] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S @ T3 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_nat ) )
=> ( ( groups4541462559716669496nt_nat @ G @ T3 )
= ( groups4541462559716669496nt_nat @ G @ S ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6768_sum_Omono__neutral__right,axiom,
! [T3: set_complex,S: set_complex,G: complex > nat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S @ T3 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_nat ) )
=> ( ( groups5693394587270226106ex_nat @ G @ T3 )
= ( groups5693394587270226106ex_nat @ G @ S ) ) ) ) ) ).
% sum.mono_neutral_right
thf(fact_6769_sum_Omono__neutral__left,axiom,
! [T3: set_int,S: set_int,G: int > complex] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S @ T3 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_complex ) )
=> ( ( groups3049146728041665814omplex @ G @ S )
= ( groups3049146728041665814omplex @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6770_sum_Omono__neutral__left,axiom,
! [T3: set_Code_integer,S: set_Code_integer,G: code_integer > complex] :
( ( finite6017078050557962740nteger @ T3 )
=> ( ( ord_le7084787975880047091nteger @ S @ T3 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ ( minus_2355218937544613996nteger @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_complex ) )
=> ( ( groups8024822376189712711omplex @ G @ S )
= ( groups8024822376189712711omplex @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6771_sum_Omono__neutral__left,axiom,
! [T3: set_int,S: set_int,G: int > real] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S @ T3 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_real ) )
=> ( ( groups8778361861064173332t_real @ G @ S )
= ( groups8778361861064173332t_real @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6772_sum_Omono__neutral__left,axiom,
! [T3: set_complex,S: set_complex,G: complex > real] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S @ T3 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_real ) )
=> ( ( groups5808333547571424918x_real @ G @ S )
= ( groups5808333547571424918x_real @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6773_sum_Omono__neutral__left,axiom,
! [T3: set_Code_integer,S: set_Code_integer,G: code_integer > real] :
( ( finite6017078050557962740nteger @ T3 )
=> ( ( ord_le7084787975880047091nteger @ S @ T3 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ ( minus_2355218937544613996nteger @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_real ) )
=> ( ( groups1270011288395367621r_real @ G @ S )
= ( groups1270011288395367621r_real @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6774_sum_Omono__neutral__left,axiom,
! [T3: set_int,S: set_int,G: int > rat] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S @ T3 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_rat ) )
=> ( ( groups3906332499630173760nt_rat @ G @ S )
= ( groups3906332499630173760nt_rat @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6775_sum_Omono__neutral__left,axiom,
! [T3: set_complex,S: set_complex,G: complex > rat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S @ T3 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_rat ) )
=> ( ( groups5058264527183730370ex_rat @ G @ S )
= ( groups5058264527183730370ex_rat @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6776_sum_Omono__neutral__left,axiom,
! [T3: set_Code_integer,S: set_Code_integer,G: code_integer > rat] :
( ( finite6017078050557962740nteger @ T3 )
=> ( ( ord_le7084787975880047091nteger @ S @ T3 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ ( minus_2355218937544613996nteger @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_rat ) )
=> ( ( groups6602215022474089585er_rat @ G @ S )
= ( groups6602215022474089585er_rat @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6777_sum_Omono__neutral__left,axiom,
! [T3: set_int,S: set_int,G: int > nat] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S @ T3 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_nat ) )
=> ( ( groups4541462559716669496nt_nat @ G @ S )
= ( groups4541462559716669496nt_nat @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6778_sum_Omono__neutral__left,axiom,
! [T3: set_complex,S: set_complex,G: complex > nat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S @ T3 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S ) )
=> ( ( G @ X3 )
= zero_zero_nat ) )
=> ( ( groups5693394587270226106ex_nat @ G @ S )
= ( groups5693394587270226106ex_nat @ G @ T3 ) ) ) ) ) ).
% sum.mono_neutral_left
thf(fact_6779_sum_Osame__carrierI,axiom,
! [C5: set_real,A2: set_real,B4: set_real,G: real > complex,H2: real > complex] :
( ( finite_finite_real @ C5 )
=> ( ( ord_less_eq_set_real @ A2 @ C5 )
=> ( ( ord_less_eq_set_real @ B4 @ C5 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C5 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ ( minus_minus_set_real @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= zero_zero_complex ) )
=> ( ( ( groups5754745047067104278omplex @ G @ C5 )
= ( groups5754745047067104278omplex @ H2 @ C5 ) )
=> ( ( groups5754745047067104278omplex @ G @ A2 )
= ( groups5754745047067104278omplex @ H2 @ B4 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6780_sum_Osame__carrierI,axiom,
! [C5: set_VEBT_VEBT,A2: set_VEBT_VEBT,B4: set_VEBT_VEBT,G: vEBT_VEBT > complex,H2: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ C5 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ C5 )
=> ( ( ord_le4337996190870823476T_VEBT @ B4 @ C5 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ C5 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ ( minus_5127226145743854075T_VEBT @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= zero_zero_complex ) )
=> ( ( ( groups1794756597179926696omplex @ G @ C5 )
= ( groups1794756597179926696omplex @ H2 @ C5 ) )
=> ( ( groups1794756597179926696omplex @ G @ A2 )
= ( groups1794756597179926696omplex @ H2 @ B4 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6781_sum_Osame__carrierI,axiom,
! [C5: set_int,A2: set_int,B4: set_int,G: int > complex,H2: int > complex] :
( ( finite_finite_int @ C5 )
=> ( ( ord_less_eq_set_int @ A2 @ C5 )
=> ( ( ord_less_eq_set_int @ B4 @ C5 )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ C5 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B3: int] :
( ( member_int @ B3 @ ( minus_minus_set_int @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= zero_zero_complex ) )
=> ( ( ( groups3049146728041665814omplex @ G @ C5 )
= ( groups3049146728041665814omplex @ H2 @ C5 ) )
=> ( ( groups3049146728041665814omplex @ G @ A2 )
= ( groups3049146728041665814omplex @ H2 @ B4 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6782_sum_Osame__carrierI,axiom,
! [C5: set_Code_integer,A2: set_Code_integer,B4: set_Code_integer,G: code_integer > complex,H2: code_integer > complex] :
( ( finite6017078050557962740nteger @ C5 )
=> ( ( ord_le7084787975880047091nteger @ A2 @ C5 )
=> ( ( ord_le7084787975880047091nteger @ B4 @ C5 )
=> ( ! [A4: code_integer] :
( ( member_Code_integer @ A4 @ ( minus_2355218937544613996nteger @ C5 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B3: code_integer] :
( ( member_Code_integer @ B3 @ ( minus_2355218937544613996nteger @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= zero_zero_complex ) )
=> ( ( ( groups8024822376189712711omplex @ G @ C5 )
= ( groups8024822376189712711omplex @ H2 @ C5 ) )
=> ( ( groups8024822376189712711omplex @ G @ A2 )
= ( groups8024822376189712711omplex @ H2 @ B4 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6783_sum_Osame__carrierI,axiom,
! [C5: set_real,A2: set_real,B4: set_real,G: real > real,H2: real > real] :
( ( finite_finite_real @ C5 )
=> ( ( ord_less_eq_set_real @ A2 @ C5 )
=> ( ( ord_less_eq_set_real @ B4 @ C5 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C5 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ ( minus_minus_set_real @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= zero_zero_real ) )
=> ( ( ( groups8097168146408367636l_real @ G @ C5 )
= ( groups8097168146408367636l_real @ H2 @ C5 ) )
=> ( ( groups8097168146408367636l_real @ G @ A2 )
= ( groups8097168146408367636l_real @ H2 @ B4 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6784_sum_Osame__carrierI,axiom,
! [C5: set_VEBT_VEBT,A2: set_VEBT_VEBT,B4: set_VEBT_VEBT,G: vEBT_VEBT > real,H2: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ C5 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ C5 )
=> ( ( ord_le4337996190870823476T_VEBT @ B4 @ C5 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ C5 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ ( minus_5127226145743854075T_VEBT @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= zero_zero_real ) )
=> ( ( ( groups2240296850493347238T_real @ G @ C5 )
= ( groups2240296850493347238T_real @ H2 @ C5 ) )
=> ( ( groups2240296850493347238T_real @ G @ A2 )
= ( groups2240296850493347238T_real @ H2 @ B4 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6785_sum_Osame__carrierI,axiom,
! [C5: set_int,A2: set_int,B4: set_int,G: int > real,H2: int > real] :
( ( finite_finite_int @ C5 )
=> ( ( ord_less_eq_set_int @ A2 @ C5 )
=> ( ( ord_less_eq_set_int @ B4 @ C5 )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ C5 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B3: int] :
( ( member_int @ B3 @ ( minus_minus_set_int @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= zero_zero_real ) )
=> ( ( ( groups8778361861064173332t_real @ G @ C5 )
= ( groups8778361861064173332t_real @ H2 @ C5 ) )
=> ( ( groups8778361861064173332t_real @ G @ A2 )
= ( groups8778361861064173332t_real @ H2 @ B4 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6786_sum_Osame__carrierI,axiom,
! [C5: set_complex,A2: set_complex,B4: set_complex,G: complex > real,H2: complex > real] :
( ( finite3207457112153483333omplex @ C5 )
=> ( ( ord_le211207098394363844omplex @ A2 @ C5 )
=> ( ( ord_le211207098394363844omplex @ B4 @ C5 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ ( minus_811609699411566653omplex @ C5 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B3: complex] :
( ( member_complex @ B3 @ ( minus_811609699411566653omplex @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= zero_zero_real ) )
=> ( ( ( groups5808333547571424918x_real @ G @ C5 )
= ( groups5808333547571424918x_real @ H2 @ C5 ) )
=> ( ( groups5808333547571424918x_real @ G @ A2 )
= ( groups5808333547571424918x_real @ H2 @ B4 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6787_sum_Osame__carrierI,axiom,
! [C5: set_Code_integer,A2: set_Code_integer,B4: set_Code_integer,G: code_integer > real,H2: code_integer > real] :
( ( finite6017078050557962740nteger @ C5 )
=> ( ( ord_le7084787975880047091nteger @ A2 @ C5 )
=> ( ( ord_le7084787975880047091nteger @ B4 @ C5 )
=> ( ! [A4: code_integer] :
( ( member_Code_integer @ A4 @ ( minus_2355218937544613996nteger @ C5 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B3: code_integer] :
( ( member_Code_integer @ B3 @ ( minus_2355218937544613996nteger @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= zero_zero_real ) )
=> ( ( ( groups1270011288395367621r_real @ G @ C5 )
= ( groups1270011288395367621r_real @ H2 @ C5 ) )
=> ( ( groups1270011288395367621r_real @ G @ A2 )
= ( groups1270011288395367621r_real @ H2 @ B4 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6788_sum_Osame__carrierI,axiom,
! [C5: set_real,A2: set_real,B4: set_real,G: real > rat,H2: real > rat] :
( ( finite_finite_real @ C5 )
=> ( ( ord_less_eq_set_real @ A2 @ C5 )
=> ( ( ord_less_eq_set_real @ B4 @ C5 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C5 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_rat ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ ( minus_minus_set_real @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= zero_zero_rat ) )
=> ( ( ( groups1300246762558778688al_rat @ G @ C5 )
= ( groups1300246762558778688al_rat @ H2 @ C5 ) )
=> ( ( groups1300246762558778688al_rat @ G @ A2 )
= ( groups1300246762558778688al_rat @ H2 @ B4 ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
thf(fact_6789_sum_Osame__carrier,axiom,
! [C5: set_real,A2: set_real,B4: set_real,G: real > complex,H2: real > complex] :
( ( finite_finite_real @ C5 )
=> ( ( ord_less_eq_set_real @ A2 @ C5 )
=> ( ( ord_less_eq_set_real @ B4 @ C5 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C5 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ ( minus_minus_set_real @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= zero_zero_complex ) )
=> ( ( ( groups5754745047067104278omplex @ G @ A2 )
= ( groups5754745047067104278omplex @ H2 @ B4 ) )
= ( ( groups5754745047067104278omplex @ G @ C5 )
= ( groups5754745047067104278omplex @ H2 @ C5 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6790_sum_Osame__carrier,axiom,
! [C5: set_VEBT_VEBT,A2: set_VEBT_VEBT,B4: set_VEBT_VEBT,G: vEBT_VEBT > complex,H2: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ C5 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ C5 )
=> ( ( ord_le4337996190870823476T_VEBT @ B4 @ C5 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ C5 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ ( minus_5127226145743854075T_VEBT @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= zero_zero_complex ) )
=> ( ( ( groups1794756597179926696omplex @ G @ A2 )
= ( groups1794756597179926696omplex @ H2 @ B4 ) )
= ( ( groups1794756597179926696omplex @ G @ C5 )
= ( groups1794756597179926696omplex @ H2 @ C5 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6791_sum_Osame__carrier,axiom,
! [C5: set_int,A2: set_int,B4: set_int,G: int > complex,H2: int > complex] :
( ( finite_finite_int @ C5 )
=> ( ( ord_less_eq_set_int @ A2 @ C5 )
=> ( ( ord_less_eq_set_int @ B4 @ C5 )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ C5 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B3: int] :
( ( member_int @ B3 @ ( minus_minus_set_int @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= zero_zero_complex ) )
=> ( ( ( groups3049146728041665814omplex @ G @ A2 )
= ( groups3049146728041665814omplex @ H2 @ B4 ) )
= ( ( groups3049146728041665814omplex @ G @ C5 )
= ( groups3049146728041665814omplex @ H2 @ C5 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6792_sum_Osame__carrier,axiom,
! [C5: set_Code_integer,A2: set_Code_integer,B4: set_Code_integer,G: code_integer > complex,H2: code_integer > complex] :
( ( finite6017078050557962740nteger @ C5 )
=> ( ( ord_le7084787975880047091nteger @ A2 @ C5 )
=> ( ( ord_le7084787975880047091nteger @ B4 @ C5 )
=> ( ! [A4: code_integer] :
( ( member_Code_integer @ A4 @ ( minus_2355218937544613996nteger @ C5 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_complex ) )
=> ( ! [B3: code_integer] :
( ( member_Code_integer @ B3 @ ( minus_2355218937544613996nteger @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= zero_zero_complex ) )
=> ( ( ( groups8024822376189712711omplex @ G @ A2 )
= ( groups8024822376189712711omplex @ H2 @ B4 ) )
= ( ( groups8024822376189712711omplex @ G @ C5 )
= ( groups8024822376189712711omplex @ H2 @ C5 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6793_sum_Osame__carrier,axiom,
! [C5: set_real,A2: set_real,B4: set_real,G: real > real,H2: real > real] :
( ( finite_finite_real @ C5 )
=> ( ( ord_less_eq_set_real @ A2 @ C5 )
=> ( ( ord_less_eq_set_real @ B4 @ C5 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C5 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ ( minus_minus_set_real @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= zero_zero_real ) )
=> ( ( ( groups8097168146408367636l_real @ G @ A2 )
= ( groups8097168146408367636l_real @ H2 @ B4 ) )
= ( ( groups8097168146408367636l_real @ G @ C5 )
= ( groups8097168146408367636l_real @ H2 @ C5 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6794_sum_Osame__carrier,axiom,
! [C5: set_VEBT_VEBT,A2: set_VEBT_VEBT,B4: set_VEBT_VEBT,G: vEBT_VEBT > real,H2: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ C5 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ C5 )
=> ( ( ord_le4337996190870823476T_VEBT @ B4 @ C5 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ C5 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ ( minus_5127226145743854075T_VEBT @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= zero_zero_real ) )
=> ( ( ( groups2240296850493347238T_real @ G @ A2 )
= ( groups2240296850493347238T_real @ H2 @ B4 ) )
= ( ( groups2240296850493347238T_real @ G @ C5 )
= ( groups2240296850493347238T_real @ H2 @ C5 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6795_sum_Osame__carrier,axiom,
! [C5: set_int,A2: set_int,B4: set_int,G: int > real,H2: int > real] :
( ( finite_finite_int @ C5 )
=> ( ( ord_less_eq_set_int @ A2 @ C5 )
=> ( ( ord_less_eq_set_int @ B4 @ C5 )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ C5 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B3: int] :
( ( member_int @ B3 @ ( minus_minus_set_int @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= zero_zero_real ) )
=> ( ( ( groups8778361861064173332t_real @ G @ A2 )
= ( groups8778361861064173332t_real @ H2 @ B4 ) )
= ( ( groups8778361861064173332t_real @ G @ C5 )
= ( groups8778361861064173332t_real @ H2 @ C5 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6796_sum_Osame__carrier,axiom,
! [C5: set_complex,A2: set_complex,B4: set_complex,G: complex > real,H2: complex > real] :
( ( finite3207457112153483333omplex @ C5 )
=> ( ( ord_le211207098394363844omplex @ A2 @ C5 )
=> ( ( ord_le211207098394363844omplex @ B4 @ C5 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ ( minus_811609699411566653omplex @ C5 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B3: complex] :
( ( member_complex @ B3 @ ( minus_811609699411566653omplex @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= zero_zero_real ) )
=> ( ( ( groups5808333547571424918x_real @ G @ A2 )
= ( groups5808333547571424918x_real @ H2 @ B4 ) )
= ( ( groups5808333547571424918x_real @ G @ C5 )
= ( groups5808333547571424918x_real @ H2 @ C5 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6797_sum_Osame__carrier,axiom,
! [C5: set_Code_integer,A2: set_Code_integer,B4: set_Code_integer,G: code_integer > real,H2: code_integer > real] :
( ( finite6017078050557962740nteger @ C5 )
=> ( ( ord_le7084787975880047091nteger @ A2 @ C5 )
=> ( ( ord_le7084787975880047091nteger @ B4 @ C5 )
=> ( ! [A4: code_integer] :
( ( member_Code_integer @ A4 @ ( minus_2355218937544613996nteger @ C5 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_real ) )
=> ( ! [B3: code_integer] :
( ( member_Code_integer @ B3 @ ( minus_2355218937544613996nteger @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= zero_zero_real ) )
=> ( ( ( groups1270011288395367621r_real @ G @ A2 )
= ( groups1270011288395367621r_real @ H2 @ B4 ) )
= ( ( groups1270011288395367621r_real @ G @ C5 )
= ( groups1270011288395367621r_real @ H2 @ C5 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6798_sum_Osame__carrier,axiom,
! [C5: set_real,A2: set_real,B4: set_real,G: real > rat,H2: real > rat] :
( ( finite_finite_real @ C5 )
=> ( ( ord_less_eq_set_real @ A2 @ C5 )
=> ( ( ord_less_eq_set_real @ B4 @ C5 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C5 @ A2 ) )
=> ( ( G @ A4 )
= zero_zero_rat ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ ( minus_minus_set_real @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= zero_zero_rat ) )
=> ( ( ( groups1300246762558778688al_rat @ G @ A2 )
= ( groups1300246762558778688al_rat @ H2 @ B4 ) )
= ( ( groups1300246762558778688al_rat @ G @ C5 )
= ( groups1300246762558778688al_rat @ H2 @ C5 ) ) ) ) ) ) ) ) ).
% sum.same_carrier
thf(fact_6799_sum_Osubset__diff,axiom,
! [B4: set_int,A2: set_int,G: int > real] :
( ( ord_less_eq_set_int @ B4 @ A2 )
=> ( ( finite_finite_int @ A2 )
=> ( ( groups8778361861064173332t_real @ G @ A2 )
= ( plus_plus_real @ ( groups8778361861064173332t_real @ G @ ( minus_minus_set_int @ A2 @ B4 ) ) @ ( groups8778361861064173332t_real @ G @ B4 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6800_sum_Osubset__diff,axiom,
! [B4: set_complex,A2: set_complex,G: complex > real] :
( ( ord_le211207098394363844omplex @ B4 @ A2 )
=> ( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5808333547571424918x_real @ G @ A2 )
= ( plus_plus_real @ ( groups5808333547571424918x_real @ G @ ( minus_811609699411566653omplex @ A2 @ B4 ) ) @ ( groups5808333547571424918x_real @ G @ B4 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6801_sum_Osubset__diff,axiom,
! [B4: set_Code_integer,A2: set_Code_integer,G: code_integer > real] :
( ( ord_le7084787975880047091nteger @ B4 @ A2 )
=> ( ( finite6017078050557962740nteger @ A2 )
=> ( ( groups1270011288395367621r_real @ G @ A2 )
= ( plus_plus_real @ ( groups1270011288395367621r_real @ G @ ( minus_2355218937544613996nteger @ A2 @ B4 ) ) @ ( groups1270011288395367621r_real @ G @ B4 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6802_sum_Osubset__diff,axiom,
! [B4: set_int,A2: set_int,G: int > rat] :
( ( ord_less_eq_set_int @ B4 @ A2 )
=> ( ( finite_finite_int @ A2 )
=> ( ( groups3906332499630173760nt_rat @ G @ A2 )
= ( plus_plus_rat @ ( groups3906332499630173760nt_rat @ G @ ( minus_minus_set_int @ A2 @ B4 ) ) @ ( groups3906332499630173760nt_rat @ G @ B4 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6803_sum_Osubset__diff,axiom,
! [B4: set_complex,A2: set_complex,G: complex > rat] :
( ( ord_le211207098394363844omplex @ B4 @ A2 )
=> ( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5058264527183730370ex_rat @ G @ A2 )
= ( plus_plus_rat @ ( groups5058264527183730370ex_rat @ G @ ( minus_811609699411566653omplex @ A2 @ B4 ) ) @ ( groups5058264527183730370ex_rat @ G @ B4 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6804_sum_Osubset__diff,axiom,
! [B4: set_Code_integer,A2: set_Code_integer,G: code_integer > rat] :
( ( ord_le7084787975880047091nteger @ B4 @ A2 )
=> ( ( finite6017078050557962740nteger @ A2 )
=> ( ( groups6602215022474089585er_rat @ G @ A2 )
= ( plus_plus_rat @ ( groups6602215022474089585er_rat @ G @ ( minus_2355218937544613996nteger @ A2 @ B4 ) ) @ ( groups6602215022474089585er_rat @ G @ B4 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6805_sum_Osubset__diff,axiom,
! [B4: set_int,A2: set_int,G: int > nat] :
( ( ord_less_eq_set_int @ B4 @ A2 )
=> ( ( finite_finite_int @ A2 )
=> ( ( groups4541462559716669496nt_nat @ G @ A2 )
= ( plus_plus_nat @ ( groups4541462559716669496nt_nat @ G @ ( minus_minus_set_int @ A2 @ B4 ) ) @ ( groups4541462559716669496nt_nat @ G @ B4 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6806_sum_Osubset__diff,axiom,
! [B4: set_complex,A2: set_complex,G: complex > nat] :
( ( ord_le211207098394363844omplex @ B4 @ A2 )
=> ( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5693394587270226106ex_nat @ G @ A2 )
= ( plus_plus_nat @ ( groups5693394587270226106ex_nat @ G @ ( minus_811609699411566653omplex @ A2 @ B4 ) ) @ ( groups5693394587270226106ex_nat @ G @ B4 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6807_sum_Osubset__diff,axiom,
! [B4: set_Code_integer,A2: set_Code_integer,G: code_integer > nat] :
( ( ord_le7084787975880047091nteger @ B4 @ A2 )
=> ( ( finite6017078050557962740nteger @ A2 )
=> ( ( groups7237345082560585321er_nat @ G @ A2 )
= ( plus_plus_nat @ ( groups7237345082560585321er_nat @ G @ ( minus_2355218937544613996nteger @ A2 @ B4 ) ) @ ( groups7237345082560585321er_nat @ G @ B4 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6808_sum_Osubset__diff,axiom,
! [B4: set_complex,A2: set_complex,G: complex > int] :
( ( ord_le211207098394363844omplex @ B4 @ A2 )
=> ( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups5690904116761175830ex_int @ G @ A2 )
= ( plus_plus_int @ ( groups5690904116761175830ex_int @ G @ ( minus_811609699411566653omplex @ A2 @ B4 ) ) @ ( groups5690904116761175830ex_int @ G @ B4 ) ) ) ) ) ).
% sum.subset_diff
thf(fact_6809_sum__diff,axiom,
! [A2: set_int,B4: set_int,F: int > real] :
( ( finite_finite_int @ A2 )
=> ( ( ord_less_eq_set_int @ B4 @ A2 )
=> ( ( groups8778361861064173332t_real @ F @ ( minus_minus_set_int @ A2 @ B4 ) )
= ( minus_minus_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ ( groups8778361861064173332t_real @ F @ B4 ) ) ) ) ) ).
% sum_diff
thf(fact_6810_sum__diff,axiom,
! [A2: set_complex,B4: set_complex,F: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ord_le211207098394363844omplex @ B4 @ A2 )
=> ( ( groups5808333547571424918x_real @ F @ ( minus_811609699411566653omplex @ A2 @ B4 ) )
= ( minus_minus_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ F @ B4 ) ) ) ) ) ).
% sum_diff
thf(fact_6811_sum__diff,axiom,
! [A2: set_Code_integer,B4: set_Code_integer,F: code_integer > real] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( ord_le7084787975880047091nteger @ B4 @ A2 )
=> ( ( groups1270011288395367621r_real @ F @ ( minus_2355218937544613996nteger @ A2 @ B4 ) )
= ( minus_minus_real @ ( groups1270011288395367621r_real @ F @ A2 ) @ ( groups1270011288395367621r_real @ F @ B4 ) ) ) ) ) ).
% sum_diff
thf(fact_6812_sum__diff,axiom,
! [A2: set_int,B4: set_int,F: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ( ord_less_eq_set_int @ B4 @ A2 )
=> ( ( groups3906332499630173760nt_rat @ F @ ( minus_minus_set_int @ A2 @ B4 ) )
= ( minus_minus_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ ( groups3906332499630173760nt_rat @ F @ B4 ) ) ) ) ) ).
% sum_diff
thf(fact_6813_sum__diff,axiom,
! [A2: set_complex,B4: set_complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ord_le211207098394363844omplex @ B4 @ A2 )
=> ( ( groups5058264527183730370ex_rat @ F @ ( minus_811609699411566653omplex @ A2 @ B4 ) )
= ( minus_minus_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ F @ B4 ) ) ) ) ) ).
% sum_diff
thf(fact_6814_sum__diff,axiom,
! [A2: set_Code_integer,B4: set_Code_integer,F: code_integer > rat] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( ord_le7084787975880047091nteger @ B4 @ A2 )
=> ( ( groups6602215022474089585er_rat @ F @ ( minus_2355218937544613996nteger @ A2 @ B4 ) )
= ( minus_minus_rat @ ( groups6602215022474089585er_rat @ F @ A2 ) @ ( groups6602215022474089585er_rat @ F @ B4 ) ) ) ) ) ).
% sum_diff
thf(fact_6815_sum__diff,axiom,
! [A2: set_complex,B4: set_complex,F: complex > int] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ord_le211207098394363844omplex @ B4 @ A2 )
=> ( ( groups5690904116761175830ex_int @ F @ ( minus_811609699411566653omplex @ A2 @ B4 ) )
= ( minus_minus_int @ ( groups5690904116761175830ex_int @ F @ A2 ) @ ( groups5690904116761175830ex_int @ F @ B4 ) ) ) ) ) ).
% sum_diff
thf(fact_6816_sum__diff,axiom,
! [A2: set_Code_integer,B4: set_Code_integer,F: code_integer > int] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( ord_le7084787975880047091nteger @ B4 @ A2 )
=> ( ( groups7234854612051535045er_int @ F @ ( minus_2355218937544613996nteger @ A2 @ B4 ) )
= ( minus_minus_int @ ( groups7234854612051535045er_int @ F @ A2 ) @ ( groups7234854612051535045er_int @ F @ B4 ) ) ) ) ) ).
% sum_diff
thf(fact_6817_sum__diff,axiom,
! [A2: set_nat,B4: set_nat,F: nat > rat] :
( ( finite_finite_nat @ A2 )
=> ( ( ord_less_eq_set_nat @ B4 @ A2 )
=> ( ( groups2906978787729119204at_rat @ F @ ( minus_minus_set_nat @ A2 @ B4 ) )
= ( minus_minus_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ F @ B4 ) ) ) ) ) ).
% sum_diff
thf(fact_6818_sum__diff,axiom,
! [A2: set_nat,B4: set_nat,F: nat > int] :
( ( finite_finite_nat @ A2 )
=> ( ( ord_less_eq_set_nat @ B4 @ A2 )
=> ( ( groups3539618377306564664at_int @ F @ ( minus_minus_set_nat @ A2 @ B4 ) )
= ( minus_minus_int @ ( groups3539618377306564664at_int @ F @ A2 ) @ ( groups3539618377306564664at_int @ F @ B4 ) ) ) ) ) ).
% sum_diff
thf(fact_6819_sum__shift__lb__Suc0__0,axiom,
! [F: nat > complex,K: nat] :
( ( ( F @ zero_zero_nat )
= zero_zero_complex )
=> ( ( groups2073611262835488442omplex @ F @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ K ) )
= ( groups2073611262835488442omplex @ F @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) ) ) ) ).
% sum_shift_lb_Suc0_0
thf(fact_6820_sum__shift__lb__Suc0__0,axiom,
! [F: nat > rat,K: nat] :
( ( ( F @ zero_zero_nat )
= zero_zero_rat )
=> ( ( groups2906978787729119204at_rat @ F @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ K ) )
= ( groups2906978787729119204at_rat @ F @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) ) ) ) ).
% sum_shift_lb_Suc0_0
thf(fact_6821_sum__shift__lb__Suc0__0,axiom,
! [F: nat > int,K: nat] :
( ( ( F @ zero_zero_nat )
= zero_zero_int )
=> ( ( groups3539618377306564664at_int @ F @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ K ) )
= ( groups3539618377306564664at_int @ F @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) ) ) ) ).
% sum_shift_lb_Suc0_0
thf(fact_6822_sum__shift__lb__Suc0__0,axiom,
! [F: nat > nat,K: nat] :
( ( ( F @ zero_zero_nat )
= zero_zero_nat )
=> ( ( groups3542108847815614940at_nat @ F @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ K ) )
= ( groups3542108847815614940at_nat @ F @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) ) ) ) ).
% sum_shift_lb_Suc0_0
thf(fact_6823_sum__shift__lb__Suc0__0,axiom,
! [F: nat > real,K: nat] :
( ( ( F @ zero_zero_nat )
= zero_zero_real )
=> ( ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ K ) )
= ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) ) ) ) ).
% sum_shift_lb_Suc0_0
thf(fact_6824_cos__two__neq__zero,axiom,
( ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
!= zero_zero_real ) ).
% cos_two_neq_zero
thf(fact_6825_sum_OatLeast0__atMost__Suc,axiom,
! [G: nat > rat,N: nat] :
( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) ) )
= ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).
% sum.atLeast0_atMost_Suc
thf(fact_6826_sum_OatLeast0__atMost__Suc,axiom,
! [G: nat > int,N: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) ) )
= ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).
% sum.atLeast0_atMost_Suc
thf(fact_6827_sum_OatLeast0__atMost__Suc,axiom,
! [G: nat > nat,N: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) ) )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).
% sum.atLeast0_atMost_Suc
thf(fact_6828_sum_OatLeast0__atMost__Suc,axiom,
! [G: nat > real,N: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) ) )
= ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).
% sum.atLeast0_atMost_Suc
thf(fact_6829_sum_OatLeast__Suc__atMost,axiom,
! [M: nat,N: nat,G: nat > rat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( plus_plus_rat @ ( G @ M ) @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ) ).
% sum.atLeast_Suc_atMost
thf(fact_6830_sum_OatLeast__Suc__atMost,axiom,
! [M: nat,N: nat,G: nat > int] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( plus_plus_int @ ( G @ M ) @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ) ).
% sum.atLeast_Suc_atMost
thf(fact_6831_sum_OatLeast__Suc__atMost,axiom,
! [M: nat,N: nat,G: nat > nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( plus_plus_nat @ ( G @ M ) @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ) ).
% sum.atLeast_Suc_atMost
thf(fact_6832_sum_OatLeast__Suc__atMost,axiom,
! [M: nat,N: nat,G: nat > real] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( plus_plus_real @ ( G @ M ) @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ) ).
% sum.atLeast_Suc_atMost
thf(fact_6833_sum_Onat__ivl__Suc_H,axiom,
! [M: nat,N: nat,G: nat > rat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( plus_plus_rat @ ( G @ ( suc @ N ) ) @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).
% sum.nat_ivl_Suc'
thf(fact_6834_sum_Onat__ivl__Suc_H,axiom,
! [M: nat,N: nat,G: nat > int] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( plus_plus_int @ ( G @ ( suc @ N ) ) @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).
% sum.nat_ivl_Suc'
thf(fact_6835_sum_Onat__ivl__Suc_H,axiom,
! [M: nat,N: nat,G: nat > nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( plus_plus_nat @ ( G @ ( suc @ N ) ) @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).
% sum.nat_ivl_Suc'
thf(fact_6836_sum_Onat__ivl__Suc_H,axiom,
! [M: nat,N: nat,G: nat > real] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( plus_plus_real @ ( G @ ( suc @ N ) ) @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).
% sum.nat_ivl_Suc'
thf(fact_6837_cos__monotone__0__pi,axiom,
! [Y2: real,X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_real @ Y2 @ X2 )
=> ( ( ord_less_eq_real @ X2 @ pi )
=> ( ord_less_real @ ( cos_real @ X2 ) @ ( cos_real @ Y2 ) ) ) ) ) ).
% cos_monotone_0_pi
thf(fact_6838_cos__mono__less__eq,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ X2 @ pi )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ pi )
=> ( ( ord_less_real @ ( cos_real @ X2 ) @ ( cos_real @ Y2 ) )
= ( ord_less_real @ Y2 @ X2 ) ) ) ) ) ) ).
% cos_mono_less_eq
thf(fact_6839_sin__eq__0__pi,axiom,
! [X2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ X2 )
=> ( ( ord_less_real @ X2 @ pi )
=> ( ( ( sin_real @ X2 )
= zero_zero_real )
=> ( X2 = zero_zero_real ) ) ) ) ).
% sin_eq_0_pi
thf(fact_6840_sin__zero__pi__iff,axiom,
! [X2: real] :
( ( ord_less_real @ ( abs_abs_real @ X2 ) @ pi )
=> ( ( ( sin_real @ X2 )
= zero_zero_real )
= ( X2 = zero_zero_real ) ) ) ).
% sin_zero_pi_iff
thf(fact_6841_cos__monotone__minus__pi__0_H,axiom,
! [Y2: real,X2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ X2 )
=> ( ( ord_less_eq_real @ X2 @ zero_zero_real )
=> ( ord_less_eq_real @ ( cos_real @ Y2 ) @ ( cos_real @ X2 ) ) ) ) ) ).
% cos_monotone_minus_pi_0'
thf(fact_6842_sin__zero__iff__int2,axiom,
! [X2: real] :
( ( ( sin_real @ X2 )
= zero_zero_real )
= ( ? [I3: int] :
( X2
= ( times_times_real @ ( ring_1_of_int_real @ I3 ) @ pi ) ) ) ) ).
% sin_zero_iff_int2
thf(fact_6843_sincos__total__pi,axiom,
! [Y2: real,X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_real )
=> ? [T5: real] :
( ( ord_less_eq_real @ zero_zero_real @ T5 )
& ( ord_less_eq_real @ T5 @ pi )
& ( X2
= ( cos_real @ T5 ) )
& ( Y2
= ( sin_real @ T5 ) ) ) ) ) ).
% sincos_total_pi
thf(fact_6844_sum_OSuc__reindex__ivl,axiom,
! [M: nat,N: nat,G: nat > rat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) )
= ( plus_plus_rat @ ( G @ M )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).
% sum.Suc_reindex_ivl
thf(fact_6845_sum_OSuc__reindex__ivl,axiom,
! [M: nat,N: nat,G: nat > int] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) )
= ( plus_plus_int @ ( G @ M )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).
% sum.Suc_reindex_ivl
thf(fact_6846_sum_OSuc__reindex__ivl,axiom,
! [M: nat,N: nat,G: nat > nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) )
= ( plus_plus_nat @ ( G @ M )
@ ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).
% sum.Suc_reindex_ivl
thf(fact_6847_sum_OSuc__reindex__ivl,axiom,
! [M: nat,N: nat,G: nat > real] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) )
= ( plus_plus_real @ ( G @ M )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).
% sum.Suc_reindex_ivl
thf(fact_6848_sum__Suc__diff,axiom,
! [M: nat,N: nat,F: nat > rat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( minus_minus_rat @ ( F @ ( suc @ I3 ) ) @ ( F @ I3 ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( minus_minus_rat @ ( F @ ( suc @ N ) ) @ ( F @ M ) ) ) ) ).
% sum_Suc_diff
thf(fact_6849_sum__Suc__diff,axiom,
! [M: nat,N: nat,F: nat > int] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( minus_minus_int @ ( F @ ( suc @ I3 ) ) @ ( F @ I3 ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( minus_minus_int @ ( F @ ( suc @ N ) ) @ ( F @ M ) ) ) ) ).
% sum_Suc_diff
thf(fact_6850_sum__Suc__diff,axiom,
! [M: nat,N: nat,F: nat > real] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( minus_minus_real @ ( F @ ( suc @ I3 ) ) @ ( F @ I3 ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( minus_minus_real @ ( F @ ( suc @ N ) ) @ ( F @ M ) ) ) ) ).
% sum_Suc_diff
thf(fact_6851_sin__expansion__lemma,axiom,
! [X2: real,M: nat] :
( ( sin_real @ ( plus_plus_real @ X2 @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ M ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
= ( cos_real @ ( plus_plus_real @ X2 @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% sin_expansion_lemma
thf(fact_6852_sum__mono2,axiom,
! [B4: set_real,A2: set_real,F: real > real] :
( ( finite_finite_real @ B4 )
=> ( ( ord_less_eq_set_real @ A2 @ B4 )
=> ( ! [B3: real] :
( ( member_real @ B3 @ ( minus_minus_set_real @ B4 @ A2 ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ B3 ) ) )
=> ( ord_less_eq_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ ( groups8097168146408367636l_real @ F @ B4 ) ) ) ) ) ).
% sum_mono2
thf(fact_6853_sum__mono2,axiom,
! [B4: set_VEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ B4 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ B4 )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ ( minus_5127226145743854075T_VEBT @ B4 @ A2 ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ B3 ) ) )
=> ( ord_less_eq_real @ ( groups2240296850493347238T_real @ F @ A2 ) @ ( groups2240296850493347238T_real @ F @ B4 ) ) ) ) ) ).
% sum_mono2
thf(fact_6854_sum__mono2,axiom,
! [B4: set_int,A2: set_int,F: int > real] :
( ( finite_finite_int @ B4 )
=> ( ( ord_less_eq_set_int @ A2 @ B4 )
=> ( ! [B3: int] :
( ( member_int @ B3 @ ( minus_minus_set_int @ B4 @ A2 ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ B3 ) ) )
=> ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ ( groups8778361861064173332t_real @ F @ B4 ) ) ) ) ) ).
% sum_mono2
thf(fact_6855_sum__mono2,axiom,
! [B4: set_complex,A2: set_complex,F: complex > real] :
( ( finite3207457112153483333omplex @ B4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B4 )
=> ( ! [B3: complex] :
( ( member_complex @ B3 @ ( minus_811609699411566653omplex @ B4 @ A2 ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ B3 ) ) )
=> ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ F @ B4 ) ) ) ) ) ).
% sum_mono2
thf(fact_6856_sum__mono2,axiom,
! [B4: set_Code_integer,A2: set_Code_integer,F: code_integer > real] :
( ( finite6017078050557962740nteger @ B4 )
=> ( ( ord_le7084787975880047091nteger @ A2 @ B4 )
=> ( ! [B3: code_integer] :
( ( member_Code_integer @ B3 @ ( minus_2355218937544613996nteger @ B4 @ A2 ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ B3 ) ) )
=> ( ord_less_eq_real @ ( groups1270011288395367621r_real @ F @ A2 ) @ ( groups1270011288395367621r_real @ F @ B4 ) ) ) ) ) ).
% sum_mono2
thf(fact_6857_sum__mono2,axiom,
! [B4: set_real,A2: set_real,F: real > rat] :
( ( finite_finite_real @ B4 )
=> ( ( ord_less_eq_set_real @ A2 @ B4 )
=> ( ! [B3: real] :
( ( member_real @ B3 @ ( minus_minus_set_real @ B4 @ A2 ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B3 ) ) )
=> ( ord_less_eq_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ ( groups1300246762558778688al_rat @ F @ B4 ) ) ) ) ) ).
% sum_mono2
thf(fact_6858_sum__mono2,axiom,
! [B4: set_VEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ B4 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ B4 )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ ( minus_5127226145743854075T_VEBT @ B4 @ A2 ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B3 ) ) )
=> ( ord_less_eq_rat @ ( groups136491112297645522BT_rat @ F @ A2 ) @ ( groups136491112297645522BT_rat @ F @ B4 ) ) ) ) ) ).
% sum_mono2
thf(fact_6859_sum__mono2,axiom,
! [B4: set_int,A2: set_int,F: int > rat] :
( ( finite_finite_int @ B4 )
=> ( ( ord_less_eq_set_int @ A2 @ B4 )
=> ( ! [B3: int] :
( ( member_int @ B3 @ ( minus_minus_set_int @ B4 @ A2 ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B3 ) ) )
=> ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ ( groups3906332499630173760nt_rat @ F @ B4 ) ) ) ) ) ).
% sum_mono2
thf(fact_6860_sum__mono2,axiom,
! [B4: set_complex,A2: set_complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ B4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B4 )
=> ( ! [B3: complex] :
( ( member_complex @ B3 @ ( minus_811609699411566653omplex @ B4 @ A2 ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B3 ) ) )
=> ( ord_less_eq_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ F @ B4 ) ) ) ) ) ).
% sum_mono2
thf(fact_6861_sum__mono2,axiom,
! [B4: set_Code_integer,A2: set_Code_integer,F: code_integer > rat] :
( ( finite6017078050557962740nteger @ B4 )
=> ( ( ord_le7084787975880047091nteger @ A2 @ B4 )
=> ( ! [B3: code_integer] :
( ( member_Code_integer @ B3 @ ( minus_2355218937544613996nteger @ B4 @ A2 ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B3 ) ) )
=> ( ord_less_eq_rat @ ( groups6602215022474089585er_rat @ F @ A2 ) @ ( groups6602215022474089585er_rat @ F @ B4 ) ) ) ) ) ).
% sum_mono2
thf(fact_6862_cos__expansion__lemma,axiom,
! [X2: real,M: nat] :
( ( cos_real @ ( plus_plus_real @ X2 @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ M ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
= ( uminus_uminus_real @ ( sin_real @ ( plus_plus_real @ X2 @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).
% cos_expansion_lemma
thf(fact_6863_sin__gt__zero__02,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ X2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
=> ( ord_less_real @ zero_zero_real @ ( sin_real @ X2 ) ) ) ) ).
% sin_gt_zero_02
thf(fact_6864_cos__two__less__zero,axiom,
ord_less_real @ ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ zero_zero_real ).
% cos_two_less_zero
thf(fact_6865_cos__is__zero,axiom,
? [X3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
& ( ord_less_eq_real @ X3 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
& ( ( cos_real @ X3 )
= zero_zero_real )
& ! [Y4: real] :
( ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
& ( ord_less_eq_real @ Y4 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
& ( ( cos_real @ Y4 )
= zero_zero_real ) )
=> ( Y4 = X3 ) ) ) ).
% cos_is_zero
thf(fact_6866_cos__two__le__zero,axiom,
ord_less_eq_real @ ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ zero_zero_real ).
% cos_two_le_zero
thf(fact_6867_sum_Oub__add__nat,axiom,
! [M: nat,N: nat,G: nat > rat,P2: nat] :
( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N @ one_one_nat ) )
=> ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N @ P2 ) ) )
= ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ ( plus_plus_nat @ N @ P2 ) ) ) ) ) ) ).
% sum.ub_add_nat
thf(fact_6868_sum_Oub__add__nat,axiom,
! [M: nat,N: nat,G: nat > int,P2: nat] :
( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N @ one_one_nat ) )
=> ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N @ P2 ) ) )
= ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ ( plus_plus_nat @ N @ P2 ) ) ) ) ) ) ).
% sum.ub_add_nat
thf(fact_6869_sum_Oub__add__nat,axiom,
! [M: nat,N: nat,G: nat > nat,P2: nat] :
( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N @ one_one_nat ) )
=> ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N @ P2 ) ) )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ ( plus_plus_nat @ N @ P2 ) ) ) ) ) ) ).
% sum.ub_add_nat
thf(fact_6870_sum_Oub__add__nat,axiom,
! [M: nat,N: nat,G: nat > real,P2: nat] :
( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N @ one_one_nat ) )
=> ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N @ P2 ) ) )
= ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ ( plus_plus_nat @ N @ P2 ) ) ) ) ) ) ).
% sum.ub_add_nat
thf(fact_6871_cos__monotone__minus__pi__0,axiom,
! [Y2: real,X2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ Y2 )
=> ( ( ord_less_real @ Y2 @ X2 )
=> ( ( ord_less_eq_real @ X2 @ zero_zero_real )
=> ( ord_less_real @ ( cos_real @ Y2 ) @ ( cos_real @ X2 ) ) ) ) ) ).
% cos_monotone_minus_pi_0
thf(fact_6872_cos__total,axiom,
! [Y2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ one_one_real )
=> ? [X3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
& ( ord_less_eq_real @ X3 @ pi )
& ( ( cos_real @ X3 )
= Y2 )
& ! [Y4: real] :
( ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
& ( ord_less_eq_real @ Y4 @ pi )
& ( ( cos_real @ Y4 )
= Y2 ) )
=> ( Y4 = X3 ) ) ) ) ) ).
% cos_total
thf(fact_6873_sum__le__suminf,axiom,
! [F: nat > int,I5: set_nat] :
( ( summable_int @ F )
=> ( ( finite_finite_nat @ I5 )
=> ( ! [N2: nat] :
( ( member_nat @ N2 @ ( uminus5710092332889474511et_nat @ I5 ) )
=> ( ord_less_eq_int @ zero_zero_int @ ( F @ N2 ) ) )
=> ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ I5 ) @ ( suminf_int @ F ) ) ) ) ) ).
% sum_le_suminf
thf(fact_6874_sum__le__suminf,axiom,
! [F: nat > nat,I5: set_nat] :
( ( summable_nat @ F )
=> ( ( finite_finite_nat @ I5 )
=> ( ! [N2: nat] :
( ( member_nat @ N2 @ ( uminus5710092332889474511et_nat @ I5 ) )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N2 ) ) )
=> ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ I5 ) @ ( suminf_nat @ F ) ) ) ) ) ).
% sum_le_suminf
thf(fact_6875_sum__le__suminf,axiom,
! [F: nat > real,I5: set_nat] :
( ( summable_real @ F )
=> ( ( finite_finite_nat @ I5 )
=> ( ! [N2: nat] :
( ( member_nat @ N2 @ ( uminus5710092332889474511et_nat @ I5 ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ N2 ) ) )
=> ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ I5 ) @ ( suminf_real @ F ) ) ) ) ) ).
% sum_le_suminf
thf(fact_6876_sincos__total__pi__half,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_real )
=> ? [T5: real] :
( ( ord_less_eq_real @ zero_zero_real @ T5 )
& ( ord_less_eq_real @ T5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( X2
= ( cos_real @ T5 ) )
& ( Y2
= ( sin_real @ T5 ) ) ) ) ) ) ).
% sincos_total_pi_half
thf(fact_6877_sincos__total__2pi__le,axiom,
! [X2: real,Y2: real] :
( ( ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_real )
=> ? [T5: real] :
( ( ord_less_eq_real @ zero_zero_real @ T5 )
& ( ord_less_eq_real @ T5 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
& ( X2
= ( cos_real @ T5 ) )
& ( Y2
= ( sin_real @ T5 ) ) ) ) ).
% sincos_total_2pi_le
thf(fact_6878_sum__strict__mono2,axiom,
! [B4: set_real,A2: set_real,B: real,F: real > real] :
( ( finite_finite_real @ B4 )
=> ( ( ord_less_eq_set_real @ A2 @ B4 )
=> ( ( member_real @ B @ ( minus_minus_set_real @ B4 @ A2 ) )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ B ) )
=> ( ! [X3: real] :
( ( member_real @ X3 @ B4 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
=> ( ord_less_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ ( groups8097168146408367636l_real @ F @ B4 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6879_sum__strict__mono2,axiom,
! [B4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B: vEBT_VEBT,F: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ B4 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ B4 )
=> ( ( member_VEBT_VEBT @ B @ ( minus_5127226145743854075T_VEBT @ B4 @ A2 ) )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ B ) )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ B4 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
=> ( ord_less_real @ ( groups2240296850493347238T_real @ F @ A2 ) @ ( groups2240296850493347238T_real @ F @ B4 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6880_sum__strict__mono2,axiom,
! [B4: set_int,A2: set_int,B: int,F: int > real] :
( ( finite_finite_int @ B4 )
=> ( ( ord_less_eq_set_int @ A2 @ B4 )
=> ( ( member_int @ B @ ( minus_minus_set_int @ B4 @ A2 ) )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ B ) )
=> ( ! [X3: int] :
( ( member_int @ X3 @ B4 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
=> ( ord_less_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ ( groups8778361861064173332t_real @ F @ B4 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6881_sum__strict__mono2,axiom,
! [B4: set_complex,A2: set_complex,B: complex,F: complex > real] :
( ( finite3207457112153483333omplex @ B4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B4 )
=> ( ( member_complex @ B @ ( minus_811609699411566653omplex @ B4 @ A2 ) )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ B ) )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ B4 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
=> ( ord_less_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ F @ B4 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6882_sum__strict__mono2,axiom,
! [B4: set_Code_integer,A2: set_Code_integer,B: code_integer,F: code_integer > real] :
( ( finite6017078050557962740nteger @ B4 )
=> ( ( ord_le7084787975880047091nteger @ A2 @ B4 )
=> ( ( member_Code_integer @ B @ ( minus_2355218937544613996nteger @ B4 @ A2 ) )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ B ) )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ B4 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
=> ( ord_less_real @ ( groups1270011288395367621r_real @ F @ A2 ) @ ( groups1270011288395367621r_real @ F @ B4 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6883_sum__strict__mono2,axiom,
! [B4: set_real,A2: set_real,B: real,F: real > rat] :
( ( finite_finite_real @ B4 )
=> ( ( ord_less_eq_set_real @ A2 @ B4 )
=> ( ( member_real @ B @ ( minus_minus_set_real @ B4 @ A2 ) )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
=> ( ! [X3: real] :
( ( member_real @ X3 @ B4 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
=> ( ord_less_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ ( groups1300246762558778688al_rat @ F @ B4 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6884_sum__strict__mono2,axiom,
! [B4: set_VEBT_VEBT,A2: set_VEBT_VEBT,B: vEBT_VEBT,F: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ B4 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ B4 )
=> ( ( member_VEBT_VEBT @ B @ ( minus_5127226145743854075T_VEBT @ B4 @ A2 ) )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ B4 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
=> ( ord_less_rat @ ( groups136491112297645522BT_rat @ F @ A2 ) @ ( groups136491112297645522BT_rat @ F @ B4 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6885_sum__strict__mono2,axiom,
! [B4: set_int,A2: set_int,B: int,F: int > rat] :
( ( finite_finite_int @ B4 )
=> ( ( ord_less_eq_set_int @ A2 @ B4 )
=> ( ( member_int @ B @ ( minus_minus_set_int @ B4 @ A2 ) )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
=> ( ! [X3: int] :
( ( member_int @ X3 @ B4 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
=> ( ord_less_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ ( groups3906332499630173760nt_rat @ F @ B4 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6886_sum__strict__mono2,axiom,
! [B4: set_complex,A2: set_complex,B: complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ B4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B4 )
=> ( ( member_complex @ B @ ( minus_811609699411566653omplex @ B4 @ A2 ) )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ B4 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
=> ( ord_less_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ F @ B4 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6887_sum__strict__mono2,axiom,
! [B4: set_Code_integer,A2: set_Code_integer,B: code_integer,F: code_integer > rat] :
( ( finite6017078050557962740nteger @ B4 )
=> ( ( ord_le7084787975880047091nteger @ A2 @ B4 )
=> ( ( member_Code_integer @ B @ ( minus_2355218937544613996nteger @ B4 @ A2 ) )
=> ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ B4 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) ) )
=> ( ord_less_rat @ ( groups6602215022474089585er_rat @ F @ A2 ) @ ( groups6602215022474089585er_rat @ F @ B4 ) ) ) ) ) ) ) ).
% sum_strict_mono2
thf(fact_6888_sincos__total__2pi,axiom,
! [X2: real,Y2: real] :
( ( ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_real )
=> ~ ! [T5: real] :
( ( ord_less_eq_real @ zero_zero_real @ T5 )
=> ( ( ord_less_real @ T5 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
=> ( ( X2
= ( cos_real @ T5 ) )
=> ( Y2
!= ( sin_real @ T5 ) ) ) ) ) ) ).
% sincos_total_2pi
thf(fact_6889_convex__sum__bound__le,axiom,
! [I5: set_nat,X2: nat > code_integer,A: nat > code_integer,B: code_integer,Delta: code_integer] :
( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X2 @ I2 ) ) )
=> ( ( ( groups7501900531339628137nteger @ X2 @ I5 )
= one_one_Code_integer )
=> ( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I2 ) @ B ) ) @ Delta ) )
=> ( ord_le3102999989581377725nteger
@ ( abs_abs_Code_integer
@ ( minus_8373710615458151222nteger
@ ( groups7501900531339628137nteger
@ ^ [I3: nat] : ( times_3573771949741848930nteger @ ( A @ I3 ) @ ( X2 @ I3 ) )
@ I5 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_6890_convex__sum__bound__le,axiom,
! [I5: set_real,X2: real > code_integer,A: real > code_integer,B: code_integer,Delta: code_integer] :
( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X2 @ I2 ) ) )
=> ( ( ( groups7713935264441627589nteger @ X2 @ I5 )
= one_one_Code_integer )
=> ( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I2 ) @ B ) ) @ Delta ) )
=> ( ord_le3102999989581377725nteger
@ ( abs_abs_Code_integer
@ ( minus_8373710615458151222nteger
@ ( groups7713935264441627589nteger
@ ^ [I3: real] : ( times_3573771949741848930nteger @ ( A @ I3 ) @ ( X2 @ I3 ) )
@ I5 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_6891_convex__sum__bound__le,axiom,
! [I5: set_int,X2: int > code_integer,A: int > code_integer,B: code_integer,Delta: code_integer] :
( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X2 @ I2 ) ) )
=> ( ( ( groups7873554091576472773nteger @ X2 @ I5 )
= one_one_Code_integer )
=> ( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I2 ) @ B ) ) @ Delta ) )
=> ( ord_le3102999989581377725nteger
@ ( abs_abs_Code_integer
@ ( minus_8373710615458151222nteger
@ ( groups7873554091576472773nteger
@ ^ [I3: int] : ( times_3573771949741848930nteger @ ( A @ I3 ) @ ( X2 @ I3 ) )
@ I5 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_6892_convex__sum__bound__le,axiom,
! [I5: set_VEBT_VEBT,X2: vEBT_VEBT > code_integer,A: vEBT_VEBT > code_integer,B: code_integer,Delta: code_integer] :
( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ I5 )
=> ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X2 @ I2 ) ) )
=> ( ( ( groups5748017345553531991nteger @ X2 @ I5 )
= one_one_Code_integer )
=> ( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ I5 )
=> ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I2 ) @ B ) ) @ Delta ) )
=> ( ord_le3102999989581377725nteger
@ ( abs_abs_Code_integer
@ ( minus_8373710615458151222nteger
@ ( groups5748017345553531991nteger
@ ^ [I3: vEBT_VEBT] : ( times_3573771949741848930nteger @ ( A @ I3 ) @ ( X2 @ I3 ) )
@ I5 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_6893_convex__sum__bound__le,axiom,
! [I5: set_real,X2: real > real,A: real > real,B: real,Delta: real] :
( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_eq_real @ zero_zero_real @ ( X2 @ I2 ) ) )
=> ( ( ( groups8097168146408367636l_real @ X2 @ I5 )
= one_one_real )
=> ( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( A @ I2 ) @ B ) ) @ Delta ) )
=> ( ord_less_eq_real
@ ( abs_abs_real
@ ( minus_minus_real
@ ( groups8097168146408367636l_real
@ ^ [I3: real] : ( times_times_real @ ( A @ I3 ) @ ( X2 @ I3 ) )
@ I5 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_6894_convex__sum__bound__le,axiom,
! [I5: set_int,X2: int > real,A: int > real,B: real,Delta: real] :
( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_eq_real @ zero_zero_real @ ( X2 @ I2 ) ) )
=> ( ( ( groups8778361861064173332t_real @ X2 @ I5 )
= one_one_real )
=> ( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( A @ I2 ) @ B ) ) @ Delta ) )
=> ( ord_less_eq_real
@ ( abs_abs_real
@ ( minus_minus_real
@ ( groups8778361861064173332t_real
@ ^ [I3: int] : ( times_times_real @ ( A @ I3 ) @ ( X2 @ I3 ) )
@ I5 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_6895_convex__sum__bound__le,axiom,
! [I5: set_VEBT_VEBT,X2: vEBT_VEBT > real,A: vEBT_VEBT > real,B: real,Delta: real] :
( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ I5 )
=> ( ord_less_eq_real @ zero_zero_real @ ( X2 @ I2 ) ) )
=> ( ( ( groups2240296850493347238T_real @ X2 @ I5 )
= one_one_real )
=> ( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ I5 )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( A @ I2 ) @ B ) ) @ Delta ) )
=> ( ord_less_eq_real
@ ( abs_abs_real
@ ( minus_minus_real
@ ( groups2240296850493347238T_real
@ ^ [I3: vEBT_VEBT] : ( times_times_real @ ( A @ I3 ) @ ( X2 @ I3 ) )
@ I5 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_6896_convex__sum__bound__le,axiom,
! [I5: set_nat,X2: nat > rat,A: nat > rat,B: rat,Delta: rat] :
( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( X2 @ I2 ) ) )
=> ( ( ( groups2906978787729119204at_rat @ X2 @ I5 )
= one_one_rat )
=> ( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( A @ I2 ) @ B ) ) @ Delta ) )
=> ( ord_less_eq_rat
@ ( abs_abs_rat
@ ( minus_minus_rat
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( A @ I3 ) @ ( X2 @ I3 ) )
@ I5 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_6897_convex__sum__bound__le,axiom,
! [I5: set_real,X2: real > rat,A: real > rat,B: rat,Delta: rat] :
( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( X2 @ I2 ) ) )
=> ( ( ( groups1300246762558778688al_rat @ X2 @ I5 )
= one_one_rat )
=> ( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( A @ I2 ) @ B ) ) @ Delta ) )
=> ( ord_less_eq_rat
@ ( abs_abs_rat
@ ( minus_minus_rat
@ ( groups1300246762558778688al_rat
@ ^ [I3: real] : ( times_times_rat @ ( A @ I3 ) @ ( X2 @ I3 ) )
@ I5 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_6898_convex__sum__bound__le,axiom,
! [I5: set_int,X2: int > rat,A: int > rat,B: rat,Delta: rat] :
( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( X2 @ I2 ) ) )
=> ( ( ( groups3906332499630173760nt_rat @ X2 @ I5 )
= one_one_rat )
=> ( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( A @ I2 ) @ B ) ) @ Delta ) )
=> ( ord_less_eq_rat
@ ( abs_abs_rat
@ ( minus_minus_rat
@ ( groups3906332499630173760nt_rat
@ ^ [I3: int] : ( times_times_rat @ ( A @ I3 ) @ ( X2 @ I3 ) )
@ I5 )
@ B ) )
@ Delta ) ) ) ) ).
% convex_sum_bound_le
thf(fact_6899_sin__pi__divide__n__ge__0,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ ( divide_divide_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% sin_pi_divide_n_ge_0
thf(fact_6900_sum__natinterval__diff,axiom,
! [M: nat,N: nat,F: nat > complex] :
( ( ( ord_less_eq_nat @ M @ N )
=> ( ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( minus_minus_complex @ ( F @ K2 ) @ ( F @ ( plus_plus_nat @ K2 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( minus_minus_complex @ ( F @ M ) @ ( F @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) )
& ( ~ ( ord_less_eq_nat @ M @ N )
=> ( ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( minus_minus_complex @ ( F @ K2 ) @ ( F @ ( plus_plus_nat @ K2 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= zero_zero_complex ) ) ) ).
% sum_natinterval_diff
thf(fact_6901_sum__natinterval__diff,axiom,
! [M: nat,N: nat,F: nat > rat] :
( ( ( ord_less_eq_nat @ M @ N )
=> ( ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( minus_minus_rat @ ( F @ K2 ) @ ( F @ ( plus_plus_nat @ K2 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( minus_minus_rat @ ( F @ M ) @ ( F @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) )
& ( ~ ( ord_less_eq_nat @ M @ N )
=> ( ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( minus_minus_rat @ ( F @ K2 ) @ ( F @ ( plus_plus_nat @ K2 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= zero_zero_rat ) ) ) ).
% sum_natinterval_diff
thf(fact_6902_sum__natinterval__diff,axiom,
! [M: nat,N: nat,F: nat > int] :
( ( ( ord_less_eq_nat @ M @ N )
=> ( ( groups3539618377306564664at_int
@ ^ [K2: nat] : ( minus_minus_int @ ( F @ K2 ) @ ( F @ ( plus_plus_nat @ K2 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( minus_minus_int @ ( F @ M ) @ ( F @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) )
& ( ~ ( ord_less_eq_nat @ M @ N )
=> ( ( groups3539618377306564664at_int
@ ^ [K2: nat] : ( minus_minus_int @ ( F @ K2 ) @ ( F @ ( plus_plus_nat @ K2 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= zero_zero_int ) ) ) ).
% sum_natinterval_diff
thf(fact_6903_sum__natinterval__diff,axiom,
! [M: nat,N: nat,F: nat > real] :
( ( ( ord_less_eq_nat @ M @ N )
=> ( ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( minus_minus_real @ ( F @ K2 ) @ ( F @ ( plus_plus_nat @ K2 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( minus_minus_real @ ( F @ M ) @ ( F @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) )
& ( ~ ( ord_less_eq_nat @ M @ N )
=> ( ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( minus_minus_real @ ( F @ K2 ) @ ( F @ ( plus_plus_nat @ K2 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= zero_zero_real ) ) ) ).
% sum_natinterval_diff
thf(fact_6904_sum__telescope_H_H,axiom,
! [M: nat,N: nat,F: nat > rat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( minus_minus_rat @ ( F @ K2 ) @ ( F @ ( minus_minus_nat @ K2 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) )
= ( minus_minus_rat @ ( F @ N ) @ ( F @ M ) ) ) ) ).
% sum_telescope''
thf(fact_6905_sum__telescope_H_H,axiom,
! [M: nat,N: nat,F: nat > int] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups3539618377306564664at_int
@ ^ [K2: nat] : ( minus_minus_int @ ( F @ K2 ) @ ( F @ ( minus_minus_nat @ K2 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) )
= ( minus_minus_int @ ( F @ N ) @ ( F @ M ) ) ) ) ).
% sum_telescope''
thf(fact_6906_sum__telescope_H_H,axiom,
! [M: nat,N: nat,F: nat > real] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( minus_minus_real @ ( F @ K2 ) @ ( F @ ( minus_minus_nat @ K2 @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) )
= ( minus_minus_real @ ( F @ N ) @ ( F @ M ) ) ) ) ).
% sum_telescope''
thf(fact_6907_cos__times__cos,axiom,
! [W: complex,Z: complex] :
( ( times_times_complex @ ( cos_complex @ W ) @ ( cos_complex @ Z ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( cos_complex @ ( minus_minus_complex @ W @ Z ) ) @ ( cos_complex @ ( plus_plus_complex @ W @ Z ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% cos_times_cos
thf(fact_6908_cos__times__cos,axiom,
! [W: real,Z: real] :
( ( times_times_real @ ( cos_real @ W ) @ ( cos_real @ Z ) )
= ( divide_divide_real @ ( plus_plus_real @ ( cos_real @ ( minus_minus_real @ W @ Z ) ) @ ( cos_real @ ( plus_plus_real @ W @ Z ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% cos_times_cos
thf(fact_6909_cos__plus__cos,axiom,
! [W: complex,Z: complex] :
( ( plus_plus_complex @ ( cos_complex @ W ) @ ( cos_complex @ Z ) )
= ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).
% cos_plus_cos
thf(fact_6910_cos__plus__cos,axiom,
! [W: real,Z: real] :
( ( plus_plus_real @ ( cos_real @ W ) @ ( cos_real @ Z ) )
= ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( cos_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( cos_real @ ( divide_divide_real @ ( minus_minus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% cos_plus_cos
thf(fact_6911_summable__partial__sum__bound,axiom,
! [F: nat > complex,E: real] :
( ( summable_complex @ F )
=> ( ( ord_less_real @ zero_zero_real @ E )
=> ~ ! [N10: nat] :
~ ! [M4: nat] :
( ( ord_less_eq_nat @ N10 @ M4 )
=> ! [N11: nat] : ( ord_less_real @ ( real_V1022390504157884413omplex @ ( groups2073611262835488442omplex @ F @ ( set_or1269000886237332187st_nat @ M4 @ N11 ) ) ) @ E ) ) ) ) ).
% summable_partial_sum_bound
thf(fact_6912_summable__partial__sum__bound,axiom,
! [F: nat > real,E: real] :
( ( summable_real @ F )
=> ( ( ord_less_real @ zero_zero_real @ E )
=> ~ ! [N10: nat] :
~ ! [M4: nat] :
( ( ord_less_eq_nat @ N10 @ M4 )
=> ! [N11: nat] : ( ord_less_real @ ( real_V7735802525324610683m_real @ ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ M4 @ N11 ) ) ) @ E ) ) ) ) ).
% summable_partial_sum_bound
thf(fact_6913_sin__gt__zero2,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ zero_zero_real @ ( sin_real @ X2 ) ) ) ) ).
% sin_gt_zero2
thf(fact_6914_sin__lt__zero,axiom,
! [X2: real] :
( ( ord_less_real @ pi @ X2 )
=> ( ( ord_less_real @ X2 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
=> ( ord_less_real @ ( sin_real @ X2 ) @ zero_zero_real ) ) ) ).
% sin_lt_zero
thf(fact_6915_sin__30,axiom,
( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
= ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% sin_30
thf(fact_6916_cos__double__less__one,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ X2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
=> ( ord_less_real @ ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) ) @ one_one_real ) ) ) ).
% cos_double_less_one
thf(fact_6917_cos__gt__zero,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ zero_zero_real @ ( cos_real @ X2 ) ) ) ) ).
% cos_gt_zero
thf(fact_6918_sin__monotone__2pi__le,axiom,
! [Y2: real,X2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ X2 )
=> ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( sin_real @ Y2 ) @ ( sin_real @ X2 ) ) ) ) ) ).
% sin_monotone_2pi_le
thf(fact_6919_sin__mono__le__eq,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
=> ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ ( sin_real @ X2 ) @ ( sin_real @ Y2 ) )
= ( ord_less_eq_real @ X2 @ Y2 ) ) ) ) ) ) ).
% sin_mono_le_eq
thf(fact_6920_sin__inj__pi,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
=> ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ( sin_real @ X2 )
= ( sin_real @ Y2 ) )
=> ( X2 = Y2 ) ) ) ) ) ) ).
% sin_inj_pi
thf(fact_6921_cos__60,axiom,
( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
= ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% cos_60
thf(fact_6922_mask__eq__sum__exp,axiom,
! [N: nat] :
( ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) @ one_one_Code_integer )
= ( groups7501900531339628137nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
@ ( collect_nat
@ ^ [Q4: nat] : ( ord_less_nat @ Q4 @ N ) ) ) ) ).
% mask_eq_sum_exp
thf(fact_6923_mask__eq__sum__exp,axiom,
! [N: nat] :
( ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int )
= ( groups3539618377306564664at_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
@ ( collect_nat
@ ^ [Q4: nat] : ( ord_less_nat @ Q4 @ N ) ) ) ) ).
% mask_eq_sum_exp
thf(fact_6924_mask__eq__sum__exp,axiom,
! [N: nat] :
( ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat )
= ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
@ ( collect_nat
@ ^ [Q4: nat] : ( ord_less_nat @ Q4 @ N ) ) ) ) ).
% mask_eq_sum_exp
thf(fact_6925_cos__one__2pi__int,axiom,
! [X2: real] :
( ( ( cos_real @ X2 )
= one_one_real )
= ( ? [X: int] :
( X2
= ( times_times_real @ ( times_times_real @ ( ring_1_of_int_real @ X ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) ) ) ) ).
% cos_one_2pi_int
thf(fact_6926_sum__gp__multiplied,axiom,
! [M: nat,N: nat,X2: complex] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( times_times_complex @ ( minus_minus_complex @ one_one_complex @ X2 ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N ) ) )
= ( minus_minus_complex @ ( power_power_complex @ X2 @ M ) @ ( power_power_complex @ X2 @ ( suc @ N ) ) ) ) ) ).
% sum_gp_multiplied
thf(fact_6927_sum__gp__multiplied,axiom,
! [M: nat,N: nat,X2: code_integer] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( times_3573771949741848930nteger @ ( minus_8373710615458151222nteger @ one_one_Code_integer @ X2 ) @ ( groups7501900531339628137nteger @ ( power_8256067586552552935nteger @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N ) ) )
= ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ X2 @ M ) @ ( power_8256067586552552935nteger @ X2 @ ( suc @ N ) ) ) ) ) ).
% sum_gp_multiplied
thf(fact_6928_sum__gp__multiplied,axiom,
! [M: nat,N: nat,X2: rat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( times_times_rat @ ( minus_minus_rat @ one_one_rat @ X2 ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N ) ) )
= ( minus_minus_rat @ ( power_power_rat @ X2 @ M ) @ ( power_power_rat @ X2 @ ( suc @ N ) ) ) ) ) ).
% sum_gp_multiplied
thf(fact_6929_sum__gp__multiplied,axiom,
! [M: nat,N: nat,X2: int] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( times_times_int @ ( minus_minus_int @ one_one_int @ X2 ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N ) ) )
= ( minus_minus_int @ ( power_power_int @ X2 @ M ) @ ( power_power_int @ X2 @ ( suc @ N ) ) ) ) ) ).
% sum_gp_multiplied
thf(fact_6930_sum__gp__multiplied,axiom,
! [M: nat,N: nat,X2: real] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( times_times_real @ ( minus_minus_real @ one_one_real @ X2 ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N ) ) )
= ( minus_minus_real @ ( power_power_real @ X2 @ M ) @ ( power_power_real @ X2 @ ( suc @ N ) ) ) ) ) ).
% sum_gp_multiplied
thf(fact_6931_sum_Oin__pairs,axiom,
! [G: nat > rat,M: nat,N: nat] :
( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
= ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( plus_plus_rat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% sum.in_pairs
thf(fact_6932_sum_Oin__pairs,axiom,
! [G: nat > int,M: nat,N: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
= ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( plus_plus_int @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% sum.in_pairs
thf(fact_6933_sum_Oin__pairs,axiom,
! [G: nat > nat,M: nat,N: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
= ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( plus_plus_nat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% sum.in_pairs
thf(fact_6934_sum_Oin__pairs,axiom,
! [G: nat > real,M: nat,N: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
= ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( plus_plus_real @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% sum.in_pairs
thf(fact_6935_cos__double__cos,axiom,
! [W: complex] :
( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ W ) )
= ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( power_power_complex @ ( cos_complex @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_complex ) ) ).
% cos_double_cos
thf(fact_6936_cos__double__cos,axiom,
! [W: real] :
( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ W ) )
= ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( cos_real @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_real ) ) ).
% cos_double_cos
thf(fact_6937_cos__treble__cos,axiom,
! [X2: complex] :
( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) @ X2 ) )
= ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( cos_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) @ ( cos_complex @ X2 ) ) ) ) ).
% cos_treble_cos
thf(fact_6938_cos__treble__cos,axiom,
! [X2: real] :
( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ X2 ) )
= ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( cos_real @ X2 ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( cos_real @ X2 ) ) ) ) ).
% cos_treble_cos
thf(fact_6939_sin__le__zero,axiom,
! [X2: real] :
( ( ord_less_eq_real @ pi @ X2 )
=> ( ( ord_less_real @ X2 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
=> ( ord_less_eq_real @ ( sin_real @ X2 ) @ zero_zero_real ) ) ) ).
% sin_le_zero
thf(fact_6940_sin__less__zero,axiom,
! [X2: real] :
( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X2 )
=> ( ( ord_less_real @ X2 @ zero_zero_real )
=> ( ord_less_real @ ( sin_real @ X2 ) @ zero_zero_real ) ) ) ).
% sin_less_zero
thf(fact_6941_sin__mono__less__eq,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
=> ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ ( sin_real @ X2 ) @ ( sin_real @ Y2 ) )
= ( ord_less_real @ X2 @ Y2 ) ) ) ) ) ) ).
% sin_mono_less_eq
thf(fact_6942_sin__monotone__2pi,axiom,
! [Y2: real,X2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
=> ( ( ord_less_real @ Y2 @ X2 )
=> ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ ( sin_real @ Y2 ) @ ( sin_real @ X2 ) ) ) ) ) ).
% sin_monotone_2pi
thf(fact_6943_sin__total,axiom,
! [Y2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ one_one_real )
=> ? [X3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
& ( ord_less_eq_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( sin_real @ X3 )
= Y2 )
& ! [Y4: real] :
( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y4 )
& ( ord_less_eq_real @ Y4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( sin_real @ Y4 )
= Y2 ) )
=> ( Y4 = X3 ) ) ) ) ) ).
% sin_total
thf(fact_6944_cos__gt__zero__pi,axiom,
! [X2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
=> ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ zero_zero_real @ ( cos_real @ X2 ) ) ) ) ).
% cos_gt_zero_pi
thf(fact_6945_cos__ge__zero,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
=> ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( cos_real @ X2 ) ) ) ) ).
% cos_ge_zero
thf(fact_6946_cos__one__2pi,axiom,
! [X2: real] :
( ( ( cos_real @ X2 )
= one_one_real )
= ( ? [X: nat] :
( X2
= ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ X ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
| ? [X: nat] :
( X2
= ( uminus_uminus_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ X ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) ) ) ) ) ).
% cos_one_2pi
thf(fact_6947_mask__eq__sum__exp__nat,axiom,
! [N: nat] :
( ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ ( suc @ zero_zero_nat ) )
= ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
@ ( collect_nat
@ ^ [Q4: nat] : ( ord_less_nat @ Q4 @ N ) ) ) ) ).
% mask_eq_sum_exp_nat
thf(fact_6948_gauss__sum__nat,axiom,
! [N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [X: nat] : X
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
= ( divide_divide_nat @ ( times_times_nat @ N @ ( suc @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% gauss_sum_nat
thf(fact_6949_sin__pi__divide__n__gt__0,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_less_real @ zero_zero_real @ ( sin_real @ ( divide_divide_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% sin_pi_divide_n_gt_0
thf(fact_6950_double__arith__series,axiom,
! [A: complex,D2: complex,N: nat] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) )
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( plus_plus_complex @ A @ ( times_times_complex @ ( semiri8010041392384452111omplex @ I3 ) @ D2 ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
= ( times_times_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N ) @ one_one_complex ) @ ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ A ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ D2 ) ) ) ) ).
% double_arith_series
thf(fact_6951_double__arith__series,axiom,
! [A: rat,D2: rat,N: nat] :
( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( plus_plus_rat @ A @ ( times_times_rat @ ( semiri681578069525770553at_rat @ I3 ) @ D2 ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
= ( times_times_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N ) @ one_one_rat ) @ ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ A ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N ) @ D2 ) ) ) ) ).
% double_arith_series
thf(fact_6952_double__arith__series,axiom,
! [A: int,D2: int,N: nat] :
( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( plus_plus_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ I3 ) @ D2 ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
= ( times_times_int @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ D2 ) ) ) ) ).
% double_arith_series
thf(fact_6953_double__arith__series,axiom,
! [A: nat,D2: nat,N: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) )
@ ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( plus_plus_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ I3 ) @ D2 ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
= ( times_times_nat @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N ) @ one_one_nat ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ D2 ) ) ) ) ).
% double_arith_series
thf(fact_6954_double__arith__series,axiom,
! [A: real,D2: real,N: nat] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( plus_plus_real @ A @ ( times_times_real @ ( semiri5074537144036343181t_real @ I3 ) @ D2 ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
= ( times_times_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N ) @ one_one_real ) @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ A ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ D2 ) ) ) ) ).
% double_arith_series
thf(fact_6955_double__gauss__sum,axiom,
! [N: nat] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( groups2073611262835488442omplex @ semiri8010041392384452111omplex @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
= ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N ) @ one_one_complex ) ) ) ).
% double_gauss_sum
thf(fact_6956_double__gauss__sum,axiom,
! [N: nat] :
( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( groups2906978787729119204at_rat @ semiri681578069525770553at_rat @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
= ( times_times_rat @ ( semiri681578069525770553at_rat @ N ) @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N ) @ one_one_rat ) ) ) ).
% double_gauss_sum
thf(fact_6957_double__gauss__sum,axiom,
! [N: nat] :
( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( groups3539618377306564664at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ) ).
% double_gauss_sum
thf(fact_6958_double__gauss__sum,axiom,
! [N: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( groups3542108847815614940at_nat @ semiri1316708129612266289at_nat @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N ) @ one_one_nat ) ) ) ).
% double_gauss_sum
thf(fact_6959_double__gauss__sum,axiom,
! [N: nat] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( groups6591440286371151544t_real @ semiri5074537144036343181t_real @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N ) @ one_one_real ) ) ) ).
% double_gauss_sum
thf(fact_6960_arith__series__nat,axiom,
! [A: nat,D2: nat,N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( plus_plus_nat @ A @ ( times_times_nat @ I3 @ D2 ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
= ( divide_divide_nat @ ( times_times_nat @ ( suc @ N ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( times_times_nat @ N @ D2 ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% arith_series_nat
thf(fact_6961_Sum__Icc__nat,axiom,
! [M: nat,N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [X: nat] : X
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( divide_divide_nat @ ( minus_minus_nat @ ( times_times_nat @ N @ ( plus_plus_nat @ N @ one_one_nat ) ) @ ( times_times_nat @ M @ ( minus_minus_nat @ M @ one_one_nat ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% Sum_Icc_nat
thf(fact_6962_double__gauss__sum__from__Suc__0,axiom,
! [N: nat] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( groups2073611262835488442omplex @ semiri8010041392384452111omplex @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) ) )
= ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N ) @ one_one_complex ) ) ) ).
% double_gauss_sum_from_Suc_0
thf(fact_6963_double__gauss__sum__from__Suc__0,axiom,
! [N: nat] :
( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( groups2906978787729119204at_rat @ semiri681578069525770553at_rat @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) ) )
= ( times_times_rat @ ( semiri681578069525770553at_rat @ N ) @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N ) @ one_one_rat ) ) ) ).
% double_gauss_sum_from_Suc_0
thf(fact_6964_double__gauss__sum__from__Suc__0,axiom,
! [N: nat] :
( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( groups3539618377306564664at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ) ).
% double_gauss_sum_from_Suc_0
thf(fact_6965_double__gauss__sum__from__Suc__0,axiom,
! [N: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( groups3542108847815614940at_nat @ semiri1316708129612266289at_nat @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N ) @ one_one_nat ) ) ) ).
% double_gauss_sum_from_Suc_0
thf(fact_6966_double__gauss__sum__from__Suc__0,axiom,
! [N: nat] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( groups6591440286371151544t_real @ semiri5074537144036343181t_real @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N ) @ one_one_real ) ) ) ).
% double_gauss_sum_from_Suc_0
thf(fact_6967_arith__series,axiom,
! [A: int,D2: int,N: nat] :
( ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( plus_plus_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ I3 ) @ D2 ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
= ( divide_divide_int @ ( times_times_int @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ D2 ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% arith_series
thf(fact_6968_arith__series,axiom,
! [A: nat,D2: nat,N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( plus_plus_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ I3 ) @ D2 ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
= ( divide_divide_nat @ ( times_times_nat @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N ) @ one_one_nat ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ D2 ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% arith_series
thf(fact_6969_gauss__sum,axiom,
! [N: nat] :
( ( groups3539618377306564664at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
= ( divide_divide_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% gauss_sum
thf(fact_6970_gauss__sum,axiom,
! [N: nat] :
( ( groups3542108847815614940at_nat @ semiri1316708129612266289at_nat @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
= ( divide_divide_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N ) @ one_one_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% gauss_sum
thf(fact_6971_sum__gp__offset,axiom,
! [X2: complex,M: nat,N: nat] :
( ( ( X2 = one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N ) ) )
= ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N ) @ one_one_complex ) ) )
& ( ( X2 != one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N ) ) )
= ( divide1717551699836669952omplex @ ( times_times_complex @ ( power_power_complex @ X2 @ M ) @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X2 @ ( suc @ N ) ) ) ) @ ( minus_minus_complex @ one_one_complex @ X2 ) ) ) ) ) ).
% sum_gp_offset
thf(fact_6972_sum__gp__offset,axiom,
! [X2: rat,M: nat,N: nat] :
( ( ( X2 = one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N ) ) )
= ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N ) @ one_one_rat ) ) )
& ( ( X2 != one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N ) ) )
= ( divide_divide_rat @ ( times_times_rat @ ( power_power_rat @ X2 @ M ) @ ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X2 @ ( suc @ N ) ) ) ) @ ( minus_minus_rat @ one_one_rat @ X2 ) ) ) ) ) ).
% sum_gp_offset
thf(fact_6973_sum__gp__offset,axiom,
! [X2: real,M: nat,N: nat] :
( ( ( X2 = one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N ) ) )
= ( plus_plus_real @ ( semiri5074537144036343181t_real @ N ) @ one_one_real ) ) )
& ( ( X2 != one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N ) ) )
= ( divide_divide_real @ ( times_times_real @ ( power_power_real @ X2 @ M ) @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ ( suc @ N ) ) ) ) @ ( minus_minus_real @ one_one_real @ X2 ) ) ) ) ) ).
% sum_gp_offset
thf(fact_6974_sin__zero__iff__int,axiom,
! [X2: real] :
( ( ( sin_real @ X2 )
= zero_zero_real )
= ( ? [I3: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ I3 )
& ( X2
= ( times_times_real @ ( ring_1_of_int_real @ I3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% sin_zero_iff_int
thf(fact_6975_cos__zero__iff__int,axiom,
! [X2: real] :
( ( ( cos_real @ X2 )
= zero_zero_real )
= ( ? [I3: int] :
( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ I3 )
& ( X2
= ( times_times_real @ ( ring_1_of_int_real @ I3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% cos_zero_iff_int
thf(fact_6976_sin__zero__lemma,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ( sin_real @ X2 )
= zero_zero_real )
=> ? [N2: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( X2
= ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% sin_zero_lemma
thf(fact_6977_gauss__sum__from__Suc__0,axiom,
! [N: nat] :
( ( groups3539618377306564664at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) )
= ( divide_divide_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% gauss_sum_from_Suc_0
thf(fact_6978_gauss__sum__from__Suc__0,axiom,
! [N: nat] :
( ( groups3542108847815614940at_nat @ semiri1316708129612266289at_nat @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) )
= ( divide_divide_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N ) @ one_one_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% gauss_sum_from_Suc_0
thf(fact_6979_sin__zero__iff,axiom,
! [X2: real] :
( ( ( sin_real @ X2 )
= zero_zero_real )
= ( ? [N3: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 )
& ( X2
= ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) )
| ? [N3: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 )
& ( X2
= ( uminus_uminus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% sin_zero_iff
thf(fact_6980_cos__zero__lemma,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ( cos_real @ X2 )
= zero_zero_real )
=> ? [N2: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( X2
= ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% cos_zero_lemma
thf(fact_6981_cos__zero__iff,axiom,
! [X2: real] :
( ( ( cos_real @ X2 )
= zero_zero_real )
= ( ? [N3: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 )
& ( X2
= ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) )
| ? [N3: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 )
& ( X2
= ( uminus_uminus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% cos_zero_iff
thf(fact_6982_lemma__termdiff2,axiom,
! [H2: complex,Z: complex,N: nat] :
( ( H2 != zero_zero_complex )
=> ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ ( plus_plus_complex @ Z @ H2 ) @ N ) @ ( power_power_complex @ Z @ N ) ) @ H2 ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ ( power_power_complex @ Z @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) )
= ( times_times_complex @ H2
@ ( groups2073611262835488442omplex
@ ^ [P3: nat] :
( groups2073611262835488442omplex
@ ^ [Q4: nat] : ( times_times_complex @ ( power_power_complex @ ( plus_plus_complex @ Z @ H2 ) @ Q4 ) @ ( power_power_complex @ Z @ ( minus_minus_nat @ ( minus_minus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Q4 ) ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ P3 ) ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% lemma_termdiff2
thf(fact_6983_lemma__termdiff2,axiom,
! [H2: rat,Z: rat,N: nat] :
( ( H2 != zero_zero_rat )
=> ( ( minus_minus_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( power_power_rat @ ( plus_plus_rat @ Z @ H2 ) @ N ) @ ( power_power_rat @ Z @ N ) ) @ H2 ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N ) @ ( power_power_rat @ Z @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) )
= ( times_times_rat @ H2
@ ( groups2906978787729119204at_rat
@ ^ [P3: nat] :
( groups2906978787729119204at_rat
@ ^ [Q4: nat] : ( times_times_rat @ ( power_power_rat @ ( plus_plus_rat @ Z @ H2 ) @ Q4 ) @ ( power_power_rat @ Z @ ( minus_minus_nat @ ( minus_minus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Q4 ) ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ P3 ) ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% lemma_termdiff2
thf(fact_6984_lemma__termdiff2,axiom,
! [H2: real,Z: real,N: nat] :
( ( H2 != zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ Z @ H2 ) @ N ) @ ( power_power_real @ Z @ N ) ) @ H2 ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ Z @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) )
= ( times_times_real @ H2
@ ( groups6591440286371151544t_real
@ ^ [P3: nat] :
( groups6591440286371151544t_real
@ ^ [Q4: nat] : ( times_times_real @ ( power_power_real @ ( plus_plus_real @ Z @ H2 ) @ Q4 ) @ ( power_power_real @ Z @ ( minus_minus_nat @ ( minus_minus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Q4 ) ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ P3 ) ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% lemma_termdiff2
thf(fact_6985_tan__double,axiom,
! [X2: complex] :
( ( ( cos_complex @ X2 )
!= zero_zero_complex )
=> ( ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X2 ) )
!= zero_zero_complex )
=> ( ( tan_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X2 ) )
= ( divide1717551699836669952omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( tan_complex @ X2 ) ) @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ ( tan_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% tan_double
thf(fact_6986_tan__double,axiom,
! [X2: real] :
( ( ( cos_real @ X2 )
!= zero_zero_real )
=> ( ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) )
!= zero_zero_real )
=> ( ( tan_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) )
= ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( tan_real @ X2 ) ) @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% tan_double
thf(fact_6987_complex__unimodular__polar,axiom,
! [Z: complex] :
( ( ( real_V1022390504157884413omplex @ Z )
= one_one_real )
=> ~ ! [T5: real] :
( ( ord_less_eq_real @ zero_zero_real @ T5 )
=> ( ( ord_less_real @ T5 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
=> ( Z
!= ( complex2 @ ( cos_real @ T5 ) @ ( sin_real @ T5 ) ) ) ) ) ) ).
% complex_unimodular_polar
thf(fact_6988_dbl__inc__simps_I3_J,axiom,
( ( neg_nu8557863876264182079omplex @ one_one_complex )
= ( numera6690914467698888265omplex @ ( bit1 @ one ) ) ) ).
% dbl_inc_simps(3)
thf(fact_6989_dbl__inc__simps_I3_J,axiom,
( ( neg_nu8295874005876285629c_real @ one_one_real )
= ( numeral_numeral_real @ ( bit1 @ one ) ) ) ).
% dbl_inc_simps(3)
thf(fact_6990_dbl__inc__simps_I3_J,axiom,
( ( neg_nu5219082963157363817nc_rat @ one_one_rat )
= ( numeral_numeral_rat @ ( bit1 @ one ) ) ) ).
% dbl_inc_simps(3)
thf(fact_6991_dbl__inc__simps_I3_J,axiom,
( ( neg_nu5851722552734809277nc_int @ one_one_int )
= ( numeral_numeral_int @ ( bit1 @ one ) ) ) ).
% dbl_inc_simps(3)
thf(fact_6992_geometric__deriv__sums,axiom,
! [Z: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ Z ) @ one_one_real )
=> ( sums_real
@ ^ [N3: nat] : ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) @ ( power_power_real @ Z @ N3 ) )
@ ( divide_divide_real @ one_one_real @ ( power_power_real @ ( minus_minus_real @ one_one_real @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% geometric_deriv_sums
thf(fact_6993_geometric__deriv__sums,axiom,
! [Z: complex] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ Z ) @ one_one_real )
=> ( sums_complex
@ ^ [N3: nat] : ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ N3 ) ) @ ( power_power_complex @ Z @ N3 ) )
@ ( divide1717551699836669952omplex @ one_one_complex @ ( power_power_complex @ ( minus_minus_complex @ one_one_complex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% geometric_deriv_sums
thf(fact_6994_tan__pi,axiom,
( ( tan_real @ pi )
= zero_zero_real ) ).
% tan_pi
thf(fact_6995_tan__zero,axiom,
( ( tan_complex @ zero_zero_complex )
= zero_zero_complex ) ).
% tan_zero
thf(fact_6996_tan__zero,axiom,
( ( tan_real @ zero_zero_real )
= zero_zero_real ) ).
% tan_zero
thf(fact_6997_tan__periodic__pi,axiom,
! [X2: real] :
( ( tan_real @ ( plus_plus_real @ X2 @ pi ) )
= ( tan_real @ X2 ) ) ).
% tan_periodic_pi
thf(fact_6998_sums__zero,axiom,
( sums_complex
@ ^ [N3: nat] : zero_zero_complex
@ zero_zero_complex ) ).
% sums_zero
thf(fact_6999_sums__zero,axiom,
( sums_real
@ ^ [N3: nat] : zero_zero_real
@ zero_zero_real ) ).
% sums_zero
thf(fact_7000_sums__zero,axiom,
( sums_nat
@ ^ [N3: nat] : zero_zero_nat
@ zero_zero_nat ) ).
% sums_zero
thf(fact_7001_sums__zero,axiom,
( sums_int
@ ^ [N3: nat] : zero_zero_int
@ zero_zero_int ) ).
% sums_zero
thf(fact_7002_lessThan__subset__iff,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_eq_set_rat @ ( set_ord_lessThan_rat @ X2 ) @ ( set_ord_lessThan_rat @ Y2 ) )
= ( ord_less_eq_rat @ X2 @ Y2 ) ) ).
% lessThan_subset_iff
thf(fact_7003_lessThan__subset__iff,axiom,
! [X2: num,Y2: num] :
( ( ord_less_eq_set_num @ ( set_ord_lessThan_num @ X2 ) @ ( set_ord_lessThan_num @ Y2 ) )
= ( ord_less_eq_num @ X2 @ Y2 ) ) ).
% lessThan_subset_iff
thf(fact_7004_lessThan__subset__iff,axiom,
! [X2: int,Y2: int] :
( ( ord_less_eq_set_int @ ( set_ord_lessThan_int @ X2 ) @ ( set_ord_lessThan_int @ Y2 ) )
= ( ord_less_eq_int @ X2 @ Y2 ) ) ).
% lessThan_subset_iff
thf(fact_7005_lessThan__subset__iff,axiom,
! [X2: nat,Y2: nat] :
( ( ord_less_eq_set_nat @ ( set_ord_lessThan_nat @ X2 ) @ ( set_ord_lessThan_nat @ Y2 ) )
= ( ord_less_eq_nat @ X2 @ Y2 ) ) ).
% lessThan_subset_iff
thf(fact_7006_lessThan__subset__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_set_real @ ( set_or5984915006950818249n_real @ X2 ) @ ( set_or5984915006950818249n_real @ Y2 ) )
= ( ord_less_eq_real @ X2 @ Y2 ) ) ).
% lessThan_subset_iff
thf(fact_7007_dbl__inc__simps_I2_J,axiom,
( ( neg_nu8557863876264182079omplex @ zero_zero_complex )
= one_one_complex ) ).
% dbl_inc_simps(2)
thf(fact_7008_dbl__inc__simps_I2_J,axiom,
( ( neg_nu8295874005876285629c_real @ zero_zero_real )
= one_one_real ) ).
% dbl_inc_simps(2)
thf(fact_7009_dbl__inc__simps_I2_J,axiom,
( ( neg_nu5219082963157363817nc_rat @ zero_zero_rat )
= one_one_rat ) ).
% dbl_inc_simps(2)
thf(fact_7010_dbl__inc__simps_I2_J,axiom,
( ( neg_nu5851722552734809277nc_int @ zero_zero_int )
= one_one_int ) ).
% dbl_inc_simps(2)
thf(fact_7011_dbl__inc__simps_I4_J,axiom,
( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% dbl_inc_simps(4)
thf(fact_7012_dbl__inc__simps_I4_J,axiom,
( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% dbl_inc_simps(4)
thf(fact_7013_dbl__inc__simps_I4_J,axiom,
( ( neg_nu8557863876264182079omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% dbl_inc_simps(4)
thf(fact_7014_dbl__inc__simps_I4_J,axiom,
( ( neg_nu5219082963157363817nc_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ one_one_rat ) ) ).
% dbl_inc_simps(4)
thf(fact_7015_dbl__inc__simps_I4_J,axiom,
( ( neg_nu5831290666863070958nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% dbl_inc_simps(4)
thf(fact_7016_dbl__inc__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu8557863876264182079omplex @ ( numera6690914467698888265omplex @ K ) )
= ( numera6690914467698888265omplex @ ( bit1 @ K ) ) ) ).
% dbl_inc_simps(5)
thf(fact_7017_dbl__inc__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu8295874005876285629c_real @ ( numeral_numeral_real @ K ) )
= ( numeral_numeral_real @ ( bit1 @ K ) ) ) ).
% dbl_inc_simps(5)
thf(fact_7018_dbl__inc__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu5219082963157363817nc_rat @ ( numeral_numeral_rat @ K ) )
= ( numeral_numeral_rat @ ( bit1 @ K ) ) ) ).
% dbl_inc_simps(5)
thf(fact_7019_dbl__inc__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu5851722552734809277nc_int @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_int @ ( bit1 @ K ) ) ) ).
% dbl_inc_simps(5)
thf(fact_7020_sum_OlessThan__Suc,axiom,
! [G: nat > rat,N: nat] :
( ( groups2906978787729119204at_rat @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_ord_lessThan_nat @ N ) ) @ ( G @ N ) ) ) ).
% sum.lessThan_Suc
thf(fact_7021_sum_OlessThan__Suc,axiom,
! [G: nat > int,N: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_ord_lessThan_nat @ N ) ) @ ( G @ N ) ) ) ).
% sum.lessThan_Suc
thf(fact_7022_sum_OlessThan__Suc,axiom,
! [G: nat > nat,N: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_ord_lessThan_nat @ N ) ) @ ( G @ N ) ) ) ).
% sum.lessThan_Suc
thf(fact_7023_sum_OlessThan__Suc,axiom,
! [G: nat > real,N: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_ord_lessThan_nat @ N ) ) @ ( G @ N ) ) ) ).
% sum.lessThan_Suc
thf(fact_7024_tan__npi,axiom,
! [N: nat] :
( ( tan_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
= zero_zero_real ) ).
% tan_npi
thf(fact_7025_tan__periodic__n,axiom,
! [X2: real,N: num] :
( ( tan_real @ ( plus_plus_real @ X2 @ ( times_times_real @ ( numeral_numeral_real @ N ) @ pi ) ) )
= ( tan_real @ X2 ) ) ).
% tan_periodic_n
thf(fact_7026_tan__periodic__nat,axiom,
! [X2: real,N: nat] :
( ( tan_real @ ( plus_plus_real @ X2 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) ) )
= ( tan_real @ X2 ) ) ).
% tan_periodic_nat
thf(fact_7027_tan__periodic__int,axiom,
! [X2: real,I: int] :
( ( tan_real @ ( plus_plus_real @ X2 @ ( times_times_real @ ( ring_1_of_int_real @ I ) @ pi ) ) )
= ( tan_real @ X2 ) ) ).
% tan_periodic_int
thf(fact_7028_dbl__inc__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
= ( uminus_uminus_real @ ( neg_nu6075765906172075777c_real @ ( numeral_numeral_real @ K ) ) ) ) ).
% dbl_inc_simps(1)
thf(fact_7029_dbl__inc__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_int @ ( neg_nu3811975205180677377ec_int @ ( numeral_numeral_int @ K ) ) ) ) ).
% dbl_inc_simps(1)
thf(fact_7030_dbl__inc__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu8557863876264182079omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
= ( uminus1482373934393186551omplex @ ( neg_nu6511756317524482435omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).
% dbl_inc_simps(1)
thf(fact_7031_dbl__inc__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu5219082963157363817nc_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
= ( uminus_uminus_rat @ ( neg_nu3179335615603231917ec_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).
% dbl_inc_simps(1)
thf(fact_7032_dbl__inc__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu5831290666863070958nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
= ( uminus1351360451143612070nteger @ ( neg_nu7757733837767384882nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).
% dbl_inc_simps(1)
thf(fact_7033_dbl__dec__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu6075765906172075777c_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
= ( uminus_uminus_real @ ( neg_nu8295874005876285629c_real @ ( numeral_numeral_real @ K ) ) ) ) ).
% dbl_dec_simps(1)
thf(fact_7034_dbl__dec__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu3811975205180677377ec_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_int @ ( neg_nu5851722552734809277nc_int @ ( numeral_numeral_int @ K ) ) ) ) ).
% dbl_dec_simps(1)
thf(fact_7035_dbl__dec__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu6511756317524482435omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
= ( uminus1482373934393186551omplex @ ( neg_nu8557863876264182079omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).
% dbl_dec_simps(1)
thf(fact_7036_dbl__dec__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu3179335615603231917ec_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
= ( uminus_uminus_rat @ ( neg_nu5219082963157363817nc_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).
% dbl_dec_simps(1)
thf(fact_7037_dbl__dec__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu7757733837767384882nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
= ( uminus1351360451143612070nteger @ ( neg_nu5831290666863070958nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).
% dbl_dec_simps(1)
thf(fact_7038_powser__sums__zero__iff,axiom,
! [A: nat > complex,X2: complex] :
( ( sums_complex
@ ^ [N3: nat] : ( times_times_complex @ ( A @ N3 ) @ ( power_power_complex @ zero_zero_complex @ N3 ) )
@ X2 )
= ( ( A @ zero_zero_nat )
= X2 ) ) ).
% powser_sums_zero_iff
thf(fact_7039_powser__sums__zero__iff,axiom,
! [A: nat > real,X2: real] :
( ( sums_real
@ ^ [N3: nat] : ( times_times_real @ ( A @ N3 ) @ ( power_power_real @ zero_zero_real @ N3 ) )
@ X2 )
= ( ( A @ zero_zero_nat )
= X2 ) ) ).
% powser_sums_zero_iff
thf(fact_7040_norm__cos__sin,axiom,
! [T2: real] :
( ( real_V1022390504157884413omplex @ ( complex2 @ ( cos_real @ T2 ) @ ( sin_real @ T2 ) ) )
= one_one_real ) ).
% norm_cos_sin
thf(fact_7041_tan__periodic,axiom,
! [X2: real] :
( ( tan_real @ ( plus_plus_real @ X2 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
= ( tan_real @ X2 ) ) ).
% tan_periodic
thf(fact_7042_Complex__sum_H,axiom,
! [F: nat > real,S3: set_nat] :
( ( groups2073611262835488442omplex
@ ^ [X: nat] : ( complex2 @ ( F @ X ) @ zero_zero_real )
@ S3 )
= ( complex2 @ ( groups6591440286371151544t_real @ F @ S3 ) @ zero_zero_real ) ) ).
% Complex_sum'
thf(fact_7043_Complex__sum_H,axiom,
! [F: complex > real,S3: set_complex] :
( ( groups7754918857620584856omplex
@ ^ [X: complex] : ( complex2 @ ( F @ X ) @ zero_zero_real )
@ S3 )
= ( complex2 @ ( groups5808333547571424918x_real @ F @ S3 ) @ zero_zero_real ) ) ).
% Complex_sum'
thf(fact_7044_int__sum,axiom,
! [F: int > nat,A2: set_int] :
( ( semiri1314217659103216013at_int @ ( groups4541462559716669496nt_nat @ F @ A2 ) )
= ( groups4538972089207619220nt_int
@ ^ [X: int] : ( semiri1314217659103216013at_int @ ( F @ X ) )
@ A2 ) ) ).
% int_sum
thf(fact_7045_int__sum,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri1314217659103216013at_int @ ( groups3542108847815614940at_nat @ F @ A2 ) )
= ( groups3539618377306564664at_int
@ ^ [X: nat] : ( semiri1314217659103216013at_int @ ( F @ X ) )
@ A2 ) ) ).
% int_sum
thf(fact_7046_sum__diff__distrib,axiom,
! [Q: real > nat,P: real > nat,N: real] :
( ! [X3: real] : ( ord_less_eq_nat @ ( Q @ X3 ) @ ( P @ X3 ) )
=> ( ( minus_minus_nat @ ( groups1935376822645274424al_nat @ P @ ( set_or5984915006950818249n_real @ N ) ) @ ( groups1935376822645274424al_nat @ Q @ ( set_or5984915006950818249n_real @ N ) ) )
= ( groups1935376822645274424al_nat
@ ^ [X: real] : ( minus_minus_nat @ ( P @ X ) @ ( Q @ X ) )
@ ( set_or5984915006950818249n_real @ N ) ) ) ) ).
% sum_diff_distrib
thf(fact_7047_sum__diff__distrib,axiom,
! [Q: nat > nat,P: nat > nat,N: nat] :
( ! [X3: nat] : ( ord_less_eq_nat @ ( Q @ X3 ) @ ( P @ X3 ) )
=> ( ( minus_minus_nat @ ( groups3542108847815614940at_nat @ P @ ( set_ord_lessThan_nat @ N ) ) @ ( groups3542108847815614940at_nat @ Q @ ( set_ord_lessThan_nat @ N ) ) )
= ( groups3542108847815614940at_nat
@ ^ [X: nat] : ( minus_minus_nat @ ( P @ X ) @ ( Q @ X ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% sum_diff_distrib
thf(fact_7048_sums__0,axiom,
! [F: nat > complex] :
( ! [N2: nat] :
( ( F @ N2 )
= zero_zero_complex )
=> ( sums_complex @ F @ zero_zero_complex ) ) ).
% sums_0
thf(fact_7049_sums__0,axiom,
! [F: nat > real] :
( ! [N2: nat] :
( ( F @ N2 )
= zero_zero_real )
=> ( sums_real @ F @ zero_zero_real ) ) ).
% sums_0
thf(fact_7050_sums__0,axiom,
! [F: nat > nat] :
( ! [N2: nat] :
( ( F @ N2 )
= zero_zero_nat )
=> ( sums_nat @ F @ zero_zero_nat ) ) ).
% sums_0
thf(fact_7051_sums__0,axiom,
! [F: nat > int] :
( ! [N2: nat] :
( ( F @ N2 )
= zero_zero_int )
=> ( sums_int @ F @ zero_zero_int ) ) ).
% sums_0
thf(fact_7052_sums__of__real__iff,axiom,
! [F: nat > real,C: real] :
( ( sums_real
@ ^ [N3: nat] : ( real_V1803761363581548252l_real @ ( F @ N3 ) )
@ ( real_V1803761363581548252l_real @ C ) )
= ( sums_real @ F @ C ) ) ).
% sums_of_real_iff
thf(fact_7053_sums__of__real__iff,axiom,
! [F: nat > real,C: real] :
( ( sums_complex
@ ^ [N3: nat] : ( real_V4546457046886955230omplex @ ( F @ N3 ) )
@ ( real_V4546457046886955230omplex @ C ) )
= ( sums_real @ F @ C ) ) ).
% sums_of_real_iff
thf(fact_7054_sums__of__real,axiom,
! [X7: nat > real,A: real] :
( ( sums_real @ X7 @ A )
=> ( sums_real
@ ^ [N3: nat] : ( real_V1803761363581548252l_real @ ( X7 @ N3 ) )
@ ( real_V1803761363581548252l_real @ A ) ) ) ).
% sums_of_real
thf(fact_7055_sums__of__real,axiom,
! [X7: nat > real,A: real] :
( ( sums_real @ X7 @ A )
=> ( sums_complex
@ ^ [N3: nat] : ( real_V4546457046886955230omplex @ ( X7 @ N3 ) )
@ ( real_V4546457046886955230omplex @ A ) ) ) ).
% sums_of_real
thf(fact_7056_sums__le,axiom,
! [F: nat > real,G: nat > real,S3: real,T2: real] :
( ! [N2: nat] : ( ord_less_eq_real @ ( F @ N2 ) @ ( G @ N2 ) )
=> ( ( sums_real @ F @ S3 )
=> ( ( sums_real @ G @ T2 )
=> ( ord_less_eq_real @ S3 @ T2 ) ) ) ) ).
% sums_le
thf(fact_7057_sums__le,axiom,
! [F: nat > nat,G: nat > nat,S3: nat,T2: nat] :
( ! [N2: nat] : ( ord_less_eq_nat @ ( F @ N2 ) @ ( G @ N2 ) )
=> ( ( sums_nat @ F @ S3 )
=> ( ( sums_nat @ G @ T2 )
=> ( ord_less_eq_nat @ S3 @ T2 ) ) ) ) ).
% sums_le
thf(fact_7058_sums__le,axiom,
! [F: nat > int,G: nat > int,S3: int,T2: int] :
( ! [N2: nat] : ( ord_less_eq_int @ ( F @ N2 ) @ ( G @ N2 ) )
=> ( ( sums_int @ F @ S3 )
=> ( ( sums_int @ G @ T2 )
=> ( ord_less_eq_int @ S3 @ T2 ) ) ) ) ).
% sums_le
thf(fact_7059_complex__of__real__def,axiom,
( real_V4546457046886955230omplex
= ( ^ [R5: real] : ( complex2 @ R5 @ zero_zero_real ) ) ) ).
% complex_of_real_def
thf(fact_7060_complex__of__real__code,axiom,
( real_V4546457046886955230omplex
= ( ^ [X: real] : ( complex2 @ X @ zero_zero_real ) ) ) ).
% complex_of_real_code
thf(fact_7061_complex__eq__cancel__iff2,axiom,
! [X2: real,Y2: real,Xa3: real] :
( ( ( complex2 @ X2 @ Y2 )
= ( real_V4546457046886955230omplex @ Xa3 ) )
= ( ( X2 = Xa3 )
& ( Y2 = zero_zero_real ) ) ) ).
% complex_eq_cancel_iff2
thf(fact_7062_Complex__eq__0,axiom,
! [A: real,B: real] :
( ( ( complex2 @ A @ B )
= zero_zero_complex )
= ( ( A = zero_zero_real )
& ( B = zero_zero_real ) ) ) ).
% Complex_eq_0
thf(fact_7063_zero__complex_Ocode,axiom,
( zero_zero_complex
= ( complex2 @ zero_zero_real @ zero_zero_real ) ) ).
% zero_complex.code
thf(fact_7064_Complex__mult__complex__of__real,axiom,
! [X2: real,Y2: real,R2: real] :
( ( times_times_complex @ ( complex2 @ X2 @ Y2 ) @ ( real_V4546457046886955230omplex @ R2 ) )
= ( complex2 @ ( times_times_real @ X2 @ R2 ) @ ( times_times_real @ Y2 @ R2 ) ) ) ).
% Complex_mult_complex_of_real
thf(fact_7065_complex__of__real__mult__Complex,axiom,
! [R2: real,X2: real,Y2: real] :
( ( times_times_complex @ ( real_V4546457046886955230omplex @ R2 ) @ ( complex2 @ X2 @ Y2 ) )
= ( complex2 @ ( times_times_real @ R2 @ X2 ) @ ( times_times_real @ R2 @ Y2 ) ) ) ).
% complex_of_real_mult_Complex
thf(fact_7066_sums__single,axiom,
! [I: nat,F: nat > complex] :
( sums_complex
@ ^ [R5: nat] : ( if_complex @ ( R5 = I ) @ ( F @ R5 ) @ zero_zero_complex )
@ ( F @ I ) ) ).
% sums_single
thf(fact_7067_sums__single,axiom,
! [I: nat,F: nat > real] :
( sums_real
@ ^ [R5: nat] : ( if_real @ ( R5 = I ) @ ( F @ R5 ) @ zero_zero_real )
@ ( F @ I ) ) ).
% sums_single
thf(fact_7068_sums__single,axiom,
! [I: nat,F: nat > nat] :
( sums_nat
@ ^ [R5: nat] : ( if_nat @ ( R5 = I ) @ ( F @ R5 ) @ zero_zero_nat )
@ ( F @ I ) ) ).
% sums_single
thf(fact_7069_sums__single,axiom,
! [I: nat,F: nat > int] :
( sums_int
@ ^ [R5: nat] : ( if_int @ ( R5 = I ) @ ( F @ R5 ) @ zero_zero_int )
@ ( F @ I ) ) ).
% sums_single
thf(fact_7070_sums__add,axiom,
! [F: nat > real,A: real,G: nat > real,B: real] :
( ( sums_real @ F @ A )
=> ( ( sums_real @ G @ B )
=> ( sums_real
@ ^ [N3: nat] : ( plus_plus_real @ ( F @ N3 ) @ ( G @ N3 ) )
@ ( plus_plus_real @ A @ B ) ) ) ) ).
% sums_add
thf(fact_7071_sums__add,axiom,
! [F: nat > nat,A: nat,G: nat > nat,B: nat] :
( ( sums_nat @ F @ A )
=> ( ( sums_nat @ G @ B )
=> ( sums_nat
@ ^ [N3: nat] : ( plus_plus_nat @ ( F @ N3 ) @ ( G @ N3 ) )
@ ( plus_plus_nat @ A @ B ) ) ) ) ).
% sums_add
thf(fact_7072_sums__add,axiom,
! [F: nat > int,A: int,G: nat > int,B: int] :
( ( sums_int @ F @ A )
=> ( ( sums_int @ G @ B )
=> ( sums_int
@ ^ [N3: nat] : ( plus_plus_int @ ( F @ N3 ) @ ( G @ N3 ) )
@ ( plus_plus_int @ A @ B ) ) ) ) ).
% sums_add
thf(fact_7073_sums__mult2,axiom,
! [F: nat > real,A: real,C: real] :
( ( sums_real @ F @ A )
=> ( sums_real
@ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ C )
@ ( times_times_real @ A @ C ) ) ) ).
% sums_mult2
thf(fact_7074_sums__mult,axiom,
! [F: nat > real,A: real,C: real] :
( ( sums_real @ F @ A )
=> ( sums_real
@ ^ [N3: nat] : ( times_times_real @ C @ ( F @ N3 ) )
@ ( times_times_real @ C @ A ) ) ) ).
% sums_mult
thf(fact_7075_sums__diff,axiom,
! [F: nat > real,A: real,G: nat > real,B: real] :
( ( sums_real @ F @ A )
=> ( ( sums_real @ G @ B )
=> ( sums_real
@ ^ [N3: nat] : ( minus_minus_real @ ( F @ N3 ) @ ( G @ N3 ) )
@ ( minus_minus_real @ A @ B ) ) ) ) ).
% sums_diff
thf(fact_7076_sums__divide,axiom,
! [F: nat > complex,A: complex,C: complex] :
( ( sums_complex @ F @ A )
=> ( sums_complex
@ ^ [N3: nat] : ( divide1717551699836669952omplex @ ( F @ N3 ) @ C )
@ ( divide1717551699836669952omplex @ A @ C ) ) ) ).
% sums_divide
thf(fact_7077_sums__divide,axiom,
! [F: nat > real,A: real,C: real] :
( ( sums_real @ F @ A )
=> ( sums_real
@ ^ [N3: nat] : ( divide_divide_real @ ( F @ N3 ) @ C )
@ ( divide_divide_real @ A @ C ) ) ) ).
% sums_divide
thf(fact_7078_sums__minus,axiom,
! [F: nat > real,A: real] :
( ( sums_real @ F @ A )
=> ( sums_real
@ ^ [N3: nat] : ( uminus_uminus_real @ ( F @ N3 ) )
@ ( uminus_uminus_real @ A ) ) ) ).
% sums_minus
thf(fact_7079_sums__minus,axiom,
! [F: nat > complex,A: complex] :
( ( sums_complex @ F @ A )
=> ( sums_complex
@ ^ [N3: nat] : ( uminus1482373934393186551omplex @ ( F @ N3 ) )
@ ( uminus1482373934393186551omplex @ A ) ) ) ).
% sums_minus
thf(fact_7080_sums__sum,axiom,
! [I5: set_real,F: real > nat > real,X2: real > real] :
( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( sums_real @ ( F @ I2 ) @ ( X2 @ I2 ) ) )
=> ( sums_real
@ ^ [N3: nat] :
( groups8097168146408367636l_real
@ ^ [I3: real] : ( F @ I3 @ N3 )
@ I5 )
@ ( groups8097168146408367636l_real @ X2 @ I5 ) ) ) ).
% sums_sum
thf(fact_7081_sums__sum,axiom,
! [I5: set_int,F: int > nat > real,X2: int > real] :
( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( sums_real @ ( F @ I2 ) @ ( X2 @ I2 ) ) )
=> ( sums_real
@ ^ [N3: nat] :
( groups8778361861064173332t_real
@ ^ [I3: int] : ( F @ I3 @ N3 )
@ I5 )
@ ( groups8778361861064173332t_real @ X2 @ I5 ) ) ) ).
% sums_sum
thf(fact_7082_sums__sum,axiom,
! [I5: set_VEBT_VEBT,F: vEBT_VEBT > nat > real,X2: vEBT_VEBT > real] :
( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ I5 )
=> ( sums_real @ ( F @ I2 ) @ ( X2 @ I2 ) ) )
=> ( sums_real
@ ^ [N3: nat] :
( groups2240296850493347238T_real
@ ^ [I3: vEBT_VEBT] : ( F @ I3 @ N3 )
@ I5 )
@ ( groups2240296850493347238T_real @ X2 @ I5 ) ) ) ).
% sums_sum
thf(fact_7083_sums__sum,axiom,
! [I5: set_nat,F: nat > nat > nat,X2: nat > nat] :
( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( sums_nat @ ( F @ I2 ) @ ( X2 @ I2 ) ) )
=> ( sums_nat
@ ^ [N3: nat] :
( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( F @ I3 @ N3 )
@ I5 )
@ ( groups3542108847815614940at_nat @ X2 @ I5 ) ) ) ).
% sums_sum
thf(fact_7084_sums__sum,axiom,
! [I5: set_complex,F: complex > nat > complex,X2: complex > complex] :
( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( sums_complex @ ( F @ I2 ) @ ( X2 @ I2 ) ) )
=> ( sums_complex
@ ^ [N3: nat] :
( groups7754918857620584856omplex
@ ^ [I3: complex] : ( F @ I3 @ N3 )
@ I5 )
@ ( groups7754918857620584856omplex @ X2 @ I5 ) ) ) ).
% sums_sum
thf(fact_7085_sums__sum,axiom,
! [I5: set_nat,F: nat > nat > real,X2: nat > real] :
( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( sums_real @ ( F @ I2 ) @ ( X2 @ I2 ) ) )
=> ( sums_real
@ ^ [N3: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( F @ I3 @ N3 )
@ I5 )
@ ( groups6591440286371151544t_real @ X2 @ I5 ) ) ) ).
% sums_sum
thf(fact_7086_sums__sum,axiom,
! [I5: set_int,F: int > nat > int,X2: int > int] :
( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( sums_int @ ( F @ I2 ) @ ( X2 @ I2 ) ) )
=> ( sums_int
@ ^ [N3: nat] :
( groups4538972089207619220nt_int
@ ^ [I3: int] : ( F @ I3 @ N3 )
@ I5 )
@ ( groups4538972089207619220nt_int @ X2 @ I5 ) ) ) ).
% sums_sum
thf(fact_7087_lessThan__def,axiom,
( set_or890127255671739683et_nat
= ( ^ [U2: set_nat] :
( collect_set_nat
@ ^ [X: set_nat] : ( ord_less_set_nat @ X @ U2 ) ) ) ) ).
% lessThan_def
thf(fact_7088_lessThan__def,axiom,
( set_ord_lessThan_rat
= ( ^ [U2: rat] :
( collect_rat
@ ^ [X: rat] : ( ord_less_rat @ X @ U2 ) ) ) ) ).
% lessThan_def
thf(fact_7089_lessThan__def,axiom,
( set_ord_lessThan_num
= ( ^ [U2: num] :
( collect_num
@ ^ [X: num] : ( ord_less_num @ X @ U2 ) ) ) ) ).
% lessThan_def
thf(fact_7090_lessThan__def,axiom,
( set_ord_lessThan_int
= ( ^ [U2: int] :
( collect_int
@ ^ [X: int] : ( ord_less_int @ X @ U2 ) ) ) ) ).
% lessThan_def
thf(fact_7091_lessThan__def,axiom,
( set_ord_lessThan_nat
= ( ^ [U2: nat] :
( collect_nat
@ ^ [X: nat] : ( ord_less_nat @ X @ U2 ) ) ) ) ).
% lessThan_def
thf(fact_7092_lessThan__def,axiom,
( set_or5984915006950818249n_real
= ( ^ [U2: real] :
( collect_real
@ ^ [X: real] : ( ord_less_real @ X @ U2 ) ) ) ) ).
% lessThan_def
thf(fact_7093_sums__iff__shift,axiom,
! [F: nat > real,N: nat,S3: real] :
( ( sums_real
@ ^ [I3: nat] : ( F @ ( plus_plus_nat @ I3 @ N ) )
@ S3 )
= ( sums_real @ F @ ( plus_plus_real @ S3 @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% sums_iff_shift
thf(fact_7094_sums__split__initial__segment,axiom,
! [F: nat > real,S3: real,N: nat] :
( ( sums_real @ F @ S3 )
=> ( sums_real
@ ^ [I3: nat] : ( F @ ( plus_plus_nat @ I3 @ N ) )
@ ( minus_minus_real @ S3 @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% sums_split_initial_segment
thf(fact_7095_sums__iff__shift_H,axiom,
! [F: nat > real,N: nat,S3: real] :
( ( sums_real
@ ^ [I3: nat] : ( F @ ( plus_plus_nat @ I3 @ N ) )
@ ( minus_minus_real @ S3 @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N ) ) ) )
= ( sums_real @ F @ S3 ) ) ).
% sums_iff_shift'
thf(fact_7096_one__complex_Ocode,axiom,
( one_one_complex
= ( complex2 @ one_one_real @ zero_zero_real ) ) ).
% one_complex.code
thf(fact_7097_Complex__eq__1,axiom,
! [A: real,B: real] :
( ( ( complex2 @ A @ B )
= one_one_complex )
= ( ( A = one_one_real )
& ( B = zero_zero_real ) ) ) ).
% Complex_eq_1
thf(fact_7098_sums__mult__iff,axiom,
! [C: complex,F: nat > complex,D2: complex] :
( ( C != zero_zero_complex )
=> ( ( sums_complex
@ ^ [N3: nat] : ( times_times_complex @ C @ ( F @ N3 ) )
@ ( times_times_complex @ C @ D2 ) )
= ( sums_complex @ F @ D2 ) ) ) ).
% sums_mult_iff
thf(fact_7099_sums__mult__iff,axiom,
! [C: real,F: nat > real,D2: real] :
( ( C != zero_zero_real )
=> ( ( sums_real
@ ^ [N3: nat] : ( times_times_real @ C @ ( F @ N3 ) )
@ ( times_times_real @ C @ D2 ) )
= ( sums_real @ F @ D2 ) ) ) ).
% sums_mult_iff
thf(fact_7100_sums__mult2__iff,axiom,
! [C: complex,F: nat > complex,D2: complex] :
( ( C != zero_zero_complex )
=> ( ( sums_complex
@ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ C )
@ ( times_times_complex @ D2 @ C ) )
= ( sums_complex @ F @ D2 ) ) ) ).
% sums_mult2_iff
thf(fact_7101_sums__mult2__iff,axiom,
! [C: real,F: nat > real,D2: real] :
( ( C != zero_zero_real )
=> ( ( sums_real
@ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ C )
@ ( times_times_real @ D2 @ C ) )
= ( sums_real @ F @ D2 ) ) ) ).
% sums_mult2_iff
thf(fact_7102_Complex__eq__numeral,axiom,
! [A: real,B: real,W: num] :
( ( ( complex2 @ A @ B )
= ( numera6690914467698888265omplex @ W ) )
= ( ( A
= ( numeral_numeral_real @ W ) )
& ( B = zero_zero_real ) ) ) ).
% Complex_eq_numeral
thf(fact_7103_sum__subtractf__nat,axiom,
! [A2: set_real,G: real > nat,F: real > nat] :
( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( ord_less_eq_nat @ ( G @ X3 ) @ ( F @ X3 ) ) )
=> ( ( groups1935376822645274424al_nat
@ ^ [X: real] : ( minus_minus_nat @ ( F @ X ) @ ( G @ X ) )
@ A2 )
= ( minus_minus_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ ( groups1935376822645274424al_nat @ G @ A2 ) ) ) ) ).
% sum_subtractf_nat
thf(fact_7104_sum__subtractf__nat,axiom,
! [A2: set_int,G: int > nat,F: int > nat] :
( ! [X3: int] :
( ( member_int @ X3 @ A2 )
=> ( ord_less_eq_nat @ ( G @ X3 ) @ ( F @ X3 ) ) )
=> ( ( groups4541462559716669496nt_nat
@ ^ [X: int] : ( minus_minus_nat @ ( F @ X ) @ ( G @ X ) )
@ A2 )
= ( minus_minus_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) @ ( groups4541462559716669496nt_nat @ G @ A2 ) ) ) ) ).
% sum_subtractf_nat
thf(fact_7105_sum__subtractf__nat,axiom,
! [A2: set_VEBT_VEBT,G: vEBT_VEBT > nat,F: vEBT_VEBT > nat] :
( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ord_less_eq_nat @ ( G @ X3 ) @ ( F @ X3 ) ) )
=> ( ( groups771621172384141258BT_nat
@ ^ [X: vEBT_VEBT] : ( minus_minus_nat @ ( F @ X ) @ ( G @ X ) )
@ A2 )
= ( minus_minus_nat @ ( groups771621172384141258BT_nat @ F @ A2 ) @ ( groups771621172384141258BT_nat @ G @ A2 ) ) ) ) ).
% sum_subtractf_nat
thf(fact_7106_sum__subtractf__nat,axiom,
! [A2: set_nat,G: nat > nat,F: nat > nat] :
( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ord_less_eq_nat @ ( G @ X3 ) @ ( F @ X3 ) ) )
=> ( ( groups3542108847815614940at_nat
@ ^ [X: nat] : ( minus_minus_nat @ ( F @ X ) @ ( G @ X ) )
@ A2 )
= ( minus_minus_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ ( groups3542108847815614940at_nat @ G @ A2 ) ) ) ) ).
% sum_subtractf_nat
thf(fact_7107_Complex__add__complex__of__real,axiom,
! [X2: real,Y2: real,R2: real] :
( ( plus_plus_complex @ ( complex2 @ X2 @ Y2 ) @ ( real_V4546457046886955230omplex @ R2 ) )
= ( complex2 @ ( plus_plus_real @ X2 @ R2 ) @ Y2 ) ) ).
% Complex_add_complex_of_real
thf(fact_7108_complex__of__real__add__Complex,axiom,
! [R2: real,X2: real,Y2: real] :
( ( plus_plus_complex @ ( real_V4546457046886955230omplex @ R2 ) @ ( complex2 @ X2 @ Y2 ) )
= ( complex2 @ ( plus_plus_real @ R2 @ X2 ) @ Y2 ) ) ).
% complex_of_real_add_Complex
thf(fact_7109_complex__add,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( plus_plus_complex @ ( complex2 @ A @ B ) @ ( complex2 @ C @ D2 ) )
= ( complex2 @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D2 ) ) ) ).
% complex_add
thf(fact_7110_sum__SucD,axiom,
! [F: nat > nat,A2: set_nat,N: nat] :
( ( ( groups3542108847815614940at_nat @ F @ A2 )
= ( suc @ N ) )
=> ? [X3: nat] :
( ( member_nat @ X3 @ A2 )
& ( ord_less_nat @ zero_zero_nat @ ( F @ X3 ) ) ) ) ).
% sum_SucD
thf(fact_7111_sum__eq__Suc0__iff,axiom,
! [A2: set_int,F: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ( ( groups4541462559716669496nt_nat @ F @ A2 )
= ( suc @ zero_zero_nat ) )
= ( ? [X: int] :
( ( member_int @ X @ A2 )
& ( ( F @ X )
= ( suc @ zero_zero_nat ) )
& ! [Y: int] :
( ( member_int @ Y @ A2 )
=> ( ( X != Y )
=> ( ( F @ Y )
= zero_zero_nat ) ) ) ) ) ) ) ).
% sum_eq_Suc0_iff
thf(fact_7112_sum__eq__Suc0__iff,axiom,
! [A2: set_complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ( groups5693394587270226106ex_nat @ F @ A2 )
= ( suc @ zero_zero_nat ) )
= ( ? [X: complex] :
( ( member_complex @ X @ A2 )
& ( ( F @ X )
= ( suc @ zero_zero_nat ) )
& ! [Y: complex] :
( ( member_complex @ Y @ A2 )
=> ( ( X != Y )
=> ( ( F @ Y )
= zero_zero_nat ) ) ) ) ) ) ) ).
% sum_eq_Suc0_iff
thf(fact_7113_sum__eq__Suc0__iff,axiom,
! [A2: set_Code_integer,F: code_integer > nat] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( ( groups7237345082560585321er_nat @ F @ A2 )
= ( suc @ zero_zero_nat ) )
= ( ? [X: code_integer] :
( ( member_Code_integer @ X @ A2 )
& ( ( F @ X )
= ( suc @ zero_zero_nat ) )
& ! [Y: code_integer] :
( ( member_Code_integer @ Y @ A2 )
=> ( ( X != Y )
=> ( ( F @ Y )
= zero_zero_nat ) ) ) ) ) ) ) ).
% sum_eq_Suc0_iff
thf(fact_7114_sum__eq__Suc0__iff,axiom,
! [A2: set_nat,F: nat > nat] :
( ( finite_finite_nat @ A2 )
=> ( ( ( groups3542108847815614940at_nat @ F @ A2 )
= ( suc @ zero_zero_nat ) )
= ( ? [X: nat] :
( ( member_nat @ X @ A2 )
& ( ( F @ X )
= ( suc @ zero_zero_nat ) )
& ! [Y: nat] :
( ( member_nat @ Y @ A2 )
=> ( ( X != Y )
=> ( ( F @ Y )
= zero_zero_nat ) ) ) ) ) ) ) ).
% sum_eq_Suc0_iff
thf(fact_7115_sum__eq__1__iff,axiom,
! [A2: set_int,F: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ( ( groups4541462559716669496nt_nat @ F @ A2 )
= one_one_nat )
= ( ? [X: int] :
( ( member_int @ X @ A2 )
& ( ( F @ X )
= one_one_nat )
& ! [Y: int] :
( ( member_int @ Y @ A2 )
=> ( ( X != Y )
=> ( ( F @ Y )
= zero_zero_nat ) ) ) ) ) ) ) ).
% sum_eq_1_iff
thf(fact_7116_sum__eq__1__iff,axiom,
! [A2: set_complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ( groups5693394587270226106ex_nat @ F @ A2 )
= one_one_nat )
= ( ? [X: complex] :
( ( member_complex @ X @ A2 )
& ( ( F @ X )
= one_one_nat )
& ! [Y: complex] :
( ( member_complex @ Y @ A2 )
=> ( ( X != Y )
=> ( ( F @ Y )
= zero_zero_nat ) ) ) ) ) ) ) ).
% sum_eq_1_iff
thf(fact_7117_sum__eq__1__iff,axiom,
! [A2: set_Code_integer,F: code_integer > nat] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( ( groups7237345082560585321er_nat @ F @ A2 )
= one_one_nat )
= ( ? [X: code_integer] :
( ( member_Code_integer @ X @ A2 )
& ( ( F @ X )
= one_one_nat )
& ! [Y: code_integer] :
( ( member_Code_integer @ Y @ A2 )
=> ( ( X != Y )
=> ( ( F @ Y )
= zero_zero_nat ) ) ) ) ) ) ) ).
% sum_eq_1_iff
thf(fact_7118_sum__eq__1__iff,axiom,
! [A2: set_nat,F: nat > nat] :
( ( finite_finite_nat @ A2 )
=> ( ( ( groups3542108847815614940at_nat @ F @ A2 )
= one_one_nat )
= ( ? [X: nat] :
( ( member_nat @ X @ A2 )
& ( ( F @ X )
= one_one_nat )
& ! [Y: nat] :
( ( member_nat @ Y @ A2 )
=> ( ( X != Y )
=> ( ( F @ Y )
= zero_zero_nat ) ) ) ) ) ) ) ).
% sum_eq_1_iff
thf(fact_7119_sums__mult__D,axiom,
! [C: complex,F: nat > complex,A: complex] :
( ( sums_complex
@ ^ [N3: nat] : ( times_times_complex @ C @ ( F @ N3 ) )
@ A )
=> ( ( C != zero_zero_complex )
=> ( sums_complex @ F @ ( divide1717551699836669952omplex @ A @ C ) ) ) ) ).
% sums_mult_D
thf(fact_7120_sums__mult__D,axiom,
! [C: real,F: nat > real,A: real] :
( ( sums_real
@ ^ [N3: nat] : ( times_times_real @ C @ ( F @ N3 ) )
@ A )
=> ( ( C != zero_zero_real )
=> ( sums_real @ F @ ( divide_divide_real @ A @ C ) ) ) ) ).
% sums_mult_D
thf(fact_7121_sums__Suc__imp,axiom,
! [F: nat > complex,S3: complex] :
( ( ( F @ zero_zero_nat )
= zero_zero_complex )
=> ( ( sums_complex
@ ^ [N3: nat] : ( F @ ( suc @ N3 ) )
@ S3 )
=> ( sums_complex @ F @ S3 ) ) ) ).
% sums_Suc_imp
thf(fact_7122_sums__Suc__imp,axiom,
! [F: nat > real,S3: real] :
( ( ( F @ zero_zero_nat )
= zero_zero_real )
=> ( ( sums_real
@ ^ [N3: nat] : ( F @ ( suc @ N3 ) )
@ S3 )
=> ( sums_real @ F @ S3 ) ) ) ).
% sums_Suc_imp
thf(fact_7123_sums__Suc__iff,axiom,
! [F: nat > real,S3: real] :
( ( sums_real
@ ^ [N3: nat] : ( F @ ( suc @ N3 ) )
@ S3 )
= ( sums_real @ F @ ( plus_plus_real @ S3 @ ( F @ zero_zero_nat ) ) ) ) ).
% sums_Suc_iff
thf(fact_7124_sums__Suc,axiom,
! [F: nat > real,L2: real] :
( ( sums_real
@ ^ [N3: nat] : ( F @ ( suc @ N3 ) )
@ L2 )
=> ( sums_real @ F @ ( plus_plus_real @ L2 @ ( F @ zero_zero_nat ) ) ) ) ).
% sums_Suc
thf(fact_7125_sums__Suc,axiom,
! [F: nat > nat,L2: nat] :
( ( sums_nat
@ ^ [N3: nat] : ( F @ ( suc @ N3 ) )
@ L2 )
=> ( sums_nat @ F @ ( plus_plus_nat @ L2 @ ( F @ zero_zero_nat ) ) ) ) ).
% sums_Suc
thf(fact_7126_sums__Suc,axiom,
! [F: nat > int,L2: int] :
( ( sums_int
@ ^ [N3: nat] : ( F @ ( suc @ N3 ) )
@ L2 )
=> ( sums_int @ F @ ( plus_plus_int @ L2 @ ( F @ zero_zero_nat ) ) ) ) ).
% sums_Suc
thf(fact_7127_sums__zero__iff__shift,axiom,
! [N: nat,F: nat > complex,S3: complex] :
( ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( ( F @ I2 )
= zero_zero_complex ) )
=> ( ( sums_complex
@ ^ [I3: nat] : ( F @ ( plus_plus_nat @ I3 @ N ) )
@ S3 )
= ( sums_complex @ F @ S3 ) ) ) ).
% sums_zero_iff_shift
thf(fact_7128_sums__zero__iff__shift,axiom,
! [N: nat,F: nat > real,S3: real] :
( ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( ( F @ I2 )
= zero_zero_real ) )
=> ( ( sums_real
@ ^ [I3: nat] : ( F @ ( plus_plus_nat @ I3 @ N ) )
@ S3 )
= ( sums_real @ F @ S3 ) ) ) ).
% sums_zero_iff_shift
thf(fact_7129_Complex__eq__neg__1,axiom,
! [A: real,B: real] :
( ( ( complex2 @ A @ B )
= ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( ( A
= ( uminus_uminus_real @ one_one_real ) )
& ( B = zero_zero_real ) ) ) ).
% Complex_eq_neg_1
thf(fact_7130_Complex__eq__neg__numeral,axiom,
! [A: real,B: real,W: num] :
( ( ( complex2 @ A @ B )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
= ( ( A
= ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
& ( B = zero_zero_real ) ) ) ).
% Complex_eq_neg_numeral
thf(fact_7131_sums__finite,axiom,
! [N5: set_nat,F: nat > complex] :
( ( finite_finite_nat @ N5 )
=> ( ! [N2: nat] :
( ~ ( member_nat @ N2 @ N5 )
=> ( ( F @ N2 )
= zero_zero_complex ) )
=> ( sums_complex @ F @ ( groups2073611262835488442omplex @ F @ N5 ) ) ) ) ).
% sums_finite
thf(fact_7132_sums__finite,axiom,
! [N5: set_nat,F: nat > int] :
( ( finite_finite_nat @ N5 )
=> ( ! [N2: nat] :
( ~ ( member_nat @ N2 @ N5 )
=> ( ( F @ N2 )
= zero_zero_int ) )
=> ( sums_int @ F @ ( groups3539618377306564664at_int @ F @ N5 ) ) ) ) ).
% sums_finite
thf(fact_7133_sums__finite,axiom,
! [N5: set_nat,F: nat > nat] :
( ( finite_finite_nat @ N5 )
=> ( ! [N2: nat] :
( ~ ( member_nat @ N2 @ N5 )
=> ( ( F @ N2 )
= zero_zero_nat ) )
=> ( sums_nat @ F @ ( groups3542108847815614940at_nat @ F @ N5 ) ) ) ) ).
% sums_finite
thf(fact_7134_sums__finite,axiom,
! [N5: set_nat,F: nat > real] :
( ( finite_finite_nat @ N5 )
=> ( ! [N2: nat] :
( ~ ( member_nat @ N2 @ N5 )
=> ( ( F @ N2 )
= zero_zero_real ) )
=> ( sums_real @ F @ ( groups6591440286371151544t_real @ F @ N5 ) ) ) ) ).
% sums_finite
thf(fact_7135_sums__If__finite,axiom,
! [P: nat > $o,F: nat > complex] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( sums_complex
@ ^ [R5: nat] : ( if_complex @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_complex )
@ ( groups2073611262835488442omplex @ F @ ( collect_nat @ P ) ) ) ) ).
% sums_If_finite
thf(fact_7136_sums__If__finite,axiom,
! [P: nat > $o,F: nat > int] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( sums_int
@ ^ [R5: nat] : ( if_int @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_int )
@ ( groups3539618377306564664at_int @ F @ ( collect_nat @ P ) ) ) ) ).
% sums_If_finite
thf(fact_7137_sums__If__finite,axiom,
! [P: nat > $o,F: nat > nat] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( sums_nat
@ ^ [R5: nat] : ( if_nat @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_nat )
@ ( groups3542108847815614940at_nat @ F @ ( collect_nat @ P ) ) ) ) ).
% sums_If_finite
thf(fact_7138_sums__If__finite,axiom,
! [P: nat > $o,F: nat > real] :
( ( finite_finite_nat @ ( collect_nat @ P ) )
=> ( sums_real
@ ^ [R5: nat] : ( if_real @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_real )
@ ( groups6591440286371151544t_real @ F @ ( collect_nat @ P ) ) ) ) ).
% sums_If_finite
thf(fact_7139_sums__If__finite__set,axiom,
! [A2: set_nat,F: nat > complex] :
( ( finite_finite_nat @ A2 )
=> ( sums_complex
@ ^ [R5: nat] : ( if_complex @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_complex )
@ ( groups2073611262835488442omplex @ F @ A2 ) ) ) ).
% sums_If_finite_set
thf(fact_7140_sums__If__finite__set,axiom,
! [A2: set_nat,F: nat > int] :
( ( finite_finite_nat @ A2 )
=> ( sums_int
@ ^ [R5: nat] : ( if_int @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_int )
@ ( groups3539618377306564664at_int @ F @ A2 ) ) ) ).
% sums_If_finite_set
thf(fact_7141_sums__If__finite__set,axiom,
! [A2: set_nat,F: nat > nat] :
( ( finite_finite_nat @ A2 )
=> ( sums_nat
@ ^ [R5: nat] : ( if_nat @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_nat )
@ ( groups3542108847815614940at_nat @ F @ A2 ) ) ) ).
% sums_If_finite_set
thf(fact_7142_sums__If__finite__set,axiom,
! [A2: set_nat,F: nat > real] :
( ( finite_finite_nat @ A2 )
=> ( sums_real
@ ^ [R5: nat] : ( if_real @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_real )
@ ( groups6591440286371151544t_real @ F @ A2 ) ) ) ).
% sums_If_finite_set
thf(fact_7143_complex__mult,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( times_times_complex @ ( complex2 @ A @ B ) @ ( complex2 @ C @ D2 ) )
= ( complex2 @ ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) @ ( plus_plus_real @ ( times_times_real @ A @ D2 ) @ ( times_times_real @ B @ C ) ) ) ) ).
% complex_mult
thf(fact_7144_sum_Onat__diff__reindex,axiom,
! [G: nat > nat,N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( G @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) )
@ ( set_ord_lessThan_nat @ N ) )
= ( groups3542108847815614940at_nat @ G @ ( set_ord_lessThan_nat @ N ) ) ) ).
% sum.nat_diff_reindex
thf(fact_7145_sum_Onat__diff__reindex,axiom,
! [G: nat > real,N: nat] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( G @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) )
@ ( set_ord_lessThan_nat @ N ) )
= ( groups6591440286371151544t_real @ G @ ( set_ord_lessThan_nat @ N ) ) ) ).
% sum.nat_diff_reindex
thf(fact_7146_sum__nth__roots,axiom,
! [N: nat,C: complex] :
( ( ord_less_nat @ one_one_nat @ N )
=> ( ( groups7754918857620584856omplex
@ ^ [X: complex] : X
@ ( collect_complex
@ ^ [Z5: complex] :
( ( power_power_complex @ Z5 @ N )
= C ) ) )
= zero_zero_complex ) ) ).
% sum_nth_roots
thf(fact_7147_sum__roots__unity,axiom,
! [N: nat] :
( ( ord_less_nat @ one_one_nat @ N )
=> ( ( groups7754918857620584856omplex
@ ^ [X: complex] : X
@ ( collect_complex
@ ^ [Z5: complex] :
( ( power_power_complex @ Z5 @ N )
= one_one_complex ) ) )
= zero_zero_complex ) ) ).
% sum_roots_unity
thf(fact_7148_powser__sums__if,axiom,
! [M: nat,Z: complex] :
( sums_complex
@ ^ [N3: nat] : ( times_times_complex @ ( if_complex @ ( N3 = M ) @ one_one_complex @ zero_zero_complex ) @ ( power_power_complex @ Z @ N3 ) )
@ ( power_power_complex @ Z @ M ) ) ).
% powser_sums_if
thf(fact_7149_powser__sums__if,axiom,
! [M: nat,Z: real] :
( sums_real
@ ^ [N3: nat] : ( times_times_real @ ( if_real @ ( N3 = M ) @ one_one_real @ zero_zero_real ) @ ( power_power_real @ Z @ N3 ) )
@ ( power_power_real @ Z @ M ) ) ).
% powser_sums_if
thf(fact_7150_powser__sums__if,axiom,
! [M: nat,Z: int] :
( sums_int
@ ^ [N3: nat] : ( times_times_int @ ( if_int @ ( N3 = M ) @ one_one_int @ zero_zero_int ) @ ( power_power_int @ Z @ N3 ) )
@ ( power_power_int @ Z @ M ) ) ).
% powser_sums_if
thf(fact_7151_powser__sums__zero,axiom,
! [A: nat > complex] :
( sums_complex
@ ^ [N3: nat] : ( times_times_complex @ ( A @ N3 ) @ ( power_power_complex @ zero_zero_complex @ N3 ) )
@ ( A @ zero_zero_nat ) ) ).
% powser_sums_zero
thf(fact_7152_powser__sums__zero,axiom,
! [A: nat > real] :
( sums_real
@ ^ [N3: nat] : ( times_times_real @ ( A @ N3 ) @ ( power_power_real @ zero_zero_real @ N3 ) )
@ ( A @ zero_zero_nat ) ) ).
% powser_sums_zero
thf(fact_7153_sum__diff__nat,axiom,
! [B4: set_int,A2: set_int,F: int > nat] :
( ( finite_finite_int @ B4 )
=> ( ( ord_less_eq_set_int @ B4 @ A2 )
=> ( ( groups4541462559716669496nt_nat @ F @ ( minus_minus_set_int @ A2 @ B4 ) )
= ( minus_minus_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) @ ( groups4541462559716669496nt_nat @ F @ B4 ) ) ) ) ) ).
% sum_diff_nat
thf(fact_7154_sum__diff__nat,axiom,
! [B4: set_complex,A2: set_complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ B4 )
=> ( ( ord_le211207098394363844omplex @ B4 @ A2 )
=> ( ( groups5693394587270226106ex_nat @ F @ ( minus_811609699411566653omplex @ A2 @ B4 ) )
= ( minus_minus_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ F @ B4 ) ) ) ) ) ).
% sum_diff_nat
thf(fact_7155_sum__diff__nat,axiom,
! [B4: set_Code_integer,A2: set_Code_integer,F: code_integer > nat] :
( ( finite6017078050557962740nteger @ B4 )
=> ( ( ord_le7084787975880047091nteger @ B4 @ A2 )
=> ( ( groups7237345082560585321er_nat @ F @ ( minus_2355218937544613996nteger @ A2 @ B4 ) )
= ( minus_minus_nat @ ( groups7237345082560585321er_nat @ F @ A2 ) @ ( groups7237345082560585321er_nat @ F @ B4 ) ) ) ) ) ).
% sum_diff_nat
thf(fact_7156_sum__diff__nat,axiom,
! [B4: set_nat,A2: set_nat,F: nat > nat] :
( ( finite_finite_nat @ B4 )
=> ( ( ord_less_eq_set_nat @ B4 @ A2 )
=> ( ( groups3542108847815614940at_nat @ F @ ( minus_minus_set_nat @ A2 @ B4 ) )
= ( minus_minus_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ ( groups3542108847815614940at_nat @ F @ B4 ) ) ) ) ) ).
% sum_diff_nat
thf(fact_7157_tan__def,axiom,
( tan_complex
= ( ^ [X: complex] : ( divide1717551699836669952omplex @ ( sin_complex @ X ) @ ( cos_complex @ X ) ) ) ) ).
% tan_def
thf(fact_7158_tan__def,axiom,
( tan_real
= ( ^ [X: real] : ( divide_divide_real @ ( sin_real @ X ) @ ( cos_real @ X ) ) ) ) ).
% tan_def
thf(fact_7159_sums__If__finite__set_H,axiom,
! [G: nat > real,S: real,A2: set_nat,S6: real,F: nat > real] :
( ( sums_real @ G @ S )
=> ( ( finite_finite_nat @ A2 )
=> ( ( S6
= ( plus_plus_real @ S
@ ( groups6591440286371151544t_real
@ ^ [N3: nat] : ( minus_minus_real @ ( F @ N3 ) @ ( G @ N3 ) )
@ A2 ) ) )
=> ( sums_real
@ ^ [N3: nat] : ( if_real @ ( member_nat @ N3 @ A2 ) @ ( F @ N3 ) @ ( G @ N3 ) )
@ S6 ) ) ) ) ).
% sums_If_finite_set'
thf(fact_7160_suminf__le__const,axiom,
! [F: nat > int,X2: int] :
( ( summable_int @ F )
=> ( ! [N2: nat] : ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ X2 )
=> ( ord_less_eq_int @ ( suminf_int @ F ) @ X2 ) ) ) ).
% suminf_le_const
thf(fact_7161_suminf__le__const,axiom,
! [F: nat > nat,X2: nat] :
( ( summable_nat @ F )
=> ( ! [N2: nat] : ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ X2 )
=> ( ord_less_eq_nat @ ( suminf_nat @ F ) @ X2 ) ) ) ).
% suminf_le_const
thf(fact_7162_suminf__le__const,axiom,
! [F: nat > real,X2: real] :
( ( summable_real @ F )
=> ( ! [N2: nat] : ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ X2 )
=> ( ord_less_eq_real @ ( suminf_real @ F ) @ X2 ) ) ) ).
% suminf_le_const
thf(fact_7163_dbl__inc__def,axiom,
( neg_nu8557863876264182079omplex
= ( ^ [X: complex] : ( plus_plus_complex @ ( plus_plus_complex @ X @ X ) @ one_one_complex ) ) ) ).
% dbl_inc_def
thf(fact_7164_dbl__inc__def,axiom,
( neg_nu8295874005876285629c_real
= ( ^ [X: real] : ( plus_plus_real @ ( plus_plus_real @ X @ X ) @ one_one_real ) ) ) ).
% dbl_inc_def
thf(fact_7165_dbl__inc__def,axiom,
( neg_nu5219082963157363817nc_rat
= ( ^ [X: rat] : ( plus_plus_rat @ ( plus_plus_rat @ X @ X ) @ one_one_rat ) ) ) ).
% dbl_inc_def
thf(fact_7166_dbl__inc__def,axiom,
( neg_nu5851722552734809277nc_int
= ( ^ [X: int] : ( plus_plus_int @ ( plus_plus_int @ X @ X ) @ one_one_int ) ) ) ).
% dbl_inc_def
thf(fact_7167_sum_OlessThan__Suc__shift,axiom,
! [G: nat > rat,N: nat] :
( ( groups2906978787729119204at_rat @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= ( plus_plus_rat @ ( G @ zero_zero_nat )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% sum.lessThan_Suc_shift
thf(fact_7168_sum_OlessThan__Suc__shift,axiom,
! [G: nat > int,N: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= ( plus_plus_int @ ( G @ zero_zero_nat )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% sum.lessThan_Suc_shift
thf(fact_7169_sum_OlessThan__Suc__shift,axiom,
! [G: nat > nat,N: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= ( plus_plus_nat @ ( G @ zero_zero_nat )
@ ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% sum.lessThan_Suc_shift
thf(fact_7170_sum_OlessThan__Suc__shift,axiom,
! [G: nat > real,N: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= ( plus_plus_real @ ( G @ zero_zero_nat )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% sum.lessThan_Suc_shift
thf(fact_7171_sum__lessThan__telescope_H,axiom,
! [F: nat > rat,M: nat] :
( ( groups2906978787729119204at_rat
@ ^ [N3: nat] : ( minus_minus_rat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( minus_minus_rat @ ( F @ zero_zero_nat ) @ ( F @ M ) ) ) ).
% sum_lessThan_telescope'
thf(fact_7172_sum__lessThan__telescope_H,axiom,
! [F: nat > int,M: nat] :
( ( groups3539618377306564664at_int
@ ^ [N3: nat] : ( minus_minus_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( minus_minus_int @ ( F @ zero_zero_nat ) @ ( F @ M ) ) ) ).
% sum_lessThan_telescope'
thf(fact_7173_sum__lessThan__telescope_H,axiom,
! [F: nat > real,M: nat] :
( ( groups6591440286371151544t_real
@ ^ [N3: nat] : ( minus_minus_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( minus_minus_real @ ( F @ zero_zero_nat ) @ ( F @ M ) ) ) ).
% sum_lessThan_telescope'
thf(fact_7174_sum__lessThan__telescope,axiom,
! [F: nat > rat,M: nat] :
( ( groups2906978787729119204at_rat
@ ^ [N3: nat] : ( minus_minus_rat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( minus_minus_rat @ ( F @ M ) @ ( F @ zero_zero_nat ) ) ) ).
% sum_lessThan_telescope
thf(fact_7175_sum__lessThan__telescope,axiom,
! [F: nat > int,M: nat] :
( ( groups3539618377306564664at_int
@ ^ [N3: nat] : ( minus_minus_int @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( minus_minus_int @ ( F @ M ) @ ( F @ zero_zero_nat ) ) ) ).
% sum_lessThan_telescope
thf(fact_7176_sum__lessThan__telescope,axiom,
! [F: nat > real,M: nat] :
( ( groups6591440286371151544t_real
@ ^ [N3: nat] : ( minus_minus_real @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( minus_minus_real @ ( F @ M ) @ ( F @ zero_zero_nat ) ) ) ).
% sum_lessThan_telescope
thf(fact_7177_sumr__diff__mult__const2,axiom,
! [F: nat > rat,N: nat,R2: rat] :
( ( minus_minus_rat @ ( groups2906978787729119204at_rat @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N ) @ R2 ) )
= ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( minus_minus_rat @ ( F @ I3 ) @ R2 )
@ ( set_ord_lessThan_nat @ N ) ) ) ).
% sumr_diff_mult_const2
thf(fact_7178_sumr__diff__mult__const2,axiom,
! [F: nat > int,N: nat,R2: int] :
( ( minus_minus_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ R2 ) )
= ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( minus_minus_int @ ( F @ I3 ) @ R2 )
@ ( set_ord_lessThan_nat @ N ) ) ) ).
% sumr_diff_mult_const2
thf(fact_7179_sumr__diff__mult__const2,axiom,
! [F: nat > real,N: nat,R2: real] :
( ( minus_minus_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ R2 ) )
= ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( minus_minus_real @ ( F @ I3 ) @ R2 )
@ ( set_ord_lessThan_nat @ N ) ) ) ).
% sumr_diff_mult_const2
thf(fact_7180_summableI__nonneg__bounded,axiom,
! [F: nat > int,X2: int] :
( ! [N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ X2 )
=> ( summable_int @ F ) ) ) ).
% summableI_nonneg_bounded
thf(fact_7181_summableI__nonneg__bounded,axiom,
! [F: nat > nat,X2: nat] :
( ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ X2 )
=> ( summable_nat @ F ) ) ) ).
% summableI_nonneg_bounded
thf(fact_7182_summableI__nonneg__bounded,axiom,
! [F: nat > real,X2: real] :
( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ X2 )
=> ( summable_real @ F ) ) ) ).
% summableI_nonneg_bounded
thf(fact_7183_sum_OatLeast1__atMost__eq,axiom,
! [G: nat > nat,N: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) )
= ( groups3542108847815614940at_nat
@ ^ [K2: nat] : ( G @ ( suc @ K2 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ).
% sum.atLeast1_atMost_eq
thf(fact_7184_sum_OatLeast1__atMost__eq,axiom,
! [G: nat > real,N: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) )
= ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( G @ ( suc @ K2 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ).
% sum.atLeast1_atMost_eq
thf(fact_7185_power__diff__1__eq,axiom,
! [X2: complex,N: nat] :
( ( minus_minus_complex @ ( power_power_complex @ X2 @ N ) @ one_one_complex )
= ( times_times_complex @ ( minus_minus_complex @ X2 @ one_one_complex ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% power_diff_1_eq
thf(fact_7186_power__diff__1__eq,axiom,
! [X2: code_integer,N: nat] :
( ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ X2 @ N ) @ one_one_Code_integer )
= ( times_3573771949741848930nteger @ ( minus_8373710615458151222nteger @ X2 @ one_one_Code_integer ) @ ( groups7501900531339628137nteger @ ( power_8256067586552552935nteger @ X2 ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% power_diff_1_eq
thf(fact_7187_power__diff__1__eq,axiom,
! [X2: rat,N: nat] :
( ( minus_minus_rat @ ( power_power_rat @ X2 @ N ) @ one_one_rat )
= ( times_times_rat @ ( minus_minus_rat @ X2 @ one_one_rat ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% power_diff_1_eq
thf(fact_7188_power__diff__1__eq,axiom,
! [X2: int,N: nat] :
( ( minus_minus_int @ ( power_power_int @ X2 @ N ) @ one_one_int )
= ( times_times_int @ ( minus_minus_int @ X2 @ one_one_int ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X2 ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% power_diff_1_eq
thf(fact_7189_power__diff__1__eq,axiom,
! [X2: real,N: nat] :
( ( minus_minus_real @ ( power_power_real @ X2 @ N ) @ one_one_real )
= ( times_times_real @ ( minus_minus_real @ X2 @ one_one_real ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% power_diff_1_eq
thf(fact_7190_one__diff__power__eq,axiom,
! [X2: complex,N: nat] :
( ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X2 @ N ) )
= ( times_times_complex @ ( minus_minus_complex @ one_one_complex @ X2 ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% one_diff_power_eq
thf(fact_7191_one__diff__power__eq,axiom,
! [X2: code_integer,N: nat] :
( ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ X2 @ N ) )
= ( times_3573771949741848930nteger @ ( minus_8373710615458151222nteger @ one_one_Code_integer @ X2 ) @ ( groups7501900531339628137nteger @ ( power_8256067586552552935nteger @ X2 ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% one_diff_power_eq
thf(fact_7192_one__diff__power__eq,axiom,
! [X2: rat,N: nat] :
( ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X2 @ N ) )
= ( times_times_rat @ ( minus_minus_rat @ one_one_rat @ X2 ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% one_diff_power_eq
thf(fact_7193_one__diff__power__eq,axiom,
! [X2: int,N: nat] :
( ( minus_minus_int @ one_one_int @ ( power_power_int @ X2 @ N ) )
= ( times_times_int @ ( minus_minus_int @ one_one_int @ X2 ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X2 ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% one_diff_power_eq
thf(fact_7194_one__diff__power__eq,axiom,
! [X2: real,N: nat] :
( ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ N ) )
= ( times_times_real @ ( minus_minus_real @ one_one_real @ X2 ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% one_diff_power_eq
thf(fact_7195_geometric__sum,axiom,
! [X2: complex,N: nat] :
( ( X2 != one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_ord_lessThan_nat @ N ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ X2 @ N ) @ one_one_complex ) @ ( minus_minus_complex @ X2 @ one_one_complex ) ) ) ) ).
% geometric_sum
thf(fact_7196_geometric__sum,axiom,
! [X2: rat,N: nat] :
( ( X2 != one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_ord_lessThan_nat @ N ) )
= ( divide_divide_rat @ ( minus_minus_rat @ ( power_power_rat @ X2 @ N ) @ one_one_rat ) @ ( minus_minus_rat @ X2 @ one_one_rat ) ) ) ) ).
% geometric_sum
thf(fact_7197_geometric__sum,axiom,
! [X2: real,N: nat] :
( ( X2 != one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_ord_lessThan_nat @ N ) )
= ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ X2 @ N ) @ one_one_real ) @ ( minus_minus_real @ X2 @ one_one_real ) ) ) ) ).
% geometric_sum
thf(fact_7198_suminf__split__initial__segment,axiom,
! [F: nat > complex,K: nat] :
( ( summable_complex @ F )
=> ( ( suminf_complex @ F )
= ( plus_plus_complex
@ ( suminf_complex
@ ^ [N3: nat] : ( F @ ( plus_plus_nat @ N3 @ K ) ) )
@ ( groups2073611262835488442omplex @ F @ ( set_ord_lessThan_nat @ K ) ) ) ) ) ).
% suminf_split_initial_segment
thf(fact_7199_suminf__split__initial__segment,axiom,
! [F: nat > real,K: nat] :
( ( summable_real @ F )
=> ( ( suminf_real @ F )
= ( plus_plus_real
@ ( suminf_real
@ ^ [N3: nat] : ( F @ ( plus_plus_nat @ N3 @ K ) ) )
@ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ K ) ) ) ) ) ).
% suminf_split_initial_segment
thf(fact_7200_suminf__minus__initial__segment,axiom,
! [F: nat > complex,K: nat] :
( ( summable_complex @ F )
=> ( ( suminf_complex
@ ^ [N3: nat] : ( F @ ( plus_plus_nat @ N3 @ K ) ) )
= ( minus_minus_complex @ ( suminf_complex @ F ) @ ( groups2073611262835488442omplex @ F @ ( set_ord_lessThan_nat @ K ) ) ) ) ) ).
% suminf_minus_initial_segment
thf(fact_7201_suminf__minus__initial__segment,axiom,
! [F: nat > real,K: nat] :
( ( summable_real @ F )
=> ( ( suminf_real
@ ^ [N3: nat] : ( F @ ( plus_plus_nat @ N3 @ K ) ) )
= ( minus_minus_real @ ( suminf_real @ F ) @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ K ) ) ) ) ) ).
% suminf_minus_initial_segment
thf(fact_7202_tan__45,axiom,
( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
= one_one_real ) ).
% tan_45
thf(fact_7203_sum__less__suminf,axiom,
! [F: nat > int,N: nat] :
( ( summable_int @ F )
=> ( ! [M3: nat] :
( ( ord_less_eq_nat @ N @ M3 )
=> ( ord_less_int @ zero_zero_int @ ( F @ M3 ) ) )
=> ( ord_less_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( suminf_int @ F ) ) ) ) ).
% sum_less_suminf
thf(fact_7204_sum__less__suminf,axiom,
! [F: nat > nat,N: nat] :
( ( summable_nat @ F )
=> ( ! [M3: nat] :
( ( ord_less_eq_nat @ N @ M3 )
=> ( ord_less_nat @ zero_zero_nat @ ( F @ M3 ) ) )
=> ( ord_less_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( suminf_nat @ F ) ) ) ) ).
% sum_less_suminf
thf(fact_7205_sum__less__suminf,axiom,
! [F: nat > real,N: nat] :
( ( summable_real @ F )
=> ( ! [M3: nat] :
( ( ord_less_eq_nat @ N @ M3 )
=> ( ord_less_real @ zero_zero_real @ ( F @ M3 ) ) )
=> ( ord_less_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( suminf_real @ F ) ) ) ) ).
% sum_less_suminf
thf(fact_7206_lemma__termdiff1,axiom,
! [Z: complex,H2: complex,M: nat] :
( ( groups2073611262835488442omplex
@ ^ [P3: nat] : ( minus_minus_complex @ ( times_times_complex @ ( power_power_complex @ ( plus_plus_complex @ Z @ H2 ) @ ( minus_minus_nat @ M @ P3 ) ) @ ( power_power_complex @ Z @ P3 ) ) @ ( power_power_complex @ Z @ M ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( groups2073611262835488442omplex
@ ^ [P3: nat] : ( times_times_complex @ ( power_power_complex @ Z @ P3 ) @ ( minus_minus_complex @ ( power_power_complex @ ( plus_plus_complex @ Z @ H2 ) @ ( minus_minus_nat @ M @ P3 ) ) @ ( power_power_complex @ Z @ ( minus_minus_nat @ M @ P3 ) ) ) )
@ ( set_ord_lessThan_nat @ M ) ) ) ).
% lemma_termdiff1
thf(fact_7207_lemma__termdiff1,axiom,
! [Z: code_integer,H2: code_integer,M: nat] :
( ( groups7501900531339628137nteger
@ ^ [P3: nat] : ( minus_8373710615458151222nteger @ ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( plus_p5714425477246183910nteger @ Z @ H2 ) @ ( minus_minus_nat @ M @ P3 ) ) @ ( power_8256067586552552935nteger @ Z @ P3 ) ) @ ( power_8256067586552552935nteger @ Z @ M ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( groups7501900531339628137nteger
@ ^ [P3: nat] : ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ Z @ P3 ) @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( plus_p5714425477246183910nteger @ Z @ H2 ) @ ( minus_minus_nat @ M @ P3 ) ) @ ( power_8256067586552552935nteger @ Z @ ( minus_minus_nat @ M @ P3 ) ) ) )
@ ( set_ord_lessThan_nat @ M ) ) ) ).
% lemma_termdiff1
thf(fact_7208_lemma__termdiff1,axiom,
! [Z: rat,H2: rat,M: nat] :
( ( groups2906978787729119204at_rat
@ ^ [P3: nat] : ( minus_minus_rat @ ( times_times_rat @ ( power_power_rat @ ( plus_plus_rat @ Z @ H2 ) @ ( minus_minus_nat @ M @ P3 ) ) @ ( power_power_rat @ Z @ P3 ) ) @ ( power_power_rat @ Z @ M ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( groups2906978787729119204at_rat
@ ^ [P3: nat] : ( times_times_rat @ ( power_power_rat @ Z @ P3 ) @ ( minus_minus_rat @ ( power_power_rat @ ( plus_plus_rat @ Z @ H2 ) @ ( minus_minus_nat @ M @ P3 ) ) @ ( power_power_rat @ Z @ ( minus_minus_nat @ M @ P3 ) ) ) )
@ ( set_ord_lessThan_nat @ M ) ) ) ).
% lemma_termdiff1
thf(fact_7209_lemma__termdiff1,axiom,
! [Z: int,H2: int,M: nat] :
( ( groups3539618377306564664at_int
@ ^ [P3: nat] : ( minus_minus_int @ ( times_times_int @ ( power_power_int @ ( plus_plus_int @ Z @ H2 ) @ ( minus_minus_nat @ M @ P3 ) ) @ ( power_power_int @ Z @ P3 ) ) @ ( power_power_int @ Z @ M ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( groups3539618377306564664at_int
@ ^ [P3: nat] : ( times_times_int @ ( power_power_int @ Z @ P3 ) @ ( minus_minus_int @ ( power_power_int @ ( plus_plus_int @ Z @ H2 ) @ ( minus_minus_nat @ M @ P3 ) ) @ ( power_power_int @ Z @ ( minus_minus_nat @ M @ P3 ) ) ) )
@ ( set_ord_lessThan_nat @ M ) ) ) ).
% lemma_termdiff1
thf(fact_7210_lemma__termdiff1,axiom,
! [Z: real,H2: real,M: nat] :
( ( groups6591440286371151544t_real
@ ^ [P3: nat] : ( minus_minus_real @ ( times_times_real @ ( power_power_real @ ( plus_plus_real @ Z @ H2 ) @ ( minus_minus_nat @ M @ P3 ) ) @ ( power_power_real @ Z @ P3 ) ) @ ( power_power_real @ Z @ M ) )
@ ( set_ord_lessThan_nat @ M ) )
= ( groups6591440286371151544t_real
@ ^ [P3: nat] : ( times_times_real @ ( power_power_real @ Z @ P3 ) @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ Z @ H2 ) @ ( minus_minus_nat @ M @ P3 ) ) @ ( power_power_real @ Z @ ( minus_minus_nat @ M @ P3 ) ) ) )
@ ( set_ord_lessThan_nat @ M ) ) ) ).
% lemma_termdiff1
thf(fact_7211_sum__gp__strict,axiom,
! [X2: complex,N: nat] :
( ( ( X2 = one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_ord_lessThan_nat @ N ) )
= ( semiri8010041392384452111omplex @ N ) ) )
& ( ( X2 != one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_ord_lessThan_nat @ N ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X2 @ N ) ) @ ( minus_minus_complex @ one_one_complex @ X2 ) ) ) ) ) ).
% sum_gp_strict
thf(fact_7212_sum__gp__strict,axiom,
! [X2: rat,N: nat] :
( ( ( X2 = one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_ord_lessThan_nat @ N ) )
= ( semiri681578069525770553at_rat @ N ) ) )
& ( ( X2 != one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_ord_lessThan_nat @ N ) )
= ( divide_divide_rat @ ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X2 @ N ) ) @ ( minus_minus_rat @ one_one_rat @ X2 ) ) ) ) ) ).
% sum_gp_strict
thf(fact_7213_sum__gp__strict,axiom,
! [X2: real,N: nat] :
( ( ( X2 = one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_ord_lessThan_nat @ N ) )
= ( semiri5074537144036343181t_real @ N ) ) )
& ( ( X2 != one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_ord_lessThan_nat @ N ) )
= ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ N ) ) @ ( minus_minus_real @ one_one_real @ X2 ) ) ) ) ) ).
% sum_gp_strict
thf(fact_7214_power__diff__sumr2,axiom,
! [X2: complex,N: nat,Y2: complex] :
( ( minus_minus_complex @ ( power_power_complex @ X2 @ N ) @ ( power_power_complex @ Y2 @ N ) )
= ( times_times_complex @ ( minus_minus_complex @ X2 @ Y2 )
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( power_power_complex @ Y2 @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) ) @ ( power_power_complex @ X2 @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% power_diff_sumr2
thf(fact_7215_power__diff__sumr2,axiom,
! [X2: code_integer,N: nat,Y2: code_integer] :
( ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ X2 @ N ) @ ( power_8256067586552552935nteger @ Y2 @ N ) )
= ( times_3573771949741848930nteger @ ( minus_8373710615458151222nteger @ X2 @ Y2 )
@ ( groups7501900531339628137nteger
@ ^ [I3: nat] : ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ Y2 @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) ) @ ( power_8256067586552552935nteger @ X2 @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% power_diff_sumr2
thf(fact_7216_power__diff__sumr2,axiom,
! [X2: rat,N: nat,Y2: rat] :
( ( minus_minus_rat @ ( power_power_rat @ X2 @ N ) @ ( power_power_rat @ Y2 @ N ) )
= ( times_times_rat @ ( minus_minus_rat @ X2 @ Y2 )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( power_power_rat @ Y2 @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) ) @ ( power_power_rat @ X2 @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% power_diff_sumr2
thf(fact_7217_power__diff__sumr2,axiom,
! [X2: int,N: nat,Y2: int] :
( ( minus_minus_int @ ( power_power_int @ X2 @ N ) @ ( power_power_int @ Y2 @ N ) )
= ( times_times_int @ ( minus_minus_int @ X2 @ Y2 )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( power_power_int @ Y2 @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) ) @ ( power_power_int @ X2 @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% power_diff_sumr2
thf(fact_7218_power__diff__sumr2,axiom,
! [X2: real,N: nat,Y2: real] :
( ( minus_minus_real @ ( power_power_real @ X2 @ N ) @ ( power_power_real @ Y2 @ N ) )
= ( times_times_real @ ( minus_minus_real @ X2 @ Y2 )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ Y2 @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) ) @ ( power_power_real @ X2 @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% power_diff_sumr2
thf(fact_7219_diff__power__eq__sum,axiom,
! [X2: complex,N: nat,Y2: complex] :
( ( minus_minus_complex @ ( power_power_complex @ X2 @ ( suc @ N ) ) @ ( power_power_complex @ Y2 @ ( suc @ N ) ) )
= ( times_times_complex @ ( minus_minus_complex @ X2 @ Y2 )
@ ( groups2073611262835488442omplex
@ ^ [P3: nat] : ( times_times_complex @ ( power_power_complex @ X2 @ P3 ) @ ( power_power_complex @ Y2 @ ( minus_minus_nat @ N @ P3 ) ) )
@ ( set_ord_lessThan_nat @ ( suc @ N ) ) ) ) ) ).
% diff_power_eq_sum
thf(fact_7220_diff__power__eq__sum,axiom,
! [X2: code_integer,N: nat,Y2: code_integer] :
( ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ X2 @ ( suc @ N ) ) @ ( power_8256067586552552935nteger @ Y2 @ ( suc @ N ) ) )
= ( times_3573771949741848930nteger @ ( minus_8373710615458151222nteger @ X2 @ Y2 )
@ ( groups7501900531339628137nteger
@ ^ [P3: nat] : ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ X2 @ P3 ) @ ( power_8256067586552552935nteger @ Y2 @ ( minus_minus_nat @ N @ P3 ) ) )
@ ( set_ord_lessThan_nat @ ( suc @ N ) ) ) ) ) ).
% diff_power_eq_sum
thf(fact_7221_diff__power__eq__sum,axiom,
! [X2: rat,N: nat,Y2: rat] :
( ( minus_minus_rat @ ( power_power_rat @ X2 @ ( suc @ N ) ) @ ( power_power_rat @ Y2 @ ( suc @ N ) ) )
= ( times_times_rat @ ( minus_minus_rat @ X2 @ Y2 )
@ ( groups2906978787729119204at_rat
@ ^ [P3: nat] : ( times_times_rat @ ( power_power_rat @ X2 @ P3 ) @ ( power_power_rat @ Y2 @ ( minus_minus_nat @ N @ P3 ) ) )
@ ( set_ord_lessThan_nat @ ( suc @ N ) ) ) ) ) ).
% diff_power_eq_sum
thf(fact_7222_diff__power__eq__sum,axiom,
! [X2: int,N: nat,Y2: int] :
( ( minus_minus_int @ ( power_power_int @ X2 @ ( suc @ N ) ) @ ( power_power_int @ Y2 @ ( suc @ N ) ) )
= ( times_times_int @ ( minus_minus_int @ X2 @ Y2 )
@ ( groups3539618377306564664at_int
@ ^ [P3: nat] : ( times_times_int @ ( power_power_int @ X2 @ P3 ) @ ( power_power_int @ Y2 @ ( minus_minus_nat @ N @ P3 ) ) )
@ ( set_ord_lessThan_nat @ ( suc @ N ) ) ) ) ) ).
% diff_power_eq_sum
thf(fact_7223_diff__power__eq__sum,axiom,
! [X2: real,N: nat,Y2: real] :
( ( minus_minus_real @ ( power_power_real @ X2 @ ( suc @ N ) ) @ ( power_power_real @ Y2 @ ( suc @ N ) ) )
= ( times_times_real @ ( minus_minus_real @ X2 @ Y2 )
@ ( groups6591440286371151544t_real
@ ^ [P3: nat] : ( times_times_real @ ( power_power_real @ X2 @ P3 ) @ ( power_power_real @ Y2 @ ( minus_minus_nat @ N @ P3 ) ) )
@ ( set_ord_lessThan_nat @ ( suc @ N ) ) ) ) ) ).
% diff_power_eq_sum
thf(fact_7224_geometric__sums,axiom,
! [C: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real )
=> ( sums_real @ ( power_power_real @ C ) @ ( divide_divide_real @ one_one_real @ ( minus_minus_real @ one_one_real @ C ) ) ) ) ).
% geometric_sums
thf(fact_7225_geometric__sums,axiom,
! [C: complex] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real )
=> ( sums_complex @ ( power_power_complex @ C ) @ ( divide1717551699836669952omplex @ one_one_complex @ ( minus_minus_complex @ one_one_complex @ C ) ) ) ) ).
% geometric_sums
thf(fact_7226_power__half__series,axiom,
( sums_real
@ ^ [N3: nat] : ( power_power_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( suc @ N3 ) )
@ one_one_real ) ).
% power_half_series
thf(fact_7227_lemma__tan__total,axiom,
! [Y2: real] :
( ( ord_less_real @ zero_zero_real @ Y2 )
=> ? [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
& ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ord_less_real @ Y2 @ ( tan_real @ X3 ) ) ) ) ).
% lemma_tan_total
thf(fact_7228_tan__gt__zero,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ zero_zero_real @ ( tan_real @ X2 ) ) ) ) ).
% tan_gt_zero
thf(fact_7229_real__sum__nat__ivl__bounded2,axiom,
! [N: nat,F: nat > rat,K6: rat,K: nat] :
( ! [P5: nat] :
( ( ord_less_nat @ P5 @ N )
=> ( ord_less_eq_rat @ ( F @ P5 ) @ K6 ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ K6 )
=> ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ K ) ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N ) @ K6 ) ) ) ) ).
% real_sum_nat_ivl_bounded2
thf(fact_7230_real__sum__nat__ivl__bounded2,axiom,
! [N: nat,F: nat > int,K6: int,K: nat] :
( ! [P5: nat] :
( ( ord_less_nat @ P5 @ N )
=> ( ord_less_eq_int @ ( F @ P5 ) @ K6 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ K6 )
=> ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ K ) ) ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ K6 ) ) ) ) ).
% real_sum_nat_ivl_bounded2
thf(fact_7231_real__sum__nat__ivl__bounded2,axiom,
! [N: nat,F: nat > nat,K6: nat,K: nat] :
( ! [P5: nat] :
( ( ord_less_nat @ P5 @ N )
=> ( ord_less_eq_nat @ ( F @ P5 ) @ K6 ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ K6 )
=> ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ K ) ) ) @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ K6 ) ) ) ) ).
% real_sum_nat_ivl_bounded2
thf(fact_7232_real__sum__nat__ivl__bounded2,axiom,
! [N: nat,F: nat > real,K6: real,K: nat] :
( ! [P5: nat] :
( ( ord_less_nat @ P5 @ N )
=> ( ord_less_eq_real @ ( F @ P5 ) @ K6 ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ K6 )
=> ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ K ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ K6 ) ) ) ) ).
% real_sum_nat_ivl_bounded2
thf(fact_7233_lemma__tan__total1,axiom,
! [Y2: real] :
? [X3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
& ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( tan_real @ X3 )
= Y2 ) ) ).
% lemma_tan_total1
thf(fact_7234_tan__mono__lt__eq,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
=> ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
=> ( ( ord_less_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ ( tan_real @ X2 ) @ ( tan_real @ Y2 ) )
= ( ord_less_real @ X2 @ Y2 ) ) ) ) ) ) ).
% tan_mono_lt_eq
thf(fact_7235_tan__monotone_H,axiom,
! [Y2: real,X2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
=> ( ( ord_less_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
=> ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ Y2 @ X2 )
= ( ord_less_real @ ( tan_real @ Y2 ) @ ( tan_real @ X2 ) ) ) ) ) ) ) ).
% tan_monotone'
thf(fact_7236_tan__monotone,axiom,
! [Y2: real,X2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
=> ( ( ord_less_real @ Y2 @ X2 )
=> ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ ( tan_real @ Y2 ) @ ( tan_real @ X2 ) ) ) ) ) ).
% tan_monotone
thf(fact_7237_tan__total,axiom,
! [Y2: real] :
? [X3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
& ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( tan_real @ X3 )
= Y2 )
& ! [Y4: real] :
( ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y4 )
& ( ord_less_real @ Y4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( tan_real @ Y4 )
= Y2 ) )
=> ( Y4 = X3 ) ) ) ).
% tan_total
thf(fact_7238_tan__minus__45,axiom,
( ( tan_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% tan_minus_45
thf(fact_7239_tan__inverse,axiom,
! [Y2: real] :
( ( divide_divide_real @ one_one_real @ ( tan_real @ Y2 ) )
= ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y2 ) ) ) ).
% tan_inverse
thf(fact_7240_sum__less__suminf2,axiom,
! [F: nat > int,N: nat,I: nat] :
( ( summable_int @ F )
=> ( ! [M3: nat] :
( ( ord_less_eq_nat @ N @ M3 )
=> ( ord_less_eq_int @ zero_zero_int @ ( F @ M3 ) ) )
=> ( ( ord_less_eq_nat @ N @ I )
=> ( ( ord_less_int @ zero_zero_int @ ( F @ I ) )
=> ( ord_less_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( suminf_int @ F ) ) ) ) ) ) ).
% sum_less_suminf2
thf(fact_7241_sum__less__suminf2,axiom,
! [F: nat > nat,N: nat,I: nat] :
( ( summable_nat @ F )
=> ( ! [M3: nat] :
( ( ord_less_eq_nat @ N @ M3 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ M3 ) ) )
=> ( ( ord_less_eq_nat @ N @ I )
=> ( ( ord_less_nat @ zero_zero_nat @ ( F @ I ) )
=> ( ord_less_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( suminf_nat @ F ) ) ) ) ) ) ).
% sum_less_suminf2
thf(fact_7242_sum__less__suminf2,axiom,
! [F: nat > real,N: nat,I: nat] :
( ( summable_real @ F )
=> ( ! [M3: nat] :
( ( ord_less_eq_nat @ N @ M3 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ M3 ) ) )
=> ( ( ord_less_eq_nat @ N @ I )
=> ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
=> ( ord_less_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( suminf_real @ F ) ) ) ) ) ) ).
% sum_less_suminf2
thf(fact_7243_one__diff__power__eq_H,axiom,
! [X2: complex,N: nat] :
( ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X2 @ N ) )
= ( times_times_complex @ ( minus_minus_complex @ one_one_complex @ X2 )
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( power_power_complex @ X2 @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% one_diff_power_eq'
thf(fact_7244_one__diff__power__eq_H,axiom,
! [X2: code_integer,N: nat] :
( ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ X2 @ N ) )
= ( times_3573771949741848930nteger @ ( minus_8373710615458151222nteger @ one_one_Code_integer @ X2 )
@ ( groups7501900531339628137nteger
@ ^ [I3: nat] : ( power_8256067586552552935nteger @ X2 @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% one_diff_power_eq'
thf(fact_7245_one__diff__power__eq_H,axiom,
! [X2: rat,N: nat] :
( ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X2 @ N ) )
= ( times_times_rat @ ( minus_minus_rat @ one_one_rat @ X2 )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( power_power_rat @ X2 @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% one_diff_power_eq'
thf(fact_7246_one__diff__power__eq_H,axiom,
! [X2: int,N: nat] :
( ( minus_minus_int @ one_one_int @ ( power_power_int @ X2 @ N ) )
= ( times_times_int @ ( minus_minus_int @ one_one_int @ X2 )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( power_power_int @ X2 @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% one_diff_power_eq'
thf(fact_7247_one__diff__power__eq_H,axiom,
! [X2: real,N: nat] :
( ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ N ) )
= ( times_times_real @ ( minus_minus_real @ one_one_real @ X2 )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( power_power_real @ X2 @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% one_diff_power_eq'
thf(fact_7248_add__tan__eq,axiom,
! [X2: complex,Y2: complex] :
( ( ( cos_complex @ X2 )
!= zero_zero_complex )
=> ( ( ( cos_complex @ Y2 )
!= zero_zero_complex )
=> ( ( plus_plus_complex @ ( tan_complex @ X2 ) @ ( tan_complex @ Y2 ) )
= ( divide1717551699836669952omplex @ ( sin_complex @ ( plus_plus_complex @ X2 @ Y2 ) ) @ ( times_times_complex @ ( cos_complex @ X2 ) @ ( cos_complex @ Y2 ) ) ) ) ) ) ).
% add_tan_eq
thf(fact_7249_add__tan__eq,axiom,
! [X2: real,Y2: real] :
( ( ( cos_real @ X2 )
!= zero_zero_real )
=> ( ( ( cos_real @ Y2 )
!= zero_zero_real )
=> ( ( plus_plus_real @ ( tan_real @ X2 ) @ ( tan_real @ Y2 ) )
= ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ X2 @ Y2 ) ) @ ( times_times_real @ ( cos_real @ X2 ) @ ( cos_real @ Y2 ) ) ) ) ) ) ).
% add_tan_eq
thf(fact_7250_sums__if_H,axiom,
! [G: nat > real,X2: real] :
( ( sums_real @ G @ X2 )
=> ( sums_real
@ ^ [N3: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ zero_zero_real @ ( G @ ( divide_divide_nat @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
@ X2 ) ) ).
% sums_if'
thf(fact_7251_sums__if,axiom,
! [G: nat > real,X2: real,F: nat > real,Y2: real] :
( ( sums_real @ G @ X2 )
=> ( ( sums_real @ F @ Y2 )
=> ( sums_real
@ ^ [N3: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ ( F @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( G @ ( divide_divide_nat @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
@ ( plus_plus_real @ X2 @ Y2 ) ) ) ) ).
% sums_if
thf(fact_7252_tan__pos__pi2__le,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( tan_real @ X2 ) ) ) ) ).
% tan_pos_pi2_le
thf(fact_7253_tan__total__pos,axiom,
! [Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ? [X3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
& ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( tan_real @ X3 )
= Y2 ) ) ) ).
% tan_total_pos
thf(fact_7254_tan__less__zero,axiom,
! [X2: real] :
( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X2 )
=> ( ( ord_less_real @ X2 @ zero_zero_real )
=> ( ord_less_real @ ( tan_real @ X2 ) @ zero_zero_real ) ) ) ).
% tan_less_zero
thf(fact_7255_tan__mono__le__eq,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
=> ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
=> ( ( ord_less_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ ( tan_real @ X2 ) @ ( tan_real @ Y2 ) )
= ( ord_less_eq_real @ X2 @ Y2 ) ) ) ) ) ) ).
% tan_mono_le_eq
thf(fact_7256_tan__mono__le,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
=> ( ( ord_less_eq_real @ X2 @ Y2 )
=> ( ( ord_less_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( tan_real @ X2 ) @ ( tan_real @ Y2 ) ) ) ) ) ).
% tan_mono_le
thf(fact_7257_tan__bound__pi2,axiom,
! [X2: real] :
( ( ord_less_real @ ( abs_abs_real @ X2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
=> ( ord_less_real @ ( abs_abs_real @ ( tan_real @ X2 ) ) @ one_one_real ) ) ).
% tan_bound_pi2
thf(fact_7258_arctan,axiom,
! [Y2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y2 ) )
& ( ord_less_real @ ( arctan @ Y2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( tan_real @ ( arctan @ Y2 ) )
= Y2 ) ) ).
% arctan
thf(fact_7259_arctan__tan,axiom,
! [X2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
=> ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( arctan @ ( tan_real @ X2 ) )
= X2 ) ) ) ).
% arctan_tan
thf(fact_7260_arctan__unique,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
=> ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ( tan_real @ X2 )
= Y2 )
=> ( ( arctan @ Y2 )
= X2 ) ) ) ) ).
% arctan_unique
thf(fact_7261_sum__split__even__odd,axiom,
! [F: nat > real,G: nat > real,N: nat] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) @ ( F @ I3 ) @ ( G @ I3 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( G @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) @ one_one_nat ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% sum_split_even_odd
thf(fact_7262_lemma__tan__add1,axiom,
! [X2: complex,Y2: complex] :
( ( ( cos_complex @ X2 )
!= zero_zero_complex )
=> ( ( ( cos_complex @ Y2 )
!= zero_zero_complex )
=> ( ( minus_minus_complex @ one_one_complex @ ( times_times_complex @ ( tan_complex @ X2 ) @ ( tan_complex @ Y2 ) ) )
= ( divide1717551699836669952omplex @ ( cos_complex @ ( plus_plus_complex @ X2 @ Y2 ) ) @ ( times_times_complex @ ( cos_complex @ X2 ) @ ( cos_complex @ Y2 ) ) ) ) ) ) ).
% lemma_tan_add1
thf(fact_7263_lemma__tan__add1,axiom,
! [X2: real,Y2: real] :
( ( ( cos_real @ X2 )
!= zero_zero_real )
=> ( ( ( cos_real @ Y2 )
!= zero_zero_real )
=> ( ( minus_minus_real @ one_one_real @ ( times_times_real @ ( tan_real @ X2 ) @ ( tan_real @ Y2 ) ) )
= ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ X2 @ Y2 ) ) @ ( times_times_real @ ( cos_real @ X2 ) @ ( cos_real @ Y2 ) ) ) ) ) ) ).
% lemma_tan_add1
thf(fact_7264_tan__diff,axiom,
! [X2: complex,Y2: complex] :
( ( ( cos_complex @ X2 )
!= zero_zero_complex )
=> ( ( ( cos_complex @ Y2 )
!= zero_zero_complex )
=> ( ( ( cos_complex @ ( minus_minus_complex @ X2 @ Y2 ) )
!= zero_zero_complex )
=> ( ( tan_complex @ ( minus_minus_complex @ X2 @ Y2 ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( tan_complex @ X2 ) @ ( tan_complex @ Y2 ) ) @ ( plus_plus_complex @ one_one_complex @ ( times_times_complex @ ( tan_complex @ X2 ) @ ( tan_complex @ Y2 ) ) ) ) ) ) ) ) ).
% tan_diff
thf(fact_7265_tan__diff,axiom,
! [X2: real,Y2: real] :
( ( ( cos_real @ X2 )
!= zero_zero_real )
=> ( ( ( cos_real @ Y2 )
!= zero_zero_real )
=> ( ( ( cos_real @ ( minus_minus_real @ X2 @ Y2 ) )
!= zero_zero_real )
=> ( ( tan_real @ ( minus_minus_real @ X2 @ Y2 ) )
= ( divide_divide_real @ ( minus_minus_real @ ( tan_real @ X2 ) @ ( tan_real @ Y2 ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( tan_real @ X2 ) @ ( tan_real @ Y2 ) ) ) ) ) ) ) ) ).
% tan_diff
thf(fact_7266_tan__add,axiom,
! [X2: complex,Y2: complex] :
( ( ( cos_complex @ X2 )
!= zero_zero_complex )
=> ( ( ( cos_complex @ Y2 )
!= zero_zero_complex )
=> ( ( ( cos_complex @ ( plus_plus_complex @ X2 @ Y2 ) )
!= zero_zero_complex )
=> ( ( tan_complex @ ( plus_plus_complex @ X2 @ Y2 ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( tan_complex @ X2 ) @ ( tan_complex @ Y2 ) ) @ ( minus_minus_complex @ one_one_complex @ ( times_times_complex @ ( tan_complex @ X2 ) @ ( tan_complex @ Y2 ) ) ) ) ) ) ) ) ).
% tan_add
thf(fact_7267_tan__add,axiom,
! [X2: real,Y2: real] :
( ( ( cos_real @ X2 )
!= zero_zero_real )
=> ( ( ( cos_real @ Y2 )
!= zero_zero_real )
=> ( ( ( cos_real @ ( plus_plus_real @ X2 @ Y2 ) )
!= zero_zero_real )
=> ( ( tan_real @ ( plus_plus_real @ X2 @ Y2 ) )
= ( divide_divide_real @ ( plus_plus_real @ ( tan_real @ X2 ) @ ( tan_real @ Y2 ) ) @ ( minus_minus_real @ one_one_real @ ( times_times_real @ ( tan_real @ X2 ) @ ( tan_real @ Y2 ) ) ) ) ) ) ) ) ).
% tan_add
thf(fact_7268_tan__total__pi4,axiom,
! [X2: real] :
( ( ord_less_real @ ( abs_abs_real @ X2 ) @ one_one_real )
=> ? [Z2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) @ Z2 )
& ( ord_less_real @ Z2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
& ( ( tan_real @ Z2 )
= X2 ) ) ) ).
% tan_total_pi4
thf(fact_7269_Sum__Icc__int,axiom,
! [M: int,N: int] :
( ( ord_less_eq_int @ M @ N )
=> ( ( groups4538972089207619220nt_int
@ ^ [X: int] : X
@ ( set_or1266510415728281911st_int @ M @ N ) )
= ( divide_divide_int @ ( minus_minus_int @ ( times_times_int @ N @ ( plus_plus_int @ N @ one_one_int ) ) @ ( times_times_int @ M @ ( minus_minus_int @ M @ one_one_int ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% Sum_Icc_int
thf(fact_7270_sum__pos__lt__pair,axiom,
! [F: nat > real,K: nat] :
( ( summable_real @ F )
=> ( ! [D3: nat] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( F @ ( plus_plus_nat @ K @ ( times_times_nat @ ( suc @ ( suc @ zero_zero_nat ) ) @ D3 ) ) ) @ ( F @ ( plus_plus_nat @ K @ ( plus_plus_nat @ ( times_times_nat @ ( suc @ ( suc @ zero_zero_nat ) ) @ D3 ) @ one_one_nat ) ) ) ) )
=> ( ord_less_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ K ) ) @ ( suminf_real @ F ) ) ) ) ).
% sum_pos_lt_pair
thf(fact_7271_tan__half,axiom,
( tan_complex
= ( ^ [X: complex] : ( divide1717551699836669952omplex @ ( sin_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) ) @ ( plus_plus_complex @ ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) ) @ one_one_complex ) ) ) ) ).
% tan_half
thf(fact_7272_tan__half,axiom,
( tan_real
= ( ^ [X: real] : ( divide_divide_real @ ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) ) @ ( plus_plus_real @ ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) ) @ one_one_real ) ) ) ) ).
% tan_half
thf(fact_7273_sum__bounds__lt__plus1,axiom,
! [F: nat > nat,Mm: nat] :
( ( groups3542108847815614940at_nat
@ ^ [K2: nat] : ( F @ ( suc @ K2 ) )
@ ( set_ord_lessThan_nat @ Mm ) )
= ( groups3542108847815614940at_nat @ F @ ( set_or1269000886237332187st_nat @ one_one_nat @ Mm ) ) ) ).
% sum_bounds_lt_plus1
thf(fact_7274_sum__bounds__lt__plus1,axiom,
! [F: nat > real,Mm: nat] :
( ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( F @ ( suc @ K2 ) )
@ ( set_ord_lessThan_nat @ Mm ) )
= ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ one_one_nat @ Mm ) ) ) ).
% sum_bounds_lt_plus1
thf(fact_7275_sumr__cos__zero__one,axiom,
! [N: nat] :
( ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( cos_coeff @ M5 ) @ ( power_power_real @ zero_zero_real @ M5 ) )
@ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= one_one_real ) ).
% sumr_cos_zero_one
thf(fact_7276_diffs__equiv,axiom,
! [C: nat > complex,X2: complex] :
( ( summable_complex
@ ^ [N3: nat] : ( times_times_complex @ ( diffs_complex @ C @ N3 ) @ ( power_power_complex @ X2 @ N3 ) ) )
=> ( sums_complex
@ ^ [N3: nat] : ( times_times_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N3 ) @ ( C @ N3 ) ) @ ( power_power_complex @ X2 @ ( minus_minus_nat @ N3 @ ( suc @ zero_zero_nat ) ) ) )
@ ( suminf_complex
@ ^ [N3: nat] : ( times_times_complex @ ( diffs_complex @ C @ N3 ) @ ( power_power_complex @ X2 @ N3 ) ) ) ) ) ).
% diffs_equiv
thf(fact_7277_diffs__equiv,axiom,
! [C: nat > real,X2: real] :
( ( summable_real
@ ^ [N3: nat] : ( times_times_real @ ( diffs_real @ C @ N3 ) @ ( power_power_real @ X2 @ N3 ) ) )
=> ( sums_real
@ ^ [N3: nat] : ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( C @ N3 ) ) @ ( power_power_real @ X2 @ ( minus_minus_nat @ N3 @ ( suc @ zero_zero_nat ) ) ) )
@ ( suminf_real
@ ^ [N3: nat] : ( times_times_real @ ( diffs_real @ C @ N3 ) @ ( power_power_real @ X2 @ N3 ) ) ) ) ) ).
% diffs_equiv
thf(fact_7278_sin__paired,axiom,
! [X2: real] :
( sums_real
@ ^ [N3: nat] : ( times_times_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N3 ) @ ( semiri2265585572941072030t_real @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) ) @ ( power_power_real @ X2 @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) )
@ ( sin_real @ X2 ) ) ).
% sin_paired
thf(fact_7279_sin__tan,axiom,
! [X2: real] :
( ( ord_less_real @ ( abs_abs_real @ X2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( sin_real @ X2 )
= ( divide_divide_real @ ( tan_real @ X2 ) @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% sin_tan
thf(fact_7280_real__sqrt__eq__iff,axiom,
! [X2: real,Y2: real] :
( ( ( sqrt @ X2 )
= ( sqrt @ Y2 ) )
= ( X2 = Y2 ) ) ).
% real_sqrt_eq_iff
thf(fact_7281_of__nat__fact,axiom,
! [N: nat] :
( ( semiri1314217659103216013at_int @ ( semiri1408675320244567234ct_nat @ N ) )
= ( semiri1406184849735516958ct_int @ N ) ) ).
% of_nat_fact
thf(fact_7282_of__nat__fact,axiom,
! [N: nat] :
( ( semiri5074537144036343181t_real @ ( semiri1408675320244567234ct_nat @ N ) )
= ( semiri2265585572941072030t_real @ N ) ) ).
% of_nat_fact
thf(fact_7283_of__nat__fact,axiom,
! [N: nat] :
( ( semiri1316708129612266289at_nat @ ( semiri1408675320244567234ct_nat @ N ) )
= ( semiri1408675320244567234ct_nat @ N ) ) ).
% of_nat_fact
thf(fact_7284_real__sqrt__eq__zero__cancel__iff,axiom,
! [X2: real] :
( ( ( sqrt @ X2 )
= zero_zero_real )
= ( X2 = zero_zero_real ) ) ).
% real_sqrt_eq_zero_cancel_iff
thf(fact_7285_real__sqrt__zero,axiom,
( ( sqrt @ zero_zero_real )
= zero_zero_real ) ).
% real_sqrt_zero
thf(fact_7286_real__sqrt__less__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ ( sqrt @ X2 ) @ ( sqrt @ Y2 ) )
= ( ord_less_real @ X2 @ Y2 ) ) ).
% real_sqrt_less_iff
thf(fact_7287_real__sqrt__le__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( sqrt @ X2 ) @ ( sqrt @ Y2 ) )
= ( ord_less_eq_real @ X2 @ Y2 ) ) ).
% real_sqrt_le_iff
thf(fact_7288_real__sqrt__eq__1__iff,axiom,
! [X2: real] :
( ( ( sqrt @ X2 )
= one_one_real )
= ( X2 = one_one_real ) ) ).
% real_sqrt_eq_1_iff
thf(fact_7289_real__sqrt__one,axiom,
( ( sqrt @ one_one_real )
= one_one_real ) ).
% real_sqrt_one
thf(fact_7290_fact__0,axiom,
( ( semiri5044797733671781792omplex @ zero_zero_nat )
= one_one_complex ) ).
% fact_0
thf(fact_7291_fact__0,axiom,
( ( semiri773545260158071498ct_rat @ zero_zero_nat )
= one_one_rat ) ).
% fact_0
thf(fact_7292_fact__0,axiom,
( ( semiri1406184849735516958ct_int @ zero_zero_nat )
= one_one_int ) ).
% fact_0
thf(fact_7293_fact__0,axiom,
( ( semiri2265585572941072030t_real @ zero_zero_nat )
= one_one_real ) ).
% fact_0
thf(fact_7294_fact__0,axiom,
( ( semiri1408675320244567234ct_nat @ zero_zero_nat )
= one_one_nat ) ).
% fact_0
thf(fact_7295_fact__1,axiom,
( ( semiri5044797733671781792omplex @ one_one_nat )
= one_one_complex ) ).
% fact_1
thf(fact_7296_fact__1,axiom,
( ( semiri773545260158071498ct_rat @ one_one_nat )
= one_one_rat ) ).
% fact_1
thf(fact_7297_fact__1,axiom,
( ( semiri1406184849735516958ct_int @ one_one_nat )
= one_one_int ) ).
% fact_1
thf(fact_7298_fact__1,axiom,
( ( semiri2265585572941072030t_real @ one_one_nat )
= one_one_real ) ).
% fact_1
thf(fact_7299_fact__1,axiom,
( ( semiri1408675320244567234ct_nat @ one_one_nat )
= one_one_nat ) ).
% fact_1
thf(fact_7300_real__sqrt__lt__0__iff,axiom,
! [X2: real] :
( ( ord_less_real @ ( sqrt @ X2 ) @ zero_zero_real )
= ( ord_less_real @ X2 @ zero_zero_real ) ) ).
% real_sqrt_lt_0_iff
thf(fact_7301_real__sqrt__gt__0__iff,axiom,
! [Y2: real] :
( ( ord_less_real @ zero_zero_real @ ( sqrt @ Y2 ) )
= ( ord_less_real @ zero_zero_real @ Y2 ) ) ).
% real_sqrt_gt_0_iff
thf(fact_7302_real__sqrt__ge__0__iff,axiom,
! [Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ Y2 ) )
= ( ord_less_eq_real @ zero_zero_real @ Y2 ) ) ).
% real_sqrt_ge_0_iff
thf(fact_7303_real__sqrt__le__0__iff,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( sqrt @ X2 ) @ zero_zero_real )
= ( ord_less_eq_real @ X2 @ zero_zero_real ) ) ).
% real_sqrt_le_0_iff
thf(fact_7304_real__sqrt__lt__1__iff,axiom,
! [X2: real] :
( ( ord_less_real @ ( sqrt @ X2 ) @ one_one_real )
= ( ord_less_real @ X2 @ one_one_real ) ) ).
% real_sqrt_lt_1_iff
thf(fact_7305_real__sqrt__gt__1__iff,axiom,
! [Y2: real] :
( ( ord_less_real @ one_one_real @ ( sqrt @ Y2 ) )
= ( ord_less_real @ one_one_real @ Y2 ) ) ).
% real_sqrt_gt_1_iff
thf(fact_7306_real__sqrt__ge__1__iff,axiom,
! [Y2: real] :
( ( ord_less_eq_real @ one_one_real @ ( sqrt @ Y2 ) )
= ( ord_less_eq_real @ one_one_real @ Y2 ) ) ).
% real_sqrt_ge_1_iff
thf(fact_7307_real__sqrt__le__1__iff,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( sqrt @ X2 ) @ one_one_real )
= ( ord_less_eq_real @ X2 @ one_one_real ) ) ).
% real_sqrt_le_1_iff
thf(fact_7308_real__sqrt__mult__self,axiom,
! [A: real] :
( ( times_times_real @ ( sqrt @ A ) @ ( sqrt @ A ) )
= ( abs_abs_real @ A ) ) ).
% real_sqrt_mult_self
thf(fact_7309_real__sqrt__abs2,axiom,
! [X2: real] :
( ( sqrt @ ( times_times_real @ X2 @ X2 ) )
= ( abs_abs_real @ X2 ) ) ).
% real_sqrt_abs2
thf(fact_7310_cos__coeff__0,axiom,
( ( cos_coeff @ zero_zero_nat )
= one_one_real ) ).
% cos_coeff_0
thf(fact_7311_fact__Suc__0,axiom,
( ( semiri5044797733671781792omplex @ ( suc @ zero_zero_nat ) )
= one_one_complex ) ).
% fact_Suc_0
thf(fact_7312_fact__Suc__0,axiom,
( ( semiri773545260158071498ct_rat @ ( suc @ zero_zero_nat ) )
= one_one_rat ) ).
% fact_Suc_0
thf(fact_7313_fact__Suc__0,axiom,
( ( semiri1406184849735516958ct_int @ ( suc @ zero_zero_nat ) )
= one_one_int ) ).
% fact_Suc_0
thf(fact_7314_fact__Suc__0,axiom,
( ( semiri2265585572941072030t_real @ ( suc @ zero_zero_nat ) )
= one_one_real ) ).
% fact_Suc_0
thf(fact_7315_fact__Suc__0,axiom,
( ( semiri1408675320244567234ct_nat @ ( suc @ zero_zero_nat ) )
= one_one_nat ) ).
% fact_Suc_0
thf(fact_7316_fact__Suc,axiom,
! [N: nat] :
( ( semiri773545260158071498ct_rat @ ( suc @ N ) )
= ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ N ) ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ).
% fact_Suc
thf(fact_7317_fact__Suc,axiom,
! [N: nat] :
( ( semiri1406184849735516958ct_int @ ( suc @ N ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) @ ( semiri1406184849735516958ct_int @ N ) ) ) ).
% fact_Suc
thf(fact_7318_fact__Suc,axiom,
! [N: nat] :
( ( semiri2265585572941072030t_real @ ( suc @ N ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) @ ( semiri2265585572941072030t_real @ N ) ) ) ).
% fact_Suc
thf(fact_7319_fact__Suc,axiom,
! [N: nat] :
( ( semiri1408675320244567234ct_nat @ ( suc @ N ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( suc @ N ) ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ).
% fact_Suc
thf(fact_7320_real__sqrt__four,axiom,
( ( sqrt @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% real_sqrt_four
thf(fact_7321_fact__2,axiom,
( ( semiri5044797733671781792omplex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).
% fact_2
thf(fact_7322_fact__2,axiom,
( ( semiri773545260158071498ct_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).
% fact_2
thf(fact_7323_fact__2,axiom,
( ( semiri1406184849735516958ct_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% fact_2
thf(fact_7324_fact__2,axiom,
( ( semiri2265585572941072030t_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% fact_2
thf(fact_7325_fact__2,axiom,
( ( semiri1408675320244567234ct_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% fact_2
thf(fact_7326_real__sqrt__abs,axiom,
! [X2: real] :
( ( sqrt @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( abs_abs_real @ X2 ) ) ).
% real_sqrt_abs
thf(fact_7327_real__sqrt__pow2__iff,axiom,
! [X2: real] :
( ( ( power_power_real @ ( sqrt @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= X2 )
= ( ord_less_eq_real @ zero_zero_real @ X2 ) ) ).
% real_sqrt_pow2_iff
thf(fact_7328_real__sqrt__pow2,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( power_power_real @ ( sqrt @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= X2 ) ) ).
% real_sqrt_pow2
thf(fact_7329_real__sqrt__sum__squares__mult__squared__eq,axiom,
! [X2: real,Y2: real,Xa3: real,Ya: real] :
( ( power_power_real @ ( sqrt @ ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% real_sqrt_sum_squares_mult_squared_eq
thf(fact_7330_diffs__of__real,axiom,
! [F: nat > real] :
( ( diffs_complex
@ ^ [N3: nat] : ( real_V4546457046886955230omplex @ ( F @ N3 ) ) )
= ( ^ [N3: nat] : ( real_V4546457046886955230omplex @ ( diffs_real @ F @ N3 ) ) ) ) ).
% diffs_of_real
thf(fact_7331_real__sqrt__minus,axiom,
! [X2: real] :
( ( sqrt @ ( uminus_uminus_real @ X2 ) )
= ( uminus_uminus_real @ ( sqrt @ X2 ) ) ) ).
% real_sqrt_minus
thf(fact_7332_fact__nonzero,axiom,
! [N: nat] :
( ( semiri5044797733671781792omplex @ N )
!= zero_zero_complex ) ).
% fact_nonzero
thf(fact_7333_fact__nonzero,axiom,
! [N: nat] :
( ( semiri773545260158071498ct_rat @ N )
!= zero_zero_rat ) ).
% fact_nonzero
thf(fact_7334_fact__nonzero,axiom,
! [N: nat] :
( ( semiri1406184849735516958ct_int @ N )
!= zero_zero_int ) ).
% fact_nonzero
thf(fact_7335_fact__nonzero,axiom,
! [N: nat] :
( ( semiri2265585572941072030t_real @ N )
!= zero_zero_real ) ).
% fact_nonzero
thf(fact_7336_fact__nonzero,axiom,
! [N: nat] :
( ( semiri1408675320244567234ct_nat @ N )
!= zero_zero_nat ) ).
% fact_nonzero
thf(fact_7337_real__sqrt__less__mono,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ X2 @ Y2 )
=> ( ord_less_real @ ( sqrt @ X2 ) @ ( sqrt @ Y2 ) ) ) ).
% real_sqrt_less_mono
thf(fact_7338_real__sqrt__le__mono,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ X2 @ Y2 )
=> ( ord_less_eq_real @ ( sqrt @ X2 ) @ ( sqrt @ Y2 ) ) ) ).
% real_sqrt_le_mono
thf(fact_7339_real__sqrt__power,axiom,
! [X2: real,K: nat] :
( ( sqrt @ ( power_power_real @ X2 @ K ) )
= ( power_power_real @ ( sqrt @ X2 ) @ K ) ) ).
% real_sqrt_power
thf(fact_7340_real__sqrt__mult,axiom,
! [X2: real,Y2: real] :
( ( sqrt @ ( times_times_real @ X2 @ Y2 ) )
= ( times_times_real @ ( sqrt @ X2 ) @ ( sqrt @ Y2 ) ) ) ).
% real_sqrt_mult
thf(fact_7341_real__sqrt__divide,axiom,
! [X2: real,Y2: real] :
( ( sqrt @ ( divide_divide_real @ X2 @ Y2 ) )
= ( divide_divide_real @ ( sqrt @ X2 ) @ ( sqrt @ Y2 ) ) ) ).
% real_sqrt_divide
thf(fact_7342_real__sqrt__gt__zero,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ord_less_real @ zero_zero_real @ ( sqrt @ X2 ) ) ) ).
% real_sqrt_gt_zero
thf(fact_7343_real__sqrt__ge__zero,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ X2 ) ) ) ).
% real_sqrt_ge_zero
thf(fact_7344_real__sqrt__eq__zero__cancel,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ( sqrt @ X2 )
= zero_zero_real )
=> ( X2 = zero_zero_real ) ) ) ).
% real_sqrt_eq_zero_cancel
thf(fact_7345_real__sqrt__ge__one,axiom,
! [X2: real] :
( ( ord_less_eq_real @ one_one_real @ X2 )
=> ( ord_less_eq_real @ one_one_real @ ( sqrt @ X2 ) ) ) ).
% real_sqrt_ge_one
thf(fact_7346_fact__ge__zero,axiom,
! [N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( semiri773545260158071498ct_rat @ N ) ) ).
% fact_ge_zero
thf(fact_7347_fact__ge__zero,axiom,
! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1406184849735516958ct_int @ N ) ) ).
% fact_ge_zero
thf(fact_7348_fact__ge__zero,axiom,
! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri2265585572941072030t_real @ N ) ) ).
% fact_ge_zero
thf(fact_7349_fact__ge__zero,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1408675320244567234ct_nat @ N ) ) ).
% fact_ge_zero
thf(fact_7350_fact__not__neg,axiom,
! [N: nat] :
~ ( ord_less_rat @ ( semiri773545260158071498ct_rat @ N ) @ zero_zero_rat ) ).
% fact_not_neg
thf(fact_7351_fact__not__neg,axiom,
! [N: nat] :
~ ( ord_less_int @ ( semiri1406184849735516958ct_int @ N ) @ zero_zero_int ) ).
% fact_not_neg
thf(fact_7352_fact__not__neg,axiom,
! [N: nat] :
~ ( ord_less_real @ ( semiri2265585572941072030t_real @ N ) @ zero_zero_real ) ).
% fact_not_neg
thf(fact_7353_fact__not__neg,axiom,
! [N: nat] :
~ ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ N ) @ zero_zero_nat ) ).
% fact_not_neg
thf(fact_7354_fact__gt__zero,axiom,
! [N: nat] : ( ord_less_rat @ zero_zero_rat @ ( semiri773545260158071498ct_rat @ N ) ) ).
% fact_gt_zero
thf(fact_7355_fact__gt__zero,axiom,
! [N: nat] : ( ord_less_int @ zero_zero_int @ ( semiri1406184849735516958ct_int @ N ) ) ).
% fact_gt_zero
thf(fact_7356_fact__gt__zero,axiom,
! [N: nat] : ( ord_less_real @ zero_zero_real @ ( semiri2265585572941072030t_real @ N ) ) ).
% fact_gt_zero
thf(fact_7357_fact__gt__zero,axiom,
! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( semiri1408675320244567234ct_nat @ N ) ) ).
% fact_gt_zero
thf(fact_7358_fact__ge__1,axiom,
! [N: nat] : ( ord_less_eq_rat @ one_one_rat @ ( semiri773545260158071498ct_rat @ N ) ) ).
% fact_ge_1
thf(fact_7359_fact__ge__1,axiom,
! [N: nat] : ( ord_less_eq_int @ one_one_int @ ( semiri1406184849735516958ct_int @ N ) ) ).
% fact_ge_1
thf(fact_7360_fact__ge__1,axiom,
! [N: nat] : ( ord_less_eq_real @ one_one_real @ ( semiri2265585572941072030t_real @ N ) ) ).
% fact_ge_1
thf(fact_7361_fact__ge__1,axiom,
! [N: nat] : ( ord_less_eq_nat @ one_one_nat @ ( semiri1408675320244567234ct_nat @ N ) ) ).
% fact_ge_1
thf(fact_7362_fact__fact__dvd__fact,axiom,
! [K: nat,N: nat] : ( dvd_dvd_rat @ ( times_times_rat @ ( semiri773545260158071498ct_rat @ K ) @ ( semiri773545260158071498ct_rat @ N ) ) @ ( semiri773545260158071498ct_rat @ ( plus_plus_nat @ K @ N ) ) ) ).
% fact_fact_dvd_fact
thf(fact_7363_fact__fact__dvd__fact,axiom,
! [K: nat,N: nat] : ( dvd_dvd_int @ ( times_times_int @ ( semiri1406184849735516958ct_int @ K ) @ ( semiri1406184849735516958ct_int @ N ) ) @ ( semiri1406184849735516958ct_int @ ( plus_plus_nat @ K @ N ) ) ) ).
% fact_fact_dvd_fact
thf(fact_7364_fact__fact__dvd__fact,axiom,
! [K: nat,N: nat] : ( dvd_dvd_real @ ( times_times_real @ ( semiri2265585572941072030t_real @ K ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( semiri2265585572941072030t_real @ ( plus_plus_nat @ K @ N ) ) ) ).
% fact_fact_dvd_fact
thf(fact_7365_fact__fact__dvd__fact,axiom,
! [K: nat,N: nat] : ( dvd_dvd_nat @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ N ) ) @ ( semiri1408675320244567234ct_nat @ ( plus_plus_nat @ K @ N ) ) ) ).
% fact_fact_dvd_fact
thf(fact_7366_fact__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_rat @ ( semiri773545260158071498ct_rat @ M ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ).
% fact_mono
thf(fact_7367_fact__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_int @ ( semiri1406184849735516958ct_int @ M ) @ ( semiri1406184849735516958ct_int @ N ) ) ) ).
% fact_mono
thf(fact_7368_fact__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_real @ ( semiri2265585572941072030t_real @ M ) @ ( semiri2265585572941072030t_real @ N ) ) ) ).
% fact_mono
thf(fact_7369_fact__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ).
% fact_mono
thf(fact_7370_diffs__minus,axiom,
! [C: nat > real] :
( ( diffs_real
@ ^ [N3: nat] : ( uminus_uminus_real @ ( C @ N3 ) ) )
= ( ^ [N3: nat] : ( uminus_uminus_real @ ( diffs_real @ C @ N3 ) ) ) ) ).
% diffs_minus
thf(fact_7371_diffs__minus,axiom,
! [C: nat > int] :
( ( diffs_int
@ ^ [N3: nat] : ( uminus_uminus_int @ ( C @ N3 ) ) )
= ( ^ [N3: nat] : ( uminus_uminus_int @ ( diffs_int @ C @ N3 ) ) ) ) ).
% diffs_minus
thf(fact_7372_diffs__minus,axiom,
! [C: nat > complex] :
( ( diffs_complex
@ ^ [N3: nat] : ( uminus1482373934393186551omplex @ ( C @ N3 ) ) )
= ( ^ [N3: nat] : ( uminus1482373934393186551omplex @ ( diffs_complex @ C @ N3 ) ) ) ) ).
% diffs_minus
thf(fact_7373_diffs__minus,axiom,
! [C: nat > rat] :
( ( diffs_rat
@ ^ [N3: nat] : ( uminus_uminus_rat @ ( C @ N3 ) ) )
= ( ^ [N3: nat] : ( uminus_uminus_rat @ ( diffs_rat @ C @ N3 ) ) ) ) ).
% diffs_minus
thf(fact_7374_diffs__minus,axiom,
! [C: nat > code_integer] :
( ( diffs_Code_integer
@ ^ [N3: nat] : ( uminus1351360451143612070nteger @ ( C @ N3 ) ) )
= ( ^ [N3: nat] : ( uminus1351360451143612070nteger @ ( diffs_Code_integer @ C @ N3 ) ) ) ) ).
% diffs_minus
thf(fact_7375_fact__dvd,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_int @ ( semiri1406184849735516958ct_int @ N ) @ ( semiri1406184849735516958ct_int @ M ) ) ) ).
% fact_dvd
thf(fact_7376_fact__dvd,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_real @ ( semiri2265585572941072030t_real @ N ) @ ( semiri2265585572941072030t_real @ M ) ) ) ).
% fact_dvd
thf(fact_7377_fact__dvd,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( semiri1408675320244567234ct_nat @ M ) ) ) ).
% fact_dvd
thf(fact_7378_choose__dvd,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( dvd_dvd_rat @ ( times_times_rat @ ( semiri773545260158071498ct_rat @ K ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N @ K ) ) ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ).
% choose_dvd
thf(fact_7379_choose__dvd,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( dvd_dvd_int @ ( times_times_int @ ( semiri1406184849735516958ct_int @ K ) @ ( semiri1406184849735516958ct_int @ ( minus_minus_nat @ N @ K ) ) ) @ ( semiri1406184849735516958ct_int @ N ) ) ) ).
% choose_dvd
thf(fact_7380_choose__dvd,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( dvd_dvd_real @ ( times_times_real @ ( semiri2265585572941072030t_real @ K ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ K ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) ) ).
% choose_dvd
thf(fact_7381_choose__dvd,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( dvd_dvd_nat @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ K ) ) ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ).
% choose_dvd
thf(fact_7382_real__div__sqrt,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( divide_divide_real @ X2 @ ( sqrt @ X2 ) )
= ( sqrt @ X2 ) ) ) ).
% real_div_sqrt
thf(fact_7383_sqrt__add__le__add__sqrt,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ X2 @ Y2 ) ) @ ( plus_plus_real @ ( sqrt @ X2 ) @ ( sqrt @ Y2 ) ) ) ) ) ).
% sqrt_add_le_add_sqrt
thf(fact_7384_le__real__sqrt__sumsq,axiom,
! [X2: real,Y2: real] : ( ord_less_eq_real @ X2 @ ( sqrt @ ( plus_plus_real @ ( times_times_real @ X2 @ X2 ) @ ( times_times_real @ Y2 @ Y2 ) ) ) ) ).
% le_real_sqrt_sumsq
thf(fact_7385_fact__less__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N )
=> ( ord_less_rat @ ( semiri773545260158071498ct_rat @ M ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ) ).
% fact_less_mono
thf(fact_7386_fact__less__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N )
=> ( ord_less_int @ ( semiri1406184849735516958ct_int @ M ) @ ( semiri1406184849735516958ct_int @ N ) ) ) ) ).
% fact_less_mono
thf(fact_7387_fact__less__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N )
=> ( ord_less_real @ ( semiri2265585572941072030t_real @ M ) @ ( semiri2265585572941072030t_real @ N ) ) ) ) ).
% fact_less_mono
thf(fact_7388_fact__less__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ) ).
% fact_less_mono
thf(fact_7389_fact__mod,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( modulo_modulo_int @ ( semiri1406184849735516958ct_int @ N ) @ ( semiri1406184849735516958ct_int @ M ) )
= zero_zero_int ) ) ).
% fact_mod
thf(fact_7390_fact__mod,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( modulo364778990260209775nteger @ ( semiri3624122377584611663nteger @ N ) @ ( semiri3624122377584611663nteger @ M ) )
= zero_z3403309356797280102nteger ) ) ).
% fact_mod
thf(fact_7391_fact__mod,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( modulo_modulo_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( semiri1408675320244567234ct_nat @ M ) )
= zero_zero_nat ) ) ).
% fact_mod
thf(fact_7392_fact__le__power,axiom,
! [N: nat] : ( ord_less_eq_rat @ ( semiri773545260158071498ct_rat @ N ) @ ( semiri681578069525770553at_rat @ ( power_power_nat @ N @ N ) ) ) ).
% fact_le_power
thf(fact_7393_fact__le__power,axiom,
! [N: nat] : ( ord_less_eq_int @ ( semiri1406184849735516958ct_int @ N ) @ ( semiri1314217659103216013at_int @ ( power_power_nat @ N @ N ) ) ) ).
% fact_le_power
thf(fact_7394_fact__le__power,axiom,
! [N: nat] : ( ord_less_eq_real @ ( semiri2265585572941072030t_real @ N ) @ ( semiri5074537144036343181t_real @ ( power_power_nat @ N @ N ) ) ) ).
% fact_le_power
thf(fact_7395_fact__le__power,axiom,
! [N: nat] : ( ord_less_eq_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( semiri1316708129612266289at_nat @ ( power_power_nat @ N @ N ) ) ) ).
% fact_le_power
thf(fact_7396_sqrt2__less__2,axiom,
ord_less_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).
% sqrt2_less_2
thf(fact_7397_diffs__def,axiom,
( diffs_rat
= ( ^ [C2: nat > rat,N3: nat] : ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ N3 ) ) @ ( C2 @ ( suc @ N3 ) ) ) ) ) ).
% diffs_def
thf(fact_7398_diffs__def,axiom,
( diffs_real
= ( ^ [C2: nat > real,N3: nat] : ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) @ ( C2 @ ( suc @ N3 ) ) ) ) ) ).
% diffs_def
thf(fact_7399_diffs__def,axiom,
( diffs_int
= ( ^ [C2: nat > int,N3: nat] : ( times_times_int @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) @ ( C2 @ ( suc @ N3 ) ) ) ) ) ).
% diffs_def
thf(fact_7400_fact__numeral,axiom,
! [K: num] :
( ( semiri5044797733671781792omplex @ ( numeral_numeral_nat @ K ) )
= ( times_times_complex @ ( numera6690914467698888265omplex @ K ) @ ( semiri5044797733671781792omplex @ ( pred_numeral @ K ) ) ) ) ).
% fact_numeral
thf(fact_7401_fact__numeral,axiom,
! [K: num] :
( ( semiri773545260158071498ct_rat @ ( numeral_numeral_nat @ K ) )
= ( times_times_rat @ ( numeral_numeral_rat @ K ) @ ( semiri773545260158071498ct_rat @ ( pred_numeral @ K ) ) ) ) ).
% fact_numeral
thf(fact_7402_fact__numeral,axiom,
! [K: num] :
( ( semiri1406184849735516958ct_int @ ( numeral_numeral_nat @ K ) )
= ( times_times_int @ ( numeral_numeral_int @ K ) @ ( semiri1406184849735516958ct_int @ ( pred_numeral @ K ) ) ) ) ).
% fact_numeral
thf(fact_7403_fact__numeral,axiom,
! [K: num] :
( ( semiri2265585572941072030t_real @ ( numeral_numeral_nat @ K ) )
= ( times_times_real @ ( numeral_numeral_real @ K ) @ ( semiri2265585572941072030t_real @ ( pred_numeral @ K ) ) ) ) ).
% fact_numeral
thf(fact_7404_fact__numeral,axiom,
! [K: num] :
( ( semiri1408675320244567234ct_nat @ ( numeral_numeral_nat @ K ) )
= ( times_times_nat @ ( numeral_numeral_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( pred_numeral @ K ) ) ) ) ).
% fact_numeral
thf(fact_7405_real__less__rsqrt,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y2 )
=> ( ord_less_real @ X2 @ ( sqrt @ Y2 ) ) ) ).
% real_less_rsqrt
thf(fact_7406_real__le__rsqrt,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y2 )
=> ( ord_less_eq_real @ X2 @ ( sqrt @ Y2 ) ) ) ).
% real_le_rsqrt
thf(fact_7407_sqrt__le__D,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( sqrt @ X2 ) @ Y2 )
=> ( ord_less_eq_real @ X2 @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sqrt_le_D
thf(fact_7408_termdiff__converges__all,axiom,
! [C: nat > complex,X2: complex] :
( ! [X3: complex] :
( summable_complex
@ ^ [N3: nat] : ( times_times_complex @ ( C @ N3 ) @ ( power_power_complex @ X3 @ N3 ) ) )
=> ( summable_complex
@ ^ [N3: nat] : ( times_times_complex @ ( diffs_complex @ C @ N3 ) @ ( power_power_complex @ X2 @ N3 ) ) ) ) ).
% termdiff_converges_all
thf(fact_7409_termdiff__converges__all,axiom,
! [C: nat > real,X2: real] :
( ! [X3: real] :
( summable_real
@ ^ [N3: nat] : ( times_times_real @ ( C @ N3 ) @ ( power_power_real @ X3 @ N3 ) ) )
=> ( summable_real
@ ^ [N3: nat] : ( times_times_real @ ( diffs_real @ C @ N3 ) @ ( power_power_real @ X2 @ N3 ) ) ) ) ).
% termdiff_converges_all
thf(fact_7410_tan__60,axiom,
( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
= ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ).
% tan_60
thf(fact_7411_square__fact__le__2__fact,axiom,
! [N: nat] : ( ord_less_eq_real @ ( times_times_real @ ( semiri2265585572941072030t_real @ N ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% square_fact_le_2_fact
thf(fact_7412_real__sqrt__unique,axiom,
! [Y2: real,X2: real] :
( ( ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( sqrt @ X2 )
= Y2 ) ) ) ).
% real_sqrt_unique
thf(fact_7413_real__le__lsqrt,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_eq_real @ X2 @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( sqrt @ X2 ) @ Y2 ) ) ) ) ).
% real_le_lsqrt
thf(fact_7414_lemma__real__divide__sqrt__less,axiom,
! [U: real] :
( ( ord_less_real @ zero_zero_real @ U )
=> ( ord_less_real @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ U ) ) ).
% lemma_real_divide_sqrt_less
thf(fact_7415_real__sqrt__sum__squares__eq__cancel2,axiom,
! [X2: real,Y2: real] :
( ( ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= Y2 )
=> ( X2 = zero_zero_real ) ) ).
% real_sqrt_sum_squares_eq_cancel2
thf(fact_7416_real__sqrt__sum__squares__eq__cancel,axiom,
! [X2: real,Y2: real] :
( ( ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= X2 )
=> ( Y2 = zero_zero_real ) ) ).
% real_sqrt_sum_squares_eq_cancel
thf(fact_7417_real__sqrt__sum__squares__triangle__ineq,axiom,
! [A: real,C: real,B: real,D2: real] : ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ ( plus_plus_real @ A @ C ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( plus_plus_real @ B @ D2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ C @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ D2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% real_sqrt_sum_squares_triangle_ineq
thf(fact_7418_real__sqrt__sum__squares__ge2,axiom,
! [Y2: real,X2: real] : ( ord_less_eq_real @ Y2 @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% real_sqrt_sum_squares_ge2
thf(fact_7419_real__sqrt__sum__squares__ge1,axiom,
! [X2: real,Y2: real] : ( ord_less_eq_real @ X2 @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% real_sqrt_sum_squares_ge1
thf(fact_7420_sqrt__ge__absD,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ ( sqrt @ Y2 ) )
=> ( ord_less_eq_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y2 ) ) ).
% sqrt_ge_absD
thf(fact_7421_cos__45,axiom,
( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
= ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% cos_45
thf(fact_7422_sin__45,axiom,
( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
= ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% sin_45
thf(fact_7423_cos__coeff__def,axiom,
( cos_coeff
= ( ^ [N3: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri2265585572941072030t_real @ N3 ) ) @ zero_zero_real ) ) ) ).
% cos_coeff_def
thf(fact_7424_fact__num__eq__if,axiom,
( semiri5044797733671781792omplex
= ( ^ [M5: nat] : ( if_complex @ ( M5 = zero_zero_nat ) @ one_one_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ M5 ) @ ( semiri5044797733671781792omplex @ ( minus_minus_nat @ M5 @ one_one_nat ) ) ) ) ) ) ).
% fact_num_eq_if
thf(fact_7425_fact__num__eq__if,axiom,
( semiri773545260158071498ct_rat
= ( ^ [M5: nat] : ( if_rat @ ( M5 = zero_zero_nat ) @ one_one_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ M5 ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ M5 @ one_one_nat ) ) ) ) ) ) ).
% fact_num_eq_if
thf(fact_7426_fact__num__eq__if,axiom,
( semiri1406184849735516958ct_int
= ( ^ [M5: nat] : ( if_int @ ( M5 = zero_zero_nat ) @ one_one_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ M5 ) @ ( semiri1406184849735516958ct_int @ ( minus_minus_nat @ M5 @ one_one_nat ) ) ) ) ) ) ).
% fact_num_eq_if
thf(fact_7427_fact__num__eq__if,axiom,
( semiri2265585572941072030t_real
= ( ^ [M5: nat] : ( if_real @ ( M5 = zero_zero_nat ) @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M5 ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ M5 @ one_one_nat ) ) ) ) ) ) ).
% fact_num_eq_if
thf(fact_7428_fact__num__eq__if,axiom,
( semiri1408675320244567234ct_nat
= ( ^ [M5: nat] : ( if_nat @ ( M5 = zero_zero_nat ) @ one_one_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M5 ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ M5 @ one_one_nat ) ) ) ) ) ) ).
% fact_num_eq_if
thf(fact_7429_fact__reduce,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( semiri773545260158071498ct_rat @ N )
= ( times_times_rat @ ( semiri681578069525770553at_rat @ N ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).
% fact_reduce
thf(fact_7430_fact__reduce,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( semiri1406184849735516958ct_int @ N )
= ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1406184849735516958ct_int @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).
% fact_reduce
thf(fact_7431_fact__reduce,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( semiri2265585572941072030t_real @ N )
= ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).
% fact_reduce
thf(fact_7432_fact__reduce,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( semiri1408675320244567234ct_nat @ N )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).
% fact_reduce
thf(fact_7433_real__less__lsqrt,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_real @ X2 @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ ( sqrt @ X2 ) @ Y2 ) ) ) ) ).
% real_less_lsqrt
thf(fact_7434_sqrt__sum__squares__le__sum,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ X2 @ Y2 ) ) ) ) ).
% sqrt_sum_squares_le_sum
thf(fact_7435_sqrt__even__pow2,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( sqrt @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) )
= ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% sqrt_even_pow2
thf(fact_7436_tan__30,axiom,
( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
= ( divide_divide_real @ one_one_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ) ).
% tan_30
thf(fact_7437_real__sqrt__ge__abs1,axiom,
! [X2: real,Y2: real] : ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% real_sqrt_ge_abs1
thf(fact_7438_real__sqrt__ge__abs2,axiom,
! [Y2: real,X2: real] : ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% real_sqrt_ge_abs2
thf(fact_7439_sqrt__sum__squares__le__sum__abs,axiom,
! [X2: real,Y2: real] : ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ ( abs_abs_real @ X2 ) @ ( abs_abs_real @ Y2 ) ) ) ).
% sqrt_sum_squares_le_sum_abs
thf(fact_7440_ln__sqrt,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ln_ln_real @ ( sqrt @ X2 ) )
= ( divide_divide_real @ ( ln_ln_real @ X2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% ln_sqrt
thf(fact_7441_cos__30,axiom,
( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
= ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% cos_30
thf(fact_7442_sin__60,axiom,
( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
= ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% sin_60
thf(fact_7443_arsinh__real__def,axiom,
( arsinh_real
= ( ^ [X: real] : ( ln_ln_real @ ( plus_plus_real @ X @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ) ) ).
% arsinh_real_def
thf(fact_7444_complex__norm,axiom,
! [X2: real,Y2: real] :
( ( real_V1022390504157884413omplex @ ( complex2 @ X2 @ Y2 ) )
= ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% complex_norm
thf(fact_7445_Maclaurin__zero,axiom,
! [X2: real,N: nat,Diff: nat > complex > real] :
( ( X2 = zero_zero_real )
=> ( ( N != zero_zero_nat )
=> ( ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ zero_zero_complex ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ X2 @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
= ( Diff @ zero_zero_nat @ zero_zero_complex ) ) ) ) ).
% Maclaurin_zero
thf(fact_7446_Maclaurin__zero,axiom,
! [X2: real,N: nat,Diff: nat > real > real] :
( ( X2 = zero_zero_real )
=> ( ( N != zero_zero_nat )
=> ( ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ X2 @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
= ( Diff @ zero_zero_nat @ zero_zero_real ) ) ) ) ).
% Maclaurin_zero
thf(fact_7447_Maclaurin__zero,axiom,
! [X2: real,N: nat,Diff: nat > rat > real] :
( ( X2 = zero_zero_real )
=> ( ( N != zero_zero_nat )
=> ( ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ zero_zero_rat ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ X2 @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
= ( Diff @ zero_zero_nat @ zero_zero_rat ) ) ) ) ).
% Maclaurin_zero
thf(fact_7448_Maclaurin__zero,axiom,
! [X2: real,N: nat,Diff: nat > nat > real] :
( ( X2 = zero_zero_real )
=> ( ( N != zero_zero_nat )
=> ( ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ zero_zero_nat ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ X2 @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
= ( Diff @ zero_zero_nat @ zero_zero_nat ) ) ) ) ).
% Maclaurin_zero
thf(fact_7449_Maclaurin__zero,axiom,
! [X2: real,N: nat,Diff: nat > int > real] :
( ( X2 = zero_zero_real )
=> ( ( N != zero_zero_nat )
=> ( ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ zero_zero_int ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ X2 @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
= ( Diff @ zero_zero_nat @ zero_zero_int ) ) ) ) ).
% Maclaurin_zero
thf(fact_7450_Maclaurin__lemma,axiom,
! [H2: real,F: real > real,J: nat > real,N: nat] :
( ( ord_less_real @ zero_zero_real @ H2 )
=> ? [B8: real] :
( ( F @ H2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( J @ M5 ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ H2 @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ B8 @ ( divide_divide_real @ ( power_power_real @ H2 @ N ) @ ( semiri2265585572941072030t_real @ N ) ) ) ) ) ) ).
% Maclaurin_lemma
thf(fact_7451_termdiff__converges,axiom,
! [X2: real,K6: real,C: nat > real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ X2 ) @ K6 )
=> ( ! [X3: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ X3 ) @ K6 )
=> ( summable_real
@ ^ [N3: nat] : ( times_times_real @ ( C @ N3 ) @ ( power_power_real @ X3 @ N3 ) ) ) )
=> ( summable_real
@ ^ [N3: nat] : ( times_times_real @ ( diffs_real @ C @ N3 ) @ ( power_power_real @ X2 @ N3 ) ) ) ) ) ).
% termdiff_converges
thf(fact_7452_termdiff__converges,axiom,
! [X2: complex,K6: real,C: nat > complex] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ X2 ) @ K6 )
=> ( ! [X3: complex] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ X3 ) @ K6 )
=> ( summable_complex
@ ^ [N3: nat] : ( times_times_complex @ ( C @ N3 ) @ ( power_power_complex @ X3 @ N3 ) ) ) )
=> ( summable_complex
@ ^ [N3: nat] : ( times_times_complex @ ( diffs_complex @ C @ N3 ) @ ( power_power_complex @ X2 @ N3 ) ) ) ) ) ).
% termdiff_converges
thf(fact_7453_real__sqrt__power__even,axiom,
! [N: nat,X2: real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( power_power_real @ ( sqrt @ X2 ) @ N )
= ( power_power_real @ X2 @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% real_sqrt_power_even
thf(fact_7454_arsinh__real__aux,axiom,
! [X2: real] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X2 @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ).
% arsinh_real_aux
thf(fact_7455_real__sqrt__sum__squares__mult__ge__zero,axiom,
! [X2: real,Y2: real,Xa3: real,Ya: real] : ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% real_sqrt_sum_squares_mult_ge_zero
thf(fact_7456_arith__geo__mean__sqrt,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ord_less_eq_real @ ( sqrt @ ( times_times_real @ X2 @ Y2 ) ) @ ( divide_divide_real @ ( plus_plus_real @ X2 @ Y2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% arith_geo_mean_sqrt
thf(fact_7457_powr__half__sqrt,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( powr_real @ X2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= ( sqrt @ X2 ) ) ) ).
% powr_half_sqrt
thf(fact_7458_cos__x__y__le__one,axiom,
! [X2: real,Y2: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( divide_divide_real @ X2 @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ one_one_real ) ).
% cos_x_y_le_one
thf(fact_7459_real__sqrt__sum__squares__less,axiom,
! [X2: real,U: real,Y2: real] :
( ( ord_less_real @ ( abs_abs_real @ X2 ) @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
=> ( ( ord_less_real @ ( abs_abs_real @ Y2 ) @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
=> ( ord_less_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ U ) ) ) ).
% real_sqrt_sum_squares_less
thf(fact_7460_Maclaurin__cos__expansion,axiom,
! [X2: real,N: nat] :
? [T5: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) )
& ( ( cos_real @ X2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( cos_coeff @ M5 ) @ ( power_power_real @ X2 @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ).
% Maclaurin_cos_expansion
thf(fact_7461_arcosh__real__def,axiom,
! [X2: real] :
( ( ord_less_eq_real @ one_one_real @ X2 )
=> ( ( arcosh_real @ X2 )
= ( ln_ln_real @ ( plus_plus_real @ X2 @ ( sqrt @ ( minus_minus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ) ) ).
% arcosh_real_def
thf(fact_7462_cos__arctan,axiom,
! [X2: real] :
( ( cos_real @ ( arctan @ X2 ) )
= ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% cos_arctan
thf(fact_7463_sin__arctan,axiom,
! [X2: real] :
( ( sin_real @ ( arctan @ X2 ) )
= ( divide_divide_real @ X2 @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% sin_arctan
thf(fact_7464_sqrt__sum__squares__half__less,axiom,
! [X2: real,U: real,Y2: real] :
( ( ord_less_real @ X2 @ ( divide_divide_real @ U @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ Y2 @ ( divide_divide_real @ U @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ord_less_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ U ) ) ) ) ) ).
% sqrt_sum_squares_half_less
thf(fact_7465_sin__cos__sqrt,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ X2 ) )
=> ( ( sin_real @ X2 )
= ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( cos_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% sin_cos_sqrt
thf(fact_7466_arctan__half,axiom,
( arctan
= ( ^ [X: real] : ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ ( divide_divide_real @ X @ ( plus_plus_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).
% arctan_half
thf(fact_7467_Maclaurin__minus__cos__expansion,axiom,
! [N: nat,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ X2 @ zero_zero_real )
=> ? [T5: real] :
( ( ord_less_real @ X2 @ T5 )
& ( ord_less_real @ T5 @ zero_zero_real )
& ( ( cos_real @ X2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( cos_coeff @ M5 ) @ ( power_power_real @ X2 @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ) ) ).
% Maclaurin_minus_cos_expansion
thf(fact_7468_Maclaurin__cos__expansion2,axiom,
! [X2: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ? [T5: real] :
( ( ord_less_real @ zero_zero_real @ T5 )
& ( ord_less_real @ T5 @ X2 )
& ( ( cos_real @ X2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( cos_coeff @ M5 ) @ ( power_power_real @ X2 @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ) ) ).
% Maclaurin_cos_expansion2
thf(fact_7469_cos__paired,axiom,
! [X2: real] :
( sums_real
@ ^ [N3: nat] : ( times_times_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N3 ) @ ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) @ ( power_power_real @ X2 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) )
@ ( cos_real @ X2 ) ) ).
% cos_paired
thf(fact_7470_cos__tan,axiom,
! [X2: real] :
( ( ord_less_real @ ( abs_abs_real @ X2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( cos_real @ X2 )
= ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% cos_tan
thf(fact_7471_Maclaurin__sin__expansion3,axiom,
! [N: nat,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ? [T5: real] :
( ( ord_less_real @ zero_zero_real @ T5 )
& ( ord_less_real @ T5 @ X2 )
& ( ( sin_real @ X2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( sin_coeff @ M5 ) @ ( power_power_real @ X2 @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ) ) ).
% Maclaurin_sin_expansion3
thf(fact_7472_Maclaurin__sin__expansion4,axiom,
! [X2: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ? [T5: real] :
( ( ord_less_real @ zero_zero_real @ T5 )
& ( ord_less_eq_real @ T5 @ X2 )
& ( ( sin_real @ X2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( sin_coeff @ M5 ) @ ( power_power_real @ X2 @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ) ).
% Maclaurin_sin_expansion4
thf(fact_7473_Maclaurin__sin__expansion2,axiom,
! [X2: real,N: nat] :
? [T5: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) )
& ( ( sin_real @ X2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( sin_coeff @ M5 ) @ ( power_power_real @ X2 @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ).
% Maclaurin_sin_expansion2
thf(fact_7474_Maclaurin__sin__expansion,axiom,
! [X2: real,N: nat] :
? [T5: real] :
( ( sin_real @ X2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( sin_coeff @ M5 ) @ ( power_power_real @ X2 @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ).
% Maclaurin_sin_expansion
thf(fact_7475_sin__coeff__def,axiom,
( sin_coeff
= ( ^ [N3: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ zero_zero_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( divide_divide_nat @ ( minus_minus_nat @ N3 @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri2265585572941072030t_real @ N3 ) ) ) ) ) ).
% sin_coeff_def
thf(fact_7476_sin__coeff__0,axiom,
( ( sin_coeff @ zero_zero_nat )
= zero_zero_real ) ).
% sin_coeff_0
thf(fact_7477_fact__ge__self,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ ( semiri1408675320244567234ct_nat @ N ) ) ).
% fact_ge_self
thf(fact_7478_fact__mono__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ).
% fact_mono_nat
thf(fact_7479_fact__less__mono__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ) ).
% fact_less_mono_nat
thf(fact_7480_fact__ge__Suc__0__nat,axiom,
! [N: nat] : ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( semiri1408675320244567234ct_nat @ N ) ) ).
% fact_ge_Suc_0_nat
thf(fact_7481_dvd__fact,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ one_one_nat @ M )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_nat @ M @ ( semiri1408675320244567234ct_nat @ N ) ) ) ) ).
% dvd_fact
thf(fact_7482_fact__diff__Suc,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ ( suc @ M ) )
=> ( ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) )
= ( times_times_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ M @ N ) ) ) ) ) ).
% fact_diff_Suc
thf(fact_7483_fact__div__fact__le__pow,axiom,
! [R2: nat,N: nat] :
( ( ord_less_eq_nat @ R2 @ N )
=> ( ord_less_eq_nat @ ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ R2 ) ) ) @ ( power_power_nat @ N @ R2 ) ) ) ).
% fact_div_fact_le_pow
thf(fact_7484_sin__coeff__Suc,axiom,
! [N: nat] :
( ( sin_coeff @ ( suc @ N ) )
= ( divide_divide_real @ ( cos_coeff @ N ) @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) ) ) ).
% sin_coeff_Suc
thf(fact_7485_cos__coeff__Suc,axiom,
! [N: nat] :
( ( cos_coeff @ ( suc @ N ) )
= ( divide_divide_real @ ( uminus_uminus_real @ ( sin_coeff @ N ) ) @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) ) ) ).
% cos_coeff_Suc
thf(fact_7486_Maclaurin__exp__lt,axiom,
! [X2: real,N: nat] :
( ( X2 != zero_zero_real )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ? [T5: real] :
( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ T5 ) )
& ( ord_less_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) )
& ( ( exp_real @ X2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( divide_divide_real @ ( power_power_real @ X2 @ M5 ) @ ( semiri2265585572941072030t_real @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( exp_real @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ) ) ).
% Maclaurin_exp_lt
thf(fact_7487_cos__arcsin,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
=> ( ( ord_less_eq_real @ X2 @ one_one_real )
=> ( ( cos_real @ ( arcsin @ X2 ) )
= ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% cos_arcsin
thf(fact_7488_sin__arccos__abs,axiom,
! [Y2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ one_one_real )
=> ( ( sin_real @ ( arccos @ Y2 ) )
= ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% sin_arccos_abs
thf(fact_7489_sin__arccos,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
=> ( ( ord_less_eq_real @ X2 @ one_one_real )
=> ( ( sin_real @ ( arccos @ X2 ) )
= ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% sin_arccos
thf(fact_7490_VEBT__internal_Oheight_Osimps_I1_J,axiom,
! [A: $o,B: $o] :
( ( vEBT_VEBT_height @ ( vEBT_Leaf @ A @ B ) )
= zero_zero_nat ) ).
% VEBT_internal.height.simps(1)
thf(fact_7491_exp__le__cancel__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( exp_real @ X2 ) @ ( exp_real @ Y2 ) )
= ( ord_less_eq_real @ X2 @ Y2 ) ) ).
% exp_le_cancel_iff
thf(fact_7492_arcsin__0,axiom,
( ( arcsin @ zero_zero_real )
= zero_zero_real ) ).
% arcsin_0
thf(fact_7493_exp__zero,axiom,
( ( exp_complex @ zero_zero_complex )
= one_one_complex ) ).
% exp_zero
thf(fact_7494_exp__zero,axiom,
( ( exp_real @ zero_zero_real )
= one_one_real ) ).
% exp_zero
thf(fact_7495_exp__eq__one__iff,axiom,
! [X2: real] :
( ( ( exp_real @ X2 )
= one_one_real )
= ( X2 = zero_zero_real ) ) ).
% exp_eq_one_iff
thf(fact_7496_arccos__1,axiom,
( ( arccos @ one_one_real )
= zero_zero_real ) ).
% arccos_1
thf(fact_7497_exp__less__one__iff,axiom,
! [X2: real] :
( ( ord_less_real @ ( exp_real @ X2 ) @ one_one_real )
= ( ord_less_real @ X2 @ zero_zero_real ) ) ).
% exp_less_one_iff
thf(fact_7498_one__less__exp__iff,axiom,
! [X2: real] :
( ( ord_less_real @ one_one_real @ ( exp_real @ X2 ) )
= ( ord_less_real @ zero_zero_real @ X2 ) ) ).
% one_less_exp_iff
thf(fact_7499_one__le__exp__iff,axiom,
! [X2: real] :
( ( ord_less_eq_real @ one_one_real @ ( exp_real @ X2 ) )
= ( ord_less_eq_real @ zero_zero_real @ X2 ) ) ).
% one_le_exp_iff
thf(fact_7500_exp__le__one__iff,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( exp_real @ X2 ) @ one_one_real )
= ( ord_less_eq_real @ X2 @ zero_zero_real ) ) ).
% exp_le_one_iff
thf(fact_7501_exp__ln,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( exp_real @ ( ln_ln_real @ X2 ) )
= X2 ) ) ).
% exp_ln
thf(fact_7502_exp__ln__iff,axiom,
! [X2: real] :
( ( ( exp_real @ ( ln_ln_real @ X2 ) )
= X2 )
= ( ord_less_real @ zero_zero_real @ X2 ) ) ).
% exp_ln_iff
thf(fact_7503_arccos__minus__1,axiom,
( ( arccos @ ( uminus_uminus_real @ one_one_real ) )
= pi ) ).
% arccos_minus_1
thf(fact_7504_cos__arccos,axiom,
! [Y2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ one_one_real )
=> ( ( cos_real @ ( arccos @ Y2 ) )
= Y2 ) ) ) ).
% cos_arccos
thf(fact_7505_sin__arcsin,axiom,
! [Y2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ one_one_real )
=> ( ( sin_real @ ( arcsin @ Y2 ) )
= Y2 ) ) ) ).
% sin_arcsin
thf(fact_7506_arccos__0,axiom,
( ( arccos @ zero_zero_real )
= ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% arccos_0
thf(fact_7507_arcsin__1,axiom,
( ( arcsin @ one_one_real )
= ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% arcsin_1
thf(fact_7508_arcsin__minus__1,axiom,
( ( arcsin @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% arcsin_minus_1
thf(fact_7509_norm__exp,axiom,
! [X2: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( exp_real @ X2 ) ) @ ( exp_real @ ( real_V7735802525324610683m_real @ X2 ) ) ) ).
% norm_exp
thf(fact_7510_norm__exp,axiom,
! [X2: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( exp_complex @ X2 ) ) @ ( exp_real @ ( real_V1022390504157884413omplex @ X2 ) ) ) ).
% norm_exp
thf(fact_7511_exp__not__eq__zero,axiom,
! [X2: complex] :
( ( exp_complex @ X2 )
!= zero_zero_complex ) ).
% exp_not_eq_zero
thf(fact_7512_exp__not__eq__zero,axiom,
! [X2: real] :
( ( exp_real @ X2 )
!= zero_zero_real ) ).
% exp_not_eq_zero
thf(fact_7513_exp__times__arg__commute,axiom,
! [A2: complex] :
( ( times_times_complex @ ( exp_complex @ A2 ) @ A2 )
= ( times_times_complex @ A2 @ ( exp_complex @ A2 ) ) ) ).
% exp_times_arg_commute
thf(fact_7514_exp__times__arg__commute,axiom,
! [A2: real] :
( ( times_times_real @ ( exp_real @ A2 ) @ A2 )
= ( times_times_real @ A2 @ ( exp_real @ A2 ) ) ) ).
% exp_times_arg_commute
thf(fact_7515_not__exp__less__zero,axiom,
! [X2: real] :
~ ( ord_less_real @ ( exp_real @ X2 ) @ zero_zero_real ) ).
% not_exp_less_zero
thf(fact_7516_exp__gt__zero,axiom,
! [X2: real] : ( ord_less_real @ zero_zero_real @ ( exp_real @ X2 ) ) ).
% exp_gt_zero
thf(fact_7517_exp__total,axiom,
! [Y2: real] :
( ( ord_less_real @ zero_zero_real @ Y2 )
=> ? [X3: real] :
( ( exp_real @ X3 )
= Y2 ) ) ).
% exp_total
thf(fact_7518_exp__ge__zero,axiom,
! [X2: real] : ( ord_less_eq_real @ zero_zero_real @ ( exp_real @ X2 ) ) ).
% exp_ge_zero
thf(fact_7519_not__exp__le__zero,axiom,
! [X2: real] :
~ ( ord_less_eq_real @ ( exp_real @ X2 ) @ zero_zero_real ) ).
% not_exp_le_zero
thf(fact_7520_mult__exp__exp,axiom,
! [X2: complex,Y2: complex] :
( ( times_times_complex @ ( exp_complex @ X2 ) @ ( exp_complex @ Y2 ) )
= ( exp_complex @ ( plus_plus_complex @ X2 @ Y2 ) ) ) ).
% mult_exp_exp
thf(fact_7521_mult__exp__exp,axiom,
! [X2: real,Y2: real] :
( ( times_times_real @ ( exp_real @ X2 ) @ ( exp_real @ Y2 ) )
= ( exp_real @ ( plus_plus_real @ X2 @ Y2 ) ) ) ).
% mult_exp_exp
thf(fact_7522_exp__add__commuting,axiom,
! [X2: complex,Y2: complex] :
( ( ( times_times_complex @ X2 @ Y2 )
= ( times_times_complex @ Y2 @ X2 ) )
=> ( ( exp_complex @ ( plus_plus_complex @ X2 @ Y2 ) )
= ( times_times_complex @ ( exp_complex @ X2 ) @ ( exp_complex @ Y2 ) ) ) ) ).
% exp_add_commuting
thf(fact_7523_exp__add__commuting,axiom,
! [X2: real,Y2: real] :
( ( ( times_times_real @ X2 @ Y2 )
= ( times_times_real @ Y2 @ X2 ) )
=> ( ( exp_real @ ( plus_plus_real @ X2 @ Y2 ) )
= ( times_times_real @ ( exp_real @ X2 ) @ ( exp_real @ Y2 ) ) ) ) ).
% exp_add_commuting
thf(fact_7524_exp__diff,axiom,
! [X2: complex,Y2: complex] :
( ( exp_complex @ ( minus_minus_complex @ X2 @ Y2 ) )
= ( divide1717551699836669952omplex @ ( exp_complex @ X2 ) @ ( exp_complex @ Y2 ) ) ) ).
% exp_diff
thf(fact_7525_exp__diff,axiom,
! [X2: real,Y2: real] :
( ( exp_real @ ( minus_minus_real @ X2 @ Y2 ) )
= ( divide_divide_real @ ( exp_real @ X2 ) @ ( exp_real @ Y2 ) ) ) ).
% exp_diff
thf(fact_7526_exp__gt__one,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ord_less_real @ one_one_real @ ( exp_real @ X2 ) ) ) ).
% exp_gt_one
thf(fact_7527_exp__ge__add__one__self,axiom,
! [X2: real] : ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ X2 ) @ ( exp_real @ X2 ) ) ).
% exp_ge_add_one_self
thf(fact_7528_exp__minus__inverse,axiom,
! [X2: real] :
( ( times_times_real @ ( exp_real @ X2 ) @ ( exp_real @ ( uminus_uminus_real @ X2 ) ) )
= one_one_real ) ).
% exp_minus_inverse
thf(fact_7529_exp__minus__inverse,axiom,
! [X2: complex] :
( ( times_times_complex @ ( exp_complex @ X2 ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X2 ) ) )
= one_one_complex ) ).
% exp_minus_inverse
thf(fact_7530_exp__of__nat2__mult,axiom,
! [X2: complex,N: nat] :
( ( exp_complex @ ( times_times_complex @ X2 @ ( semiri8010041392384452111omplex @ N ) ) )
= ( power_power_complex @ ( exp_complex @ X2 ) @ N ) ) ).
% exp_of_nat2_mult
thf(fact_7531_exp__of__nat2__mult,axiom,
! [X2: real,N: nat] :
( ( exp_real @ ( times_times_real @ X2 @ ( semiri5074537144036343181t_real @ N ) ) )
= ( power_power_real @ ( exp_real @ X2 ) @ N ) ) ).
% exp_of_nat2_mult
thf(fact_7532_exp__of__nat__mult,axiom,
! [N: nat,X2: complex] :
( ( exp_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ X2 ) )
= ( power_power_complex @ ( exp_complex @ X2 ) @ N ) ) ).
% exp_of_nat_mult
thf(fact_7533_exp__of__nat__mult,axiom,
! [N: nat,X2: real] :
( ( exp_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X2 ) )
= ( power_power_real @ ( exp_real @ X2 ) @ N ) ) ).
% exp_of_nat_mult
thf(fact_7534_log__ln,axiom,
( ln_ln_real
= ( log @ ( exp_real @ one_one_real ) ) ) ).
% log_ln
thf(fact_7535_arccos__le__arccos,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
=> ( ( ord_less_eq_real @ X2 @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ one_one_real )
=> ( ord_less_eq_real @ ( arccos @ Y2 ) @ ( arccos @ X2 ) ) ) ) ) ).
% arccos_le_arccos
thf(fact_7536_arccos__le__mono,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( arccos @ X2 ) @ ( arccos @ Y2 ) )
= ( ord_less_eq_real @ Y2 @ X2 ) ) ) ) ).
% arccos_le_mono
thf(fact_7537_arccos__eq__iff,axiom,
! [X2: real,Y2: real] :
( ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
& ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ one_one_real ) )
=> ( ( ( arccos @ X2 )
= ( arccos @ Y2 ) )
= ( X2 = Y2 ) ) ) ).
% arccos_eq_iff
thf(fact_7538_arcsin__le__arcsin,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
=> ( ( ord_less_eq_real @ X2 @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ one_one_real )
=> ( ord_less_eq_real @ ( arcsin @ X2 ) @ ( arcsin @ Y2 ) ) ) ) ) ).
% arcsin_le_arcsin
thf(fact_7539_arcsin__minus,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
=> ( ( ord_less_eq_real @ X2 @ one_one_real )
=> ( ( arcsin @ ( uminus_uminus_real @ X2 ) )
= ( uminus_uminus_real @ ( arcsin @ X2 ) ) ) ) ) ).
% arcsin_minus
thf(fact_7540_arcsin__le__mono,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( arcsin @ X2 ) @ ( arcsin @ Y2 ) )
= ( ord_less_eq_real @ X2 @ Y2 ) ) ) ) ).
% arcsin_le_mono
thf(fact_7541_arcsin__eq__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ one_one_real )
=> ( ( ( arcsin @ X2 )
= ( arcsin @ Y2 ) )
= ( X2 = Y2 ) ) ) ) ).
% arcsin_eq_iff
thf(fact_7542_exp__ge__add__one__self__aux,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ X2 ) @ ( exp_real @ X2 ) ) ) ).
% exp_ge_add_one_self_aux
thf(fact_7543_lemma__exp__total,axiom,
! [Y2: real] :
( ( ord_less_eq_real @ one_one_real @ Y2 )
=> ? [X3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
& ( ord_less_eq_real @ X3 @ ( minus_minus_real @ Y2 @ one_one_real ) )
& ( ( exp_real @ X3 )
= Y2 ) ) ) ).
% lemma_exp_total
thf(fact_7544_ln__ge__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ Y2 @ ( ln_ln_real @ X2 ) )
= ( ord_less_eq_real @ ( exp_real @ Y2 ) @ X2 ) ) ) ).
% ln_ge_iff
thf(fact_7545_ln__x__over__x__mono,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( exp_real @ one_one_real ) @ X2 )
=> ( ( ord_less_eq_real @ X2 @ Y2 )
=> ( ord_less_eq_real @ ( divide_divide_real @ ( ln_ln_real @ Y2 ) @ Y2 ) @ ( divide_divide_real @ ( ln_ln_real @ X2 ) @ X2 ) ) ) ) ).
% ln_x_over_x_mono
thf(fact_7546_powr__def,axiom,
( powr_real
= ( ^ [X: real,A3: real] : ( if_real @ ( X = zero_zero_real ) @ zero_zero_real @ ( exp_real @ ( times_times_real @ A3 @ ( ln_ln_real @ X ) ) ) ) ) ) ).
% powr_def
thf(fact_7547_arccos__lbound,axiom,
! [Y2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ one_one_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y2 ) ) ) ) ).
% arccos_lbound
thf(fact_7548_arccos__less__arccos,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
=> ( ( ord_less_real @ X2 @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ one_one_real )
=> ( ord_less_real @ ( arccos @ Y2 ) @ ( arccos @ X2 ) ) ) ) ) ).
% arccos_less_arccos
thf(fact_7549_arccos__less__mono,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ one_one_real )
=> ( ( ord_less_real @ ( arccos @ X2 ) @ ( arccos @ Y2 ) )
= ( ord_less_real @ Y2 @ X2 ) ) ) ) ).
% arccos_less_mono
thf(fact_7550_exp__le,axiom,
ord_less_eq_real @ ( exp_real @ one_one_real ) @ ( numeral_numeral_real @ ( bit1 @ one ) ) ).
% exp_le
thf(fact_7551_arccos__ubound,axiom,
! [Y2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ one_one_real )
=> ( ord_less_eq_real @ ( arccos @ Y2 ) @ pi ) ) ) ).
% arccos_ubound
thf(fact_7552_arccos__cos,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ X2 @ pi )
=> ( ( arccos @ ( cos_real @ X2 ) )
= X2 ) ) ) ).
% arccos_cos
thf(fact_7553_arcsin__less__arcsin,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
=> ( ( ord_less_real @ X2 @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ one_one_real )
=> ( ord_less_real @ ( arcsin @ X2 ) @ ( arcsin @ Y2 ) ) ) ) ) ).
% arcsin_less_arcsin
thf(fact_7554_arcsin__less__mono,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ one_one_real )
=> ( ( ord_less_real @ ( arcsin @ X2 ) @ ( arcsin @ Y2 ) )
= ( ord_less_real @ X2 @ Y2 ) ) ) ) ).
% arcsin_less_mono
thf(fact_7555_cos__arccos__abs,axiom,
! [Y2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ one_one_real )
=> ( ( cos_real @ ( arccos @ Y2 ) )
= Y2 ) ) ).
% cos_arccos_abs
thf(fact_7556_arccos__cos__eq__abs,axiom,
! [Theta: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ Theta ) @ pi )
=> ( ( arccos @ ( cos_real @ Theta ) )
= ( abs_abs_real @ Theta ) ) ) ).
% arccos_cos_eq_abs
thf(fact_7557_exp__divide__power__eq,axiom,
! [N: nat,X2: complex] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_complex @ ( exp_complex @ ( divide1717551699836669952omplex @ X2 @ ( semiri8010041392384452111omplex @ N ) ) ) @ N )
= ( exp_complex @ X2 ) ) ) ).
% exp_divide_power_eq
thf(fact_7558_exp__divide__power__eq,axiom,
! [N: nat,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_real @ ( exp_real @ ( divide_divide_real @ X2 @ ( semiri5074537144036343181t_real @ N ) ) ) @ N )
= ( exp_real @ X2 ) ) ) ).
% exp_divide_power_eq
thf(fact_7559_tanh__altdef,axiom,
( tanh_real
= ( ^ [X: real] : ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X ) @ ( exp_real @ ( uminus_uminus_real @ X ) ) ) @ ( plus_plus_real @ ( exp_real @ X ) @ ( exp_real @ ( uminus_uminus_real @ X ) ) ) ) ) ) ).
% tanh_altdef
thf(fact_7560_tanh__altdef,axiom,
( tanh_complex
= ( ^ [X: complex] : ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( exp_complex @ X ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X ) ) ) @ ( plus_plus_complex @ ( exp_complex @ X ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X ) ) ) ) ) ) ).
% tanh_altdef
thf(fact_7561_exp__half__le2,axiom,
ord_less_eq_real @ ( exp_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).
% exp_half_le2
thf(fact_7562_arccos__lt__bounded,axiom,
! [Y2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
=> ( ( ord_less_real @ Y2 @ one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ ( arccos @ Y2 ) )
& ( ord_less_real @ ( arccos @ Y2 ) @ pi ) ) ) ) ).
% arccos_lt_bounded
thf(fact_7563_arccos__bounded,axiom,
! [Y2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ one_one_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y2 ) )
& ( ord_less_eq_real @ ( arccos @ Y2 ) @ pi ) ) ) ) ).
% arccos_bounded
thf(fact_7564_exp__double,axiom,
! [Z: complex] :
( ( exp_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z ) )
= ( power_power_complex @ ( exp_complex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% exp_double
thf(fact_7565_exp__double,axiom,
! [Z: real] :
( ( exp_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z ) )
= ( power_power_real @ ( exp_real @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% exp_double
thf(fact_7566_sin__arccos__nonzero,axiom,
! [X2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
=> ( ( ord_less_real @ X2 @ one_one_real )
=> ( ( sin_real @ ( arccos @ X2 ) )
!= zero_zero_real ) ) ) ).
% sin_arccos_nonzero
thf(fact_7567_arccos__cos2,axiom,
! [X2: real] :
( ( ord_less_eq_real @ X2 @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ X2 )
=> ( ( arccos @ ( cos_real @ X2 ) )
= ( uminus_uminus_real @ X2 ) ) ) ) ).
% arccos_cos2
thf(fact_7568_arccos__minus,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
=> ( ( ord_less_eq_real @ X2 @ one_one_real )
=> ( ( arccos @ ( uminus_uminus_real @ X2 ) )
= ( minus_minus_real @ pi @ ( arccos @ X2 ) ) ) ) ) ).
% arccos_minus
thf(fact_7569_cos__arcsin__nonzero,axiom,
! [X2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
=> ( ( ord_less_real @ X2 @ one_one_real )
=> ( ( cos_real @ ( arcsin @ X2 ) )
!= zero_zero_real ) ) ) ).
% cos_arcsin_nonzero
thf(fact_7570_arccos,axiom,
! [Y2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ one_one_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y2 ) )
& ( ord_less_eq_real @ ( arccos @ Y2 ) @ pi )
& ( ( cos_real @ ( arccos @ Y2 ) )
= Y2 ) ) ) ) ).
% arccos
thf(fact_7571_exp__bound__half,axiom,
! [Z: real] :
( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( exp_real @ Z ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% exp_bound_half
thf(fact_7572_exp__bound__half,axiom,
! [Z: complex] :
( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( exp_complex @ Z ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% exp_bound_half
thf(fact_7573_arccos__minus__abs,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
=> ( ( arccos @ ( uminus_uminus_real @ X2 ) )
= ( minus_minus_real @ pi @ ( arccos @ X2 ) ) ) ) ).
% arccos_minus_abs
thf(fact_7574_VEBT__internal_Oheight_Ocases,axiom,
! [X2: vEBT_VEBT] :
( ! [A4: $o,B3: $o] :
( X2
!= ( vEBT_Leaf @ A4 @ B3 ) )
=> ~ ! [Uu2: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( X2
!= ( vEBT_Node @ Uu2 @ Deg2 @ TreeList2 @ Summary2 ) ) ) ).
% VEBT_internal.height.cases
thf(fact_7575_exp__bound,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ X2 @ one_one_real )
=> ( ord_less_eq_real @ ( exp_real @ X2 ) @ ( plus_plus_real @ ( plus_plus_real @ one_one_real @ X2 ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% exp_bound
thf(fact_7576_real__exp__bound__lemma,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( exp_real @ X2 ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) ) ) ) ) ).
% real_exp_bound_lemma
thf(fact_7577_exp__ge__one__plus__x__over__n__power__n,axiom,
! [N: nat,X2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ X2 )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X2 @ ( semiri5074537144036343181t_real @ N ) ) ) @ N ) @ ( exp_real @ X2 ) ) ) ) ).
% exp_ge_one_plus_x_over_n_power_n
thf(fact_7578_exp__ge__one__minus__x__over__n__power__n,axiom,
! [X2: real,N: nat] :
( ( ord_less_eq_real @ X2 @ ( semiri5074537144036343181t_real @ N ) )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_real @ ( power_power_real @ ( minus_minus_real @ one_one_real @ ( divide_divide_real @ X2 @ ( semiri5074537144036343181t_real @ N ) ) ) @ N ) @ ( exp_real @ ( uminus_uminus_real @ X2 ) ) ) ) ) ).
% exp_ge_one_minus_x_over_n_power_n
thf(fact_7579_arccos__le__pi2,axiom,
! [Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ one_one_real )
=> ( ord_less_eq_real @ ( arccos @ Y2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% arccos_le_pi2
thf(fact_7580_exp__bound__lemma,axiom,
! [Z: real] :
( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( exp_real @ Z ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( real_V7735802525324610683m_real @ Z ) ) ) ) ) ).
% exp_bound_lemma
thf(fact_7581_exp__bound__lemma,axiom,
! [Z: complex] :
( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( exp_complex @ Z ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( real_V1022390504157884413omplex @ Z ) ) ) ) ) ).
% exp_bound_lemma
thf(fact_7582_arcsin__lt__bounded,axiom,
! [Y2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
=> ( ( ord_less_real @ Y2 @ one_one_real )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y2 ) )
& ( ord_less_real @ ( arcsin @ Y2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).
% arcsin_lt_bounded
thf(fact_7583_arcsin__lbound,axiom,
! [Y2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ one_one_real )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y2 ) ) ) ) ).
% arcsin_lbound
thf(fact_7584_arcsin__ubound,axiom,
! [Y2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ one_one_real )
=> ( ord_less_eq_real @ ( arcsin @ Y2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% arcsin_ubound
thf(fact_7585_arcsin__bounded,axiom,
! [Y2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ one_one_real )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y2 ) )
& ( ord_less_eq_real @ ( arcsin @ Y2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).
% arcsin_bounded
thf(fact_7586_Maclaurin__exp__le,axiom,
! [X2: real,N: nat] :
? [T5: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) )
& ( ( exp_real @ X2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( divide_divide_real @ ( power_power_real @ X2 @ M5 ) @ ( semiri2265585572941072030t_real @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( exp_real @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ).
% Maclaurin_exp_le
thf(fact_7587_exp__lower__Taylor__quadratic,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ord_less_eq_real @ ( plus_plus_real @ ( plus_plus_real @ one_one_real @ X2 ) @ ( divide_divide_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( exp_real @ X2 ) ) ) ).
% exp_lower_Taylor_quadratic
thf(fact_7588_arcsin__sin,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
=> ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( arcsin @ ( sin_real @ X2 ) )
= X2 ) ) ) ).
% arcsin_sin
thf(fact_7589_log__base__10__eq2,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ X2 )
= ( times_times_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( exp_real @ one_one_real ) ) @ ( ln_ln_real @ X2 ) ) ) ) ).
% log_base_10_eq2
thf(fact_7590_tanh__real__altdef,axiom,
( tanh_real
= ( ^ [X: real] : ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( exp_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X ) ) ) @ ( plus_plus_real @ one_one_real @ ( exp_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X ) ) ) ) ) ) ).
% tanh_real_altdef
thf(fact_7591_log__base__10__eq1,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ X2 )
= ( times_times_real @ ( divide_divide_real @ ( ln_ln_real @ ( exp_real @ one_one_real ) ) @ ( ln_ln_real @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) @ ( ln_ln_real @ X2 ) ) ) ) ).
% log_base_10_eq1
thf(fact_7592_arcsin,axiom,
! [Y2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ one_one_real )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y2 ) )
& ( ord_less_eq_real @ ( arcsin @ Y2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( sin_real @ ( arcsin @ Y2 ) )
= Y2 ) ) ) ) ).
% arcsin
thf(fact_7593_arcsin__pi,axiom,
! [Y2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ one_one_real )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y2 ) )
& ( ord_less_eq_real @ ( arcsin @ Y2 ) @ pi )
& ( ( sin_real @ ( arcsin @ Y2 ) )
= Y2 ) ) ) ) ).
% arcsin_pi
thf(fact_7594_arcsin__le__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
=> ( ( ord_less_eq_real @ X2 @ one_one_real )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ ( arcsin @ X2 ) @ Y2 )
= ( ord_less_eq_real @ X2 @ ( sin_real @ Y2 ) ) ) ) ) ) ) ).
% arcsin_le_iff
thf(fact_7595_le__arcsin__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
=> ( ( ord_less_eq_real @ X2 @ one_one_real )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ Y2 @ ( arcsin @ X2 ) )
= ( ord_less_eq_real @ ( sin_real @ Y2 ) @ X2 ) ) ) ) ) ) ).
% le_arcsin_iff
thf(fact_7596_arccos__cos__eq__abs__2pi,axiom,
! [Theta: real] :
~ ! [K3: int] :
( ( arccos @ ( cos_real @ Theta ) )
!= ( abs_abs_real @ ( minus_minus_real @ Theta @ ( times_times_real @ ( ring_1_of_int_real @ K3 ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) ) ) ) ).
% arccos_cos_eq_abs_2pi
thf(fact_7597_monoseq__def,axiom,
( topolo6980174941875973593q_real
= ( ^ [X6: nat > real] :
( ! [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
=> ( ord_less_eq_real @ ( X6 @ M5 ) @ ( X6 @ N3 ) ) )
| ! [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
=> ( ord_less_eq_real @ ( X6 @ N3 ) @ ( X6 @ M5 ) ) ) ) ) ) ).
% monoseq_def
thf(fact_7598_monoseq__def,axiom,
( topolo7278393974255667507et_nat
= ( ^ [X6: nat > set_nat] :
( ! [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
=> ( ord_less_eq_set_nat @ ( X6 @ M5 ) @ ( X6 @ N3 ) ) )
| ! [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
=> ( ord_less_eq_set_nat @ ( X6 @ N3 ) @ ( X6 @ M5 ) ) ) ) ) ) ).
% monoseq_def
thf(fact_7599_monoseq__def,axiom,
( topolo4267028734544971653eq_rat
= ( ^ [X6: nat > rat] :
( ! [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
=> ( ord_less_eq_rat @ ( X6 @ M5 ) @ ( X6 @ N3 ) ) )
| ! [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
=> ( ord_less_eq_rat @ ( X6 @ N3 ) @ ( X6 @ M5 ) ) ) ) ) ) ).
% monoseq_def
thf(fact_7600_monoseq__def,axiom,
( topolo1459490580787246023eq_num
= ( ^ [X6: nat > num] :
( ! [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
=> ( ord_less_eq_num @ ( X6 @ M5 ) @ ( X6 @ N3 ) ) )
| ! [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
=> ( ord_less_eq_num @ ( X6 @ N3 ) @ ( X6 @ M5 ) ) ) ) ) ) ).
% monoseq_def
thf(fact_7601_monoseq__def,axiom,
( topolo4902158794631467389eq_nat
= ( ^ [X6: nat > nat] :
( ! [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
=> ( ord_less_eq_nat @ ( X6 @ M5 ) @ ( X6 @ N3 ) ) )
| ! [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
=> ( ord_less_eq_nat @ ( X6 @ N3 ) @ ( X6 @ M5 ) ) ) ) ) ) ).
% monoseq_def
thf(fact_7602_monoseq__def,axiom,
( topolo4899668324122417113eq_int
= ( ^ [X6: nat > int] :
( ! [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
=> ( ord_less_eq_int @ ( X6 @ M5 ) @ ( X6 @ N3 ) ) )
| ! [M5: nat,N3: nat] :
( ( ord_less_eq_nat @ M5 @ N3 )
=> ( ord_less_eq_int @ ( X6 @ N3 ) @ ( X6 @ M5 ) ) ) ) ) ) ).
% monoseq_def
thf(fact_7603_monoI2,axiom,
! [X7: nat > real] :
( ! [M3: nat,N2: nat] :
( ( ord_less_eq_nat @ M3 @ N2 )
=> ( ord_less_eq_real @ ( X7 @ N2 ) @ ( X7 @ M3 ) ) )
=> ( topolo6980174941875973593q_real @ X7 ) ) ).
% monoI2
thf(fact_7604_monoI2,axiom,
! [X7: nat > set_nat] :
( ! [M3: nat,N2: nat] :
( ( ord_less_eq_nat @ M3 @ N2 )
=> ( ord_less_eq_set_nat @ ( X7 @ N2 ) @ ( X7 @ M3 ) ) )
=> ( topolo7278393974255667507et_nat @ X7 ) ) ).
% monoI2
thf(fact_7605_monoI2,axiom,
! [X7: nat > rat] :
( ! [M3: nat,N2: nat] :
( ( ord_less_eq_nat @ M3 @ N2 )
=> ( ord_less_eq_rat @ ( X7 @ N2 ) @ ( X7 @ M3 ) ) )
=> ( topolo4267028734544971653eq_rat @ X7 ) ) ).
% monoI2
thf(fact_7606_monoI2,axiom,
! [X7: nat > num] :
( ! [M3: nat,N2: nat] :
( ( ord_less_eq_nat @ M3 @ N2 )
=> ( ord_less_eq_num @ ( X7 @ N2 ) @ ( X7 @ M3 ) ) )
=> ( topolo1459490580787246023eq_num @ X7 ) ) ).
% monoI2
thf(fact_7607_monoI2,axiom,
! [X7: nat > nat] :
( ! [M3: nat,N2: nat] :
( ( ord_less_eq_nat @ M3 @ N2 )
=> ( ord_less_eq_nat @ ( X7 @ N2 ) @ ( X7 @ M3 ) ) )
=> ( topolo4902158794631467389eq_nat @ X7 ) ) ).
% monoI2
thf(fact_7608_monoI2,axiom,
! [X7: nat > int] :
( ! [M3: nat,N2: nat] :
( ( ord_less_eq_nat @ M3 @ N2 )
=> ( ord_less_eq_int @ ( X7 @ N2 ) @ ( X7 @ M3 ) ) )
=> ( topolo4899668324122417113eq_int @ X7 ) ) ).
% monoI2
thf(fact_7609_monoI1,axiom,
! [X7: nat > real] :
( ! [M3: nat,N2: nat] :
( ( ord_less_eq_nat @ M3 @ N2 )
=> ( ord_less_eq_real @ ( X7 @ M3 ) @ ( X7 @ N2 ) ) )
=> ( topolo6980174941875973593q_real @ X7 ) ) ).
% monoI1
thf(fact_7610_monoI1,axiom,
! [X7: nat > set_nat] :
( ! [M3: nat,N2: nat] :
( ( ord_less_eq_nat @ M3 @ N2 )
=> ( ord_less_eq_set_nat @ ( X7 @ M3 ) @ ( X7 @ N2 ) ) )
=> ( topolo7278393974255667507et_nat @ X7 ) ) ).
% monoI1
thf(fact_7611_monoI1,axiom,
! [X7: nat > rat] :
( ! [M3: nat,N2: nat] :
( ( ord_less_eq_nat @ M3 @ N2 )
=> ( ord_less_eq_rat @ ( X7 @ M3 ) @ ( X7 @ N2 ) ) )
=> ( topolo4267028734544971653eq_rat @ X7 ) ) ).
% monoI1
thf(fact_7612_monoI1,axiom,
! [X7: nat > num] :
( ! [M3: nat,N2: nat] :
( ( ord_less_eq_nat @ M3 @ N2 )
=> ( ord_less_eq_num @ ( X7 @ M3 ) @ ( X7 @ N2 ) ) )
=> ( topolo1459490580787246023eq_num @ X7 ) ) ).
% monoI1
thf(fact_7613_monoI1,axiom,
! [X7: nat > nat] :
( ! [M3: nat,N2: nat] :
( ( ord_less_eq_nat @ M3 @ N2 )
=> ( ord_less_eq_nat @ ( X7 @ M3 ) @ ( X7 @ N2 ) ) )
=> ( topolo4902158794631467389eq_nat @ X7 ) ) ).
% monoI1
thf(fact_7614_monoI1,axiom,
! [X7: nat > int] :
( ! [M3: nat,N2: nat] :
( ( ord_less_eq_nat @ M3 @ N2 )
=> ( ord_less_eq_int @ ( X7 @ M3 ) @ ( X7 @ N2 ) ) )
=> ( topolo4899668324122417113eq_int @ X7 ) ) ).
% monoI1
thf(fact_7615_monoseq__Suc,axiom,
( topolo6980174941875973593q_real
= ( ^ [X6: nat > real] :
( ! [N3: nat] : ( ord_less_eq_real @ ( X6 @ N3 ) @ ( X6 @ ( suc @ N3 ) ) )
| ! [N3: nat] : ( ord_less_eq_real @ ( X6 @ ( suc @ N3 ) ) @ ( X6 @ N3 ) ) ) ) ) ).
% monoseq_Suc
thf(fact_7616_monoseq__Suc,axiom,
( topolo7278393974255667507et_nat
= ( ^ [X6: nat > set_nat] :
( ! [N3: nat] : ( ord_less_eq_set_nat @ ( X6 @ N3 ) @ ( X6 @ ( suc @ N3 ) ) )
| ! [N3: nat] : ( ord_less_eq_set_nat @ ( X6 @ ( suc @ N3 ) ) @ ( X6 @ N3 ) ) ) ) ) ).
% monoseq_Suc
thf(fact_7617_monoseq__Suc,axiom,
( topolo4267028734544971653eq_rat
= ( ^ [X6: nat > rat] :
( ! [N3: nat] : ( ord_less_eq_rat @ ( X6 @ N3 ) @ ( X6 @ ( suc @ N3 ) ) )
| ! [N3: nat] : ( ord_less_eq_rat @ ( X6 @ ( suc @ N3 ) ) @ ( X6 @ N3 ) ) ) ) ) ).
% monoseq_Suc
thf(fact_7618_monoseq__Suc,axiom,
( topolo1459490580787246023eq_num
= ( ^ [X6: nat > num] :
( ! [N3: nat] : ( ord_less_eq_num @ ( X6 @ N3 ) @ ( X6 @ ( suc @ N3 ) ) )
| ! [N3: nat] : ( ord_less_eq_num @ ( X6 @ ( suc @ N3 ) ) @ ( X6 @ N3 ) ) ) ) ) ).
% monoseq_Suc
thf(fact_7619_monoseq__Suc,axiom,
( topolo4902158794631467389eq_nat
= ( ^ [X6: nat > nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ ( X6 @ N3 ) @ ( X6 @ ( suc @ N3 ) ) )
| ! [N3: nat] : ( ord_less_eq_nat @ ( X6 @ ( suc @ N3 ) ) @ ( X6 @ N3 ) ) ) ) ) ).
% monoseq_Suc
thf(fact_7620_monoseq__Suc,axiom,
( topolo4899668324122417113eq_int
= ( ^ [X6: nat > int] :
( ! [N3: nat] : ( ord_less_eq_int @ ( X6 @ N3 ) @ ( X6 @ ( suc @ N3 ) ) )
| ! [N3: nat] : ( ord_less_eq_int @ ( X6 @ ( suc @ N3 ) ) @ ( X6 @ N3 ) ) ) ) ) ).
% monoseq_Suc
thf(fact_7621_mono__SucI2,axiom,
! [X7: nat > real] :
( ! [N2: nat] : ( ord_less_eq_real @ ( X7 @ ( suc @ N2 ) ) @ ( X7 @ N2 ) )
=> ( topolo6980174941875973593q_real @ X7 ) ) ).
% mono_SucI2
thf(fact_7622_mono__SucI2,axiom,
! [X7: nat > set_nat] :
( ! [N2: nat] : ( ord_less_eq_set_nat @ ( X7 @ ( suc @ N2 ) ) @ ( X7 @ N2 ) )
=> ( topolo7278393974255667507et_nat @ X7 ) ) ).
% mono_SucI2
thf(fact_7623_mono__SucI2,axiom,
! [X7: nat > rat] :
( ! [N2: nat] : ( ord_less_eq_rat @ ( X7 @ ( suc @ N2 ) ) @ ( X7 @ N2 ) )
=> ( topolo4267028734544971653eq_rat @ X7 ) ) ).
% mono_SucI2
thf(fact_7624_mono__SucI2,axiom,
! [X7: nat > num] :
( ! [N2: nat] : ( ord_less_eq_num @ ( X7 @ ( suc @ N2 ) ) @ ( X7 @ N2 ) )
=> ( topolo1459490580787246023eq_num @ X7 ) ) ).
% mono_SucI2
thf(fact_7625_mono__SucI2,axiom,
! [X7: nat > nat] :
( ! [N2: nat] : ( ord_less_eq_nat @ ( X7 @ ( suc @ N2 ) ) @ ( X7 @ N2 ) )
=> ( topolo4902158794631467389eq_nat @ X7 ) ) ).
% mono_SucI2
thf(fact_7626_mono__SucI2,axiom,
! [X7: nat > int] :
( ! [N2: nat] : ( ord_less_eq_int @ ( X7 @ ( suc @ N2 ) ) @ ( X7 @ N2 ) )
=> ( topolo4899668324122417113eq_int @ X7 ) ) ).
% mono_SucI2
thf(fact_7627_complex__exp__exists,axiom,
! [Z: complex] :
? [A4: complex,R3: real] :
( Z
= ( times_times_complex @ ( real_V4546457046886955230omplex @ R3 ) @ ( exp_complex @ A4 ) ) ) ).
% complex_exp_exists
thf(fact_7628_monoseq__minus,axiom,
! [A: nat > int] :
( ( topolo4899668324122417113eq_int @ A )
=> ( topolo4899668324122417113eq_int
@ ^ [N3: nat] : ( uminus_uminus_int @ ( A @ N3 ) ) ) ) ).
% monoseq_minus
thf(fact_7629_monoseq__minus,axiom,
! [A: nat > rat] :
( ( topolo4267028734544971653eq_rat @ A )
=> ( topolo4267028734544971653eq_rat
@ ^ [N3: nat] : ( uminus_uminus_rat @ ( A @ N3 ) ) ) ) ).
% monoseq_minus
thf(fact_7630_monoseq__minus,axiom,
! [A: nat > code_integer] :
( ( topolo2919662092509805066nteger @ A )
=> ( topolo2919662092509805066nteger
@ ^ [N3: nat] : ( uminus1351360451143612070nteger @ ( A @ N3 ) ) ) ) ).
% monoseq_minus
thf(fact_7631_monoseq__minus,axiom,
! [A: nat > real] :
( ( topolo6980174941875973593q_real @ A )
=> ( topolo6980174941875973593q_real
@ ^ [N3: nat] : ( uminus_uminus_real @ ( A @ N3 ) ) ) ) ).
% monoseq_minus
thf(fact_7632_mono__SucI1,axiom,
! [X7: nat > real] :
( ! [N2: nat] : ( ord_less_eq_real @ ( X7 @ N2 ) @ ( X7 @ ( suc @ N2 ) ) )
=> ( topolo6980174941875973593q_real @ X7 ) ) ).
% mono_SucI1
thf(fact_7633_mono__SucI1,axiom,
! [X7: nat > set_nat] :
( ! [N2: nat] : ( ord_less_eq_set_nat @ ( X7 @ N2 ) @ ( X7 @ ( suc @ N2 ) ) )
=> ( topolo7278393974255667507et_nat @ X7 ) ) ).
% mono_SucI1
thf(fact_7634_mono__SucI1,axiom,
! [X7: nat > rat] :
( ! [N2: nat] : ( ord_less_eq_rat @ ( X7 @ N2 ) @ ( X7 @ ( suc @ N2 ) ) )
=> ( topolo4267028734544971653eq_rat @ X7 ) ) ).
% mono_SucI1
thf(fact_7635_mono__SucI1,axiom,
! [X7: nat > num] :
( ! [N2: nat] : ( ord_less_eq_num @ ( X7 @ N2 ) @ ( X7 @ ( suc @ N2 ) ) )
=> ( topolo1459490580787246023eq_num @ X7 ) ) ).
% mono_SucI1
thf(fact_7636_mono__SucI1,axiom,
! [X7: nat > nat] :
( ! [N2: nat] : ( ord_less_eq_nat @ ( X7 @ N2 ) @ ( X7 @ ( suc @ N2 ) ) )
=> ( topolo4902158794631467389eq_nat @ X7 ) ) ).
% mono_SucI1
thf(fact_7637_mono__SucI1,axiom,
! [X7: nat > int] :
( ! [N2: nat] : ( ord_less_eq_int @ ( X7 @ N2 ) @ ( X7 @ ( suc @ N2 ) ) )
=> ( topolo4899668324122417113eq_int @ X7 ) ) ).
% mono_SucI1
thf(fact_7638_pochhammer__double,axiom,
! [Z: complex,N: nat] :
( ( comm_s2602460028002588243omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ ( comm_s2602460028002588243omplex @ Z @ N ) ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ Z @ ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) @ N ) ) ) ).
% pochhammer_double
thf(fact_7639_pochhammer__double,axiom,
! [Z: rat,N: nat] :
( ( comm_s4028243227959126397er_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ Z ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ ( comm_s4028243227959126397er_rat @ Z @ N ) ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ N ) ) ) ).
% pochhammer_double
thf(fact_7640_pochhammer__double,axiom,
! [Z: real,N: nat] :
( ( comm_s7457072308508201937r_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ ( comm_s7457072308508201937r_real @ Z @ N ) ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ N ) ) ) ).
% pochhammer_double
thf(fact_7641_of__nat__code,axiom,
( semiri8010041392384452111omplex
= ( ^ [N3: nat] :
( semiri2816024913162550771omplex
@ ^ [I3: complex] : ( plus_plus_complex @ I3 @ one_one_complex )
@ N3
@ zero_zero_complex ) ) ) ).
% of_nat_code
thf(fact_7642_of__nat__code,axiom,
( semiri681578069525770553at_rat
= ( ^ [N3: nat] :
( semiri7787848453975740701ux_rat
@ ^ [I3: rat] : ( plus_plus_rat @ I3 @ one_one_rat )
@ N3
@ zero_zero_rat ) ) ) ).
% of_nat_code
thf(fact_7643_of__nat__code,axiom,
( semiri5074537144036343181t_real
= ( ^ [N3: nat] :
( semiri7260567687927622513x_real
@ ^ [I3: real] : ( plus_plus_real @ I3 @ one_one_real )
@ N3
@ zero_zero_real ) ) ) ).
% of_nat_code
thf(fact_7644_of__nat__code,axiom,
( semiri1314217659103216013at_int
= ( ^ [N3: nat] :
( semiri8420488043553186161ux_int
@ ^ [I3: int] : ( plus_plus_int @ I3 @ one_one_int )
@ N3
@ zero_zero_int ) ) ) ).
% of_nat_code
thf(fact_7645_of__nat__code,axiom,
( semiri1316708129612266289at_nat
= ( ^ [N3: nat] :
( semiri8422978514062236437ux_nat
@ ^ [I3: nat] : ( plus_plus_nat @ I3 @ one_one_nat )
@ N3
@ zero_zero_nat ) ) ) ).
% of_nat_code
thf(fact_7646_floor__log__nat__eq__powr__iff,axiom,
! [B: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
= ( semiri1314217659103216013at_int @ N ) )
= ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N ) @ K )
& ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) ) ) ) ).
% floor_log_nat_eq_powr_iff
thf(fact_7647_Maclaurin__sin__bound,axiom,
! [X2: real,N: nat] :
( ord_less_eq_real
@ ( abs_abs_real
@ ( minus_minus_real @ ( sin_real @ X2 )
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( sin_coeff @ M5 ) @ ( power_power_real @ X2 @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) )
@ ( times_times_real @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( abs_abs_real @ X2 ) @ N ) ) ) ).
% Maclaurin_sin_bound
thf(fact_7648_gchoose__row__sum__weighted,axiom,
! [R2: complex,M: nat] :
( ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( times_times_complex @ ( gbinomial_complex @ R2 @ K2 ) @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ R2 @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ ( semiri8010041392384452111omplex @ K2 ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ M ) )
= ( times_times_complex @ ( divide1717551699836669952omplex @ ( semiri8010041392384452111omplex @ ( suc @ M ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ ( gbinomial_complex @ R2 @ ( suc @ M ) ) ) ) ).
% gchoose_row_sum_weighted
thf(fact_7649_gchoose__row__sum__weighted,axiom,
! [R2: rat,M: nat] :
( ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( times_times_rat @ ( gbinomial_rat @ R2 @ K2 ) @ ( minus_minus_rat @ ( divide_divide_rat @ R2 @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( semiri681578069525770553at_rat @ K2 ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ M ) )
= ( times_times_rat @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ ( suc @ M ) ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( gbinomial_rat @ R2 @ ( suc @ M ) ) ) ) ).
% gchoose_row_sum_weighted
thf(fact_7650_gchoose__row__sum__weighted,axiom,
! [R2: real,M: nat] :
( ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( times_times_real @ ( gbinomial_real @ R2 @ K2 ) @ ( minus_minus_real @ ( divide_divide_real @ R2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ K2 ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ M ) )
= ( times_times_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ ( suc @ M ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( gbinomial_real @ R2 @ ( suc @ M ) ) ) ) ).
% gchoose_row_sum_weighted
thf(fact_7651_inverse__inverse__eq,axiom,
! [A: real] :
( ( inverse_inverse_real @ ( inverse_inverse_real @ A ) )
= A ) ).
% inverse_inverse_eq
thf(fact_7652_inverse__inverse__eq,axiom,
! [A: complex] :
( ( invers8013647133539491842omplex @ ( invers8013647133539491842omplex @ A ) )
= A ) ).
% inverse_inverse_eq
thf(fact_7653_inverse__inverse__eq,axiom,
! [A: rat] :
( ( inverse_inverse_rat @ ( inverse_inverse_rat @ A ) )
= A ) ).
% inverse_inverse_eq
thf(fact_7654_inverse__eq__iff__eq,axiom,
! [A: real,B: real] :
( ( ( inverse_inverse_real @ A )
= ( inverse_inverse_real @ B ) )
= ( A = B ) ) ).
% inverse_eq_iff_eq
thf(fact_7655_inverse__eq__iff__eq,axiom,
! [A: complex,B: complex] :
( ( ( invers8013647133539491842omplex @ A )
= ( invers8013647133539491842omplex @ B ) )
= ( A = B ) ) ).
% inverse_eq_iff_eq
thf(fact_7656_inverse__eq__iff__eq,axiom,
! [A: rat,B: rat] :
( ( ( inverse_inverse_rat @ A )
= ( inverse_inverse_rat @ B ) )
= ( A = B ) ) ).
% inverse_eq_iff_eq
thf(fact_7657_inverse__zero,axiom,
( ( inverse_inverse_real @ zero_zero_real )
= zero_zero_real ) ).
% inverse_zero
thf(fact_7658_inverse__zero,axiom,
( ( invers8013647133539491842omplex @ zero_zero_complex )
= zero_zero_complex ) ).
% inverse_zero
thf(fact_7659_inverse__zero,axiom,
( ( inverse_inverse_rat @ zero_zero_rat )
= zero_zero_rat ) ).
% inverse_zero
thf(fact_7660_inverse__nonzero__iff__nonzero,axiom,
! [A: real] :
( ( ( inverse_inverse_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% inverse_nonzero_iff_nonzero
thf(fact_7661_inverse__nonzero__iff__nonzero,axiom,
! [A: complex] :
( ( ( invers8013647133539491842omplex @ A )
= zero_zero_complex )
= ( A = zero_zero_complex ) ) ).
% inverse_nonzero_iff_nonzero
thf(fact_7662_inverse__nonzero__iff__nonzero,axiom,
! [A: rat] :
( ( ( inverse_inverse_rat @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% inverse_nonzero_iff_nonzero
thf(fact_7663_inverse__eq__1__iff,axiom,
! [X2: real] :
( ( ( inverse_inverse_real @ X2 )
= one_one_real )
= ( X2 = one_one_real ) ) ).
% inverse_eq_1_iff
thf(fact_7664_inverse__eq__1__iff,axiom,
! [X2: complex] :
( ( ( invers8013647133539491842omplex @ X2 )
= one_one_complex )
= ( X2 = one_one_complex ) ) ).
% inverse_eq_1_iff
thf(fact_7665_inverse__eq__1__iff,axiom,
! [X2: rat] :
( ( ( inverse_inverse_rat @ X2 )
= one_one_rat )
= ( X2 = one_one_rat ) ) ).
% inverse_eq_1_iff
thf(fact_7666_inverse__1,axiom,
( ( inverse_inverse_real @ one_one_real )
= one_one_real ) ).
% inverse_1
thf(fact_7667_inverse__1,axiom,
( ( invers8013647133539491842omplex @ one_one_complex )
= one_one_complex ) ).
% inverse_1
thf(fact_7668_inverse__1,axiom,
( ( inverse_inverse_rat @ one_one_rat )
= one_one_rat ) ).
% inverse_1
thf(fact_7669_inverse__mult__distrib,axiom,
! [A: real,B: real] :
( ( inverse_inverse_real @ ( times_times_real @ A @ B ) )
= ( times_times_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) ) ) ).
% inverse_mult_distrib
thf(fact_7670_inverse__mult__distrib,axiom,
! [A: complex,B: complex] :
( ( invers8013647133539491842omplex @ ( times_times_complex @ A @ B ) )
= ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) ) ) ).
% inverse_mult_distrib
thf(fact_7671_inverse__mult__distrib,axiom,
! [A: rat,B: rat] :
( ( inverse_inverse_rat @ ( times_times_rat @ A @ B ) )
= ( times_times_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) ) ) ).
% inverse_mult_distrib
thf(fact_7672_inverse__divide,axiom,
! [A: real,B: real] :
( ( inverse_inverse_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ B @ A ) ) ).
% inverse_divide
thf(fact_7673_inverse__divide,axiom,
! [A: complex,B: complex] :
( ( invers8013647133539491842omplex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide1717551699836669952omplex @ B @ A ) ) ).
% inverse_divide
thf(fact_7674_inverse__divide,axiom,
! [A: rat,B: rat] :
( ( inverse_inverse_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ B @ A ) ) ).
% inverse_divide
thf(fact_7675_inverse__minus__eq,axiom,
! [A: real] :
( ( inverse_inverse_real @ ( uminus_uminus_real @ A ) )
= ( uminus_uminus_real @ ( inverse_inverse_real @ A ) ) ) ).
% inverse_minus_eq
thf(fact_7676_inverse__minus__eq,axiom,
! [A: complex] :
( ( invers8013647133539491842omplex @ ( uminus1482373934393186551omplex @ A ) )
= ( uminus1482373934393186551omplex @ ( invers8013647133539491842omplex @ A ) ) ) ).
% inverse_minus_eq
thf(fact_7677_inverse__minus__eq,axiom,
! [A: rat] :
( ( inverse_inverse_rat @ ( uminus_uminus_rat @ A ) )
= ( uminus_uminus_rat @ ( inverse_inverse_rat @ A ) ) ) ).
% inverse_minus_eq
thf(fact_7678_abs__inverse,axiom,
! [A: real] :
( ( abs_abs_real @ ( inverse_inverse_real @ A ) )
= ( inverse_inverse_real @ ( abs_abs_real @ A ) ) ) ).
% abs_inverse
thf(fact_7679_abs__inverse,axiom,
! [A: complex] :
( ( abs_abs_complex @ ( invers8013647133539491842omplex @ A ) )
= ( invers8013647133539491842omplex @ ( abs_abs_complex @ A ) ) ) ).
% abs_inverse
thf(fact_7680_abs__inverse,axiom,
! [A: rat] :
( ( abs_abs_rat @ ( inverse_inverse_rat @ A ) )
= ( inverse_inverse_rat @ ( abs_abs_rat @ A ) ) ) ).
% abs_inverse
thf(fact_7681_of__int__floor__cancel,axiom,
! [X2: real] :
( ( ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X2 ) )
= X2 )
= ( ? [N3: int] :
( X2
= ( ring_1_of_int_real @ N3 ) ) ) ) ).
% of_int_floor_cancel
thf(fact_7682_of__int__floor__cancel,axiom,
! [X2: rat] :
( ( ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X2 ) )
= X2 )
= ( ? [N3: int] :
( X2
= ( ring_1_of_int_rat @ N3 ) ) ) ) ).
% of_int_floor_cancel
thf(fact_7683_inverse__nonpositive__iff__nonpositive,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% inverse_nonpositive_iff_nonpositive
thf(fact_7684_inverse__nonpositive__iff__nonpositive,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ zero_zero_rat )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% inverse_nonpositive_iff_nonpositive
thf(fact_7685_inverse__nonnegative__iff__nonnegative,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( inverse_inverse_real @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% inverse_nonnegative_iff_nonnegative
thf(fact_7686_inverse__nonnegative__iff__nonnegative,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( inverse_inverse_rat @ A ) )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% inverse_nonnegative_iff_nonnegative
thf(fact_7687_inverse__positive__iff__positive,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% inverse_positive_iff_positive
thf(fact_7688_inverse__positive__iff__positive,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( inverse_inverse_rat @ A ) )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% inverse_positive_iff_positive
thf(fact_7689_inverse__negative__iff__negative,axiom,
! [A: real] :
( ( ord_less_real @ ( inverse_inverse_real @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% inverse_negative_iff_negative
thf(fact_7690_inverse__negative__iff__negative,axiom,
! [A: rat] :
( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ zero_zero_rat )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% inverse_negative_iff_negative
thf(fact_7691_inverse__less__iff__less__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
= ( ord_less_real @ B @ A ) ) ) ) ).
% inverse_less_iff_less_neg
thf(fact_7692_inverse__less__iff__less__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
= ( ord_less_rat @ B @ A ) ) ) ) ).
% inverse_less_iff_less_neg
thf(fact_7693_inverse__less__iff__less,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
= ( ord_less_real @ B @ A ) ) ) ) ).
% inverse_less_iff_less
thf(fact_7694_inverse__less__iff__less,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
= ( ord_less_rat @ B @ A ) ) ) ) ).
% inverse_less_iff_less
thf(fact_7695_floor__zero,axiom,
( ( archim6058952711729229775r_real @ zero_zero_real )
= zero_zero_int ) ).
% floor_zero
thf(fact_7696_floor__zero,axiom,
( ( archim3151403230148437115or_rat @ zero_zero_rat )
= zero_zero_int ) ).
% floor_zero
thf(fact_7697_floor__numeral,axiom,
! [V: num] :
( ( archim6058952711729229775r_real @ ( numeral_numeral_real @ V ) )
= ( numeral_numeral_int @ V ) ) ).
% floor_numeral
thf(fact_7698_floor__numeral,axiom,
! [V: num] :
( ( archim3151403230148437115or_rat @ ( numeral_numeral_rat @ V ) )
= ( numeral_numeral_int @ V ) ) ).
% floor_numeral
thf(fact_7699_gbinomial__0_I2_J,axiom,
! [K: nat] :
( ( gbinomial_complex @ zero_zero_complex @ ( suc @ K ) )
= zero_zero_complex ) ).
% gbinomial_0(2)
thf(fact_7700_gbinomial__0_I2_J,axiom,
! [K: nat] :
( ( gbinomial_real @ zero_zero_real @ ( suc @ K ) )
= zero_zero_real ) ).
% gbinomial_0(2)
thf(fact_7701_gbinomial__0_I2_J,axiom,
! [K: nat] :
( ( gbinomial_rat @ zero_zero_rat @ ( suc @ K ) )
= zero_zero_rat ) ).
% gbinomial_0(2)
thf(fact_7702_gbinomial__0_I2_J,axiom,
! [K: nat] :
( ( gbinomial_nat @ zero_zero_nat @ ( suc @ K ) )
= zero_zero_nat ) ).
% gbinomial_0(2)
thf(fact_7703_gbinomial__0_I2_J,axiom,
! [K: nat] :
( ( gbinomial_int @ zero_zero_int @ ( suc @ K ) )
= zero_zero_int ) ).
% gbinomial_0(2)
thf(fact_7704_floor__one,axiom,
( ( archim6058952711729229775r_real @ one_one_real )
= one_one_int ) ).
% floor_one
thf(fact_7705_floor__one,axiom,
( ( archim3151403230148437115or_rat @ one_one_rat )
= one_one_int ) ).
% floor_one
thf(fact_7706_gbinomial__0_I1_J,axiom,
! [A: complex] :
( ( gbinomial_complex @ A @ zero_zero_nat )
= one_one_complex ) ).
% gbinomial_0(1)
thf(fact_7707_gbinomial__0_I1_J,axiom,
! [A: real] :
( ( gbinomial_real @ A @ zero_zero_nat )
= one_one_real ) ).
% gbinomial_0(1)
thf(fact_7708_gbinomial__0_I1_J,axiom,
! [A: rat] :
( ( gbinomial_rat @ A @ zero_zero_nat )
= one_one_rat ) ).
% gbinomial_0(1)
thf(fact_7709_gbinomial__0_I1_J,axiom,
! [A: nat] :
( ( gbinomial_nat @ A @ zero_zero_nat )
= one_one_nat ) ).
% gbinomial_0(1)
thf(fact_7710_gbinomial__0_I1_J,axiom,
! [A: int] :
( ( gbinomial_int @ A @ zero_zero_nat )
= one_one_int ) ).
% gbinomial_0(1)
thf(fact_7711_pochhammer__0,axiom,
! [A: complex] :
( ( comm_s2602460028002588243omplex @ A @ zero_zero_nat )
= one_one_complex ) ).
% pochhammer_0
thf(fact_7712_pochhammer__0,axiom,
! [A: real] :
( ( comm_s7457072308508201937r_real @ A @ zero_zero_nat )
= one_one_real ) ).
% pochhammer_0
thf(fact_7713_pochhammer__0,axiom,
! [A: rat] :
( ( comm_s4028243227959126397er_rat @ A @ zero_zero_nat )
= one_one_rat ) ).
% pochhammer_0
thf(fact_7714_pochhammer__0,axiom,
! [A: nat] :
( ( comm_s4663373288045622133er_nat @ A @ zero_zero_nat )
= one_one_nat ) ).
% pochhammer_0
thf(fact_7715_pochhammer__0,axiom,
! [A: int] :
( ( comm_s4660882817536571857er_int @ A @ zero_zero_nat )
= one_one_int ) ).
% pochhammer_0
thf(fact_7716_floor__of__nat,axiom,
! [N: nat] :
( ( archim6058952711729229775r_real @ ( semiri5074537144036343181t_real @ N ) )
= ( semiri1314217659103216013at_int @ N ) ) ).
% floor_of_nat
thf(fact_7717_floor__of__nat,axiom,
! [N: nat] :
( ( archim3151403230148437115or_rat @ ( semiri681578069525770553at_rat @ N ) )
= ( semiri1314217659103216013at_int @ N ) ) ).
% floor_of_nat
thf(fact_7718_inverse__le__iff__le,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
= ( ord_less_eq_real @ B @ A ) ) ) ) ).
% inverse_le_iff_le
thf(fact_7719_inverse__le__iff__le,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
= ( ord_less_eq_rat @ B @ A ) ) ) ) ).
% inverse_le_iff_le
thf(fact_7720_inverse__le__iff__le__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
= ( ord_less_eq_real @ B @ A ) ) ) ) ).
% inverse_le_iff_le_neg
thf(fact_7721_inverse__le__iff__le__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
= ( ord_less_eq_rat @ B @ A ) ) ) ) ).
% inverse_le_iff_le_neg
thf(fact_7722_left__inverse,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( times_times_real @ ( inverse_inverse_real @ A ) @ A )
= one_one_real ) ) ).
% left_inverse
thf(fact_7723_left__inverse,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ A )
= one_one_complex ) ) ).
% left_inverse
thf(fact_7724_left__inverse,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( times_times_rat @ ( inverse_inverse_rat @ A ) @ A )
= one_one_rat ) ) ).
% left_inverse
thf(fact_7725_right__inverse,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( times_times_real @ A @ ( inverse_inverse_real @ A ) )
= one_one_real ) ) ).
% right_inverse
thf(fact_7726_right__inverse,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( times_times_complex @ A @ ( invers8013647133539491842omplex @ A ) )
= one_one_complex ) ) ).
% right_inverse
thf(fact_7727_right__inverse,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( times_times_rat @ A @ ( inverse_inverse_rat @ A ) )
= one_one_rat ) ) ).
% right_inverse
thf(fact_7728_inverse__eq__divide__numeral,axiom,
! [W: num] :
( ( inverse_inverse_real @ ( numeral_numeral_real @ W ) )
= ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ W ) ) ) ).
% inverse_eq_divide_numeral
thf(fact_7729_inverse__eq__divide__numeral,axiom,
! [W: num] :
( ( invers8013647133539491842omplex @ ( numera6690914467698888265omplex @ W ) )
= ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ W ) ) ) ).
% inverse_eq_divide_numeral
thf(fact_7730_inverse__eq__divide__numeral,axiom,
! [W: num] :
( ( inverse_inverse_rat @ ( numeral_numeral_rat @ W ) )
= ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ W ) ) ) ).
% inverse_eq_divide_numeral
thf(fact_7731_inverse__eq__divide__neg__numeral,axiom,
! [W: num] :
( ( inverse_inverse_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= ( divide_divide_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ).
% inverse_eq_divide_neg_numeral
thf(fact_7732_inverse__eq__divide__neg__numeral,axiom,
! [W: num] :
( ( invers8013647133539491842omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
= ( divide1717551699836669952omplex @ one_one_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ) ).
% inverse_eq_divide_neg_numeral
thf(fact_7733_inverse__eq__divide__neg__numeral,axiom,
! [W: num] :
( ( inverse_inverse_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
= ( divide_divide_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ).
% inverse_eq_divide_neg_numeral
thf(fact_7734_zero__le__floor,axiom,
! [X2: real] :
( ( ord_less_eq_int @ zero_zero_int @ ( archim6058952711729229775r_real @ X2 ) )
= ( ord_less_eq_real @ zero_zero_real @ X2 ) ) ).
% zero_le_floor
thf(fact_7735_zero__le__floor,axiom,
! [X2: rat] :
( ( ord_less_eq_int @ zero_zero_int @ ( archim3151403230148437115or_rat @ X2 ) )
= ( ord_less_eq_rat @ zero_zero_rat @ X2 ) ) ).
% zero_le_floor
thf(fact_7736_numeral__le__floor,axiom,
! [V: num,X2: real] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ V ) @ ( archim6058952711729229775r_real @ X2 ) )
= ( ord_less_eq_real @ ( numeral_numeral_real @ V ) @ X2 ) ) ).
% numeral_le_floor
thf(fact_7737_numeral__le__floor,axiom,
! [V: num,X2: rat] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ V ) @ ( archim3151403230148437115or_rat @ X2 ) )
= ( ord_less_eq_rat @ ( numeral_numeral_rat @ V ) @ X2 ) ) ).
% numeral_le_floor
thf(fact_7738_floor__less__zero,axiom,
! [X2: real] :
( ( ord_less_int @ ( archim6058952711729229775r_real @ X2 ) @ zero_zero_int )
= ( ord_less_real @ X2 @ zero_zero_real ) ) ).
% floor_less_zero
thf(fact_7739_floor__less__zero,axiom,
! [X2: rat] :
( ( ord_less_int @ ( archim3151403230148437115or_rat @ X2 ) @ zero_zero_int )
= ( ord_less_rat @ X2 @ zero_zero_rat ) ) ).
% floor_less_zero
thf(fact_7740_floor__less__numeral,axiom,
! [X2: real,V: num] :
( ( ord_less_int @ ( archim6058952711729229775r_real @ X2 ) @ ( numeral_numeral_int @ V ) )
= ( ord_less_real @ X2 @ ( numeral_numeral_real @ V ) ) ) ).
% floor_less_numeral
thf(fact_7741_floor__less__numeral,axiom,
! [X2: rat,V: num] :
( ( ord_less_int @ ( archim3151403230148437115or_rat @ X2 ) @ ( numeral_numeral_int @ V ) )
= ( ord_less_rat @ X2 @ ( numeral_numeral_rat @ V ) ) ) ).
% floor_less_numeral
thf(fact_7742_zero__less__floor,axiom,
! [X2: real] :
( ( ord_less_int @ zero_zero_int @ ( archim6058952711729229775r_real @ X2 ) )
= ( ord_less_eq_real @ one_one_real @ X2 ) ) ).
% zero_less_floor
thf(fact_7743_zero__less__floor,axiom,
! [X2: rat] :
( ( ord_less_int @ zero_zero_int @ ( archim3151403230148437115or_rat @ X2 ) )
= ( ord_less_eq_rat @ one_one_rat @ X2 ) ) ).
% zero_less_floor
thf(fact_7744_floor__le__zero,axiom,
! [X2: real] :
( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X2 ) @ zero_zero_int )
= ( ord_less_real @ X2 @ one_one_real ) ) ).
% floor_le_zero
thf(fact_7745_floor__le__zero,axiom,
! [X2: rat] :
( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X2 ) @ zero_zero_int )
= ( ord_less_rat @ X2 @ one_one_rat ) ) ).
% floor_le_zero
thf(fact_7746_one__le__floor,axiom,
! [X2: real] :
( ( ord_less_eq_int @ one_one_int @ ( archim6058952711729229775r_real @ X2 ) )
= ( ord_less_eq_real @ one_one_real @ X2 ) ) ).
% one_le_floor
thf(fact_7747_one__le__floor,axiom,
! [X2: rat] :
( ( ord_less_eq_int @ one_one_int @ ( archim3151403230148437115or_rat @ X2 ) )
= ( ord_less_eq_rat @ one_one_rat @ X2 ) ) ).
% one_le_floor
thf(fact_7748_floor__neg__numeral,axiom,
! [V: num] :
( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) ).
% floor_neg_numeral
thf(fact_7749_floor__neg__numeral,axiom,
! [V: num] :
( ( archim3151403230148437115or_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) ).
% floor_neg_numeral
thf(fact_7750_floor__less__one,axiom,
! [X2: real] :
( ( ord_less_int @ ( archim6058952711729229775r_real @ X2 ) @ one_one_int )
= ( ord_less_real @ X2 @ one_one_real ) ) ).
% floor_less_one
thf(fact_7751_floor__less__one,axiom,
! [X2: rat] :
( ( ord_less_int @ ( archim3151403230148437115or_rat @ X2 ) @ one_one_int )
= ( ord_less_rat @ X2 @ one_one_rat ) ) ).
% floor_less_one
thf(fact_7752_floor__diff__numeral,axiom,
! [X2: real,V: num] :
( ( archim6058952711729229775r_real @ ( minus_minus_real @ X2 @ ( numeral_numeral_real @ V ) ) )
= ( minus_minus_int @ ( archim6058952711729229775r_real @ X2 ) @ ( numeral_numeral_int @ V ) ) ) ).
% floor_diff_numeral
thf(fact_7753_floor__diff__numeral,axiom,
! [X2: rat,V: num] :
( ( archim3151403230148437115or_rat @ ( minus_minus_rat @ X2 @ ( numeral_numeral_rat @ V ) ) )
= ( minus_minus_int @ ( archim3151403230148437115or_rat @ X2 ) @ ( numeral_numeral_int @ V ) ) ) ).
% floor_diff_numeral
thf(fact_7754_floor__numeral__power,axiom,
! [X2: num,N: nat] :
( ( archim6058952711729229775r_real @ ( power_power_real @ ( numeral_numeral_real @ X2 ) @ N ) )
= ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ).
% floor_numeral_power
thf(fact_7755_floor__numeral__power,axiom,
! [X2: num,N: nat] :
( ( archim3151403230148437115or_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X2 ) @ N ) )
= ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ).
% floor_numeral_power
thf(fact_7756_floor__diff__one,axiom,
! [X2: real] :
( ( archim6058952711729229775r_real @ ( minus_minus_real @ X2 @ one_one_real ) )
= ( minus_minus_int @ ( archim6058952711729229775r_real @ X2 ) @ one_one_int ) ) ).
% floor_diff_one
thf(fact_7757_floor__diff__one,axiom,
! [X2: rat] :
( ( archim3151403230148437115or_rat @ ( minus_minus_rat @ X2 @ one_one_rat ) )
= ( minus_minus_int @ ( archim3151403230148437115or_rat @ X2 ) @ one_one_int ) ) ).
% floor_diff_one
thf(fact_7758_floor__divide__eq__div__numeral,axiom,
! [A: num,B: num] :
( ( archim6058952711729229775r_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) )
= ( divide_divide_int @ ( numeral_numeral_int @ A ) @ ( numeral_numeral_int @ B ) ) ) ).
% floor_divide_eq_div_numeral
thf(fact_7759_numeral__less__floor,axiom,
! [V: num,X2: real] :
( ( ord_less_int @ ( numeral_numeral_int @ V ) @ ( archim6058952711729229775r_real @ X2 ) )
= ( ord_less_eq_real @ ( plus_plus_real @ ( numeral_numeral_real @ V ) @ one_one_real ) @ X2 ) ) ).
% numeral_less_floor
thf(fact_7760_numeral__less__floor,axiom,
! [V: num,X2: rat] :
( ( ord_less_int @ ( numeral_numeral_int @ V ) @ ( archim3151403230148437115or_rat @ X2 ) )
= ( ord_less_eq_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ V ) @ one_one_rat ) @ X2 ) ) ).
% numeral_less_floor
thf(fact_7761_floor__le__numeral,axiom,
! [X2: real,V: num] :
( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X2 ) @ ( numeral_numeral_int @ V ) )
= ( ord_less_real @ X2 @ ( plus_plus_real @ ( numeral_numeral_real @ V ) @ one_one_real ) ) ) ).
% floor_le_numeral
thf(fact_7762_floor__le__numeral,axiom,
! [X2: rat,V: num] :
( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X2 ) @ ( numeral_numeral_int @ V ) )
= ( ord_less_rat @ X2 @ ( plus_plus_rat @ ( numeral_numeral_rat @ V ) @ one_one_rat ) ) ) ).
% floor_le_numeral
thf(fact_7763_one__less__floor,axiom,
! [X2: real] :
( ( ord_less_int @ one_one_int @ ( archim6058952711729229775r_real @ X2 ) )
= ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) ) ).
% one_less_floor
thf(fact_7764_one__less__floor,axiom,
! [X2: rat] :
( ( ord_less_int @ one_one_int @ ( archim3151403230148437115or_rat @ X2 ) )
= ( ord_less_eq_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X2 ) ) ).
% one_less_floor
thf(fact_7765_floor__le__one,axiom,
! [X2: real] :
( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X2 ) @ one_one_int )
= ( ord_less_real @ X2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% floor_le_one
thf(fact_7766_floor__le__one,axiom,
! [X2: rat] :
( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X2 ) @ one_one_int )
= ( ord_less_rat @ X2 @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).
% floor_le_one
thf(fact_7767_neg__numeral__le__floor,axiom,
! [V: num,X2: real] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim6058952711729229775r_real @ X2 ) )
= ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ X2 ) ) ).
% neg_numeral_le_floor
thf(fact_7768_neg__numeral__le__floor,axiom,
! [V: num,X2: rat] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim3151403230148437115or_rat @ X2 ) )
= ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ X2 ) ) ).
% neg_numeral_le_floor
thf(fact_7769_floor__less__neg__numeral,axiom,
! [X2: real,V: num] :
( ( ord_less_int @ ( archim6058952711729229775r_real @ X2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( ord_less_real @ X2 @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) ) ).
% floor_less_neg_numeral
thf(fact_7770_floor__less__neg__numeral,axiom,
! [X2: rat,V: num] :
( ( ord_less_int @ ( archim3151403230148437115or_rat @ X2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( ord_less_rat @ X2 @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) ) ).
% floor_less_neg_numeral
thf(fact_7771_floor__one__divide__eq__div__numeral,axiom,
! [B: num] :
( ( archim6058952711729229775r_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ B ) ) )
= ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ B ) ) ) ).
% floor_one_divide_eq_div_numeral
thf(fact_7772_floor__minus__divide__eq__div__numeral,axiom,
! [A: num,B: num] :
( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) ) )
= ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ A ) ) @ ( numeral_numeral_int @ B ) ) ) ).
% floor_minus_divide_eq_div_numeral
thf(fact_7773_neg__numeral__less__floor,axiom,
! [V: num,X2: real] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim6058952711729229775r_real @ X2 ) )
= ( ord_less_eq_real @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ one_one_real ) @ X2 ) ) ).
% neg_numeral_less_floor
thf(fact_7774_neg__numeral__less__floor,axiom,
! [V: num,X2: rat] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim3151403230148437115or_rat @ X2 ) )
= ( ord_less_eq_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ one_one_rat ) @ X2 ) ) ).
% neg_numeral_less_floor
thf(fact_7775_floor__le__neg__numeral,axiom,
! [X2: real,V: num] :
( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( ord_less_real @ X2 @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ one_one_real ) ) ) ).
% floor_le_neg_numeral
thf(fact_7776_floor__le__neg__numeral,axiom,
! [X2: rat,V: num] :
( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( ord_less_rat @ X2 @ ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ one_one_rat ) ) ) ).
% floor_le_neg_numeral
thf(fact_7777_floor__minus__one__divide__eq__div__numeral,axiom,
! [B: num] :
( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ B ) ) ) )
= ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ B ) ) ) ).
% floor_minus_one_divide_eq_div_numeral
thf(fact_7778_power__inverse,axiom,
! [A: real,N: nat] :
( ( power_power_real @ ( inverse_inverse_real @ A ) @ N )
= ( inverse_inverse_real @ ( power_power_real @ A @ N ) ) ) ).
% power_inverse
thf(fact_7779_power__inverse,axiom,
! [A: complex,N: nat] :
( ( power_power_complex @ ( invers8013647133539491842omplex @ A ) @ N )
= ( invers8013647133539491842omplex @ ( power_power_complex @ A @ N ) ) ) ).
% power_inverse
thf(fact_7780_power__inverse,axiom,
! [A: rat,N: nat] :
( ( power_power_rat @ ( inverse_inverse_rat @ A ) @ N )
= ( inverse_inverse_rat @ ( power_power_rat @ A @ N ) ) ) ).
% power_inverse
thf(fact_7781_pochhammer__of__nat,axiom,
! [X2: nat,N: nat] :
( ( comm_s7457072308508201937r_real @ ( semiri5074537144036343181t_real @ X2 ) @ N )
= ( semiri5074537144036343181t_real @ ( comm_s4663373288045622133er_nat @ X2 @ N ) ) ) ).
% pochhammer_of_nat
thf(fact_7782_pochhammer__of__nat,axiom,
! [X2: nat,N: nat] :
( ( comm_s4660882817536571857er_int @ ( semiri1314217659103216013at_int @ X2 ) @ N )
= ( semiri1314217659103216013at_int @ ( comm_s4663373288045622133er_nat @ X2 @ N ) ) ) ).
% pochhammer_of_nat
thf(fact_7783_pochhammer__of__nat,axiom,
! [X2: nat,N: nat] :
( ( comm_s4663373288045622133er_nat @ ( semiri1316708129612266289at_nat @ X2 ) @ N )
= ( semiri1316708129612266289at_nat @ ( comm_s4663373288045622133er_nat @ X2 @ N ) ) ) ).
% pochhammer_of_nat
thf(fact_7784_inverse__eq__imp__eq,axiom,
! [A: real,B: real] :
( ( ( inverse_inverse_real @ A )
= ( inverse_inverse_real @ B ) )
=> ( A = B ) ) ).
% inverse_eq_imp_eq
thf(fact_7785_inverse__eq__imp__eq,axiom,
! [A: complex,B: complex] :
( ( ( invers8013647133539491842omplex @ A )
= ( invers8013647133539491842omplex @ B ) )
=> ( A = B ) ) ).
% inverse_eq_imp_eq
thf(fact_7786_inverse__eq__imp__eq,axiom,
! [A: rat,B: rat] :
( ( ( inverse_inverse_rat @ A )
= ( inverse_inverse_rat @ B ) )
=> ( A = B ) ) ).
% inverse_eq_imp_eq
thf(fact_7787_real__sqrt__inverse,axiom,
! [X2: real] :
( ( sqrt @ ( inverse_inverse_real @ X2 ) )
= ( inverse_inverse_real @ ( sqrt @ X2 ) ) ) ).
% real_sqrt_inverse
thf(fact_7788_of__nat__gbinomial,axiom,
! [N: nat,K: nat] :
( ( semiri5074537144036343181t_real @ ( gbinomial_nat @ N @ K ) )
= ( gbinomial_real @ ( semiri5074537144036343181t_real @ N ) @ K ) ) ).
% of_nat_gbinomial
thf(fact_7789_nonzero__norm__inverse,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( real_V7735802525324610683m_real @ ( inverse_inverse_real @ A ) )
= ( inverse_inverse_real @ ( real_V7735802525324610683m_real @ A ) ) ) ) ).
% nonzero_norm_inverse
thf(fact_7790_nonzero__norm__inverse,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( real_V1022390504157884413omplex @ ( invers8013647133539491842omplex @ A ) )
= ( inverse_inverse_real @ ( real_V1022390504157884413omplex @ A ) ) ) ) ).
% nonzero_norm_inverse
thf(fact_7791_mult__commute__imp__mult__inverse__commute,axiom,
! [Y2: real,X2: real] :
( ( ( times_times_real @ Y2 @ X2 )
= ( times_times_real @ X2 @ Y2 ) )
=> ( ( times_times_real @ ( inverse_inverse_real @ Y2 ) @ X2 )
= ( times_times_real @ X2 @ ( inverse_inverse_real @ Y2 ) ) ) ) ).
% mult_commute_imp_mult_inverse_commute
thf(fact_7792_mult__commute__imp__mult__inverse__commute,axiom,
! [Y2: complex,X2: complex] :
( ( ( times_times_complex @ Y2 @ X2 )
= ( times_times_complex @ X2 @ Y2 ) )
=> ( ( times_times_complex @ ( invers8013647133539491842omplex @ Y2 ) @ X2 )
= ( times_times_complex @ X2 @ ( invers8013647133539491842omplex @ Y2 ) ) ) ) ).
% mult_commute_imp_mult_inverse_commute
thf(fact_7793_mult__commute__imp__mult__inverse__commute,axiom,
! [Y2: rat,X2: rat] :
( ( ( times_times_rat @ Y2 @ X2 )
= ( times_times_rat @ X2 @ Y2 ) )
=> ( ( times_times_rat @ ( inverse_inverse_rat @ Y2 ) @ X2 )
= ( times_times_rat @ X2 @ ( inverse_inverse_rat @ Y2 ) ) ) ) ).
% mult_commute_imp_mult_inverse_commute
thf(fact_7794_nonzero__imp__inverse__nonzero,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( inverse_inverse_real @ A )
!= zero_zero_real ) ) ).
% nonzero_imp_inverse_nonzero
thf(fact_7795_nonzero__imp__inverse__nonzero,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( invers8013647133539491842omplex @ A )
!= zero_zero_complex ) ) ).
% nonzero_imp_inverse_nonzero
thf(fact_7796_nonzero__imp__inverse__nonzero,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( inverse_inverse_rat @ A )
!= zero_zero_rat ) ) ).
% nonzero_imp_inverse_nonzero
thf(fact_7797_nonzero__inverse__inverse__eq,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( inverse_inverse_real @ ( inverse_inverse_real @ A ) )
= A ) ) ).
% nonzero_inverse_inverse_eq
thf(fact_7798_nonzero__inverse__inverse__eq,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( invers8013647133539491842omplex @ ( invers8013647133539491842omplex @ A ) )
= A ) ) ).
% nonzero_inverse_inverse_eq
thf(fact_7799_nonzero__inverse__inverse__eq,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( inverse_inverse_rat @ ( inverse_inverse_rat @ A ) )
= A ) ) ).
% nonzero_inverse_inverse_eq
thf(fact_7800_nonzero__inverse__eq__imp__eq,axiom,
! [A: real,B: real] :
( ( ( inverse_inverse_real @ A )
= ( inverse_inverse_real @ B ) )
=> ( ( A != zero_zero_real )
=> ( ( B != zero_zero_real )
=> ( A = B ) ) ) ) ).
% nonzero_inverse_eq_imp_eq
thf(fact_7801_nonzero__inverse__eq__imp__eq,axiom,
! [A: complex,B: complex] :
( ( ( invers8013647133539491842omplex @ A )
= ( invers8013647133539491842omplex @ B ) )
=> ( ( A != zero_zero_complex )
=> ( ( B != zero_zero_complex )
=> ( A = B ) ) ) ) ).
% nonzero_inverse_eq_imp_eq
thf(fact_7802_nonzero__inverse__eq__imp__eq,axiom,
! [A: rat,B: rat] :
( ( ( inverse_inverse_rat @ A )
= ( inverse_inverse_rat @ B ) )
=> ( ( A != zero_zero_rat )
=> ( ( B != zero_zero_rat )
=> ( A = B ) ) ) ) ).
% nonzero_inverse_eq_imp_eq
thf(fact_7803_inverse__zero__imp__zero,axiom,
! [A: real] :
( ( ( inverse_inverse_real @ A )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ).
% inverse_zero_imp_zero
thf(fact_7804_inverse__zero__imp__zero,axiom,
! [A: complex] :
( ( ( invers8013647133539491842omplex @ A )
= zero_zero_complex )
=> ( A = zero_zero_complex ) ) ).
% inverse_zero_imp_zero
thf(fact_7805_inverse__zero__imp__zero,axiom,
! [A: rat] :
( ( ( inverse_inverse_rat @ A )
= zero_zero_rat )
=> ( A = zero_zero_rat ) ) ).
% inverse_zero_imp_zero
thf(fact_7806_field__class_Ofield__inverse__zero,axiom,
( ( inverse_inverse_real @ zero_zero_real )
= zero_zero_real ) ).
% field_class.field_inverse_zero
thf(fact_7807_field__class_Ofield__inverse__zero,axiom,
( ( invers8013647133539491842omplex @ zero_zero_complex )
= zero_zero_complex ) ).
% field_class.field_inverse_zero
thf(fact_7808_field__class_Ofield__inverse__zero,axiom,
( ( inverse_inverse_rat @ zero_zero_rat )
= zero_zero_rat ) ).
% field_class.field_inverse_zero
thf(fact_7809_nonzero__of__real__inverse,axiom,
! [X2: real] :
( ( X2 != zero_zero_real )
=> ( ( real_V1803761363581548252l_real @ ( inverse_inverse_real @ X2 ) )
= ( inverse_inverse_real @ ( real_V1803761363581548252l_real @ X2 ) ) ) ) ).
% nonzero_of_real_inverse
thf(fact_7810_nonzero__of__real__inverse,axiom,
! [X2: real] :
( ( X2 != zero_zero_real )
=> ( ( real_V4546457046886955230omplex @ ( inverse_inverse_real @ X2 ) )
= ( invers8013647133539491842omplex @ ( real_V4546457046886955230omplex @ X2 ) ) ) ) ).
% nonzero_of_real_inverse
thf(fact_7811_norm__inverse__le__norm,axiom,
! [R2: real,X2: real] :
( ( ord_less_eq_real @ R2 @ ( real_V7735802525324610683m_real @ X2 ) )
=> ( ( ord_less_real @ zero_zero_real @ R2 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( inverse_inverse_real @ X2 ) ) @ ( inverse_inverse_real @ R2 ) ) ) ) ).
% norm_inverse_le_norm
thf(fact_7812_norm__inverse__le__norm,axiom,
! [R2: real,X2: complex] :
( ( ord_less_eq_real @ R2 @ ( real_V1022390504157884413omplex @ X2 ) )
=> ( ( ord_less_real @ zero_zero_real @ R2 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( invers8013647133539491842omplex @ X2 ) ) @ ( inverse_inverse_real @ R2 ) ) ) ) ).
% norm_inverse_le_norm
thf(fact_7813_of__int__floor__le,axiom,
! [X2: real] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X2 ) ) @ X2 ) ).
% of_int_floor_le
thf(fact_7814_of__int__floor__le,axiom,
! [X2: rat] : ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X2 ) ) @ X2 ) ).
% of_int_floor_le
thf(fact_7815_floor__mono,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ X2 @ Y2 )
=> ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X2 ) @ ( archim6058952711729229775r_real @ Y2 ) ) ) ).
% floor_mono
thf(fact_7816_floor__mono,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_eq_rat @ X2 @ Y2 )
=> ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X2 ) @ ( archim3151403230148437115or_rat @ Y2 ) ) ) ).
% floor_mono
thf(fact_7817_positive__imp__inverse__positive,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A ) ) ) ).
% positive_imp_inverse_positive
thf(fact_7818_positive__imp__inverse__positive,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_rat @ zero_zero_rat @ ( inverse_inverse_rat @ A ) ) ) ).
% positive_imp_inverse_positive
thf(fact_7819_negative__imp__inverse__negative,axiom,
! [A: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ord_less_real @ ( inverse_inverse_real @ A ) @ zero_zero_real ) ) ).
% negative_imp_inverse_negative
thf(fact_7820_negative__imp__inverse__negative,axiom,
! [A: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ zero_zero_rat ) ) ).
% negative_imp_inverse_negative
thf(fact_7821_inverse__positive__imp__positive,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A ) )
=> ( ( A != zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ A ) ) ) ).
% inverse_positive_imp_positive
thf(fact_7822_inverse__positive__imp__positive,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( inverse_inverse_rat @ A ) )
=> ( ( A != zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ A ) ) ) ).
% inverse_positive_imp_positive
thf(fact_7823_inverse__negative__imp__negative,axiom,
! [A: real] :
( ( ord_less_real @ ( inverse_inverse_real @ A ) @ zero_zero_real )
=> ( ( A != zero_zero_real )
=> ( ord_less_real @ A @ zero_zero_real ) ) ) ).
% inverse_negative_imp_negative
thf(fact_7824_inverse__negative__imp__negative,axiom,
! [A: rat] :
( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ zero_zero_rat )
=> ( ( A != zero_zero_rat )
=> ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).
% inverse_negative_imp_negative
thf(fact_7825_less__imp__inverse__less__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).
% less_imp_inverse_less_neg
thf(fact_7826_less__imp__inverse__less__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ).
% less_imp_inverse_less_neg
thf(fact_7827_inverse__less__imp__less__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ B @ A ) ) ) ).
% inverse_less_imp_less_neg
thf(fact_7828_inverse__less__imp__less__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ B @ A ) ) ) ).
% inverse_less_imp_less_neg
thf(fact_7829_less__imp__inverse__less,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).
% less_imp_inverse_less
thf(fact_7830_less__imp__inverse__less,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ).
% less_imp_inverse_less
thf(fact_7831_inverse__less__imp__less,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ B @ A ) ) ) ).
% inverse_less_imp_less
thf(fact_7832_inverse__less__imp__less,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
=> ( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_rat @ B @ A ) ) ) ).
% inverse_less_imp_less
thf(fact_7833_nonzero__inverse__mult__distrib,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( B != zero_zero_real )
=> ( ( inverse_inverse_real @ ( times_times_real @ A @ B ) )
= ( times_times_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ) ).
% nonzero_inverse_mult_distrib
thf(fact_7834_nonzero__inverse__mult__distrib,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( B != zero_zero_complex )
=> ( ( invers8013647133539491842omplex @ ( times_times_complex @ A @ B ) )
= ( times_times_complex @ ( invers8013647133539491842omplex @ B ) @ ( invers8013647133539491842omplex @ A ) ) ) ) ) ).
% nonzero_inverse_mult_distrib
thf(fact_7835_nonzero__inverse__mult__distrib,axiom,
! [A: rat,B: rat] :
( ( A != zero_zero_rat )
=> ( ( B != zero_zero_rat )
=> ( ( inverse_inverse_rat @ ( times_times_rat @ A @ B ) )
= ( times_times_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ) ).
% nonzero_inverse_mult_distrib
thf(fact_7836_inverse__numeral__1,axiom,
( ( inverse_inverse_real @ ( numeral_numeral_real @ one ) )
= ( numeral_numeral_real @ one ) ) ).
% inverse_numeral_1
thf(fact_7837_inverse__numeral__1,axiom,
( ( invers8013647133539491842omplex @ ( numera6690914467698888265omplex @ one ) )
= ( numera6690914467698888265omplex @ one ) ) ).
% inverse_numeral_1
thf(fact_7838_inverse__numeral__1,axiom,
( ( inverse_inverse_rat @ ( numeral_numeral_rat @ one ) )
= ( numeral_numeral_rat @ one ) ) ).
% inverse_numeral_1
thf(fact_7839_inverse__unique,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= one_one_real )
=> ( ( inverse_inverse_real @ A )
= B ) ) ).
% inverse_unique
thf(fact_7840_inverse__unique,axiom,
! [A: complex,B: complex] :
( ( ( times_times_complex @ A @ B )
= one_one_complex )
=> ( ( invers8013647133539491842omplex @ A )
= B ) ) ).
% inverse_unique
thf(fact_7841_inverse__unique,axiom,
! [A: rat,B: rat] :
( ( ( times_times_rat @ A @ B )
= one_one_rat )
=> ( ( inverse_inverse_rat @ A )
= B ) ) ).
% inverse_unique
thf(fact_7842_nonzero__inverse__minus__eq,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( inverse_inverse_real @ ( uminus_uminus_real @ A ) )
= ( uminus_uminus_real @ ( inverse_inverse_real @ A ) ) ) ) ).
% nonzero_inverse_minus_eq
thf(fact_7843_nonzero__inverse__minus__eq,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( invers8013647133539491842omplex @ ( uminus1482373934393186551omplex @ A ) )
= ( uminus1482373934393186551omplex @ ( invers8013647133539491842omplex @ A ) ) ) ) ).
% nonzero_inverse_minus_eq
thf(fact_7844_nonzero__inverse__minus__eq,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( inverse_inverse_rat @ ( uminus_uminus_rat @ A ) )
= ( uminus_uminus_rat @ ( inverse_inverse_rat @ A ) ) ) ) ).
% nonzero_inverse_minus_eq
thf(fact_7845_inverse__eq__divide,axiom,
( inverse_inverse_real
= ( divide_divide_real @ one_one_real ) ) ).
% inverse_eq_divide
thf(fact_7846_inverse__eq__divide,axiom,
( invers8013647133539491842omplex
= ( divide1717551699836669952omplex @ one_one_complex ) ) ).
% inverse_eq_divide
thf(fact_7847_inverse__eq__divide,axiom,
( inverse_inverse_rat
= ( divide_divide_rat @ one_one_rat ) ) ).
% inverse_eq_divide
thf(fact_7848_divide__inverse__commute,axiom,
( divide_divide_real
= ( ^ [A3: real,B2: real] : ( times_times_real @ ( inverse_inverse_real @ B2 ) @ A3 ) ) ) ).
% divide_inverse_commute
thf(fact_7849_divide__inverse__commute,axiom,
( divide1717551699836669952omplex
= ( ^ [A3: complex,B2: complex] : ( times_times_complex @ ( invers8013647133539491842omplex @ B2 ) @ A3 ) ) ) ).
% divide_inverse_commute
thf(fact_7850_divide__inverse__commute,axiom,
( divide_divide_rat
= ( ^ [A3: rat,B2: rat] : ( times_times_rat @ ( inverse_inverse_rat @ B2 ) @ A3 ) ) ) ).
% divide_inverse_commute
thf(fact_7851_divide__inverse,axiom,
( divide_divide_real
= ( ^ [A3: real,B2: real] : ( times_times_real @ A3 @ ( inverse_inverse_real @ B2 ) ) ) ) ).
% divide_inverse
thf(fact_7852_divide__inverse,axiom,
( divide1717551699836669952omplex
= ( ^ [A3: complex,B2: complex] : ( times_times_complex @ A3 @ ( invers8013647133539491842omplex @ B2 ) ) ) ) ).
% divide_inverse
thf(fact_7853_divide__inverse,axiom,
( divide_divide_rat
= ( ^ [A3: rat,B2: rat] : ( times_times_rat @ A3 @ ( inverse_inverse_rat @ B2 ) ) ) ) ).
% divide_inverse
thf(fact_7854_field__class_Ofield__divide__inverse,axiom,
( divide_divide_real
= ( ^ [A3: real,B2: real] : ( times_times_real @ A3 @ ( inverse_inverse_real @ B2 ) ) ) ) ).
% field_class.field_divide_inverse
thf(fact_7855_field__class_Ofield__divide__inverse,axiom,
( divide1717551699836669952omplex
= ( ^ [A3: complex,B2: complex] : ( times_times_complex @ A3 @ ( invers8013647133539491842omplex @ B2 ) ) ) ) ).
% field_class.field_divide_inverse
thf(fact_7856_field__class_Ofield__divide__inverse,axiom,
( divide_divide_rat
= ( ^ [A3: rat,B2: rat] : ( times_times_rat @ A3 @ ( inverse_inverse_rat @ B2 ) ) ) ) ).
% field_class.field_divide_inverse
thf(fact_7857_power__mult__power__inverse__commute,axiom,
! [X2: real,M: nat,N: nat] :
( ( times_times_real @ ( power_power_real @ X2 @ M ) @ ( power_power_real @ ( inverse_inverse_real @ X2 ) @ N ) )
= ( times_times_real @ ( power_power_real @ ( inverse_inverse_real @ X2 ) @ N ) @ ( power_power_real @ X2 @ M ) ) ) ).
% power_mult_power_inverse_commute
thf(fact_7858_power__mult__power__inverse__commute,axiom,
! [X2: complex,M: nat,N: nat] :
( ( times_times_complex @ ( power_power_complex @ X2 @ M ) @ ( power_power_complex @ ( invers8013647133539491842omplex @ X2 ) @ N ) )
= ( times_times_complex @ ( power_power_complex @ ( invers8013647133539491842omplex @ X2 ) @ N ) @ ( power_power_complex @ X2 @ M ) ) ) ).
% power_mult_power_inverse_commute
thf(fact_7859_power__mult__power__inverse__commute,axiom,
! [X2: rat,M: nat,N: nat] :
( ( times_times_rat @ ( power_power_rat @ X2 @ M ) @ ( power_power_rat @ ( inverse_inverse_rat @ X2 ) @ N ) )
= ( times_times_rat @ ( power_power_rat @ ( inverse_inverse_rat @ X2 ) @ N ) @ ( power_power_rat @ X2 @ M ) ) ) ).
% power_mult_power_inverse_commute
thf(fact_7860_power__mult__inverse__distrib,axiom,
! [X2: real,M: nat] :
( ( times_times_real @ ( power_power_real @ X2 @ M ) @ ( inverse_inverse_real @ X2 ) )
= ( times_times_real @ ( inverse_inverse_real @ X2 ) @ ( power_power_real @ X2 @ M ) ) ) ).
% power_mult_inverse_distrib
thf(fact_7861_power__mult__inverse__distrib,axiom,
! [X2: complex,M: nat] :
( ( times_times_complex @ ( power_power_complex @ X2 @ M ) @ ( invers8013647133539491842omplex @ X2 ) )
= ( times_times_complex @ ( invers8013647133539491842omplex @ X2 ) @ ( power_power_complex @ X2 @ M ) ) ) ).
% power_mult_inverse_distrib
thf(fact_7862_power__mult__inverse__distrib,axiom,
! [X2: rat,M: nat] :
( ( times_times_rat @ ( power_power_rat @ X2 @ M ) @ ( inverse_inverse_rat @ X2 ) )
= ( times_times_rat @ ( inverse_inverse_rat @ X2 ) @ ( power_power_rat @ X2 @ M ) ) ) ).
% power_mult_inverse_distrib
thf(fact_7863_mult__inverse__of__nat__commute,axiom,
! [Xa3: nat,X2: real] :
( ( times_times_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ Xa3 ) ) @ X2 )
= ( times_times_real @ X2 @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ Xa3 ) ) ) ) ).
% mult_inverse_of_nat_commute
thf(fact_7864_mult__inverse__of__nat__commute,axiom,
! [Xa3: nat,X2: complex] :
( ( times_times_complex @ ( invers8013647133539491842omplex @ ( semiri8010041392384452111omplex @ Xa3 ) ) @ X2 )
= ( times_times_complex @ X2 @ ( invers8013647133539491842omplex @ ( semiri8010041392384452111omplex @ Xa3 ) ) ) ) ).
% mult_inverse_of_nat_commute
thf(fact_7865_mult__inverse__of__nat__commute,axiom,
! [Xa3: nat,X2: rat] :
( ( times_times_rat @ ( inverse_inverse_rat @ ( semiri681578069525770553at_rat @ Xa3 ) ) @ X2 )
= ( times_times_rat @ X2 @ ( inverse_inverse_rat @ ( semiri681578069525770553at_rat @ Xa3 ) ) ) ) ).
% mult_inverse_of_nat_commute
thf(fact_7866_nonzero__abs__inverse,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( abs_abs_real @ ( inverse_inverse_real @ A ) )
= ( inverse_inverse_real @ ( abs_abs_real @ A ) ) ) ) ).
% nonzero_abs_inverse
thf(fact_7867_nonzero__abs__inverse,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( abs_abs_rat @ ( inverse_inverse_rat @ A ) )
= ( inverse_inverse_rat @ ( abs_abs_rat @ A ) ) ) ) ).
% nonzero_abs_inverse
thf(fact_7868_mult__inverse__of__int__commute,axiom,
! [Xa3: int,X2: real] :
( ( times_times_real @ ( inverse_inverse_real @ ( ring_1_of_int_real @ Xa3 ) ) @ X2 )
= ( times_times_real @ X2 @ ( inverse_inverse_real @ ( ring_1_of_int_real @ Xa3 ) ) ) ) ).
% mult_inverse_of_int_commute
thf(fact_7869_mult__inverse__of__int__commute,axiom,
! [Xa3: int,X2: complex] :
( ( times_times_complex @ ( invers8013647133539491842omplex @ ( ring_17405671764205052669omplex @ Xa3 ) ) @ X2 )
= ( times_times_complex @ X2 @ ( invers8013647133539491842omplex @ ( ring_17405671764205052669omplex @ Xa3 ) ) ) ) ).
% mult_inverse_of_int_commute
thf(fact_7870_mult__inverse__of__int__commute,axiom,
! [Xa3: int,X2: rat] :
( ( times_times_rat @ ( inverse_inverse_rat @ ( ring_1_of_int_rat @ Xa3 ) ) @ X2 )
= ( times_times_rat @ X2 @ ( inverse_inverse_rat @ ( ring_1_of_int_rat @ Xa3 ) ) ) ) ).
% mult_inverse_of_int_commute
thf(fact_7871_divide__real__def,axiom,
( divide_divide_real
= ( ^ [X: real,Y: real] : ( times_times_real @ X @ ( inverse_inverse_real @ Y ) ) ) ) ).
% divide_real_def
thf(fact_7872_pochhammer__pos,axiom,
! [X2: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ord_less_real @ zero_zero_real @ ( comm_s7457072308508201937r_real @ X2 @ N ) ) ) ).
% pochhammer_pos
thf(fact_7873_pochhammer__pos,axiom,
! [X2: rat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ X2 )
=> ( ord_less_rat @ zero_zero_rat @ ( comm_s4028243227959126397er_rat @ X2 @ N ) ) ) ).
% pochhammer_pos
thf(fact_7874_pochhammer__pos,axiom,
! [X2: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ X2 )
=> ( ord_less_nat @ zero_zero_nat @ ( comm_s4663373288045622133er_nat @ X2 @ N ) ) ) ).
% pochhammer_pos
thf(fact_7875_pochhammer__pos,axiom,
! [X2: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ X2 )
=> ( ord_less_int @ zero_zero_int @ ( comm_s4660882817536571857er_int @ X2 @ N ) ) ) ).
% pochhammer_pos
thf(fact_7876_pochhammer__neq__0__mono,axiom,
! [A: complex,M: nat,N: nat] :
( ( ( comm_s2602460028002588243omplex @ A @ M )
!= zero_zero_complex )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( comm_s2602460028002588243omplex @ A @ N )
!= zero_zero_complex ) ) ) ).
% pochhammer_neq_0_mono
thf(fact_7877_pochhammer__neq__0__mono,axiom,
! [A: real,M: nat,N: nat] :
( ( ( comm_s7457072308508201937r_real @ A @ M )
!= zero_zero_real )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( comm_s7457072308508201937r_real @ A @ N )
!= zero_zero_real ) ) ) ).
% pochhammer_neq_0_mono
thf(fact_7878_pochhammer__neq__0__mono,axiom,
! [A: rat,M: nat,N: nat] :
( ( ( comm_s4028243227959126397er_rat @ A @ M )
!= zero_zero_rat )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( comm_s4028243227959126397er_rat @ A @ N )
!= zero_zero_rat ) ) ) ).
% pochhammer_neq_0_mono
thf(fact_7879_pochhammer__eq__0__mono,axiom,
! [A: complex,N: nat,M: nat] :
( ( ( comm_s2602460028002588243omplex @ A @ N )
= zero_zero_complex )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( comm_s2602460028002588243omplex @ A @ M )
= zero_zero_complex ) ) ) ).
% pochhammer_eq_0_mono
thf(fact_7880_pochhammer__eq__0__mono,axiom,
! [A: real,N: nat,M: nat] :
( ( ( comm_s7457072308508201937r_real @ A @ N )
= zero_zero_real )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( comm_s7457072308508201937r_real @ A @ M )
= zero_zero_real ) ) ) ).
% pochhammer_eq_0_mono
thf(fact_7881_pochhammer__eq__0__mono,axiom,
! [A: rat,N: nat,M: nat] :
( ( ( comm_s4028243227959126397er_rat @ A @ N )
= zero_zero_rat )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( comm_s4028243227959126397er_rat @ A @ M )
= zero_zero_rat ) ) ) ).
% pochhammer_eq_0_mono
thf(fact_7882_pochhammer__fact,axiom,
( semiri5044797733671781792omplex
= ( comm_s2602460028002588243omplex @ one_one_complex ) ) ).
% pochhammer_fact
thf(fact_7883_pochhammer__fact,axiom,
( semiri773545260158071498ct_rat
= ( comm_s4028243227959126397er_rat @ one_one_rat ) ) ).
% pochhammer_fact
thf(fact_7884_pochhammer__fact,axiom,
( semiri1406184849735516958ct_int
= ( comm_s4660882817536571857er_int @ one_one_int ) ) ).
% pochhammer_fact
thf(fact_7885_pochhammer__fact,axiom,
( semiri2265585572941072030t_real
= ( comm_s7457072308508201937r_real @ one_one_real ) ) ).
% pochhammer_fact
thf(fact_7886_pochhammer__fact,axiom,
( semiri1408675320244567234ct_nat
= ( comm_s4663373288045622133er_nat @ one_one_nat ) ) ).
% pochhammer_fact
thf(fact_7887_exp__fdiffs,axiom,
( ( diffs_complex
@ ^ [N3: nat] : ( invers8013647133539491842omplex @ ( semiri5044797733671781792omplex @ N3 ) ) )
= ( ^ [N3: nat] : ( invers8013647133539491842omplex @ ( semiri5044797733671781792omplex @ N3 ) ) ) ) ).
% exp_fdiffs
thf(fact_7888_exp__fdiffs,axiom,
( ( diffs_real
@ ^ [N3: nat] : ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N3 ) ) )
= ( ^ [N3: nat] : ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N3 ) ) ) ) ).
% exp_fdiffs
thf(fact_7889_inverse__le__imp__le,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ B @ A ) ) ) ).
% inverse_le_imp_le
thf(fact_7890_inverse__le__imp__le,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
=> ( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_eq_rat @ B @ A ) ) ) ).
% inverse_le_imp_le
thf(fact_7891_le__imp__inverse__le,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).
% le_imp_inverse_le
thf(fact_7892_le__imp__inverse__le,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_eq_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ).
% le_imp_inverse_le
thf(fact_7893_inverse__le__imp__le__neg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ B @ A ) ) ) ).
% inverse_le_imp_le_neg
thf(fact_7894_inverse__le__imp__le__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ A ) ) ) ).
% inverse_le_imp_le_neg
thf(fact_7895_le__imp__inverse__le__neg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).
% le_imp_inverse_le_neg
thf(fact_7896_le__imp__inverse__le__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ).
% le_imp_inverse_le_neg
thf(fact_7897_inverse__le__1__iff,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( inverse_inverse_real @ X2 ) @ one_one_real )
= ( ( ord_less_eq_real @ X2 @ zero_zero_real )
| ( ord_less_eq_real @ one_one_real @ X2 ) ) ) ).
% inverse_le_1_iff
thf(fact_7898_inverse__le__1__iff,axiom,
! [X2: rat] :
( ( ord_less_eq_rat @ ( inverse_inverse_rat @ X2 ) @ one_one_rat )
= ( ( ord_less_eq_rat @ X2 @ zero_zero_rat )
| ( ord_less_eq_rat @ one_one_rat @ X2 ) ) ) ).
% inverse_le_1_iff
thf(fact_7899_one__less__inverse__iff,axiom,
! [X2: real] :
( ( ord_less_real @ one_one_real @ ( inverse_inverse_real @ X2 ) )
= ( ( ord_less_real @ zero_zero_real @ X2 )
& ( ord_less_real @ X2 @ one_one_real ) ) ) ).
% one_less_inverse_iff
thf(fact_7900_one__less__inverse__iff,axiom,
! [X2: rat] :
( ( ord_less_rat @ one_one_rat @ ( inverse_inverse_rat @ X2 ) )
= ( ( ord_less_rat @ zero_zero_rat @ X2 )
& ( ord_less_rat @ X2 @ one_one_rat ) ) ) ).
% one_less_inverse_iff
thf(fact_7901_one__less__inverse,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ one_one_real @ ( inverse_inverse_real @ A ) ) ) ) ).
% one_less_inverse
thf(fact_7902_one__less__inverse,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ A @ one_one_rat )
=> ( ord_less_rat @ one_one_rat @ ( inverse_inverse_rat @ A ) ) ) ) ).
% one_less_inverse
thf(fact_7903_le__floor__iff,axiom,
! [Z: int,X2: real] :
( ( ord_less_eq_int @ Z @ ( archim6058952711729229775r_real @ X2 ) )
= ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ X2 ) ) ).
% le_floor_iff
thf(fact_7904_le__floor__iff,axiom,
! [Z: int,X2: rat] :
( ( ord_less_eq_int @ Z @ ( archim3151403230148437115or_rat @ X2 ) )
= ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z ) @ X2 ) ) ).
% le_floor_iff
thf(fact_7905_inverse__add,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( B != zero_zero_real )
=> ( ( plus_plus_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
= ( times_times_real @ ( times_times_real @ ( plus_plus_real @ A @ B ) @ ( inverse_inverse_real @ A ) ) @ ( inverse_inverse_real @ B ) ) ) ) ) ).
% inverse_add
thf(fact_7906_inverse__add,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( B != zero_zero_complex )
=> ( ( plus_plus_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) )
= ( times_times_complex @ ( times_times_complex @ ( plus_plus_complex @ A @ B ) @ ( invers8013647133539491842omplex @ A ) ) @ ( invers8013647133539491842omplex @ B ) ) ) ) ) ).
% inverse_add
thf(fact_7907_inverse__add,axiom,
! [A: rat,B: rat] :
( ( A != zero_zero_rat )
=> ( ( B != zero_zero_rat )
=> ( ( plus_plus_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
= ( times_times_rat @ ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ ( inverse_inverse_rat @ A ) ) @ ( inverse_inverse_rat @ B ) ) ) ) ) ).
% inverse_add
thf(fact_7908_division__ring__inverse__add,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( B != zero_zero_real )
=> ( ( plus_plus_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
= ( times_times_real @ ( times_times_real @ ( inverse_inverse_real @ A ) @ ( plus_plus_real @ A @ B ) ) @ ( inverse_inverse_real @ B ) ) ) ) ) ).
% division_ring_inverse_add
thf(fact_7909_division__ring__inverse__add,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( B != zero_zero_complex )
=> ( ( plus_plus_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) )
= ( times_times_complex @ ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ ( plus_plus_complex @ A @ B ) ) @ ( invers8013647133539491842omplex @ B ) ) ) ) ) ).
% division_ring_inverse_add
thf(fact_7910_division__ring__inverse__add,axiom,
! [A: rat,B: rat] :
( ( A != zero_zero_rat )
=> ( ( B != zero_zero_rat )
=> ( ( plus_plus_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
= ( times_times_rat @ ( times_times_rat @ ( inverse_inverse_rat @ A ) @ ( plus_plus_rat @ A @ B ) ) @ ( inverse_inverse_rat @ B ) ) ) ) ) ).
% division_ring_inverse_add
thf(fact_7911_field__class_Ofield__inverse,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( times_times_real @ ( inverse_inverse_real @ A ) @ A )
= one_one_real ) ) ).
% field_class.field_inverse
thf(fact_7912_field__class_Ofield__inverse,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ A )
= one_one_complex ) ) ).
% field_class.field_inverse
thf(fact_7913_field__class_Ofield__inverse,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( times_times_rat @ ( inverse_inverse_rat @ A ) @ A )
= one_one_rat ) ) ).
% field_class.field_inverse
thf(fact_7914_division__ring__inverse__diff,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( B != zero_zero_real )
=> ( ( minus_minus_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
= ( times_times_real @ ( times_times_real @ ( inverse_inverse_real @ A ) @ ( minus_minus_real @ B @ A ) ) @ ( inverse_inverse_real @ B ) ) ) ) ) ).
% division_ring_inverse_diff
thf(fact_7915_division__ring__inverse__diff,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( B != zero_zero_complex )
=> ( ( minus_minus_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) )
= ( times_times_complex @ ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ ( minus_minus_complex @ B @ A ) ) @ ( invers8013647133539491842omplex @ B ) ) ) ) ) ).
% division_ring_inverse_diff
thf(fact_7916_division__ring__inverse__diff,axiom,
! [A: rat,B: rat] :
( ( A != zero_zero_rat )
=> ( ( B != zero_zero_rat )
=> ( ( minus_minus_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
= ( times_times_rat @ ( times_times_rat @ ( inverse_inverse_rat @ A ) @ ( minus_minus_rat @ B @ A ) ) @ ( inverse_inverse_rat @ B ) ) ) ) ) ).
% division_ring_inverse_diff
thf(fact_7917_nonzero__inverse__eq__divide,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( inverse_inverse_real @ A )
= ( divide_divide_real @ one_one_real @ A ) ) ) ).
% nonzero_inverse_eq_divide
thf(fact_7918_nonzero__inverse__eq__divide,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( invers8013647133539491842omplex @ A )
= ( divide1717551699836669952omplex @ one_one_complex @ A ) ) ) ).
% nonzero_inverse_eq_divide
thf(fact_7919_nonzero__inverse__eq__divide,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( inverse_inverse_rat @ A )
= ( divide_divide_rat @ one_one_rat @ A ) ) ) ).
% nonzero_inverse_eq_divide
thf(fact_7920_floor__add__int,axiom,
! [X2: real,Z: int] :
( ( plus_plus_int @ ( archim6058952711729229775r_real @ X2 ) @ Z )
= ( archim6058952711729229775r_real @ ( plus_plus_real @ X2 @ ( ring_1_of_int_real @ Z ) ) ) ) ).
% floor_add_int
thf(fact_7921_floor__add__int,axiom,
! [X2: rat,Z: int] :
( ( plus_plus_int @ ( archim3151403230148437115or_rat @ X2 ) @ Z )
= ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X2 @ ( ring_1_of_int_rat @ Z ) ) ) ) ).
% floor_add_int
thf(fact_7922_int__add__floor,axiom,
! [Z: int,X2: real] :
( ( plus_plus_int @ Z @ ( archim6058952711729229775r_real @ X2 ) )
= ( archim6058952711729229775r_real @ ( plus_plus_real @ ( ring_1_of_int_real @ Z ) @ X2 ) ) ) ).
% int_add_floor
thf(fact_7923_int__add__floor,axiom,
! [Z: int,X2: rat] :
( ( plus_plus_int @ Z @ ( archim3151403230148437115or_rat @ X2 ) )
= ( archim3151403230148437115or_rat @ ( plus_plus_rat @ ( ring_1_of_int_rat @ Z ) @ X2 ) ) ) ).
% int_add_floor
thf(fact_7924_le__floor__add,axiom,
! [X2: real,Y2: real] : ( ord_less_eq_int @ ( plus_plus_int @ ( archim6058952711729229775r_real @ X2 ) @ ( archim6058952711729229775r_real @ Y2 ) ) @ ( archim6058952711729229775r_real @ ( plus_plus_real @ X2 @ Y2 ) ) ) ).
% le_floor_add
thf(fact_7925_le__floor__add,axiom,
! [X2: rat,Y2: rat] : ( ord_less_eq_int @ ( plus_plus_int @ ( archim3151403230148437115or_rat @ X2 ) @ ( archim3151403230148437115or_rat @ Y2 ) ) @ ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X2 @ Y2 ) ) ) ).
% le_floor_add
thf(fact_7926_floor__power,axiom,
! [X2: real,N: nat] :
( ( X2
= ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X2 ) ) )
=> ( ( archim6058952711729229775r_real @ ( power_power_real @ X2 @ N ) )
= ( power_power_int @ ( archim6058952711729229775r_real @ X2 ) @ N ) ) ) ).
% floor_power
thf(fact_7927_floor__power,axiom,
! [X2: rat,N: nat] :
( ( X2
= ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X2 ) ) )
=> ( ( archim3151403230148437115or_rat @ ( power_power_rat @ X2 @ N ) )
= ( power_power_int @ ( archim3151403230148437115or_rat @ X2 ) @ N ) ) ) ).
% floor_power
thf(fact_7928_floor__divide__of__int__eq,axiom,
! [K: int,L2: int] :
( ( archim6058952711729229775r_real @ ( divide_divide_real @ ( ring_1_of_int_real @ K ) @ ( ring_1_of_int_real @ L2 ) ) )
= ( divide_divide_int @ K @ L2 ) ) ).
% floor_divide_of_int_eq
thf(fact_7929_floor__divide__of__int__eq,axiom,
! [K: int,L2: int] :
( ( archim3151403230148437115or_rat @ ( divide_divide_rat @ ( ring_1_of_int_rat @ K ) @ ( ring_1_of_int_rat @ L2 ) ) )
= ( divide_divide_int @ K @ L2 ) ) ).
% floor_divide_of_int_eq
thf(fact_7930_gbinomial__pochhammer,axiom,
( gbinomial_complex
= ( ^ [A3: complex,K2: nat] : ( divide1717551699836669952omplex @ ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K2 ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ A3 ) @ K2 ) ) @ ( semiri5044797733671781792omplex @ K2 ) ) ) ) ).
% gbinomial_pochhammer
thf(fact_7931_gbinomial__pochhammer,axiom,
( gbinomial_rat
= ( ^ [A3: rat,K2: nat] : ( divide_divide_rat @ ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K2 ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ A3 ) @ K2 ) ) @ ( semiri773545260158071498ct_rat @ K2 ) ) ) ) ).
% gbinomial_pochhammer
thf(fact_7932_gbinomial__pochhammer,axiom,
( gbinomial_real
= ( ^ [A3: real,K2: nat] : ( divide_divide_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ A3 ) @ K2 ) ) @ ( semiri2265585572941072030t_real @ K2 ) ) ) ) ).
% gbinomial_pochhammer
thf(fact_7933_gbinomial__pochhammer_H,axiom,
( gbinomial_complex
= ( ^ [A3: complex,K2: nat] : ( divide1717551699836669952omplex @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ A3 @ ( semiri8010041392384452111omplex @ K2 ) ) @ one_one_complex ) @ K2 ) @ ( semiri5044797733671781792omplex @ K2 ) ) ) ) ).
% gbinomial_pochhammer'
thf(fact_7934_gbinomial__pochhammer_H,axiom,
( gbinomial_rat
= ( ^ [A3: rat,K2: nat] : ( divide_divide_rat @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ A3 @ ( semiri681578069525770553at_rat @ K2 ) ) @ one_one_rat ) @ K2 ) @ ( semiri773545260158071498ct_rat @ K2 ) ) ) ) ).
% gbinomial_pochhammer'
thf(fact_7935_gbinomial__pochhammer_H,axiom,
( gbinomial_real
= ( ^ [A3: real,K2: nat] : ( divide_divide_real @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ A3 @ ( semiri5074537144036343181t_real @ K2 ) ) @ one_one_real ) @ K2 ) @ ( semiri2265585572941072030t_real @ K2 ) ) ) ) ).
% gbinomial_pochhammer'
thf(fact_7936_gbinomial__Suc__Suc,axiom,
! [A: complex,K: nat] :
( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) )
= ( plus_plus_complex @ ( gbinomial_complex @ A @ K ) @ ( gbinomial_complex @ A @ ( suc @ K ) ) ) ) ).
% gbinomial_Suc_Suc
thf(fact_7937_gbinomial__Suc__Suc,axiom,
! [A: real,K: nat] :
( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) )
= ( plus_plus_real @ ( gbinomial_real @ A @ K ) @ ( gbinomial_real @ A @ ( suc @ K ) ) ) ) ).
% gbinomial_Suc_Suc
thf(fact_7938_gbinomial__Suc__Suc,axiom,
! [A: rat,K: nat] :
( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) )
= ( plus_plus_rat @ ( gbinomial_rat @ A @ K ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) ) ) ).
% gbinomial_Suc_Suc
thf(fact_7939_gbinomial__of__nat__symmetric,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( gbinomial_real @ ( semiri5074537144036343181t_real @ N ) @ K )
= ( gbinomial_real @ ( semiri5074537144036343181t_real @ N ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).
% gbinomial_of_nat_symmetric
thf(fact_7940_pochhammer__nonneg,axiom,
! [X2: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( comm_s7457072308508201937r_real @ X2 @ N ) ) ) ).
% pochhammer_nonneg
thf(fact_7941_pochhammer__nonneg,axiom,
! [X2: rat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ X2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( comm_s4028243227959126397er_rat @ X2 @ N ) ) ) ).
% pochhammer_nonneg
thf(fact_7942_pochhammer__nonneg,axiom,
! [X2: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ X2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( comm_s4663373288045622133er_nat @ X2 @ N ) ) ) ).
% pochhammer_nonneg
thf(fact_7943_pochhammer__nonneg,axiom,
! [X2: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ X2 )
=> ( ord_less_eq_int @ zero_zero_int @ ( comm_s4660882817536571857er_int @ X2 @ N ) ) ) ).
% pochhammer_nonneg
thf(fact_7944_inverse__powr,axiom,
! [Y2: real,A: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( powr_real @ ( inverse_inverse_real @ Y2 ) @ A )
= ( inverse_inverse_real @ ( powr_real @ Y2 @ A ) ) ) ) ).
% inverse_powr
thf(fact_7945_pochhammer__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( comm_s2602460028002588243omplex @ zero_zero_complex @ N )
= one_one_complex ) )
& ( ( N != zero_zero_nat )
=> ( ( comm_s2602460028002588243omplex @ zero_zero_complex @ N )
= zero_zero_complex ) ) ) ).
% pochhammer_0_left
thf(fact_7946_pochhammer__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( comm_s7457072308508201937r_real @ zero_zero_real @ N )
= one_one_real ) )
& ( ( N != zero_zero_nat )
=> ( ( comm_s7457072308508201937r_real @ zero_zero_real @ N )
= zero_zero_real ) ) ) ).
% pochhammer_0_left
thf(fact_7947_pochhammer__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( comm_s4028243227959126397er_rat @ zero_zero_rat @ N )
= one_one_rat ) )
& ( ( N != zero_zero_nat )
=> ( ( comm_s4028243227959126397er_rat @ zero_zero_rat @ N )
= zero_zero_rat ) ) ) ).
% pochhammer_0_left
thf(fact_7948_pochhammer__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( comm_s4663373288045622133er_nat @ zero_zero_nat @ N )
= one_one_nat ) )
& ( ( N != zero_zero_nat )
=> ( ( comm_s4663373288045622133er_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ) ) ).
% pochhammer_0_left
thf(fact_7949_pochhammer__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( comm_s4660882817536571857er_int @ zero_zero_int @ N )
= one_one_int ) )
& ( ( N != zero_zero_nat )
=> ( ( comm_s4660882817536571857er_int @ zero_zero_int @ N )
= zero_zero_int ) ) ) ).
% pochhammer_0_left
thf(fact_7950_one__le__inverse,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ one_one_real @ ( inverse_inverse_real @ A ) ) ) ) ).
% one_le_inverse
thf(fact_7951_one__le__inverse,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ A @ one_one_rat )
=> ( ord_less_eq_rat @ one_one_rat @ ( inverse_inverse_rat @ A ) ) ) ) ).
% one_le_inverse
thf(fact_7952_inverse__less__1__iff,axiom,
! [X2: real] :
( ( ord_less_real @ ( inverse_inverse_real @ X2 ) @ one_one_real )
= ( ( ord_less_eq_real @ X2 @ zero_zero_real )
| ( ord_less_real @ one_one_real @ X2 ) ) ) ).
% inverse_less_1_iff
thf(fact_7953_inverse__less__1__iff,axiom,
! [X2: rat] :
( ( ord_less_rat @ ( inverse_inverse_rat @ X2 ) @ one_one_rat )
= ( ( ord_less_eq_rat @ X2 @ zero_zero_rat )
| ( ord_less_rat @ one_one_rat @ X2 ) ) ) ).
% inverse_less_1_iff
thf(fact_7954_one__le__inverse__iff,axiom,
! [X2: real] :
( ( ord_less_eq_real @ one_one_real @ ( inverse_inverse_real @ X2 ) )
= ( ( ord_less_real @ zero_zero_real @ X2 )
& ( ord_less_eq_real @ X2 @ one_one_real ) ) ) ).
% one_le_inverse_iff
thf(fact_7955_one__le__inverse__iff,axiom,
! [X2: rat] :
( ( ord_less_eq_rat @ one_one_rat @ ( inverse_inverse_rat @ X2 ) )
= ( ( ord_less_rat @ zero_zero_rat @ X2 )
& ( ord_less_eq_rat @ X2 @ one_one_rat ) ) ) ).
% one_le_inverse_iff
thf(fact_7956_inverse__less__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_real @ B @ A ) )
& ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
=> ( ord_less_real @ A @ B ) ) ) ) ).
% inverse_less_iff
thf(fact_7957_inverse__less__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
=> ( ord_less_rat @ B @ A ) )
& ( ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
=> ( ord_less_rat @ A @ B ) ) ) ) ).
% inverse_less_iff
thf(fact_7958_inverse__le__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_eq_real @ B @ A ) )
& ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
=> ( ord_less_eq_real @ A @ B ) ) ) ) ).
% inverse_le_iff
thf(fact_7959_inverse__le__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
=> ( ord_less_eq_rat @ B @ A ) )
& ( ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
=> ( ord_less_eq_rat @ A @ B ) ) ) ) ).
% inverse_le_iff
thf(fact_7960_one__add__floor,axiom,
! [X2: real] :
( ( plus_plus_int @ ( archim6058952711729229775r_real @ X2 ) @ one_one_int )
= ( archim6058952711729229775r_real @ ( plus_plus_real @ X2 @ one_one_real ) ) ) ).
% one_add_floor
thf(fact_7961_one__add__floor,axiom,
! [X2: rat] :
( ( plus_plus_int @ ( archim3151403230148437115or_rat @ X2 ) @ one_one_int )
= ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X2 @ one_one_rat ) ) ) ).
% one_add_floor
thf(fact_7962_inverse__diff__inverse,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( B != zero_zero_real )
=> ( ( minus_minus_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
= ( uminus_uminus_real @ ( times_times_real @ ( times_times_real @ ( inverse_inverse_real @ A ) @ ( minus_minus_real @ A @ B ) ) @ ( inverse_inverse_real @ B ) ) ) ) ) ) ).
% inverse_diff_inverse
thf(fact_7963_inverse__diff__inverse,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( B != zero_zero_complex )
=> ( ( minus_minus_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) )
= ( uminus1482373934393186551omplex @ ( times_times_complex @ ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ ( minus_minus_complex @ A @ B ) ) @ ( invers8013647133539491842omplex @ B ) ) ) ) ) ) ).
% inverse_diff_inverse
thf(fact_7964_inverse__diff__inverse,axiom,
! [A: rat,B: rat] :
( ( A != zero_zero_rat )
=> ( ( B != zero_zero_rat )
=> ( ( minus_minus_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
= ( uminus_uminus_rat @ ( times_times_rat @ ( times_times_rat @ ( inverse_inverse_rat @ A ) @ ( minus_minus_rat @ A @ B ) ) @ ( inverse_inverse_rat @ B ) ) ) ) ) ) ).
% inverse_diff_inverse
thf(fact_7965_reals__Archimedean,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ? [N2: nat] : ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) @ X2 ) ) ).
% reals_Archimedean
thf(fact_7966_reals__Archimedean,axiom,
! [X2: rat] :
( ( ord_less_rat @ zero_zero_rat @ X2 )
=> ? [N2: nat] : ( ord_less_rat @ ( inverse_inverse_rat @ ( semiri681578069525770553at_rat @ ( suc @ N2 ) ) ) @ X2 ) ) ).
% reals_Archimedean
thf(fact_7967_floor__divide__of__nat__eq,axiom,
! [M: nat,N: nat] :
( ( archim6058952711729229775r_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) )
= ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) ) ) ).
% floor_divide_of_nat_eq
thf(fact_7968_floor__divide__of__nat__eq,axiom,
! [M: nat,N: nat] :
( ( archim3151403230148437115or_rat @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) )
= ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) ) ) ).
% floor_divide_of_nat_eq
thf(fact_7969_ceiling__altdef,axiom,
( archim7802044766580827645g_real
= ( ^ [X: real] :
( if_int
@ ( X
= ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X ) ) )
@ ( archim6058952711729229775r_real @ X )
@ ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ one_one_int ) ) ) ) ).
% ceiling_altdef
thf(fact_7970_ceiling__altdef,axiom,
( archim2889992004027027881ng_rat
= ( ^ [X: rat] :
( if_int
@ ( X
= ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X ) ) )
@ ( archim3151403230148437115or_rat @ X )
@ ( plus_plus_int @ ( archim3151403230148437115or_rat @ X ) @ one_one_int ) ) ) ) ).
% ceiling_altdef
thf(fact_7971_gbinomial__addition__formula,axiom,
! [A: complex,K: nat] :
( ( gbinomial_complex @ A @ ( suc @ K ) )
= ( plus_plus_complex @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ ( suc @ K ) ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ).
% gbinomial_addition_formula
thf(fact_7972_gbinomial__addition__formula,axiom,
! [A: real,K: nat] :
( ( gbinomial_real @ A @ ( suc @ K ) )
= ( plus_plus_real @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ ( suc @ K ) ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ).
% gbinomial_addition_formula
thf(fact_7973_gbinomial__addition__formula,axiom,
! [A: rat,K: nat] :
( ( gbinomial_rat @ A @ ( suc @ K ) )
= ( plus_plus_rat @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ ( suc @ K ) ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ).
% gbinomial_addition_formula
thf(fact_7974_ceiling__diff__floor__le__1,axiom,
! [X2: real] : ( ord_less_eq_int @ ( minus_minus_int @ ( archim7802044766580827645g_real @ X2 ) @ ( archim6058952711729229775r_real @ X2 ) ) @ one_one_int ) ).
% ceiling_diff_floor_le_1
thf(fact_7975_ceiling__diff__floor__le__1,axiom,
! [X2: rat] : ( ord_less_eq_int @ ( minus_minus_int @ ( archim2889992004027027881ng_rat @ X2 ) @ ( archim3151403230148437115or_rat @ X2 ) ) @ one_one_int ) ).
% ceiling_diff_floor_le_1
thf(fact_7976_gbinomial__absorb__comp,axiom,
! [A: complex,K: nat] :
( ( times_times_complex @ ( minus_minus_complex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ ( gbinomial_complex @ A @ K ) )
= ( times_times_complex @ A @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ).
% gbinomial_absorb_comp
thf(fact_7977_gbinomial__absorb__comp,axiom,
! [A: rat,K: nat] :
( ( times_times_rat @ ( minus_minus_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ ( gbinomial_rat @ A @ K ) )
= ( times_times_rat @ A @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ).
% gbinomial_absorb_comp
thf(fact_7978_gbinomial__absorb__comp,axiom,
! [A: real,K: nat] :
( ( times_times_real @ ( minus_minus_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ ( gbinomial_real @ A @ K ) )
= ( times_times_real @ A @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ).
% gbinomial_absorb_comp
thf(fact_7979_gbinomial__mult__1_H,axiom,
! [A: rat,K: nat] :
( ( times_times_rat @ ( gbinomial_rat @ A @ K ) @ A )
= ( plus_plus_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ K ) @ ( gbinomial_rat @ A @ K ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) ) ) ) ).
% gbinomial_mult_1'
thf(fact_7980_gbinomial__mult__1_H,axiom,
! [A: real,K: nat] :
( ( times_times_real @ ( gbinomial_real @ A @ K ) @ A )
= ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ K ) @ ( gbinomial_real @ A @ K ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ A @ ( suc @ K ) ) ) ) ) ).
% gbinomial_mult_1'
thf(fact_7981_gbinomial__mult__1,axiom,
! [A: rat,K: nat] :
( ( times_times_rat @ A @ ( gbinomial_rat @ A @ K ) )
= ( plus_plus_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ K ) @ ( gbinomial_rat @ A @ K ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) ) ) ) ).
% gbinomial_mult_1
thf(fact_7982_gbinomial__mult__1,axiom,
! [A: real,K: nat] :
( ( times_times_real @ A @ ( gbinomial_real @ A @ K ) )
= ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ K ) @ ( gbinomial_real @ A @ K ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ A @ ( suc @ K ) ) ) ) ) ).
% gbinomial_mult_1
thf(fact_7983_gbinomial__ge__n__over__k__pow__k,axiom,
! [K: nat,A: real] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ K ) @ A )
=> ( ord_less_eq_real @ ( power_power_real @ ( divide_divide_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ K ) @ ( gbinomial_real @ A @ K ) ) ) ).
% gbinomial_ge_n_over_k_pow_k
thf(fact_7984_gbinomial__ge__n__over__k__pow__k,axiom,
! [K: nat,A: rat] :
( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ K ) @ A )
=> ( ord_less_eq_rat @ ( power_power_rat @ ( divide_divide_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ K ) @ ( gbinomial_rat @ A @ K ) ) ) ).
% gbinomial_ge_n_over_k_pow_k
thf(fact_7985_floor__eq,axiom,
! [N: int,X2: real] :
( ( ord_less_real @ ( ring_1_of_int_real @ N ) @ X2 )
=> ( ( ord_less_real @ X2 @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
=> ( ( archim6058952711729229775r_real @ X2 )
= N ) ) ) ).
% floor_eq
thf(fact_7986_real__of__int__floor__add__one__gt,axiom,
! [R2: real] : ( ord_less_real @ R2 @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) @ one_one_real ) ) ).
% real_of_int_floor_add_one_gt
thf(fact_7987_real__of__int__floor__add__one__ge,axiom,
! [R2: real] : ( ord_less_eq_real @ R2 @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) @ one_one_real ) ) ).
% real_of_int_floor_add_one_ge
thf(fact_7988_forall__pos__mono__1,axiom,
! [P: real > $o,E: real] :
( ! [D3: real,E2: real] :
( ( ord_less_real @ D3 @ E2 )
=> ( ( P @ D3 )
=> ( P @ E2 ) ) )
=> ( ! [N2: nat] : ( P @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) )
=> ( ( ord_less_real @ zero_zero_real @ E )
=> ( P @ E ) ) ) ) ).
% forall_pos_mono_1
thf(fact_7989_real__arch__inverse,axiom,
! [E: real] :
( ( ord_less_real @ zero_zero_real @ E )
= ( ? [N3: nat] :
( ( N3 != zero_zero_nat )
& ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N3 ) ) )
& ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N3 ) ) @ E ) ) ) ) ).
% real_arch_inverse
thf(fact_7990_forall__pos__mono,axiom,
! [P: real > $o,E: real] :
( ! [D3: real,E2: real] :
( ( ord_less_real @ D3 @ E2 )
=> ( ( P @ D3 )
=> ( P @ E2 ) ) )
=> ( ! [N2: nat] :
( ( N2 != zero_zero_nat )
=> ( P @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N2 ) ) ) )
=> ( ( ord_less_real @ zero_zero_real @ E )
=> ( P @ E ) ) ) ) ).
% forall_pos_mono
thf(fact_7991_real__of__int__floor__gt__diff__one,axiom,
! [R2: real] : ( ord_less_real @ ( minus_minus_real @ R2 @ one_one_real ) @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) ) ).
% real_of_int_floor_gt_diff_one
thf(fact_7992_real__of__int__floor__ge__diff__one,axiom,
! [R2: real] : ( ord_less_eq_real @ ( minus_minus_real @ R2 @ one_one_real ) @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) ) ).
% real_of_int_floor_ge_diff_one
thf(fact_7993_sqrt__divide__self__eq,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( divide_divide_real @ ( sqrt @ X2 ) @ X2 )
= ( inverse_inverse_real @ ( sqrt @ X2 ) ) ) ) ).
% sqrt_divide_self_eq
thf(fact_7994_ln__inverse,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ln_ln_real @ ( inverse_inverse_real @ X2 ) )
= ( uminus_uminus_real @ ( ln_ln_real @ X2 ) ) ) ) ).
% ln_inverse
thf(fact_7995_pochhammer__rec,axiom,
! [A: complex,N: nat] :
( ( comm_s2602460028002588243omplex @ A @ ( suc @ N ) )
= ( times_times_complex @ A @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ N ) ) ) ).
% pochhammer_rec
thf(fact_7996_pochhammer__rec,axiom,
! [A: real,N: nat] :
( ( comm_s7457072308508201937r_real @ A @ ( suc @ N ) )
= ( times_times_real @ A @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ A @ one_one_real ) @ N ) ) ) ).
% pochhammer_rec
thf(fact_7997_pochhammer__rec,axiom,
! [A: rat,N: nat] :
( ( comm_s4028243227959126397er_rat @ A @ ( suc @ N ) )
= ( times_times_rat @ A @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ N ) ) ) ).
% pochhammer_rec
thf(fact_7998_pochhammer__rec,axiom,
! [A: nat,N: nat] :
( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N ) )
= ( times_times_nat @ A @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ N ) ) ) ).
% pochhammer_rec
thf(fact_7999_pochhammer__rec,axiom,
! [A: int,N: nat] :
( ( comm_s4660882817536571857er_int @ A @ ( suc @ N ) )
= ( times_times_int @ A @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ A @ one_one_int ) @ N ) ) ) ).
% pochhammer_rec
thf(fact_8000_pochhammer__rec_H,axiom,
! [Z: rat,N: nat] :
( ( comm_s4028243227959126397er_rat @ Z @ ( suc @ N ) )
= ( times_times_rat @ ( plus_plus_rat @ Z @ ( semiri681578069525770553at_rat @ N ) ) @ ( comm_s4028243227959126397er_rat @ Z @ N ) ) ) ).
% pochhammer_rec'
thf(fact_8001_pochhammer__rec_H,axiom,
! [Z: real,N: nat] :
( ( comm_s7457072308508201937r_real @ Z @ ( suc @ N ) )
= ( times_times_real @ ( plus_plus_real @ Z @ ( semiri5074537144036343181t_real @ N ) ) @ ( comm_s7457072308508201937r_real @ Z @ N ) ) ) ).
% pochhammer_rec'
thf(fact_8002_pochhammer__rec_H,axiom,
! [Z: int,N: nat] :
( ( comm_s4660882817536571857er_int @ Z @ ( suc @ N ) )
= ( times_times_int @ ( plus_plus_int @ Z @ ( semiri1314217659103216013at_int @ N ) ) @ ( comm_s4660882817536571857er_int @ Z @ N ) ) ) ).
% pochhammer_rec'
thf(fact_8003_pochhammer__rec_H,axiom,
! [Z: nat,N: nat] :
( ( comm_s4663373288045622133er_nat @ Z @ ( suc @ N ) )
= ( times_times_nat @ ( plus_plus_nat @ Z @ ( semiri1316708129612266289at_nat @ N ) ) @ ( comm_s4663373288045622133er_nat @ Z @ N ) ) ) ).
% pochhammer_rec'
thf(fact_8004_pochhammer__Suc,axiom,
! [A: rat,N: nat] :
( ( comm_s4028243227959126397er_rat @ A @ ( suc @ N ) )
= ( times_times_rat @ ( comm_s4028243227959126397er_rat @ A @ N ) @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ N ) ) ) ) ).
% pochhammer_Suc
thf(fact_8005_pochhammer__Suc,axiom,
! [A: real,N: nat] :
( ( comm_s7457072308508201937r_real @ A @ ( suc @ N ) )
= ( times_times_real @ ( comm_s7457072308508201937r_real @ A @ N ) @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).
% pochhammer_Suc
thf(fact_8006_pochhammer__Suc,axiom,
! [A: int,N: nat] :
( ( comm_s4660882817536571857er_int @ A @ ( suc @ N ) )
= ( times_times_int @ ( comm_s4660882817536571857er_int @ A @ N ) @ ( plus_plus_int @ A @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).
% pochhammer_Suc
thf(fact_8007_pochhammer__Suc,axiom,
! [A: nat,N: nat] :
( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N ) )
= ( times_times_nat @ ( comm_s4663373288045622133er_nat @ A @ N ) @ ( plus_plus_nat @ A @ ( semiri1316708129612266289at_nat @ N ) ) ) ) ).
% pochhammer_Suc
thf(fact_8008_pochhammer__eq__0__iff,axiom,
! [A: complex,N: nat] :
( ( ( comm_s2602460028002588243omplex @ A @ N )
= zero_zero_complex )
= ( ? [K2: nat] :
( ( ord_less_nat @ K2 @ N )
& ( A
= ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ K2 ) ) ) ) ) ) ).
% pochhammer_eq_0_iff
thf(fact_8009_pochhammer__eq__0__iff,axiom,
! [A: rat,N: nat] :
( ( ( comm_s4028243227959126397er_rat @ A @ N )
= zero_zero_rat )
= ( ? [K2: nat] :
( ( ord_less_nat @ K2 @ N )
& ( A
= ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ K2 ) ) ) ) ) ) ).
% pochhammer_eq_0_iff
thf(fact_8010_pochhammer__eq__0__iff,axiom,
! [A: real,N: nat] :
( ( ( comm_s7457072308508201937r_real @ A @ N )
= zero_zero_real )
= ( ? [K2: nat] :
( ( ord_less_nat @ K2 @ N )
& ( A
= ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ K2 ) ) ) ) ) ) ).
% pochhammer_eq_0_iff
thf(fact_8011_pochhammer__of__nat__eq__0__iff,axiom,
! [N: nat,K: nat] :
( ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ K )
= zero_zero_complex )
= ( ord_less_nat @ N @ K ) ) ).
% pochhammer_of_nat_eq_0_iff
thf(fact_8012_pochhammer__of__nat__eq__0__iff,axiom,
! [N: nat,K: nat] :
( ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ K )
= zero_zero_rat )
= ( ord_less_nat @ N @ K ) ) ).
% pochhammer_of_nat_eq_0_iff
thf(fact_8013_pochhammer__of__nat__eq__0__iff,axiom,
! [N: nat,K: nat] :
( ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N ) ) @ K )
= zero_z3403309356797280102nteger )
= ( ord_less_nat @ N @ K ) ) ).
% pochhammer_of_nat_eq_0_iff
thf(fact_8014_pochhammer__of__nat__eq__0__iff,axiom,
! [N: nat,K: nat] :
( ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ K )
= zero_zero_real )
= ( ord_less_nat @ N @ K ) ) ).
% pochhammer_of_nat_eq_0_iff
thf(fact_8015_pochhammer__of__nat__eq__0__iff,axiom,
! [N: nat,K: nat] :
( ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ K )
= zero_zero_int )
= ( ord_less_nat @ N @ K ) ) ).
% pochhammer_of_nat_eq_0_iff
thf(fact_8016_pochhammer__of__nat__eq__0__lemma,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ N @ K )
=> ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ K )
= zero_zero_complex ) ) ).
% pochhammer_of_nat_eq_0_lemma
thf(fact_8017_pochhammer__of__nat__eq__0__lemma,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ N @ K )
=> ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ K )
= zero_zero_rat ) ) ).
% pochhammer_of_nat_eq_0_lemma
thf(fact_8018_pochhammer__of__nat__eq__0__lemma,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ N @ K )
=> ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N ) ) @ K )
= zero_z3403309356797280102nteger ) ) ).
% pochhammer_of_nat_eq_0_lemma
thf(fact_8019_pochhammer__of__nat__eq__0__lemma,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ N @ K )
=> ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ K )
= zero_zero_real ) ) ).
% pochhammer_of_nat_eq_0_lemma
thf(fact_8020_pochhammer__of__nat__eq__0__lemma,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ N @ K )
=> ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ K )
= zero_zero_int ) ) ).
% pochhammer_of_nat_eq_0_lemma
thf(fact_8021_pochhammer__product_H,axiom,
! [Z: rat,N: nat,M: nat] :
( ( comm_s4028243227959126397er_rat @ Z @ ( plus_plus_nat @ N @ M ) )
= ( times_times_rat @ ( comm_s4028243227959126397er_rat @ Z @ N ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z @ ( semiri681578069525770553at_rat @ N ) ) @ M ) ) ) ).
% pochhammer_product'
thf(fact_8022_pochhammer__product_H,axiom,
! [Z: real,N: nat,M: nat] :
( ( comm_s7457072308508201937r_real @ Z @ ( plus_plus_nat @ N @ M ) )
= ( times_times_real @ ( comm_s7457072308508201937r_real @ Z @ N ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z @ ( semiri5074537144036343181t_real @ N ) ) @ M ) ) ) ).
% pochhammer_product'
thf(fact_8023_pochhammer__product_H,axiom,
! [Z: int,N: nat,M: nat] :
( ( comm_s4660882817536571857er_int @ Z @ ( plus_plus_nat @ N @ M ) )
= ( times_times_int @ ( comm_s4660882817536571857er_int @ Z @ N ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ Z @ ( semiri1314217659103216013at_int @ N ) ) @ M ) ) ) ).
% pochhammer_product'
thf(fact_8024_pochhammer__product_H,axiom,
! [Z: nat,N: nat,M: nat] :
( ( comm_s4663373288045622133er_nat @ Z @ ( plus_plus_nat @ N @ M ) )
= ( times_times_nat @ ( comm_s4663373288045622133er_nat @ Z @ N ) @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ Z @ ( semiri1316708129612266289at_nat @ N ) ) @ M ) ) ) ).
% pochhammer_product'
thf(fact_8025_pochhammer__of__nat__eq__0__lemma_H,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ K )
!= zero_zero_complex ) ) ).
% pochhammer_of_nat_eq_0_lemma'
thf(fact_8026_pochhammer__of__nat__eq__0__lemma_H,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ K )
!= zero_zero_rat ) ) ).
% pochhammer_of_nat_eq_0_lemma'
thf(fact_8027_pochhammer__of__nat__eq__0__lemma_H,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N ) ) @ K )
!= zero_z3403309356797280102nteger ) ) ).
% pochhammer_of_nat_eq_0_lemma'
thf(fact_8028_pochhammer__of__nat__eq__0__lemma_H,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ K )
!= zero_zero_real ) ) ).
% pochhammer_of_nat_eq_0_lemma'
thf(fact_8029_pochhammer__of__nat__eq__0__lemma_H,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ K )
!= zero_zero_int ) ) ).
% pochhammer_of_nat_eq_0_lemma'
thf(fact_8030_summable__exp,axiom,
! [X2: complex] :
( summable_complex
@ ^ [N3: nat] : ( times_times_complex @ ( invers8013647133539491842omplex @ ( semiri5044797733671781792omplex @ N3 ) ) @ ( power_power_complex @ X2 @ N3 ) ) ) ).
% summable_exp
thf(fact_8031_summable__exp,axiom,
! [X2: real] :
( summable_real
@ ^ [N3: nat] : ( times_times_real @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N3 ) ) @ ( power_power_real @ X2 @ N3 ) ) ) ).
% summable_exp
thf(fact_8032_floor__unique,axiom,
! [Z: int,X2: real] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ X2 )
=> ( ( ord_less_real @ X2 @ ( plus_plus_real @ ( ring_1_of_int_real @ Z ) @ one_one_real ) )
=> ( ( archim6058952711729229775r_real @ X2 )
= Z ) ) ) ).
% floor_unique
thf(fact_8033_floor__unique,axiom,
! [Z: int,X2: rat] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z ) @ X2 )
=> ( ( ord_less_rat @ X2 @ ( plus_plus_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat ) )
=> ( ( archim3151403230148437115or_rat @ X2 )
= Z ) ) ) ).
% floor_unique
thf(fact_8034_floor__eq__iff,axiom,
! [X2: real,A: int] :
( ( ( archim6058952711729229775r_real @ X2 )
= A )
= ( ( ord_less_eq_real @ ( ring_1_of_int_real @ A ) @ X2 )
& ( ord_less_real @ X2 @ ( plus_plus_real @ ( ring_1_of_int_real @ A ) @ one_one_real ) ) ) ) ).
% floor_eq_iff
thf(fact_8035_floor__eq__iff,axiom,
! [X2: rat,A: int] :
( ( ( archim3151403230148437115or_rat @ X2 )
= A )
= ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ A ) @ X2 )
& ( ord_less_rat @ X2 @ ( plus_plus_rat @ ( ring_1_of_int_rat @ A ) @ one_one_rat ) ) ) ) ).
% floor_eq_iff
thf(fact_8036_floor__split,axiom,
! [P: int > $o,T2: real] :
( ( P @ ( archim6058952711729229775r_real @ T2 ) )
= ( ! [I3: int] :
( ( ( ord_less_eq_real @ ( ring_1_of_int_real @ I3 ) @ T2 )
& ( ord_less_real @ T2 @ ( plus_plus_real @ ( ring_1_of_int_real @ I3 ) @ one_one_real ) ) )
=> ( P @ I3 ) ) ) ) ).
% floor_split
thf(fact_8037_floor__split,axiom,
! [P: int > $o,T2: rat] :
( ( P @ ( archim3151403230148437115or_rat @ T2 ) )
= ( ! [I3: int] :
( ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ I3 ) @ T2 )
& ( ord_less_rat @ T2 @ ( plus_plus_rat @ ( ring_1_of_int_rat @ I3 ) @ one_one_rat ) ) )
=> ( P @ I3 ) ) ) ) ).
% floor_split
thf(fact_8038_less__floor__iff,axiom,
! [Z: int,X2: real] :
( ( ord_less_int @ Z @ ( archim6058952711729229775r_real @ X2 ) )
= ( ord_less_eq_real @ ( plus_plus_real @ ( ring_1_of_int_real @ Z ) @ one_one_real ) @ X2 ) ) ).
% less_floor_iff
thf(fact_8039_less__floor__iff,axiom,
! [Z: int,X2: rat] :
( ( ord_less_int @ Z @ ( archim3151403230148437115or_rat @ X2 ) )
= ( ord_less_eq_rat @ ( plus_plus_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat ) @ X2 ) ) ).
% less_floor_iff
thf(fact_8040_le__mult__floor,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_int @ ( times_times_int @ ( archim6058952711729229775r_real @ A ) @ ( archim6058952711729229775r_real @ B ) ) @ ( archim6058952711729229775r_real @ ( times_times_real @ A @ B ) ) ) ) ) ).
% le_mult_floor
thf(fact_8041_le__mult__floor,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_eq_int @ ( times_times_int @ ( archim3151403230148437115or_rat @ A ) @ ( archim3151403230148437115or_rat @ B ) ) @ ( archim3151403230148437115or_rat @ ( times_times_rat @ A @ B ) ) ) ) ) ).
% le_mult_floor
thf(fact_8042_floor__le__iff,axiom,
! [X2: real,Z: int] :
( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X2 ) @ Z )
= ( ord_less_real @ X2 @ ( plus_plus_real @ ( ring_1_of_int_real @ Z ) @ one_one_real ) ) ) ).
% floor_le_iff
thf(fact_8043_floor__le__iff,axiom,
! [X2: rat,Z: int] :
( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X2 ) @ Z )
= ( ord_less_rat @ X2 @ ( plus_plus_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat ) ) ) ).
% floor_le_iff
thf(fact_8044_floor__correct,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X2 ) ) @ X2 )
& ( ord_less_real @ X2 @ ( ring_1_of_int_real @ ( plus_plus_int @ ( archim6058952711729229775r_real @ X2 ) @ one_one_int ) ) ) ) ).
% floor_correct
thf(fact_8045_floor__correct,axiom,
! [X2: rat] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X2 ) ) @ X2 )
& ( ord_less_rat @ X2 @ ( ring_1_of_int_rat @ ( plus_plus_int @ ( archim3151403230148437115or_rat @ X2 ) @ one_one_int ) ) ) ) ).
% floor_correct
thf(fact_8046_ex__inverse__of__nat__less,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ? [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
& ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ X2 ) ) ) ).
% ex_inverse_of_nat_less
thf(fact_8047_ex__inverse__of__nat__less,axiom,
! [X2: rat] :
( ( ord_less_rat @ zero_zero_rat @ X2 )
=> ? [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
& ( ord_less_rat @ ( inverse_inverse_rat @ ( semiri681578069525770553at_rat @ N2 ) ) @ X2 ) ) ) ).
% ex_inverse_of_nat_less
thf(fact_8048_power__diff__conv__inverse,axiom,
! [X2: real,M: nat,N: nat] :
( ( X2 != zero_zero_real )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( ( power_power_real @ X2 @ ( minus_minus_nat @ N @ M ) )
= ( times_times_real @ ( power_power_real @ X2 @ N ) @ ( power_power_real @ ( inverse_inverse_real @ X2 ) @ M ) ) ) ) ) ).
% power_diff_conv_inverse
thf(fact_8049_power__diff__conv__inverse,axiom,
! [X2: complex,M: nat,N: nat] :
( ( X2 != zero_zero_complex )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( ( power_power_complex @ X2 @ ( minus_minus_nat @ N @ M ) )
= ( times_times_complex @ ( power_power_complex @ X2 @ N ) @ ( power_power_complex @ ( invers8013647133539491842omplex @ X2 ) @ M ) ) ) ) ) ).
% power_diff_conv_inverse
thf(fact_8050_power__diff__conv__inverse,axiom,
! [X2: rat,M: nat,N: nat] :
( ( X2 != zero_zero_rat )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( ( power_power_rat @ X2 @ ( minus_minus_nat @ N @ M ) )
= ( times_times_rat @ ( power_power_rat @ X2 @ N ) @ ( power_power_rat @ ( inverse_inverse_rat @ X2 ) @ M ) ) ) ) ) ).
% power_diff_conv_inverse
thf(fact_8051_Suc__times__gbinomial,axiom,
! [K: nat,A: complex] :
( ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) @ ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) ) )
= ( times_times_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( gbinomial_complex @ A @ K ) ) ) ).
% Suc_times_gbinomial
thf(fact_8052_Suc__times__gbinomial,axiom,
! [K: nat,A: rat] :
( ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) ) )
= ( times_times_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( gbinomial_rat @ A @ K ) ) ) ).
% Suc_times_gbinomial
thf(fact_8053_Suc__times__gbinomial,axiom,
! [K: nat,A: real] :
( ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) ) )
= ( times_times_real @ ( plus_plus_real @ A @ one_one_real ) @ ( gbinomial_real @ A @ K ) ) ) ).
% Suc_times_gbinomial
thf(fact_8054_gbinomial__absorption,axiom,
! [K: nat,A: complex] :
( ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) @ ( gbinomial_complex @ A @ ( suc @ K ) ) )
= ( times_times_complex @ A @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ).
% gbinomial_absorption
thf(fact_8055_gbinomial__absorption,axiom,
! [K: nat,A: rat] :
( ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) )
= ( times_times_rat @ A @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ).
% gbinomial_absorption
thf(fact_8056_gbinomial__absorption,axiom,
! [K: nat,A: real] :
( ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ A @ ( suc @ K ) ) )
= ( times_times_real @ A @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ).
% gbinomial_absorption
thf(fact_8057_floor__eq2,axiom,
! [N: int,X2: real] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ N ) @ X2 )
=> ( ( ord_less_real @ X2 @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
=> ( ( archim6058952711729229775r_real @ X2 )
= N ) ) ) ).
% floor_eq2
thf(fact_8058_floor__divide__real__eq__div,axiom,
! [B: int,A: real] :
( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( archim6058952711729229775r_real @ ( divide_divide_real @ A @ ( ring_1_of_int_real @ B ) ) )
= ( divide_divide_int @ ( archim6058952711729229775r_real @ A ) @ B ) ) ) ).
% floor_divide_real_eq_div
thf(fact_8059_gbinomial__trinomial__revision,axiom,
! [K: nat,M: nat,A: rat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( times_times_rat @ ( gbinomial_rat @ A @ M ) @ ( gbinomial_rat @ ( semiri681578069525770553at_rat @ M ) @ K ) )
= ( times_times_rat @ ( gbinomial_rat @ A @ K ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ).
% gbinomial_trinomial_revision
thf(fact_8060_gbinomial__trinomial__revision,axiom,
! [K: nat,M: nat,A: real] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( times_times_real @ ( gbinomial_real @ A @ M ) @ ( gbinomial_real @ ( semiri5074537144036343181t_real @ M ) @ K ) )
= ( times_times_real @ ( gbinomial_real @ A @ K ) @ ( gbinomial_real @ ( minus_minus_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ).
% gbinomial_trinomial_revision
thf(fact_8061_log__inverse,axiom,
! [A: real,X2: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( log @ A @ ( inverse_inverse_real @ X2 ) )
= ( uminus_uminus_real @ ( log @ A @ X2 ) ) ) ) ) ) ).
% log_inverse
thf(fact_8062_pochhammer__product,axiom,
! [M: nat,N: nat,Z: rat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( comm_s4028243227959126397er_rat @ Z @ N )
= ( times_times_rat @ ( comm_s4028243227959126397er_rat @ Z @ M ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z @ ( semiri681578069525770553at_rat @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).
% pochhammer_product
thf(fact_8063_pochhammer__product,axiom,
! [M: nat,N: nat,Z: real] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( comm_s7457072308508201937r_real @ Z @ N )
= ( times_times_real @ ( comm_s7457072308508201937r_real @ Z @ M ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z @ ( semiri5074537144036343181t_real @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).
% pochhammer_product
thf(fact_8064_pochhammer__product,axiom,
! [M: nat,N: nat,Z: int] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( comm_s4660882817536571857er_int @ Z @ N )
= ( times_times_int @ ( comm_s4660882817536571857er_int @ Z @ M ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ Z @ ( semiri1314217659103216013at_int @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).
% pochhammer_product
thf(fact_8065_pochhammer__product,axiom,
! [M: nat,N: nat,Z: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( comm_s4663373288045622133er_nat @ Z @ N )
= ( times_times_nat @ ( comm_s4663373288045622133er_nat @ Z @ M ) @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ Z @ ( semiri1316708129612266289at_nat @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).
% pochhammer_product
thf(fact_8066_floor__divide__lower,axiom,
! [Q2: real,P2: real] :
( ( ord_less_real @ zero_zero_real @ Q2 )
=> ( ord_less_eq_real @ ( times_times_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ ( divide_divide_real @ P2 @ Q2 ) ) ) @ Q2 ) @ P2 ) ) ).
% floor_divide_lower
thf(fact_8067_floor__divide__lower,axiom,
! [Q2: rat,P2: rat] :
( ( ord_less_rat @ zero_zero_rat @ Q2 )
=> ( ord_less_eq_rat @ ( times_times_rat @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ ( divide_divide_rat @ P2 @ Q2 ) ) ) @ Q2 ) @ P2 ) ) ).
% floor_divide_lower
thf(fact_8068_gbinomial__factors,axiom,
! [A: complex,K: nat] :
( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) )
= ( times_times_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) ) @ ( gbinomial_complex @ A @ K ) ) ) ).
% gbinomial_factors
thf(fact_8069_gbinomial__factors,axiom,
! [A: rat,K: nat] :
( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) )
= ( times_times_rat @ ( divide_divide_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) ) @ ( gbinomial_rat @ A @ K ) ) ) ).
% gbinomial_factors
thf(fact_8070_gbinomial__factors,axiom,
! [A: real,K: nat] :
( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) )
= ( times_times_real @ ( divide_divide_real @ ( plus_plus_real @ A @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) ) @ ( gbinomial_real @ A @ K ) ) ) ).
% gbinomial_factors
thf(fact_8071_gbinomial__rec,axiom,
! [A: complex,K: nat] :
( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) )
= ( times_times_complex @ ( gbinomial_complex @ A @ K ) @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) ) ) ) ).
% gbinomial_rec
thf(fact_8072_gbinomial__rec,axiom,
! [A: rat,K: nat] :
( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) )
= ( times_times_rat @ ( gbinomial_rat @ A @ K ) @ ( divide_divide_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) ) ) ) ).
% gbinomial_rec
thf(fact_8073_gbinomial__rec,axiom,
! [A: real,K: nat] :
( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) )
= ( times_times_real @ ( gbinomial_real @ A @ K ) @ ( divide_divide_real @ ( plus_plus_real @ A @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) ) ) ) ).
% gbinomial_rec
thf(fact_8074_gbinomial__negated__upper,axiom,
( gbinomial_complex
= ( ^ [A3: complex,K2: nat] : ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K2 ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( minus_minus_complex @ ( semiri8010041392384452111omplex @ K2 ) @ A3 ) @ one_one_complex ) @ K2 ) ) ) ) ).
% gbinomial_negated_upper
thf(fact_8075_gbinomial__negated__upper,axiom,
( gbinomial_rat
= ( ^ [A3: rat,K2: nat] : ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K2 ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( minus_minus_rat @ ( semiri681578069525770553at_rat @ K2 ) @ A3 ) @ one_one_rat ) @ K2 ) ) ) ) ).
% gbinomial_negated_upper
thf(fact_8076_gbinomial__negated__upper,axiom,
( gbinomial_real
= ( ^ [A3: real,K2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( gbinomial_real @ ( minus_minus_real @ ( minus_minus_real @ ( semiri5074537144036343181t_real @ K2 ) @ A3 ) @ one_one_real ) @ K2 ) ) ) ) ).
% gbinomial_negated_upper
thf(fact_8077_gbinomial__index__swap,axiom,
! [K: nat,N: nat] :
( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ one_one_complex ) @ K ) )
= ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ N ) ) ) ).
% gbinomial_index_swap
thf(fact_8078_gbinomial__index__swap,axiom,
! [K: nat,N: nat] :
( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ one_one_rat ) @ K ) )
= ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ N ) ) ) ).
% gbinomial_index_swap
thf(fact_8079_gbinomial__index__swap,axiom,
! [K: nat,N: nat] :
( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( gbinomial_real @ ( minus_minus_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ one_one_real ) @ K ) )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( gbinomial_real @ ( minus_minus_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ N ) ) ) ).
% gbinomial_index_swap
thf(fact_8080_exp__plus__inverse__exp,axiom,
! [X2: real] : ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ ( exp_real @ X2 ) @ ( inverse_inverse_real @ ( exp_real @ X2 ) ) ) ) ).
% exp_plus_inverse_exp
thf(fact_8081_pochhammer__absorb__comp,axiom,
! [R2: complex,K: nat] :
( ( times_times_complex @ ( minus_minus_complex @ R2 @ ( semiri8010041392384452111omplex @ K ) ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ R2 ) @ K ) )
= ( times_times_complex @ R2 @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ R2 ) @ one_one_complex ) @ K ) ) ) ).
% pochhammer_absorb_comp
thf(fact_8082_pochhammer__absorb__comp,axiom,
! [R2: rat,K: nat] :
( ( times_times_rat @ ( minus_minus_rat @ R2 @ ( semiri681578069525770553at_rat @ K ) ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ R2 ) @ K ) )
= ( times_times_rat @ R2 @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ R2 ) @ one_one_rat ) @ K ) ) ) ).
% pochhammer_absorb_comp
thf(fact_8083_pochhammer__absorb__comp,axiom,
! [R2: code_integer,K: nat] :
( ( times_3573771949741848930nteger @ ( minus_8373710615458151222nteger @ R2 @ ( semiri4939895301339042750nteger @ K ) ) @ ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ R2 ) @ K ) )
= ( times_3573771949741848930nteger @ R2 @ ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ R2 ) @ one_one_Code_integer ) @ K ) ) ) ).
% pochhammer_absorb_comp
thf(fact_8084_pochhammer__absorb__comp,axiom,
! [R2: real,K: nat] :
( ( times_times_real @ ( minus_minus_real @ R2 @ ( semiri5074537144036343181t_real @ K ) ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ R2 ) @ K ) )
= ( times_times_real @ R2 @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( uminus_uminus_real @ R2 ) @ one_one_real ) @ K ) ) ) ).
% pochhammer_absorb_comp
thf(fact_8085_pochhammer__absorb__comp,axiom,
! [R2: int,K: nat] :
( ( times_times_int @ ( minus_minus_int @ R2 @ ( semiri1314217659103216013at_int @ K ) ) @ ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ R2 ) @ K ) )
= ( times_times_int @ R2 @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( uminus_uminus_int @ R2 ) @ one_one_int ) @ K ) ) ) ).
% pochhammer_absorb_comp
thf(fact_8086_floor__divide__upper,axiom,
! [Q2: real,P2: real] :
( ( ord_less_real @ zero_zero_real @ Q2 )
=> ( ord_less_real @ P2 @ ( times_times_real @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ ( divide_divide_real @ P2 @ Q2 ) ) ) @ one_one_real ) @ Q2 ) ) ) ).
% floor_divide_upper
thf(fact_8087_floor__divide__upper,axiom,
! [Q2: rat,P2: rat] :
( ( ord_less_rat @ zero_zero_rat @ Q2 )
=> ( ord_less_rat @ P2 @ ( times_times_rat @ ( plus_plus_rat @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ ( divide_divide_rat @ P2 @ Q2 ) ) ) @ one_one_rat ) @ Q2 ) ) ) ).
% floor_divide_upper
thf(fact_8088_pochhammer__same,axiom,
! [N: nat] :
( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ N )
= ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( semiri5044797733671781792omplex @ N ) ) ) ).
% pochhammer_same
thf(fact_8089_pochhammer__same,axiom,
! [N: nat] :
( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ N )
= ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ).
% pochhammer_same
thf(fact_8090_pochhammer__same,axiom,
! [N: nat] :
( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N ) ) @ N )
= ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( semiri3624122377584611663nteger @ N ) ) ) ).
% pochhammer_same
thf(fact_8091_pochhammer__same,axiom,
! [N: nat] :
( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ N )
= ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( semiri1406184849735516958ct_int @ N ) ) ) ).
% pochhammer_same
thf(fact_8092_pochhammer__same,axiom,
! [N: nat] :
( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ N )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( semiri2265585572941072030t_real @ N ) ) ) ).
% pochhammer_same
thf(fact_8093_round__def,axiom,
( archim8280529875227126926d_real
= ( ^ [X: real] : ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).
% round_def
thf(fact_8094_round__def,axiom,
( archim7778729529865785530nd_rat
= ( ^ [X: rat] : ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% round_def
thf(fact_8095_gbinomial__minus,axiom,
! [A: complex,K: nat] :
( ( gbinomial_complex @ ( uminus1482373934393186551omplex @ A ) @ K )
= ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ K ) ) ) ).
% gbinomial_minus
thf(fact_8096_gbinomial__minus,axiom,
! [A: rat,K: nat] :
( ( gbinomial_rat @ ( uminus_uminus_rat @ A ) @ K )
= ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ K ) ) ) ).
% gbinomial_minus
thf(fact_8097_gbinomial__minus,axiom,
! [A: real,K: nat] :
( ( gbinomial_real @ ( uminus_uminus_real @ A ) @ K )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( gbinomial_real @ ( minus_minus_real @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ K ) ) ) ).
% gbinomial_minus
thf(fact_8098_gbinomial__reduce__nat,axiom,
! [K: nat,A: complex] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( gbinomial_complex @ A @ K )
= ( plus_plus_complex @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ) ).
% gbinomial_reduce_nat
thf(fact_8099_gbinomial__reduce__nat,axiom,
! [K: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( gbinomial_real @ A @ K )
= ( plus_plus_real @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ) ).
% gbinomial_reduce_nat
thf(fact_8100_gbinomial__reduce__nat,axiom,
! [K: nat,A: rat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( gbinomial_rat @ A @ K )
= ( plus_plus_rat @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ) ).
% gbinomial_reduce_nat
thf(fact_8101_plus__inverse__ge__2,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ X2 @ ( inverse_inverse_real @ X2 ) ) ) ) ).
% plus_inverse_ge_2
thf(fact_8102_real__inv__sqrt__pow2,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( power_power_real @ ( inverse_inverse_real @ ( sqrt @ X2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( inverse_inverse_real @ X2 ) ) ) ).
% real_inv_sqrt_pow2
thf(fact_8103_tan__cot,axiom,
! [X2: real] :
( ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X2 ) )
= ( inverse_inverse_real @ ( tan_real @ X2 ) ) ) ).
% tan_cot
thf(fact_8104_pochhammer__minus_H,axiom,
! [B: complex,K: nat] :
( ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ B @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ K )
= ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ B ) @ K ) ) ) ).
% pochhammer_minus'
thf(fact_8105_pochhammer__minus_H,axiom,
! [B: rat,K: nat] :
( ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ B @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ K )
= ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ B ) @ K ) ) ) ).
% pochhammer_minus'
thf(fact_8106_pochhammer__minus_H,axiom,
! [B: code_integer,K: nat] :
( ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ B @ ( semiri4939895301339042750nteger @ K ) ) @ one_one_Code_integer ) @ K )
= ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ K ) @ ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ B ) @ K ) ) ) ).
% pochhammer_minus'
thf(fact_8107_pochhammer__minus_H,axiom,
! [B: real,K: nat] :
( ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ K )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ B ) @ K ) ) ) ).
% pochhammer_minus'
thf(fact_8108_pochhammer__minus_H,axiom,
! [B: int,K: nat] :
( ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( minus_minus_int @ B @ ( semiri1314217659103216013at_int @ K ) ) @ one_one_int ) @ K )
= ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ K ) @ ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ B ) @ K ) ) ) ).
% pochhammer_minus'
thf(fact_8109_pochhammer__minus,axiom,
! [B: complex,K: nat] :
( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ B ) @ K )
= ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ B @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ K ) ) ) ).
% pochhammer_minus
thf(fact_8110_pochhammer__minus,axiom,
! [B: rat,K: nat] :
( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ B ) @ K )
= ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ B @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ K ) ) ) ).
% pochhammer_minus
thf(fact_8111_pochhammer__minus,axiom,
! [B: code_integer,K: nat] :
( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ B ) @ K )
= ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ K ) @ ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ B @ ( semiri4939895301339042750nteger @ K ) ) @ one_one_Code_integer ) @ K ) ) ) ).
% pochhammer_minus
thf(fact_8112_pochhammer__minus,axiom,
! [B: real,K: nat] :
( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ B ) @ K )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ K ) ) ) ).
% pochhammer_minus
thf(fact_8113_pochhammer__minus,axiom,
! [B: int,K: nat] :
( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ B ) @ K )
= ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ K ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( minus_minus_int @ B @ ( semiri1314217659103216013at_int @ K ) ) @ one_one_int ) @ K ) ) ) ).
% pochhammer_minus
thf(fact_8114_real__le__x__sinh,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ord_less_eq_real @ X2 @ ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X2 ) @ ( inverse_inverse_real @ ( exp_real @ X2 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% real_le_x_sinh
thf(fact_8115_real__le__abs__sinh,axiom,
! [X2: real] : ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ ( abs_abs_real @ ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X2 ) @ ( inverse_inverse_real @ ( exp_real @ X2 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% real_le_abs_sinh
thf(fact_8116_gbinomial__sum__up__index,axiom,
! [K: nat,N: nat] :
( ( groups2073611262835488442omplex
@ ^ [J3: nat] : ( gbinomial_complex @ ( semiri8010041392384452111omplex @ J3 ) @ K )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
= ( gbinomial_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N ) @ one_one_complex ) @ ( plus_plus_nat @ K @ one_one_nat ) ) ) ).
% gbinomial_sum_up_index
thf(fact_8117_gbinomial__sum__up__index,axiom,
! [K: nat,N: nat] :
( ( groups2906978787729119204at_rat
@ ^ [J3: nat] : ( gbinomial_rat @ ( semiri681578069525770553at_rat @ J3 ) @ K )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
= ( gbinomial_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N ) @ one_one_rat ) @ ( plus_plus_nat @ K @ one_one_nat ) ) ) ).
% gbinomial_sum_up_index
thf(fact_8118_gbinomial__sum__up__index,axiom,
! [K: nat,N: nat] :
( ( groups6591440286371151544t_real
@ ^ [J3: nat] : ( gbinomial_real @ ( semiri5074537144036343181t_real @ J3 ) @ K )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
= ( gbinomial_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N ) @ one_one_real ) @ ( plus_plus_nat @ K @ one_one_nat ) ) ) ).
% gbinomial_sum_up_index
thf(fact_8119_tan__sec,axiom,
! [X2: real] :
( ( ( cos_real @ X2 )
!= zero_zero_real )
=> ( ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_real @ ( inverse_inverse_real @ ( cos_real @ X2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% tan_sec
thf(fact_8120_tan__sec,axiom,
! [X2: complex] :
( ( ( cos_complex @ X2 )
!= zero_zero_complex )
=> ( ( plus_plus_complex @ one_one_complex @ ( power_power_complex @ ( tan_complex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_complex @ ( invers8013647133539491842omplex @ ( cos_complex @ X2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% tan_sec
thf(fact_8121_floor__log__eq__powr__iff,axiom,
! [X2: real,B: real,K: int] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ( ( archim6058952711729229775r_real @ ( log @ B @ X2 ) )
= K )
= ( ( ord_less_eq_real @ ( powr_real @ B @ ( ring_1_of_int_real @ K ) ) @ X2 )
& ( ord_less_real @ X2 @ ( powr_real @ B @ ( ring_1_of_int_real @ ( plus_plus_int @ K @ one_one_int ) ) ) ) ) ) ) ) ).
% floor_log_eq_powr_iff
thf(fact_8122_gbinomial__absorption_H,axiom,
! [K: nat,A: complex] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( gbinomial_complex @ A @ K )
= ( times_times_complex @ ( divide1717551699836669952omplex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).
% gbinomial_absorption'
thf(fact_8123_gbinomial__absorption_H,axiom,
! [K: nat,A: rat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( gbinomial_rat @ A @ K )
= ( times_times_rat @ ( divide_divide_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).
% gbinomial_absorption'
thf(fact_8124_gbinomial__absorption_H,axiom,
! [K: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( gbinomial_real @ A @ K )
= ( times_times_real @ ( divide_divide_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).
% gbinomial_absorption'
thf(fact_8125_floor__log2__div2,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) )
= ( plus_plus_int @ ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_int ) ) ) ).
% floor_log2_div2
thf(fact_8126_fact__double,axiom,
! [N: nat] :
( ( semiri5044797733671781792omplex @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_complex @ ( times_times_complex @ ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( comm_s2602460028002588243omplex @ ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ N ) ) @ ( semiri5044797733671781792omplex @ N ) ) ) ).
% fact_double
thf(fact_8127_fact__double,axiom,
! [N: nat] :
( ( semiri773545260158071498ct_rat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_rat @ ( times_times_rat @ ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( comm_s4028243227959126397er_rat @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ N ) ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ).
% fact_double
thf(fact_8128_fact__double,axiom,
! [N: nat] :
( ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_real @ ( times_times_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( comm_s7457072308508201937r_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ N ) ) @ ( semiri2265585572941072030t_real @ N ) ) ) ).
% fact_double
thf(fact_8129_floor__log__nat__eq__if,axiom,
! [B: nat,N: nat,K: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ B @ N ) @ K )
=> ( ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
= ( semiri1314217659103216013at_int @ N ) ) ) ) ) ).
% floor_log_nat_eq_if
thf(fact_8130_gbinomial__code,axiom,
( gbinomial_complex
= ( ^ [A3: complex,K2: nat] :
( if_complex @ ( K2 = zero_zero_nat ) @ one_one_complex
@ ( divide1717551699836669952omplex
@ ( set_fo1517530859248394432omplex
@ ^ [L: nat] : ( times_times_complex @ ( minus_minus_complex @ A3 @ ( semiri8010041392384452111omplex @ L ) ) )
@ zero_zero_nat
@ ( minus_minus_nat @ K2 @ one_one_nat )
@ one_one_complex )
@ ( semiri5044797733671781792omplex @ K2 ) ) ) ) ) ).
% gbinomial_code
thf(fact_8131_gbinomial__code,axiom,
( gbinomial_rat
= ( ^ [A3: rat,K2: nat] :
( if_rat @ ( K2 = zero_zero_nat ) @ one_one_rat
@ ( divide_divide_rat
@ ( set_fo1949268297981939178at_rat
@ ^ [L: nat] : ( times_times_rat @ ( minus_minus_rat @ A3 @ ( semiri681578069525770553at_rat @ L ) ) )
@ zero_zero_nat
@ ( minus_minus_nat @ K2 @ one_one_nat )
@ one_one_rat )
@ ( semiri773545260158071498ct_rat @ K2 ) ) ) ) ) ).
% gbinomial_code
thf(fact_8132_gbinomial__code,axiom,
( gbinomial_real
= ( ^ [A3: real,K2: nat] :
( if_real @ ( K2 = zero_zero_nat ) @ one_one_real
@ ( divide_divide_real
@ ( set_fo3111899725591712190t_real
@ ^ [L: nat] : ( times_times_real @ ( minus_minus_real @ A3 @ ( semiri5074537144036343181t_real @ L ) ) )
@ zero_zero_nat
@ ( minus_minus_nat @ K2 @ one_one_nat )
@ one_one_real )
@ ( semiri2265585572941072030t_real @ K2 ) ) ) ) ) ).
% gbinomial_code
thf(fact_8133_pochhammer__times__pochhammer__half,axiom,
! [Z: complex,N: nat] :
( ( times_times_complex @ ( comm_s2602460028002588243omplex @ Z @ ( suc @ N ) ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ Z @ ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) @ ( suc @ N ) ) )
= ( groups6464643781859351333omplex
@ ^ [K2: nat] : ( plus_plus_complex @ Z @ ( divide1717551699836669952omplex @ ( semiri8010041392384452111omplex @ K2 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ) ).
% pochhammer_times_pochhammer_half
thf(fact_8134_pochhammer__times__pochhammer__half,axiom,
! [Z: rat,N: nat] :
( ( times_times_rat @ ( comm_s4028243227959126397er_rat @ Z @ ( suc @ N ) ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( suc @ N ) ) )
= ( groups73079841787564623at_rat
@ ^ [K2: nat] : ( plus_plus_rat @ Z @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ K2 ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ) ).
% pochhammer_times_pochhammer_half
thf(fact_8135_pochhammer__times__pochhammer__half,axiom,
! [Z: real,N: nat] :
( ( times_times_real @ ( comm_s7457072308508201937r_real @ Z @ ( suc @ N ) ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( suc @ N ) ) )
= ( groups129246275422532515t_real
@ ^ [K2: nat] : ( plus_plus_real @ Z @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ K2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ) ).
% pochhammer_times_pochhammer_half
thf(fact_8136_pochhammer__code,axiom,
( comm_s2602460028002588243omplex
= ( ^ [A3: complex,N3: nat] :
( if_complex @ ( N3 = zero_zero_nat ) @ one_one_complex
@ ( set_fo1517530859248394432omplex
@ ^ [O: nat] : ( times_times_complex @ ( plus_plus_complex @ A3 @ ( semiri8010041392384452111omplex @ O ) ) )
@ zero_zero_nat
@ ( minus_minus_nat @ N3 @ one_one_nat )
@ one_one_complex ) ) ) ) ).
% pochhammer_code
thf(fact_8137_pochhammer__code,axiom,
( comm_s4028243227959126397er_rat
= ( ^ [A3: rat,N3: nat] :
( if_rat @ ( N3 = zero_zero_nat ) @ one_one_rat
@ ( set_fo1949268297981939178at_rat
@ ^ [O: nat] : ( times_times_rat @ ( plus_plus_rat @ A3 @ ( semiri681578069525770553at_rat @ O ) ) )
@ zero_zero_nat
@ ( minus_minus_nat @ N3 @ one_one_nat )
@ one_one_rat ) ) ) ) ).
% pochhammer_code
thf(fact_8138_pochhammer__code,axiom,
( comm_s7457072308508201937r_real
= ( ^ [A3: real,N3: nat] :
( if_real @ ( N3 = zero_zero_nat ) @ one_one_real
@ ( set_fo3111899725591712190t_real
@ ^ [O: nat] : ( times_times_real @ ( plus_plus_real @ A3 @ ( semiri5074537144036343181t_real @ O ) ) )
@ zero_zero_nat
@ ( minus_minus_nat @ N3 @ one_one_nat )
@ one_one_real ) ) ) ) ).
% pochhammer_code
thf(fact_8139_pochhammer__code,axiom,
( comm_s4660882817536571857er_int
= ( ^ [A3: int,N3: nat] :
( if_int @ ( N3 = zero_zero_nat ) @ one_one_int
@ ( set_fo2581907887559384638at_int
@ ^ [O: nat] : ( times_times_int @ ( plus_plus_int @ A3 @ ( semiri1314217659103216013at_int @ O ) ) )
@ zero_zero_nat
@ ( minus_minus_nat @ N3 @ one_one_nat )
@ one_one_int ) ) ) ) ).
% pochhammer_code
thf(fact_8140_pochhammer__code,axiom,
( comm_s4663373288045622133er_nat
= ( ^ [A3: nat,N3: nat] :
( if_nat @ ( N3 = zero_zero_nat ) @ one_one_nat
@ ( set_fo2584398358068434914at_nat
@ ^ [O: nat] : ( times_times_nat @ ( plus_plus_nat @ A3 @ ( semiri1316708129612266289at_nat @ O ) ) )
@ zero_zero_nat
@ ( minus_minus_nat @ N3 @ one_one_nat )
@ one_one_nat ) ) ) ) ).
% pochhammer_code
thf(fact_8141_exp__two__pi__i,axiom,
( ( exp_complex @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( real_V4546457046886955230omplex @ pi ) ) @ imaginary_unit ) )
= one_one_complex ) ).
% exp_two_pi_i
thf(fact_8142_exp__two__pi__i_H,axiom,
( ( exp_complex @ ( times_times_complex @ imaginary_unit @ ( times_times_complex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) )
= one_one_complex ) ).
% exp_two_pi_i'
thf(fact_8143_prod_Oneutral__const,axiom,
! [A2: set_nat] :
( ( groups708209901874060359at_nat
@ ^ [Uu3: nat] : one_one_nat
@ A2 )
= one_one_nat ) ).
% prod.neutral_const
thf(fact_8144_prod_Oneutral__const,axiom,
! [A2: set_nat] :
( ( groups705719431365010083at_int
@ ^ [Uu3: nat] : one_one_int
@ A2 )
= one_one_int ) ).
% prod.neutral_const
thf(fact_8145_prod_Oneutral__const,axiom,
! [A2: set_int] :
( ( groups1705073143266064639nt_int
@ ^ [Uu3: int] : one_one_int
@ A2 )
= one_one_int ) ).
% prod.neutral_const
thf(fact_8146_of__nat__prod,axiom,
! [F: int > nat,A2: set_int] :
( ( semiri1314217659103216013at_int @ ( groups1707563613775114915nt_nat @ F @ A2 ) )
= ( groups1705073143266064639nt_int
@ ^ [X: int] : ( semiri1314217659103216013at_int @ ( F @ X ) )
@ A2 ) ) ).
% of_nat_prod
thf(fact_8147_of__nat__prod,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri5074537144036343181t_real @ ( groups708209901874060359at_nat @ F @ A2 ) )
= ( groups129246275422532515t_real
@ ^ [X: nat] : ( semiri5074537144036343181t_real @ ( F @ X ) )
@ A2 ) ) ).
% of_nat_prod
thf(fact_8148_of__nat__prod,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri1316708129612266289at_nat @ ( groups708209901874060359at_nat @ F @ A2 ) )
= ( groups708209901874060359at_nat
@ ^ [X: nat] : ( semiri1316708129612266289at_nat @ ( F @ X ) )
@ A2 ) ) ).
% of_nat_prod
thf(fact_8149_of__nat__prod,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri1314217659103216013at_int @ ( groups708209901874060359at_nat @ F @ A2 ) )
= ( groups705719431365010083at_int
@ ^ [X: nat] : ( semiri1314217659103216013at_int @ ( F @ X ) )
@ A2 ) ) ).
% of_nat_prod
thf(fact_8150_of__int__prod,axiom,
! [F: nat > int,A2: set_nat] :
( ( ring_1_of_int_real @ ( groups705719431365010083at_int @ F @ A2 ) )
= ( groups129246275422532515t_real
@ ^ [X: nat] : ( ring_1_of_int_real @ ( F @ X ) )
@ A2 ) ) ).
% of_int_prod
thf(fact_8151_of__int__prod,axiom,
! [F: nat > int,A2: set_nat] :
( ( ring_1_of_int_rat @ ( groups705719431365010083at_int @ F @ A2 ) )
= ( groups73079841787564623at_rat
@ ^ [X: nat] : ( ring_1_of_int_rat @ ( F @ X ) )
@ A2 ) ) ).
% of_int_prod
thf(fact_8152_of__int__prod,axiom,
! [F: nat > int,A2: set_nat] :
( ( ring_1_of_int_int @ ( groups705719431365010083at_int @ F @ A2 ) )
= ( groups705719431365010083at_int
@ ^ [X: nat] : ( ring_1_of_int_int @ ( F @ X ) )
@ A2 ) ) ).
% of_int_prod
thf(fact_8153_of__int__prod,axiom,
! [F: int > int,A2: set_int] :
( ( ring_1_of_int_real @ ( groups1705073143266064639nt_int @ F @ A2 ) )
= ( groups2316167850115554303t_real
@ ^ [X: int] : ( ring_1_of_int_real @ ( F @ X ) )
@ A2 ) ) ).
% of_int_prod
thf(fact_8154_of__int__prod,axiom,
! [F: int > int,A2: set_int] :
( ( ring_1_of_int_rat @ ( groups1705073143266064639nt_int @ F @ A2 ) )
= ( groups1072433553688619179nt_rat
@ ^ [X: int] : ( ring_1_of_int_rat @ ( F @ X ) )
@ A2 ) ) ).
% of_int_prod
thf(fact_8155_of__int__prod,axiom,
! [F: int > int,A2: set_int] :
( ( ring_1_of_int_int @ ( groups1705073143266064639nt_int @ F @ A2 ) )
= ( groups1705073143266064639nt_int
@ ^ [X: int] : ( ring_1_of_int_int @ ( F @ X ) )
@ A2 ) ) ).
% of_int_prod
thf(fact_8156_prod__zero__iff,axiom,
! [A2: set_nat,F: nat > complex] :
( ( finite_finite_nat @ A2 )
=> ( ( ( groups6464643781859351333omplex @ F @ A2 )
= zero_zero_complex )
= ( ? [X: nat] :
( ( member_nat @ X @ A2 )
& ( ( F @ X )
= zero_zero_complex ) ) ) ) ) ).
% prod_zero_iff
thf(fact_8157_prod__zero__iff,axiom,
! [A2: set_int,F: int > complex] :
( ( finite_finite_int @ A2 )
=> ( ( ( groups7440179247065528705omplex @ F @ A2 )
= zero_zero_complex )
= ( ? [X: int] :
( ( member_int @ X @ A2 )
& ( ( F @ X )
= zero_zero_complex ) ) ) ) ) ).
% prod_zero_iff
thf(fact_8158_prod__zero__iff,axiom,
! [A2: set_complex,F: complex > complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ( groups3708469109370488835omplex @ F @ A2 )
= zero_zero_complex )
= ( ? [X: complex] :
( ( member_complex @ X @ A2 )
& ( ( F @ X )
= zero_zero_complex ) ) ) ) ) ).
% prod_zero_iff
thf(fact_8159_prod__zero__iff,axiom,
! [A2: set_Code_integer,F: code_integer > complex] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( ( groups862514429393162674omplex @ F @ A2 )
= zero_zero_complex )
= ( ? [X: code_integer] :
( ( member_Code_integer @ X @ A2 )
& ( ( F @ X )
= zero_zero_complex ) ) ) ) ) ).
% prod_zero_iff
thf(fact_8160_prod__zero__iff,axiom,
! [A2: set_nat,F: nat > real] :
( ( finite_finite_nat @ A2 )
=> ( ( ( groups129246275422532515t_real @ F @ A2 )
= zero_zero_real )
= ( ? [X: nat] :
( ( member_nat @ X @ A2 )
& ( ( F @ X )
= zero_zero_real ) ) ) ) ) ).
% prod_zero_iff
thf(fact_8161_prod__zero__iff,axiom,
! [A2: set_int,F: int > real] :
( ( finite_finite_int @ A2 )
=> ( ( ( groups2316167850115554303t_real @ F @ A2 )
= zero_zero_real )
= ( ? [X: int] :
( ( member_int @ X @ A2 )
& ( ( F @ X )
= zero_zero_real ) ) ) ) ) ).
% prod_zero_iff
thf(fact_8162_prod__zero__iff,axiom,
! [A2: set_complex,F: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ( groups766887009212190081x_real @ F @ A2 )
= zero_zero_real )
= ( ? [X: complex] :
( ( member_complex @ X @ A2 )
& ( ( F @ X )
= zero_zero_real ) ) ) ) ) ).
% prod_zero_iff
thf(fact_8163_prod__zero__iff,axiom,
! [A2: set_Code_integer,F: code_integer > real] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( ( groups9004974159866482096r_real @ F @ A2 )
= zero_zero_real )
= ( ? [X: code_integer] :
( ( member_Code_integer @ X @ A2 )
& ( ( F @ X )
= zero_zero_real ) ) ) ) ) ).
% prod_zero_iff
thf(fact_8164_prod__zero__iff,axiom,
! [A2: set_nat,F: nat > rat] :
( ( finite_finite_nat @ A2 )
=> ( ( ( groups73079841787564623at_rat @ F @ A2 )
= zero_zero_rat )
= ( ? [X: nat] :
( ( member_nat @ X @ A2 )
& ( ( F @ X )
= zero_zero_rat ) ) ) ) ) ).
% prod_zero_iff
thf(fact_8165_prod__zero__iff,axiom,
! [A2: set_int,F: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ( ( groups1072433553688619179nt_rat @ F @ A2 )
= zero_zero_rat )
= ( ? [X: int] :
( ( member_int @ X @ A2 )
& ( ( F @ X )
= zero_zero_rat ) ) ) ) ) ).
% prod_zero_iff
thf(fact_8166_prod_Oinfinite,axiom,
! [A2: set_nat,G: nat > complex] :
( ~ ( finite_finite_nat @ A2 )
=> ( ( groups6464643781859351333omplex @ G @ A2 )
= one_one_complex ) ) ).
% prod.infinite
thf(fact_8167_prod_Oinfinite,axiom,
! [A2: set_int,G: int > complex] :
( ~ ( finite_finite_int @ A2 )
=> ( ( groups7440179247065528705omplex @ G @ A2 )
= one_one_complex ) ) ).
% prod.infinite
thf(fact_8168_prod_Oinfinite,axiom,
! [A2: set_complex,G: complex > complex] :
( ~ ( finite3207457112153483333omplex @ A2 )
=> ( ( groups3708469109370488835omplex @ G @ A2 )
= one_one_complex ) ) ).
% prod.infinite
thf(fact_8169_prod_Oinfinite,axiom,
! [A2: set_Code_integer,G: code_integer > complex] :
( ~ ( finite6017078050557962740nteger @ A2 )
=> ( ( groups862514429393162674omplex @ G @ A2 )
= one_one_complex ) ) ).
% prod.infinite
thf(fact_8170_prod_Oinfinite,axiom,
! [A2: set_nat,G: nat > real] :
( ~ ( finite_finite_nat @ A2 )
=> ( ( groups129246275422532515t_real @ G @ A2 )
= one_one_real ) ) ).
% prod.infinite
thf(fact_8171_prod_Oinfinite,axiom,
! [A2: set_int,G: int > real] :
( ~ ( finite_finite_int @ A2 )
=> ( ( groups2316167850115554303t_real @ G @ A2 )
= one_one_real ) ) ).
% prod.infinite
thf(fact_8172_prod_Oinfinite,axiom,
! [A2: set_complex,G: complex > real] :
( ~ ( finite3207457112153483333omplex @ A2 )
=> ( ( groups766887009212190081x_real @ G @ A2 )
= one_one_real ) ) ).
% prod.infinite
thf(fact_8173_prod_Oinfinite,axiom,
! [A2: set_Code_integer,G: code_integer > real] :
( ~ ( finite6017078050557962740nteger @ A2 )
=> ( ( groups9004974159866482096r_real @ G @ A2 )
= one_one_real ) ) ).
% prod.infinite
thf(fact_8174_prod_Oinfinite,axiom,
! [A2: set_nat,G: nat > rat] :
( ~ ( finite_finite_nat @ A2 )
=> ( ( groups73079841787564623at_rat @ G @ A2 )
= one_one_rat ) ) ).
% prod.infinite
thf(fact_8175_prod_Oinfinite,axiom,
! [A2: set_int,G: int > rat] :
( ~ ( finite_finite_int @ A2 )
=> ( ( groups1072433553688619179nt_rat @ G @ A2 )
= one_one_rat ) ) ).
% prod.infinite
thf(fact_8176_dvd__prod__eqI,axiom,
! [A2: set_real,A: real,B: nat,F: real > nat] :
( ( finite_finite_real @ A2 )
=> ( ( member_real @ A @ A2 )
=> ( ( B
= ( F @ A ) )
=> ( dvd_dvd_nat @ B @ ( groups4696554848551431203al_nat @ F @ A2 ) ) ) ) ) ).
% dvd_prod_eqI
thf(fact_8177_dvd__prod__eqI,axiom,
! [A2: set_VEBT_VEBT,A: vEBT_VEBT,B: nat,F: vEBT_VEBT > nat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( member_VEBT_VEBT @ A @ A2 )
=> ( ( B
= ( F @ A ) )
=> ( dvd_dvd_nat @ B @ ( groups6361806394783013919BT_nat @ F @ A2 ) ) ) ) ) ).
% dvd_prod_eqI
thf(fact_8178_dvd__prod__eqI,axiom,
! [A2: set_int,A: int,B: nat,F: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ( member_int @ A @ A2 )
=> ( ( B
= ( F @ A ) )
=> ( dvd_dvd_nat @ B @ ( groups1707563613775114915nt_nat @ F @ A2 ) ) ) ) ) ).
% dvd_prod_eqI
thf(fact_8179_dvd__prod__eqI,axiom,
! [A2: set_complex,A: complex,B: nat,F: complex > nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( member_complex @ A @ A2 )
=> ( ( B
= ( F @ A ) )
=> ( dvd_dvd_nat @ B @ ( groups861055069439313189ex_nat @ F @ A2 ) ) ) ) ) ).
% dvd_prod_eqI
thf(fact_8180_dvd__prod__eqI,axiom,
! [A2: set_Code_integer,A: code_integer,B: nat,F: code_integer > nat] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( member_Code_integer @ A @ A2 )
=> ( ( B
= ( F @ A ) )
=> ( dvd_dvd_nat @ B @ ( groups3190895334310489300er_nat @ F @ A2 ) ) ) ) ) ).
% dvd_prod_eqI
thf(fact_8181_dvd__prod__eqI,axiom,
! [A2: set_real,A: real,B: int,F: real > int] :
( ( finite_finite_real @ A2 )
=> ( ( member_real @ A @ A2 )
=> ( ( B
= ( F @ A ) )
=> ( dvd_dvd_int @ B @ ( groups4694064378042380927al_int @ F @ A2 ) ) ) ) ) ).
% dvd_prod_eqI
thf(fact_8182_dvd__prod__eqI,axiom,
! [A2: set_VEBT_VEBT,A: vEBT_VEBT,B: int,F: vEBT_VEBT > int] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( member_VEBT_VEBT @ A @ A2 )
=> ( ( B
= ( F @ A ) )
=> ( dvd_dvd_int @ B @ ( groups6359315924273963643BT_int @ F @ A2 ) ) ) ) ) ).
% dvd_prod_eqI
thf(fact_8183_dvd__prod__eqI,axiom,
! [A2: set_complex,A: complex,B: int,F: complex > int] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( member_complex @ A @ A2 )
=> ( ( B
= ( F @ A ) )
=> ( dvd_dvd_int @ B @ ( groups858564598930262913ex_int @ F @ A2 ) ) ) ) ) ).
% dvd_prod_eqI
thf(fact_8184_dvd__prod__eqI,axiom,
! [A2: set_Code_integer,A: code_integer,B: int,F: code_integer > int] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( member_Code_integer @ A @ A2 )
=> ( ( B
= ( F @ A ) )
=> ( dvd_dvd_int @ B @ ( groups3188404863801439024er_int @ F @ A2 ) ) ) ) ) ).
% dvd_prod_eqI
thf(fact_8185_dvd__prod__eqI,axiom,
! [A2: set_nat,A: nat,B: nat,F: nat > nat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ A @ A2 )
=> ( ( B
= ( F @ A ) )
=> ( dvd_dvd_nat @ B @ ( groups708209901874060359at_nat @ F @ A2 ) ) ) ) ) ).
% dvd_prod_eqI
thf(fact_8186_dvd__prodI,axiom,
! [A2: set_real,A: real,F: real > nat] :
( ( finite_finite_real @ A2 )
=> ( ( member_real @ A @ A2 )
=> ( dvd_dvd_nat @ ( F @ A ) @ ( groups4696554848551431203al_nat @ F @ A2 ) ) ) ) ).
% dvd_prodI
thf(fact_8187_dvd__prodI,axiom,
! [A2: set_VEBT_VEBT,A: vEBT_VEBT,F: vEBT_VEBT > nat] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( member_VEBT_VEBT @ A @ A2 )
=> ( dvd_dvd_nat @ ( F @ A ) @ ( groups6361806394783013919BT_nat @ F @ A2 ) ) ) ) ).
% dvd_prodI
thf(fact_8188_dvd__prodI,axiom,
! [A2: set_int,A: int,F: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ( member_int @ A @ A2 )
=> ( dvd_dvd_nat @ ( F @ A ) @ ( groups1707563613775114915nt_nat @ F @ A2 ) ) ) ) ).
% dvd_prodI
thf(fact_8189_dvd__prodI,axiom,
! [A2: set_complex,A: complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( member_complex @ A @ A2 )
=> ( dvd_dvd_nat @ ( F @ A ) @ ( groups861055069439313189ex_nat @ F @ A2 ) ) ) ) ).
% dvd_prodI
thf(fact_8190_dvd__prodI,axiom,
! [A2: set_Code_integer,A: code_integer,F: code_integer > nat] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( member_Code_integer @ A @ A2 )
=> ( dvd_dvd_nat @ ( F @ A ) @ ( groups3190895334310489300er_nat @ F @ A2 ) ) ) ) ).
% dvd_prodI
thf(fact_8191_dvd__prodI,axiom,
! [A2: set_real,A: real,F: real > int] :
( ( finite_finite_real @ A2 )
=> ( ( member_real @ A @ A2 )
=> ( dvd_dvd_int @ ( F @ A ) @ ( groups4694064378042380927al_int @ F @ A2 ) ) ) ) ).
% dvd_prodI
thf(fact_8192_dvd__prodI,axiom,
! [A2: set_VEBT_VEBT,A: vEBT_VEBT,F: vEBT_VEBT > int] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( member_VEBT_VEBT @ A @ A2 )
=> ( dvd_dvd_int @ ( F @ A ) @ ( groups6359315924273963643BT_int @ F @ A2 ) ) ) ) ).
% dvd_prodI
thf(fact_8193_dvd__prodI,axiom,
! [A2: set_complex,A: complex,F: complex > int] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( member_complex @ A @ A2 )
=> ( dvd_dvd_int @ ( F @ A ) @ ( groups858564598930262913ex_int @ F @ A2 ) ) ) ) ).
% dvd_prodI
thf(fact_8194_dvd__prodI,axiom,
! [A2: set_Code_integer,A: code_integer,F: code_integer > int] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( member_Code_integer @ A @ A2 )
=> ( dvd_dvd_int @ ( F @ A ) @ ( groups3188404863801439024er_int @ F @ A2 ) ) ) ) ).
% dvd_prodI
thf(fact_8195_dvd__prodI,axiom,
! [A2: set_nat,A: nat,F: nat > nat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ A @ A2 )
=> ( dvd_dvd_nat @ ( F @ A ) @ ( groups708209901874060359at_nat @ F @ A2 ) ) ) ) ).
% dvd_prodI
thf(fact_8196_norm__ii,axiom,
( ( real_V1022390504157884413omplex @ imaginary_unit )
= one_one_real ) ).
% norm_ii
thf(fact_8197_prod_Odelta,axiom,
! [S: set_real,A: real,B: real > complex] :
( ( finite_finite_real @ S )
=> ( ( ( member_real @ A @ S )
=> ( ( groups713298508707869441omplex
@ ^ [K2: real] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_real @ A @ S )
=> ( ( groups713298508707869441omplex
@ ^ [K2: real] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
@ S )
= one_one_complex ) ) ) ) ).
% prod.delta
thf(fact_8198_prod_Odelta,axiom,
! [S: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ S )
=> ( ( ( member_VEBT_VEBT @ A @ S )
=> ( ( groups127312072573709053omplex
@ ^ [K2: vEBT_VEBT] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ S )
=> ( ( groups127312072573709053omplex
@ ^ [K2: vEBT_VEBT] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
@ S )
= one_one_complex ) ) ) ) ).
% prod.delta
thf(fact_8199_prod_Odelta,axiom,
! [S: set_nat,A: nat,B: nat > complex] :
( ( finite_finite_nat @ S )
=> ( ( ( member_nat @ A @ S )
=> ( ( groups6464643781859351333omplex
@ ^ [K2: nat] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_nat @ A @ S )
=> ( ( groups6464643781859351333omplex
@ ^ [K2: nat] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
@ S )
= one_one_complex ) ) ) ) ).
% prod.delta
thf(fact_8200_prod_Odelta,axiom,
! [S: set_int,A: int,B: int > complex] :
( ( finite_finite_int @ S )
=> ( ( ( member_int @ A @ S )
=> ( ( groups7440179247065528705omplex
@ ^ [K2: int] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_int @ A @ S )
=> ( ( groups7440179247065528705omplex
@ ^ [K2: int] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
@ S )
= one_one_complex ) ) ) ) ).
% prod.delta
thf(fact_8201_prod_Odelta,axiom,
! [S: set_complex,A: complex,B: complex > complex] :
( ( finite3207457112153483333omplex @ S )
=> ( ( ( member_complex @ A @ S )
=> ( ( groups3708469109370488835omplex
@ ^ [K2: complex] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_complex @ A @ S )
=> ( ( groups3708469109370488835omplex
@ ^ [K2: complex] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
@ S )
= one_one_complex ) ) ) ) ).
% prod.delta
thf(fact_8202_prod_Odelta,axiom,
! [S: set_Code_integer,A: code_integer,B: code_integer > complex] :
( ( finite6017078050557962740nteger @ S )
=> ( ( ( member_Code_integer @ A @ S )
=> ( ( groups862514429393162674omplex
@ ^ [K2: code_integer] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_Code_integer @ A @ S )
=> ( ( groups862514429393162674omplex
@ ^ [K2: code_integer] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ one_one_complex )
@ S )
= one_one_complex ) ) ) ) ).
% prod.delta
thf(fact_8203_prod_Odelta,axiom,
! [S: set_real,A: real,B: real > real] :
( ( finite_finite_real @ S )
=> ( ( ( member_real @ A @ S )
=> ( ( groups1681761925125756287l_real
@ ^ [K2: real] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_real @ A @ S )
=> ( ( groups1681761925125756287l_real
@ ^ [K2: real] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
@ S )
= one_one_real ) ) ) ) ).
% prod.delta
thf(fact_8204_prod_Odelta,axiom,
! [S: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ S )
=> ( ( ( member_VEBT_VEBT @ A @ S )
=> ( ( groups2703838992350267259T_real
@ ^ [K2: vEBT_VEBT] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ S )
=> ( ( groups2703838992350267259T_real
@ ^ [K2: vEBT_VEBT] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
@ S )
= one_one_real ) ) ) ) ).
% prod.delta
thf(fact_8205_prod_Odelta,axiom,
! [S: set_nat,A: nat,B: nat > real] :
( ( finite_finite_nat @ S )
=> ( ( ( member_nat @ A @ S )
=> ( ( groups129246275422532515t_real
@ ^ [K2: nat] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_nat @ A @ S )
=> ( ( groups129246275422532515t_real
@ ^ [K2: nat] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
@ S )
= one_one_real ) ) ) ) ).
% prod.delta
thf(fact_8206_prod_Odelta,axiom,
! [S: set_int,A: int,B: int > real] :
( ( finite_finite_int @ S )
=> ( ( ( member_int @ A @ S )
=> ( ( groups2316167850115554303t_real
@ ^ [K2: int] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_int @ A @ S )
=> ( ( groups2316167850115554303t_real
@ ^ [K2: int] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ one_one_real )
@ S )
= one_one_real ) ) ) ) ).
% prod.delta
thf(fact_8207_prod_Odelta_H,axiom,
! [S: set_real,A: real,B: real > complex] :
( ( finite_finite_real @ S )
=> ( ( ( member_real @ A @ S )
=> ( ( groups713298508707869441omplex
@ ^ [K2: real] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_real @ A @ S )
=> ( ( groups713298508707869441omplex
@ ^ [K2: real] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
@ S )
= one_one_complex ) ) ) ) ).
% prod.delta'
thf(fact_8208_prod_Odelta_H,axiom,
! [S: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ S )
=> ( ( ( member_VEBT_VEBT @ A @ S )
=> ( ( groups127312072573709053omplex
@ ^ [K2: vEBT_VEBT] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ S )
=> ( ( groups127312072573709053omplex
@ ^ [K2: vEBT_VEBT] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
@ S )
= one_one_complex ) ) ) ) ).
% prod.delta'
thf(fact_8209_prod_Odelta_H,axiom,
! [S: set_nat,A: nat,B: nat > complex] :
( ( finite_finite_nat @ S )
=> ( ( ( member_nat @ A @ S )
=> ( ( groups6464643781859351333omplex
@ ^ [K2: nat] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_nat @ A @ S )
=> ( ( groups6464643781859351333omplex
@ ^ [K2: nat] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
@ S )
= one_one_complex ) ) ) ) ).
% prod.delta'
thf(fact_8210_prod_Odelta_H,axiom,
! [S: set_int,A: int,B: int > complex] :
( ( finite_finite_int @ S )
=> ( ( ( member_int @ A @ S )
=> ( ( groups7440179247065528705omplex
@ ^ [K2: int] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_int @ A @ S )
=> ( ( groups7440179247065528705omplex
@ ^ [K2: int] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
@ S )
= one_one_complex ) ) ) ) ).
% prod.delta'
thf(fact_8211_prod_Odelta_H,axiom,
! [S: set_complex,A: complex,B: complex > complex] :
( ( finite3207457112153483333omplex @ S )
=> ( ( ( member_complex @ A @ S )
=> ( ( groups3708469109370488835omplex
@ ^ [K2: complex] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_complex @ A @ S )
=> ( ( groups3708469109370488835omplex
@ ^ [K2: complex] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
@ S )
= one_one_complex ) ) ) ) ).
% prod.delta'
thf(fact_8212_prod_Odelta_H,axiom,
! [S: set_Code_integer,A: code_integer,B: code_integer > complex] :
( ( finite6017078050557962740nteger @ S )
=> ( ( ( member_Code_integer @ A @ S )
=> ( ( groups862514429393162674omplex
@ ^ [K2: code_integer] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_Code_integer @ A @ S )
=> ( ( groups862514429393162674omplex
@ ^ [K2: code_integer] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ one_one_complex )
@ S )
= one_one_complex ) ) ) ) ).
% prod.delta'
thf(fact_8213_prod_Odelta_H,axiom,
! [S: set_real,A: real,B: real > real] :
( ( finite_finite_real @ S )
=> ( ( ( member_real @ A @ S )
=> ( ( groups1681761925125756287l_real
@ ^ [K2: real] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_real @ A @ S )
=> ( ( groups1681761925125756287l_real
@ ^ [K2: real] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
@ S )
= one_one_real ) ) ) ) ).
% prod.delta'
thf(fact_8214_prod_Odelta_H,axiom,
! [S: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ S )
=> ( ( ( member_VEBT_VEBT @ A @ S )
=> ( ( groups2703838992350267259T_real
@ ^ [K2: vEBT_VEBT] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_VEBT_VEBT @ A @ S )
=> ( ( groups2703838992350267259T_real
@ ^ [K2: vEBT_VEBT] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
@ S )
= one_one_real ) ) ) ) ).
% prod.delta'
thf(fact_8215_prod_Odelta_H,axiom,
! [S: set_nat,A: nat,B: nat > real] :
( ( finite_finite_nat @ S )
=> ( ( ( member_nat @ A @ S )
=> ( ( groups129246275422532515t_real
@ ^ [K2: nat] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_nat @ A @ S )
=> ( ( groups129246275422532515t_real
@ ^ [K2: nat] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
@ S )
= one_one_real ) ) ) ) ).
% prod.delta'
thf(fact_8216_prod_Odelta_H,axiom,
! [S: set_int,A: int,B: int > real] :
( ( finite_finite_int @ S )
=> ( ( ( member_int @ A @ S )
=> ( ( groups2316167850115554303t_real
@ ^ [K2: int] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
@ S )
= ( B @ A ) ) )
& ( ~ ( member_int @ A @ S )
=> ( ( groups2316167850115554303t_real
@ ^ [K2: int] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ one_one_real )
@ S )
= one_one_real ) ) ) ) ).
% prod.delta'
thf(fact_8217_divide__i,axiom,
! [X2: complex] :
( ( divide1717551699836669952omplex @ X2 @ imaginary_unit )
= ( times_times_complex @ ( uminus1482373934393186551omplex @ imaginary_unit ) @ X2 ) ) ).
% divide_i
thf(fact_8218_complex__i__mult__minus,axiom,
! [X2: complex] :
( ( times_times_complex @ imaginary_unit @ ( times_times_complex @ imaginary_unit @ X2 ) )
= ( uminus1482373934393186551omplex @ X2 ) ) ).
% complex_i_mult_minus
thf(fact_8219_prod_OlessThan__Suc,axiom,
! [G: nat > real,N: nat] :
( ( groups129246275422532515t_real @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= ( times_times_real @ ( groups129246275422532515t_real @ G @ ( set_ord_lessThan_nat @ N ) ) @ ( G @ N ) ) ) ).
% prod.lessThan_Suc
thf(fact_8220_prod_OlessThan__Suc,axiom,
! [G: nat > rat,N: nat] :
( ( groups73079841787564623at_rat @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= ( times_times_rat @ ( groups73079841787564623at_rat @ G @ ( set_ord_lessThan_nat @ N ) ) @ ( G @ N ) ) ) ).
% prod.lessThan_Suc
thf(fact_8221_prod_OlessThan__Suc,axiom,
! [G: nat > nat,N: nat] :
( ( groups708209901874060359at_nat @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= ( times_times_nat @ ( groups708209901874060359at_nat @ G @ ( set_ord_lessThan_nat @ N ) ) @ ( G @ N ) ) ) ).
% prod.lessThan_Suc
thf(fact_8222_prod_OlessThan__Suc,axiom,
! [G: nat > int,N: nat] :
( ( groups705719431365010083at_int @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= ( times_times_int @ ( groups705719431365010083at_int @ G @ ( set_ord_lessThan_nat @ N ) ) @ ( G @ N ) ) ) ).
% prod.lessThan_Suc
thf(fact_8223_i__squared,axiom,
( ( times_times_complex @ imaginary_unit @ imaginary_unit )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% i_squared
thf(fact_8224_divide__numeral__i,axiom,
! [Z: complex,N: num] :
( ( divide1717551699836669952omplex @ Z @ ( times_times_complex @ ( numera6690914467698888265omplex @ N ) @ imaginary_unit ) )
= ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ ( times_times_complex @ imaginary_unit @ Z ) ) @ ( numera6690914467698888265omplex @ N ) ) ) ).
% divide_numeral_i
thf(fact_8225_prod_Ocl__ivl__Suc,axiom,
! [N: nat,M: nat,G: nat > complex] :
( ( ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups6464643781859351333omplex @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= one_one_complex ) )
& ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups6464643781859351333omplex @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( times_times_complex @ ( groups6464643781859351333omplex @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).
% prod.cl_ivl_Suc
thf(fact_8226_prod_Ocl__ivl__Suc,axiom,
! [N: nat,M: nat,G: nat > real] :
( ( ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= one_one_real ) )
& ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( times_times_real @ ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).
% prod.cl_ivl_Suc
thf(fact_8227_prod_Ocl__ivl__Suc,axiom,
! [N: nat,M: nat,G: nat > rat] :
( ( ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= one_one_rat ) )
& ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( times_times_rat @ ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).
% prod.cl_ivl_Suc
thf(fact_8228_prod_Ocl__ivl__Suc,axiom,
! [N: nat,M: nat,G: nat > nat] :
( ( ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= one_one_nat ) )
& ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( times_times_nat @ ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).
% prod.cl_ivl_Suc
thf(fact_8229_prod_Ocl__ivl__Suc,axiom,
! [N: nat,M: nat,G: nat > int] :
( ( ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= one_one_int ) )
& ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
=> ( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( times_times_int @ ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).
% prod.cl_ivl_Suc
thf(fact_8230_power2__i,axiom,
( ( power_power_complex @ imaginary_unit @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% power2_i
thf(fact_8231_exp__pi__i_H,axiom,
( ( exp_complex @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ pi ) ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% exp_pi_i'
thf(fact_8232_exp__pi__i,axiom,
( ( exp_complex @ ( times_times_complex @ ( real_V4546457046886955230omplex @ pi ) @ imaginary_unit ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% exp_pi_i
thf(fact_8233_i__even__power,axiom,
! [N: nat] :
( ( power_power_complex @ imaginary_unit @ ( times_times_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) ) ).
% i_even_power
thf(fact_8234_divide__complex__def,axiom,
( divide1717551699836669952omplex
= ( ^ [X: complex,Y: complex] : ( times_times_complex @ X @ ( invers8013647133539491842omplex @ Y ) ) ) ) ).
% divide_complex_def
thf(fact_8235_prod_Onot__neutral__contains__not__neutral,axiom,
! [G: nat > complex,A2: set_nat] :
( ( ( groups6464643781859351333omplex @ G @ A2 )
!= one_one_complex )
=> ~ ! [A4: nat] :
( ( member_nat @ A4 @ A2 )
=> ( ( G @ A4 )
= one_one_complex ) ) ) ).
% prod.not_neutral_contains_not_neutral
thf(fact_8236_prod_Onot__neutral__contains__not__neutral,axiom,
! [G: real > complex,A2: set_real] :
( ( ( groups713298508707869441omplex @ G @ A2 )
!= one_one_complex )
=> ~ ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( ( G @ A4 )
= one_one_complex ) ) ) ).
% prod.not_neutral_contains_not_neutral
thf(fact_8237_prod_Onot__neutral__contains__not__neutral,axiom,
! [G: int > complex,A2: set_int] :
( ( ( groups7440179247065528705omplex @ G @ A2 )
!= one_one_complex )
=> ~ ! [A4: int] :
( ( member_int @ A4 @ A2 )
=> ( ( G @ A4 )
= one_one_complex ) ) ) ).
% prod.not_neutral_contains_not_neutral
thf(fact_8238_prod_Onot__neutral__contains__not__neutral,axiom,
! [G: vEBT_VEBT > complex,A2: set_VEBT_VEBT] :
( ( ( groups127312072573709053omplex @ G @ A2 )
!= one_one_complex )
=> ~ ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ A2 )
=> ( ( G @ A4 )
= one_one_complex ) ) ) ).
% prod.not_neutral_contains_not_neutral
thf(fact_8239_prod_Onot__neutral__contains__not__neutral,axiom,
! [G: nat > real,A2: set_nat] :
( ( ( groups129246275422532515t_real @ G @ A2 )
!= one_one_real )
=> ~ ! [A4: nat] :
( ( member_nat @ A4 @ A2 )
=> ( ( G @ A4 )
= one_one_real ) ) ) ).
% prod.not_neutral_contains_not_neutral
thf(fact_8240_prod_Onot__neutral__contains__not__neutral,axiom,
! [G: real > real,A2: set_real] :
( ( ( groups1681761925125756287l_real @ G @ A2 )
!= one_one_real )
=> ~ ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( ( G @ A4 )
= one_one_real ) ) ) ).
% prod.not_neutral_contains_not_neutral
thf(fact_8241_prod_Onot__neutral__contains__not__neutral,axiom,
! [G: int > real,A2: set_int] :
( ( ( groups2316167850115554303t_real @ G @ A2 )
!= one_one_real )
=> ~ ! [A4: int] :
( ( member_int @ A4 @ A2 )
=> ( ( G @ A4 )
= one_one_real ) ) ) ).
% prod.not_neutral_contains_not_neutral
thf(fact_8242_prod_Onot__neutral__contains__not__neutral,axiom,
! [G: vEBT_VEBT > real,A2: set_VEBT_VEBT] :
( ( ( groups2703838992350267259T_real @ G @ A2 )
!= one_one_real )
=> ~ ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ A2 )
=> ( ( G @ A4 )
= one_one_real ) ) ) ).
% prod.not_neutral_contains_not_neutral
thf(fact_8243_prod_Onot__neutral__contains__not__neutral,axiom,
! [G: nat > rat,A2: set_nat] :
( ( ( groups73079841787564623at_rat @ G @ A2 )
!= one_one_rat )
=> ~ ! [A4: nat] :
( ( member_nat @ A4 @ A2 )
=> ( ( G @ A4 )
= one_one_rat ) ) ) ).
% prod.not_neutral_contains_not_neutral
thf(fact_8244_prod_Onot__neutral__contains__not__neutral,axiom,
! [G: real > rat,A2: set_real] :
( ( ( groups4061424788464935467al_rat @ G @ A2 )
!= one_one_rat )
=> ~ ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( ( G @ A4 )
= one_one_rat ) ) ) ).
% prod.not_neutral_contains_not_neutral
thf(fact_8245_prod_Oneutral,axiom,
! [A2: set_nat,G: nat > nat] :
( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ( G @ X3 )
= one_one_nat ) )
=> ( ( groups708209901874060359at_nat @ G @ A2 )
= one_one_nat ) ) ).
% prod.neutral
thf(fact_8246_prod_Oneutral,axiom,
! [A2: set_nat,G: nat > int] :
( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ( G @ X3 )
= one_one_int ) )
=> ( ( groups705719431365010083at_int @ G @ A2 )
= one_one_int ) ) ).
% prod.neutral
thf(fact_8247_prod_Oneutral,axiom,
! [A2: set_int,G: int > int] :
( ! [X3: int] :
( ( member_int @ X3 @ A2 )
=> ( ( G @ X3 )
= one_one_int ) )
=> ( ( groups1705073143266064639nt_int @ G @ A2 )
= one_one_int ) ) ).
% prod.neutral
thf(fact_8248_prod__dvd__prod,axiom,
! [A2: set_real,F: real > nat,G: real > nat] :
( ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( dvd_dvd_nat @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_nat @ ( groups4696554848551431203al_nat @ F @ A2 ) @ ( groups4696554848551431203al_nat @ G @ A2 ) ) ) ).
% prod_dvd_prod
thf(fact_8249_prod__dvd__prod,axiom,
! [A2: set_int,F: int > nat,G: int > nat] :
( ! [A4: int] :
( ( member_int @ A4 @ A2 )
=> ( dvd_dvd_nat @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_nat @ ( groups1707563613775114915nt_nat @ F @ A2 ) @ ( groups1707563613775114915nt_nat @ G @ A2 ) ) ) ).
% prod_dvd_prod
thf(fact_8250_prod__dvd__prod,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > nat,G: vEBT_VEBT > nat] :
( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ A2 )
=> ( dvd_dvd_nat @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_nat @ ( groups6361806394783013919BT_nat @ F @ A2 ) @ ( groups6361806394783013919BT_nat @ G @ A2 ) ) ) ).
% prod_dvd_prod
thf(fact_8251_prod__dvd__prod,axiom,
! [A2: set_real,F: real > int,G: real > int] :
( ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( dvd_dvd_int @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_int @ ( groups4694064378042380927al_int @ F @ A2 ) @ ( groups4694064378042380927al_int @ G @ A2 ) ) ) ).
% prod_dvd_prod
thf(fact_8252_prod__dvd__prod,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > int,G: vEBT_VEBT > int] :
( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ A2 )
=> ( dvd_dvd_int @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_int @ ( groups6359315924273963643BT_int @ F @ A2 ) @ ( groups6359315924273963643BT_int @ G @ A2 ) ) ) ).
% prod_dvd_prod
thf(fact_8253_prod__dvd__prod,axiom,
! [A2: set_nat,F: nat > nat,G: nat > nat] :
( ! [A4: nat] :
( ( member_nat @ A4 @ A2 )
=> ( dvd_dvd_nat @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_nat @ ( groups708209901874060359at_nat @ F @ A2 ) @ ( groups708209901874060359at_nat @ G @ A2 ) ) ) ).
% prod_dvd_prod
thf(fact_8254_prod__dvd__prod,axiom,
! [A2: set_nat,F: nat > int,G: nat > int] :
( ! [A4: nat] :
( ( member_nat @ A4 @ A2 )
=> ( dvd_dvd_int @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_int @ ( groups705719431365010083at_int @ F @ A2 ) @ ( groups705719431365010083at_int @ G @ A2 ) ) ) ).
% prod_dvd_prod
thf(fact_8255_prod__dvd__prod,axiom,
! [A2: set_int,F: int > int,G: int > int] :
( ! [A4: int] :
( ( member_int @ A4 @ A2 )
=> ( dvd_dvd_int @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_int @ ( groups1705073143266064639nt_int @ F @ A2 ) @ ( groups1705073143266064639nt_int @ G @ A2 ) ) ) ).
% prod_dvd_prod
thf(fact_8256_prod_Oswap,axiom,
! [G: nat > nat > nat,B4: set_nat,A2: set_nat] :
( ( groups708209901874060359at_nat
@ ^ [I3: nat] : ( groups708209901874060359at_nat @ ( G @ I3 ) @ B4 )
@ A2 )
= ( groups708209901874060359at_nat
@ ^ [J3: nat] :
( groups708209901874060359at_nat
@ ^ [I3: nat] : ( G @ I3 @ J3 )
@ A2 )
@ B4 ) ) ).
% prod.swap
thf(fact_8257_prod_Oswap,axiom,
! [G: nat > nat > int,B4: set_nat,A2: set_nat] :
( ( groups705719431365010083at_int
@ ^ [I3: nat] : ( groups705719431365010083at_int @ ( G @ I3 ) @ B4 )
@ A2 )
= ( groups705719431365010083at_int
@ ^ [J3: nat] :
( groups705719431365010083at_int
@ ^ [I3: nat] : ( G @ I3 @ J3 )
@ A2 )
@ B4 ) ) ).
% prod.swap
thf(fact_8258_prod_Oswap,axiom,
! [G: nat > int > int,B4: set_int,A2: set_nat] :
( ( groups705719431365010083at_int
@ ^ [I3: nat] : ( groups1705073143266064639nt_int @ ( G @ I3 ) @ B4 )
@ A2 )
= ( groups1705073143266064639nt_int
@ ^ [J3: int] :
( groups705719431365010083at_int
@ ^ [I3: nat] : ( G @ I3 @ J3 )
@ A2 )
@ B4 ) ) ).
% prod.swap
thf(fact_8259_prod_Oswap,axiom,
! [G: int > nat > int,B4: set_nat,A2: set_int] :
( ( groups1705073143266064639nt_int
@ ^ [I3: int] : ( groups705719431365010083at_int @ ( G @ I3 ) @ B4 )
@ A2 )
= ( groups705719431365010083at_int
@ ^ [J3: nat] :
( groups1705073143266064639nt_int
@ ^ [I3: int] : ( G @ I3 @ J3 )
@ A2 )
@ B4 ) ) ).
% prod.swap
thf(fact_8260_prod_Oswap,axiom,
! [G: int > int > int,B4: set_int,A2: set_int] :
( ( groups1705073143266064639nt_int
@ ^ [I3: int] : ( groups1705073143266064639nt_int @ ( G @ I3 ) @ B4 )
@ A2 )
= ( groups1705073143266064639nt_int
@ ^ [J3: int] :
( groups1705073143266064639nt_int
@ ^ [I3: int] : ( G @ I3 @ J3 )
@ A2 )
@ B4 ) ) ).
% prod.swap
thf(fact_8261_prod_Odistrib,axiom,
! [G: nat > nat,H2: nat > nat,A2: set_nat] :
( ( groups708209901874060359at_nat
@ ^ [X: nat] : ( times_times_nat @ ( G @ X ) @ ( H2 @ X ) )
@ A2 )
= ( times_times_nat @ ( groups708209901874060359at_nat @ G @ A2 ) @ ( groups708209901874060359at_nat @ H2 @ A2 ) ) ) ).
% prod.distrib
thf(fact_8262_prod_Odistrib,axiom,
! [G: nat > int,H2: nat > int,A2: set_nat] :
( ( groups705719431365010083at_int
@ ^ [X: nat] : ( times_times_int @ ( G @ X ) @ ( H2 @ X ) )
@ A2 )
= ( times_times_int @ ( groups705719431365010083at_int @ G @ A2 ) @ ( groups705719431365010083at_int @ H2 @ A2 ) ) ) ).
% prod.distrib
thf(fact_8263_prod_Odistrib,axiom,
! [G: int > int,H2: int > int,A2: set_int] :
( ( groups1705073143266064639nt_int
@ ^ [X: int] : ( times_times_int @ ( G @ X ) @ ( H2 @ X ) )
@ A2 )
= ( times_times_int @ ( groups1705073143266064639nt_int @ G @ A2 ) @ ( groups1705073143266064639nt_int @ H2 @ A2 ) ) ) ).
% prod.distrib
thf(fact_8264_prod__power__distrib,axiom,
! [F: nat > nat,A2: set_nat,N: nat] :
( ( power_power_nat @ ( groups708209901874060359at_nat @ F @ A2 ) @ N )
= ( groups708209901874060359at_nat
@ ^ [X: nat] : ( power_power_nat @ ( F @ X ) @ N )
@ A2 ) ) ).
% prod_power_distrib
thf(fact_8265_prod__power__distrib,axiom,
! [F: nat > int,A2: set_nat,N: nat] :
( ( power_power_int @ ( groups705719431365010083at_int @ F @ A2 ) @ N )
= ( groups705719431365010083at_int
@ ^ [X: nat] : ( power_power_int @ ( F @ X ) @ N )
@ A2 ) ) ).
% prod_power_distrib
thf(fact_8266_prod__power__distrib,axiom,
! [F: int > int,A2: set_int,N: nat] :
( ( power_power_int @ ( groups1705073143266064639nt_int @ F @ A2 ) @ N )
= ( groups1705073143266064639nt_int
@ ^ [X: int] : ( power_power_int @ ( F @ X ) @ N )
@ A2 ) ) ).
% prod_power_distrib
thf(fact_8267_prod_Oswap__restrict,axiom,
! [A2: set_real,B4: set_nat,G: real > nat > nat,R: real > nat > $o] :
( ( finite_finite_real @ A2 )
=> ( ( finite_finite_nat @ B4 )
=> ( ( groups4696554848551431203al_nat
@ ^ [X: real] :
( groups708209901874060359at_nat @ ( G @ X )
@ ( collect_nat
@ ^ [Y: nat] :
( ( member_nat @ Y @ B4 )
& ( R @ X @ Y ) ) ) )
@ A2 )
= ( groups708209901874060359at_nat
@ ^ [Y: nat] :
( groups4696554848551431203al_nat
@ ^ [X: real] : ( G @ X @ Y )
@ ( collect_real
@ ^ [X: real] :
( ( member_real @ X @ A2 )
& ( R @ X @ Y ) ) ) )
@ B4 ) ) ) ) ).
% prod.swap_restrict
thf(fact_8268_prod_Oswap__restrict,axiom,
! [A2: set_VEBT_VEBT,B4: set_nat,G: vEBT_VEBT > nat > nat,R: vEBT_VEBT > nat > $o] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( finite_finite_nat @ B4 )
=> ( ( groups6361806394783013919BT_nat
@ ^ [X: vEBT_VEBT] :
( groups708209901874060359at_nat @ ( G @ X )
@ ( collect_nat
@ ^ [Y: nat] :
( ( member_nat @ Y @ B4 )
& ( R @ X @ Y ) ) ) )
@ A2 )
= ( groups708209901874060359at_nat
@ ^ [Y: nat] :
( groups6361806394783013919BT_nat
@ ^ [X: vEBT_VEBT] : ( G @ X @ Y )
@ ( collect_VEBT_VEBT
@ ^ [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ A2 )
& ( R @ X @ Y ) ) ) )
@ B4 ) ) ) ) ).
% prod.swap_restrict
thf(fact_8269_prod_Oswap__restrict,axiom,
! [A2: set_int,B4: set_nat,G: int > nat > nat,R: int > nat > $o] :
( ( finite_finite_int @ A2 )
=> ( ( finite_finite_nat @ B4 )
=> ( ( groups1707563613775114915nt_nat
@ ^ [X: int] :
( groups708209901874060359at_nat @ ( G @ X )
@ ( collect_nat
@ ^ [Y: nat] :
( ( member_nat @ Y @ B4 )
& ( R @ X @ Y ) ) ) )
@ A2 )
= ( groups708209901874060359at_nat
@ ^ [Y: nat] :
( groups1707563613775114915nt_nat
@ ^ [X: int] : ( G @ X @ Y )
@ ( collect_int
@ ^ [X: int] :
( ( member_int @ X @ A2 )
& ( R @ X @ Y ) ) ) )
@ B4 ) ) ) ) ).
% prod.swap_restrict
thf(fact_8270_prod_Oswap__restrict,axiom,
! [A2: set_complex,B4: set_nat,G: complex > nat > nat,R: complex > nat > $o] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( finite_finite_nat @ B4 )
=> ( ( groups861055069439313189ex_nat
@ ^ [X: complex] :
( groups708209901874060359at_nat @ ( G @ X )
@ ( collect_nat
@ ^ [Y: nat] :
( ( member_nat @ Y @ B4 )
& ( R @ X @ Y ) ) ) )
@ A2 )
= ( groups708209901874060359at_nat
@ ^ [Y: nat] :
( groups861055069439313189ex_nat
@ ^ [X: complex] : ( G @ X @ Y )
@ ( collect_complex
@ ^ [X: complex] :
( ( member_complex @ X @ A2 )
& ( R @ X @ Y ) ) ) )
@ B4 ) ) ) ) ).
% prod.swap_restrict
thf(fact_8271_prod_Oswap__restrict,axiom,
! [A2: set_Code_integer,B4: set_nat,G: code_integer > nat > nat,R: code_integer > nat > $o] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( finite_finite_nat @ B4 )
=> ( ( groups3190895334310489300er_nat
@ ^ [X: code_integer] :
( groups708209901874060359at_nat @ ( G @ X )
@ ( collect_nat
@ ^ [Y: nat] :
( ( member_nat @ Y @ B4 )
& ( R @ X @ Y ) ) ) )
@ A2 )
= ( groups708209901874060359at_nat
@ ^ [Y: nat] :
( groups3190895334310489300er_nat
@ ^ [X: code_integer] : ( G @ X @ Y )
@ ( collect_Code_integer
@ ^ [X: code_integer] :
( ( member_Code_integer @ X @ A2 )
& ( R @ X @ Y ) ) ) )
@ B4 ) ) ) ) ).
% prod.swap_restrict
thf(fact_8272_prod_Oswap__restrict,axiom,
! [A2: set_real,B4: set_nat,G: real > nat > int,R: real > nat > $o] :
( ( finite_finite_real @ A2 )
=> ( ( finite_finite_nat @ B4 )
=> ( ( groups4694064378042380927al_int
@ ^ [X: real] :
( groups705719431365010083at_int @ ( G @ X )
@ ( collect_nat
@ ^ [Y: nat] :
( ( member_nat @ Y @ B4 )
& ( R @ X @ Y ) ) ) )
@ A2 )
= ( groups705719431365010083at_int
@ ^ [Y: nat] :
( groups4694064378042380927al_int
@ ^ [X: real] : ( G @ X @ Y )
@ ( collect_real
@ ^ [X: real] :
( ( member_real @ X @ A2 )
& ( R @ X @ Y ) ) ) )
@ B4 ) ) ) ) ).
% prod.swap_restrict
thf(fact_8273_prod_Oswap__restrict,axiom,
! [A2: set_VEBT_VEBT,B4: set_nat,G: vEBT_VEBT > nat > int,R: vEBT_VEBT > nat > $o] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( finite_finite_nat @ B4 )
=> ( ( groups6359315924273963643BT_int
@ ^ [X: vEBT_VEBT] :
( groups705719431365010083at_int @ ( G @ X )
@ ( collect_nat
@ ^ [Y: nat] :
( ( member_nat @ Y @ B4 )
& ( R @ X @ Y ) ) ) )
@ A2 )
= ( groups705719431365010083at_int
@ ^ [Y: nat] :
( groups6359315924273963643BT_int
@ ^ [X: vEBT_VEBT] : ( G @ X @ Y )
@ ( collect_VEBT_VEBT
@ ^ [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ A2 )
& ( R @ X @ Y ) ) ) )
@ B4 ) ) ) ) ).
% prod.swap_restrict
thf(fact_8274_prod_Oswap__restrict,axiom,
! [A2: set_complex,B4: set_nat,G: complex > nat > int,R: complex > nat > $o] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( finite_finite_nat @ B4 )
=> ( ( groups858564598930262913ex_int
@ ^ [X: complex] :
( groups705719431365010083at_int @ ( G @ X )
@ ( collect_nat
@ ^ [Y: nat] :
( ( member_nat @ Y @ B4 )
& ( R @ X @ Y ) ) ) )
@ A2 )
= ( groups705719431365010083at_int
@ ^ [Y: nat] :
( groups858564598930262913ex_int
@ ^ [X: complex] : ( G @ X @ Y )
@ ( collect_complex
@ ^ [X: complex] :
( ( member_complex @ X @ A2 )
& ( R @ X @ Y ) ) ) )
@ B4 ) ) ) ) ).
% prod.swap_restrict
thf(fact_8275_prod_Oswap__restrict,axiom,
! [A2: set_Code_integer,B4: set_nat,G: code_integer > nat > int,R: code_integer > nat > $o] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( finite_finite_nat @ B4 )
=> ( ( groups3188404863801439024er_int
@ ^ [X: code_integer] :
( groups705719431365010083at_int @ ( G @ X )
@ ( collect_nat
@ ^ [Y: nat] :
( ( member_nat @ Y @ B4 )
& ( R @ X @ Y ) ) ) )
@ A2 )
= ( groups705719431365010083at_int
@ ^ [Y: nat] :
( groups3188404863801439024er_int
@ ^ [X: code_integer] : ( G @ X @ Y )
@ ( collect_Code_integer
@ ^ [X: code_integer] :
( ( member_Code_integer @ X @ A2 )
& ( R @ X @ Y ) ) ) )
@ B4 ) ) ) ) ).
% prod.swap_restrict
thf(fact_8276_prod_Oswap__restrict,axiom,
! [A2: set_real,B4: set_int,G: real > int > int,R: real > int > $o] :
( ( finite_finite_real @ A2 )
=> ( ( finite_finite_int @ B4 )
=> ( ( groups4694064378042380927al_int
@ ^ [X: real] :
( groups1705073143266064639nt_int @ ( G @ X )
@ ( collect_int
@ ^ [Y: int] :
( ( member_int @ Y @ B4 )
& ( R @ X @ Y ) ) ) )
@ A2 )
= ( groups1705073143266064639nt_int
@ ^ [Y: int] :
( groups4694064378042380927al_int
@ ^ [X: real] : ( G @ X @ Y )
@ ( collect_real
@ ^ [X: real] :
( ( member_real @ X @ A2 )
& ( R @ X @ Y ) ) ) )
@ B4 ) ) ) ) ).
% prod.swap_restrict
thf(fact_8277_mod__prod__eq,axiom,
! [F: nat > nat,A: nat,A2: set_nat] :
( ( modulo_modulo_nat
@ ( groups708209901874060359at_nat
@ ^ [I3: nat] : ( modulo_modulo_nat @ ( F @ I3 ) @ A )
@ A2 )
@ A )
= ( modulo_modulo_nat @ ( groups708209901874060359at_nat @ F @ A2 ) @ A ) ) ).
% mod_prod_eq
thf(fact_8278_mod__prod__eq,axiom,
! [F: nat > int,A: int,A2: set_nat] :
( ( modulo_modulo_int
@ ( groups705719431365010083at_int
@ ^ [I3: nat] : ( modulo_modulo_int @ ( F @ I3 ) @ A )
@ A2 )
@ A )
= ( modulo_modulo_int @ ( groups705719431365010083at_int @ F @ A2 ) @ A ) ) ).
% mod_prod_eq
thf(fact_8279_mod__prod__eq,axiom,
! [F: int > int,A: int,A2: set_int] :
( ( modulo_modulo_int
@ ( groups1705073143266064639nt_int
@ ^ [I3: int] : ( modulo_modulo_int @ ( F @ I3 ) @ A )
@ A2 )
@ A )
= ( modulo_modulo_int @ ( groups1705073143266064639nt_int @ F @ A2 ) @ A ) ) ).
% mod_prod_eq
thf(fact_8280_complex__i__not__zero,axiom,
imaginary_unit != zero_zero_complex ).
% complex_i_not_zero
thf(fact_8281_complex__i__not__one,axiom,
imaginary_unit != one_one_complex ).
% complex_i_not_one
thf(fact_8282_prod__mono,axiom,
! [A2: set_nat,F: nat > real,G: nat > real] :
( ! [I2: nat] :
( ( member_nat @ I2 @ A2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) )
& ( ord_less_eq_real @ ( F @ I2 ) @ ( G @ I2 ) ) ) )
=> ( ord_less_eq_real @ ( groups129246275422532515t_real @ F @ A2 ) @ ( groups129246275422532515t_real @ G @ A2 ) ) ) ).
% prod_mono
thf(fact_8283_prod__mono,axiom,
! [A2: set_real,F: real > real,G: real > real] :
( ! [I2: real] :
( ( member_real @ I2 @ A2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) )
& ( ord_less_eq_real @ ( F @ I2 ) @ ( G @ I2 ) ) ) )
=> ( ord_less_eq_real @ ( groups1681761925125756287l_real @ F @ A2 ) @ ( groups1681761925125756287l_real @ G @ A2 ) ) ) ).
% prod_mono
thf(fact_8284_prod__mono,axiom,
! [A2: set_int,F: int > real,G: int > real] :
( ! [I2: int] :
( ( member_int @ I2 @ A2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) )
& ( ord_less_eq_real @ ( F @ I2 ) @ ( G @ I2 ) ) ) )
=> ( ord_less_eq_real @ ( groups2316167850115554303t_real @ F @ A2 ) @ ( groups2316167850115554303t_real @ G @ A2 ) ) ) ).
% prod_mono
thf(fact_8285_prod__mono,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > real,G: vEBT_VEBT > real] :
( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ A2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I2 ) )
& ( ord_less_eq_real @ ( F @ I2 ) @ ( G @ I2 ) ) ) )
=> ( ord_less_eq_real @ ( groups2703838992350267259T_real @ F @ A2 ) @ ( groups2703838992350267259T_real @ G @ A2 ) ) ) ).
% prod_mono
thf(fact_8286_prod__mono,axiom,
! [A2: set_nat,F: nat > rat,G: nat > rat] :
( ! [I2: nat] :
( ( member_nat @ I2 @ A2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) )
& ( ord_less_eq_rat @ ( F @ I2 ) @ ( G @ I2 ) ) ) )
=> ( ord_less_eq_rat @ ( groups73079841787564623at_rat @ F @ A2 ) @ ( groups73079841787564623at_rat @ G @ A2 ) ) ) ).
% prod_mono
thf(fact_8287_prod__mono,axiom,
! [A2: set_real,F: real > rat,G: real > rat] :
( ! [I2: real] :
( ( member_real @ I2 @ A2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) )
& ( ord_less_eq_rat @ ( F @ I2 ) @ ( G @ I2 ) ) ) )
=> ( ord_less_eq_rat @ ( groups4061424788464935467al_rat @ F @ A2 ) @ ( groups4061424788464935467al_rat @ G @ A2 ) ) ) ).
% prod_mono
thf(fact_8288_prod__mono,axiom,
! [A2: set_int,F: int > rat,G: int > rat] :
( ! [I2: int] :
( ( member_int @ I2 @ A2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) )
& ( ord_less_eq_rat @ ( F @ I2 ) @ ( G @ I2 ) ) ) )
=> ( ord_less_eq_rat @ ( groups1072433553688619179nt_rat @ F @ A2 ) @ ( groups1072433553688619179nt_rat @ G @ A2 ) ) ) ).
% prod_mono
thf(fact_8289_prod__mono,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > rat,G: vEBT_VEBT > rat] :
( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ A2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I2 ) )
& ( ord_less_eq_rat @ ( F @ I2 ) @ ( G @ I2 ) ) ) )
=> ( ord_less_eq_rat @ ( groups5726676334696518183BT_rat @ F @ A2 ) @ ( groups5726676334696518183BT_rat @ G @ A2 ) ) ) ).
% prod_mono
thf(fact_8290_prod__mono,axiom,
! [A2: set_real,F: real > nat,G: real > nat] :
( ! [I2: real] :
( ( member_real @ I2 @ A2 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I2 ) )
& ( ord_less_eq_nat @ ( F @ I2 ) @ ( G @ I2 ) ) ) )
=> ( ord_less_eq_nat @ ( groups4696554848551431203al_nat @ F @ A2 ) @ ( groups4696554848551431203al_nat @ G @ A2 ) ) ) ).
% prod_mono
thf(fact_8291_prod__mono,axiom,
! [A2: set_int,F: int > nat,G: int > nat] :
( ! [I2: int] :
( ( member_int @ I2 @ A2 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I2 ) )
& ( ord_less_eq_nat @ ( F @ I2 ) @ ( G @ I2 ) ) ) )
=> ( ord_less_eq_nat @ ( groups1707563613775114915nt_nat @ F @ A2 ) @ ( groups1707563613775114915nt_nat @ G @ A2 ) ) ) ).
% prod_mono
thf(fact_8292_prod__nonneg,axiom,
! [A2: set_nat,F: nat > nat] :
( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X3 ) ) )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( groups708209901874060359at_nat @ F @ A2 ) ) ) ).
% prod_nonneg
thf(fact_8293_prod__nonneg,axiom,
! [A2: set_nat,F: nat > int] :
( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ord_less_eq_int @ zero_zero_int @ ( F @ X3 ) ) )
=> ( ord_less_eq_int @ zero_zero_int @ ( groups705719431365010083at_int @ F @ A2 ) ) ) ).
% prod_nonneg
thf(fact_8294_prod__nonneg,axiom,
! [A2: set_int,F: int > int] :
( ! [X3: int] :
( ( member_int @ X3 @ A2 )
=> ( ord_less_eq_int @ zero_zero_int @ ( F @ X3 ) ) )
=> ( ord_less_eq_int @ zero_zero_int @ ( groups1705073143266064639nt_int @ F @ A2 ) ) ) ).
% prod_nonneg
thf(fact_8295_prod__pos,axiom,
! [A2: set_nat,F: nat > nat] :
( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ord_less_nat @ zero_zero_nat @ ( F @ X3 ) ) )
=> ( ord_less_nat @ zero_zero_nat @ ( groups708209901874060359at_nat @ F @ A2 ) ) ) ).
% prod_pos
thf(fact_8296_prod__pos,axiom,
! [A2: set_nat,F: nat > int] :
( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ord_less_int @ zero_zero_int @ ( F @ X3 ) ) )
=> ( ord_less_int @ zero_zero_int @ ( groups705719431365010083at_int @ F @ A2 ) ) ) ).
% prod_pos
thf(fact_8297_prod__pos,axiom,
! [A2: set_int,F: int > int] :
( ! [X3: int] :
( ( member_int @ X3 @ A2 )
=> ( ord_less_int @ zero_zero_int @ ( F @ X3 ) ) )
=> ( ord_less_int @ zero_zero_int @ ( groups1705073143266064639nt_int @ F @ A2 ) ) ) ).
% prod_pos
thf(fact_8298_prod__ge__1,axiom,
! [A2: set_nat,F: nat > real] :
( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ord_less_eq_real @ one_one_real @ ( F @ X3 ) ) )
=> ( ord_less_eq_real @ one_one_real @ ( groups129246275422532515t_real @ F @ A2 ) ) ) ).
% prod_ge_1
thf(fact_8299_prod__ge__1,axiom,
! [A2: set_real,F: real > real] :
( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( ord_less_eq_real @ one_one_real @ ( F @ X3 ) ) )
=> ( ord_less_eq_real @ one_one_real @ ( groups1681761925125756287l_real @ F @ A2 ) ) ) ).
% prod_ge_1
thf(fact_8300_prod__ge__1,axiom,
! [A2: set_int,F: int > real] :
( ! [X3: int] :
( ( member_int @ X3 @ A2 )
=> ( ord_less_eq_real @ one_one_real @ ( F @ X3 ) ) )
=> ( ord_less_eq_real @ one_one_real @ ( groups2316167850115554303t_real @ F @ A2 ) ) ) ).
% prod_ge_1
thf(fact_8301_prod__ge__1,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > real] :
( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ord_less_eq_real @ one_one_real @ ( F @ X3 ) ) )
=> ( ord_less_eq_real @ one_one_real @ ( groups2703838992350267259T_real @ F @ A2 ) ) ) ).
% prod_ge_1
thf(fact_8302_prod__ge__1,axiom,
! [A2: set_nat,F: nat > rat] :
( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ X3 ) ) )
=> ( ord_less_eq_rat @ one_one_rat @ ( groups73079841787564623at_rat @ F @ A2 ) ) ) ).
% prod_ge_1
thf(fact_8303_prod__ge__1,axiom,
! [A2: set_real,F: real > rat] :
( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ X3 ) ) )
=> ( ord_less_eq_rat @ one_one_rat @ ( groups4061424788464935467al_rat @ F @ A2 ) ) ) ).
% prod_ge_1
thf(fact_8304_prod__ge__1,axiom,
! [A2: set_int,F: int > rat] :
( ! [X3: int] :
( ( member_int @ X3 @ A2 )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ X3 ) ) )
=> ( ord_less_eq_rat @ one_one_rat @ ( groups1072433553688619179nt_rat @ F @ A2 ) ) ) ).
% prod_ge_1
thf(fact_8305_prod__ge__1,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ X3 ) ) )
=> ( ord_less_eq_rat @ one_one_rat @ ( groups5726676334696518183BT_rat @ F @ A2 ) ) ) ).
% prod_ge_1
thf(fact_8306_prod__ge__1,axiom,
! [A2: set_real,F: real > nat] :
( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( ord_less_eq_nat @ one_one_nat @ ( F @ X3 ) ) )
=> ( ord_less_eq_nat @ one_one_nat @ ( groups4696554848551431203al_nat @ F @ A2 ) ) ) ).
% prod_ge_1
thf(fact_8307_prod__ge__1,axiom,
! [A2: set_int,F: int > nat] :
( ! [X3: int] :
( ( member_int @ X3 @ A2 )
=> ( ord_less_eq_nat @ one_one_nat @ ( F @ X3 ) ) )
=> ( ord_less_eq_nat @ one_one_nat @ ( groups1707563613775114915nt_nat @ F @ A2 ) ) ) ).
% prod_ge_1
thf(fact_8308_prod__zero,axiom,
! [A2: set_nat,F: nat > complex] :
( ( finite_finite_nat @ A2 )
=> ( ? [X4: nat] :
( ( member_nat @ X4 @ A2 )
& ( ( F @ X4 )
= zero_zero_complex ) )
=> ( ( groups6464643781859351333omplex @ F @ A2 )
= zero_zero_complex ) ) ) ).
% prod_zero
thf(fact_8309_prod__zero,axiom,
! [A2: set_int,F: int > complex] :
( ( finite_finite_int @ A2 )
=> ( ? [X4: int] :
( ( member_int @ X4 @ A2 )
& ( ( F @ X4 )
= zero_zero_complex ) )
=> ( ( groups7440179247065528705omplex @ F @ A2 )
= zero_zero_complex ) ) ) ).
% prod_zero
thf(fact_8310_prod__zero,axiom,
! [A2: set_complex,F: complex > complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ? [X4: complex] :
( ( member_complex @ X4 @ A2 )
& ( ( F @ X4 )
= zero_zero_complex ) )
=> ( ( groups3708469109370488835omplex @ F @ A2 )
= zero_zero_complex ) ) ) ).
% prod_zero
thf(fact_8311_prod__zero,axiom,
! [A2: set_Code_integer,F: code_integer > complex] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ? [X4: code_integer] :
( ( member_Code_integer @ X4 @ A2 )
& ( ( F @ X4 )
= zero_zero_complex ) )
=> ( ( groups862514429393162674omplex @ F @ A2 )
= zero_zero_complex ) ) ) ).
% prod_zero
thf(fact_8312_prod__zero,axiom,
! [A2: set_nat,F: nat > real] :
( ( finite_finite_nat @ A2 )
=> ( ? [X4: nat] :
( ( member_nat @ X4 @ A2 )
& ( ( F @ X4 )
= zero_zero_real ) )
=> ( ( groups129246275422532515t_real @ F @ A2 )
= zero_zero_real ) ) ) ).
% prod_zero
thf(fact_8313_prod__zero,axiom,
! [A2: set_int,F: int > real] :
( ( finite_finite_int @ A2 )
=> ( ? [X4: int] :
( ( member_int @ X4 @ A2 )
& ( ( F @ X4 )
= zero_zero_real ) )
=> ( ( groups2316167850115554303t_real @ F @ A2 )
= zero_zero_real ) ) ) ).
% prod_zero
thf(fact_8314_prod__zero,axiom,
! [A2: set_complex,F: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ? [X4: complex] :
( ( member_complex @ X4 @ A2 )
& ( ( F @ X4 )
= zero_zero_real ) )
=> ( ( groups766887009212190081x_real @ F @ A2 )
= zero_zero_real ) ) ) ).
% prod_zero
thf(fact_8315_prod__zero,axiom,
! [A2: set_Code_integer,F: code_integer > real] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ? [X4: code_integer] :
( ( member_Code_integer @ X4 @ A2 )
& ( ( F @ X4 )
= zero_zero_real ) )
=> ( ( groups9004974159866482096r_real @ F @ A2 )
= zero_zero_real ) ) ) ).
% prod_zero
thf(fact_8316_prod__zero,axiom,
! [A2: set_nat,F: nat > rat] :
( ( finite_finite_nat @ A2 )
=> ( ? [X4: nat] :
( ( member_nat @ X4 @ A2 )
& ( ( F @ X4 )
= zero_zero_rat ) )
=> ( ( groups73079841787564623at_rat @ F @ A2 )
= zero_zero_rat ) ) ) ).
% prod_zero
thf(fact_8317_prod__zero,axiom,
! [A2: set_int,F: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ? [X4: int] :
( ( member_int @ X4 @ A2 )
& ( ( F @ X4 )
= zero_zero_rat ) )
=> ( ( groups1072433553688619179nt_rat @ F @ A2 )
= zero_zero_rat ) ) ) ).
% prod_zero
thf(fact_8318_prod__atLeastAtMost__code,axiom,
! [F: nat > complex,A: nat,B: nat] :
( ( groups6464643781859351333omplex @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo1517530859248394432omplex
@ ^ [A3: nat] : ( times_times_complex @ ( F @ A3 ) )
@ A
@ B
@ one_one_complex ) ) ).
% prod_atLeastAtMost_code
thf(fact_8319_prod__atLeastAtMost__code,axiom,
! [F: nat > real,A: nat,B: nat] :
( ( groups129246275422532515t_real @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo3111899725591712190t_real
@ ^ [A3: nat] : ( times_times_real @ ( F @ A3 ) )
@ A
@ B
@ one_one_real ) ) ).
% prod_atLeastAtMost_code
thf(fact_8320_prod__atLeastAtMost__code,axiom,
! [F: nat > rat,A: nat,B: nat] :
( ( groups73079841787564623at_rat @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo1949268297981939178at_rat
@ ^ [A3: nat] : ( times_times_rat @ ( F @ A3 ) )
@ A
@ B
@ one_one_rat ) ) ).
% prod_atLeastAtMost_code
thf(fact_8321_prod__atLeastAtMost__code,axiom,
! [F: nat > nat,A: nat,B: nat] :
( ( groups708209901874060359at_nat @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo2584398358068434914at_nat
@ ^ [A3: nat] : ( times_times_nat @ ( F @ A3 ) )
@ A
@ B
@ one_one_nat ) ) ).
% prod_atLeastAtMost_code
thf(fact_8322_prod__atLeastAtMost__code,axiom,
! [F: nat > int,A: nat,B: nat] :
( ( groups705719431365010083at_int @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo2581907887559384638at_int
@ ^ [A3: nat] : ( times_times_int @ ( F @ A3 ) )
@ A
@ B
@ one_one_int ) ) ).
% prod_atLeastAtMost_code
thf(fact_8323_prod_Ointer__filter,axiom,
! [A2: set_real,G: real > complex,P: real > $o] :
( ( finite_finite_real @ A2 )
=> ( ( groups713298508707869441omplex @ G
@ ( collect_real
@ ^ [X: real] :
( ( member_real @ X @ A2 )
& ( P @ X ) ) ) )
= ( groups713298508707869441omplex
@ ^ [X: real] : ( if_complex @ ( P @ X ) @ ( G @ X ) @ one_one_complex )
@ A2 ) ) ) ).
% prod.inter_filter
thf(fact_8324_prod_Ointer__filter,axiom,
! [A2: set_VEBT_VEBT,G: vEBT_VEBT > complex,P: vEBT_VEBT > $o] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( groups127312072573709053omplex @ G
@ ( collect_VEBT_VEBT
@ ^ [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ A2 )
& ( P @ X ) ) ) )
= ( groups127312072573709053omplex
@ ^ [X: vEBT_VEBT] : ( if_complex @ ( P @ X ) @ ( G @ X ) @ one_one_complex )
@ A2 ) ) ) ).
% prod.inter_filter
thf(fact_8325_prod_Ointer__filter,axiom,
! [A2: set_nat,G: nat > complex,P: nat > $o] :
( ( finite_finite_nat @ A2 )
=> ( ( groups6464643781859351333omplex @ G
@ ( collect_nat
@ ^ [X: nat] :
( ( member_nat @ X @ A2 )
& ( P @ X ) ) ) )
= ( groups6464643781859351333omplex
@ ^ [X: nat] : ( if_complex @ ( P @ X ) @ ( G @ X ) @ one_one_complex )
@ A2 ) ) ) ).
% prod.inter_filter
thf(fact_8326_prod_Ointer__filter,axiom,
! [A2: set_int,G: int > complex,P: int > $o] :
( ( finite_finite_int @ A2 )
=> ( ( groups7440179247065528705omplex @ G
@ ( collect_int
@ ^ [X: int] :
( ( member_int @ X @ A2 )
& ( P @ X ) ) ) )
= ( groups7440179247065528705omplex
@ ^ [X: int] : ( if_complex @ ( P @ X ) @ ( G @ X ) @ one_one_complex )
@ A2 ) ) ) ).
% prod.inter_filter
thf(fact_8327_prod_Ointer__filter,axiom,
! [A2: set_complex,G: complex > complex,P: complex > $o] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups3708469109370488835omplex @ G
@ ( collect_complex
@ ^ [X: complex] :
( ( member_complex @ X @ A2 )
& ( P @ X ) ) ) )
= ( groups3708469109370488835omplex
@ ^ [X: complex] : ( if_complex @ ( P @ X ) @ ( G @ X ) @ one_one_complex )
@ A2 ) ) ) ).
% prod.inter_filter
thf(fact_8328_prod_Ointer__filter,axiom,
! [A2: set_Code_integer,G: code_integer > complex,P: code_integer > $o] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( groups862514429393162674omplex @ G
@ ( collect_Code_integer
@ ^ [X: code_integer] :
( ( member_Code_integer @ X @ A2 )
& ( P @ X ) ) ) )
= ( groups862514429393162674omplex
@ ^ [X: code_integer] : ( if_complex @ ( P @ X ) @ ( G @ X ) @ one_one_complex )
@ A2 ) ) ) ).
% prod.inter_filter
thf(fact_8329_prod_Ointer__filter,axiom,
! [A2: set_real,G: real > real,P: real > $o] :
( ( finite_finite_real @ A2 )
=> ( ( groups1681761925125756287l_real @ G
@ ( collect_real
@ ^ [X: real] :
( ( member_real @ X @ A2 )
& ( P @ X ) ) ) )
= ( groups1681761925125756287l_real
@ ^ [X: real] : ( if_real @ ( P @ X ) @ ( G @ X ) @ one_one_real )
@ A2 ) ) ) ).
% prod.inter_filter
thf(fact_8330_prod_Ointer__filter,axiom,
! [A2: set_VEBT_VEBT,G: vEBT_VEBT > real,P: vEBT_VEBT > $o] :
( ( finite5795047828879050333T_VEBT @ A2 )
=> ( ( groups2703838992350267259T_real @ G
@ ( collect_VEBT_VEBT
@ ^ [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ A2 )
& ( P @ X ) ) ) )
= ( groups2703838992350267259T_real
@ ^ [X: vEBT_VEBT] : ( if_real @ ( P @ X ) @ ( G @ X ) @ one_one_real )
@ A2 ) ) ) ).
% prod.inter_filter
thf(fact_8331_prod_Ointer__filter,axiom,
! [A2: set_nat,G: nat > real,P: nat > $o] :
( ( finite_finite_nat @ A2 )
=> ( ( groups129246275422532515t_real @ G
@ ( collect_nat
@ ^ [X: nat] :
( ( member_nat @ X @ A2 )
& ( P @ X ) ) ) )
= ( groups129246275422532515t_real
@ ^ [X: nat] : ( if_real @ ( P @ X ) @ ( G @ X ) @ one_one_real )
@ A2 ) ) ) ).
% prod.inter_filter
thf(fact_8332_prod_Ointer__filter,axiom,
! [A2: set_int,G: int > real,P: int > $o] :
( ( finite_finite_int @ A2 )
=> ( ( groups2316167850115554303t_real @ G
@ ( collect_int
@ ^ [X: int] :
( ( member_int @ X @ A2 )
& ( P @ X ) ) ) )
= ( groups2316167850115554303t_real
@ ^ [X: int] : ( if_real @ ( P @ X ) @ ( G @ X ) @ one_one_real )
@ A2 ) ) ) ).
% prod.inter_filter
thf(fact_8333_prod_Oshift__bounds__cl__Suc__ivl,axiom,
! [G: nat > nat,M: nat,N: nat] :
( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( suc @ N ) ) )
= ( groups708209901874060359at_nat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% prod.shift_bounds_cl_Suc_ivl
thf(fact_8334_prod_Oshift__bounds__cl__Suc__ivl,axiom,
! [G: nat > int,M: nat,N: nat] :
( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( suc @ N ) ) )
= ( groups705719431365010083at_int
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% prod.shift_bounds_cl_Suc_ivl
thf(fact_8335_power__sum,axiom,
! [C: real,F: nat > nat,A2: set_nat] :
( ( power_power_real @ C @ ( groups3542108847815614940at_nat @ F @ A2 ) )
= ( groups129246275422532515t_real
@ ^ [A3: nat] : ( power_power_real @ C @ ( F @ A3 ) )
@ A2 ) ) ).
% power_sum
thf(fact_8336_power__sum,axiom,
! [C: complex,F: nat > nat,A2: set_nat] :
( ( power_power_complex @ C @ ( groups3542108847815614940at_nat @ F @ A2 ) )
= ( groups6464643781859351333omplex
@ ^ [A3: nat] : ( power_power_complex @ C @ ( F @ A3 ) )
@ A2 ) ) ).
% power_sum
thf(fact_8337_power__sum,axiom,
! [C: code_integer,F: nat > nat,A2: set_nat] :
( ( power_8256067586552552935nteger @ C @ ( groups3542108847815614940at_nat @ F @ A2 ) )
= ( groups3455450783089532116nteger
@ ^ [A3: nat] : ( power_8256067586552552935nteger @ C @ ( F @ A3 ) )
@ A2 ) ) ).
% power_sum
thf(fact_8338_power__sum,axiom,
! [C: nat,F: nat > nat,A2: set_nat] :
( ( power_power_nat @ C @ ( groups3542108847815614940at_nat @ F @ A2 ) )
= ( groups708209901874060359at_nat
@ ^ [A3: nat] : ( power_power_nat @ C @ ( F @ A3 ) )
@ A2 ) ) ).
% power_sum
thf(fact_8339_power__sum,axiom,
! [C: int,F: nat > nat,A2: set_nat] :
( ( power_power_int @ C @ ( groups3542108847815614940at_nat @ F @ A2 ) )
= ( groups705719431365010083at_int
@ ^ [A3: nat] : ( power_power_int @ C @ ( F @ A3 ) )
@ A2 ) ) ).
% power_sum
thf(fact_8340_power__sum,axiom,
! [C: int,F: int > nat,A2: set_int] :
( ( power_power_int @ C @ ( groups4541462559716669496nt_nat @ F @ A2 ) )
= ( groups1705073143266064639nt_int
@ ^ [A3: int] : ( power_power_int @ C @ ( F @ A3 ) )
@ A2 ) ) ).
% power_sum
thf(fact_8341_prod_Oshift__bounds__cl__nat__ivl,axiom,
! [G: nat > nat,M: nat,K: nat,N: nat] :
( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) ) )
= ( groups708209901874060359at_nat
@ ^ [I3: nat] : ( G @ ( plus_plus_nat @ I3 @ K ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% prod.shift_bounds_cl_nat_ivl
thf(fact_8342_prod_Oshift__bounds__cl__nat__ivl,axiom,
! [G: nat > int,M: nat,K: nat,N: nat] :
( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) ) )
= ( groups705719431365010083at_int
@ ^ [I3: nat] : ( G @ ( plus_plus_nat @ I3 @ K ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% prod.shift_bounds_cl_nat_ivl
thf(fact_8343_prod__le__1,axiom,
! [A2: set_nat,F: nat > real] :
( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) )
& ( ord_less_eq_real @ ( F @ X3 ) @ one_one_real ) ) )
=> ( ord_less_eq_real @ ( groups129246275422532515t_real @ F @ A2 ) @ one_one_real ) ) ).
% prod_le_1
thf(fact_8344_prod__le__1,axiom,
! [A2: set_real,F: real > real] :
( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) )
& ( ord_less_eq_real @ ( F @ X3 ) @ one_one_real ) ) )
=> ( ord_less_eq_real @ ( groups1681761925125756287l_real @ F @ A2 ) @ one_one_real ) ) ).
% prod_le_1
thf(fact_8345_prod__le__1,axiom,
! [A2: set_int,F: int > real] :
( ! [X3: int] :
( ( member_int @ X3 @ A2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) )
& ( ord_less_eq_real @ ( F @ X3 ) @ one_one_real ) ) )
=> ( ord_less_eq_real @ ( groups2316167850115554303t_real @ F @ A2 ) @ one_one_real ) ) ).
% prod_le_1
thf(fact_8346_prod__le__1,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > real] :
( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) )
& ( ord_less_eq_real @ ( F @ X3 ) @ one_one_real ) ) )
=> ( ord_less_eq_real @ ( groups2703838992350267259T_real @ F @ A2 ) @ one_one_real ) ) ).
% prod_le_1
thf(fact_8347_prod__le__1,axiom,
! [A2: set_nat,F: nat > rat] :
( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) )
& ( ord_less_eq_rat @ ( F @ X3 ) @ one_one_rat ) ) )
=> ( ord_less_eq_rat @ ( groups73079841787564623at_rat @ F @ A2 ) @ one_one_rat ) ) ).
% prod_le_1
thf(fact_8348_prod__le__1,axiom,
! [A2: set_real,F: real > rat] :
( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) )
& ( ord_less_eq_rat @ ( F @ X3 ) @ one_one_rat ) ) )
=> ( ord_less_eq_rat @ ( groups4061424788464935467al_rat @ F @ A2 ) @ one_one_rat ) ) ).
% prod_le_1
thf(fact_8349_prod__le__1,axiom,
! [A2: set_int,F: int > rat] :
( ! [X3: int] :
( ( member_int @ X3 @ A2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) )
& ( ord_less_eq_rat @ ( F @ X3 ) @ one_one_rat ) ) )
=> ( ord_less_eq_rat @ ( groups1072433553688619179nt_rat @ F @ A2 ) @ one_one_rat ) ) ).
% prod_le_1
thf(fact_8350_prod__le__1,axiom,
! [A2: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ A2 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X3 ) )
& ( ord_less_eq_rat @ ( F @ X3 ) @ one_one_rat ) ) )
=> ( ord_less_eq_rat @ ( groups5726676334696518183BT_rat @ F @ A2 ) @ one_one_rat ) ) ).
% prod_le_1
thf(fact_8351_prod__le__1,axiom,
! [A2: set_real,F: real > nat] :
( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X3 ) )
& ( ord_less_eq_nat @ ( F @ X3 ) @ one_one_nat ) ) )
=> ( ord_less_eq_nat @ ( groups4696554848551431203al_nat @ F @ A2 ) @ one_one_nat ) ) ).
% prod_le_1
thf(fact_8352_prod__le__1,axiom,
! [A2: set_int,F: int > nat] :
( ! [X3: int] :
( ( member_int @ X3 @ A2 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X3 ) )
& ( ord_less_eq_nat @ ( F @ X3 ) @ one_one_nat ) ) )
=> ( ord_less_eq_nat @ ( groups1707563613775114915nt_nat @ F @ A2 ) @ one_one_nat ) ) ).
% prod_le_1
thf(fact_8353_prod_Orelated,axiom,
! [R: complex > complex > $o,S: set_nat,H2: nat > complex,G: nat > complex] :
( ( R @ one_one_complex @ one_one_complex )
=> ( ! [X1: complex,Y1: complex,X22: complex,Y23: complex] :
( ( ( R @ X1 @ X22 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( times_times_complex @ X1 @ Y1 ) @ ( times_times_complex @ X22 @ Y23 ) ) )
=> ( ( finite_finite_nat @ S )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ S )
=> ( R @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
=> ( R @ ( groups6464643781859351333omplex @ H2 @ S ) @ ( groups6464643781859351333omplex @ G @ S ) ) ) ) ) ) ).
% prod.related
thf(fact_8354_prod_Orelated,axiom,
! [R: complex > complex > $o,S: set_int,H2: int > complex,G: int > complex] :
( ( R @ one_one_complex @ one_one_complex )
=> ( ! [X1: complex,Y1: complex,X22: complex,Y23: complex] :
( ( ( R @ X1 @ X22 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( times_times_complex @ X1 @ Y1 ) @ ( times_times_complex @ X22 @ Y23 ) ) )
=> ( ( finite_finite_int @ S )
=> ( ! [X3: int] :
( ( member_int @ X3 @ S )
=> ( R @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
=> ( R @ ( groups7440179247065528705omplex @ H2 @ S ) @ ( groups7440179247065528705omplex @ G @ S ) ) ) ) ) ) ).
% prod.related
thf(fact_8355_prod_Orelated,axiom,
! [R: complex > complex > $o,S: set_complex,H2: complex > complex,G: complex > complex] :
( ( R @ one_one_complex @ one_one_complex )
=> ( ! [X1: complex,Y1: complex,X22: complex,Y23: complex] :
( ( ( R @ X1 @ X22 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( times_times_complex @ X1 @ Y1 ) @ ( times_times_complex @ X22 @ Y23 ) ) )
=> ( ( finite3207457112153483333omplex @ S )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ S )
=> ( R @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
=> ( R @ ( groups3708469109370488835omplex @ H2 @ S ) @ ( groups3708469109370488835omplex @ G @ S ) ) ) ) ) ) ).
% prod.related
thf(fact_8356_prod_Orelated,axiom,
! [R: complex > complex > $o,S: set_Code_integer,H2: code_integer > complex,G: code_integer > complex] :
( ( R @ one_one_complex @ one_one_complex )
=> ( ! [X1: complex,Y1: complex,X22: complex,Y23: complex] :
( ( ( R @ X1 @ X22 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( times_times_complex @ X1 @ Y1 ) @ ( times_times_complex @ X22 @ Y23 ) ) )
=> ( ( finite6017078050557962740nteger @ S )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ S )
=> ( R @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
=> ( R @ ( groups862514429393162674omplex @ H2 @ S ) @ ( groups862514429393162674omplex @ G @ S ) ) ) ) ) ) ).
% prod.related
thf(fact_8357_prod_Orelated,axiom,
! [R: real > real > $o,S: set_nat,H2: nat > real,G: nat > real] :
( ( R @ one_one_real @ one_one_real )
=> ( ! [X1: real,Y1: real,X22: real,Y23: real] :
( ( ( R @ X1 @ X22 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( times_times_real @ X1 @ Y1 ) @ ( times_times_real @ X22 @ Y23 ) ) )
=> ( ( finite_finite_nat @ S )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ S )
=> ( R @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
=> ( R @ ( groups129246275422532515t_real @ H2 @ S ) @ ( groups129246275422532515t_real @ G @ S ) ) ) ) ) ) ).
% prod.related
thf(fact_8358_prod_Orelated,axiom,
! [R: real > real > $o,S: set_int,H2: int > real,G: int > real] :
( ( R @ one_one_real @ one_one_real )
=> ( ! [X1: real,Y1: real,X22: real,Y23: real] :
( ( ( R @ X1 @ X22 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( times_times_real @ X1 @ Y1 ) @ ( times_times_real @ X22 @ Y23 ) ) )
=> ( ( finite_finite_int @ S )
=> ( ! [X3: int] :
( ( member_int @ X3 @ S )
=> ( R @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
=> ( R @ ( groups2316167850115554303t_real @ H2 @ S ) @ ( groups2316167850115554303t_real @ G @ S ) ) ) ) ) ) ).
% prod.related
thf(fact_8359_prod_Orelated,axiom,
! [R: real > real > $o,S: set_complex,H2: complex > real,G: complex > real] :
( ( R @ one_one_real @ one_one_real )
=> ( ! [X1: real,Y1: real,X22: real,Y23: real] :
( ( ( R @ X1 @ X22 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( times_times_real @ X1 @ Y1 ) @ ( times_times_real @ X22 @ Y23 ) ) )
=> ( ( finite3207457112153483333omplex @ S )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ S )
=> ( R @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
=> ( R @ ( groups766887009212190081x_real @ H2 @ S ) @ ( groups766887009212190081x_real @ G @ S ) ) ) ) ) ) ).
% prod.related
thf(fact_8360_prod_Orelated,axiom,
! [R: real > real > $o,S: set_Code_integer,H2: code_integer > real,G: code_integer > real] :
( ( R @ one_one_real @ one_one_real )
=> ( ! [X1: real,Y1: real,X22: real,Y23: real] :
( ( ( R @ X1 @ X22 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( times_times_real @ X1 @ Y1 ) @ ( times_times_real @ X22 @ Y23 ) ) )
=> ( ( finite6017078050557962740nteger @ S )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ S )
=> ( R @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
=> ( R @ ( groups9004974159866482096r_real @ H2 @ S ) @ ( groups9004974159866482096r_real @ G @ S ) ) ) ) ) ) ).
% prod.related
thf(fact_8361_prod_Orelated,axiom,
! [R: rat > rat > $o,S: set_nat,H2: nat > rat,G: nat > rat] :
( ( R @ one_one_rat @ one_one_rat )
=> ( ! [X1: rat,Y1: rat,X22: rat,Y23: rat] :
( ( ( R @ X1 @ X22 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( times_times_rat @ X1 @ Y1 ) @ ( times_times_rat @ X22 @ Y23 ) ) )
=> ( ( finite_finite_nat @ S )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ S )
=> ( R @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
=> ( R @ ( groups73079841787564623at_rat @ H2 @ S ) @ ( groups73079841787564623at_rat @ G @ S ) ) ) ) ) ) ).
% prod.related
thf(fact_8362_prod_Orelated,axiom,
! [R: rat > rat > $o,S: set_int,H2: int > rat,G: int > rat] :
( ( R @ one_one_rat @ one_one_rat )
=> ( ! [X1: rat,Y1: rat,X22: rat,Y23: rat] :
( ( ( R @ X1 @ X22 )
& ( R @ Y1 @ Y23 ) )
=> ( R @ ( times_times_rat @ X1 @ Y1 ) @ ( times_times_rat @ X22 @ Y23 ) ) )
=> ( ( finite_finite_int @ S )
=> ( ! [X3: int] :
( ( member_int @ X3 @ S )
=> ( R @ ( H2 @ X3 ) @ ( G @ X3 ) ) )
=> ( R @ ( groups1072433553688619179nt_rat @ H2 @ S ) @ ( groups1072433553688619179nt_rat @ G @ S ) ) ) ) ) ) ).
% prod.related
thf(fact_8363_prod__dvd__prod__subset2,axiom,
! [B4: set_real,A2: set_real,F: real > nat,G: real > nat] :
( ( finite_finite_real @ B4 )
=> ( ( ord_less_eq_set_real @ A2 @ B4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( dvd_dvd_nat @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_nat @ ( groups4696554848551431203al_nat @ F @ A2 ) @ ( groups4696554848551431203al_nat @ G @ B4 ) ) ) ) ) ).
% prod_dvd_prod_subset2
thf(fact_8364_prod__dvd__prod__subset2,axiom,
! [B4: set_VEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > nat,G: vEBT_VEBT > nat] :
( ( finite5795047828879050333T_VEBT @ B4 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ B4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ A2 )
=> ( dvd_dvd_nat @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_nat @ ( groups6361806394783013919BT_nat @ F @ A2 ) @ ( groups6361806394783013919BT_nat @ G @ B4 ) ) ) ) ) ).
% prod_dvd_prod_subset2
thf(fact_8365_prod__dvd__prod__subset2,axiom,
! [B4: set_int,A2: set_int,F: int > nat,G: int > nat] :
( ( finite_finite_int @ B4 )
=> ( ( ord_less_eq_set_int @ A2 @ B4 )
=> ( ! [A4: int] :
( ( member_int @ A4 @ A2 )
=> ( dvd_dvd_nat @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_nat @ ( groups1707563613775114915nt_nat @ F @ A2 ) @ ( groups1707563613775114915nt_nat @ G @ B4 ) ) ) ) ) ).
% prod_dvd_prod_subset2
thf(fact_8366_prod__dvd__prod__subset2,axiom,
! [B4: set_complex,A2: set_complex,F: complex > nat,G: complex > nat] :
( ( finite3207457112153483333omplex @ B4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B4 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ A2 )
=> ( dvd_dvd_nat @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_nat @ ( groups861055069439313189ex_nat @ F @ A2 ) @ ( groups861055069439313189ex_nat @ G @ B4 ) ) ) ) ) ).
% prod_dvd_prod_subset2
thf(fact_8367_prod__dvd__prod__subset2,axiom,
! [B4: set_Code_integer,A2: set_Code_integer,F: code_integer > nat,G: code_integer > nat] :
( ( finite6017078050557962740nteger @ B4 )
=> ( ( ord_le7084787975880047091nteger @ A2 @ B4 )
=> ( ! [A4: code_integer] :
( ( member_Code_integer @ A4 @ A2 )
=> ( dvd_dvd_nat @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_nat @ ( groups3190895334310489300er_nat @ F @ A2 ) @ ( groups3190895334310489300er_nat @ G @ B4 ) ) ) ) ) ).
% prod_dvd_prod_subset2
thf(fact_8368_prod__dvd__prod__subset2,axiom,
! [B4: set_real,A2: set_real,F: real > int,G: real > int] :
( ( finite_finite_real @ B4 )
=> ( ( ord_less_eq_set_real @ A2 @ B4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( dvd_dvd_int @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_int @ ( groups4694064378042380927al_int @ F @ A2 ) @ ( groups4694064378042380927al_int @ G @ B4 ) ) ) ) ) ).
% prod_dvd_prod_subset2
thf(fact_8369_prod__dvd__prod__subset2,axiom,
! [B4: set_VEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > int,G: vEBT_VEBT > int] :
( ( finite5795047828879050333T_VEBT @ B4 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ B4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ A2 )
=> ( dvd_dvd_int @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_int @ ( groups6359315924273963643BT_int @ F @ A2 ) @ ( groups6359315924273963643BT_int @ G @ B4 ) ) ) ) ) ).
% prod_dvd_prod_subset2
thf(fact_8370_prod__dvd__prod__subset2,axiom,
! [B4: set_complex,A2: set_complex,F: complex > int,G: complex > int] :
( ( finite3207457112153483333omplex @ B4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B4 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ A2 )
=> ( dvd_dvd_int @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_int @ ( groups858564598930262913ex_int @ F @ A2 ) @ ( groups858564598930262913ex_int @ G @ B4 ) ) ) ) ) ).
% prod_dvd_prod_subset2
thf(fact_8371_prod__dvd__prod__subset2,axiom,
! [B4: set_Code_integer,A2: set_Code_integer,F: code_integer > int,G: code_integer > int] :
( ( finite6017078050557962740nteger @ B4 )
=> ( ( ord_le7084787975880047091nteger @ A2 @ B4 )
=> ( ! [A4: code_integer] :
( ( member_Code_integer @ A4 @ A2 )
=> ( dvd_dvd_int @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_int @ ( groups3188404863801439024er_int @ F @ A2 ) @ ( groups3188404863801439024er_int @ G @ B4 ) ) ) ) ) ).
% prod_dvd_prod_subset2
thf(fact_8372_prod__dvd__prod__subset2,axiom,
! [B4: set_nat,A2: set_nat,F: nat > nat,G: nat > nat] :
( ( finite_finite_nat @ B4 )
=> ( ( ord_less_eq_set_nat @ A2 @ B4 )
=> ( ! [A4: nat] :
( ( member_nat @ A4 @ A2 )
=> ( dvd_dvd_nat @ ( F @ A4 ) @ ( G @ A4 ) ) )
=> ( dvd_dvd_nat @ ( groups708209901874060359at_nat @ F @ A2 ) @ ( groups708209901874060359at_nat @ G @ B4 ) ) ) ) ) ).
% prod_dvd_prod_subset2
thf(fact_8373_prod__dvd__prod__subset,axiom,
! [B4: set_int,A2: set_int,F: int > nat] :
( ( finite_finite_int @ B4 )
=> ( ( ord_less_eq_set_int @ A2 @ B4 )
=> ( dvd_dvd_nat @ ( groups1707563613775114915nt_nat @ F @ A2 ) @ ( groups1707563613775114915nt_nat @ F @ B4 ) ) ) ) ).
% prod_dvd_prod_subset
thf(fact_8374_prod__dvd__prod__subset,axiom,
! [B4: set_complex,A2: set_complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ B4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B4 )
=> ( dvd_dvd_nat @ ( groups861055069439313189ex_nat @ F @ A2 ) @ ( groups861055069439313189ex_nat @ F @ B4 ) ) ) ) ).
% prod_dvd_prod_subset
thf(fact_8375_prod__dvd__prod__subset,axiom,
! [B4: set_Code_integer,A2: set_Code_integer,F: code_integer > nat] :
( ( finite6017078050557962740nteger @ B4 )
=> ( ( ord_le7084787975880047091nteger @ A2 @ B4 )
=> ( dvd_dvd_nat @ ( groups3190895334310489300er_nat @ F @ A2 ) @ ( groups3190895334310489300er_nat @ F @ B4 ) ) ) ) ).
% prod_dvd_prod_subset
thf(fact_8376_prod__dvd__prod__subset,axiom,
! [B4: set_complex,A2: set_complex,F: complex > int] :
( ( finite3207457112153483333omplex @ B4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B4 )
=> ( dvd_dvd_int @ ( groups858564598930262913ex_int @ F @ A2 ) @ ( groups858564598930262913ex_int @ F @ B4 ) ) ) ) ).
% prod_dvd_prod_subset
thf(fact_8377_prod__dvd__prod__subset,axiom,
! [B4: set_Code_integer,A2: set_Code_integer,F: code_integer > int] :
( ( finite6017078050557962740nteger @ B4 )
=> ( ( ord_le7084787975880047091nteger @ A2 @ B4 )
=> ( dvd_dvd_int @ ( groups3188404863801439024er_int @ F @ A2 ) @ ( groups3188404863801439024er_int @ F @ B4 ) ) ) ) ).
% prod_dvd_prod_subset
thf(fact_8378_prod__dvd__prod__subset,axiom,
! [B4: set_nat,A2: set_nat,F: nat > nat] :
( ( finite_finite_nat @ B4 )
=> ( ( ord_less_eq_set_nat @ A2 @ B4 )
=> ( dvd_dvd_nat @ ( groups708209901874060359at_nat @ F @ A2 ) @ ( groups708209901874060359at_nat @ F @ B4 ) ) ) ) ).
% prod_dvd_prod_subset
thf(fact_8379_prod__dvd__prod__subset,axiom,
! [B4: set_nat,A2: set_nat,F: nat > int] :
( ( finite_finite_nat @ B4 )
=> ( ( ord_less_eq_set_nat @ A2 @ B4 )
=> ( dvd_dvd_int @ ( groups705719431365010083at_int @ F @ A2 ) @ ( groups705719431365010083at_int @ F @ B4 ) ) ) ) ).
% prod_dvd_prod_subset
thf(fact_8380_prod__dvd__prod__subset,axiom,
! [B4: set_int,A2: set_int,F: int > int] :
( ( finite_finite_int @ B4 )
=> ( ( ord_less_eq_set_int @ A2 @ B4 )
=> ( dvd_dvd_int @ ( groups1705073143266064639nt_int @ F @ A2 ) @ ( groups1705073143266064639nt_int @ F @ B4 ) ) ) ) ).
% prod_dvd_prod_subset
thf(fact_8381_prod_Oreindex__bij__witness__not__neutral,axiom,
! [S6: set_real,T4: set_real,S: set_real,I: real > real,J: real > real,T3: set_real,G: real > complex,H2: real > complex] :
( ( finite_finite_real @ S6 )
=> ( ( finite_finite_real @ T4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S @ S6 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S @ S6 ) )
=> ( member_real @ ( J @ A4 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( ( J @ ( I @ B3 ) )
= B3 ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( member_real @ ( I @ B3 ) @ ( minus_minus_set_real @ S @ S6 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S6 )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ T4 )
=> ( ( H2 @ B3 )
= one_one_complex ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups713298508707869441omplex @ G @ S )
= ( groups713298508707869441omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% prod.reindex_bij_witness_not_neutral
thf(fact_8382_prod_Oreindex__bij__witness__not__neutral,axiom,
! [S6: set_real,T4: set_VEBT_VEBT,S: set_real,I: vEBT_VEBT > real,J: real > vEBT_VEBT,T3: set_VEBT_VEBT,G: real > complex,H2: vEBT_VEBT > complex] :
( ( finite_finite_real @ S6 )
=> ( ( finite5795047828879050333T_VEBT @ T4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S @ S6 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S @ S6 ) )
=> ( member_VEBT_VEBT @ ( J @ A4 ) @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) ) )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
=> ( ( J @ ( I @ B3 ) )
= B3 ) )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
=> ( member_real @ ( I @ B3 ) @ ( minus_minus_set_real @ S @ S6 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S6 )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ T4 )
=> ( ( H2 @ B3 )
= one_one_complex ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups713298508707869441omplex @ G @ S )
= ( groups127312072573709053omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% prod.reindex_bij_witness_not_neutral
thf(fact_8383_prod_Oreindex__bij__witness__not__neutral,axiom,
! [S6: set_VEBT_VEBT,T4: set_real,S: set_VEBT_VEBT,I: real > vEBT_VEBT,J: vEBT_VEBT > real,T3: set_real,G: vEBT_VEBT > complex,H2: real > complex] :
( ( finite5795047828879050333T_VEBT @ S6 )
=> ( ( finite_finite_real @ T4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) )
=> ( member_real @ ( J @ A4 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( ( J @ ( I @ B3 ) )
= B3 ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ ( minus_minus_set_real @ T3 @ T4 ) )
=> ( member_VEBT_VEBT @ ( I @ B3 ) @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S6 )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ T4 )
=> ( ( H2 @ B3 )
= one_one_complex ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups127312072573709053omplex @ G @ S )
= ( groups713298508707869441omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% prod.reindex_bij_witness_not_neutral
thf(fact_8384_prod_Oreindex__bij__witness__not__neutral,axiom,
! [S6: set_VEBT_VEBT,T4: set_VEBT_VEBT,S: set_VEBT_VEBT,I: vEBT_VEBT > vEBT_VEBT,J: vEBT_VEBT > vEBT_VEBT,T3: set_VEBT_VEBT,G: vEBT_VEBT > complex,H2: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ S6 )
=> ( ( finite5795047828879050333T_VEBT @ T4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) )
=> ( member_VEBT_VEBT @ ( J @ A4 ) @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) ) )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
=> ( ( J @ ( I @ B3 ) )
= B3 ) )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ ( minus_5127226145743854075T_VEBT @ T3 @ T4 ) )
=> ( member_VEBT_VEBT @ ( I @ B3 ) @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S6 )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ T4 )
=> ( ( H2 @ B3 )
= one_one_complex ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups127312072573709053omplex @ G @ S )
= ( groups127312072573709053omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% prod.reindex_bij_witness_not_neutral
thf(fact_8385_prod_Oreindex__bij__witness__not__neutral,axiom,
! [S6: set_real,T4: set_int,S: set_real,I: int > real,J: real > int,T3: set_int,G: real > complex,H2: int > complex] :
( ( finite_finite_real @ S6 )
=> ( ( finite_finite_int @ T4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S @ S6 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S @ S6 ) )
=> ( member_int @ ( J @ A4 ) @ ( minus_minus_set_int @ T3 @ T4 ) ) )
=> ( ! [B3: int] :
( ( member_int @ B3 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( ( J @ ( I @ B3 ) )
= B3 ) )
=> ( ! [B3: int] :
( ( member_int @ B3 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( member_real @ ( I @ B3 ) @ ( minus_minus_set_real @ S @ S6 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S6 )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B3: int] :
( ( member_int @ B3 @ T4 )
=> ( ( H2 @ B3 )
= one_one_complex ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups713298508707869441omplex @ G @ S )
= ( groups7440179247065528705omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% prod.reindex_bij_witness_not_neutral
thf(fact_8386_prod_Oreindex__bij__witness__not__neutral,axiom,
! [S6: set_VEBT_VEBT,T4: set_int,S: set_VEBT_VEBT,I: int > vEBT_VEBT,J: vEBT_VEBT > int,T3: set_int,G: vEBT_VEBT > complex,H2: int > complex] :
( ( finite5795047828879050333T_VEBT @ S6 )
=> ( ( finite_finite_int @ T4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) )
=> ( member_int @ ( J @ A4 ) @ ( minus_minus_set_int @ T3 @ T4 ) ) )
=> ( ! [B3: int] :
( ( member_int @ B3 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( ( J @ ( I @ B3 ) )
= B3 ) )
=> ( ! [B3: int] :
( ( member_int @ B3 @ ( minus_minus_set_int @ T3 @ T4 ) )
=> ( member_VEBT_VEBT @ ( I @ B3 ) @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S6 )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B3: int] :
( ( member_int @ B3 @ T4 )
=> ( ( H2 @ B3 )
= one_one_complex ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups127312072573709053omplex @ G @ S )
= ( groups7440179247065528705omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% prod.reindex_bij_witness_not_neutral
thf(fact_8387_prod_Oreindex__bij__witness__not__neutral,axiom,
! [S6: set_real,T4: set_complex,S: set_real,I: complex > real,J: real > complex,T3: set_complex,G: real > complex,H2: complex > complex] :
( ( finite_finite_real @ S6 )
=> ( ( finite3207457112153483333omplex @ T4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S @ S6 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S @ S6 ) )
=> ( member_complex @ ( J @ A4 ) @ ( minus_811609699411566653omplex @ T3 @ T4 ) ) )
=> ( ! [B3: complex] :
( ( member_complex @ B3 @ ( minus_811609699411566653omplex @ T3 @ T4 ) )
=> ( ( J @ ( I @ B3 ) )
= B3 ) )
=> ( ! [B3: complex] :
( ( member_complex @ B3 @ ( minus_811609699411566653omplex @ T3 @ T4 ) )
=> ( member_real @ ( I @ B3 ) @ ( minus_minus_set_real @ S @ S6 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S6 )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B3: complex] :
( ( member_complex @ B3 @ T4 )
=> ( ( H2 @ B3 )
= one_one_complex ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups713298508707869441omplex @ G @ S )
= ( groups3708469109370488835omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% prod.reindex_bij_witness_not_neutral
thf(fact_8388_prod_Oreindex__bij__witness__not__neutral,axiom,
! [S6: set_VEBT_VEBT,T4: set_complex,S: set_VEBT_VEBT,I: complex > vEBT_VEBT,J: vEBT_VEBT > complex,T3: set_complex,G: vEBT_VEBT > complex,H2: complex > complex] :
( ( finite5795047828879050333T_VEBT @ S6 )
=> ( ( finite3207457112153483333omplex @ T4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) )
=> ( member_complex @ ( J @ A4 ) @ ( minus_811609699411566653omplex @ T3 @ T4 ) ) )
=> ( ! [B3: complex] :
( ( member_complex @ B3 @ ( minus_811609699411566653omplex @ T3 @ T4 ) )
=> ( ( J @ ( I @ B3 ) )
= B3 ) )
=> ( ! [B3: complex] :
( ( member_complex @ B3 @ ( minus_811609699411566653omplex @ T3 @ T4 ) )
=> ( member_VEBT_VEBT @ ( I @ B3 ) @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S6 )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B3: complex] :
( ( member_complex @ B3 @ T4 )
=> ( ( H2 @ B3 )
= one_one_complex ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups127312072573709053omplex @ G @ S )
= ( groups3708469109370488835omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% prod.reindex_bij_witness_not_neutral
thf(fact_8389_prod_Oreindex__bij__witness__not__neutral,axiom,
! [S6: set_real,T4: set_Code_integer,S: set_real,I: code_integer > real,J: real > code_integer,T3: set_Code_integer,G: real > complex,H2: code_integer > complex] :
( ( finite_finite_real @ S6 )
=> ( ( finite6017078050557962740nteger @ T4 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S @ S6 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ S @ S6 ) )
=> ( member_Code_integer @ ( J @ A4 ) @ ( minus_2355218937544613996nteger @ T3 @ T4 ) ) )
=> ( ! [B3: code_integer] :
( ( member_Code_integer @ B3 @ ( minus_2355218937544613996nteger @ T3 @ T4 ) )
=> ( ( J @ ( I @ B3 ) )
= B3 ) )
=> ( ! [B3: code_integer] :
( ( member_Code_integer @ B3 @ ( minus_2355218937544613996nteger @ T3 @ T4 ) )
=> ( member_real @ ( I @ B3 ) @ ( minus_minus_set_real @ S @ S6 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S6 )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B3: code_integer] :
( ( member_Code_integer @ B3 @ T4 )
=> ( ( H2 @ B3 )
= one_one_complex ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups713298508707869441omplex @ G @ S )
= ( groups862514429393162674omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% prod.reindex_bij_witness_not_neutral
thf(fact_8390_prod_Oreindex__bij__witness__not__neutral,axiom,
! [S6: set_VEBT_VEBT,T4: set_Code_integer,S: set_VEBT_VEBT,I: code_integer > vEBT_VEBT,J: vEBT_VEBT > code_integer,T3: set_Code_integer,G: vEBT_VEBT > complex,H2: code_integer > complex] :
( ( finite5795047828879050333T_VEBT @ S6 )
=> ( ( finite6017078050557962740nteger @ T4 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) )
=> ( ( I @ ( J @ A4 ) )
= A4 ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) )
=> ( member_Code_integer @ ( J @ A4 ) @ ( minus_2355218937544613996nteger @ T3 @ T4 ) ) )
=> ( ! [B3: code_integer] :
( ( member_Code_integer @ B3 @ ( minus_2355218937544613996nteger @ T3 @ T4 ) )
=> ( ( J @ ( I @ B3 ) )
= B3 ) )
=> ( ! [B3: code_integer] :
( ( member_Code_integer @ B3 @ ( minus_2355218937544613996nteger @ T3 @ T4 ) )
=> ( member_VEBT_VEBT @ ( I @ B3 ) @ ( minus_5127226145743854075T_VEBT @ S @ S6 ) ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S6 )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B3: code_integer] :
( ( member_Code_integer @ B3 @ T4 )
=> ( ( H2 @ B3 )
= one_one_complex ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ S )
=> ( ( H2 @ ( J @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups127312072573709053omplex @ G @ S )
= ( groups862514429393162674omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).
% prod.reindex_bij_witness_not_neutral
thf(fact_8391_i__times__eq__iff,axiom,
! [W: complex,Z: complex] :
( ( ( times_times_complex @ imaginary_unit @ W )
= Z )
= ( W
= ( uminus1482373934393186551omplex @ ( times_times_complex @ imaginary_unit @ Z ) ) ) ) ).
% i_times_eq_iff
thf(fact_8392_prod_Osetdiff__irrelevant,axiom,
! [A2: set_int,G: int > complex] :
( ( finite_finite_int @ A2 )
=> ( ( groups7440179247065528705omplex @ G
@ ( minus_minus_set_int @ A2
@ ( collect_int
@ ^ [X: int] :
( ( G @ X )
= one_one_complex ) ) ) )
= ( groups7440179247065528705omplex @ G @ A2 ) ) ) ).
% prod.setdiff_irrelevant
thf(fact_8393_prod_Osetdiff__irrelevant,axiom,
! [A2: set_complex,G: complex > complex] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups3708469109370488835omplex @ G
@ ( minus_811609699411566653omplex @ A2
@ ( collect_complex
@ ^ [X: complex] :
( ( G @ X )
= one_one_complex ) ) ) )
= ( groups3708469109370488835omplex @ G @ A2 ) ) ) ).
% prod.setdiff_irrelevant
thf(fact_8394_prod_Osetdiff__irrelevant,axiom,
! [A2: set_Code_integer,G: code_integer > complex] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( groups862514429393162674omplex @ G
@ ( minus_2355218937544613996nteger @ A2
@ ( collect_Code_integer
@ ^ [X: code_integer] :
( ( G @ X )
= one_one_complex ) ) ) )
= ( groups862514429393162674omplex @ G @ A2 ) ) ) ).
% prod.setdiff_irrelevant
thf(fact_8395_prod_Osetdiff__irrelevant,axiom,
! [A2: set_int,G: int > real] :
( ( finite_finite_int @ A2 )
=> ( ( groups2316167850115554303t_real @ G
@ ( minus_minus_set_int @ A2
@ ( collect_int
@ ^ [X: int] :
( ( G @ X )
= one_one_real ) ) ) )
= ( groups2316167850115554303t_real @ G @ A2 ) ) ) ).
% prod.setdiff_irrelevant
thf(fact_8396_prod_Osetdiff__irrelevant,axiom,
! [A2: set_complex,G: complex > real] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups766887009212190081x_real @ G
@ ( minus_811609699411566653omplex @ A2
@ ( collect_complex
@ ^ [X: complex] :
( ( G @ X )
= one_one_real ) ) ) )
= ( groups766887009212190081x_real @ G @ A2 ) ) ) ).
% prod.setdiff_irrelevant
thf(fact_8397_prod_Osetdiff__irrelevant,axiom,
! [A2: set_Code_integer,G: code_integer > real] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( groups9004974159866482096r_real @ G
@ ( minus_2355218937544613996nteger @ A2
@ ( collect_Code_integer
@ ^ [X: code_integer] :
( ( G @ X )
= one_one_real ) ) ) )
= ( groups9004974159866482096r_real @ G @ A2 ) ) ) ).
% prod.setdiff_irrelevant
thf(fact_8398_prod_Osetdiff__irrelevant,axiom,
! [A2: set_int,G: int > rat] :
( ( finite_finite_int @ A2 )
=> ( ( groups1072433553688619179nt_rat @ G
@ ( minus_minus_set_int @ A2
@ ( collect_int
@ ^ [X: int] :
( ( G @ X )
= one_one_rat ) ) ) )
= ( groups1072433553688619179nt_rat @ G @ A2 ) ) ) ).
% prod.setdiff_irrelevant
thf(fact_8399_prod_Osetdiff__irrelevant,axiom,
! [A2: set_complex,G: complex > rat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups225925009352817453ex_rat @ G
@ ( minus_811609699411566653omplex @ A2
@ ( collect_complex
@ ^ [X: complex] :
( ( G @ X )
= one_one_rat ) ) ) )
= ( groups225925009352817453ex_rat @ G @ A2 ) ) ) ).
% prod.setdiff_irrelevant
thf(fact_8400_prod_Osetdiff__irrelevant,axiom,
! [A2: set_Code_integer,G: code_integer > rat] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( groups2555765274223993564er_rat @ G
@ ( minus_2355218937544613996nteger @ A2
@ ( collect_Code_integer
@ ^ [X: code_integer] :
( ( G @ X )
= one_one_rat ) ) ) )
= ( groups2555765274223993564er_rat @ G @ A2 ) ) ) ).
% prod.setdiff_irrelevant
thf(fact_8401_prod_Osetdiff__irrelevant,axiom,
! [A2: set_int,G: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ( groups1707563613775114915nt_nat @ G
@ ( minus_minus_set_int @ A2
@ ( collect_int
@ ^ [X: int] :
( ( G @ X )
= one_one_nat ) ) ) )
= ( groups1707563613775114915nt_nat @ G @ A2 ) ) ) ).
% prod.setdiff_irrelevant
thf(fact_8402_exp__sum,axiom,
! [I5: set_int,F: int > real] :
( ( finite_finite_int @ I5 )
=> ( ( exp_real @ ( groups8778361861064173332t_real @ F @ I5 ) )
= ( groups2316167850115554303t_real
@ ^ [X: int] : ( exp_real @ ( F @ X ) )
@ I5 ) ) ) ).
% exp_sum
thf(fact_8403_exp__sum,axiom,
! [I5: set_complex,F: complex > real] :
( ( finite3207457112153483333omplex @ I5 )
=> ( ( exp_real @ ( groups5808333547571424918x_real @ F @ I5 ) )
= ( groups766887009212190081x_real
@ ^ [X: complex] : ( exp_real @ ( F @ X ) )
@ I5 ) ) ) ).
% exp_sum
thf(fact_8404_exp__sum,axiom,
! [I5: set_Code_integer,F: code_integer > real] :
( ( finite6017078050557962740nteger @ I5 )
=> ( ( exp_real @ ( groups1270011288395367621r_real @ F @ I5 ) )
= ( groups9004974159866482096r_real
@ ^ [X: code_integer] : ( exp_real @ ( F @ X ) )
@ I5 ) ) ) ).
% exp_sum
thf(fact_8405_exp__sum,axiom,
! [I5: set_nat,F: nat > complex] :
( ( finite_finite_nat @ I5 )
=> ( ( exp_complex @ ( groups2073611262835488442omplex @ F @ I5 ) )
= ( groups6464643781859351333omplex
@ ^ [X: nat] : ( exp_complex @ ( F @ X ) )
@ I5 ) ) ) ).
% exp_sum
thf(fact_8406_exp__sum,axiom,
! [I5: set_int,F: int > complex] :
( ( finite_finite_int @ I5 )
=> ( ( exp_complex @ ( groups3049146728041665814omplex @ F @ I5 ) )
= ( groups7440179247065528705omplex
@ ^ [X: int] : ( exp_complex @ ( F @ X ) )
@ I5 ) ) ) ).
% exp_sum
thf(fact_8407_exp__sum,axiom,
! [I5: set_Code_integer,F: code_integer > complex] :
( ( finite6017078050557962740nteger @ I5 )
=> ( ( exp_complex @ ( groups8024822376189712711omplex @ F @ I5 ) )
= ( groups862514429393162674omplex
@ ^ [X: code_integer] : ( exp_complex @ ( F @ X ) )
@ I5 ) ) ) ).
% exp_sum
thf(fact_8408_exp__sum,axiom,
! [I5: set_complex,F: complex > complex] :
( ( finite3207457112153483333omplex @ I5 )
=> ( ( exp_complex @ ( groups7754918857620584856omplex @ F @ I5 ) )
= ( groups3708469109370488835omplex
@ ^ [X: complex] : ( exp_complex @ ( F @ X ) )
@ I5 ) ) ) ).
% exp_sum
thf(fact_8409_exp__sum,axiom,
! [I5: set_nat,F: nat > real] :
( ( finite_finite_nat @ I5 )
=> ( ( exp_real @ ( groups6591440286371151544t_real @ F @ I5 ) )
= ( groups129246275422532515t_real
@ ^ [X: nat] : ( exp_real @ ( F @ X ) )
@ I5 ) ) ) ).
% exp_sum
thf(fact_8410_prod_Onat__diff__reindex,axiom,
! [G: nat > nat,N: nat] :
( ( groups708209901874060359at_nat
@ ^ [I3: nat] : ( G @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) )
@ ( set_ord_lessThan_nat @ N ) )
= ( groups708209901874060359at_nat @ G @ ( set_ord_lessThan_nat @ N ) ) ) ).
% prod.nat_diff_reindex
thf(fact_8411_prod_Onat__diff__reindex,axiom,
! [G: nat > int,N: nat] :
( ( groups705719431365010083at_int
@ ^ [I3: nat] : ( G @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) )
@ ( set_ord_lessThan_nat @ N ) )
= ( groups705719431365010083at_int @ G @ ( set_ord_lessThan_nat @ N ) ) ) ).
% prod.nat_diff_reindex
thf(fact_8412_prod_OatLeastAtMost__rev,axiom,
! [G: nat > nat,N: nat,M: nat] :
( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ N @ M ) )
= ( groups708209901874060359at_nat
@ ^ [I3: nat] : ( G @ ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ I3 ) )
@ ( set_or1269000886237332187st_nat @ N @ M ) ) ) ).
% prod.atLeastAtMost_rev
thf(fact_8413_prod_OatLeastAtMost__rev,axiom,
! [G: nat > int,N: nat,M: nat] :
( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ N @ M ) )
= ( groups705719431365010083at_int
@ ^ [I3: nat] : ( G @ ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ I3 ) )
@ ( set_or1269000886237332187st_nat @ N @ M ) ) ) ).
% prod.atLeastAtMost_rev
thf(fact_8414_less__1__prod2,axiom,
! [I5: set_real,I: real,F: real > real] :
( ( finite_finite_real @ I5 )
=> ( ( member_real @ I @ I5 )
=> ( ( ord_less_real @ one_one_real @ ( F @ I ) )
=> ( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_eq_real @ one_one_real @ ( F @ I2 ) ) )
=> ( ord_less_real @ one_one_real @ ( groups1681761925125756287l_real @ F @ I5 ) ) ) ) ) ) ).
% less_1_prod2
thf(fact_8415_less__1__prod2,axiom,
! [I5: set_VEBT_VEBT,I: vEBT_VEBT,F: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ I5 )
=> ( ( member_VEBT_VEBT @ I @ I5 )
=> ( ( ord_less_real @ one_one_real @ ( F @ I ) )
=> ( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ I5 )
=> ( ord_less_eq_real @ one_one_real @ ( F @ I2 ) ) )
=> ( ord_less_real @ one_one_real @ ( groups2703838992350267259T_real @ F @ I5 ) ) ) ) ) ) ).
% less_1_prod2
thf(fact_8416_less__1__prod2,axiom,
! [I5: set_nat,I: nat,F: nat > real] :
( ( finite_finite_nat @ I5 )
=> ( ( member_nat @ I @ I5 )
=> ( ( ord_less_real @ one_one_real @ ( F @ I ) )
=> ( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( ord_less_eq_real @ one_one_real @ ( F @ I2 ) ) )
=> ( ord_less_real @ one_one_real @ ( groups129246275422532515t_real @ F @ I5 ) ) ) ) ) ) ).
% less_1_prod2
thf(fact_8417_less__1__prod2,axiom,
! [I5: set_int,I: int,F: int > real] :
( ( finite_finite_int @ I5 )
=> ( ( member_int @ I @ I5 )
=> ( ( ord_less_real @ one_one_real @ ( F @ I ) )
=> ( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_eq_real @ one_one_real @ ( F @ I2 ) ) )
=> ( ord_less_real @ one_one_real @ ( groups2316167850115554303t_real @ F @ I5 ) ) ) ) ) ) ).
% less_1_prod2
thf(fact_8418_less__1__prod2,axiom,
! [I5: set_complex,I: complex,F: complex > real] :
( ( finite3207457112153483333omplex @ I5 )
=> ( ( member_complex @ I @ I5 )
=> ( ( ord_less_real @ one_one_real @ ( F @ I ) )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( ord_less_eq_real @ one_one_real @ ( F @ I2 ) ) )
=> ( ord_less_real @ one_one_real @ ( groups766887009212190081x_real @ F @ I5 ) ) ) ) ) ) ).
% less_1_prod2
thf(fact_8419_less__1__prod2,axiom,
! [I5: set_Code_integer,I: code_integer,F: code_integer > real] :
( ( finite6017078050557962740nteger @ I5 )
=> ( ( member_Code_integer @ I @ I5 )
=> ( ( ord_less_real @ one_one_real @ ( F @ I ) )
=> ( ! [I2: code_integer] :
( ( member_Code_integer @ I2 @ I5 )
=> ( ord_less_eq_real @ one_one_real @ ( F @ I2 ) ) )
=> ( ord_less_real @ one_one_real @ ( groups9004974159866482096r_real @ F @ I5 ) ) ) ) ) ) ).
% less_1_prod2
thf(fact_8420_less__1__prod2,axiom,
! [I5: set_real,I: real,F: real > rat] :
( ( finite_finite_real @ I5 )
=> ( ( member_real @ I @ I5 )
=> ( ( ord_less_rat @ one_one_rat @ ( F @ I ) )
=> ( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ I2 ) ) )
=> ( ord_less_rat @ one_one_rat @ ( groups4061424788464935467al_rat @ F @ I5 ) ) ) ) ) ) ).
% less_1_prod2
thf(fact_8421_less__1__prod2,axiom,
! [I5: set_VEBT_VEBT,I: vEBT_VEBT,F: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ I5 )
=> ( ( member_VEBT_VEBT @ I @ I5 )
=> ( ( ord_less_rat @ one_one_rat @ ( F @ I ) )
=> ( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ I5 )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ I2 ) ) )
=> ( ord_less_rat @ one_one_rat @ ( groups5726676334696518183BT_rat @ F @ I5 ) ) ) ) ) ) ).
% less_1_prod2
thf(fact_8422_less__1__prod2,axiom,
! [I5: set_nat,I: nat,F: nat > rat] :
( ( finite_finite_nat @ I5 )
=> ( ( member_nat @ I @ I5 )
=> ( ( ord_less_rat @ one_one_rat @ ( F @ I ) )
=> ( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ I2 ) ) )
=> ( ord_less_rat @ one_one_rat @ ( groups73079841787564623at_rat @ F @ I5 ) ) ) ) ) ) ).
% less_1_prod2
thf(fact_8423_less__1__prod2,axiom,
! [I5: set_int,I: int,F: int > rat] :
( ( finite_finite_int @ I5 )
=> ( ( member_int @ I @ I5 )
=> ( ( ord_less_rat @ one_one_rat @ ( F @ I ) )
=> ( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ I2 ) ) )
=> ( ord_less_rat @ one_one_rat @ ( groups1072433553688619179nt_rat @ F @ I5 ) ) ) ) ) ) ).
% less_1_prod2
thf(fact_8424_Complex__eq__i,axiom,
! [X2: real,Y2: real] :
( ( ( complex2 @ X2 @ Y2 )
= imaginary_unit )
= ( ( X2 = zero_zero_real )
& ( Y2 = one_one_real ) ) ) ).
% Complex_eq_i
thf(fact_8425_imaginary__unit_Ocode,axiom,
( imaginary_unit
= ( complex2 @ zero_zero_real @ one_one_real ) ) ).
% imaginary_unit.code
thf(fact_8426_prod_Osame__carrier,axiom,
! [C5: set_real,A2: set_real,B4: set_real,G: real > complex,H2: real > complex] :
( ( finite_finite_real @ C5 )
=> ( ( ord_less_eq_set_real @ A2 @ C5 )
=> ( ( ord_less_eq_set_real @ B4 @ C5 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C5 @ A2 ) )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ ( minus_minus_set_real @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= one_one_complex ) )
=> ( ( ( groups713298508707869441omplex @ G @ A2 )
= ( groups713298508707869441omplex @ H2 @ B4 ) )
= ( ( groups713298508707869441omplex @ G @ C5 )
= ( groups713298508707869441omplex @ H2 @ C5 ) ) ) ) ) ) ) ) ).
% prod.same_carrier
thf(fact_8427_prod_Osame__carrier,axiom,
! [C5: set_VEBT_VEBT,A2: set_VEBT_VEBT,B4: set_VEBT_VEBT,G: vEBT_VEBT > complex,H2: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ C5 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ C5 )
=> ( ( ord_le4337996190870823476T_VEBT @ B4 @ C5 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ C5 @ A2 ) )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ ( minus_5127226145743854075T_VEBT @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= one_one_complex ) )
=> ( ( ( groups127312072573709053omplex @ G @ A2 )
= ( groups127312072573709053omplex @ H2 @ B4 ) )
= ( ( groups127312072573709053omplex @ G @ C5 )
= ( groups127312072573709053omplex @ H2 @ C5 ) ) ) ) ) ) ) ) ).
% prod.same_carrier
thf(fact_8428_prod_Osame__carrier,axiom,
! [C5: set_int,A2: set_int,B4: set_int,G: int > complex,H2: int > complex] :
( ( finite_finite_int @ C5 )
=> ( ( ord_less_eq_set_int @ A2 @ C5 )
=> ( ( ord_less_eq_set_int @ B4 @ C5 )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ C5 @ A2 ) )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B3: int] :
( ( member_int @ B3 @ ( minus_minus_set_int @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= one_one_complex ) )
=> ( ( ( groups7440179247065528705omplex @ G @ A2 )
= ( groups7440179247065528705omplex @ H2 @ B4 ) )
= ( ( groups7440179247065528705omplex @ G @ C5 )
= ( groups7440179247065528705omplex @ H2 @ C5 ) ) ) ) ) ) ) ) ).
% prod.same_carrier
thf(fact_8429_prod_Osame__carrier,axiom,
! [C5: set_complex,A2: set_complex,B4: set_complex,G: complex > complex,H2: complex > complex] :
( ( finite3207457112153483333omplex @ C5 )
=> ( ( ord_le211207098394363844omplex @ A2 @ C5 )
=> ( ( ord_le211207098394363844omplex @ B4 @ C5 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ ( minus_811609699411566653omplex @ C5 @ A2 ) )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B3: complex] :
( ( member_complex @ B3 @ ( minus_811609699411566653omplex @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= one_one_complex ) )
=> ( ( ( groups3708469109370488835omplex @ G @ A2 )
= ( groups3708469109370488835omplex @ H2 @ B4 ) )
= ( ( groups3708469109370488835omplex @ G @ C5 )
= ( groups3708469109370488835omplex @ H2 @ C5 ) ) ) ) ) ) ) ) ).
% prod.same_carrier
thf(fact_8430_prod_Osame__carrier,axiom,
! [C5: set_Code_integer,A2: set_Code_integer,B4: set_Code_integer,G: code_integer > complex,H2: code_integer > complex] :
( ( finite6017078050557962740nteger @ C5 )
=> ( ( ord_le7084787975880047091nteger @ A2 @ C5 )
=> ( ( ord_le7084787975880047091nteger @ B4 @ C5 )
=> ( ! [A4: code_integer] :
( ( member_Code_integer @ A4 @ ( minus_2355218937544613996nteger @ C5 @ A2 ) )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B3: code_integer] :
( ( member_Code_integer @ B3 @ ( minus_2355218937544613996nteger @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= one_one_complex ) )
=> ( ( ( groups862514429393162674omplex @ G @ A2 )
= ( groups862514429393162674omplex @ H2 @ B4 ) )
= ( ( groups862514429393162674omplex @ G @ C5 )
= ( groups862514429393162674omplex @ H2 @ C5 ) ) ) ) ) ) ) ) ).
% prod.same_carrier
thf(fact_8431_prod_Osame__carrier,axiom,
! [C5: set_real,A2: set_real,B4: set_real,G: real > real,H2: real > real] :
( ( finite_finite_real @ C5 )
=> ( ( ord_less_eq_set_real @ A2 @ C5 )
=> ( ( ord_less_eq_set_real @ B4 @ C5 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C5 @ A2 ) )
=> ( ( G @ A4 )
= one_one_real ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ ( minus_minus_set_real @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= one_one_real ) )
=> ( ( ( groups1681761925125756287l_real @ G @ A2 )
= ( groups1681761925125756287l_real @ H2 @ B4 ) )
= ( ( groups1681761925125756287l_real @ G @ C5 )
= ( groups1681761925125756287l_real @ H2 @ C5 ) ) ) ) ) ) ) ) ).
% prod.same_carrier
thf(fact_8432_prod_Osame__carrier,axiom,
! [C5: set_VEBT_VEBT,A2: set_VEBT_VEBT,B4: set_VEBT_VEBT,G: vEBT_VEBT > real,H2: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ C5 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ C5 )
=> ( ( ord_le4337996190870823476T_VEBT @ B4 @ C5 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ C5 @ A2 ) )
=> ( ( G @ A4 )
= one_one_real ) )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ ( minus_5127226145743854075T_VEBT @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= one_one_real ) )
=> ( ( ( groups2703838992350267259T_real @ G @ A2 )
= ( groups2703838992350267259T_real @ H2 @ B4 ) )
= ( ( groups2703838992350267259T_real @ G @ C5 )
= ( groups2703838992350267259T_real @ H2 @ C5 ) ) ) ) ) ) ) ) ).
% prod.same_carrier
thf(fact_8433_prod_Osame__carrier,axiom,
! [C5: set_int,A2: set_int,B4: set_int,G: int > real,H2: int > real] :
( ( finite_finite_int @ C5 )
=> ( ( ord_less_eq_set_int @ A2 @ C5 )
=> ( ( ord_less_eq_set_int @ B4 @ C5 )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ C5 @ A2 ) )
=> ( ( G @ A4 )
= one_one_real ) )
=> ( ! [B3: int] :
( ( member_int @ B3 @ ( minus_minus_set_int @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= one_one_real ) )
=> ( ( ( groups2316167850115554303t_real @ G @ A2 )
= ( groups2316167850115554303t_real @ H2 @ B4 ) )
= ( ( groups2316167850115554303t_real @ G @ C5 )
= ( groups2316167850115554303t_real @ H2 @ C5 ) ) ) ) ) ) ) ) ).
% prod.same_carrier
thf(fact_8434_prod_Osame__carrier,axiom,
! [C5: set_complex,A2: set_complex,B4: set_complex,G: complex > real,H2: complex > real] :
( ( finite3207457112153483333omplex @ C5 )
=> ( ( ord_le211207098394363844omplex @ A2 @ C5 )
=> ( ( ord_le211207098394363844omplex @ B4 @ C5 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ ( minus_811609699411566653omplex @ C5 @ A2 ) )
=> ( ( G @ A4 )
= one_one_real ) )
=> ( ! [B3: complex] :
( ( member_complex @ B3 @ ( minus_811609699411566653omplex @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= one_one_real ) )
=> ( ( ( groups766887009212190081x_real @ G @ A2 )
= ( groups766887009212190081x_real @ H2 @ B4 ) )
= ( ( groups766887009212190081x_real @ G @ C5 )
= ( groups766887009212190081x_real @ H2 @ C5 ) ) ) ) ) ) ) ) ).
% prod.same_carrier
thf(fact_8435_prod_Osame__carrier,axiom,
! [C5: set_Code_integer,A2: set_Code_integer,B4: set_Code_integer,G: code_integer > real,H2: code_integer > real] :
( ( finite6017078050557962740nteger @ C5 )
=> ( ( ord_le7084787975880047091nteger @ A2 @ C5 )
=> ( ( ord_le7084787975880047091nteger @ B4 @ C5 )
=> ( ! [A4: code_integer] :
( ( member_Code_integer @ A4 @ ( minus_2355218937544613996nteger @ C5 @ A2 ) )
=> ( ( G @ A4 )
= one_one_real ) )
=> ( ! [B3: code_integer] :
( ( member_Code_integer @ B3 @ ( minus_2355218937544613996nteger @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= one_one_real ) )
=> ( ( ( groups9004974159866482096r_real @ G @ A2 )
= ( groups9004974159866482096r_real @ H2 @ B4 ) )
= ( ( groups9004974159866482096r_real @ G @ C5 )
= ( groups9004974159866482096r_real @ H2 @ C5 ) ) ) ) ) ) ) ) ).
% prod.same_carrier
thf(fact_8436_prod_Osame__carrierI,axiom,
! [C5: set_real,A2: set_real,B4: set_real,G: real > complex,H2: real > complex] :
( ( finite_finite_real @ C5 )
=> ( ( ord_less_eq_set_real @ A2 @ C5 )
=> ( ( ord_less_eq_set_real @ B4 @ C5 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C5 @ A2 ) )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ ( minus_minus_set_real @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= one_one_complex ) )
=> ( ( ( groups713298508707869441omplex @ G @ C5 )
= ( groups713298508707869441omplex @ H2 @ C5 ) )
=> ( ( groups713298508707869441omplex @ G @ A2 )
= ( groups713298508707869441omplex @ H2 @ B4 ) ) ) ) ) ) ) ) ).
% prod.same_carrierI
thf(fact_8437_prod_Osame__carrierI,axiom,
! [C5: set_VEBT_VEBT,A2: set_VEBT_VEBT,B4: set_VEBT_VEBT,G: vEBT_VEBT > complex,H2: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ C5 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ C5 )
=> ( ( ord_le4337996190870823476T_VEBT @ B4 @ C5 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ C5 @ A2 ) )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ ( minus_5127226145743854075T_VEBT @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= one_one_complex ) )
=> ( ( ( groups127312072573709053omplex @ G @ C5 )
= ( groups127312072573709053omplex @ H2 @ C5 ) )
=> ( ( groups127312072573709053omplex @ G @ A2 )
= ( groups127312072573709053omplex @ H2 @ B4 ) ) ) ) ) ) ) ) ).
% prod.same_carrierI
thf(fact_8438_prod_Osame__carrierI,axiom,
! [C5: set_int,A2: set_int,B4: set_int,G: int > complex,H2: int > complex] :
( ( finite_finite_int @ C5 )
=> ( ( ord_less_eq_set_int @ A2 @ C5 )
=> ( ( ord_less_eq_set_int @ B4 @ C5 )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ C5 @ A2 ) )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B3: int] :
( ( member_int @ B3 @ ( minus_minus_set_int @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= one_one_complex ) )
=> ( ( ( groups7440179247065528705omplex @ G @ C5 )
= ( groups7440179247065528705omplex @ H2 @ C5 ) )
=> ( ( groups7440179247065528705omplex @ G @ A2 )
= ( groups7440179247065528705omplex @ H2 @ B4 ) ) ) ) ) ) ) ) ).
% prod.same_carrierI
thf(fact_8439_prod_Osame__carrierI,axiom,
! [C5: set_complex,A2: set_complex,B4: set_complex,G: complex > complex,H2: complex > complex] :
( ( finite3207457112153483333omplex @ C5 )
=> ( ( ord_le211207098394363844omplex @ A2 @ C5 )
=> ( ( ord_le211207098394363844omplex @ B4 @ C5 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ ( minus_811609699411566653omplex @ C5 @ A2 ) )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B3: complex] :
( ( member_complex @ B3 @ ( minus_811609699411566653omplex @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= one_one_complex ) )
=> ( ( ( groups3708469109370488835omplex @ G @ C5 )
= ( groups3708469109370488835omplex @ H2 @ C5 ) )
=> ( ( groups3708469109370488835omplex @ G @ A2 )
= ( groups3708469109370488835omplex @ H2 @ B4 ) ) ) ) ) ) ) ) ).
% prod.same_carrierI
thf(fact_8440_prod_Osame__carrierI,axiom,
! [C5: set_Code_integer,A2: set_Code_integer,B4: set_Code_integer,G: code_integer > complex,H2: code_integer > complex] :
( ( finite6017078050557962740nteger @ C5 )
=> ( ( ord_le7084787975880047091nteger @ A2 @ C5 )
=> ( ( ord_le7084787975880047091nteger @ B4 @ C5 )
=> ( ! [A4: code_integer] :
( ( member_Code_integer @ A4 @ ( minus_2355218937544613996nteger @ C5 @ A2 ) )
=> ( ( G @ A4 )
= one_one_complex ) )
=> ( ! [B3: code_integer] :
( ( member_Code_integer @ B3 @ ( minus_2355218937544613996nteger @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= one_one_complex ) )
=> ( ( ( groups862514429393162674omplex @ G @ C5 )
= ( groups862514429393162674omplex @ H2 @ C5 ) )
=> ( ( groups862514429393162674omplex @ G @ A2 )
= ( groups862514429393162674omplex @ H2 @ B4 ) ) ) ) ) ) ) ) ).
% prod.same_carrierI
thf(fact_8441_prod_Osame__carrierI,axiom,
! [C5: set_real,A2: set_real,B4: set_real,G: real > real,H2: real > real] :
( ( finite_finite_real @ C5 )
=> ( ( ord_less_eq_set_real @ A2 @ C5 )
=> ( ( ord_less_eq_set_real @ B4 @ C5 )
=> ( ! [A4: real] :
( ( member_real @ A4 @ ( minus_minus_set_real @ C5 @ A2 ) )
=> ( ( G @ A4 )
= one_one_real ) )
=> ( ! [B3: real] :
( ( member_real @ B3 @ ( minus_minus_set_real @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= one_one_real ) )
=> ( ( ( groups1681761925125756287l_real @ G @ C5 )
= ( groups1681761925125756287l_real @ H2 @ C5 ) )
=> ( ( groups1681761925125756287l_real @ G @ A2 )
= ( groups1681761925125756287l_real @ H2 @ B4 ) ) ) ) ) ) ) ) ).
% prod.same_carrierI
thf(fact_8442_prod_Osame__carrierI,axiom,
! [C5: set_VEBT_VEBT,A2: set_VEBT_VEBT,B4: set_VEBT_VEBT,G: vEBT_VEBT > real,H2: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ C5 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ C5 )
=> ( ( ord_le4337996190870823476T_VEBT @ B4 @ C5 )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ ( minus_5127226145743854075T_VEBT @ C5 @ A2 ) )
=> ( ( G @ A4 )
= one_one_real ) )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ ( minus_5127226145743854075T_VEBT @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= one_one_real ) )
=> ( ( ( groups2703838992350267259T_real @ G @ C5 )
= ( groups2703838992350267259T_real @ H2 @ C5 ) )
=> ( ( groups2703838992350267259T_real @ G @ A2 )
= ( groups2703838992350267259T_real @ H2 @ B4 ) ) ) ) ) ) ) ) ).
% prod.same_carrierI
thf(fact_8443_prod_Osame__carrierI,axiom,
! [C5: set_int,A2: set_int,B4: set_int,G: int > real,H2: int > real] :
( ( finite_finite_int @ C5 )
=> ( ( ord_less_eq_set_int @ A2 @ C5 )
=> ( ( ord_less_eq_set_int @ B4 @ C5 )
=> ( ! [A4: int] :
( ( member_int @ A4 @ ( minus_minus_set_int @ C5 @ A2 ) )
=> ( ( G @ A4 )
= one_one_real ) )
=> ( ! [B3: int] :
( ( member_int @ B3 @ ( minus_minus_set_int @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= one_one_real ) )
=> ( ( ( groups2316167850115554303t_real @ G @ C5 )
= ( groups2316167850115554303t_real @ H2 @ C5 ) )
=> ( ( groups2316167850115554303t_real @ G @ A2 )
= ( groups2316167850115554303t_real @ H2 @ B4 ) ) ) ) ) ) ) ) ).
% prod.same_carrierI
thf(fact_8444_prod_Osame__carrierI,axiom,
! [C5: set_complex,A2: set_complex,B4: set_complex,G: complex > real,H2: complex > real] :
( ( finite3207457112153483333omplex @ C5 )
=> ( ( ord_le211207098394363844omplex @ A2 @ C5 )
=> ( ( ord_le211207098394363844omplex @ B4 @ C5 )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ ( minus_811609699411566653omplex @ C5 @ A2 ) )
=> ( ( G @ A4 )
= one_one_real ) )
=> ( ! [B3: complex] :
( ( member_complex @ B3 @ ( minus_811609699411566653omplex @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= one_one_real ) )
=> ( ( ( groups766887009212190081x_real @ G @ C5 )
= ( groups766887009212190081x_real @ H2 @ C5 ) )
=> ( ( groups766887009212190081x_real @ G @ A2 )
= ( groups766887009212190081x_real @ H2 @ B4 ) ) ) ) ) ) ) ) ).
% prod.same_carrierI
thf(fact_8445_prod_Osame__carrierI,axiom,
! [C5: set_Code_integer,A2: set_Code_integer,B4: set_Code_integer,G: code_integer > real,H2: code_integer > real] :
( ( finite6017078050557962740nteger @ C5 )
=> ( ( ord_le7084787975880047091nteger @ A2 @ C5 )
=> ( ( ord_le7084787975880047091nteger @ B4 @ C5 )
=> ( ! [A4: code_integer] :
( ( member_Code_integer @ A4 @ ( minus_2355218937544613996nteger @ C5 @ A2 ) )
=> ( ( G @ A4 )
= one_one_real ) )
=> ( ! [B3: code_integer] :
( ( member_Code_integer @ B3 @ ( minus_2355218937544613996nteger @ C5 @ B4 ) )
=> ( ( H2 @ B3 )
= one_one_real ) )
=> ( ( ( groups9004974159866482096r_real @ G @ C5 )
= ( groups9004974159866482096r_real @ H2 @ C5 ) )
=> ( ( groups9004974159866482096r_real @ G @ A2 )
= ( groups9004974159866482096r_real @ H2 @ B4 ) ) ) ) ) ) ) ) ).
% prod.same_carrierI
thf(fact_8446_prod_Omono__neutral__left,axiom,
! [T3: set_int,S: set_int,G: int > complex] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S @ T3 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_complex ) )
=> ( ( groups7440179247065528705omplex @ G @ S )
= ( groups7440179247065528705omplex @ G @ T3 ) ) ) ) ) ).
% prod.mono_neutral_left
thf(fact_8447_prod_Omono__neutral__left,axiom,
! [T3: set_complex,S: set_complex,G: complex > complex] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S @ T3 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_complex ) )
=> ( ( groups3708469109370488835omplex @ G @ S )
= ( groups3708469109370488835omplex @ G @ T3 ) ) ) ) ) ).
% prod.mono_neutral_left
thf(fact_8448_prod_Omono__neutral__left,axiom,
! [T3: set_Code_integer,S: set_Code_integer,G: code_integer > complex] :
( ( finite6017078050557962740nteger @ T3 )
=> ( ( ord_le7084787975880047091nteger @ S @ T3 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ ( minus_2355218937544613996nteger @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_complex ) )
=> ( ( groups862514429393162674omplex @ G @ S )
= ( groups862514429393162674omplex @ G @ T3 ) ) ) ) ) ).
% prod.mono_neutral_left
thf(fact_8449_prod_Omono__neutral__left,axiom,
! [T3: set_int,S: set_int,G: int > real] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S @ T3 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_real ) )
=> ( ( groups2316167850115554303t_real @ G @ S )
= ( groups2316167850115554303t_real @ G @ T3 ) ) ) ) ) ).
% prod.mono_neutral_left
thf(fact_8450_prod_Omono__neutral__left,axiom,
! [T3: set_complex,S: set_complex,G: complex > real] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S @ T3 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_real ) )
=> ( ( groups766887009212190081x_real @ G @ S )
= ( groups766887009212190081x_real @ G @ T3 ) ) ) ) ) ).
% prod.mono_neutral_left
thf(fact_8451_prod_Omono__neutral__left,axiom,
! [T3: set_Code_integer,S: set_Code_integer,G: code_integer > real] :
( ( finite6017078050557962740nteger @ T3 )
=> ( ( ord_le7084787975880047091nteger @ S @ T3 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ ( minus_2355218937544613996nteger @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_real ) )
=> ( ( groups9004974159866482096r_real @ G @ S )
= ( groups9004974159866482096r_real @ G @ T3 ) ) ) ) ) ).
% prod.mono_neutral_left
thf(fact_8452_prod_Omono__neutral__left,axiom,
! [T3: set_int,S: set_int,G: int > rat] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S @ T3 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_rat ) )
=> ( ( groups1072433553688619179nt_rat @ G @ S )
= ( groups1072433553688619179nt_rat @ G @ T3 ) ) ) ) ) ).
% prod.mono_neutral_left
thf(fact_8453_prod_Omono__neutral__left,axiom,
! [T3: set_complex,S: set_complex,G: complex > rat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S @ T3 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_rat ) )
=> ( ( groups225925009352817453ex_rat @ G @ S )
= ( groups225925009352817453ex_rat @ G @ T3 ) ) ) ) ) ).
% prod.mono_neutral_left
thf(fact_8454_prod_Omono__neutral__left,axiom,
! [T3: set_Code_integer,S: set_Code_integer,G: code_integer > rat] :
( ( finite6017078050557962740nteger @ T3 )
=> ( ( ord_le7084787975880047091nteger @ S @ T3 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ ( minus_2355218937544613996nteger @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_rat ) )
=> ( ( groups2555765274223993564er_rat @ G @ S )
= ( groups2555765274223993564er_rat @ G @ T3 ) ) ) ) ) ).
% prod.mono_neutral_left
thf(fact_8455_prod_Omono__neutral__left,axiom,
! [T3: set_int,S: set_int,G: int > nat] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S @ T3 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_nat ) )
=> ( ( groups1707563613775114915nt_nat @ G @ S )
= ( groups1707563613775114915nt_nat @ G @ T3 ) ) ) ) ) ).
% prod.mono_neutral_left
thf(fact_8456_prod_Omono__neutral__right,axiom,
! [T3: set_int,S: set_int,G: int > complex] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S @ T3 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_complex ) )
=> ( ( groups7440179247065528705omplex @ G @ T3 )
= ( groups7440179247065528705omplex @ G @ S ) ) ) ) ) ).
% prod.mono_neutral_right
thf(fact_8457_prod_Omono__neutral__right,axiom,
! [T3: set_complex,S: set_complex,G: complex > complex] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S @ T3 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_complex ) )
=> ( ( groups3708469109370488835omplex @ G @ T3 )
= ( groups3708469109370488835omplex @ G @ S ) ) ) ) ) ).
% prod.mono_neutral_right
thf(fact_8458_prod_Omono__neutral__right,axiom,
! [T3: set_Code_integer,S: set_Code_integer,G: code_integer > complex] :
( ( finite6017078050557962740nteger @ T3 )
=> ( ( ord_le7084787975880047091nteger @ S @ T3 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ ( minus_2355218937544613996nteger @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_complex ) )
=> ( ( groups862514429393162674omplex @ G @ T3 )
= ( groups862514429393162674omplex @ G @ S ) ) ) ) ) ).
% prod.mono_neutral_right
thf(fact_8459_prod_Omono__neutral__right,axiom,
! [T3: set_int,S: set_int,G: int > real] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S @ T3 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_real ) )
=> ( ( groups2316167850115554303t_real @ G @ T3 )
= ( groups2316167850115554303t_real @ G @ S ) ) ) ) ) ).
% prod.mono_neutral_right
thf(fact_8460_prod_Omono__neutral__right,axiom,
! [T3: set_complex,S: set_complex,G: complex > real] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S @ T3 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_real ) )
=> ( ( groups766887009212190081x_real @ G @ T3 )
= ( groups766887009212190081x_real @ G @ S ) ) ) ) ) ).
% prod.mono_neutral_right
thf(fact_8461_prod_Omono__neutral__right,axiom,
! [T3: set_Code_integer,S: set_Code_integer,G: code_integer > real] :
( ( finite6017078050557962740nteger @ T3 )
=> ( ( ord_le7084787975880047091nteger @ S @ T3 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ ( minus_2355218937544613996nteger @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_real ) )
=> ( ( groups9004974159866482096r_real @ G @ T3 )
= ( groups9004974159866482096r_real @ G @ S ) ) ) ) ) ).
% prod.mono_neutral_right
thf(fact_8462_prod_Omono__neutral__right,axiom,
! [T3: set_int,S: set_int,G: int > rat] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S @ T3 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_rat ) )
=> ( ( groups1072433553688619179nt_rat @ G @ T3 )
= ( groups1072433553688619179nt_rat @ G @ S ) ) ) ) ) ).
% prod.mono_neutral_right
thf(fact_8463_prod_Omono__neutral__right,axiom,
! [T3: set_complex,S: set_complex,G: complex > rat] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S @ T3 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_rat ) )
=> ( ( groups225925009352817453ex_rat @ G @ T3 )
= ( groups225925009352817453ex_rat @ G @ S ) ) ) ) ) ).
% prod.mono_neutral_right
thf(fact_8464_prod_Omono__neutral__right,axiom,
! [T3: set_Code_integer,S: set_Code_integer,G: code_integer > rat] :
( ( finite6017078050557962740nteger @ T3 )
=> ( ( ord_le7084787975880047091nteger @ S @ T3 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ ( minus_2355218937544613996nteger @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_rat ) )
=> ( ( groups2555765274223993564er_rat @ G @ T3 )
= ( groups2555765274223993564er_rat @ G @ S ) ) ) ) ) ).
% prod.mono_neutral_right
thf(fact_8465_prod_Omono__neutral__right,axiom,
! [T3: set_int,S: set_int,G: int > nat] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S @ T3 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_nat ) )
=> ( ( groups1707563613775114915nt_nat @ G @ T3 )
= ( groups1707563613775114915nt_nat @ G @ S ) ) ) ) ) ).
% prod.mono_neutral_right
thf(fact_8466_prod_Omono__neutral__cong__left,axiom,
! [T3: set_real,S: set_real,H2: real > complex,G: real > complex] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S @ T3 )
=> ( ! [X3: real] :
( ( member_real @ X3 @ ( minus_minus_set_real @ T3 @ S ) )
=> ( ( H2 @ X3 )
= one_one_complex ) )
=> ( ! [X3: real] :
( ( member_real @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups713298508707869441omplex @ G @ S )
= ( groups713298508707869441omplex @ H2 @ T3 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_left
thf(fact_8467_prod_Omono__neutral__cong__left,axiom,
! [T3: set_VEBT_VEBT,S: set_VEBT_VEBT,H2: vEBT_VEBT > complex,G: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ T3 )
=> ( ( ord_le4337996190870823476T_VEBT @ S @ T3 )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( minus_5127226145743854075T_VEBT @ T3 @ S ) )
=> ( ( H2 @ X3 )
= one_one_complex ) )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups127312072573709053omplex @ G @ S )
= ( groups127312072573709053omplex @ H2 @ T3 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_left
thf(fact_8468_prod_Omono__neutral__cong__left,axiom,
! [T3: set_int,S: set_int,H2: int > complex,G: int > complex] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S @ T3 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S ) )
=> ( ( H2 @ X3 )
= one_one_complex ) )
=> ( ! [X3: int] :
( ( member_int @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups7440179247065528705omplex @ G @ S )
= ( groups7440179247065528705omplex @ H2 @ T3 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_left
thf(fact_8469_prod_Omono__neutral__cong__left,axiom,
! [T3: set_complex,S: set_complex,H2: complex > complex,G: complex > complex] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S @ T3 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S ) )
=> ( ( H2 @ X3 )
= one_one_complex ) )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups3708469109370488835omplex @ G @ S )
= ( groups3708469109370488835omplex @ H2 @ T3 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_left
thf(fact_8470_prod_Omono__neutral__cong__left,axiom,
! [T3: set_Code_integer,S: set_Code_integer,H2: code_integer > complex,G: code_integer > complex] :
( ( finite6017078050557962740nteger @ T3 )
=> ( ( ord_le7084787975880047091nteger @ S @ T3 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ ( minus_2355218937544613996nteger @ T3 @ S ) )
=> ( ( H2 @ X3 )
= one_one_complex ) )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups862514429393162674omplex @ G @ S )
= ( groups862514429393162674omplex @ H2 @ T3 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_left
thf(fact_8471_prod_Omono__neutral__cong__left,axiom,
! [T3: set_real,S: set_real,H2: real > real,G: real > real] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S @ T3 )
=> ( ! [X3: real] :
( ( member_real @ X3 @ ( minus_minus_set_real @ T3 @ S ) )
=> ( ( H2 @ X3 )
= one_one_real ) )
=> ( ! [X3: real] :
( ( member_real @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups1681761925125756287l_real @ G @ S )
= ( groups1681761925125756287l_real @ H2 @ T3 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_left
thf(fact_8472_prod_Omono__neutral__cong__left,axiom,
! [T3: set_VEBT_VEBT,S: set_VEBT_VEBT,H2: vEBT_VEBT > real,G: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ T3 )
=> ( ( ord_le4337996190870823476T_VEBT @ S @ T3 )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( minus_5127226145743854075T_VEBT @ T3 @ S ) )
=> ( ( H2 @ X3 )
= one_one_real ) )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups2703838992350267259T_real @ G @ S )
= ( groups2703838992350267259T_real @ H2 @ T3 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_left
thf(fact_8473_prod_Omono__neutral__cong__left,axiom,
! [T3: set_int,S: set_int,H2: int > real,G: int > real] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S @ T3 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S ) )
=> ( ( H2 @ X3 )
= one_one_real ) )
=> ( ! [X3: int] :
( ( member_int @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups2316167850115554303t_real @ G @ S )
= ( groups2316167850115554303t_real @ H2 @ T3 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_left
thf(fact_8474_prod_Omono__neutral__cong__left,axiom,
! [T3: set_complex,S: set_complex,H2: complex > real,G: complex > real] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S @ T3 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S ) )
=> ( ( H2 @ X3 )
= one_one_real ) )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups766887009212190081x_real @ G @ S )
= ( groups766887009212190081x_real @ H2 @ T3 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_left
thf(fact_8475_prod_Omono__neutral__cong__left,axiom,
! [T3: set_Code_integer,S: set_Code_integer,H2: code_integer > real,G: code_integer > real] :
( ( finite6017078050557962740nteger @ T3 )
=> ( ( ord_le7084787975880047091nteger @ S @ T3 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ ( minus_2355218937544613996nteger @ T3 @ S ) )
=> ( ( H2 @ X3 )
= one_one_real ) )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups9004974159866482096r_real @ G @ S )
= ( groups9004974159866482096r_real @ H2 @ T3 ) ) ) ) ) ) ).
% prod.mono_neutral_cong_left
thf(fact_8476_prod_Omono__neutral__cong__right,axiom,
! [T3: set_real,S: set_real,G: real > complex,H2: real > complex] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S @ T3 )
=> ( ! [X3: real] :
( ( member_real @ X3 @ ( minus_minus_set_real @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_complex ) )
=> ( ! [X3: real] :
( ( member_real @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups713298508707869441omplex @ G @ T3 )
= ( groups713298508707869441omplex @ H2 @ S ) ) ) ) ) ) ).
% prod.mono_neutral_cong_right
thf(fact_8477_prod_Omono__neutral__cong__right,axiom,
! [T3: set_VEBT_VEBT,S: set_VEBT_VEBT,G: vEBT_VEBT > complex,H2: vEBT_VEBT > complex] :
( ( finite5795047828879050333T_VEBT @ T3 )
=> ( ( ord_le4337996190870823476T_VEBT @ S @ T3 )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( minus_5127226145743854075T_VEBT @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_complex ) )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups127312072573709053omplex @ G @ T3 )
= ( groups127312072573709053omplex @ H2 @ S ) ) ) ) ) ) ).
% prod.mono_neutral_cong_right
thf(fact_8478_prod_Omono__neutral__cong__right,axiom,
! [T3: set_int,S: set_int,G: int > complex,H2: int > complex] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S @ T3 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_complex ) )
=> ( ! [X3: int] :
( ( member_int @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups7440179247065528705omplex @ G @ T3 )
= ( groups7440179247065528705omplex @ H2 @ S ) ) ) ) ) ) ).
% prod.mono_neutral_cong_right
thf(fact_8479_prod_Omono__neutral__cong__right,axiom,
! [T3: set_complex,S: set_complex,G: complex > complex,H2: complex > complex] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S @ T3 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_complex ) )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups3708469109370488835omplex @ G @ T3 )
= ( groups3708469109370488835omplex @ H2 @ S ) ) ) ) ) ) ).
% prod.mono_neutral_cong_right
thf(fact_8480_prod_Omono__neutral__cong__right,axiom,
! [T3: set_Code_integer,S: set_Code_integer,G: code_integer > complex,H2: code_integer > complex] :
( ( finite6017078050557962740nteger @ T3 )
=> ( ( ord_le7084787975880047091nteger @ S @ T3 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ ( minus_2355218937544613996nteger @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_complex ) )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups862514429393162674omplex @ G @ T3 )
= ( groups862514429393162674omplex @ H2 @ S ) ) ) ) ) ) ).
% prod.mono_neutral_cong_right
thf(fact_8481_prod_Omono__neutral__cong__right,axiom,
! [T3: set_real,S: set_real,G: real > real,H2: real > real] :
( ( finite_finite_real @ T3 )
=> ( ( ord_less_eq_set_real @ S @ T3 )
=> ( ! [X3: real] :
( ( member_real @ X3 @ ( minus_minus_set_real @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_real ) )
=> ( ! [X3: real] :
( ( member_real @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups1681761925125756287l_real @ G @ T3 )
= ( groups1681761925125756287l_real @ H2 @ S ) ) ) ) ) ) ).
% prod.mono_neutral_cong_right
thf(fact_8482_prod_Omono__neutral__cong__right,axiom,
! [T3: set_VEBT_VEBT,S: set_VEBT_VEBT,G: vEBT_VEBT > real,H2: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ T3 )
=> ( ( ord_le4337996190870823476T_VEBT @ S @ T3 )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( minus_5127226145743854075T_VEBT @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_real ) )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups2703838992350267259T_real @ G @ T3 )
= ( groups2703838992350267259T_real @ H2 @ S ) ) ) ) ) ) ).
% prod.mono_neutral_cong_right
thf(fact_8483_prod_Omono__neutral__cong__right,axiom,
! [T3: set_int,S: set_int,G: int > real,H2: int > real] :
( ( finite_finite_int @ T3 )
=> ( ( ord_less_eq_set_int @ S @ T3 )
=> ( ! [X3: int] :
( ( member_int @ X3 @ ( minus_minus_set_int @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_real ) )
=> ( ! [X3: int] :
( ( member_int @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups2316167850115554303t_real @ G @ T3 )
= ( groups2316167850115554303t_real @ H2 @ S ) ) ) ) ) ) ).
% prod.mono_neutral_cong_right
thf(fact_8484_prod_Omono__neutral__cong__right,axiom,
! [T3: set_complex,S: set_complex,G: complex > real,H2: complex > real] :
( ( finite3207457112153483333omplex @ T3 )
=> ( ( ord_le211207098394363844omplex @ S @ T3 )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_real ) )
=> ( ! [X3: complex] :
( ( member_complex @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups766887009212190081x_real @ G @ T3 )
= ( groups766887009212190081x_real @ H2 @ S ) ) ) ) ) ) ).
% prod.mono_neutral_cong_right
thf(fact_8485_prod_Omono__neutral__cong__right,axiom,
! [T3: set_Code_integer,S: set_Code_integer,G: code_integer > real,H2: code_integer > real] :
( ( finite6017078050557962740nteger @ T3 )
=> ( ( ord_le7084787975880047091nteger @ S @ T3 )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ ( minus_2355218937544613996nteger @ T3 @ S ) )
=> ( ( G @ X3 )
= one_one_real ) )
=> ( ! [X3: code_integer] :
( ( member_Code_integer @ X3 @ S )
=> ( ( G @ X3 )
= ( H2 @ X3 ) ) )
=> ( ( groups9004974159866482096r_real @ G @ T3 )
= ( groups9004974159866482096r_real @ H2 @ S ) ) ) ) ) ) ).
% prod.mono_neutral_cong_right
thf(fact_8486_prod_Osubset__diff,axiom,
! [B4: set_int,A2: set_int,G: int > real] :
( ( ord_less_eq_set_int @ B4 @ A2 )
=> ( ( finite_finite_int @ A2 )
=> ( ( groups2316167850115554303t_real @ G @ A2 )
= ( times_times_real @ ( groups2316167850115554303t_real @ G @ ( minus_minus_set_int @ A2 @ B4 ) ) @ ( groups2316167850115554303t_real @ G @ B4 ) ) ) ) ) ).
% prod.subset_diff
thf(fact_8487_prod_Osubset__diff,axiom,
! [B4: set_complex,A2: set_complex,G: complex > real] :
( ( ord_le211207098394363844omplex @ B4 @ A2 )
=> ( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups766887009212190081x_real @ G @ A2 )
= ( times_times_real @ ( groups766887009212190081x_real @ G @ ( minus_811609699411566653omplex @ A2 @ B4 ) ) @ ( groups766887009212190081x_real @ G @ B4 ) ) ) ) ) ).
% prod.subset_diff
thf(fact_8488_prod_Osubset__diff,axiom,
! [B4: set_Code_integer,A2: set_Code_integer,G: code_integer > real] :
( ( ord_le7084787975880047091nteger @ B4 @ A2 )
=> ( ( finite6017078050557962740nteger @ A2 )
=> ( ( groups9004974159866482096r_real @ G @ A2 )
= ( times_times_real @ ( groups9004974159866482096r_real @ G @ ( minus_2355218937544613996nteger @ A2 @ B4 ) ) @ ( groups9004974159866482096r_real @ G @ B4 ) ) ) ) ) ).
% prod.subset_diff
thf(fact_8489_prod_Osubset__diff,axiom,
! [B4: set_int,A2: set_int,G: int > rat] :
( ( ord_less_eq_set_int @ B4 @ A2 )
=> ( ( finite_finite_int @ A2 )
=> ( ( groups1072433553688619179nt_rat @ G @ A2 )
= ( times_times_rat @ ( groups1072433553688619179nt_rat @ G @ ( minus_minus_set_int @ A2 @ B4 ) ) @ ( groups1072433553688619179nt_rat @ G @ B4 ) ) ) ) ) ).
% prod.subset_diff
thf(fact_8490_prod_Osubset__diff,axiom,
! [B4: set_complex,A2: set_complex,G: complex > rat] :
( ( ord_le211207098394363844omplex @ B4 @ A2 )
=> ( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups225925009352817453ex_rat @ G @ A2 )
= ( times_times_rat @ ( groups225925009352817453ex_rat @ G @ ( minus_811609699411566653omplex @ A2 @ B4 ) ) @ ( groups225925009352817453ex_rat @ G @ B4 ) ) ) ) ) ).
% prod.subset_diff
thf(fact_8491_prod_Osubset__diff,axiom,
! [B4: set_Code_integer,A2: set_Code_integer,G: code_integer > rat] :
( ( ord_le7084787975880047091nteger @ B4 @ A2 )
=> ( ( finite6017078050557962740nteger @ A2 )
=> ( ( groups2555765274223993564er_rat @ G @ A2 )
= ( times_times_rat @ ( groups2555765274223993564er_rat @ G @ ( minus_2355218937544613996nteger @ A2 @ B4 ) ) @ ( groups2555765274223993564er_rat @ G @ B4 ) ) ) ) ) ).
% prod.subset_diff
thf(fact_8492_prod_Osubset__diff,axiom,
! [B4: set_int,A2: set_int,G: int > nat] :
( ( ord_less_eq_set_int @ B4 @ A2 )
=> ( ( finite_finite_int @ A2 )
=> ( ( groups1707563613775114915nt_nat @ G @ A2 )
= ( times_times_nat @ ( groups1707563613775114915nt_nat @ G @ ( minus_minus_set_int @ A2 @ B4 ) ) @ ( groups1707563613775114915nt_nat @ G @ B4 ) ) ) ) ) ).
% prod.subset_diff
thf(fact_8493_prod_Osubset__diff,axiom,
! [B4: set_complex,A2: set_complex,G: complex > nat] :
( ( ord_le211207098394363844omplex @ B4 @ A2 )
=> ( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups861055069439313189ex_nat @ G @ A2 )
= ( times_times_nat @ ( groups861055069439313189ex_nat @ G @ ( minus_811609699411566653omplex @ A2 @ B4 ) ) @ ( groups861055069439313189ex_nat @ G @ B4 ) ) ) ) ) ).
% prod.subset_diff
thf(fact_8494_prod_Osubset__diff,axiom,
! [B4: set_Code_integer,A2: set_Code_integer,G: code_integer > nat] :
( ( ord_le7084787975880047091nteger @ B4 @ A2 )
=> ( ( finite6017078050557962740nteger @ A2 )
=> ( ( groups3190895334310489300er_nat @ G @ A2 )
= ( times_times_nat @ ( groups3190895334310489300er_nat @ G @ ( minus_2355218937544613996nteger @ A2 @ B4 ) ) @ ( groups3190895334310489300er_nat @ G @ B4 ) ) ) ) ) ).
% prod.subset_diff
thf(fact_8495_prod_Osubset__diff,axiom,
! [B4: set_complex,A2: set_complex,G: complex > int] :
( ( ord_le211207098394363844omplex @ B4 @ A2 )
=> ( ( finite3207457112153483333omplex @ A2 )
=> ( ( groups858564598930262913ex_int @ G @ A2 )
= ( times_times_int @ ( groups858564598930262913ex_int @ G @ ( minus_811609699411566653omplex @ A2 @ B4 ) ) @ ( groups858564598930262913ex_int @ G @ B4 ) ) ) ) ) ).
% prod.subset_diff
thf(fact_8496_prod_OatLeast0__atMost__Suc,axiom,
! [G: nat > real,N: nat] :
( ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) ) )
= ( times_times_real @ ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).
% prod.atLeast0_atMost_Suc
thf(fact_8497_prod_OatLeast0__atMost__Suc,axiom,
! [G: nat > rat,N: nat] :
( ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) ) )
= ( times_times_rat @ ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).
% prod.atLeast0_atMost_Suc
thf(fact_8498_prod_OatLeast0__atMost__Suc,axiom,
! [G: nat > nat,N: nat] :
( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) ) )
= ( times_times_nat @ ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).
% prod.atLeast0_atMost_Suc
thf(fact_8499_prod_OatLeast0__atMost__Suc,axiom,
! [G: nat > int,N: nat] :
( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) ) )
= ( times_times_int @ ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).
% prod.atLeast0_atMost_Suc
thf(fact_8500_prod_Onat__ivl__Suc_H,axiom,
! [M: nat,N: nat,G: nat > real] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( times_times_real @ ( G @ ( suc @ N ) ) @ ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).
% prod.nat_ivl_Suc'
thf(fact_8501_prod_Onat__ivl__Suc_H,axiom,
! [M: nat,N: nat,G: nat > rat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( times_times_rat @ ( G @ ( suc @ N ) ) @ ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).
% prod.nat_ivl_Suc'
thf(fact_8502_prod_Onat__ivl__Suc_H,axiom,
! [M: nat,N: nat,G: nat > nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( times_times_nat @ ( G @ ( suc @ N ) ) @ ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).
% prod.nat_ivl_Suc'
thf(fact_8503_prod_Onat__ivl__Suc_H,axiom,
! [M: nat,N: nat,G: nat > int] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
= ( times_times_int @ ( G @ ( suc @ N ) ) @ ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).
% prod.nat_ivl_Suc'
thf(fact_8504_prod_OatLeast__Suc__atMost,axiom,
! [M: nat,N: nat,G: nat > real] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( times_times_real @ ( G @ M ) @ ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ) ).
% prod.atLeast_Suc_atMost
thf(fact_8505_prod_OatLeast__Suc__atMost,axiom,
! [M: nat,N: nat,G: nat > rat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( times_times_rat @ ( G @ M ) @ ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ) ).
% prod.atLeast_Suc_atMost
thf(fact_8506_prod_OatLeast__Suc__atMost,axiom,
! [M: nat,N: nat,G: nat > nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( times_times_nat @ ( G @ M ) @ ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ) ).
% prod.atLeast_Suc_atMost
thf(fact_8507_prod_OatLeast__Suc__atMost,axiom,
! [M: nat,N: nat,G: nat > int] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( times_times_int @ ( G @ M ) @ ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ) ).
% prod.atLeast_Suc_atMost
thf(fact_8508_Complex__mult__i,axiom,
! [A: real,B: real] :
( ( times_times_complex @ ( complex2 @ A @ B ) @ imaginary_unit )
= ( complex2 @ ( uminus_uminus_real @ B ) @ A ) ) ).
% Complex_mult_i
thf(fact_8509_i__mult__Complex,axiom,
! [A: real,B: real] :
( ( times_times_complex @ imaginary_unit @ ( complex2 @ A @ B ) )
= ( complex2 @ ( uminus_uminus_real @ B ) @ A ) ) ).
% i_mult_Complex
thf(fact_8510_prod_OlessThan__Suc__shift,axiom,
! [G: nat > real,N: nat] :
( ( groups129246275422532515t_real @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= ( times_times_real @ ( G @ zero_zero_nat )
@ ( groups129246275422532515t_real
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% prod.lessThan_Suc_shift
thf(fact_8511_prod_OlessThan__Suc__shift,axiom,
! [G: nat > rat,N: nat] :
( ( groups73079841787564623at_rat @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= ( times_times_rat @ ( G @ zero_zero_nat )
@ ( groups73079841787564623at_rat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% prod.lessThan_Suc_shift
thf(fact_8512_prod_OlessThan__Suc__shift,axiom,
! [G: nat > nat,N: nat] :
( ( groups708209901874060359at_nat @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= ( times_times_nat @ ( G @ zero_zero_nat )
@ ( groups708209901874060359at_nat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% prod.lessThan_Suc_shift
thf(fact_8513_prod_OlessThan__Suc__shift,axiom,
! [G: nat > int,N: nat] :
( ( groups705719431365010083at_int @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= ( times_times_int @ ( G @ zero_zero_nat )
@ ( groups705719431365010083at_int
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% prod.lessThan_Suc_shift
thf(fact_8514_prod_OSuc__reindex__ivl,axiom,
! [M: nat,N: nat,G: nat > real] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( times_times_real @ ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) )
= ( times_times_real @ ( G @ M )
@ ( groups129246275422532515t_real
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).
% prod.Suc_reindex_ivl
thf(fact_8515_prod_OSuc__reindex__ivl,axiom,
! [M: nat,N: nat,G: nat > rat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( times_times_rat @ ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) )
= ( times_times_rat @ ( G @ M )
@ ( groups73079841787564623at_rat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).
% prod.Suc_reindex_ivl
thf(fact_8516_prod_OSuc__reindex__ivl,axiom,
! [M: nat,N: nat,G: nat > nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( times_times_nat @ ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) )
= ( times_times_nat @ ( G @ M )
@ ( groups708209901874060359at_nat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).
% prod.Suc_reindex_ivl
thf(fact_8517_prod_OSuc__reindex__ivl,axiom,
! [M: nat,N: nat,G: nat > int] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( times_times_int @ ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) )
= ( times_times_int @ ( G @ M )
@ ( groups705719431365010083at_int
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).
% prod.Suc_reindex_ivl
thf(fact_8518_prod_OatLeast1__atMost__eq,axiom,
! [G: nat > nat,N: nat] :
( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) )
= ( groups708209901874060359at_nat
@ ^ [K2: nat] : ( G @ ( suc @ K2 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ).
% prod.atLeast1_atMost_eq
thf(fact_8519_prod_OatLeast1__atMost__eq,axiom,
! [G: nat > int,N: nat] :
( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) )
= ( groups705719431365010083at_int
@ ^ [K2: nat] : ( G @ ( suc @ K2 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ).
% prod.atLeast1_atMost_eq
thf(fact_8520_fact__prod,axiom,
( semiri1406184849735516958ct_int
= ( ^ [N3: nat] :
( semiri1314217659103216013at_int
@ ( groups708209901874060359at_nat
@ ^ [X: nat] : X
@ ( set_or1269000886237332187st_nat @ one_one_nat @ N3 ) ) ) ) ) ).
% fact_prod
thf(fact_8521_fact__prod,axiom,
( semiri2265585572941072030t_real
= ( ^ [N3: nat] :
( semiri5074537144036343181t_real
@ ( groups708209901874060359at_nat
@ ^ [X: nat] : X
@ ( set_or1269000886237332187st_nat @ one_one_nat @ N3 ) ) ) ) ) ).
% fact_prod
thf(fact_8522_fact__prod,axiom,
( semiri1408675320244567234ct_nat
= ( ^ [N3: nat] :
( semiri1316708129612266289at_nat
@ ( groups708209901874060359at_nat
@ ^ [X: nat] : X
@ ( set_or1269000886237332187st_nat @ one_one_nat @ N3 ) ) ) ) ) ).
% fact_prod
thf(fact_8523_even__prod__iff,axiom,
! [A2: set_int,F: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( groups1707563613775114915nt_nat @ F @ A2 ) )
= ( ? [X: int] :
( ( member_int @ X @ A2 )
& ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( F @ X ) ) ) ) ) ) ).
% even_prod_iff
thf(fact_8524_even__prod__iff,axiom,
! [A2: set_complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( groups861055069439313189ex_nat @ F @ A2 ) )
= ( ? [X: complex] :
( ( member_complex @ X @ A2 )
& ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( F @ X ) ) ) ) ) ) ).
% even_prod_iff
thf(fact_8525_even__prod__iff,axiom,
! [A2: set_Code_integer,F: code_integer > nat] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( groups3190895334310489300er_nat @ F @ A2 ) )
= ( ? [X: code_integer] :
( ( member_Code_integer @ X @ A2 )
& ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( F @ X ) ) ) ) ) ) ).
% even_prod_iff
thf(fact_8526_even__prod__iff,axiom,
! [A2: set_complex,F: complex > int] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( groups858564598930262913ex_int @ F @ A2 ) )
= ( ? [X: complex] :
( ( member_complex @ X @ A2 )
& ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( F @ X ) ) ) ) ) ) ).
% even_prod_iff
thf(fact_8527_even__prod__iff,axiom,
! [A2: set_Code_integer,F: code_integer > int] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( groups3188404863801439024er_int @ F @ A2 ) )
= ( ? [X: code_integer] :
( ( member_Code_integer @ X @ A2 )
& ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( F @ X ) ) ) ) ) ) ).
% even_prod_iff
thf(fact_8528_even__prod__iff,axiom,
! [A2: set_nat,F: nat > nat] :
( ( finite_finite_nat @ A2 )
=> ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( groups708209901874060359at_nat @ F @ A2 ) )
= ( ? [X: nat] :
( ( member_nat @ X @ A2 )
& ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( F @ X ) ) ) ) ) ) ).
% even_prod_iff
thf(fact_8529_even__prod__iff,axiom,
! [A2: set_nat,F: nat > int] :
( ( finite_finite_nat @ A2 )
=> ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( groups705719431365010083at_int @ F @ A2 ) )
= ( ? [X: nat] :
( ( member_nat @ X @ A2 )
& ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( F @ X ) ) ) ) ) ) ).
% even_prod_iff
thf(fact_8530_even__prod__iff,axiom,
! [A2: set_int,F: int > int] :
( ( finite_finite_int @ A2 )
=> ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( groups1705073143266064639nt_int @ F @ A2 ) )
= ( ? [X: int] :
( ( member_int @ X @ A2 )
& ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( F @ X ) ) ) ) ) ) ).
% even_prod_iff
thf(fact_8531_prod_Oub__add__nat,axiom,
! [M: nat,N: nat,G: nat > real,P2: nat] :
( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N @ one_one_nat ) )
=> ( ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N @ P2 ) ) )
= ( times_times_real @ ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ ( plus_plus_nat @ N @ P2 ) ) ) ) ) ) ).
% prod.ub_add_nat
thf(fact_8532_prod_Oub__add__nat,axiom,
! [M: nat,N: nat,G: nat > rat,P2: nat] :
( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N @ one_one_nat ) )
=> ( ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N @ P2 ) ) )
= ( times_times_rat @ ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ ( plus_plus_nat @ N @ P2 ) ) ) ) ) ) ).
% prod.ub_add_nat
thf(fact_8533_prod_Oub__add__nat,axiom,
! [M: nat,N: nat,G: nat > nat,P2: nat] :
( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N @ one_one_nat ) )
=> ( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N @ P2 ) ) )
= ( times_times_nat @ ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ ( plus_plus_nat @ N @ P2 ) ) ) ) ) ) ).
% prod.ub_add_nat
thf(fact_8534_prod_Oub__add__nat,axiom,
! [M: nat,N: nat,G: nat > int,P2: nat] :
( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N @ one_one_nat ) )
=> ( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N @ P2 ) ) )
= ( times_times_int @ ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ ( plus_plus_nat @ N @ P2 ) ) ) ) ) ) ).
% prod.ub_add_nat
thf(fact_8535_fold__atLeastAtMost__nat_Osimps,axiom,
( set_fo2584398358068434914at_nat
= ( ^ [F3: nat > nat > nat,A3: nat,B2: nat,Acc: nat] : ( if_nat @ ( ord_less_nat @ B2 @ A3 ) @ Acc @ ( set_fo2584398358068434914at_nat @ F3 @ ( plus_plus_nat @ A3 @ one_one_nat ) @ B2 @ ( F3 @ A3 @ Acc ) ) ) ) ) ).
% fold_atLeastAtMost_nat.simps
thf(fact_8536_fold__atLeastAtMost__nat_Oelims,axiom,
! [X2: nat > nat > nat,Xa3: nat,Xb3: nat,Xc: nat,Y2: nat] :
( ( ( set_fo2584398358068434914at_nat @ X2 @ Xa3 @ Xb3 @ Xc )
= Y2 )
=> ( ( ( ord_less_nat @ Xb3 @ Xa3 )
=> ( Y2 = Xc ) )
& ( ~ ( ord_less_nat @ Xb3 @ Xa3 )
=> ( Y2
= ( set_fo2584398358068434914at_nat @ X2 @ ( plus_plus_nat @ Xa3 @ one_one_nat ) @ Xb3 @ ( X2 @ Xa3 @ Xc ) ) ) ) ) ) ).
% fold_atLeastAtMost_nat.elims
thf(fact_8537_i__complex__of__real,axiom,
! [R2: real] :
( ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ R2 ) )
= ( complex2 @ zero_zero_real @ R2 ) ) ).
% i_complex_of_real
thf(fact_8538_complex__of__real__i,axiom,
! [R2: real] :
( ( times_times_complex @ ( real_V4546457046886955230omplex @ R2 ) @ imaginary_unit )
= ( complex2 @ zero_zero_real @ R2 ) ) ).
% complex_of_real_i
thf(fact_8539_norm__prod__diff,axiom,
! [I5: set_real,Z: real > real,W: real > real] :
( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( Z @ I2 ) ) @ one_one_real ) )
=> ( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( W @ I2 ) ) @ one_one_real ) )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( groups1681761925125756287l_real @ Z @ I5 ) @ ( groups1681761925125756287l_real @ W @ I5 ) ) )
@ ( groups8097168146408367636l_real
@ ^ [I3: real] : ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( Z @ I3 ) @ ( W @ I3 ) ) )
@ I5 ) ) ) ) ).
% norm_prod_diff
thf(fact_8540_norm__prod__diff,axiom,
! [I5: set_int,Z: int > real,W: int > real] :
( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( Z @ I2 ) ) @ one_one_real ) )
=> ( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( W @ I2 ) ) @ one_one_real ) )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( groups2316167850115554303t_real @ Z @ I5 ) @ ( groups2316167850115554303t_real @ W @ I5 ) ) )
@ ( groups8778361861064173332t_real
@ ^ [I3: int] : ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( Z @ I3 ) @ ( W @ I3 ) ) )
@ I5 ) ) ) ) ).
% norm_prod_diff
thf(fact_8541_norm__prod__diff,axiom,
! [I5: set_VEBT_VEBT,Z: vEBT_VEBT > real,W: vEBT_VEBT > real] :
( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ I5 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( Z @ I2 ) ) @ one_one_real ) )
=> ( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ I5 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( W @ I2 ) ) @ one_one_real ) )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( groups2703838992350267259T_real @ Z @ I5 ) @ ( groups2703838992350267259T_real @ W @ I5 ) ) )
@ ( groups2240296850493347238T_real
@ ^ [I3: vEBT_VEBT] : ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( Z @ I3 ) @ ( W @ I3 ) ) )
@ I5 ) ) ) ) ).
% norm_prod_diff
thf(fact_8542_norm__prod__diff,axiom,
! [I5: set_real,Z: real > complex,W: real > complex] :
( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( Z @ I2 ) ) @ one_one_real ) )
=> ( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( W @ I2 ) ) @ one_one_real ) )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( groups713298508707869441omplex @ Z @ I5 ) @ ( groups713298508707869441omplex @ W @ I5 ) ) )
@ ( groups8097168146408367636l_real
@ ^ [I3: real] : ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( Z @ I3 ) @ ( W @ I3 ) ) )
@ I5 ) ) ) ) ).
% norm_prod_diff
thf(fact_8543_norm__prod__diff,axiom,
! [I5: set_int,Z: int > complex,W: int > complex] :
( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( Z @ I2 ) ) @ one_one_real ) )
=> ( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( W @ I2 ) ) @ one_one_real ) )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( groups7440179247065528705omplex @ Z @ I5 ) @ ( groups7440179247065528705omplex @ W @ I5 ) ) )
@ ( groups8778361861064173332t_real
@ ^ [I3: int] : ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( Z @ I3 ) @ ( W @ I3 ) ) )
@ I5 ) ) ) ) ).
% norm_prod_diff
thf(fact_8544_norm__prod__diff,axiom,
! [I5: set_VEBT_VEBT,Z: vEBT_VEBT > complex,W: vEBT_VEBT > complex] :
( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ I5 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( Z @ I2 ) ) @ one_one_real ) )
=> ( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ I5 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( W @ I2 ) ) @ one_one_real ) )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( groups127312072573709053omplex @ Z @ I5 ) @ ( groups127312072573709053omplex @ W @ I5 ) ) )
@ ( groups2240296850493347238T_real
@ ^ [I3: vEBT_VEBT] : ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( Z @ I3 ) @ ( W @ I3 ) ) )
@ I5 ) ) ) ) ).
% norm_prod_diff
thf(fact_8545_norm__prod__diff,axiom,
! [I5: set_nat,Z: nat > real,W: nat > real] :
( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( Z @ I2 ) ) @ one_one_real ) )
=> ( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( W @ I2 ) ) @ one_one_real ) )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( groups129246275422532515t_real @ Z @ I5 ) @ ( groups129246275422532515t_real @ W @ I5 ) ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( Z @ I3 ) @ ( W @ I3 ) ) )
@ I5 ) ) ) ) ).
% norm_prod_diff
thf(fact_8546_norm__prod__diff,axiom,
! [I5: set_nat,Z: nat > complex,W: nat > complex] :
( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( Z @ I2 ) ) @ one_one_real ) )
=> ( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( W @ I2 ) ) @ one_one_real ) )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( groups6464643781859351333omplex @ Z @ I5 ) @ ( groups6464643781859351333omplex @ W @ I5 ) ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( Z @ I3 ) @ ( W @ I3 ) ) )
@ I5 ) ) ) ) ).
% norm_prod_diff
thf(fact_8547_fact__eq__fact__times,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( semiri1408675320244567234ct_nat @ M )
= ( times_times_nat @ ( semiri1408675320244567234ct_nat @ N )
@ ( groups708209901874060359at_nat
@ ^ [X: nat] : X
@ ( set_or1269000886237332187st_nat @ ( suc @ N ) @ M ) ) ) ) ) ).
% fact_eq_fact_times
thf(fact_8548_Complex__eq,axiom,
( complex2
= ( ^ [A3: real,B2: real] : ( plus_plus_complex @ ( real_V4546457046886955230omplex @ A3 ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ B2 ) ) ) ) ) ).
% Complex_eq
thf(fact_8549_prod__mono2,axiom,
! [B4: set_real,A2: set_real,F: real > real] :
( ( finite_finite_real @ B4 )
=> ( ( ord_less_eq_set_real @ A2 @ B4 )
=> ( ! [B3: real] :
( ( member_real @ B3 @ ( minus_minus_set_real @ B4 @ A2 ) )
=> ( ord_less_eq_real @ one_one_real @ ( F @ B3 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ A4 ) ) )
=> ( ord_less_eq_real @ ( groups1681761925125756287l_real @ F @ A2 ) @ ( groups1681761925125756287l_real @ F @ B4 ) ) ) ) ) ) ).
% prod_mono2
thf(fact_8550_prod__mono2,axiom,
! [B4: set_VEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ B4 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ B4 )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ ( minus_5127226145743854075T_VEBT @ B4 @ A2 ) )
=> ( ord_less_eq_real @ one_one_real @ ( F @ B3 ) ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ A4 ) ) )
=> ( ord_less_eq_real @ ( groups2703838992350267259T_real @ F @ A2 ) @ ( groups2703838992350267259T_real @ F @ B4 ) ) ) ) ) ) ).
% prod_mono2
thf(fact_8551_prod__mono2,axiom,
! [B4: set_int,A2: set_int,F: int > real] :
( ( finite_finite_int @ B4 )
=> ( ( ord_less_eq_set_int @ A2 @ B4 )
=> ( ! [B3: int] :
( ( member_int @ B3 @ ( minus_minus_set_int @ B4 @ A2 ) )
=> ( ord_less_eq_real @ one_one_real @ ( F @ B3 ) ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ A4 ) ) )
=> ( ord_less_eq_real @ ( groups2316167850115554303t_real @ F @ A2 ) @ ( groups2316167850115554303t_real @ F @ B4 ) ) ) ) ) ) ).
% prod_mono2
thf(fact_8552_prod__mono2,axiom,
! [B4: set_complex,A2: set_complex,F: complex > real] :
( ( finite3207457112153483333omplex @ B4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B4 )
=> ( ! [B3: complex] :
( ( member_complex @ B3 @ ( minus_811609699411566653omplex @ B4 @ A2 ) )
=> ( ord_less_eq_real @ one_one_real @ ( F @ B3 ) ) )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ A4 ) ) )
=> ( ord_less_eq_real @ ( groups766887009212190081x_real @ F @ A2 ) @ ( groups766887009212190081x_real @ F @ B4 ) ) ) ) ) ) ).
% prod_mono2
thf(fact_8553_prod__mono2,axiom,
! [B4: set_Code_integer,A2: set_Code_integer,F: code_integer > real] :
( ( finite6017078050557962740nteger @ B4 )
=> ( ( ord_le7084787975880047091nteger @ A2 @ B4 )
=> ( ! [B3: code_integer] :
( ( member_Code_integer @ B3 @ ( minus_2355218937544613996nteger @ B4 @ A2 ) )
=> ( ord_less_eq_real @ one_one_real @ ( F @ B3 ) ) )
=> ( ! [A4: code_integer] :
( ( member_Code_integer @ A4 @ A2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ A4 ) ) )
=> ( ord_less_eq_real @ ( groups9004974159866482096r_real @ F @ A2 ) @ ( groups9004974159866482096r_real @ F @ B4 ) ) ) ) ) ) ).
% prod_mono2
thf(fact_8554_prod__mono2,axiom,
! [B4: set_real,A2: set_real,F: real > rat] :
( ( finite_finite_real @ B4 )
=> ( ( ord_less_eq_set_real @ A2 @ B4 )
=> ( ! [B3: real] :
( ( member_real @ B3 @ ( minus_minus_set_real @ B4 @ A2 ) )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ B3 ) ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ A4 ) ) )
=> ( ord_less_eq_rat @ ( groups4061424788464935467al_rat @ F @ A2 ) @ ( groups4061424788464935467al_rat @ F @ B4 ) ) ) ) ) ) ).
% prod_mono2
thf(fact_8555_prod__mono2,axiom,
! [B4: set_VEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
( ( finite5795047828879050333T_VEBT @ B4 )
=> ( ( ord_le4337996190870823476T_VEBT @ A2 @ B4 )
=> ( ! [B3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ B3 @ ( minus_5127226145743854075T_VEBT @ B4 @ A2 ) )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ B3 ) ) )
=> ( ! [A4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ A4 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ A4 ) ) )
=> ( ord_less_eq_rat @ ( groups5726676334696518183BT_rat @ F @ A2 ) @ ( groups5726676334696518183BT_rat @ F @ B4 ) ) ) ) ) ) ).
% prod_mono2
thf(fact_8556_prod__mono2,axiom,
! [B4: set_int,A2: set_int,F: int > rat] :
( ( finite_finite_int @ B4 )
=> ( ( ord_less_eq_set_int @ A2 @ B4 )
=> ( ! [B3: int] :
( ( member_int @ B3 @ ( minus_minus_set_int @ B4 @ A2 ) )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ B3 ) ) )
=> ( ! [A4: int] :
( ( member_int @ A4 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ A4 ) ) )
=> ( ord_less_eq_rat @ ( groups1072433553688619179nt_rat @ F @ A2 ) @ ( groups1072433553688619179nt_rat @ F @ B4 ) ) ) ) ) ) ).
% prod_mono2
thf(fact_8557_prod__mono2,axiom,
! [B4: set_complex,A2: set_complex,F: complex > rat] :
( ( finite3207457112153483333omplex @ B4 )
=> ( ( ord_le211207098394363844omplex @ A2 @ B4 )
=> ( ! [B3: complex] :
( ( member_complex @ B3 @ ( minus_811609699411566653omplex @ B4 @ A2 ) )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ B3 ) ) )
=> ( ! [A4: complex] :
( ( member_complex @ A4 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ A4 ) ) )
=> ( ord_less_eq_rat @ ( groups225925009352817453ex_rat @ F @ A2 ) @ ( groups225925009352817453ex_rat @ F @ B4 ) ) ) ) ) ) ).
% prod_mono2
thf(fact_8558_prod__mono2,axiom,
! [B4: set_Code_integer,A2: set_Code_integer,F: code_integer > rat] :
( ( finite6017078050557962740nteger @ B4 )
=> ( ( ord_le7084787975880047091nteger @ A2 @ B4 )
=> ( ! [B3: code_integer] :
( ( member_Code_integer @ B3 @ ( minus_2355218937544613996nteger @ B4 @ A2 ) )
=> ( ord_less_eq_rat @ one_one_rat @ ( F @ B3 ) ) )
=> ( ! [A4: code_integer] :
( ( member_Code_integer @ A4 @ A2 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( F @ A4 ) ) )
=> ( ord_less_eq_rat @ ( groups2555765274223993564er_rat @ F @ A2 ) @ ( groups2555765274223993564er_rat @ F @ B4 ) ) ) ) ) ) ).
% prod_mono2
thf(fact_8559_pochhammer__Suc__prod,axiom,
! [A: rat,N: nat] :
( ( comm_s4028243227959126397er_rat @ A @ ( suc @ N ) )
= ( groups73079841787564623at_rat
@ ^ [I3: nat] : ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ I3 ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ).
% pochhammer_Suc_prod
thf(fact_8560_pochhammer__Suc__prod,axiom,
! [A: real,N: nat] :
( ( comm_s7457072308508201937r_real @ A @ ( suc @ N ) )
= ( groups129246275422532515t_real
@ ^ [I3: nat] : ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ I3 ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ).
% pochhammer_Suc_prod
thf(fact_8561_pochhammer__Suc__prod,axiom,
! [A: nat,N: nat] :
( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N ) )
= ( groups708209901874060359at_nat
@ ^ [I3: nat] : ( plus_plus_nat @ A @ ( semiri1316708129612266289at_nat @ I3 ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ).
% pochhammer_Suc_prod
thf(fact_8562_pochhammer__Suc__prod,axiom,
! [A: int,N: nat] :
( ( comm_s4660882817536571857er_int @ A @ ( suc @ N ) )
= ( groups705719431365010083at_int
@ ^ [I3: nat] : ( plus_plus_int @ A @ ( semiri1314217659103216013at_int @ I3 ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ).
% pochhammer_Suc_prod
thf(fact_8563_pochhammer__prod__rev,axiom,
( comm_s4028243227959126397er_rat
= ( ^ [A3: rat,N3: nat] :
( groups73079841787564623at_rat
@ ^ [I3: nat] : ( plus_plus_rat @ A3 @ ( semiri681578069525770553at_rat @ ( minus_minus_nat @ N3 @ I3 ) ) )
@ ( set_or1269000886237332187st_nat @ one_one_nat @ N3 ) ) ) ) ).
% pochhammer_prod_rev
thf(fact_8564_pochhammer__prod__rev,axiom,
( comm_s7457072308508201937r_real
= ( ^ [A3: real,N3: nat] :
( groups129246275422532515t_real
@ ^ [I3: nat] : ( plus_plus_real @ A3 @ ( semiri5074537144036343181t_real @ ( minus_minus_nat @ N3 @ I3 ) ) )
@ ( set_or1269000886237332187st_nat @ one_one_nat @ N3 ) ) ) ) ).
% pochhammer_prod_rev
thf(fact_8565_pochhammer__prod__rev,axiom,
( comm_s4663373288045622133er_nat
= ( ^ [A3: nat,N3: nat] :
( groups708209901874060359at_nat
@ ^ [I3: nat] : ( plus_plus_nat @ A3 @ ( semiri1316708129612266289at_nat @ ( minus_minus_nat @ N3 @ I3 ) ) )
@ ( set_or1269000886237332187st_nat @ one_one_nat @ N3 ) ) ) ) ).
% pochhammer_prod_rev
thf(fact_8566_pochhammer__prod__rev,axiom,
( comm_s4660882817536571857er_int
= ( ^ [A3: int,N3: nat] :
( groups705719431365010083at_int
@ ^ [I3: nat] : ( plus_plus_int @ A3 @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ N3 @ I3 ) ) )
@ ( set_or1269000886237332187st_nat @ one_one_nat @ N3 ) ) ) ) ).
% pochhammer_prod_rev
thf(fact_8567_fact__div__fact,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) )
= ( groups708209901874060359at_nat
@ ^ [X: nat] : X
@ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ M ) ) ) ) ).
% fact_div_fact
thf(fact_8568_complex__split__polar,axiom,
! [Z: complex] :
? [R3: real,A4: real] :
( Z
= ( times_times_complex @ ( real_V4546457046886955230omplex @ R3 ) @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( cos_real @ A4 ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sin_real @ A4 ) ) ) ) ) ) ).
% complex_split_polar
thf(fact_8569_prod_Oin__pairs,axiom,
! [G: nat > real,M: nat,N: nat] :
( ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
= ( groups129246275422532515t_real
@ ^ [I3: nat] : ( times_times_real @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% prod.in_pairs
thf(fact_8570_prod_Oin__pairs,axiom,
! [G: nat > rat,M: nat,N: nat] :
( ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
= ( groups73079841787564623at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% prod.in_pairs
thf(fact_8571_prod_Oin__pairs,axiom,
! [G: nat > nat,M: nat,N: nat] :
( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
= ( groups708209901874060359at_nat
@ ^ [I3: nat] : ( times_times_nat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% prod.in_pairs
thf(fact_8572_prod_Oin__pairs,axiom,
! [G: nat > int,M: nat,N: nat] :
( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
= ( groups705719431365010083at_int
@ ^ [I3: nat] : ( times_times_int @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) ) )
@ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% prod.in_pairs
thf(fact_8573_sum__atLeastAtMost__code,axiom,
! [F: nat > complex,A: nat,B: nat] :
( ( groups2073611262835488442omplex @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo1517530859248394432omplex
@ ^ [A3: nat] : ( plus_plus_complex @ ( F @ A3 ) )
@ A
@ B
@ zero_zero_complex ) ) ).
% sum_atLeastAtMost_code
thf(fact_8574_sum__atLeastAtMost__code,axiom,
! [F: nat > rat,A: nat,B: nat] :
( ( groups2906978787729119204at_rat @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo1949268297981939178at_rat
@ ^ [A3: nat] : ( plus_plus_rat @ ( F @ A3 ) )
@ A
@ B
@ zero_zero_rat ) ) ).
% sum_atLeastAtMost_code
thf(fact_8575_sum__atLeastAtMost__code,axiom,
! [F: nat > int,A: nat,B: nat] :
( ( groups3539618377306564664at_int @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo2581907887559384638at_int
@ ^ [A3: nat] : ( plus_plus_int @ ( F @ A3 ) )
@ A
@ B
@ zero_zero_int ) ) ).
% sum_atLeastAtMost_code
thf(fact_8576_sum__atLeastAtMost__code,axiom,
! [F: nat > nat,A: nat,B: nat] :
( ( groups3542108847815614940at_nat @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo2584398358068434914at_nat
@ ^ [A3: nat] : ( plus_plus_nat @ ( F @ A3 ) )
@ A
@ B
@ zero_zero_nat ) ) ).
% sum_atLeastAtMost_code
thf(fact_8577_sum__atLeastAtMost__code,axiom,
! [F: nat > real,A: nat,B: nat] :
( ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_fo3111899725591712190t_real
@ ^ [A3: nat] : ( plus_plus_real @ ( F @ A3 ) )
@ A
@ B
@ zero_zero_real ) ) ).
% sum_atLeastAtMost_code
thf(fact_8578_pochhammer__Suc__prod__rev,axiom,
! [A: rat,N: nat] :
( ( comm_s4028243227959126397er_rat @ A @ ( suc @ N ) )
= ( groups73079841787564623at_rat
@ ^ [I3: nat] : ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ ( minus_minus_nat @ N @ I3 ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ).
% pochhammer_Suc_prod_rev
thf(fact_8579_pochhammer__Suc__prod__rev,axiom,
! [A: real,N: nat] :
( ( comm_s7457072308508201937r_real @ A @ ( suc @ N ) )
= ( groups129246275422532515t_real
@ ^ [I3: nat] : ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ ( minus_minus_nat @ N @ I3 ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ).
% pochhammer_Suc_prod_rev
thf(fact_8580_pochhammer__Suc__prod__rev,axiom,
! [A: nat,N: nat] :
( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N ) )
= ( groups708209901874060359at_nat
@ ^ [I3: nat] : ( plus_plus_nat @ A @ ( semiri1316708129612266289at_nat @ ( minus_minus_nat @ N @ I3 ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ).
% pochhammer_Suc_prod_rev
thf(fact_8581_pochhammer__Suc__prod__rev,axiom,
! [A: int,N: nat] :
( ( comm_s4660882817536571857er_int @ A @ ( suc @ N ) )
= ( groups705719431365010083at_int
@ ^ [I3: nat] : ( plus_plus_int @ A @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ N @ I3 ) ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ).
% pochhammer_Suc_prod_rev
thf(fact_8582_complex__inverse,axiom,
! [A: real,B: real] :
( ( invers8013647133539491842omplex @ ( complex2 @ A @ B ) )
= ( complex2 @ ( divide_divide_real @ A @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( uminus_uminus_real @ B ) @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% complex_inverse
thf(fact_8583_gbinomial__Suc,axiom,
! [A: complex,K: nat] :
( ( gbinomial_complex @ A @ ( suc @ K ) )
= ( divide1717551699836669952omplex
@ ( groups6464643781859351333omplex
@ ^ [I3: nat] : ( minus_minus_complex @ A @ ( semiri8010041392384452111omplex @ I3 ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) )
@ ( semiri5044797733671781792omplex @ ( suc @ K ) ) ) ) ).
% gbinomial_Suc
thf(fact_8584_gbinomial__Suc,axiom,
! [A: rat,K: nat] :
( ( gbinomial_rat @ A @ ( suc @ K ) )
= ( divide_divide_rat
@ ( groups73079841787564623at_rat
@ ^ [I3: nat] : ( minus_minus_rat @ A @ ( semiri681578069525770553at_rat @ I3 ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) )
@ ( semiri773545260158071498ct_rat @ ( suc @ K ) ) ) ) ).
% gbinomial_Suc
thf(fact_8585_gbinomial__Suc,axiom,
! [A: real,K: nat] :
( ( gbinomial_real @ A @ ( suc @ K ) )
= ( divide_divide_real
@ ( groups129246275422532515t_real
@ ^ [I3: nat] : ( minus_minus_real @ A @ ( semiri5074537144036343181t_real @ I3 ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) )
@ ( semiri2265585572941072030t_real @ ( suc @ K ) ) ) ) ).
% gbinomial_Suc
thf(fact_8586_gbinomial__Suc,axiom,
! [A: nat,K: nat] :
( ( gbinomial_nat @ A @ ( suc @ K ) )
= ( divide_divide_nat
@ ( groups708209901874060359at_nat
@ ^ [I3: nat] : ( minus_minus_nat @ A @ ( semiri1316708129612266289at_nat @ I3 ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) )
@ ( semiri1408675320244567234ct_nat @ ( suc @ K ) ) ) ) ).
% gbinomial_Suc
thf(fact_8587_gbinomial__Suc,axiom,
! [A: int,K: nat] :
( ( gbinomial_int @ A @ ( suc @ K ) )
= ( divide_divide_int
@ ( groups705719431365010083at_int
@ ^ [I3: nat] : ( minus_minus_int @ A @ ( semiri1314217659103216013at_int @ I3 ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) )
@ ( semiri1406184849735516958ct_int @ ( suc @ K ) ) ) ) ).
% gbinomial_Suc
thf(fact_8588_cmod__unit__one,axiom,
! [A: real] :
( ( real_V1022390504157884413omplex @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( cos_real @ A ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sin_real @ A ) ) ) ) )
= one_one_real ) ).
% cmod_unit_one
thf(fact_8589_cmod__complex__polar,axiom,
! [R2: real,A: real] :
( ( real_V1022390504157884413omplex @ ( times_times_complex @ ( real_V4546457046886955230omplex @ R2 ) @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( cos_real @ A ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sin_real @ A ) ) ) ) ) )
= ( abs_abs_real @ R2 ) ) ).
% cmod_complex_polar
thf(fact_8590_fact__code,axiom,
( semiri1406184849735516958ct_int
= ( ^ [N3: nat] : ( semiri1314217659103216013at_int @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 @ one_one_nat ) ) ) ) ).
% fact_code
thf(fact_8591_fact__code,axiom,
( semiri2265585572941072030t_real
= ( ^ [N3: nat] : ( semiri5074537144036343181t_real @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 @ one_one_nat ) ) ) ) ).
% fact_code
thf(fact_8592_fact__code,axiom,
( semiri1408675320244567234ct_nat
= ( ^ [N3: nat] : ( semiri1316708129612266289at_nat @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 @ one_one_nat ) ) ) ) ).
% fact_code
thf(fact_8593_Arg__minus__ii,axiom,
( ( arg @ ( uminus1482373934393186551omplex @ imaginary_unit ) )
= ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% Arg_minus_ii
thf(fact_8594_csqrt__ii,axiom,
( ( csqrt @ imaginary_unit )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ one_one_complex @ imaginary_unit ) @ ( real_V4546457046886955230omplex @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% csqrt_ii
thf(fact_8595_Arg__ii,axiom,
( ( arg @ imaginary_unit )
= ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% Arg_ii
thf(fact_8596_gbinomial__partial__row__sum,axiom,
! [A: complex,M: nat] :
( ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( times_times_complex @ ( gbinomial_complex @ A @ K2 ) @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ ( semiri8010041392384452111omplex @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( times_times_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ M ) @ one_one_complex ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ ( gbinomial_complex @ A @ ( plus_plus_nat @ M @ one_one_nat ) ) ) ) ).
% gbinomial_partial_row_sum
thf(fact_8597_gbinomial__partial__row__sum,axiom,
! [A: rat,M: nat] :
( ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( times_times_rat @ ( gbinomial_rat @ A @ K2 ) @ ( minus_minus_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( semiri681578069525770553at_rat @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( times_times_rat @ ( divide_divide_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ one_one_rat ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( gbinomial_rat @ A @ ( plus_plus_nat @ M @ one_one_nat ) ) ) ) ).
% gbinomial_partial_row_sum
thf(fact_8598_gbinomial__partial__row__sum,axiom,
! [A: real,M: nat] :
( ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( times_times_real @ ( gbinomial_real @ A @ K2 ) @ ( minus_minus_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( times_times_real @ ( divide_divide_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ one_one_real ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( gbinomial_real @ A @ ( plus_plus_nat @ M @ one_one_nat ) ) ) ) ).
% gbinomial_partial_row_sum
thf(fact_8599_atMost__iff,axiom,
! [I: real,K: real] :
( ( member_real @ I @ ( set_ord_atMost_real @ K ) )
= ( ord_less_eq_real @ I @ K ) ) ).
% atMost_iff
thf(fact_8600_atMost__iff,axiom,
! [I: set_nat,K: set_nat] :
( ( member_set_nat @ I @ ( set_or4236626031148496127et_nat @ K ) )
= ( ord_less_eq_set_nat @ I @ K ) ) ).
% atMost_iff
thf(fact_8601_atMost__iff,axiom,
! [I: rat,K: rat] :
( ( member_rat @ I @ ( set_ord_atMost_rat @ K ) )
= ( ord_less_eq_rat @ I @ K ) ) ).
% atMost_iff
thf(fact_8602_atMost__iff,axiom,
! [I: num,K: num] :
( ( member_num @ I @ ( set_ord_atMost_num @ K ) )
= ( ord_less_eq_num @ I @ K ) ) ).
% atMost_iff
thf(fact_8603_atMost__iff,axiom,
! [I: int,K: int] :
( ( member_int @ I @ ( set_ord_atMost_int @ K ) )
= ( ord_less_eq_int @ I @ K ) ) ).
% atMost_iff
thf(fact_8604_atMost__iff,axiom,
! [I: nat,K: nat] :
( ( member_nat @ I @ ( set_ord_atMost_nat @ K ) )
= ( ord_less_eq_nat @ I @ K ) ) ).
% atMost_iff
thf(fact_8605_csqrt__0,axiom,
( ( csqrt @ zero_zero_complex )
= zero_zero_complex ) ).
% csqrt_0
thf(fact_8606_csqrt__eq__0,axiom,
! [Z: complex] :
( ( ( csqrt @ Z )
= zero_zero_complex )
= ( Z = zero_zero_complex ) ) ).
% csqrt_eq_0
thf(fact_8607_csqrt__1,axiom,
( ( csqrt @ one_one_complex )
= one_one_complex ) ).
% csqrt_1
thf(fact_8608_csqrt__eq__1,axiom,
! [Z: complex] :
( ( ( csqrt @ Z )
= one_one_complex )
= ( Z = one_one_complex ) ) ).
% csqrt_eq_1
thf(fact_8609_atMost__subset__iff,axiom,
! [X2: set_nat,Y2: set_nat] :
( ( ord_le6893508408891458716et_nat @ ( set_or4236626031148496127et_nat @ X2 ) @ ( set_or4236626031148496127et_nat @ Y2 ) )
= ( ord_less_eq_set_nat @ X2 @ Y2 ) ) ).
% atMost_subset_iff
thf(fact_8610_atMost__subset__iff,axiom,
! [X2: rat,Y2: rat] :
( ( ord_less_eq_set_rat @ ( set_ord_atMost_rat @ X2 ) @ ( set_ord_atMost_rat @ Y2 ) )
= ( ord_less_eq_rat @ X2 @ Y2 ) ) ).
% atMost_subset_iff
thf(fact_8611_atMost__subset__iff,axiom,
! [X2: num,Y2: num] :
( ( ord_less_eq_set_num @ ( set_ord_atMost_num @ X2 ) @ ( set_ord_atMost_num @ Y2 ) )
= ( ord_less_eq_num @ X2 @ Y2 ) ) ).
% atMost_subset_iff
thf(fact_8612_atMost__subset__iff,axiom,
! [X2: int,Y2: int] :
( ( ord_less_eq_set_int @ ( set_ord_atMost_int @ X2 ) @ ( set_ord_atMost_int @ Y2 ) )
= ( ord_less_eq_int @ X2 @ Y2 ) ) ).
% atMost_subset_iff
thf(fact_8613_atMost__subset__iff,axiom,
! [X2: nat,Y2: nat] :
( ( ord_less_eq_set_nat @ ( set_ord_atMost_nat @ X2 ) @ ( set_ord_atMost_nat @ Y2 ) )
= ( ord_less_eq_nat @ X2 @ Y2 ) ) ).
% atMost_subset_iff
thf(fact_8614_prod__eq__1__iff,axiom,
! [A2: set_int,F: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ( ( groups1707563613775114915nt_nat @ F @ A2 )
= one_one_nat )
= ( ! [X: int] :
( ( member_int @ X @ A2 )
=> ( ( F @ X )
= one_one_nat ) ) ) ) ) ).
% prod_eq_1_iff
thf(fact_8615_prod__eq__1__iff,axiom,
! [A2: set_complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ( groups861055069439313189ex_nat @ F @ A2 )
= one_one_nat )
= ( ! [X: complex] :
( ( member_complex @ X @ A2 )
=> ( ( F @ X )
= one_one_nat ) ) ) ) ) ).
% prod_eq_1_iff
thf(fact_8616_prod__eq__1__iff,axiom,
! [A2: set_Code_integer,F: code_integer > nat] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( ( groups3190895334310489300er_nat @ F @ A2 )
= one_one_nat )
= ( ! [X: code_integer] :
( ( member_Code_integer @ X @ A2 )
=> ( ( F @ X )
= one_one_nat ) ) ) ) ) ).
% prod_eq_1_iff
thf(fact_8617_prod__eq__1__iff,axiom,
! [A2: set_nat,F: nat > nat] :
( ( finite_finite_nat @ A2 )
=> ( ( ( groups708209901874060359at_nat @ F @ A2 )
= one_one_nat )
= ( ! [X: nat] :
( ( member_nat @ X @ A2 )
=> ( ( F @ X )
= one_one_nat ) ) ) ) ) ).
% prod_eq_1_iff
thf(fact_8618_Icc__subset__Iic__iff,axiom,
! [L2: set_nat,H2: set_nat,H3: set_nat] :
( ( ord_le6893508408891458716et_nat @ ( set_or4548717258645045905et_nat @ L2 @ H2 ) @ ( set_or4236626031148496127et_nat @ H3 ) )
= ( ~ ( ord_less_eq_set_nat @ L2 @ H2 )
| ( ord_less_eq_set_nat @ H2 @ H3 ) ) ) ).
% Icc_subset_Iic_iff
thf(fact_8619_Icc__subset__Iic__iff,axiom,
! [L2: rat,H2: rat,H3: rat] :
( ( ord_less_eq_set_rat @ ( set_or633870826150836451st_rat @ L2 @ H2 ) @ ( set_ord_atMost_rat @ H3 ) )
= ( ~ ( ord_less_eq_rat @ L2 @ H2 )
| ( ord_less_eq_rat @ H2 @ H3 ) ) ) ).
% Icc_subset_Iic_iff
thf(fact_8620_Icc__subset__Iic__iff,axiom,
! [L2: num,H2: num,H3: num] :
( ( ord_less_eq_set_num @ ( set_or7049704709247886629st_num @ L2 @ H2 ) @ ( set_ord_atMost_num @ H3 ) )
= ( ~ ( ord_less_eq_num @ L2 @ H2 )
| ( ord_less_eq_num @ H2 @ H3 ) ) ) ).
% Icc_subset_Iic_iff
thf(fact_8621_Icc__subset__Iic__iff,axiom,
! [L2: nat,H2: nat,H3: nat] :
( ( ord_less_eq_set_nat @ ( set_or1269000886237332187st_nat @ L2 @ H2 ) @ ( set_ord_atMost_nat @ H3 ) )
= ( ~ ( ord_less_eq_nat @ L2 @ H2 )
| ( ord_less_eq_nat @ H2 @ H3 ) ) ) ).
% Icc_subset_Iic_iff
thf(fact_8622_Icc__subset__Iic__iff,axiom,
! [L2: int,H2: int,H3: int] :
( ( ord_less_eq_set_int @ ( set_or1266510415728281911st_int @ L2 @ H2 ) @ ( set_ord_atMost_int @ H3 ) )
= ( ~ ( ord_less_eq_int @ L2 @ H2 )
| ( ord_less_eq_int @ H2 @ H3 ) ) ) ).
% Icc_subset_Iic_iff
thf(fact_8623_Icc__subset__Iic__iff,axiom,
! [L2: code_integer,H2: code_integer,H3: code_integer] :
( ( ord_le7084787975880047091nteger @ ( set_or189985376899183464nteger @ L2 @ H2 ) @ ( set_or9101266186257409494nteger @ H3 ) )
= ( ~ ( ord_le3102999989581377725nteger @ L2 @ H2 )
| ( ord_le3102999989581377725nteger @ H2 @ H3 ) ) ) ).
% Icc_subset_Iic_iff
thf(fact_8624_Icc__subset__Iic__iff,axiom,
! [L2: real,H2: real,H3: real] :
( ( ord_less_eq_set_real @ ( set_or1222579329274155063t_real @ L2 @ H2 ) @ ( set_ord_atMost_real @ H3 ) )
= ( ~ ( ord_less_eq_real @ L2 @ H2 )
| ( ord_less_eq_real @ H2 @ H3 ) ) ) ).
% Icc_subset_Iic_iff
thf(fact_8625_sum_OatMost__Suc,axiom,
! [G: nat > rat,N: nat] :
( ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
= ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).
% sum.atMost_Suc
thf(fact_8626_sum_OatMost__Suc,axiom,
! [G: nat > int,N: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
= ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).
% sum.atMost_Suc
thf(fact_8627_sum_OatMost__Suc,axiom,
! [G: nat > nat,N: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).
% sum.atMost_Suc
thf(fact_8628_sum_OatMost__Suc,axiom,
! [G: nat > real,N: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
= ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).
% sum.atMost_Suc
thf(fact_8629_prod_OatMost__Suc,axiom,
! [G: nat > real,N: nat] :
( ( groups129246275422532515t_real @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
= ( times_times_real @ ( groups129246275422532515t_real @ G @ ( set_ord_atMost_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).
% prod.atMost_Suc
thf(fact_8630_prod_OatMost__Suc,axiom,
! [G: nat > rat,N: nat] :
( ( groups73079841787564623at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
= ( times_times_rat @ ( groups73079841787564623at_rat @ G @ ( set_ord_atMost_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).
% prod.atMost_Suc
thf(fact_8631_prod_OatMost__Suc,axiom,
! [G: nat > nat,N: nat] :
( ( groups708209901874060359at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
= ( times_times_nat @ ( groups708209901874060359at_nat @ G @ ( set_ord_atMost_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).
% prod.atMost_Suc
thf(fact_8632_prod_OatMost__Suc,axiom,
! [G: nat > int,N: nat] :
( ( groups705719431365010083at_int @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
= ( times_times_int @ ( groups705719431365010083at_int @ G @ ( set_ord_atMost_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).
% prod.atMost_Suc
thf(fact_8633_prod__pos__nat__iff,axiom,
! [A2: set_int,F: int > nat] :
( ( finite_finite_int @ A2 )
=> ( ( ord_less_nat @ zero_zero_nat @ ( groups1707563613775114915nt_nat @ F @ A2 ) )
= ( ! [X: int] :
( ( member_int @ X @ A2 )
=> ( ord_less_nat @ zero_zero_nat @ ( F @ X ) ) ) ) ) ) ).
% prod_pos_nat_iff
thf(fact_8634_prod__pos__nat__iff,axiom,
! [A2: set_complex,F: complex > nat] :
( ( finite3207457112153483333omplex @ A2 )
=> ( ( ord_less_nat @ zero_zero_nat @ ( groups861055069439313189ex_nat @ F @ A2 ) )
= ( ! [X: complex] :
( ( member_complex @ X @ A2 )
=> ( ord_less_nat @ zero_zero_nat @ ( F @ X ) ) ) ) ) ) ).
% prod_pos_nat_iff
thf(fact_8635_prod__pos__nat__iff,axiom,
! [A2: set_Code_integer,F: code_integer > nat] :
( ( finite6017078050557962740nteger @ A2 )
=> ( ( ord_less_nat @ zero_zero_nat @ ( groups3190895334310489300er_nat @ F @ A2 ) )
= ( ! [X: code_integer] :
( ( member_Code_integer @ X @ A2 )
=> ( ord_less_nat @ zero_zero_nat @ ( F @ X ) ) ) ) ) ) ).
% prod_pos_nat_iff
thf(fact_8636_prod__pos__nat__iff,axiom,
! [A2: set_nat,F: nat > nat] :
( ( finite_finite_nat @ A2 )
=> ( ( ord_less_nat @ zero_zero_nat @ ( groups708209901874060359at_nat @ F @ A2 ) )
= ( ! [X: nat] :
( ( member_nat @ X @ A2 )
=> ( ord_less_nat @ zero_zero_nat @ ( F @ X ) ) ) ) ) ) ).
% prod_pos_nat_iff
thf(fact_8637_power2__csqrt,axiom,
! [Z: complex] :
( ( power_power_complex @ ( csqrt @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= Z ) ).
% power2_csqrt
thf(fact_8638_int__prod,axiom,
! [F: int > nat,A2: set_int] :
( ( semiri1314217659103216013at_int @ ( groups1707563613775114915nt_nat @ F @ A2 ) )
= ( groups1705073143266064639nt_int
@ ^ [X: int] : ( semiri1314217659103216013at_int @ ( F @ X ) )
@ A2 ) ) ).
% int_prod
thf(fact_8639_int__prod,axiom,
! [F: nat > nat,A2: set_nat] :
( ( semiri1314217659103216013at_int @ ( groups708209901874060359at_nat @ F @ A2 ) )
= ( groups705719431365010083at_int
@ ^ [X: nat] : ( semiri1314217659103216013at_int @ ( F @ X ) )
@ A2 ) ) ).
% int_prod
thf(fact_8640_atMost__def,axiom,
( set_or4236626031148496127et_nat
= ( ^ [U2: set_nat] :
( collect_set_nat
@ ^ [X: set_nat] : ( ord_less_eq_set_nat @ X @ U2 ) ) ) ) ).
% atMost_def
thf(fact_8641_atMost__def,axiom,
( set_ord_atMost_rat
= ( ^ [U2: rat] :
( collect_rat
@ ^ [X: rat] : ( ord_less_eq_rat @ X @ U2 ) ) ) ) ).
% atMost_def
thf(fact_8642_atMost__def,axiom,
( set_ord_atMost_num
= ( ^ [U2: num] :
( collect_num
@ ^ [X: num] : ( ord_less_eq_num @ X @ U2 ) ) ) ) ).
% atMost_def
thf(fact_8643_atMost__def,axiom,
( set_ord_atMost_int
= ( ^ [U2: int] :
( collect_int
@ ^ [X: int] : ( ord_less_eq_int @ X @ U2 ) ) ) ) ).
% atMost_def
thf(fact_8644_atMost__def,axiom,
( set_ord_atMost_nat
= ( ^ [U2: nat] :
( collect_nat
@ ^ [X: nat] : ( ord_less_eq_nat @ X @ U2 ) ) ) ) ).
% atMost_def
thf(fact_8645_atMost__atLeast0,axiom,
( set_ord_atMost_nat
= ( set_or1269000886237332187st_nat @ zero_zero_nat ) ) ).
% atMost_atLeast0
thf(fact_8646_lessThan__Suc__atMost,axiom,
! [K: nat] :
( ( set_ord_lessThan_nat @ ( suc @ K ) )
= ( set_ord_atMost_nat @ K ) ) ).
% lessThan_Suc_atMost
thf(fact_8647_not__Iic__le__Icc,axiom,
! [H2: int,L3: int,H3: int] :
~ ( ord_less_eq_set_int @ ( set_ord_atMost_int @ H2 ) @ ( set_or1266510415728281911st_int @ L3 @ H3 ) ) ).
% not_Iic_le_Icc
thf(fact_8648_not__Iic__le__Icc,axiom,
! [H2: real,L3: real,H3: real] :
~ ( ord_less_eq_set_real @ ( set_ord_atMost_real @ H2 ) @ ( set_or1222579329274155063t_real @ L3 @ H3 ) ) ).
% not_Iic_le_Icc
thf(fact_8649_Iic__subset__Iio__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_set_rat @ ( set_ord_atMost_rat @ A ) @ ( set_ord_lessThan_rat @ B ) )
= ( ord_less_rat @ A @ B ) ) ).
% Iic_subset_Iio_iff
thf(fact_8650_Iic__subset__Iio__iff,axiom,
! [A: num,B: num] :
( ( ord_less_eq_set_num @ ( set_ord_atMost_num @ A ) @ ( set_ord_lessThan_num @ B ) )
= ( ord_less_num @ A @ B ) ) ).
% Iic_subset_Iio_iff
thf(fact_8651_Iic__subset__Iio__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_set_int @ ( set_ord_atMost_int @ A ) @ ( set_ord_lessThan_int @ B ) )
= ( ord_less_int @ A @ B ) ) ).
% Iic_subset_Iio_iff
thf(fact_8652_Iic__subset__Iio__iff,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_set_nat @ ( set_ord_atMost_nat @ A ) @ ( set_ord_lessThan_nat @ B ) )
= ( ord_less_nat @ A @ B ) ) ).
% Iic_subset_Iio_iff
thf(fact_8653_Iic__subset__Iio__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_set_real @ ( set_ord_atMost_real @ A ) @ ( set_or5984915006950818249n_real @ B ) )
= ( ord_less_real @ A @ B ) ) ).
% Iic_subset_Iio_iff
thf(fact_8654_prod__int__eq,axiom,
! [I: nat,J: nat] :
( ( groups705719431365010083at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ I @ J ) )
= ( groups1705073143266064639nt_int
@ ^ [X: int] : X
@ ( set_or1266510415728281911st_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J ) ) ) ) ).
% prod_int_eq
thf(fact_8655_Arg__zero,axiom,
( ( arg @ zero_zero_complex )
= zero_zero_real ) ).
% Arg_zero
thf(fact_8656_sum_OatMost__Suc__shift,axiom,
! [G: nat > rat,N: nat] :
( ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
= ( plus_plus_rat @ ( G @ zero_zero_nat )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) ) ).
% sum.atMost_Suc_shift
thf(fact_8657_sum_OatMost__Suc__shift,axiom,
! [G: nat > int,N: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
= ( plus_plus_int @ ( G @ zero_zero_nat )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) ) ).
% sum.atMost_Suc_shift
thf(fact_8658_sum_OatMost__Suc__shift,axiom,
! [G: nat > nat,N: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
= ( plus_plus_nat @ ( G @ zero_zero_nat )
@ ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) ) ).
% sum.atMost_Suc_shift
thf(fact_8659_sum_OatMost__Suc__shift,axiom,
! [G: nat > real,N: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
= ( plus_plus_real @ ( G @ zero_zero_nat )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) ) ).
% sum.atMost_Suc_shift
thf(fact_8660_sum__telescope,axiom,
! [F: nat > rat,I: nat] :
( ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( minus_minus_rat @ ( F @ I3 ) @ ( F @ ( suc @ I3 ) ) )
@ ( set_ord_atMost_nat @ I ) )
= ( minus_minus_rat @ ( F @ zero_zero_nat ) @ ( F @ ( suc @ I ) ) ) ) ).
% sum_telescope
thf(fact_8661_sum__telescope,axiom,
! [F: nat > int,I: nat] :
( ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( minus_minus_int @ ( F @ I3 ) @ ( F @ ( suc @ I3 ) ) )
@ ( set_ord_atMost_nat @ I ) )
= ( minus_minus_int @ ( F @ zero_zero_nat ) @ ( F @ ( suc @ I ) ) ) ) ).
% sum_telescope
thf(fact_8662_sum__telescope,axiom,
! [F: nat > real,I: nat] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( minus_minus_real @ ( F @ I3 ) @ ( F @ ( suc @ I3 ) ) )
@ ( set_ord_atMost_nat @ I ) )
= ( minus_minus_real @ ( F @ zero_zero_nat ) @ ( F @ ( suc @ I ) ) ) ) ).
% sum_telescope
thf(fact_8663_polyfun__eq__coeffs,axiom,
! [C: nat > complex,N: nat,D2: nat > complex] :
( ( ! [X: complex] :
( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ X @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( D2 @ I3 ) @ ( power_power_complex @ X @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) )
= ( ! [I3: nat] :
( ( ord_less_eq_nat @ I3 @ N )
=> ( ( C @ I3 )
= ( D2 @ I3 ) ) ) ) ) ).
% polyfun_eq_coeffs
thf(fact_8664_polyfun__eq__coeffs,axiom,
! [C: nat > real,N: nat,D2: nat > real] :
( ( ! [X: real] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ X @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( D2 @ I3 ) @ ( power_power_real @ X @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) )
= ( ! [I3: nat] :
( ( ord_less_eq_nat @ I3 @ N )
=> ( ( C @ I3 )
= ( D2 @ I3 ) ) ) ) ) ).
% polyfun_eq_coeffs
thf(fact_8665_prod_OatMost__Suc__shift,axiom,
! [G: nat > real,N: nat] :
( ( groups129246275422532515t_real @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
= ( times_times_real @ ( G @ zero_zero_nat )
@ ( groups129246275422532515t_real
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) ) ).
% prod.atMost_Suc_shift
thf(fact_8666_prod_OatMost__Suc__shift,axiom,
! [G: nat > rat,N: nat] :
( ( groups73079841787564623at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
= ( times_times_rat @ ( G @ zero_zero_nat )
@ ( groups73079841787564623at_rat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) ) ).
% prod.atMost_Suc_shift
thf(fact_8667_prod_OatMost__Suc__shift,axiom,
! [G: nat > nat,N: nat] :
( ( groups708209901874060359at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
= ( times_times_nat @ ( G @ zero_zero_nat )
@ ( groups708209901874060359at_nat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) ) ).
% prod.atMost_Suc_shift
thf(fact_8668_prod_OatMost__Suc__shift,axiom,
! [G: nat > int,N: nat] :
( ( groups705719431365010083at_int @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
= ( times_times_int @ ( G @ zero_zero_nat )
@ ( groups705719431365010083at_int
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) ) ).
% prod.atMost_Suc_shift
thf(fact_8669_bounded__imp__summable,axiom,
! [A: nat > int,B4: int] :
( ! [N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( A @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq_int @ ( groups3539618377306564664at_int @ A @ ( set_ord_atMost_nat @ N2 ) ) @ B4 )
=> ( summable_int @ A ) ) ) ).
% bounded_imp_summable
thf(fact_8670_bounded__imp__summable,axiom,
! [A: nat > nat,B4: nat] :
( ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( A @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ A @ ( set_ord_atMost_nat @ N2 ) ) @ B4 )
=> ( summable_nat @ A ) ) ) ).
% bounded_imp_summable
thf(fact_8671_bounded__imp__summable,axiom,
! [A: nat > real,B4: real] :
( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq_real @ ( groups6591440286371151544t_real @ A @ ( set_ord_atMost_nat @ N2 ) ) @ B4 )
=> ( summable_real @ A ) ) ) ).
% bounded_imp_summable
thf(fact_8672_prod__int__plus__eq,axiom,
! [I: nat,J: nat] :
( ( groups705719431365010083at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ I @ ( plus_plus_nat @ I @ J ) ) )
= ( groups1705073143266064639nt_int
@ ^ [X: int] : X
@ ( set_or1266510415728281911st_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ I @ J ) ) ) ) ) ).
% prod_int_plus_eq
thf(fact_8673_sum_Onested__swap_H,axiom,
! [A: nat > nat > nat,N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( groups3542108847815614940at_nat @ ( A @ I3 ) @ ( set_ord_lessThan_nat @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( groups3542108847815614940at_nat
@ ^ [J3: nat] :
( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( A @ I3 @ J3 )
@ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ).
% sum.nested_swap'
thf(fact_8674_sum_Onested__swap_H,axiom,
! [A: nat > nat > real,N: nat] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( groups6591440286371151544t_real @ ( A @ I3 ) @ ( set_ord_lessThan_nat @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( groups6591440286371151544t_real
@ ^ [J3: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( A @ I3 @ J3 )
@ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ).
% sum.nested_swap'
thf(fact_8675_prod_Onested__swap_H,axiom,
! [A: nat > nat > nat,N: nat] :
( ( groups708209901874060359at_nat
@ ^ [I3: nat] : ( groups708209901874060359at_nat @ ( A @ I3 ) @ ( set_ord_lessThan_nat @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( groups708209901874060359at_nat
@ ^ [J3: nat] :
( groups708209901874060359at_nat
@ ^ [I3: nat] : ( A @ I3 @ J3 )
@ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ).
% prod.nested_swap'
thf(fact_8676_prod_Onested__swap_H,axiom,
! [A: nat > nat > int,N: nat] :
( ( groups705719431365010083at_int
@ ^ [I3: nat] : ( groups705719431365010083at_int @ ( A @ I3 ) @ ( set_ord_lessThan_nat @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( groups705719431365010083at_int
@ ^ [J3: nat] :
( groups705719431365010083at_int
@ ^ [I3: nat] : ( A @ I3 @ J3 )
@ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ).
% prod.nested_swap'
thf(fact_8677_zero__polynom__imp__zero__coeffs,axiom,
! [C: nat > complex,N: nat,K: nat] :
( ! [W3: complex] :
( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ W3 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_complex )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( C @ K )
= zero_zero_complex ) ) ) ).
% zero_polynom_imp_zero_coeffs
thf(fact_8678_zero__polynom__imp__zero__coeffs,axiom,
! [C: nat > real,N: nat,K: nat] :
( ! [W3: real] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ W3 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_real )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( C @ K )
= zero_zero_real ) ) ) ).
% zero_polynom_imp_zero_coeffs
thf(fact_8679_polyfun__eq__0,axiom,
! [C: nat > complex,N: nat] :
( ( ! [X: complex] :
( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ X @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_complex ) )
= ( ! [I3: nat] :
( ( ord_less_eq_nat @ I3 @ N )
=> ( ( C @ I3 )
= zero_zero_complex ) ) ) ) ).
% polyfun_eq_0
thf(fact_8680_polyfun__eq__0,axiom,
! [C: nat > real,N: nat] :
( ( ! [X: real] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ X @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_real ) )
= ( ! [I3: nat] :
( ( ord_less_eq_nat @ I3 @ N )
=> ( ( C @ I3 )
= zero_zero_real ) ) ) ) ).
% polyfun_eq_0
thf(fact_8681_ln__prod,axiom,
! [I5: set_real,F: real > real] :
( ( finite_finite_real @ I5 )
=> ( ! [I2: real] :
( ( member_real @ I2 @ I5 )
=> ( ord_less_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ( ln_ln_real @ ( groups1681761925125756287l_real @ F @ I5 ) )
= ( groups8097168146408367636l_real
@ ^ [X: real] : ( ln_ln_real @ ( F @ X ) )
@ I5 ) ) ) ) ).
% ln_prod
thf(fact_8682_ln__prod,axiom,
! [I5: set_VEBT_VEBT,F: vEBT_VEBT > real] :
( ( finite5795047828879050333T_VEBT @ I5 )
=> ( ! [I2: vEBT_VEBT] :
( ( member_VEBT_VEBT @ I2 @ I5 )
=> ( ord_less_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ( ln_ln_real @ ( groups2703838992350267259T_real @ F @ I5 ) )
= ( groups2240296850493347238T_real
@ ^ [X: vEBT_VEBT] : ( ln_ln_real @ ( F @ X ) )
@ I5 ) ) ) ) ).
% ln_prod
thf(fact_8683_ln__prod,axiom,
! [I5: set_int,F: int > real] :
( ( finite_finite_int @ I5 )
=> ( ! [I2: int] :
( ( member_int @ I2 @ I5 )
=> ( ord_less_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ( ln_ln_real @ ( groups2316167850115554303t_real @ F @ I5 ) )
= ( groups8778361861064173332t_real
@ ^ [X: int] : ( ln_ln_real @ ( F @ X ) )
@ I5 ) ) ) ) ).
% ln_prod
thf(fact_8684_ln__prod,axiom,
! [I5: set_complex,F: complex > real] :
( ( finite3207457112153483333omplex @ I5 )
=> ( ! [I2: complex] :
( ( member_complex @ I2 @ I5 )
=> ( ord_less_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ( ln_ln_real @ ( groups766887009212190081x_real @ F @ I5 ) )
= ( groups5808333547571424918x_real
@ ^ [X: complex] : ( ln_ln_real @ ( F @ X ) )
@ I5 ) ) ) ) ).
% ln_prod
thf(fact_8685_ln__prod,axiom,
! [I5: set_Code_integer,F: code_integer > real] :
( ( finite6017078050557962740nteger @ I5 )
=> ( ! [I2: code_integer] :
( ( member_Code_integer @ I2 @ I5 )
=> ( ord_less_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ( ln_ln_real @ ( groups9004974159866482096r_real @ F @ I5 ) )
= ( groups1270011288395367621r_real
@ ^ [X: code_integer] : ( ln_ln_real @ ( F @ X ) )
@ I5 ) ) ) ) ).
% ln_prod
thf(fact_8686_ln__prod,axiom,
! [I5: set_nat,F: nat > real] :
( ( finite_finite_nat @ I5 )
=> ( ! [I2: nat] :
( ( member_nat @ I2 @ I5 )
=> ( ord_less_real @ zero_zero_real @ ( F @ I2 ) ) )
=> ( ( ln_ln_real @ ( groups129246275422532515t_real @ F @ I5 ) )
= ( groups6591440286371151544t_real
@ ^ [X: nat] : ( ln_ln_real @ ( F @ X ) )
@ I5 ) ) ) ) ).
% ln_prod
thf(fact_8687_sum_OatMost__shift,axiom,
! [G: nat > rat,N: nat] :
( ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ N ) )
= ( plus_plus_rat @ ( G @ zero_zero_nat )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% sum.atMost_shift
thf(fact_8688_sum_OatMost__shift,axiom,
! [G: nat > int,N: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ N ) )
= ( plus_plus_int @ ( G @ zero_zero_nat )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% sum.atMost_shift
thf(fact_8689_sum_OatMost__shift,axiom,
! [G: nat > nat,N: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ N ) )
= ( plus_plus_nat @ ( G @ zero_zero_nat )
@ ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% sum.atMost_shift
thf(fact_8690_sum_OatMost__shift,axiom,
! [G: nat > real,N: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ N ) )
= ( plus_plus_real @ ( G @ zero_zero_nat )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% sum.atMost_shift
thf(fact_8691_sum__up__index__split,axiom,
! [F: nat > rat,M: nat,N: nat] :
( ( groups2906978787729119204at_rat @ F @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) )
= ( plus_plus_rat @ ( groups2906978787729119204at_rat @ F @ ( set_ord_atMost_nat @ M ) ) @ ( groups2906978787729119204at_rat @ F @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( plus_plus_nat @ M @ N ) ) ) ) ) ).
% sum_up_index_split
thf(fact_8692_sum__up__index__split,axiom,
! [F: nat > int,M: nat,N: nat] :
( ( groups3539618377306564664at_int @ F @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) )
= ( plus_plus_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_atMost_nat @ M ) ) @ ( groups3539618377306564664at_int @ F @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( plus_plus_nat @ M @ N ) ) ) ) ) ).
% sum_up_index_split
thf(fact_8693_sum__up__index__split,axiom,
! [F: nat > nat,M: nat,N: nat] :
( ( groups3542108847815614940at_nat @ F @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_atMost_nat @ M ) ) @ ( groups3542108847815614940at_nat @ F @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( plus_plus_nat @ M @ N ) ) ) ) ) ).
% sum_up_index_split
thf(fact_8694_sum__up__index__split,axiom,
! [F: nat > real,M: nat,N: nat] :
( ( groups6591440286371151544t_real @ F @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) )
= ( plus_plus_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_atMost_nat @ M ) ) @ ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( plus_plus_nat @ M @ N ) ) ) ) ) ).
% sum_up_index_split
thf(fact_8695_prod_OatMost__shift,axiom,
! [G: nat > real,N: nat] :
( ( groups129246275422532515t_real @ G @ ( set_ord_atMost_nat @ N ) )
= ( times_times_real @ ( G @ zero_zero_nat )
@ ( groups129246275422532515t_real
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% prod.atMost_shift
thf(fact_8696_prod_OatMost__shift,axiom,
! [G: nat > rat,N: nat] :
( ( groups73079841787564623at_rat @ G @ ( set_ord_atMost_nat @ N ) )
= ( times_times_rat @ ( G @ zero_zero_nat )
@ ( groups73079841787564623at_rat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% prod.atMost_shift
thf(fact_8697_prod_OatMost__shift,axiom,
! [G: nat > nat,N: nat] :
( ( groups708209901874060359at_nat @ G @ ( set_ord_atMost_nat @ N ) )
= ( times_times_nat @ ( G @ zero_zero_nat )
@ ( groups708209901874060359at_nat
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% prod.atMost_shift
thf(fact_8698_prod_OatMost__shift,axiom,
! [G: nat > int,N: nat] :
( ( groups705719431365010083at_int @ G @ ( set_ord_atMost_nat @ N ) )
= ( times_times_int @ ( G @ zero_zero_nat )
@ ( groups705719431365010083at_int
@ ^ [I3: nat] : ( G @ ( suc @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% prod.atMost_shift
thf(fact_8699_gbinomial__parallel__sum,axiom,
! [A: complex,N: nat] :
( ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( gbinomial_complex @ ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ K2 ) ) @ K2 )
@ ( set_ord_atMost_nat @ N ) )
= ( gbinomial_complex @ ( plus_plus_complex @ ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ N ) ) @ one_one_complex ) @ N ) ) ).
% gbinomial_parallel_sum
thf(fact_8700_gbinomial__parallel__sum,axiom,
! [A: rat,N: nat] :
( ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( gbinomial_rat @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ K2 ) ) @ K2 )
@ ( set_ord_atMost_nat @ N ) )
= ( gbinomial_rat @ ( plus_plus_rat @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ N ) ) @ one_one_rat ) @ N ) ) ).
% gbinomial_parallel_sum
thf(fact_8701_gbinomial__parallel__sum,axiom,
! [A: real,N: nat] :
( ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( gbinomial_real @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ K2 ) ) @ K2 )
@ ( set_ord_atMost_nat @ N ) )
= ( gbinomial_real @ ( plus_plus_real @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ N ) ) @ one_one_real ) @ N ) ) ).
% gbinomial_parallel_sum
thf(fact_8702_sum__gp__basic,axiom,
! [X2: complex,N: nat] :
( ( times_times_complex @ ( minus_minus_complex @ one_one_complex @ X2 ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_ord_atMost_nat @ N ) ) )
= ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X2 @ ( suc @ N ) ) ) ) ).
% sum_gp_basic
thf(fact_8703_sum__gp__basic,axiom,
! [X2: code_integer,N: nat] :
( ( times_3573771949741848930nteger @ ( minus_8373710615458151222nteger @ one_one_Code_integer @ X2 ) @ ( groups7501900531339628137nteger @ ( power_8256067586552552935nteger @ X2 ) @ ( set_ord_atMost_nat @ N ) ) )
= ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ X2 @ ( suc @ N ) ) ) ) ).
% sum_gp_basic
thf(fact_8704_sum__gp__basic,axiom,
! [X2: rat,N: nat] :
( ( times_times_rat @ ( minus_minus_rat @ one_one_rat @ X2 ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_ord_atMost_nat @ N ) ) )
= ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X2 @ ( suc @ N ) ) ) ) ).
% sum_gp_basic
thf(fact_8705_sum__gp__basic,axiom,
! [X2: int,N: nat] :
( ( times_times_int @ ( minus_minus_int @ one_one_int @ X2 ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X2 ) @ ( set_ord_atMost_nat @ N ) ) )
= ( minus_minus_int @ one_one_int @ ( power_power_int @ X2 @ ( suc @ N ) ) ) ) ).
% sum_gp_basic
thf(fact_8706_sum__gp__basic,axiom,
! [X2: real,N: nat] :
( ( times_times_real @ ( minus_minus_real @ one_one_real @ X2 ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_ord_atMost_nat @ N ) ) )
= ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ ( suc @ N ) ) ) ) ).
% sum_gp_basic
thf(fact_8707_polyfun__roots__finite,axiom,
! [C: nat > complex,K: nat,N: nat] :
( ( ( C @ K )
!= zero_zero_complex )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [Z5: complex] :
( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ Z5 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_complex ) ) ) ) ) ).
% polyfun_roots_finite
thf(fact_8708_polyfun__roots__finite,axiom,
! [C: nat > real,K: nat,N: nat] :
( ( ( C @ K )
!= zero_zero_real )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( finite_finite_real
@ ( collect_real
@ ^ [Z5: real] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ Z5 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_real ) ) ) ) ) ).
% polyfun_roots_finite
thf(fact_8709_polyfun__finite__roots,axiom,
! [C: nat > complex,N: nat] :
( ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [X: complex] :
( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ X @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_complex ) ) )
= ( ? [I3: nat] :
( ( ord_less_eq_nat @ I3 @ N )
& ( ( C @ I3 )
!= zero_zero_complex ) ) ) ) ).
% polyfun_finite_roots
thf(fact_8710_polyfun__finite__roots,axiom,
! [C: nat > real,N: nat] :
( ( finite_finite_real
@ ( collect_real
@ ^ [X: real] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ X @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_real ) ) )
= ( ? [I3: nat] :
( ( ord_less_eq_nat @ I3 @ N )
& ( ( C @ I3 )
!= zero_zero_real ) ) ) ) ).
% polyfun_finite_roots
thf(fact_8711_of__real__sqrt,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( real_V4546457046886955230omplex @ ( sqrt @ X2 ) )
= ( csqrt @ ( real_V4546457046886955230omplex @ X2 ) ) ) ) ).
% of_real_sqrt
thf(fact_8712_polyfun__linear__factor__root,axiom,
! [C: nat > complex,A: complex,N: nat] :
( ( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ A @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_complex )
=> ~ ! [B3: nat > complex] :
~ ! [Z4: complex] :
( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ Z4 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( times_times_complex @ ( minus_minus_complex @ Z4 @ A )
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( B3 @ I3 ) @ ( power_power_complex @ Z4 @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_linear_factor_root
thf(fact_8713_polyfun__linear__factor__root,axiom,
! [C: nat > code_integer,A: code_integer,N: nat] :
( ( ( groups7501900531339628137nteger
@ ^ [I3: nat] : ( times_3573771949741848930nteger @ ( C @ I3 ) @ ( power_8256067586552552935nteger @ A @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_z3403309356797280102nteger )
=> ~ ! [B3: nat > code_integer] :
~ ! [Z4: code_integer] :
( ( groups7501900531339628137nteger
@ ^ [I3: nat] : ( times_3573771949741848930nteger @ ( C @ I3 ) @ ( power_8256067586552552935nteger @ Z4 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( times_3573771949741848930nteger @ ( minus_8373710615458151222nteger @ Z4 @ A )
@ ( groups7501900531339628137nteger
@ ^ [I3: nat] : ( times_3573771949741848930nteger @ ( B3 @ I3 ) @ ( power_8256067586552552935nteger @ Z4 @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_linear_factor_root
thf(fact_8714_polyfun__linear__factor__root,axiom,
! [C: nat > rat,A: rat,N: nat] :
( ( ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( C @ I3 ) @ ( power_power_rat @ A @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_rat )
=> ~ ! [B3: nat > rat] :
~ ! [Z4: rat] :
( ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( C @ I3 ) @ ( power_power_rat @ Z4 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( times_times_rat @ ( minus_minus_rat @ Z4 @ A )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( B3 @ I3 ) @ ( power_power_rat @ Z4 @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_linear_factor_root
thf(fact_8715_polyfun__linear__factor__root,axiom,
! [C: nat > int,A: int,N: nat] :
( ( ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( C @ I3 ) @ ( power_power_int @ A @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_int )
=> ~ ! [B3: nat > int] :
~ ! [Z4: int] :
( ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( C @ I3 ) @ ( power_power_int @ Z4 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( times_times_int @ ( minus_minus_int @ Z4 @ A )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( B3 @ I3 ) @ ( power_power_int @ Z4 @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_linear_factor_root
thf(fact_8716_polyfun__linear__factor__root,axiom,
! [C: nat > real,A: real,N: nat] :
( ( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ A @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_real )
=> ~ ! [B3: nat > real] :
~ ! [Z4: real] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ Z4 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( times_times_real @ ( minus_minus_real @ Z4 @ A )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( B3 @ I3 ) @ ( power_power_real @ Z4 @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_linear_factor_root
thf(fact_8717_polyfun__linear__factor,axiom,
! [C: nat > complex,N: nat,A: complex] :
? [B3: nat > complex] :
! [Z4: complex] :
( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ Z4 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( plus_plus_complex
@ ( times_times_complex @ ( minus_minus_complex @ Z4 @ A )
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( B3 @ I3 ) @ ( power_power_complex @ Z4 @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) )
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ A @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) ) ).
% polyfun_linear_factor
thf(fact_8718_polyfun__linear__factor,axiom,
! [C: nat > code_integer,N: nat,A: code_integer] :
? [B3: nat > code_integer] :
! [Z4: code_integer] :
( ( groups7501900531339628137nteger
@ ^ [I3: nat] : ( times_3573771949741848930nteger @ ( C @ I3 ) @ ( power_8256067586552552935nteger @ Z4 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( plus_p5714425477246183910nteger
@ ( times_3573771949741848930nteger @ ( minus_8373710615458151222nteger @ Z4 @ A )
@ ( groups7501900531339628137nteger
@ ^ [I3: nat] : ( times_3573771949741848930nteger @ ( B3 @ I3 ) @ ( power_8256067586552552935nteger @ Z4 @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) )
@ ( groups7501900531339628137nteger
@ ^ [I3: nat] : ( times_3573771949741848930nteger @ ( C @ I3 ) @ ( power_8256067586552552935nteger @ A @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) ) ).
% polyfun_linear_factor
thf(fact_8719_polyfun__linear__factor,axiom,
! [C: nat > rat,N: nat,A: rat] :
? [B3: nat > rat] :
! [Z4: rat] :
( ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( C @ I3 ) @ ( power_power_rat @ Z4 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( plus_plus_rat
@ ( times_times_rat @ ( minus_minus_rat @ Z4 @ A )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( B3 @ I3 ) @ ( power_power_rat @ Z4 @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( C @ I3 ) @ ( power_power_rat @ A @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) ) ).
% polyfun_linear_factor
thf(fact_8720_polyfun__linear__factor,axiom,
! [C: nat > int,N: nat,A: int] :
? [B3: nat > int] :
! [Z4: int] :
( ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( C @ I3 ) @ ( power_power_int @ Z4 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( plus_plus_int
@ ( times_times_int @ ( minus_minus_int @ Z4 @ A )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( B3 @ I3 ) @ ( power_power_int @ Z4 @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( C @ I3 ) @ ( power_power_int @ A @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) ) ).
% polyfun_linear_factor
thf(fact_8721_polyfun__linear__factor,axiom,
! [C: nat > real,N: nat,A: real] :
? [B3: nat > real] :
! [Z4: real] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ Z4 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( plus_plus_real
@ ( times_times_real @ ( minus_minus_real @ Z4 @ A )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( B3 @ I3 ) @ ( power_power_real @ Z4 @ I3 ) )
@ ( set_ord_lessThan_nat @ N ) ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ A @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) ) ) ).
% polyfun_linear_factor
thf(fact_8722_sum__power__shift,axiom,
! [M: nat,N: nat,X2: complex] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( times_times_complex @ ( power_power_complex @ X2 @ M ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_ord_atMost_nat @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ).
% sum_power_shift
thf(fact_8723_sum__power__shift,axiom,
! [M: nat,N: nat,X2: code_integer] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups7501900531339628137nteger @ ( power_8256067586552552935nteger @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ X2 @ M ) @ ( groups7501900531339628137nteger @ ( power_8256067586552552935nteger @ X2 ) @ ( set_ord_atMost_nat @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ).
% sum_power_shift
thf(fact_8724_sum__power__shift,axiom,
! [M: nat,N: nat,X2: rat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( times_times_rat @ ( power_power_rat @ X2 @ M ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_ord_atMost_nat @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ).
% sum_power_shift
thf(fact_8725_sum__power__shift,axiom,
! [M: nat,N: nat,X2: int] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups3539618377306564664at_int @ ( power_power_int @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( times_times_int @ ( power_power_int @ X2 @ M ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X2 ) @ ( set_ord_atMost_nat @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ).
% sum_power_shift
thf(fact_8726_sum__power__shift,axiom,
! [M: nat,N: nat,X2: real] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( times_times_real @ ( power_power_real @ X2 @ M ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_ord_atMost_nat @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ).
% sum_power_shift
thf(fact_8727_summable__Cauchy__product,axiom,
! [A: nat > complex,B: nat > complex] :
( ( summable_real
@ ^ [K2: nat] : ( real_V1022390504157884413omplex @ ( A @ K2 ) ) )
=> ( ( summable_real
@ ^ [K2: nat] : ( real_V1022390504157884413omplex @ ( B @ K2 ) ) )
=> ( summable_complex
@ ^ [K2: nat] :
( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( A @ I3 ) @ ( B @ ( minus_minus_nat @ K2 @ I3 ) ) )
@ ( set_ord_atMost_nat @ K2 ) ) ) ) ) ).
% summable_Cauchy_product
thf(fact_8728_summable__Cauchy__product,axiom,
! [A: nat > real,B: nat > real] :
( ( summable_real
@ ^ [K2: nat] : ( real_V7735802525324610683m_real @ ( A @ K2 ) ) )
=> ( ( summable_real
@ ^ [K2: nat] : ( real_V7735802525324610683m_real @ ( B @ K2 ) ) )
=> ( summable_real
@ ^ [K2: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( A @ I3 ) @ ( B @ ( minus_minus_nat @ K2 @ I3 ) ) )
@ ( set_ord_atMost_nat @ K2 ) ) ) ) ) ).
% summable_Cauchy_product
thf(fact_8729_Cauchy__product,axiom,
! [A: nat > complex,B: nat > complex] :
( ( summable_real
@ ^ [K2: nat] : ( real_V1022390504157884413omplex @ ( A @ K2 ) ) )
=> ( ( summable_real
@ ^ [K2: nat] : ( real_V1022390504157884413omplex @ ( B @ K2 ) ) )
=> ( ( times_times_complex @ ( suminf_complex @ A ) @ ( suminf_complex @ B ) )
= ( suminf_complex
@ ^ [K2: nat] :
( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( A @ I3 ) @ ( B @ ( minus_minus_nat @ K2 @ I3 ) ) )
@ ( set_ord_atMost_nat @ K2 ) ) ) ) ) ) ).
% Cauchy_product
thf(fact_8730_Cauchy__product,axiom,
! [A: nat > real,B: nat > real] :
( ( summable_real
@ ^ [K2: nat] : ( real_V7735802525324610683m_real @ ( A @ K2 ) ) )
=> ( ( summable_real
@ ^ [K2: nat] : ( real_V7735802525324610683m_real @ ( B @ K2 ) ) )
=> ( ( times_times_real @ ( suminf_real @ A ) @ ( suminf_real @ B ) )
= ( suminf_real
@ ^ [K2: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( A @ I3 ) @ ( B @ ( minus_minus_nat @ K2 @ I3 ) ) )
@ ( set_ord_atMost_nat @ K2 ) ) ) ) ) ) ).
% Cauchy_product
thf(fact_8731_Arg__bounded,axiom,
! [Z: complex] :
( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ ( arg @ Z ) )
& ( ord_less_eq_real @ ( arg @ Z ) @ pi ) ) ).
% Arg_bounded
thf(fact_8732_sum_Oin__pairs__0,axiom,
! [G: nat > rat,N: nat] :
( ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
= ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( plus_plus_rat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% sum.in_pairs_0
thf(fact_8733_sum_Oin__pairs__0,axiom,
! [G: nat > int,N: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
= ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( plus_plus_int @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% sum.in_pairs_0
thf(fact_8734_sum_Oin__pairs__0,axiom,
! [G: nat > nat,N: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
= ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( plus_plus_nat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% sum.in_pairs_0
thf(fact_8735_sum_Oin__pairs__0,axiom,
! [G: nat > real,N: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
= ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( plus_plus_real @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% sum.in_pairs_0
thf(fact_8736_polynomial__product,axiom,
! [M: nat,A: nat > complex,N: nat,B: nat > complex,X2: complex] :
( ! [I2: nat] :
( ( ord_less_nat @ M @ I2 )
=> ( ( A @ I2 )
= zero_zero_complex ) )
=> ( ! [J2: nat] :
( ( ord_less_nat @ N @ J2 )
=> ( ( B @ J2 )
= zero_zero_complex ) )
=> ( ( times_times_complex
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( A @ I3 ) @ ( power_power_complex @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ M ) )
@ ( groups2073611262835488442omplex
@ ^ [J3: nat] : ( times_times_complex @ ( B @ J3 ) @ ( power_power_complex @ X2 @ J3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( groups2073611262835488442omplex
@ ^ [R5: nat] :
( times_times_complex
@ ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( times_times_complex @ ( A @ K2 ) @ ( B @ ( minus_minus_nat @ R5 @ K2 ) ) )
@ ( set_ord_atMost_nat @ R5 ) )
@ ( power_power_complex @ X2 @ R5 ) )
@ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) ) ) ) ) ).
% polynomial_product
thf(fact_8737_polynomial__product,axiom,
! [M: nat,A: nat > code_integer,N: nat,B: nat > code_integer,X2: code_integer] :
( ! [I2: nat] :
( ( ord_less_nat @ M @ I2 )
=> ( ( A @ I2 )
= zero_z3403309356797280102nteger ) )
=> ( ! [J2: nat] :
( ( ord_less_nat @ N @ J2 )
=> ( ( B @ J2 )
= zero_z3403309356797280102nteger ) )
=> ( ( times_3573771949741848930nteger
@ ( groups7501900531339628137nteger
@ ^ [I3: nat] : ( times_3573771949741848930nteger @ ( A @ I3 ) @ ( power_8256067586552552935nteger @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ M ) )
@ ( groups7501900531339628137nteger
@ ^ [J3: nat] : ( times_3573771949741848930nteger @ ( B @ J3 ) @ ( power_8256067586552552935nteger @ X2 @ J3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( groups7501900531339628137nteger
@ ^ [R5: nat] :
( times_3573771949741848930nteger
@ ( groups7501900531339628137nteger
@ ^ [K2: nat] : ( times_3573771949741848930nteger @ ( A @ K2 ) @ ( B @ ( minus_minus_nat @ R5 @ K2 ) ) )
@ ( set_ord_atMost_nat @ R5 ) )
@ ( power_8256067586552552935nteger @ X2 @ R5 ) )
@ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) ) ) ) ) ).
% polynomial_product
thf(fact_8738_polynomial__product,axiom,
! [M: nat,A: nat > rat,N: nat,B: nat > rat,X2: rat] :
( ! [I2: nat] :
( ( ord_less_nat @ M @ I2 )
=> ( ( A @ I2 )
= zero_zero_rat ) )
=> ( ! [J2: nat] :
( ( ord_less_nat @ N @ J2 )
=> ( ( B @ J2 )
= zero_zero_rat ) )
=> ( ( times_times_rat
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( A @ I3 ) @ ( power_power_rat @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ M ) )
@ ( groups2906978787729119204at_rat
@ ^ [J3: nat] : ( times_times_rat @ ( B @ J3 ) @ ( power_power_rat @ X2 @ J3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( groups2906978787729119204at_rat
@ ^ [R5: nat] :
( times_times_rat
@ ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( times_times_rat @ ( A @ K2 ) @ ( B @ ( minus_minus_nat @ R5 @ K2 ) ) )
@ ( set_ord_atMost_nat @ R5 ) )
@ ( power_power_rat @ X2 @ R5 ) )
@ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) ) ) ) ) ).
% polynomial_product
thf(fact_8739_polynomial__product,axiom,
! [M: nat,A: nat > int,N: nat,B: nat > int,X2: int] :
( ! [I2: nat] :
( ( ord_less_nat @ M @ I2 )
=> ( ( A @ I2 )
= zero_zero_int ) )
=> ( ! [J2: nat] :
( ( ord_less_nat @ N @ J2 )
=> ( ( B @ J2 )
= zero_zero_int ) )
=> ( ( times_times_int
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( A @ I3 ) @ ( power_power_int @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ M ) )
@ ( groups3539618377306564664at_int
@ ^ [J3: nat] : ( times_times_int @ ( B @ J3 ) @ ( power_power_int @ X2 @ J3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( groups3539618377306564664at_int
@ ^ [R5: nat] :
( times_times_int
@ ( groups3539618377306564664at_int
@ ^ [K2: nat] : ( times_times_int @ ( A @ K2 ) @ ( B @ ( minus_minus_nat @ R5 @ K2 ) ) )
@ ( set_ord_atMost_nat @ R5 ) )
@ ( power_power_int @ X2 @ R5 ) )
@ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) ) ) ) ) ).
% polynomial_product
thf(fact_8740_polynomial__product,axiom,
! [M: nat,A: nat > real,N: nat,B: nat > real,X2: real] :
( ! [I2: nat] :
( ( ord_less_nat @ M @ I2 )
=> ( ( A @ I2 )
= zero_zero_real ) )
=> ( ! [J2: nat] :
( ( ord_less_nat @ N @ J2 )
=> ( ( B @ J2 )
= zero_zero_real ) )
=> ( ( times_times_real
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( A @ I3 ) @ ( power_power_real @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ M ) )
@ ( groups6591440286371151544t_real
@ ^ [J3: nat] : ( times_times_real @ ( B @ J3 ) @ ( power_power_real @ X2 @ J3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( groups6591440286371151544t_real
@ ^ [R5: nat] :
( times_times_real
@ ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( times_times_real @ ( A @ K2 ) @ ( B @ ( minus_minus_nat @ R5 @ K2 ) ) )
@ ( set_ord_atMost_nat @ R5 ) )
@ ( power_power_real @ X2 @ R5 ) )
@ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) ) ) ) ) ).
% polynomial_product
thf(fact_8741_prod_Oin__pairs__0,axiom,
! [G: nat > real,N: nat] :
( ( groups129246275422532515t_real @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
= ( groups129246275422532515t_real
@ ^ [I3: nat] : ( times_times_real @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% prod.in_pairs_0
thf(fact_8742_prod_Oin__pairs__0,axiom,
! [G: nat > rat,N: nat] :
( ( groups73079841787564623at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
= ( groups73079841787564623at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% prod.in_pairs_0
thf(fact_8743_prod_Oin__pairs__0,axiom,
! [G: nat > nat,N: nat] :
( ( groups708209901874060359at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
= ( groups708209901874060359at_nat
@ ^ [I3: nat] : ( times_times_nat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% prod.in_pairs_0
thf(fact_8744_prod_Oin__pairs__0,axiom,
! [G: nat > int,N: nat] :
( ( groups705719431365010083at_int @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
= ( groups705719431365010083at_int
@ ^ [I3: nat] : ( times_times_int @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) ) ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% prod.in_pairs_0
thf(fact_8745_polyfun__eq__const,axiom,
! [C: nat > complex,N: nat,K: complex] :
( ( ! [X: complex] :
( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ X @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= K ) )
= ( ( ( C @ zero_zero_nat )
= K )
& ! [X: nat] :
( ( member_nat @ X @ ( set_or1269000886237332187st_nat @ one_one_nat @ N ) )
=> ( ( C @ X )
= zero_zero_complex ) ) ) ) ).
% polyfun_eq_const
thf(fact_8746_polyfun__eq__const,axiom,
! [C: nat > real,N: nat,K: real] :
( ( ! [X: real] :
( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ X @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= K ) )
= ( ( ( C @ zero_zero_nat )
= K )
& ! [X: nat] :
( ( member_nat @ X @ ( set_or1269000886237332187st_nat @ one_one_nat @ N ) )
=> ( ( C @ X )
= zero_zero_real ) ) ) ) ).
% polyfun_eq_const
thf(fact_8747_gbinomial__sum__lower__neg,axiom,
! [A: complex,M: nat] :
( ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( times_times_complex @ ( gbinomial_complex @ A @ K2 ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K2 ) )
@ ( set_ord_atMost_nat @ M ) )
= ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ M ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ M ) ) ) ).
% gbinomial_sum_lower_neg
thf(fact_8748_gbinomial__sum__lower__neg,axiom,
! [A: rat,M: nat] :
( ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( times_times_rat @ ( gbinomial_rat @ A @ K2 ) @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K2 ) )
@ ( set_ord_atMost_nat @ M ) )
= ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ M ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ M ) ) ) ).
% gbinomial_sum_lower_neg
thf(fact_8749_gbinomial__sum__lower__neg,axiom,
! [A: real,M: nat] :
( ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( times_times_real @ ( gbinomial_real @ A @ K2 ) @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) )
@ ( set_ord_atMost_nat @ M ) )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ M ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ M ) ) ) ).
% gbinomial_sum_lower_neg
thf(fact_8750_polynomial__product__nat,axiom,
! [M: nat,A: nat > nat,N: nat,B: nat > nat,X2: nat] :
( ! [I2: nat] :
( ( ord_less_nat @ M @ I2 )
=> ( ( A @ I2 )
= zero_zero_nat ) )
=> ( ! [J2: nat] :
( ( ord_less_nat @ N @ J2 )
=> ( ( B @ J2 )
= zero_zero_nat ) )
=> ( ( times_times_nat
@ ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( times_times_nat @ ( A @ I3 ) @ ( power_power_nat @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ M ) )
@ ( groups3542108847815614940at_nat
@ ^ [J3: nat] : ( times_times_nat @ ( B @ J3 ) @ ( power_power_nat @ X2 @ J3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( groups3542108847815614940at_nat
@ ^ [R5: nat] :
( times_times_nat
@ ( groups3542108847815614940at_nat
@ ^ [K2: nat] : ( times_times_nat @ ( A @ K2 ) @ ( B @ ( minus_minus_nat @ R5 @ K2 ) ) )
@ ( set_ord_atMost_nat @ R5 ) )
@ ( power_power_nat @ X2 @ R5 ) )
@ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) ) ) ) ) ).
% polynomial_product_nat
thf(fact_8751_Cauchy__product__sums,axiom,
! [A: nat > complex,B: nat > complex] :
( ( summable_real
@ ^ [K2: nat] : ( real_V1022390504157884413omplex @ ( A @ K2 ) ) )
=> ( ( summable_real
@ ^ [K2: nat] : ( real_V1022390504157884413omplex @ ( B @ K2 ) ) )
=> ( sums_complex
@ ^ [K2: nat] :
( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( A @ I3 ) @ ( B @ ( minus_minus_nat @ K2 @ I3 ) ) )
@ ( set_ord_atMost_nat @ K2 ) )
@ ( times_times_complex @ ( suminf_complex @ A ) @ ( suminf_complex @ B ) ) ) ) ) ).
% Cauchy_product_sums
thf(fact_8752_Cauchy__product__sums,axiom,
! [A: nat > real,B: nat > real] :
( ( summable_real
@ ^ [K2: nat] : ( real_V7735802525324610683m_real @ ( A @ K2 ) ) )
=> ( ( summable_real
@ ^ [K2: nat] : ( real_V7735802525324610683m_real @ ( B @ K2 ) ) )
=> ( sums_real
@ ^ [K2: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( A @ I3 ) @ ( B @ ( minus_minus_nat @ K2 @ I3 ) ) )
@ ( set_ord_atMost_nat @ K2 ) )
@ ( times_times_real @ ( suminf_real @ A ) @ ( suminf_real @ B ) ) ) ) ) ).
% Cauchy_product_sums
thf(fact_8753_sum_Ozero__middle,axiom,
! [P2: nat,K: nat,G: nat > complex,H2: nat > complex] :
( ( ord_less_eq_nat @ one_one_nat @ P2 )
=> ( ( ord_less_eq_nat @ K @ P2 )
=> ( ( groups2073611262835488442omplex
@ ^ [J3: nat] : ( if_complex @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_complex @ ( J3 = K ) @ zero_zero_complex @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P2 ) )
= ( groups2073611262835488442omplex
@ ^ [J3: nat] : ( if_complex @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% sum.zero_middle
thf(fact_8754_sum_Ozero__middle,axiom,
! [P2: nat,K: nat,G: nat > rat,H2: nat > rat] :
( ( ord_less_eq_nat @ one_one_nat @ P2 )
=> ( ( ord_less_eq_nat @ K @ P2 )
=> ( ( groups2906978787729119204at_rat
@ ^ [J3: nat] : ( if_rat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_rat @ ( J3 = K ) @ zero_zero_rat @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P2 ) )
= ( groups2906978787729119204at_rat
@ ^ [J3: nat] : ( if_rat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% sum.zero_middle
thf(fact_8755_sum_Ozero__middle,axiom,
! [P2: nat,K: nat,G: nat > int,H2: nat > int] :
( ( ord_less_eq_nat @ one_one_nat @ P2 )
=> ( ( ord_less_eq_nat @ K @ P2 )
=> ( ( groups3539618377306564664at_int
@ ^ [J3: nat] : ( if_int @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_int @ ( J3 = K ) @ zero_zero_int @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P2 ) )
= ( groups3539618377306564664at_int
@ ^ [J3: nat] : ( if_int @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% sum.zero_middle
thf(fact_8756_sum_Ozero__middle,axiom,
! [P2: nat,K: nat,G: nat > nat,H2: nat > nat] :
( ( ord_less_eq_nat @ one_one_nat @ P2 )
=> ( ( ord_less_eq_nat @ K @ P2 )
=> ( ( groups3542108847815614940at_nat
@ ^ [J3: nat] : ( if_nat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_nat @ ( J3 = K ) @ zero_zero_nat @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P2 ) )
= ( groups3542108847815614940at_nat
@ ^ [J3: nat] : ( if_nat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% sum.zero_middle
thf(fact_8757_sum_Ozero__middle,axiom,
! [P2: nat,K: nat,G: nat > real,H2: nat > real] :
( ( ord_less_eq_nat @ one_one_nat @ P2 )
=> ( ( ord_less_eq_nat @ K @ P2 )
=> ( ( groups6591440286371151544t_real
@ ^ [J3: nat] : ( if_real @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_real @ ( J3 = K ) @ zero_zero_real @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P2 ) )
= ( groups6591440286371151544t_real
@ ^ [J3: nat] : ( if_real @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% sum.zero_middle
thf(fact_8758_prod_Ozero__middle,axiom,
! [P2: nat,K: nat,G: nat > complex,H2: nat > complex] :
( ( ord_less_eq_nat @ one_one_nat @ P2 )
=> ( ( ord_less_eq_nat @ K @ P2 )
=> ( ( groups6464643781859351333omplex
@ ^ [J3: nat] : ( if_complex @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_complex @ ( J3 = K ) @ one_one_complex @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P2 ) )
= ( groups6464643781859351333omplex
@ ^ [J3: nat] : ( if_complex @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% prod.zero_middle
thf(fact_8759_prod_Ozero__middle,axiom,
! [P2: nat,K: nat,G: nat > real,H2: nat > real] :
( ( ord_less_eq_nat @ one_one_nat @ P2 )
=> ( ( ord_less_eq_nat @ K @ P2 )
=> ( ( groups129246275422532515t_real
@ ^ [J3: nat] : ( if_real @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_real @ ( J3 = K ) @ one_one_real @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P2 ) )
= ( groups129246275422532515t_real
@ ^ [J3: nat] : ( if_real @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% prod.zero_middle
thf(fact_8760_prod_Ozero__middle,axiom,
! [P2: nat,K: nat,G: nat > rat,H2: nat > rat] :
( ( ord_less_eq_nat @ one_one_nat @ P2 )
=> ( ( ord_less_eq_nat @ K @ P2 )
=> ( ( groups73079841787564623at_rat
@ ^ [J3: nat] : ( if_rat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_rat @ ( J3 = K ) @ one_one_rat @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P2 ) )
= ( groups73079841787564623at_rat
@ ^ [J3: nat] : ( if_rat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% prod.zero_middle
thf(fact_8761_prod_Ozero__middle,axiom,
! [P2: nat,K: nat,G: nat > nat,H2: nat > nat] :
( ( ord_less_eq_nat @ one_one_nat @ P2 )
=> ( ( ord_less_eq_nat @ K @ P2 )
=> ( ( groups708209901874060359at_nat
@ ^ [J3: nat] : ( if_nat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_nat @ ( J3 = K ) @ one_one_nat @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P2 ) )
= ( groups708209901874060359at_nat
@ ^ [J3: nat] : ( if_nat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% prod.zero_middle
thf(fact_8762_prod_Ozero__middle,axiom,
! [P2: nat,K: nat,G: nat > int,H2: nat > int] :
( ( ord_less_eq_nat @ one_one_nat @ P2 )
=> ( ( ord_less_eq_nat @ K @ P2 )
=> ( ( groups705719431365010083at_int
@ ^ [J3: nat] : ( if_int @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_int @ ( J3 = K ) @ one_one_int @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
@ ( set_ord_atMost_nat @ P2 ) )
= ( groups705719431365010083at_int
@ ^ [J3: nat] : ( if_int @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
@ ( set_ord_atMost_nat @ ( minus_minus_nat @ P2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).
% prod.zero_middle
thf(fact_8763_gbinomial__partial__sum__poly,axiom,
! [M: nat,A: complex,X2: complex,Y2: complex] :
( ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( times_times_complex @ ( times_times_complex @ ( gbinomial_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ M ) @ A ) @ K2 ) @ ( power_power_complex @ X2 @ K2 ) ) @ ( power_power_complex @ Y2 @ ( minus_minus_nat @ M @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( times_times_complex @ ( times_times_complex @ ( gbinomial_complex @ ( uminus1482373934393186551omplex @ A ) @ K2 ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ X2 ) @ K2 ) ) @ ( power_power_complex @ ( plus_plus_complex @ X2 @ Y2 ) @ ( minus_minus_nat @ M @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) ) ) ).
% gbinomial_partial_sum_poly
thf(fact_8764_gbinomial__partial__sum__poly,axiom,
! [M: nat,A: rat,X2: rat,Y2: rat] :
( ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( times_times_rat @ ( times_times_rat @ ( gbinomial_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ A ) @ K2 ) @ ( power_power_rat @ X2 @ K2 ) ) @ ( power_power_rat @ Y2 @ ( minus_minus_nat @ M @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( times_times_rat @ ( times_times_rat @ ( gbinomial_rat @ ( uminus_uminus_rat @ A ) @ K2 ) @ ( power_power_rat @ ( uminus_uminus_rat @ X2 ) @ K2 ) ) @ ( power_power_rat @ ( plus_plus_rat @ X2 @ Y2 ) @ ( minus_minus_nat @ M @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) ) ) ).
% gbinomial_partial_sum_poly
thf(fact_8765_gbinomial__partial__sum__poly,axiom,
! [M: nat,A: real,X2: real,Y2: real] :
( ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( times_times_real @ ( times_times_real @ ( gbinomial_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ A ) @ K2 ) @ ( power_power_real @ X2 @ K2 ) ) @ ( power_power_real @ Y2 @ ( minus_minus_nat @ M @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( times_times_real @ ( times_times_real @ ( gbinomial_real @ ( uminus_uminus_real @ A ) @ K2 ) @ ( power_power_real @ ( uminus_uminus_real @ X2 ) @ K2 ) ) @ ( power_power_real @ ( plus_plus_real @ X2 @ Y2 ) @ ( minus_minus_nat @ M @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) ) ) ).
% gbinomial_partial_sum_poly
thf(fact_8766_root__polyfun,axiom,
! [N: nat,Z: int,A: int] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( ( power_power_int @ Z @ N )
= A )
= ( ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( if_int @ ( I3 = zero_zero_nat ) @ ( uminus_uminus_int @ A ) @ ( if_int @ ( I3 = N ) @ one_one_int @ zero_zero_int ) ) @ ( power_power_int @ Z @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_int ) ) ) ).
% root_polyfun
thf(fact_8767_root__polyfun,axiom,
! [N: nat,Z: complex,A: complex] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( ( power_power_complex @ Z @ N )
= A )
= ( ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( if_complex @ ( I3 = zero_zero_nat ) @ ( uminus1482373934393186551omplex @ A ) @ ( if_complex @ ( I3 = N ) @ one_one_complex @ zero_zero_complex ) ) @ ( power_power_complex @ Z @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_complex ) ) ) ).
% root_polyfun
thf(fact_8768_root__polyfun,axiom,
! [N: nat,Z: rat,A: rat] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( ( power_power_rat @ Z @ N )
= A )
= ( ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( if_rat @ ( I3 = zero_zero_nat ) @ ( uminus_uminus_rat @ A ) @ ( if_rat @ ( I3 = N ) @ one_one_rat @ zero_zero_rat ) ) @ ( power_power_rat @ Z @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_rat ) ) ) ).
% root_polyfun
thf(fact_8769_root__polyfun,axiom,
! [N: nat,Z: code_integer,A: code_integer] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( ( power_8256067586552552935nteger @ Z @ N )
= A )
= ( ( groups7501900531339628137nteger
@ ^ [I3: nat] : ( times_3573771949741848930nteger @ ( if_Code_integer @ ( I3 = zero_zero_nat ) @ ( uminus1351360451143612070nteger @ A ) @ ( if_Code_integer @ ( I3 = N ) @ one_one_Code_integer @ zero_z3403309356797280102nteger ) ) @ ( power_8256067586552552935nteger @ Z @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_z3403309356797280102nteger ) ) ) ).
% root_polyfun
thf(fact_8770_root__polyfun,axiom,
! [N: nat,Z: real,A: real] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( ( power_power_real @ Z @ N )
= A )
= ( ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( if_real @ ( I3 = zero_zero_nat ) @ ( uminus_uminus_real @ A ) @ ( if_real @ ( I3 = N ) @ one_one_real @ zero_zero_real ) ) @ ( power_power_real @ Z @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= zero_zero_real ) ) ) ).
% root_polyfun
thf(fact_8771_sum__gp0,axiom,
! [X2: complex,N: nat] :
( ( ( X2 = one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_ord_atMost_nat @ N ) )
= ( semiri8010041392384452111omplex @ ( plus_plus_nat @ N @ one_one_nat ) ) ) )
& ( ( X2 != one_one_complex )
=> ( ( groups2073611262835488442omplex @ ( power_power_complex @ X2 ) @ ( set_ord_atMost_nat @ N ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X2 @ ( suc @ N ) ) ) @ ( minus_minus_complex @ one_one_complex @ X2 ) ) ) ) ) ).
% sum_gp0
thf(fact_8772_sum__gp0,axiom,
! [X2: rat,N: nat] :
( ( ( X2 = one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_ord_atMost_nat @ N ) )
= ( semiri681578069525770553at_rat @ ( plus_plus_nat @ N @ one_one_nat ) ) ) )
& ( ( X2 != one_one_rat )
=> ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X2 ) @ ( set_ord_atMost_nat @ N ) )
= ( divide_divide_rat @ ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X2 @ ( suc @ N ) ) ) @ ( minus_minus_rat @ one_one_rat @ X2 ) ) ) ) ) ).
% sum_gp0
thf(fact_8773_sum__gp0,axiom,
! [X2: real,N: nat] :
( ( ( X2 = one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_ord_atMost_nat @ N ) )
= ( semiri5074537144036343181t_real @ ( plus_plus_nat @ N @ one_one_nat ) ) ) )
& ( ( X2 != one_one_real )
=> ( ( groups6591440286371151544t_real @ ( power_power_real @ X2 ) @ ( set_ord_atMost_nat @ N ) )
= ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ ( suc @ N ) ) ) @ ( minus_minus_real @ one_one_real @ X2 ) ) ) ) ) ).
% sum_gp0
thf(fact_8774_gbinomial__sum__nat__pow2,axiom,
! [M: nat] :
( ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( divide1717551699836669952omplex @ ( gbinomial_complex @ ( semiri8010041392384452111omplex @ ( plus_plus_nat @ M @ K2 ) ) @ K2 ) @ ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ K2 ) )
@ ( set_ord_atMost_nat @ M ) )
= ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ M ) ) ).
% gbinomial_sum_nat_pow2
thf(fact_8775_gbinomial__sum__nat__pow2,axiom,
! [M: nat] :
( ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( divide_divide_rat @ ( gbinomial_rat @ ( semiri681578069525770553at_rat @ ( plus_plus_nat @ M @ K2 ) ) @ K2 ) @ ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ K2 ) )
@ ( set_ord_atMost_nat @ M ) )
= ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ M ) ) ).
% gbinomial_sum_nat_pow2
thf(fact_8776_gbinomial__sum__nat__pow2,axiom,
! [M: nat] :
( ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( divide_divide_real @ ( gbinomial_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M @ K2 ) ) @ K2 ) @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ K2 ) )
@ ( set_ord_atMost_nat @ M ) )
= ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ M ) ) ).
% gbinomial_sum_nat_pow2
thf(fact_8777_gbinomial__partial__sum__poly__xpos,axiom,
! [M: nat,A: complex,X2: complex,Y2: complex] :
( ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( times_times_complex @ ( times_times_complex @ ( gbinomial_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ M ) @ A ) @ K2 ) @ ( power_power_complex @ X2 @ K2 ) ) @ ( power_power_complex @ Y2 @ ( minus_minus_nat @ M @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( groups2073611262835488442omplex
@ ^ [K2: nat] : ( times_times_complex @ ( times_times_complex @ ( gbinomial_complex @ ( minus_minus_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ K2 ) @ A ) @ one_one_complex ) @ K2 ) @ ( power_power_complex @ X2 @ K2 ) ) @ ( power_power_complex @ ( plus_plus_complex @ X2 @ Y2 ) @ ( minus_minus_nat @ M @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) ) ) ).
% gbinomial_partial_sum_poly_xpos
thf(fact_8778_gbinomial__partial__sum__poly__xpos,axiom,
! [M: nat,A: rat,X2: rat,Y2: rat] :
( ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( times_times_rat @ ( times_times_rat @ ( gbinomial_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ A ) @ K2 ) @ ( power_power_rat @ X2 @ K2 ) ) @ ( power_power_rat @ Y2 @ ( minus_minus_nat @ M @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( times_times_rat @ ( times_times_rat @ ( gbinomial_rat @ ( minus_minus_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ K2 ) @ A ) @ one_one_rat ) @ K2 ) @ ( power_power_rat @ X2 @ K2 ) ) @ ( power_power_rat @ ( plus_plus_rat @ X2 @ Y2 ) @ ( minus_minus_nat @ M @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) ) ) ).
% gbinomial_partial_sum_poly_xpos
thf(fact_8779_gbinomial__partial__sum__poly__xpos,axiom,
! [M: nat,A: real,X2: real,Y2: real] :
( ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( times_times_real @ ( times_times_real @ ( gbinomial_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ A ) @ K2 ) @ ( power_power_real @ X2 @ K2 ) ) @ ( power_power_real @ Y2 @ ( minus_minus_nat @ M @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) )
= ( groups6591440286371151544t_real
@ ^ [K2: nat] : ( times_times_real @ ( times_times_real @ ( gbinomial_real @ ( minus_minus_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ K2 ) @ A ) @ one_one_real ) @ K2 ) @ ( power_power_real @ X2 @ K2 ) ) @ ( power_power_real @ ( plus_plus_real @ X2 @ Y2 ) @ ( minus_minus_nat @ M @ K2 ) ) )
@ ( set_ord_atMost_nat @ M ) ) ) ).
% gbinomial_partial_sum_poly_xpos
thf(fact_8780_polyfun__diff__alt,axiom,
! [N: nat,A: nat > complex,X2: complex,Y2: complex] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( minus_minus_complex
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( A @ I3 ) @ ( power_power_complex @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( A @ I3 ) @ ( power_power_complex @ Y2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( times_times_complex @ ( minus_minus_complex @ X2 @ Y2 )
@ ( groups2073611262835488442omplex
@ ^ [J3: nat] :
( groups2073611262835488442omplex
@ ^ [K2: nat] : ( times_times_complex @ ( times_times_complex @ ( A @ ( plus_plus_nat @ ( plus_plus_nat @ J3 @ K2 ) @ one_one_nat ) ) @ ( power_power_complex @ Y2 @ K2 ) ) @ ( power_power_complex @ X2 @ J3 ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ J3 ) ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_diff_alt
thf(fact_8781_polyfun__diff__alt,axiom,
! [N: nat,A: nat > code_integer,X2: code_integer,Y2: code_integer] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( minus_8373710615458151222nteger
@ ( groups7501900531339628137nteger
@ ^ [I3: nat] : ( times_3573771949741848930nteger @ ( A @ I3 ) @ ( power_8256067586552552935nteger @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
@ ( groups7501900531339628137nteger
@ ^ [I3: nat] : ( times_3573771949741848930nteger @ ( A @ I3 ) @ ( power_8256067586552552935nteger @ Y2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( times_3573771949741848930nteger @ ( minus_8373710615458151222nteger @ X2 @ Y2 )
@ ( groups7501900531339628137nteger
@ ^ [J3: nat] :
( groups7501900531339628137nteger
@ ^ [K2: nat] : ( times_3573771949741848930nteger @ ( times_3573771949741848930nteger @ ( A @ ( plus_plus_nat @ ( plus_plus_nat @ J3 @ K2 ) @ one_one_nat ) ) @ ( power_8256067586552552935nteger @ Y2 @ K2 ) ) @ ( power_8256067586552552935nteger @ X2 @ J3 ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ J3 ) ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_diff_alt
thf(fact_8782_polyfun__diff__alt,axiom,
! [N: nat,A: nat > rat,X2: rat,Y2: rat] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( minus_minus_rat
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( A @ I3 ) @ ( power_power_rat @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( A @ I3 ) @ ( power_power_rat @ Y2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( times_times_rat @ ( minus_minus_rat @ X2 @ Y2 )
@ ( groups2906978787729119204at_rat
@ ^ [J3: nat] :
( groups2906978787729119204at_rat
@ ^ [K2: nat] : ( times_times_rat @ ( times_times_rat @ ( A @ ( plus_plus_nat @ ( plus_plus_nat @ J3 @ K2 ) @ one_one_nat ) ) @ ( power_power_rat @ Y2 @ K2 ) ) @ ( power_power_rat @ X2 @ J3 ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ J3 ) ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_diff_alt
thf(fact_8783_polyfun__diff__alt,axiom,
! [N: nat,A: nat > int,X2: int,Y2: int] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( minus_minus_int
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( A @ I3 ) @ ( power_power_int @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( A @ I3 ) @ ( power_power_int @ Y2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( times_times_int @ ( minus_minus_int @ X2 @ Y2 )
@ ( groups3539618377306564664at_int
@ ^ [J3: nat] :
( groups3539618377306564664at_int
@ ^ [K2: nat] : ( times_times_int @ ( times_times_int @ ( A @ ( plus_plus_nat @ ( plus_plus_nat @ J3 @ K2 ) @ one_one_nat ) ) @ ( power_power_int @ Y2 @ K2 ) ) @ ( power_power_int @ X2 @ J3 ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ J3 ) ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_diff_alt
thf(fact_8784_polyfun__diff__alt,axiom,
! [N: nat,A: nat > real,X2: real,Y2: real] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( minus_minus_real
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( A @ I3 ) @ ( power_power_real @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( A @ I3 ) @ ( power_power_real @ Y2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( times_times_real @ ( minus_minus_real @ X2 @ Y2 )
@ ( groups6591440286371151544t_real
@ ^ [J3: nat] :
( groups6591440286371151544t_real
@ ^ [K2: nat] : ( times_times_real @ ( times_times_real @ ( A @ ( plus_plus_nat @ ( plus_plus_nat @ J3 @ K2 ) @ one_one_nat ) ) @ ( power_power_real @ Y2 @ K2 ) ) @ ( power_power_real @ X2 @ J3 ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ J3 ) ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_diff_alt
thf(fact_8785_polyfun__extremal__lemma,axiom,
! [E: real,C: nat > complex,N: nat] :
( ( ord_less_real @ zero_zero_real @ E )
=> ? [M8: real] :
! [Z4: complex] :
( ( ord_less_eq_real @ M8 @ ( real_V1022390504157884413omplex @ Z4 ) )
=> ( ord_less_eq_real
@ ( real_V1022390504157884413omplex
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( C @ I3 ) @ ( power_power_complex @ Z4 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
@ ( times_times_real @ E @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z4 ) @ ( suc @ N ) ) ) ) ) ) ).
% polyfun_extremal_lemma
thf(fact_8786_polyfun__extremal__lemma,axiom,
! [E: real,C: nat > real,N: nat] :
( ( ord_less_real @ zero_zero_real @ E )
=> ? [M8: real] :
! [Z4: real] :
( ( ord_less_eq_real @ M8 @ ( real_V7735802525324610683m_real @ Z4 ) )
=> ( ord_less_eq_real
@ ( real_V7735802525324610683m_real
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( C @ I3 ) @ ( power_power_real @ Z4 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
@ ( times_times_real @ E @ ( power_power_real @ ( real_V7735802525324610683m_real @ Z4 ) @ ( suc @ N ) ) ) ) ) ) ).
% polyfun_extremal_lemma
thf(fact_8787_polyfun__diff,axiom,
! [N: nat,A: nat > complex,X2: complex,Y2: complex] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( minus_minus_complex
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( A @ I3 ) @ ( power_power_complex @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( A @ I3 ) @ ( power_power_complex @ Y2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( times_times_complex @ ( minus_minus_complex @ X2 @ Y2 )
@ ( groups2073611262835488442omplex
@ ^ [J3: nat] :
( times_times_complex
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( times_times_complex @ ( A @ I3 ) @ ( power_power_complex @ Y2 @ ( minus_minus_nat @ ( minus_minus_nat @ I3 @ J3 ) @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N ) )
@ ( power_power_complex @ X2 @ J3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_diff
thf(fact_8788_polyfun__diff,axiom,
! [N: nat,A: nat > code_integer,X2: code_integer,Y2: code_integer] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( minus_8373710615458151222nteger
@ ( groups7501900531339628137nteger
@ ^ [I3: nat] : ( times_3573771949741848930nteger @ ( A @ I3 ) @ ( power_8256067586552552935nteger @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
@ ( groups7501900531339628137nteger
@ ^ [I3: nat] : ( times_3573771949741848930nteger @ ( A @ I3 ) @ ( power_8256067586552552935nteger @ Y2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( times_3573771949741848930nteger @ ( minus_8373710615458151222nteger @ X2 @ Y2 )
@ ( groups7501900531339628137nteger
@ ^ [J3: nat] :
( times_3573771949741848930nteger
@ ( groups7501900531339628137nteger
@ ^ [I3: nat] : ( times_3573771949741848930nteger @ ( A @ I3 ) @ ( power_8256067586552552935nteger @ Y2 @ ( minus_minus_nat @ ( minus_minus_nat @ I3 @ J3 ) @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N ) )
@ ( power_8256067586552552935nteger @ X2 @ J3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_diff
thf(fact_8789_polyfun__diff,axiom,
! [N: nat,A: nat > rat,X2: rat,Y2: rat] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( minus_minus_rat
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( A @ I3 ) @ ( power_power_rat @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( A @ I3 ) @ ( power_power_rat @ Y2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( times_times_rat @ ( minus_minus_rat @ X2 @ Y2 )
@ ( groups2906978787729119204at_rat
@ ^ [J3: nat] :
( times_times_rat
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( times_times_rat @ ( A @ I3 ) @ ( power_power_rat @ Y2 @ ( minus_minus_nat @ ( minus_minus_nat @ I3 @ J3 ) @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N ) )
@ ( power_power_rat @ X2 @ J3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_diff
thf(fact_8790_polyfun__diff,axiom,
! [N: nat,A: nat > int,X2: int,Y2: int] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( minus_minus_int
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( A @ I3 ) @ ( power_power_int @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( A @ I3 ) @ ( power_power_int @ Y2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( times_times_int @ ( minus_minus_int @ X2 @ Y2 )
@ ( groups3539618377306564664at_int
@ ^ [J3: nat] :
( times_times_int
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( times_times_int @ ( A @ I3 ) @ ( power_power_int @ Y2 @ ( minus_minus_nat @ ( minus_minus_nat @ I3 @ J3 ) @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N ) )
@ ( power_power_int @ X2 @ J3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_diff
thf(fact_8791_polyfun__diff,axiom,
! [N: nat,A: nat > real,X2: real,Y2: real] :
( ( ord_less_eq_nat @ one_one_nat @ N )
=> ( ( minus_minus_real
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( A @ I3 ) @ ( power_power_real @ X2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( A @ I3 ) @ ( power_power_real @ Y2 @ I3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( times_times_real @ ( minus_minus_real @ X2 @ Y2 )
@ ( groups6591440286371151544t_real
@ ^ [J3: nat] :
( times_times_real
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( A @ I3 ) @ ( power_power_real @ Y2 @ ( minus_minus_nat @ ( minus_minus_nat @ I3 @ J3 ) @ one_one_nat ) ) )
@ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N ) )
@ ( power_power_real @ X2 @ J3 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).
% polyfun_diff
thf(fact_8792_gbinomial__r__part__sum,axiom,
! [M: nat] :
( ( groups2073611262835488442omplex @ ( gbinomial_complex @ ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( semiri8010041392384452111omplex @ M ) ) @ one_one_complex ) ) @ ( set_ord_atMost_nat @ M ) )
= ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).
% gbinomial_r_part_sum
thf(fact_8793_gbinomial__r__part__sum,axiom,
! [M: nat] :
( ( groups2906978787729119204at_rat @ ( gbinomial_rat @ ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( semiri681578069525770553at_rat @ M ) ) @ one_one_rat ) ) @ ( set_ord_atMost_nat @ M ) )
= ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).
% gbinomial_r_part_sum
thf(fact_8794_gbinomial__r__part__sum,axiom,
! [M: nat] :
( ( groups6591440286371151544t_real @ ( gbinomial_real @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ one_one_real ) ) @ ( set_ord_atMost_nat @ M ) )
= ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).
% gbinomial_r_part_sum
thf(fact_8795_cis__minus__pi__half,axiom,
( ( cis @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
= ( uminus1482373934393186551omplex @ imaginary_unit ) ) ).
% cis_minus_pi_half
thf(fact_8796_binomial__code,axiom,
( binomial
= ( ^ [N3: nat,K2: nat] : ( if_nat @ ( ord_less_nat @ N3 @ K2 ) @ zero_zero_nat @ ( if_nat @ ( ord_less_nat @ N3 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K2 ) ) @ ( binomial @ N3 @ ( minus_minus_nat @ N3 @ K2 ) ) @ ( divide_divide_nat @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( plus_plus_nat @ ( minus_minus_nat @ N3 @ K2 ) @ one_one_nat ) @ N3 @ one_one_nat ) @ ( semiri1408675320244567234ct_nat @ K2 ) ) ) ) ) ) ).
% binomial_code
thf(fact_8797_choose__even__sum,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) )
@ ( groups7501900531339628137nteger
@ ^ [I3: nat] : ( if_Code_integer @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) @ ( semiri4939895301339042750nteger @ ( binomial @ N @ I3 ) ) @ zero_z3403309356797280102nteger )
@ ( set_ord_atMost_nat @ N ) ) )
= ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ).
% choose_even_sum
thf(fact_8798_choose__even__sum,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) )
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] : ( if_complex @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) @ ( semiri8010041392384452111omplex @ ( binomial @ N @ I3 ) ) @ zero_zero_complex )
@ ( set_ord_atMost_nat @ N ) ) )
= ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ N ) ) ) ).
% choose_even_sum
thf(fact_8799_choose__even__sum,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] : ( if_rat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) @ ( semiri681578069525770553at_rat @ ( binomial @ N @ I3 ) ) @ zero_zero_rat )
@ ( set_ord_atMost_nat @ N ) ) )
= ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ N ) ) ) ).
% choose_even_sum
thf(fact_8800_choose__even__sum,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] : ( if_int @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) @ ( semiri1314217659103216013at_int @ ( binomial @ N @ I3 ) ) @ zero_zero_int )
@ ( set_ord_atMost_nat @ N ) ) )
= ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).
% choose_even_sum
thf(fact_8801_choose__even__sum,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) @ ( semiri5074537144036343181t_real @ ( binomial @ N @ I3 ) ) @ zero_zero_real )
@ ( set_ord_atMost_nat @ N ) ) )
= ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ) ).
% choose_even_sum
thf(fact_8802_choose__odd__sum,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) )
@ ( groups7501900531339628137nteger
@ ^ [I3: nat] :
( if_Code_integer
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 )
@ ( semiri4939895301339042750nteger @ ( binomial @ N @ I3 ) )
@ zero_z3403309356797280102nteger )
@ ( set_ord_atMost_nat @ N ) ) )
= ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ).
% choose_odd_sum
thf(fact_8803_choose__odd__sum,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) )
@ ( groups2073611262835488442omplex
@ ^ [I3: nat] :
( if_complex
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 )
@ ( semiri8010041392384452111omplex @ ( binomial @ N @ I3 ) )
@ zero_zero_complex )
@ ( set_ord_atMost_nat @ N ) ) )
= ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ N ) ) ) ).
% choose_odd_sum
thf(fact_8804_choose__odd__sum,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) )
@ ( groups2906978787729119204at_rat
@ ^ [I3: nat] :
( if_rat
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 )
@ ( semiri681578069525770553at_rat @ ( binomial @ N @ I3 ) )
@ zero_zero_rat )
@ ( set_ord_atMost_nat @ N ) ) )
= ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ N ) ) ) ).
% choose_odd_sum
thf(fact_8805_choose__odd__sum,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) )
@ ( groups3539618377306564664at_int
@ ^ [I3: nat] :
( if_int
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 )
@ ( semiri1314217659103216013at_int @ ( binomial @ N @ I3 ) )
@ zero_zero_int )
@ ( set_ord_atMost_nat @ N ) ) )
= ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).
% choose_odd_sum
thf(fact_8806_choose__odd__sum,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] :
( if_real
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 )
@ ( semiri5074537144036343181t_real @ ( binomial @ N @ I3 ) )
@ zero_zero_real )
@ ( set_ord_atMost_nat @ N ) ) )
= ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ) ).
% choose_odd_sum
thf(fact_8807_binomial__Suc__n,axiom,
! [N: nat] :
( ( binomial @ ( suc @ N ) @ N )
= ( suc @ N ) ) ).
% binomial_Suc_n
thf(fact_8808_binomial__n__n,axiom,
! [N: nat] :
( ( binomial @ N @ N )
= one_one_nat ) ).
% binomial_n_n
thf(fact_8809_binomial__0__Suc,axiom,
! [K: nat] :
( ( binomial @ zero_zero_nat @ ( suc @ K ) )
= zero_zero_nat ) ).
% binomial_0_Suc
thf(fact_8810_binomial__1,axiom,
! [N: nat] :
( ( binomial @ N @ ( suc @ zero_zero_nat ) )
= N ) ).
% binomial_1
thf(fact_8811_binomial__eq__0__iff,axiom,
! [N: nat,K: nat] :
( ( ( binomial @ N @ K )
= zero_zero_nat )
= ( ord_less_nat @ N @ K ) ) ).
% binomial_eq_0_iff
thf(fact_8812_binomial__Suc__Suc,axiom,
! [N: nat,K: nat] :
( ( binomial @ ( suc @ N ) @ ( suc @ K ) )
= ( plus_plus_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ ( suc @ K ) ) ) ) ).
% binomial_Suc_Suc
thf(fact_8813_binomial__n__0,axiom,
! [N: nat] :
( ( binomial @ N @ zero_zero_nat )
= one_one_nat ) ).
% binomial_n_0
thf(fact_8814_norm__cis,axiom,
! [A: real] :
( ( real_V1022390504157884413omplex @ ( cis @ A ) )
= one_one_real ) ).
% norm_cis
thf(fact_8815_cis__zero,axiom,
( ( cis @ zero_zero_real )
= one_one_complex ) ).
% cis_zero
thf(fact_8816_zero__less__binomial__iff,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( binomial @ N @ K ) )
= ( ord_less_eq_nat @ K @ N ) ) ).
% zero_less_binomial_iff
thf(fact_8817_cis__pi,axiom,
( ( cis @ pi )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% cis_pi
thf(fact_8818_cis__pi__half,axiom,
( ( cis @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= imaginary_unit ) ).
% cis_pi_half
thf(fact_8819_cis__2pi,axiom,
( ( cis @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
= one_one_complex ) ).
% cis_2pi
thf(fact_8820_choose__one,axiom,
! [N: nat] :
( ( binomial @ N @ one_one_nat )
= N ) ).
% choose_one
thf(fact_8821_cis__neq__zero,axiom,
! [A: real] :
( ( cis @ A )
!= zero_zero_complex ) ).
% cis_neq_zero
thf(fact_8822_binomial__eq__0,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ N @ K )
=> ( ( binomial @ N @ K )
= zero_zero_nat ) ) ).
% binomial_eq_0
thf(fact_8823_Suc__times__binomial,axiom,
! [K: nat,N: nat] :
( ( times_times_nat @ ( suc @ K ) @ ( binomial @ ( suc @ N ) @ ( suc @ K ) ) )
= ( times_times_nat @ ( suc @ N ) @ ( binomial @ N @ K ) ) ) ).
% Suc_times_binomial
thf(fact_8824_Suc__times__binomial__eq,axiom,
! [N: nat,K: nat] :
( ( times_times_nat @ ( suc @ N ) @ ( binomial @ N @ K ) )
= ( times_times_nat @ ( binomial @ ( suc @ N ) @ ( suc @ K ) ) @ ( suc @ K ) ) ) ).
% Suc_times_binomial_eq
thf(fact_8825_binomial__symmetric,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( binomial @ N @ K )
= ( binomial @ N @ ( minus_minus_nat @ N @ K ) ) ) ) ).
% binomial_symmetric
thf(fact_8826_choose__mult__lemma,axiom,
! [M: nat,R2: nat,K: nat] :
( ( times_times_nat @ ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ M @ R2 ) @ K ) @ ( plus_plus_nat @ M @ K ) ) @ ( binomial @ ( plus_plus_nat @ M @ K ) @ K ) )
= ( times_times_nat @ ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ M @ R2 ) @ K ) @ K ) @ ( binomial @ ( plus_plus_nat @ M @ R2 ) @ M ) ) ) ).
% choose_mult_lemma
thf(fact_8827_binomial__le__pow,axiom,
! [R2: nat,N: nat] :
( ( ord_less_eq_nat @ R2 @ N )
=> ( ord_less_eq_nat @ ( binomial @ N @ R2 ) @ ( power_power_nat @ N @ R2 ) ) ) ).
% binomial_le_pow
thf(fact_8828_binomial__gbinomial,axiom,
! [N: nat,K: nat] :
( ( semiri5074537144036343181t_real @ ( binomial @ N @ K ) )
= ( gbinomial_real @ ( semiri5074537144036343181t_real @ N ) @ K ) ) ).
% binomial_gbinomial
thf(fact_8829_cis__mult,axiom,
! [A: real,B: real] :
( ( times_times_complex @ ( cis @ A ) @ ( cis @ B ) )
= ( cis @ ( plus_plus_real @ A @ B ) ) ) ).
% cis_mult
thf(fact_8830_zero__less__binomial,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ord_less_nat @ zero_zero_nat @ ( binomial @ N @ K ) ) ) ).
% zero_less_binomial
thf(fact_8831_Suc__times__binomial__add,axiom,
! [A: nat,B: nat] :
( ( times_times_nat @ ( suc @ A ) @ ( binomial @ ( suc @ ( plus_plus_nat @ A @ B ) ) @ ( suc @ A ) ) )
= ( times_times_nat @ ( suc @ B ) @ ( binomial @ ( suc @ ( plus_plus_nat @ A @ B ) ) @ A ) ) ) ).
% Suc_times_binomial_add
thf(fact_8832_binomial__Suc__Suc__eq__times,axiom,
! [N: nat,K: nat] :
( ( binomial @ ( suc @ N ) @ ( suc @ K ) )
= ( divide_divide_nat @ ( times_times_nat @ ( suc @ N ) @ ( binomial @ N @ K ) ) @ ( suc @ K ) ) ) ).
% binomial_Suc_Suc_eq_times
thf(fact_8833_choose__mult,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( ( times_times_nat @ ( binomial @ N @ M ) @ ( binomial @ M @ K ) )
= ( times_times_nat @ ( binomial @ N @ K ) @ ( binomial @ ( minus_minus_nat @ N @ K ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ) ).
% choose_mult
thf(fact_8834_binomial__absorb__comp,axiom,
! [N: nat,K: nat] :
( ( times_times_nat @ ( minus_minus_nat @ N @ K ) @ ( binomial @ N @ K ) )
= ( times_times_nat @ N @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K ) ) ) ).
% binomial_absorb_comp
thf(fact_8835_sum__choose__upper,axiom,
! [M: nat,N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [K2: nat] : ( binomial @ K2 @ M )
@ ( set_ord_atMost_nat @ N ) )
= ( binomial @ ( suc @ N ) @ ( suc @ M ) ) ) ).
% sum_choose_upper
thf(fact_8836_binomial__absorption,axiom,
! [K: nat,N: nat] :
( ( times_times_nat @ ( suc @ K ) @ ( binomial @ N @ ( suc @ K ) ) )
= ( times_times_nat @ N @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K ) ) ) ).
% binomial_absorption
thf(fact_8837_binomial__fact__lemma,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( times_times_nat @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ K ) ) ) @ ( binomial @ N @ K ) )
= ( semiri1408675320244567234ct_nat @ N ) ) ) ).
% binomial_fact_lemma
thf(fact_8838_DeMoivre,axiom,
! [A: real,N: nat] :
( ( power_power_complex @ ( cis @ A ) @ N )
= ( cis @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ A ) ) ) ).
% DeMoivre
thf(fact_8839_sum__choose__lower,axiom,
! [R2: nat,N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [K2: nat] : ( binomial @ ( plus_plus_nat @ R2 @ K2 ) @ K2 )
@ ( set_ord_atMost_nat @ N ) )
= ( binomial @ ( suc @ ( plus_plus_nat @ R2 @ N ) ) @ N ) ) ).
% sum_choose_lower
thf(fact_8840_choose__rising__sum_I2_J,axiom,
! [N: nat,M: nat] :
( ( groups3542108847815614940at_nat
@ ^ [J3: nat] : ( binomial @ ( plus_plus_nat @ N @ J3 ) @ N )
@ ( set_ord_atMost_nat @ M ) )
= ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ N @ M ) @ one_one_nat ) @ M ) ) ).
% choose_rising_sum(2)
thf(fact_8841_choose__rising__sum_I1_J,axiom,
! [N: nat,M: nat] :
( ( groups3542108847815614940at_nat
@ ^ [J3: nat] : ( binomial @ ( plus_plus_nat @ N @ J3 ) @ N )
@ ( set_ord_atMost_nat @ M ) )
= ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ N @ M ) @ one_one_nat ) @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ).
% choose_rising_sum(1)
thf(fact_8842_binomial__ge__n__over__k__pow__k,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ord_less_eq_real @ ( power_power_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ K ) ) @ K ) @ ( semiri5074537144036343181t_real @ ( binomial @ N @ K ) ) ) ) ).
% binomial_ge_n_over_k_pow_k
thf(fact_8843_binomial__ge__n__over__k__pow__k,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ord_less_eq_rat @ ( power_power_rat @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ N ) @ ( semiri681578069525770553at_rat @ K ) ) @ K ) @ ( semiri681578069525770553at_rat @ ( binomial @ N @ K ) ) ) ) ).
% binomial_ge_n_over_k_pow_k
thf(fact_8844_binomial__maximum,axiom,
! [N: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% binomial_maximum
thf(fact_8845_binomial__antimono,axiom,
! [K: nat,K4: nat,N: nat] :
( ( ord_less_eq_nat @ K @ K4 )
=> ( ( ord_less_eq_nat @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ K )
=> ( ( ord_less_eq_nat @ K4 @ N )
=> ( ord_less_eq_nat @ ( binomial @ N @ K4 ) @ ( binomial @ N @ K ) ) ) ) ) ).
% binomial_antimono
thf(fact_8846_binomial__mono,axiom,
! [K: nat,K4: nat,N: nat] :
( ( ord_less_eq_nat @ K @ K4 )
=> ( ( ord_less_eq_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K4 ) @ N )
=> ( ord_less_eq_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ K4 ) ) ) ) ).
% binomial_mono
thf(fact_8847_binomial__maximum_H,axiom,
! [N: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ K ) @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ N ) ) ).
% binomial_maximum'
thf(fact_8848_binomial__le__pow2,axiom,
! [N: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ N @ K ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% binomial_le_pow2
thf(fact_8849_choose__reduce__nat,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( binomial @ N @ K )
= ( plus_plus_nat @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K ) ) ) ) ) ).
% choose_reduce_nat
thf(fact_8850_times__binomial__minus1__eq,axiom,
! [K: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( times_times_nat @ K @ ( binomial @ N @ K ) )
= ( times_times_nat @ N @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).
% times_binomial_minus1_eq
thf(fact_8851_binomial__altdef__nat,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( binomial @ N @ K )
= ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ K ) ) ) ) ) ) ).
% binomial_altdef_nat
thf(fact_8852_sum__choose__diagonal,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups3542108847815614940at_nat
@ ^ [K2: nat] : ( binomial @ ( minus_minus_nat @ N @ K2 ) @ ( minus_minus_nat @ M @ K2 ) )
@ ( set_ord_atMost_nat @ M ) )
= ( binomial @ ( suc @ N ) @ M ) ) ) ).
% sum_choose_diagonal
thf(fact_8853_vandermonde,axiom,
! [M: nat,N: nat,R2: nat] :
( ( groups3542108847815614940at_nat
@ ^ [K2: nat] : ( times_times_nat @ ( binomial @ M @ K2 ) @ ( binomial @ N @ ( minus_minus_nat @ R2 @ K2 ) ) )
@ ( set_ord_atMost_nat @ R2 ) )
= ( binomial @ ( plus_plus_nat @ M @ N ) @ R2 ) ) ).
% vandermonde
thf(fact_8854_binomial__less__binomial__Suc,axiom,
! [K: nat,N: nat] :
( ( ord_less_nat @ K @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ord_less_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ ( suc @ K ) ) ) ) ).
% binomial_less_binomial_Suc
thf(fact_8855_binomial__strict__mono,axiom,
! [K: nat,K4: nat,N: nat] :
( ( ord_less_nat @ K @ K4 )
=> ( ( ord_less_eq_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K4 ) @ N )
=> ( ord_less_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ K4 ) ) ) ) ).
% binomial_strict_mono
thf(fact_8856_binomial__strict__antimono,axiom,
! [K: nat,K4: nat,N: nat] :
( ( ord_less_nat @ K @ K4 )
=> ( ( ord_less_eq_nat @ N @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K ) )
=> ( ( ord_less_eq_nat @ K4 @ N )
=> ( ord_less_nat @ ( binomial @ N @ K4 ) @ ( binomial @ N @ K ) ) ) ) ) ).
% binomial_strict_antimono
thf(fact_8857_central__binomial__odd,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( binomial @ N @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= ( binomial @ N @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% central_binomial_odd
thf(fact_8858_binomial__addition__formula,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( binomial @ N @ ( suc @ K ) )
= ( plus_plus_nat @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ ( suc @ K ) ) @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K ) ) ) ) ).
% binomial_addition_formula
thf(fact_8859_binomial__fact,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( semiri8010041392384452111omplex @ ( binomial @ N @ K ) )
= ( divide1717551699836669952omplex @ ( semiri5044797733671781792omplex @ N ) @ ( times_times_complex @ ( semiri5044797733671781792omplex @ K ) @ ( semiri5044797733671781792omplex @ ( minus_minus_nat @ N @ K ) ) ) ) ) ) ).
% binomial_fact
thf(fact_8860_binomial__fact,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( semiri681578069525770553at_rat @ ( binomial @ N @ K ) )
= ( divide_divide_rat @ ( semiri773545260158071498ct_rat @ N ) @ ( times_times_rat @ ( semiri773545260158071498ct_rat @ K ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N @ K ) ) ) ) ) ) ).
% binomial_fact
thf(fact_8861_binomial__fact,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( semiri5074537144036343181t_real @ ( binomial @ N @ K ) )
= ( divide_divide_real @ ( semiri2265585572941072030t_real @ N ) @ ( times_times_real @ ( semiri2265585572941072030t_real @ K ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ K ) ) ) ) ) ) ).
% binomial_fact
thf(fact_8862_fact__binomial,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( times_times_rat @ ( semiri773545260158071498ct_rat @ K ) @ ( semiri681578069525770553at_rat @ ( binomial @ N @ K ) ) )
= ( divide_divide_rat @ ( semiri773545260158071498ct_rat @ N ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N @ K ) ) ) ) ) ).
% fact_binomial
thf(fact_8863_fact__binomial,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( times_times_real @ ( semiri2265585572941072030t_real @ K ) @ ( semiri5074537144036343181t_real @ ( binomial @ N @ K ) ) )
= ( divide_divide_real @ ( semiri2265585572941072030t_real @ N ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ K ) ) ) ) ) ).
% fact_binomial
thf(fact_8864_cis__conv__exp,axiom,
( cis
= ( ^ [B2: real] : ( exp_complex @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ B2 ) ) ) ) ) ).
% cis_conv_exp
thf(fact_8865_choose__row__sum,axiom,
! [N: nat] :
( ( groups3542108847815614940at_nat @ ( binomial @ N ) @ ( set_ord_atMost_nat @ N ) )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% choose_row_sum
thf(fact_8866_binomial,axiom,
! [A: nat,B: nat,N: nat] :
( ( power_power_nat @ ( plus_plus_nat @ A @ B ) @ N )
= ( groups3542108847815614940at_nat
@ ^ [K2: nat] : ( times_times_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( binomial @ N @ K2 ) ) @ ( power_power_nat @ A @ K2 ) ) @ ( power_power_nat @ B @ ( minus_minus_nat @ N @ K2 ) ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% binomial
thf(fact_8867_choose__two,axiom,
! [N: nat] :
( ( binomial @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ ( times_times_nat @ N @ ( minus_minus_nat @ N @ one_one_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% choose_two
thf(fact_8868_choose__square__sum,axiom,
! [N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [K2: nat] : ( power_power_nat @ ( binomial @ N @ K2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
@ ( set_ord_atMost_nat @ N ) )
= ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ N ) ) ).
% choose_square_sum
thf(fact_8869_binomial__r__part__sum,axiom,
! [M: nat] :
( ( groups3542108847815614940at_nat @ ( binomial @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) ) @ ( set_ord_atMost_nat @ M ) )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).
% binomial_r_part_sum
thf(fact_8870_choose__linear__sum,axiom,
! [N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( times_times_nat @ I3 @ ( binomial @ N @ I3 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( times_times_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).
% choose_linear_sum
thf(fact_8871_central__binomial__lower__bound,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_real @ ( divide_divide_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ N ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) @ ( semiri5074537144036343181t_real @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ N ) ) ) ) ).
% central_binomial_lower_bound
thf(fact_8872_bij__betw__roots__unity,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( bij_betw_nat_complex
@ ^ [K2: nat] : ( cis @ ( divide_divide_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( semiri5074537144036343181t_real @ K2 ) ) @ ( semiri5074537144036343181t_real @ N ) ) )
@ ( set_ord_lessThan_nat @ N )
@ ( collect_complex
@ ^ [Z5: complex] :
( ( power_power_complex @ Z5 @ N )
= one_one_complex ) ) ) ) ).
% bij_betw_roots_unity
thf(fact_8873_of__nat__id,axiom,
( semiri1316708129612266289at_nat
= ( ^ [N3: nat] : N3 ) ) ).
% of_nat_id
thf(fact_8874_real__scaleR__def,axiom,
real_V1485227260804924795R_real = times_times_real ).
% real_scaleR_def
thf(fact_8875_complex__scaleR,axiom,
! [R2: real,A: real,B: real] :
( ( real_V2046097035970521341omplex @ R2 @ ( complex2 @ A @ B ) )
= ( complex2 @ ( times_times_real @ R2 @ A ) @ ( times_times_real @ R2 @ B ) ) ) ).
% complex_scaleR
thf(fact_8876_sinh__real__zero__iff,axiom,
! [X2: real] :
( ( ( sinh_real @ X2 )
= zero_zero_real )
= ( X2 = zero_zero_real ) ) ).
% sinh_real_zero_iff
thf(fact_8877_sinh__real__le__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ ( sinh_real @ X2 ) @ ( sinh_real @ Y2 ) )
= ( ord_less_eq_real @ X2 @ Y2 ) ) ).
% sinh_real_le_iff
thf(fact_8878_sinh__real__pos__iff,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ ( sinh_real @ X2 ) )
= ( ord_less_real @ zero_zero_real @ X2 ) ) ).
% sinh_real_pos_iff
thf(fact_8879_sinh__real__neg__iff,axiom,
! [X2: real] :
( ( ord_less_real @ ( sinh_real @ X2 ) @ zero_zero_real )
= ( ord_less_real @ X2 @ zero_zero_real ) ) ).
% sinh_real_neg_iff
thf(fact_8880_sinh__real__nonpos__iff,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( sinh_real @ X2 ) @ zero_zero_real )
= ( ord_less_eq_real @ X2 @ zero_zero_real ) ) ).
% sinh_real_nonpos_iff
thf(fact_8881_sinh__real__nonneg__iff,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( sinh_real @ X2 ) )
= ( ord_less_eq_real @ zero_zero_real @ X2 ) ) ).
% sinh_real_nonneg_iff
thf(fact_8882_cosh__real__nonzero,axiom,
! [X2: real] :
( ( cosh_real @ X2 )
!= zero_zero_real ) ).
% cosh_real_nonzero
thf(fact_8883_sinh__le__cosh__real,axiom,
! [X2: real] : ( ord_less_eq_real @ ( sinh_real @ X2 ) @ ( cosh_real @ X2 ) ) ).
% sinh_le_cosh_real
thf(fact_8884_cosh__real__pos,axiom,
! [X2: real] : ( ord_less_real @ zero_zero_real @ ( cosh_real @ X2 ) ) ).
% cosh_real_pos
thf(fact_8885_cosh__real__nonpos__le__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ X2 @ zero_zero_real )
=> ( ( ord_less_eq_real @ Y2 @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( cosh_real @ X2 ) @ ( cosh_real @ Y2 ) )
= ( ord_less_eq_real @ Y2 @ X2 ) ) ) ) ).
% cosh_real_nonpos_le_iff
thf(fact_8886_cosh__real__nonneg__le__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_eq_real @ ( cosh_real @ X2 ) @ ( cosh_real @ Y2 ) )
= ( ord_less_eq_real @ X2 @ Y2 ) ) ) ) ).
% cosh_real_nonneg_le_iff
thf(fact_8887_cosh__real__nonneg,axiom,
! [X2: real] : ( ord_less_eq_real @ zero_zero_real @ ( cosh_real @ X2 ) ) ).
% cosh_real_nonneg
thf(fact_8888_cosh__real__ge__1,axiom,
! [X2: real] : ( ord_less_eq_real @ one_one_real @ ( cosh_real @ X2 ) ) ).
% cosh_real_ge_1
thf(fact_8889_cosh__real__strict__mono,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ X2 @ Y2 )
=> ( ord_less_real @ ( cosh_real @ X2 ) @ ( cosh_real @ Y2 ) ) ) ) ).
% cosh_real_strict_mono
thf(fact_8890_cosh__real__nonneg__less__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_real @ ( cosh_real @ X2 ) @ ( cosh_real @ Y2 ) )
= ( ord_less_real @ X2 @ Y2 ) ) ) ) ).
% cosh_real_nonneg_less_iff
thf(fact_8891_cosh__real__nonpos__less__iff,axiom,
! [X2: real,Y2: real] :
( ( ord_less_eq_real @ X2 @ zero_zero_real )
=> ( ( ord_less_eq_real @ Y2 @ zero_zero_real )
=> ( ( ord_less_real @ ( cosh_real @ X2 ) @ ( cosh_real @ Y2 ) )
= ( ord_less_real @ Y2 @ X2 ) ) ) ) ).
% cosh_real_nonpos_less_iff
thf(fact_8892_arcosh__cosh__real,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( arcosh_real @ ( cosh_real @ X2 ) )
= X2 ) ) ).
% arcosh_cosh_real
thf(fact_8893_cosh__ln__real,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( cosh_real @ ( ln_ln_real @ X2 ) )
= ( divide_divide_real @ ( plus_plus_real @ X2 @ ( inverse_inverse_real @ X2 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% cosh_ln_real
thf(fact_8894_sinh__ln__real,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( sinh_real @ ( ln_ln_real @ X2 ) )
= ( divide_divide_real @ ( minus_minus_real @ X2 @ ( inverse_inverse_real @ X2 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% sinh_ln_real
thf(fact_8895_bij__betw__nth__root__unity,axiom,
! [C: complex,N: nat] :
( ( C != zero_zero_complex )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( bij_be1856998921033663316omplex @ ( times_times_complex @ ( times_times_complex @ ( real_V4546457046886955230omplex @ ( root @ N @ ( real_V1022390504157884413omplex @ C ) ) ) @ ( cis @ ( divide_divide_real @ ( arg @ C ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) )
@ ( collect_complex
@ ^ [Z5: complex] :
( ( power_power_complex @ Z5 @ N )
= one_one_complex ) )
@ ( collect_complex
@ ^ [Z5: complex] :
( ( power_power_complex @ Z5 @ N )
= C ) ) ) ) ) ).
% bij_betw_nth_root_unity
thf(fact_8896_cot__less__zero,axiom,
! [X2: real] :
( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X2 )
=> ( ( ord_less_real @ X2 @ zero_zero_real )
=> ( ord_less_real @ ( cot_real @ X2 ) @ zero_zero_real ) ) ) ).
% cot_less_zero
thf(fact_8897_real__root__zero,axiom,
! [N: nat] :
( ( root @ N @ zero_zero_real )
= zero_zero_real ) ).
% real_root_zero
thf(fact_8898_real__root__Suc__0,axiom,
! [X2: real] :
( ( root @ ( suc @ zero_zero_nat ) @ X2 )
= X2 ) ).
% real_root_Suc_0
thf(fact_8899_real__root__eq__iff,axiom,
! [N: nat,X2: real,Y2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( root @ N @ X2 )
= ( root @ N @ Y2 ) )
= ( X2 = Y2 ) ) ) ).
% real_root_eq_iff
thf(fact_8900_root__0,axiom,
! [X2: real] :
( ( root @ zero_zero_nat @ X2 )
= zero_zero_real ) ).
% root_0
thf(fact_8901_cot__pi,axiom,
( ( cot_real @ pi )
= zero_zero_real ) ).
% cot_pi
thf(fact_8902_real__root__eq__0__iff,axiom,
! [N: nat,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( root @ N @ X2 )
= zero_zero_real )
= ( X2 = zero_zero_real ) ) ) ).
% real_root_eq_0_iff
thf(fact_8903_real__root__less__iff,axiom,
! [N: nat,X2: real,Y2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ ( root @ N @ X2 ) @ ( root @ N @ Y2 ) )
= ( ord_less_real @ X2 @ Y2 ) ) ) ).
% real_root_less_iff
thf(fact_8904_real__root__le__iff,axiom,
! [N: nat,X2: real,Y2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ ( root @ N @ X2 ) @ ( root @ N @ Y2 ) )
= ( ord_less_eq_real @ X2 @ Y2 ) ) ) ).
% real_root_le_iff
thf(fact_8905_real__root__eq__1__iff,axiom,
! [N: nat,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( root @ N @ X2 )
= one_one_real )
= ( X2 = one_one_real ) ) ) ).
% real_root_eq_1_iff
thf(fact_8906_real__root__one,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( root @ N @ one_one_real )
= one_one_real ) ) ).
% real_root_one
thf(fact_8907_real__root__gt__0__iff,axiom,
! [N: nat,Y2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ ( root @ N @ Y2 ) )
= ( ord_less_real @ zero_zero_real @ Y2 ) ) ) ).
% real_root_gt_0_iff
thf(fact_8908_real__root__lt__0__iff,axiom,
! [N: nat,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ ( root @ N @ X2 ) @ zero_zero_real )
= ( ord_less_real @ X2 @ zero_zero_real ) ) ) ).
% real_root_lt_0_iff
thf(fact_8909_real__root__le__0__iff,axiom,
! [N: nat,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ ( root @ N @ X2 ) @ zero_zero_real )
= ( ord_less_eq_real @ X2 @ zero_zero_real ) ) ) ).
% real_root_le_0_iff
thf(fact_8910_real__root__ge__0__iff,axiom,
! [N: nat,Y2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( root @ N @ Y2 ) )
= ( ord_less_eq_real @ zero_zero_real @ Y2 ) ) ) ).
% real_root_ge_0_iff
thf(fact_8911_real__root__lt__1__iff,axiom,
! [N: nat,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ ( root @ N @ X2 ) @ one_one_real )
= ( ord_less_real @ X2 @ one_one_real ) ) ) ).
% real_root_lt_1_iff
thf(fact_8912_real__root__gt__1__iff,axiom,
! [N: nat,Y2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ one_one_real @ ( root @ N @ Y2 ) )
= ( ord_less_real @ one_one_real @ Y2 ) ) ) ).
% real_root_gt_1_iff
thf(fact_8913_real__root__le__1__iff,axiom,
! [N: nat,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ ( root @ N @ X2 ) @ one_one_real )
= ( ord_less_eq_real @ X2 @ one_one_real ) ) ) ).
% real_root_le_1_iff
thf(fact_8914_real__root__ge__1__iff,axiom,
! [N: nat,Y2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ one_one_real @ ( root @ N @ Y2 ) )
= ( ord_less_eq_real @ one_one_real @ Y2 ) ) ) ).
% real_root_ge_1_iff
thf(fact_8915_cot__npi,axiom,
! [N: nat] :
( ( cot_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
= zero_zero_real ) ).
% cot_npi
thf(fact_8916_real__root__pow__pos2,axiom,
! [N: nat,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( power_power_real @ ( root @ N @ X2 ) @ N )
= X2 ) ) ) ).
% real_root_pow_pos2
thf(fact_8917_cot__periodic,axiom,
! [X2: real] :
( ( cot_real @ ( plus_plus_real @ X2 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
= ( cot_real @ X2 ) ) ).
% cot_periodic
thf(fact_8918_real__root__commute,axiom,
! [M: nat,N: nat,X2: real] :
( ( root @ M @ ( root @ N @ X2 ) )
= ( root @ N @ ( root @ M @ X2 ) ) ) ).
% real_root_commute
thf(fact_8919_real__root__mult,axiom,
! [N: nat,X2: real,Y2: real] :
( ( root @ N @ ( times_times_real @ X2 @ Y2 ) )
= ( times_times_real @ ( root @ N @ X2 ) @ ( root @ N @ Y2 ) ) ) ).
% real_root_mult
thf(fact_8920_real__root__mult__exp,axiom,
! [M: nat,N: nat,X2: real] :
( ( root @ ( times_times_nat @ M @ N ) @ X2 )
= ( root @ M @ ( root @ N @ X2 ) ) ) ).
% real_root_mult_exp
thf(fact_8921_real__root__minus,axiom,
! [N: nat,X2: real] :
( ( root @ N @ ( uminus_uminus_real @ X2 ) )
= ( uminus_uminus_real @ ( root @ N @ X2 ) ) ) ).
% real_root_minus
thf(fact_8922_real__root__divide,axiom,
! [N: nat,X2: real,Y2: real] :
( ( root @ N @ ( divide_divide_real @ X2 @ Y2 ) )
= ( divide_divide_real @ ( root @ N @ X2 ) @ ( root @ N @ Y2 ) ) ) ).
% real_root_divide
thf(fact_8923_real__root__inverse,axiom,
! [N: nat,X2: real] :
( ( root @ N @ ( inverse_inverse_real @ X2 ) )
= ( inverse_inverse_real @ ( root @ N @ X2 ) ) ) ).
% real_root_inverse
thf(fact_8924_real__root__pos__pos__le,axiom,
! [X2: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( root @ N @ X2 ) ) ) ).
% real_root_pos_pos_le
thf(fact_8925_real__root__less__mono,axiom,
! [N: nat,X2: real,Y2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ X2 @ Y2 )
=> ( ord_less_real @ ( root @ N @ X2 ) @ ( root @ N @ Y2 ) ) ) ) ).
% real_root_less_mono
thf(fact_8926_real__root__le__mono,axiom,
! [N: nat,X2: real,Y2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ X2 @ Y2 )
=> ( ord_less_eq_real @ ( root @ N @ X2 ) @ ( root @ N @ Y2 ) ) ) ) ).
% real_root_le_mono
thf(fact_8927_real__root__power,axiom,
! [N: nat,X2: real,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( root @ N @ ( power_power_real @ X2 @ K ) )
= ( power_power_real @ ( root @ N @ X2 ) @ K ) ) ) ).
% real_root_power
thf(fact_8928_real__root__abs,axiom,
! [N: nat,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( root @ N @ ( abs_abs_real @ X2 ) )
= ( abs_abs_real @ ( root @ N @ X2 ) ) ) ) ).
% real_root_abs
thf(fact_8929_real__root__gt__zero,axiom,
! [N: nat,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ord_less_real @ zero_zero_real @ ( root @ N @ X2 ) ) ) ) ).
% real_root_gt_zero
thf(fact_8930_real__root__strict__decreasing,axiom,
! [N: nat,N5: nat,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_real @ one_one_real @ X2 )
=> ( ord_less_real @ ( root @ N5 @ X2 ) @ ( root @ N @ X2 ) ) ) ) ) ).
% real_root_strict_decreasing
thf(fact_8931_sqrt__def,axiom,
( sqrt
= ( root @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% sqrt_def
thf(fact_8932_root__abs__power,axiom,
! [N: nat,Y2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( abs_abs_real @ ( root @ N @ ( power_power_real @ Y2 @ N ) ) )
= ( abs_abs_real @ Y2 ) ) ) ).
% root_abs_power
thf(fact_8933_real__root__pos__pos,axiom,
! [N: nat,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ord_less_eq_real @ zero_zero_real @ ( root @ N @ X2 ) ) ) ) ).
% real_root_pos_pos
thf(fact_8934_real__root__strict__increasing,axiom,
! [N: nat,N5: nat,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ X2 @ one_one_real )
=> ( ord_less_real @ ( root @ N @ X2 ) @ ( root @ N5 @ X2 ) ) ) ) ) ) ).
% real_root_strict_increasing
thf(fact_8935_real__root__decreasing,axiom,
! [N: nat,N5: nat,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_real @ one_one_real @ X2 )
=> ( ord_less_eq_real @ ( root @ N5 @ X2 ) @ ( root @ N @ X2 ) ) ) ) ) ).
% real_root_decreasing
thf(fact_8936_odd__real__root__power__cancel,axiom,
! [N: nat,X2: real] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( root @ N @ ( power_power_real @ X2 @ N ) )
= X2 ) ) ).
% odd_real_root_power_cancel
thf(fact_8937_odd__real__root__unique,axiom,
! [N: nat,Y2: real,X2: real] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ( power_power_real @ Y2 @ N )
= X2 )
=> ( ( root @ N @ X2 )
= Y2 ) ) ) ).
% odd_real_root_unique
thf(fact_8938_odd__real__root__pow,axiom,
! [N: nat,X2: real] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( root @ N @ X2 ) @ N )
= X2 ) ) ).
% odd_real_root_pow
thf(fact_8939_real__root__pow__pos,axiom,
! [N: nat,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( power_power_real @ ( root @ N @ X2 ) @ N )
= X2 ) ) ) ).
% real_root_pow_pos
thf(fact_8940_real__root__pos__unique,axiom,
! [N: nat,Y2: real,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( ( power_power_real @ Y2 @ N )
= X2 )
=> ( ( root @ N @ X2 )
= Y2 ) ) ) ) ).
% real_root_pos_unique
thf(fact_8941_real__root__power__cancel,axiom,
! [N: nat,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( root @ N @ ( power_power_real @ X2 @ N ) )
= X2 ) ) ) ).
% real_root_power_cancel
thf(fact_8942_real__root__increasing,axiom,
! [N: nat,N5: nat,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ X2 @ one_one_real )
=> ( ord_less_eq_real @ ( root @ N @ X2 ) @ ( root @ N5 @ X2 ) ) ) ) ) ) ).
% real_root_increasing
thf(fact_8943_log__root,axiom,
! [N: nat,A: real,B: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ( log @ B @ ( root @ N @ A ) )
= ( divide_divide_real @ ( log @ B @ A ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% log_root
thf(fact_8944_log__base__root,axiom,
! [N: nat,B: real,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ( log @ ( root @ N @ B ) @ X2 )
= ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ X2 ) ) ) ) ) ).
% log_base_root
thf(fact_8945_ln__root,axiom,
! [N: nat,B: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ln_ln_real @ ( root @ N @ B ) )
= ( divide_divide_real @ ( ln_ln_real @ B ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% ln_root
thf(fact_8946_root__powr__inverse,axiom,
! [N: nat,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( root @ N @ X2 )
= ( powr_real @ X2 @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ) ).
% root_powr_inverse
thf(fact_8947_cot__gt__zero,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ zero_zero_real @ ( cot_real @ X2 ) ) ) ) ).
% cot_gt_zero
thf(fact_8948_tan__cot_H,axiom,
! [X2: real] :
( ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X2 ) )
= ( cot_real @ X2 ) ) ).
% tan_cot'
thf(fact_8949_lowi__def,axiom,
( vEBT_VEBT_lowi
= ( ^ [X: nat,N3: nat] : ( heap_Time_return_nat @ ( modulo_modulo_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ).
% lowi_def
thf(fact_8950_highi__def,axiom,
( vEBT_VEBT_highi
= ( ^ [X: nat,N3: nat] : ( heap_Time_return_nat @ ( divide_divide_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ).
% highi_def
thf(fact_8951_set__decode__0,axiom,
! [X2: nat] :
( ( member_nat @ zero_zero_nat @ ( nat_set_decode @ X2 ) )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X2 ) ) ) ).
% set_decode_0
thf(fact_8952_Comparator__Generator_OAll__less__Suc,axiom,
! [X2: nat,P: nat > $o] :
( ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( suc @ X2 ) )
=> ( P @ I3 ) ) )
= ( ( P @ zero_zero_nat )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ X2 )
=> ( P @ ( suc @ I3 ) ) ) ) ) ).
% Comparator_Generator.All_less_Suc
thf(fact_8953_forall__finite_I2_J,axiom,
! [P: nat > $o] :
( ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( suc @ zero_zero_nat ) )
=> ( P @ I3 ) ) )
= ( P @ zero_zero_nat ) ) ).
% forall_finite(2)
thf(fact_8954_forall__finite_I3_J,axiom,
! [X2: nat,P: nat > $o] :
( ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( suc @ ( suc @ X2 ) ) )
=> ( P @ I3 ) ) )
= ( ( P @ zero_zero_nat )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( suc @ X2 ) )
=> ( P @ ( suc @ I3 ) ) ) ) ) ).
% forall_finite(3)
thf(fact_8955_set__decode__Suc,axiom,
! [N: nat,X2: nat] :
( ( member_nat @ ( suc @ N ) @ ( nat_set_decode @ X2 ) )
= ( member_nat @ N @ ( nat_set_decode @ ( divide_divide_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% set_decode_Suc
thf(fact_8956_finite__set__decode,axiom,
! [N: nat] : ( finite_finite_nat @ ( nat_set_decode @ N ) ) ).
% finite_set_decode
thf(fact_8957_subset__decode__imp__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_set_nat @ ( nat_set_decode @ M ) @ ( nat_set_decode @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% subset_decode_imp_le
thf(fact_8958_forall__finite_I1_J,axiom,
! [P: nat > $o,I4: nat] :
( ( ord_less_nat @ I4 @ zero_zero_nat )
=> ( P @ I4 ) ) ).
% forall_finite(1)
thf(fact_8959_set__decode__def,axiom,
( nat_set_decode
= ( ^ [X: nat] :
( collect_nat
@ ^ [N3: nat] :
~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ) ).
% set_decode_def
thf(fact_8960_uint32_Osize__eq,axiom,
( size_size_uint32
= ( ^ [P3: uint32] : ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% uint32.size_eq
thf(fact_8961_Suc__0__mod__eq,axiom,
! [N: nat] :
( ( modulo_modulo_nat @ ( suc @ zero_zero_nat ) @ N )
= ( zero_n2687167440665602831ol_nat
@ ( N
!= ( suc @ zero_zero_nat ) ) ) ) ).
% Suc_0_mod_eq
thf(fact_8962_powr__int,axiom,
! [X2: real,I: int] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ I )
=> ( ( powr_real @ X2 @ ( ring_1_of_int_real @ I ) )
= ( power_power_real @ X2 @ ( nat2 @ I ) ) ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ I )
=> ( ( powr_real @ X2 @ ( ring_1_of_int_real @ I ) )
= ( divide_divide_real @ one_one_real @ ( power_power_real @ X2 @ ( nat2 @ ( uminus_uminus_int @ I ) ) ) ) ) ) ) ) ).
% powr_int
thf(fact_8963_nat__int,axiom,
! [N: nat] :
( ( nat2 @ ( semiri1314217659103216013at_int @ N ) )
= N ) ).
% nat_int
thf(fact_8964_nat__numeral,axiom,
! [K: num] :
( ( nat2 @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_nat @ K ) ) ).
% nat_numeral
thf(fact_8965_pred__numeral__inc,axiom,
! [K: num] :
( ( pred_numeral @ ( inc @ K ) )
= ( numeral_numeral_nat @ K ) ) ).
% pred_numeral_inc
thf(fact_8966_nat__1,axiom,
( ( nat2 @ one_one_int )
= ( suc @ zero_zero_nat ) ) ).
% nat_1
thf(fact_8967_nat__le__0,axiom,
! [Z: int] :
( ( ord_less_eq_int @ Z @ zero_zero_int )
=> ( ( nat2 @ Z )
= zero_zero_nat ) ) ).
% nat_le_0
thf(fact_8968_nat__0__iff,axiom,
! [I: int] :
( ( ( nat2 @ I )
= zero_zero_nat )
= ( ord_less_eq_int @ I @ zero_zero_int ) ) ).
% nat_0_iff
thf(fact_8969_nat__neg__numeral,axiom,
! [K: num] :
( ( nat2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= zero_zero_nat ) ).
% nat_neg_numeral
thf(fact_8970_zless__nat__conj,axiom,
! [W: int,Z: int] :
( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
= ( ( ord_less_int @ zero_zero_int @ Z )
& ( ord_less_int @ W @ Z ) ) ) ).
% zless_nat_conj
thf(fact_8971_nat__zminus__int,axiom,
! [N: nat] :
( ( nat2 @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) )
= zero_zero_nat ) ).
% nat_zminus_int
thf(fact_8972_int__nat__eq,axiom,
! [Z: int] :
( ( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ( semiri1314217659103216013at_int @ ( nat2 @ Z ) )
= Z ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ( semiri1314217659103216013at_int @ ( nat2 @ Z ) )
= zero_zero_int ) ) ) ).
% int_nat_eq
thf(fact_8973_zero__less__nat__eq,axiom,
! [Z: int] :
( ( ord_less_nat @ zero_zero_nat @ ( nat2 @ Z ) )
= ( ord_less_int @ zero_zero_int @ Z ) ) ).
% zero_less_nat_eq
thf(fact_8974_diff__nat__numeral,axiom,
! [V: num,V3: num] :
( ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ ( numeral_numeral_nat @ V3 ) )
= ( nat2 @ ( minus_minus_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ V3 ) ) ) ) ).
% diff_nat_numeral
thf(fact_8975_numeral__power__eq__nat__cancel__iff,axiom,
! [X2: num,N: nat,Y2: int] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N )
= ( nat2 @ Y2 ) )
= ( ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N )
= Y2 ) ) ).
% numeral_power_eq_nat_cancel_iff
thf(fact_8976_nat__eq__numeral__power__cancel__iff,axiom,
! [Y2: int,X2: num,N: nat] :
( ( ( nat2 @ Y2 )
= ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N ) )
= ( Y2
= ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).
% nat_eq_numeral_power_cancel_iff
thf(fact_8977_nat__abs__dvd__iff,axiom,
! [K: int,N: nat] :
( ( dvd_dvd_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ N )
= ( dvd_dvd_int @ K @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% nat_abs_dvd_iff
thf(fact_8978_dvd__nat__abs__iff,axiom,
! [N: nat,K: int] :
( ( dvd_dvd_nat @ N @ ( nat2 @ ( abs_abs_int @ K ) ) )
= ( dvd_dvd_int @ ( semiri1314217659103216013at_int @ N ) @ K ) ) ).
% dvd_nat_abs_iff
thf(fact_8979_take__bit__of__Suc__0,axiom,
! [N: nat] :
( ( bit_se2925701944663578781it_nat @ N @ ( suc @ zero_zero_nat ) )
= ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% take_bit_of_Suc_0
thf(fact_8980_nat__ceiling__le__eq,axiom,
! [X2: real,A: nat] :
( ( ord_less_eq_nat @ ( nat2 @ ( archim7802044766580827645g_real @ X2 ) ) @ A )
= ( ord_less_eq_real @ X2 @ ( semiri5074537144036343181t_real @ A ) ) ) ).
% nat_ceiling_le_eq
thf(fact_8981_one__less__nat__eq,axiom,
! [Z: int] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( nat2 @ Z ) )
= ( ord_less_int @ one_one_int @ Z ) ) ).
% one_less_nat_eq
thf(fact_8982_nat__numeral__diff__1,axiom,
! [V: num] :
( ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ one_one_nat )
= ( nat2 @ ( minus_minus_int @ ( numeral_numeral_int @ V ) @ one_one_int ) ) ) ).
% nat_numeral_diff_1
thf(fact_8983_numeral__power__less__nat__cancel__iff,axiom,
! [X2: num,N: nat,A: int] :
( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N ) @ ( nat2 @ A ) )
= ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) @ A ) ) ).
% numeral_power_less_nat_cancel_iff
thf(fact_8984_nat__less__numeral__power__cancel__iff,axiom,
! [A: int,X2: num,N: nat] :
( ( ord_less_nat @ ( nat2 @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N ) )
= ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).
% nat_less_numeral_power_cancel_iff
thf(fact_8985_numeral__power__le__nat__cancel__iff,axiom,
! [X2: num,N: nat,A: int] :
( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N ) @ ( nat2 @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) @ A ) ) ).
% numeral_power_le_nat_cancel_iff
thf(fact_8986_nat__le__numeral__power__cancel__iff,axiom,
! [A: int,X2: num,N: nat] :
( ( ord_less_eq_nat @ ( nat2 @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).
% nat_le_numeral_power_cancel_iff
thf(fact_8987_take__bit__nat__eq,axiom,
! [K: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( bit_se2925701944663578781it_nat @ N @ ( nat2 @ K ) )
= ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ) ).
% take_bit_nat_eq
thf(fact_8988_nat__take__bit__eq,axiom,
! [K: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K ) )
= ( bit_se2925701944663578781it_nat @ N @ ( nat2 @ K ) ) ) ) ).
% nat_take_bit_eq
thf(fact_8989_take__bit__minus,axiom,
! [N: nat,K: int] :
( ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) )
= ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ K ) ) ) ).
% take_bit_minus
thf(fact_8990_take__bit__mult,axiom,
! [N: nat,K: int,L2: int] :
( ( bit_se2923211474154528505it_int @ N @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ ( bit_se2923211474154528505it_int @ N @ L2 ) ) )
= ( bit_se2923211474154528505it_int @ N @ ( times_times_int @ K @ L2 ) ) ) ).
% take_bit_mult
thf(fact_8991_take__bit__diff,axiom,
! [N: nat,K: int,L2: int] :
( ( bit_se2923211474154528505it_int @ N @ ( minus_minus_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ ( bit_se2923211474154528505it_int @ N @ L2 ) ) )
= ( bit_se2923211474154528505it_int @ N @ ( minus_minus_int @ K @ L2 ) ) ) ).
% take_bit_diff
thf(fact_8992_take__bit__tightened__less__eq__nat,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( bit_se2925701944663578781it_nat @ M @ Q2 ) @ ( bit_se2925701944663578781it_nat @ N @ Q2 ) ) ) ).
% take_bit_tightened_less_eq_nat
thf(fact_8993_take__bit__nat__less__eq__self,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) @ M ) ).
% take_bit_nat_less_eq_self
thf(fact_8994_num__induct,axiom,
! [P: num > $o,X2: num] :
( ( P @ one )
=> ( ! [X3: num] :
( ( P @ X3 )
=> ( P @ ( inc @ X3 ) ) )
=> ( P @ X2 ) ) ) ).
% num_induct
thf(fact_8995_add__inc,axiom,
! [X2: num,Y2: num] :
( ( plus_plus_num @ X2 @ ( inc @ Y2 ) )
= ( inc @ ( plus_plus_num @ X2 @ Y2 ) ) ) ).
% add_inc
thf(fact_8996_nat__numeral__as__int,axiom,
( numeral_numeral_nat
= ( ^ [I3: num] : ( nat2 @ ( numeral_numeral_int @ I3 ) ) ) ) ).
% nat_numeral_as_int
thf(fact_8997_nat__zero__as__int,axiom,
( zero_zero_nat
= ( nat2 @ zero_zero_int ) ) ).
% nat_zero_as_int
thf(fact_8998_nat__mono,axiom,
! [X2: int,Y2: int] :
( ( ord_less_eq_int @ X2 @ Y2 )
=> ( ord_less_eq_nat @ ( nat2 @ X2 ) @ ( nat2 @ Y2 ) ) ) ).
% nat_mono
thf(fact_8999_nat__one__as__int,axiom,
( one_one_nat
= ( nat2 @ one_one_int ) ) ).
% nat_one_as_int
thf(fact_9000_eq__nat__nat__iff,axiom,
! [Z: int,Z6: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ( ord_less_eq_int @ zero_zero_int @ Z6 )
=> ( ( ( nat2 @ Z )
= ( nat2 @ Z6 ) )
= ( Z = Z6 ) ) ) ) ).
% eq_nat_nat_iff
thf(fact_9001_all__nat,axiom,
( ( ^ [P6: nat > $o] :
! [X8: nat] : ( P6 @ X8 ) )
= ( ^ [P7: nat > $o] :
! [X: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( P7 @ ( nat2 @ X ) ) ) ) ) ).
% all_nat
thf(fact_9002_ex__nat,axiom,
( ( ^ [P6: nat > $o] :
? [X8: nat] : ( P6 @ X8 ) )
= ( ^ [P7: nat > $o] :
? [X: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
& ( P7 @ ( nat2 @ X ) ) ) ) ) ).
% ex_nat
thf(fact_9003_take__bit__tightened__less__eq__int,axiom,
! [M: nat,N: nat,K: int] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ M @ K ) @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).
% take_bit_tightened_less_eq_int
thf(fact_9004_take__bit__int__less__eq__self__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ K )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% take_bit_int_less_eq_self_iff
thf(fact_9005_take__bit__nonnegative,axiom,
! [N: nat,K: int] : ( ord_less_eq_int @ zero_zero_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) ).
% take_bit_nonnegative
thf(fact_9006_take__bit__int__greater__self__iff,axiom,
! [K: int,N: nat] :
( ( ord_less_int @ K @ ( bit_se2923211474154528505it_int @ N @ K ) )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% take_bit_int_greater_self_iff
thf(fact_9007_not__take__bit__negative,axiom,
! [N: nat,K: int] :
~ ( ord_less_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ zero_zero_int ) ).
% not_take_bit_negative
thf(fact_9008_unset__bit__nat__def,axiom,
( bit_se4205575877204974255it_nat
= ( ^ [M5: nat,N3: nat] : ( nat2 @ ( bit_se4203085406695923979it_int @ M5 @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).
% unset_bit_nat_def
thf(fact_9009_inc_Osimps_I1_J,axiom,
( ( inc @ one )
= ( bit0 @ one ) ) ).
% inc.simps(1)
thf(fact_9010_inc_Osimps_I2_J,axiom,
! [X2: num] :
( ( inc @ ( bit0 @ X2 ) )
= ( bit1 @ X2 ) ) ).
% inc.simps(2)
thf(fact_9011_inc_Osimps_I3_J,axiom,
! [X2: num] :
( ( inc @ ( bit1 @ X2 ) )
= ( bit0 @ ( inc @ X2 ) ) ) ).
% inc.simps(3)
thf(fact_9012_add__One,axiom,
! [X2: num] :
( ( plus_plus_num @ X2 @ one )
= ( inc @ X2 ) ) ).
% add_One
thf(fact_9013_mult__inc,axiom,
! [X2: num,Y2: num] :
( ( times_times_num @ X2 @ ( inc @ Y2 ) )
= ( plus_plus_num @ ( times_times_num @ X2 @ Y2 ) @ X2 ) ) ).
% mult_inc
thf(fact_9014_nat__mono__iff,axiom,
! [Z: int,W: int] :
( ( ord_less_int @ zero_zero_int @ Z )
=> ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
= ( ord_less_int @ W @ Z ) ) ) ).
% nat_mono_iff
thf(fact_9015_zless__nat__eq__int__zless,axiom,
! [M: nat,Z: int] :
( ( ord_less_nat @ M @ ( nat2 @ Z ) )
= ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ Z ) ) ).
% zless_nat_eq_int_zless
thf(fact_9016_nat__le__iff,axiom,
! [X2: int,N: nat] :
( ( ord_less_eq_nat @ ( nat2 @ X2 ) @ N )
= ( ord_less_eq_int @ X2 @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% nat_le_iff
thf(fact_9017_nat__int__add,axiom,
! [A: nat,B: nat] :
( ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) )
= ( plus_plus_nat @ A @ B ) ) ).
% nat_int_add
thf(fact_9018_int__eq__iff,axiom,
! [M: nat,Z: int] :
( ( ( semiri1314217659103216013at_int @ M )
= Z )
= ( ( M
= ( nat2 @ Z ) )
& ( ord_less_eq_int @ zero_zero_int @ Z ) ) ) ).
% int_eq_iff
thf(fact_9019_nat__0__le,axiom,
! [Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ( semiri1314217659103216013at_int @ ( nat2 @ Z ) )
= Z ) ) ).
% nat_0_le
thf(fact_9020_int__minus,axiom,
! [N: nat,M: nat] :
( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ N @ M ) )
= ( semiri1314217659103216013at_int @ ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ) ) ).
% int_minus
thf(fact_9021_nat__abs__mult__distrib,axiom,
! [W: int,Z: int] :
( ( nat2 @ ( abs_abs_int @ ( times_times_int @ W @ Z ) ) )
= ( times_times_nat @ ( nat2 @ ( abs_abs_int @ W ) ) @ ( nat2 @ ( abs_abs_int @ Z ) ) ) ) ).
% nat_abs_mult_distrib
thf(fact_9022_take__bit__decr__eq,axiom,
! [N: nat,K: int] :
( ( ( bit_se2923211474154528505it_int @ N @ K )
!= zero_zero_int )
=> ( ( bit_se2923211474154528505it_int @ N @ ( minus_minus_int @ K @ one_one_int ) )
= ( minus_minus_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ one_one_int ) ) ) ).
% take_bit_decr_eq
thf(fact_9023_real__nat__ceiling__ge,axiom,
! [X2: real] : ( ord_less_eq_real @ X2 @ ( semiri5074537144036343181t_real @ ( nat2 @ ( archim7802044766580827645g_real @ X2 ) ) ) ) ).
% real_nat_ceiling_ge
thf(fact_9024_nat__plus__as__int,axiom,
( plus_plus_nat
= ( ^ [A3: nat,B2: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).
% nat_plus_as_int
thf(fact_9025_nat__times__as__int,axiom,
( times_times_nat
= ( ^ [A3: nat,B2: nat] : ( nat2 @ ( times_times_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).
% nat_times_as_int
thf(fact_9026_nat__minus__as__int,axiom,
( minus_minus_nat
= ( ^ [A3: nat,B2: nat] : ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).
% nat_minus_as_int
thf(fact_9027_nat__div__as__int,axiom,
( divide_divide_nat
= ( ^ [A3: nat,B2: nat] : ( nat2 @ ( divide_divide_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).
% nat_div_as_int
thf(fact_9028_nat__mod__as__int,axiom,
( modulo_modulo_nat
= ( ^ [A3: nat,B2: nat] : ( nat2 @ ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).
% nat_mod_as_int
thf(fact_9029_nat__less__eq__zless,axiom,
! [W: int,Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ W )
=> ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
= ( ord_less_int @ W @ Z ) ) ) ).
% nat_less_eq_zless
thf(fact_9030_nat__eq__iff2,axiom,
! [M: nat,W: int] :
( ( M
= ( nat2 @ W ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ W )
=> ( W
= ( semiri1314217659103216013at_int @ M ) ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ W )
=> ( M = zero_zero_nat ) ) ) ) ).
% nat_eq_iff2
thf(fact_9031_nat__eq__iff,axiom,
! [W: int,M: nat] :
( ( ( nat2 @ W )
= M )
= ( ( ( ord_less_eq_int @ zero_zero_int @ W )
=> ( W
= ( semiri1314217659103216013at_int @ M ) ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ W )
=> ( M = zero_zero_nat ) ) ) ) ).
% nat_eq_iff
thf(fact_9032_split__nat,axiom,
! [P: nat > $o,I: int] :
( ( P @ ( nat2 @ I ) )
= ( ! [N3: nat] :
( ( I
= ( semiri1314217659103216013at_int @ N3 ) )
=> ( P @ N3 ) )
& ( ( ord_less_int @ I @ zero_zero_int )
=> ( P @ zero_zero_nat ) ) ) ) ).
% split_nat
thf(fact_9033_nat__le__eq__zle,axiom,
! [W: int,Z: int] :
( ( ( ord_less_int @ zero_zero_int @ W )
| ( ord_less_eq_int @ zero_zero_int @ Z ) )
=> ( ( ord_less_eq_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
= ( ord_less_eq_int @ W @ Z ) ) ) ).
% nat_le_eq_zle
thf(fact_9034_nat__add__distrib,axiom,
! [Z: int,Z6: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ( ord_less_eq_int @ zero_zero_int @ Z6 )
=> ( ( nat2 @ ( plus_plus_int @ Z @ Z6 ) )
= ( plus_plus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z6 ) ) ) ) ) ).
% nat_add_distrib
thf(fact_9035_le__nat__iff,axiom,
! [K: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( ord_less_eq_nat @ N @ ( nat2 @ K ) )
= ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ K ) ) ) ).
% le_nat_iff
thf(fact_9036_Suc__as__int,axiom,
( suc
= ( ^ [A3: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A3 ) @ one_one_int ) ) ) ) ).
% Suc_as_int
thf(fact_9037_nat__mult__distrib,axiom,
! [Z: int,Z6: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ( nat2 @ ( times_times_int @ Z @ Z6 ) )
= ( times_times_nat @ ( nat2 @ Z ) @ ( nat2 @ Z6 ) ) ) ) ).
% nat_mult_distrib
thf(fact_9038_nat__diff__distrib_H,axiom,
! [X2: int,Y2: int] :
( ( ord_less_eq_int @ zero_zero_int @ X2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
=> ( ( nat2 @ ( minus_minus_int @ X2 @ Y2 ) )
= ( minus_minus_nat @ ( nat2 @ X2 ) @ ( nat2 @ Y2 ) ) ) ) ) ).
% nat_diff_distrib'
thf(fact_9039_nat__diff__distrib,axiom,
! [Z6: int,Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z6 )
=> ( ( ord_less_eq_int @ Z6 @ Z )
=> ( ( nat2 @ ( minus_minus_int @ Z @ Z6 ) )
= ( minus_minus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z6 ) ) ) ) ) ).
% nat_diff_distrib
thf(fact_9040_nat__abs__triangle__ineq,axiom,
! [K: int,L2: int] : ( ord_less_eq_nat @ ( nat2 @ ( abs_abs_int @ ( plus_plus_int @ K @ L2 ) ) ) @ ( plus_plus_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) ) ) ).
% nat_abs_triangle_ineq
thf(fact_9041_nat__div__distrib,axiom,
! [X2: int,Y2: int] :
( ( ord_less_eq_int @ zero_zero_int @ X2 )
=> ( ( nat2 @ ( divide_divide_int @ X2 @ Y2 ) )
= ( divide_divide_nat @ ( nat2 @ X2 ) @ ( nat2 @ Y2 ) ) ) ) ).
% nat_div_distrib
thf(fact_9042_nat__div__distrib_H,axiom,
! [Y2: int,X2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Y2 )
=> ( ( nat2 @ ( divide_divide_int @ X2 @ Y2 ) )
= ( divide_divide_nat @ ( nat2 @ X2 ) @ ( nat2 @ Y2 ) ) ) ) ).
% nat_div_distrib'
thf(fact_9043_nat__power__eq,axiom,
! [Z: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ( nat2 @ ( power_power_int @ Z @ N ) )
= ( power_power_nat @ ( nat2 @ Z ) @ N ) ) ) ).
% nat_power_eq
thf(fact_9044_nat__mod__distrib,axiom,
! [X2: int,Y2: int] :
( ( ord_less_eq_int @ zero_zero_int @ X2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
=> ( ( nat2 @ ( modulo_modulo_int @ X2 @ Y2 ) )
= ( modulo_modulo_nat @ ( nat2 @ X2 ) @ ( nat2 @ Y2 ) ) ) ) ) ).
% nat_mod_distrib
thf(fact_9045_div__abs__eq__div__nat,axiom,
! [K: int,L2: int] :
( ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L2 ) )
= ( semiri1314217659103216013at_int @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) ) ) ) ).
% div_abs_eq_div_nat
thf(fact_9046_nat__floor__neg,axiom,
! [X2: real] :
( ( ord_less_eq_real @ X2 @ zero_zero_real )
=> ( ( nat2 @ ( archim6058952711729229775r_real @ X2 ) )
= zero_zero_nat ) ) ).
% nat_floor_neg
thf(fact_9047_mod__abs__eq__div__nat,axiom,
! [K: int,L2: int] :
( ( modulo_modulo_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L2 ) )
= ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) ) ) ) ).
% mod_abs_eq_div_nat
thf(fact_9048_floor__eq3,axiom,
! [N: nat,X2: real] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ X2 )
=> ( ( ord_less_real @ X2 @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) )
=> ( ( nat2 @ ( archim6058952711729229775r_real @ X2 ) )
= N ) ) ) ).
% floor_eq3
thf(fact_9049_le__nat__floor,axiom,
! [X2: nat,A: real] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X2 ) @ A )
=> ( ord_less_eq_nat @ X2 @ ( nat2 @ ( archim6058952711729229775r_real @ A ) ) ) ) ).
% le_nat_floor
thf(fact_9050_take__bit__nat__eq__self__iff,axiom,
! [N: nat,M: nat] :
( ( ( bit_se2925701944663578781it_nat @ N @ M )
= M )
= ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% take_bit_nat_eq_self_iff
thf(fact_9051_take__bit__nat__less__exp,axiom,
! [N: nat,M: nat] : ( ord_less_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% take_bit_nat_less_exp
thf(fact_9052_take__bit__nat__eq__self,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( bit_se2925701944663578781it_nat @ N @ M )
= M ) ) ).
% take_bit_nat_eq_self
thf(fact_9053_take__bit__nat__def,axiom,
( bit_se2925701944663578781it_nat
= ( ^ [N3: nat,M5: nat] : ( modulo_modulo_nat @ M5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).
% take_bit_nat_def
thf(fact_9054_nat__2,axiom,
( ( nat2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( suc @ ( suc @ zero_zero_nat ) ) ) ).
% nat_2
thf(fact_9055_take__bit__Suc__minus__bit1,axiom,
! [N: nat,K: num] :
( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
= ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).
% take_bit_Suc_minus_bit1
thf(fact_9056_Suc__nat__eq__nat__zadd1,axiom,
! [Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ( suc @ ( nat2 @ Z ) )
= ( nat2 @ ( plus_plus_int @ one_one_int @ Z ) ) ) ) ).
% Suc_nat_eq_nat_zadd1
thf(fact_9057_nat__less__iff,axiom,
! [W: int,M: nat] :
( ( ord_less_eq_int @ zero_zero_int @ W )
=> ( ( ord_less_nat @ ( nat2 @ W ) @ M )
= ( ord_less_int @ W @ ( semiri1314217659103216013at_int @ M ) ) ) ) ).
% nat_less_iff
thf(fact_9058_nat__mult__distrib__neg,axiom,
! [Z: int,Z6: int] :
( ( ord_less_eq_int @ Z @ zero_zero_int )
=> ( ( nat2 @ ( times_times_int @ Z @ Z6 ) )
= ( times_times_nat @ ( nat2 @ ( uminus_uminus_int @ Z ) ) @ ( nat2 @ ( uminus_uminus_int @ Z6 ) ) ) ) ) ).
% nat_mult_distrib_neg
thf(fact_9059_nat__abs__int__diff,axiom,
! [A: nat,B: nat] :
( ( ( ord_less_eq_nat @ A @ B )
=> ( ( nat2 @ ( abs_abs_int @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) )
= ( minus_minus_nat @ B @ A ) ) )
& ( ~ ( ord_less_eq_nat @ A @ B )
=> ( ( nat2 @ ( abs_abs_int @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) )
= ( minus_minus_nat @ A @ B ) ) ) ) ).
% nat_abs_int_diff
thf(fact_9060_take__bit__int__less__exp,axiom,
! [N: nat,K: int] : ( ord_less_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).
% take_bit_int_less_exp
thf(fact_9061_take__bit__int__def,axiom,
( bit_se2923211474154528505it_int
= ( ^ [N3: nat,K2: int] : ( modulo_modulo_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).
% take_bit_int_def
thf(fact_9062_floor__eq4,axiom,
! [N: nat,X2: real] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N ) @ X2 )
=> ( ( ord_less_real @ X2 @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) )
=> ( ( nat2 @ ( archim6058952711729229775r_real @ X2 ) )
= N ) ) ) ).
% floor_eq4
thf(fact_9063_diff__nat__eq__if,axiom,
! [Z6: int,Z: int] :
( ( ( ord_less_int @ Z6 @ zero_zero_int )
=> ( ( minus_minus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z6 ) )
= ( nat2 @ Z ) ) )
& ( ~ ( ord_less_int @ Z6 @ zero_zero_int )
=> ( ( minus_minus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z6 ) )
= ( if_nat @ ( ord_less_int @ ( minus_minus_int @ Z @ Z6 ) @ zero_zero_int ) @ zero_zero_nat @ ( nat2 @ ( minus_minus_int @ Z @ Z6 ) ) ) ) ) ) ).
% diff_nat_eq_if
thf(fact_9064_take__bit__numeral__minus__bit1,axiom,
! [L2: num,K: num] :
( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
= ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).
% take_bit_numeral_minus_bit1
thf(fact_9065_take__bit__nat__less__self__iff,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) @ M )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ M ) ) ).
% take_bit_nat_less_self_iff
thf(fact_9066_nat__dvd__iff,axiom,
! [Z: int,M: nat] :
( ( dvd_dvd_nat @ ( nat2 @ Z ) @ M )
= ( ( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( dvd_dvd_int @ Z @ ( semiri1314217659103216013at_int @ M ) ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( M = zero_zero_nat ) ) ) ) ).
% nat_dvd_iff
thf(fact_9067_take__bit__Suc__minus__bit0,axiom,
! [N: nat,K: num] :
( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
= ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% take_bit_Suc_minus_bit0
thf(fact_9068_take__bit__int__less__self__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ K )
= ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K ) ) ).
% take_bit_int_less_self_iff
thf(fact_9069_take__bit__int__greater__eq__self__iff,axiom,
! [K: int,N: nat] :
( ( ord_less_eq_int @ K @ ( bit_se2923211474154528505it_int @ N @ K ) )
= ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).
% take_bit_int_greater_eq_self_iff
thf(fact_9070_take__bit__int__eq__self__iff,axiom,
! [N: nat,K: int] :
( ( ( bit_se2923211474154528505it_int @ N @ K )
= K )
= ( ( ord_less_eq_int @ zero_zero_int @ K )
& ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% take_bit_int_eq_self_iff
thf(fact_9071_take__bit__int__eq__self,axiom,
! [K: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
=> ( ( bit_se2923211474154528505it_int @ N @ K )
= K ) ) ) ).
% take_bit_int_eq_self
thf(fact_9072_take__bit__incr__eq,axiom,
! [N: nat,K: int] :
( ( ( bit_se2923211474154528505it_int @ N @ K )
!= ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int ) )
=> ( ( bit_se2923211474154528505it_int @ N @ ( plus_plus_int @ K @ one_one_int ) )
= ( plus_plus_int @ one_one_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ) ).
% take_bit_incr_eq
thf(fact_9073_take__bit__numeral__minus__bit0,axiom,
! [L2: num,K: num] :
( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
= ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% take_bit_numeral_minus_bit0
thf(fact_9074_even__nat__iff,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( nat2 @ K ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ) ).
% even_nat_iff
thf(fact_9075_take__bit__int__less__eq,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ ( minus_minus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).
% take_bit_int_less_eq
thf(fact_9076_take__bit__int__greater__eq,axiom,
! [K: int,N: nat] :
( ( ord_less_int @ K @ zero_zero_int )
=> ( ord_less_eq_int @ ( plus_plus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).
% take_bit_int_greater_eq
thf(fact_9077_signed__take__bit__eq__take__bit__shift,axiom,
( bit_ri631733984087533419it_int
= ( ^ [N3: nat,K2: int] : ( minus_minus_int @ ( bit_se2923211474154528505it_int @ ( suc @ N3 ) @ ( plus_plus_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).
% signed_take_bit_eq_take_bit_shift
thf(fact_9078_powr__real__of__int,axiom,
! [X2: real,N: int] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ N )
=> ( ( powr_real @ X2 @ ( ring_1_of_int_real @ N ) )
= ( power_power_real @ X2 @ ( nat2 @ N ) ) ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ N )
=> ( ( powr_real @ X2 @ ( ring_1_of_int_real @ N ) )
= ( inverse_inverse_real @ ( power_power_real @ X2 @ ( nat2 @ ( uminus_uminus_int @ N ) ) ) ) ) ) ) ) ).
% powr_real_of_int
thf(fact_9079_take__bit__minus__small__eq,axiom,
! [K: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( ord_less_eq_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
=> ( ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ K ) )
= ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K ) ) ) ) ).
% take_bit_minus_small_eq
thf(fact_9080_arctan__def,axiom,
( arctan
= ( ^ [Y: real] :
( the_real
@ ^ [X: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
& ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( tan_real @ X )
= Y ) ) ) ) ) ).
% arctan_def
thf(fact_9081_arcsin__def,axiom,
( arcsin
= ( ^ [Y: real] :
( the_real
@ ^ [X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
& ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( sin_real @ X )
= Y ) ) ) ) ) ).
% arcsin_def
thf(fact_9082_divide__int__def,axiom,
( divide_divide_int
= ( ^ [K2: int,L: int] :
( if_int @ ( L = zero_zero_int ) @ zero_zero_int
@ ( if_int
@ ( ( sgn_sgn_int @ K2 )
= ( sgn_sgn_int @ L ) )
@ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K2 ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) )
@ ( uminus_uminus_int
@ ( semiri1314217659103216013at_int
@ ( plus_plus_nat @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K2 ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) )
@ ( zero_n2687167440665602831ol_nat
@ ~ ( dvd_dvd_int @ L @ K2 ) ) ) ) ) ) ) ) ) ).
% divide_int_def
thf(fact_9083_even__set__encode__iff,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( nat_set_encode @ A2 ) )
= ( ~ ( member_nat @ zero_zero_nat @ A2 ) ) ) ) ).
% even_set_encode_iff
thf(fact_9084_set__decode__inverse,axiom,
! [N: nat] :
( ( nat_set_encode @ ( nat_set_decode @ N ) )
= N ) ).
% set_decode_inverse
thf(fact_9085_set__encode__inverse,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( nat_set_decode @ ( nat_set_encode @ A2 ) )
= A2 ) ) ).
% set_encode_inverse
thf(fact_9086_sgn__mult__dvd__iff,axiom,
! [R2: int,L2: int,K: int] :
( ( dvd_dvd_int @ ( times_times_int @ ( sgn_sgn_int @ R2 ) @ L2 ) @ K )
= ( ( dvd_dvd_int @ L2 @ K )
& ( ( R2 = zero_zero_int )
=> ( K = zero_zero_int ) ) ) ) ).
% sgn_mult_dvd_iff
thf(fact_9087_mult__sgn__dvd__iff,axiom,
! [L2: int,R2: int,K: int] :
( ( dvd_dvd_int @ ( times_times_int @ L2 @ ( sgn_sgn_int @ R2 ) ) @ K )
= ( ( dvd_dvd_int @ L2 @ K )
& ( ( R2 = zero_zero_int )
=> ( K = zero_zero_int ) ) ) ) ).
% mult_sgn_dvd_iff
thf(fact_9088_dvd__sgn__mult__iff,axiom,
! [L2: int,R2: int,K: int] :
( ( dvd_dvd_int @ L2 @ ( times_times_int @ ( sgn_sgn_int @ R2 ) @ K ) )
= ( ( dvd_dvd_int @ L2 @ K )
| ( R2 = zero_zero_int ) ) ) ).
% dvd_sgn_mult_iff
thf(fact_9089_dvd__mult__sgn__iff,axiom,
! [L2: int,K: int,R2: int] :
( ( dvd_dvd_int @ L2 @ ( times_times_int @ K @ ( sgn_sgn_int @ R2 ) ) )
= ( ( dvd_dvd_int @ L2 @ K )
| ( R2 = zero_zero_int ) ) ) ).
% dvd_mult_sgn_iff
thf(fact_9090_int__sgnE,axiom,
! [K: int] :
~ ! [N2: nat,L4: int] :
( K
!= ( times_times_int @ ( sgn_sgn_int @ L4 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% int_sgnE
thf(fact_9091_div__eq__sgn__abs,axiom,
! [K: int,L2: int] :
( ( ( sgn_sgn_int @ K )
= ( sgn_sgn_int @ L2 ) )
=> ( ( divide_divide_int @ K @ L2 )
= ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L2 ) ) ) ) ).
% div_eq_sgn_abs
thf(fact_9092_set__encode__eq,axiom,
! [A2: set_nat,B4: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( finite_finite_nat @ B4 )
=> ( ( ( nat_set_encode @ A2 )
= ( nat_set_encode @ B4 ) )
= ( A2 = B4 ) ) ) ) ).
% set_encode_eq
thf(fact_9093_ln__real__def,axiom,
( ln_ln_real
= ( ^ [X: real] :
( the_real
@ ^ [U2: real] :
( ( exp_real @ U2 )
= X ) ) ) ) ).
% ln_real_def
thf(fact_9094_sgn__mod,axiom,
! [L2: int,K: int] :
( ( L2 != zero_zero_int )
=> ( ~ ( dvd_dvd_int @ L2 @ K )
=> ( ( sgn_sgn_int @ ( modulo_modulo_int @ K @ L2 ) )
= ( sgn_sgn_int @ L2 ) ) ) ) ).
% sgn_mod
thf(fact_9095_ln__neg__is__const,axiom,
! [X2: real] :
( ( ord_less_eq_real @ X2 @ zero_zero_real )
=> ( ( ln_ln_real @ X2 )
= ( the_real
@ ^ [X: real] : $false ) ) ) ).
% ln_neg_is_const
thf(fact_9096_set__encode__inf,axiom,
! [A2: set_nat] :
( ~ ( finite_finite_nat @ A2 )
=> ( ( nat_set_encode @ A2 )
= zero_zero_nat ) ) ).
% set_encode_inf
thf(fact_9097_zsgn__def,axiom,
( sgn_sgn_int
= ( ^ [I3: int] : ( if_int @ ( I3 = zero_zero_int ) @ zero_zero_int @ ( if_int @ ( ord_less_int @ zero_zero_int @ I3 ) @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).
% zsgn_def
thf(fact_9098_div__sgn__abs__cancel,axiom,
! [V: int,K: int,L2: int] :
( ( V != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ V ) @ ( abs_abs_int @ K ) ) @ ( times_times_int @ ( sgn_sgn_int @ V ) @ ( abs_abs_int @ L2 ) ) )
= ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L2 ) ) ) ) ).
% div_sgn_abs_cancel
thf(fact_9099_div__dvd__sgn__abs,axiom,
! [L2: int,K: int] :
( ( dvd_dvd_int @ L2 @ K )
=> ( ( divide_divide_int @ K @ L2 )
= ( times_times_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( sgn_sgn_int @ L2 ) ) @ ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L2 ) ) ) ) ) ).
% div_dvd_sgn_abs
thf(fact_9100_arccos__def,axiom,
( arccos
= ( ^ [Y: real] :
( the_real
@ ^ [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
& ( ord_less_eq_real @ X @ pi )
& ( ( cos_real @ X )
= Y ) ) ) ) ) ).
% arccos_def
thf(fact_9101_div__noneq__sgn__abs,axiom,
! [L2: int,K: int] :
( ( L2 != zero_zero_int )
=> ( ( ( sgn_sgn_int @ K )
!= ( sgn_sgn_int @ L2 ) )
=> ( ( divide_divide_int @ K @ L2 )
= ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L2 ) ) )
@ ( zero_n2684676970156552555ol_int
@ ~ ( dvd_dvd_int @ L2 @ K ) ) ) ) ) ) ).
% div_noneq_sgn_abs
thf(fact_9102_set__encode__def,axiom,
( nat_set_encode
= ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% set_encode_def
thf(fact_9103_pi__half,axiom,
( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
= ( the_real
@ ^ [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
& ( ord_less_eq_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
& ( ( cos_real @ X )
= zero_zero_real ) ) ) ) ).
% pi_half
thf(fact_9104_pi__def,axiom,
( pi
= ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
@ ( the_real
@ ^ [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
& ( ord_less_eq_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
& ( ( cos_real @ X )
= zero_zero_real ) ) ) ) ) ).
% pi_def
thf(fact_9105_modulo__int__def,axiom,
( modulo_modulo_int
= ( ^ [K2: int,L: int] :
( if_int @ ( L = zero_zero_int ) @ K2
@ ( if_int
@ ( ( sgn_sgn_int @ K2 )
= ( sgn_sgn_int @ L ) )
@ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K2 ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) )
@ ( times_times_int @ ( sgn_sgn_int @ L )
@ ( minus_minus_int
@ ( times_times_int @ ( abs_abs_int @ L )
@ ( zero_n2684676970156552555ol_int
@ ~ ( dvd_dvd_int @ L @ K2 ) ) )
@ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K2 ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) ) ) ) ) ) ) ).
% modulo_int_def
thf(fact_9106_divide__int__unfold,axiom,
! [L2: int,K: int,N: nat,M: nat] :
( ( ( ( ( sgn_sgn_int @ L2 )
= zero_zero_int )
| ( ( sgn_sgn_int @ K )
= zero_zero_int )
| ( N = zero_zero_nat ) )
=> ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ N ) ) )
= zero_zero_int ) )
& ( ~ ( ( ( sgn_sgn_int @ L2 )
= zero_zero_int )
| ( ( sgn_sgn_int @ K )
= zero_zero_int )
| ( N = zero_zero_nat ) )
=> ( ( ( ( sgn_sgn_int @ K )
= ( sgn_sgn_int @ L2 ) )
=> ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ N ) ) )
= ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) ) ) )
& ( ( ( sgn_sgn_int @ K )
!= ( sgn_sgn_int @ L2 ) )
=> ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ N ) ) )
= ( uminus_uminus_int
@ ( semiri1314217659103216013at_int
@ ( plus_plus_nat @ ( divide_divide_nat @ M @ N )
@ ( zero_n2687167440665602831ol_nat
@ ~ ( dvd_dvd_nat @ N @ M ) ) ) ) ) ) ) ) ) ) ).
% divide_int_unfold
thf(fact_9107_modulo__int__unfold,axiom,
! [L2: int,K: int,N: nat,M: nat] :
( ( ( ( ( sgn_sgn_int @ L2 )
= zero_zero_int )
| ( ( sgn_sgn_int @ K )
= zero_zero_int )
| ( N = zero_zero_nat ) )
=> ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ N ) ) )
= ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) ) )
& ( ~ ( ( ( sgn_sgn_int @ L2 )
= zero_zero_int )
| ( ( sgn_sgn_int @ K )
= zero_zero_int )
| ( N = zero_zero_nat ) )
=> ( ( ( ( sgn_sgn_int @ K )
= ( sgn_sgn_int @ L2 ) )
=> ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ N ) ) )
= ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N ) ) ) ) )
& ( ( ( sgn_sgn_int @ K )
!= ( sgn_sgn_int @ L2 ) )
=> ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ N ) ) )
= ( times_times_int @ ( sgn_sgn_int @ L2 )
@ ( minus_minus_int
@ ( semiri1314217659103216013at_int
@ ( times_times_nat @ N
@ ( zero_n2687167440665602831ol_nat
@ ~ ( dvd_dvd_nat @ N @ M ) ) ) )
@ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N ) ) ) ) ) ) ) ) ) ).
% modulo_int_unfold
thf(fact_9108_sgn__div__eq__sgn__mult,axiom,
! [A: int,B: int] :
( ( ( divide_divide_int @ A @ B )
!= zero_zero_int )
=> ( ( sgn_sgn_int @ ( divide_divide_int @ A @ B ) )
= ( sgn_sgn_int @ ( times_times_int @ A @ B ) ) ) ) ).
% sgn_div_eq_sgn_mult
thf(fact_9109_sgn__le__0__iff,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( sgn_sgn_real @ X2 ) @ zero_zero_real )
= ( ord_less_eq_real @ X2 @ zero_zero_real ) ) ).
% sgn_le_0_iff
thf(fact_9110_zero__le__sgn__iff,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( sgn_sgn_real @ X2 ) )
= ( ord_less_eq_real @ zero_zero_real @ X2 ) ) ).
% zero_le_sgn_iff
thf(fact_9111_real__sgn__eq,axiom,
( sgn_sgn_real
= ( ^ [X: real] : ( divide_divide_real @ X @ ( abs_abs_real @ X ) ) ) ) ).
% real_sgn_eq
thf(fact_9112_sgn__root,axiom,
! [N: nat,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( sgn_sgn_real @ ( root @ N @ X2 ) )
= ( sgn_sgn_real @ X2 ) ) ) ).
% sgn_root
thf(fact_9113_cis__Arg,axiom,
! [Z: complex] :
( ( Z != zero_zero_complex )
=> ( ( cis @ ( arg @ Z ) )
= ( sgn_sgn_complex @ Z ) ) ) ).
% cis_Arg
thf(fact_9114_sgn__real__def,axiom,
( sgn_sgn_real
= ( ^ [A3: real] : ( if_real @ ( A3 = zero_zero_real ) @ zero_zero_real @ ( if_real @ ( ord_less_real @ zero_zero_real @ A3 ) @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ) ) ) ).
% sgn_real_def
thf(fact_9115_sgn__power__injE,axiom,
! [A: real,N: nat,X2: real,B: real] :
( ( ( times_times_real @ ( sgn_sgn_real @ A ) @ ( power_power_real @ ( abs_abs_real @ A ) @ N ) )
= X2 )
=> ( ( X2
= ( times_times_real @ ( sgn_sgn_real @ B ) @ ( power_power_real @ ( abs_abs_real @ B ) @ N ) ) )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ).
% sgn_power_injE
thf(fact_9116_sgn__power__root,axiom,
! [N: nat,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_real @ ( sgn_sgn_real @ ( root @ N @ X2 ) ) @ ( power_power_real @ ( abs_abs_real @ ( root @ N @ X2 ) ) @ N ) )
= X2 ) ) ).
% sgn_power_root
thf(fact_9117_root__sgn__power,axiom,
! [N: nat,Y2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( root @ N @ ( times_times_real @ ( sgn_sgn_real @ Y2 ) @ ( power_power_real @ ( abs_abs_real @ Y2 ) @ N ) ) )
= Y2 ) ) ).
% root_sgn_power
thf(fact_9118_cis__Arg__unique,axiom,
! [Z: complex,X2: real] :
( ( ( sgn_sgn_complex @ Z )
= ( cis @ X2 ) )
=> ( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ X2 )
=> ( ( ord_less_eq_real @ X2 @ pi )
=> ( ( arg @ Z )
= X2 ) ) ) ) ).
% cis_Arg_unique
thf(fact_9119_split__root,axiom,
! [P: real > $o,N: nat,X2: real] :
( ( P @ ( root @ N @ X2 ) )
= ( ( ( N = zero_zero_nat )
=> ( P @ zero_zero_real ) )
& ( ( ord_less_nat @ zero_zero_nat @ N )
=> ! [Y: real] :
( ( ( times_times_real @ ( sgn_sgn_real @ Y ) @ ( power_power_real @ ( abs_abs_real @ Y ) @ N ) )
= X2 )
=> ( P @ Y ) ) ) ) ) ).
% split_root
thf(fact_9120_floor__real__def,axiom,
( archim6058952711729229775r_real
= ( ^ [X: real] :
( the_int
@ ^ [Z5: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z5 ) @ X )
& ( ord_less_real @ X @ ( ring_1_of_int_real @ ( plus_plus_int @ Z5 @ one_one_int ) ) ) ) ) ) ) ).
% floor_real_def
thf(fact_9121_Arg__correct,axiom,
! [Z: complex] :
( ( Z != zero_zero_complex )
=> ( ( ( sgn_sgn_complex @ Z )
= ( cis @ ( arg @ Z ) ) )
& ( ord_less_real @ ( uminus_uminus_real @ pi ) @ ( arg @ Z ) )
& ( ord_less_eq_real @ ( arg @ Z ) @ pi ) ) ) ).
% Arg_correct
thf(fact_9122_arctan__inverse,axiom,
! [X2: real] :
( ( X2 != zero_zero_real )
=> ( ( arctan @ ( divide_divide_real @ one_one_real @ X2 ) )
= ( minus_minus_real @ ( divide_divide_real @ ( times_times_real @ ( sgn_sgn_real @ X2 ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( arctan @ X2 ) ) ) ) ).
% arctan_inverse
thf(fact_9123_signed__take__bit__eq__take__bit__minus,axiom,
( bit_ri631733984087533419it_int
= ( ^ [N3: nat,K2: int] : ( minus_minus_int @ ( bit_se2923211474154528505it_int @ ( suc @ N3 ) @ K2 ) @ ( times_times_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N3 ) ) @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K2 @ N3 ) ) ) ) ) ) ).
% signed_take_bit_eq_take_bit_minus
thf(fact_9124_num_Osize__gen_I3_J,axiom,
! [X33: num] :
( ( size_num @ ( bit1 @ X33 ) )
= ( plus_plus_nat @ ( size_num @ X33 ) @ ( suc @ zero_zero_nat ) ) ) ).
% num.size_gen(3)
thf(fact_9125_mi__eq__ma__no__ch,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ Deg )
=> ( ( Mi = Ma )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_12 ) )
& ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_12 ) ) ) ) ).
% mi_eq_ma_no_ch
thf(fact_9126_insert__simp__mima,axiom,
! [X2: nat,Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( X2 = Mi )
| ( X2 = Ma ) )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) ) ) ) ).
% insert_simp_mima
thf(fact_9127_tdeletemimi,axiom,
! [Deg: nat,Mi: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ord_less_eq_nat @ ( vEBT_T_d_e_l_e_t_e @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Mi ) ) @ Deg @ TreeList @ Summary ) @ X2 ) @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ).
% tdeletemimi
thf(fact_9128_tdeletemimi_H,axiom,
! [Deg: nat,Mi: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ord_less_eq_nat @ ( vEBT_V1232361888498592333_e_t_e @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Mi ) ) @ Deg @ TreeList @ Summary ) @ X2 ) @ one_one_nat ) ) ).
% tdeletemimi'
thf(fact_9129_mi__ma__2__deg,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ N )
=> ( ( ord_less_eq_nat @ Mi @ Ma )
& ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) ) ) ) ).
% mi_ma_2_deg
thf(fact_9130_both__member__options__from__complete__tree__to__child,axiom,
! [Deg: nat,Mi: nat,Ma: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
( ( ord_less_eq_nat @ one_one_nat @ Deg )
=> ( ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
=> ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
| ( X2 = Mi )
| ( X2 = Ma ) ) ) ) ).
% both_member_options_from_complete_tree_to_child
thf(fact_9131_member__inv,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
( ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
& ( ( X2 = Mi )
| ( X2 = Ma )
| ( ( ord_less_nat @ X2 @ Ma )
& ( ord_less_nat @ Mi @ X2 )
& ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
& ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% member_inv
thf(fact_9132_both__member__options__from__chilf__to__complete__tree,axiom,
! [X2: nat,Deg: nat,TreeList: list_VEBT_VEBT,Mi: nat,Ma: nat,Summary: vEBT_VEBT] :
( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( ( ord_less_eq_nat @ one_one_nat @ Deg )
=> ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 ) ) ) ) ).
% both_member_options_from_chilf_to_complete_tree
thf(fact_9133_signed__take__bit__nonnegative__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_ri631733984087533419it_int @ N @ K ) )
= ( ~ ( bit_se1146084159140164899it_int @ K @ N ) ) ) ).
% signed_take_bit_nonnegative_iff
thf(fact_9134_signed__take__bit__negative__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ zero_zero_int )
= ( bit_se1146084159140164899it_int @ K @ N ) ) ).
% signed_take_bit_negative_iff
thf(fact_9135_bit__minus__numeral__Bit0__Suc__iff,axiom,
! [W: num,N: nat] :
( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ W ) ) ) @ ( suc @ N ) )
= ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ N ) ) ).
% bit_minus_numeral_Bit0_Suc_iff
thf(fact_9136_bit__minus__numeral__Bit1__Suc__iff,axiom,
! [W: num,N: nat] :
( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ W ) ) ) @ ( suc @ N ) )
= ( ~ ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ N ) ) ) ).
% bit_minus_numeral_Bit1_Suc_iff
thf(fact_9137_bit__minus__numeral__int_I1_J,axiom,
! [W: num,N: num] :
( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ W ) ) ) @ ( numeral_numeral_nat @ N ) )
= ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ ( pred_numeral @ N ) ) ) ).
% bit_minus_numeral_int(1)
thf(fact_9138_bit__minus__numeral__int_I2_J,axiom,
! [W: num,N: num] :
( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ W ) ) ) @ ( numeral_numeral_nat @ N ) )
= ( ~ ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ ( pred_numeral @ N ) ) ) ) ).
% bit_minus_numeral_int(2)
thf(fact_9139_bin__nth__minus__Bit0,axiom,
! [N: nat,W: num] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ ( bit0 @ W ) ) @ N )
= ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).
% bin_nth_minus_Bit0
thf(fact_9140_bin__nth__minus__Bit1,axiom,
! [N: nat,W: num] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ ( bit1 @ W ) ) @ N )
= ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).
% bin_nth_minus_Bit1
thf(fact_9141_prod__decode__aux_Ocases,axiom,
! [X2: product_prod_nat_nat] :
~ ! [K3: nat,M3: nat] :
( X2
!= ( product_Pair_nat_nat @ K3 @ M3 ) ) ).
% prod_decode_aux.cases
thf(fact_9142_T_092_060_094sub_062m_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062t_Ocases,axiom,
! [X2: vEBT_VEBT] :
( ! [A4: $o,B3: $o] :
( X2
!= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( X2
!= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( X2
!= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ).
% T\<^sub>m\<^sub>i\<^sub>n\<^sub>t.cases
thf(fact_9143_VEBT__internal_Omembermima_Osimps_I3_J,axiom,
! [Mi: nat,Ma: nat,Va: list_VEBT_VEBT,Vb: vEBT_VEBT,X2: nat] :
( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ zero_zero_nat @ Va @ Vb ) @ X2 )
= ( ( X2 = Mi )
| ( X2 = Ma ) ) ) ).
% VEBT_internal.membermima.simps(3)
thf(fact_9144_T_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_Osimps_I5_J,axiom,
! [Mi: nat,Ma: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
( ( vEBT_T_d_e_l_e_t_e @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ zero_zero_nat @ TreeList @ Summary ) @ X2 )
= one_one_nat ) ).
% T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e.simps(5)
thf(fact_9145_VEBT__internal_OT_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_H_Osimps_I5_J,axiom,
! [Mi: nat,Ma: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
( ( vEBT_V1232361888498592333_e_t_e @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ zero_zero_nat @ TreeList @ Summary ) @ X2 )
= one_one_nat ) ).
% VEBT_internal.T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e'.simps(5)
thf(fact_9146_vebt__insert_Osimps_I4_J,axiom,
! [V: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
( ( vEBT_vebt_insert @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V ) ) @ TreeList @ Summary ) @ X2 )
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ X2 @ X2 ) ) @ ( suc @ ( suc @ V ) ) @ TreeList @ Summary ) ) ).
% vebt_insert.simps(4)
thf(fact_9147_VEBT__internal_OT_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_H_Osimps_I6_J,axiom,
! [Mi: nat,Ma: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
( ( vEBT_V1232361888498592333_e_t_e @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ zero_zero_nat ) @ TreeList @ Summary ) @ X2 )
= one_one_nat ) ).
% VEBT_internal.T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e'.simps(6)
thf(fact_9148_T_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_Osimps_I6_J,axiom,
! [Mi: nat,Ma: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
( ( vEBT_T_d_e_l_e_t_e @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ zero_zero_nat ) @ TreeList @ Summary ) @ X2 )
= one_one_nat ) ).
% T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e.simps(6)
thf(fact_9149_height__node,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ N )
=> ( ord_less_eq_nat @ one_one_nat @ ( vEBT_VEBT_height @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) ) ) ) ).
% height_node
thf(fact_9150_bit__not__int__iff_H,axiom,
! [K: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( minus_minus_int @ ( uminus_uminus_int @ K ) @ one_one_int ) @ N )
= ( ~ ( bit_se1146084159140164899it_int @ K @ N ) ) ) ).
% bit_not_int_iff'
thf(fact_9151_T_092_060_094sub_062m_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062N_092_060_094sub_062u_092_060_094sub_062l_092_060_094sub_062l_Ocases,axiom,
! [X2: vEBT_VEBT] :
( ( X2
!= ( vEBT_Leaf @ $false @ $false ) )
=> ( ! [Uv2: $o] :
( X2
!= ( vEBT_Leaf @ $true @ Uv2 ) )
=> ( ! [Uu2: $o] :
( X2
!= ( vEBT_Leaf @ Uu2 @ $true ) )
=> ( ! [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( X2
!= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) )
=> ~ ! [Uz2: product_prod_nat_nat,Va3: nat,Vb2: list_VEBT_VEBT,Vc: vEBT_VEBT] :
( X2
!= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va3 @ Vb2 @ Vc ) ) ) ) ) ) ).
% T\<^sub>m\<^sub>i\<^sub>n\<^sub>N\<^sub>u\<^sub>l\<^sub>l.cases
thf(fact_9152_vebt__member_Osimps_I3_J,axiom,
! [V: product_prod_nat_nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT,X2: nat] :
~ ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Uy @ Uz ) @ X2 ) ).
% vebt_member.simps(3)
thf(fact_9153_bit__imp__take__bit__positive,axiom,
! [N: nat,M: nat,K: int] :
( ( ord_less_nat @ N @ M )
=> ( ( bit_se1146084159140164899it_int @ K @ N )
=> ( ord_less_int @ zero_zero_int @ ( bit_se2923211474154528505it_int @ M @ K ) ) ) ) ).
% bit_imp_take_bit_positive
thf(fact_9154_vebt__member_Osimps_I4_J,axiom,
! [V: product_prod_nat_nat,Vb: list_VEBT_VEBT,Vc2: vEBT_VEBT,X2: nat] :
~ ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vb @ Vc2 ) @ X2 ) ).
% vebt_member.simps(4)
thf(fact_9155_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_H_Osimps_I5_J,axiom,
! [V: product_prod_nat_nat,Vd: list_VEBT_VEBT,Ve: vEBT_VEBT,Vf: nat] :
( ( vEBT_T_p_r_e_d2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Vd @ Ve ) @ Vf )
= one_one_nat ) ).
% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d'.simps(5)
thf(fact_9156_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_Osimps_I5_J,axiom,
! [V: product_prod_nat_nat,Vd: list_VEBT_VEBT,Ve: vEBT_VEBT,Vf: nat] :
( ( vEBT_T_p_r_e_d @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Vd @ Ve ) @ Vf )
= one_one_nat ) ).
% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d.simps(5)
thf(fact_9157_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_Osimps_I4_J,axiom,
! [V: product_prod_nat_nat,Vc2: list_VEBT_VEBT,Vd: vEBT_VEBT,Ve: nat] :
( ( vEBT_T_s_u_c_c @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Vc2 @ Vd ) @ Ve )
= one_one_nat ) ).
% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c.simps(4)
thf(fact_9158_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_H_Osimps_I4_J,axiom,
! [V: product_prod_nat_nat,Vc2: list_VEBT_VEBT,Vd: vEBT_VEBT,Ve: nat] :
( ( vEBT_T_s_u_c_c2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Vc2 @ Vd ) @ Ve )
= one_one_nat ) ).
% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c'.simps(4)
thf(fact_9159_int__bit__bound,axiom,
! [K: int] :
~ ! [N2: nat] :
( ! [M4: nat] :
( ( ord_less_eq_nat @ N2 @ M4 )
=> ( ( bit_se1146084159140164899it_int @ K @ M4 )
= ( bit_se1146084159140164899it_int @ K @ N2 ) ) )
=> ~ ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( bit_se1146084159140164899it_int @ K @ ( minus_minus_nat @ N2 @ one_one_nat ) )
= ( ~ ( bit_se1146084159140164899it_int @ K @ N2 ) ) ) ) ) ).
% int_bit_bound
thf(fact_9160_num_Osize__gen_I1_J,axiom,
( ( size_num @ one )
= zero_zero_nat ) ).
% num.size_gen(1)
thf(fact_9161_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_H_Osimps_I6_J,axiom,
! [V: product_prod_nat_nat,Vh: list_VEBT_VEBT,Vi: vEBT_VEBT,Vj: nat] :
( ( vEBT_T_p_r_e_d2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vh @ Vi ) @ Vj )
= one_one_nat ) ).
% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d'.simps(6)
thf(fact_9162_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_Osimps_I6_J,axiom,
! [V: product_prod_nat_nat,Vh: list_VEBT_VEBT,Vi: vEBT_VEBT,Vj: nat] :
( ( vEBT_T_p_r_e_d @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vh @ Vi ) @ Vj )
= one_one_nat ) ).
% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d.simps(6)
thf(fact_9163_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_Osimps_I5_J,axiom,
! [V: product_prod_nat_nat,Vg: list_VEBT_VEBT,Vh: vEBT_VEBT,Vi: nat] :
( ( vEBT_T_s_u_c_c @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vg @ Vh ) @ Vi )
= one_one_nat ) ).
% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c.simps(5)
thf(fact_9164_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_H_Osimps_I5_J,axiom,
! [V: product_prod_nat_nat,Vg: list_VEBT_VEBT,Vh: vEBT_VEBT,Vi: nat] :
( ( vEBT_T_s_u_c_c2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vg @ Vh ) @ Vi )
= one_one_nat ) ).
% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c'.simps(5)
thf(fact_9165_bit__int__def,axiom,
( bit_se1146084159140164899it_int
= ( ^ [K2: int,N3: nat] :
~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ).
% bit_int_def
thf(fact_9166_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_Osimps_I3_J,axiom,
! [V: product_prod_nat_nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT,X2: nat] :
( ( vEBT_T_m_e_m_b_e_r @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Uy @ Uz ) @ X2 )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r.simps(3)
thf(fact_9167_vebt__member_Osimps_I5_J,axiom,
! [Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
( ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
= ( ( X2 != Mi )
=> ( ( X2 != Ma )
=> ( ~ ( ord_less_nat @ X2 @ Mi )
& ( ~ ( ord_less_nat @ X2 @ Mi )
=> ( ~ ( ord_less_nat @ Ma @ X2 )
& ( ~ ( ord_less_nat @ Ma @ X2 )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.simps(5)
thf(fact_9168_VEBT__internal_Omembermima_Osimps_I4_J,axiom,
! [Mi: nat,Ma: nat,V: nat,TreeList: list_VEBT_VEBT,Vc2: vEBT_VEBT,X2: nat] :
( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ V ) @ TreeList @ Vc2 ) @ X2 )
= ( ( X2 = Mi )
| ( X2 = Ma )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ) ).
% VEBT_internal.membermima.simps(4)
thf(fact_9169_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_Osimps_I4_J,axiom,
! [V: product_prod_nat_nat,Vb: list_VEBT_VEBT,Vc2: vEBT_VEBT,X2: nat] :
( ( vEBT_T_m_e_m_b_e_r @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vb @ Vc2 ) @ X2 )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r.simps(4)
thf(fact_9170_VEBT__internal_Omembermima_Oelims_I2_J,axiom,
! [X2: vEBT_VEBT,Xa3: nat] :
( ( vEBT_VEBT_membermima @ X2 @ Xa3 )
=> ( ! [Mi2: nat,Ma2: nat] :
( ? [Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) )
=> ~ ( ( Xa3 = Mi2 )
| ( Xa3 = Ma2 ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList2: list_VEBT_VEBT] :
( ? [Vc: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc ) )
=> ~ ( ( Xa3 = Mi2 )
| ( Xa3 = Ma2 )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) )
=> ~ ! [V2: nat,TreeList2: list_VEBT_VEBT] :
( ? [Vd2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) )
=> ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.elims(2)
thf(fact_9171_invar__vebt_Ointros_I4_J,axiom,
! [TreeList: list_VEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat,Mi: nat,Ma: nat] :
( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ( vEBT_invar_vebt @ X3 @ N ) )
=> ( ( vEBT_invar_vebt @ Summary @ M )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( M = N )
=> ( ( Deg
= ( plus_plus_nat @ N @ M ) )
=> ( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I2 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary @ I2 ) ) )
=> ( ( ( Mi = Ma )
=> ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X_1 ) ) )
=> ( ( ord_less_eq_nat @ Mi @ Ma )
=> ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
=> ( ( ( Mi != Ma )
=> ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma @ N )
= I2 )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I2 ) @ ( vEBT_VEBT_low @ Ma @ N ) ) )
& ! [X3: nat] :
( ( ( ( vEBT_VEBT_high @ X3 @ N )
= I2 )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I2 ) @ ( vEBT_VEBT_low @ X3 @ N ) ) )
=> ( ( ord_less_nat @ Mi @ X3 )
& ( ord_less_eq_nat @ X3 @ Ma ) ) ) ) ) )
=> ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(4)
thf(fact_9172_vebt__member_Oelims_I2_J,axiom,
! [X2: vEBT_VEBT,Xa3: nat] :
( ( vEBT_vebt_member @ X2 @ Xa3 )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ~ ( ( ( Xa3 = zero_zero_nat )
=> A4 )
& ( ( Xa3 != zero_zero_nat )
=> ( ( ( Xa3 = one_one_nat )
=> B3 )
& ( Xa3 = one_one_nat ) ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT] :
( ? [Summary2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ~ ( ( Xa3 != Mi2 )
=> ( ( Xa3 != Ma2 )
=> ( ~ ( ord_less_nat @ Xa3 @ Mi2 )
& ( ~ ( ord_less_nat @ Xa3 @ Mi2 )
=> ( ~ ( ord_less_nat @ Ma2 @ Xa3 )
& ( ~ ( ord_less_nat @ Ma2 @ Xa3 )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.elims(2)
thf(fact_9173_VEBT__internal_Omembermima_Oelims_I3_J,axiom,
! [X2: vEBT_VEBT,Xa3: nat] :
( ~ ( vEBT_VEBT_membermima @ X2 @ Xa3 )
=> ( ! [Uu2: $o,Uv2: $o] :
( X2
!= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( X2
!= ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
=> ( ! [Mi2: nat,Ma2: nat] :
( ? [Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) )
=> ( ( Xa3 = Mi2 )
| ( Xa3 = Ma2 ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList2: list_VEBT_VEBT] :
( ? [Vc: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc ) )
=> ( ( Xa3 = Mi2 )
| ( Xa3 = Ma2 )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) )
=> ~ ! [V2: nat,TreeList2: list_VEBT_VEBT] :
( ? [Vd2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.elims(3)
thf(fact_9174_VEBT__internal_Omembermima_Oelims_I1_J,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: $o] :
( ( ( vEBT_VEBT_membermima @ X2 @ Xa3 )
= Y2 )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X2
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> Y2 )
=> ( ( ? [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
=> Y2 )
=> ( ! [Mi2: nat,Ma2: nat] :
( ? [Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) )
=> ( Y2
= ( ~ ( ( Xa3 = Mi2 )
| ( Xa3 = Ma2 ) ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList2: list_VEBT_VEBT] :
( ? [Vc: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc ) )
=> ( Y2
= ( ~ ( ( Xa3 = Mi2 )
| ( Xa3 = Ma2 )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) )
=> ~ ! [V2: nat,TreeList2: list_VEBT_VEBT] :
( ? [Vd2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) )
=> ( Y2
= ( ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.elims(1)
thf(fact_9175_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_Osimps_I5_J,axiom,
! [Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
( ( vEBT_T_m_e_m_b_e_r @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( if_nat @ ( X2 = Mi ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( X2 = Ma ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( ord_less_nat @ Ma @ X2 ) @ one_one_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_e_m_b_e_r @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat ) ) ) ) ) ) ) ) ) ) ) ).
% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r.simps(5)
thf(fact_9176_invar__vebt_Ointros_I5_J,axiom,
! [TreeList: list_VEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat,Mi: nat,Ma: nat] :
( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ( vEBT_invar_vebt @ X3 @ N ) )
=> ( ( vEBT_invar_vebt @ Summary @ M )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( M
= ( suc @ N ) )
=> ( ( Deg
= ( plus_plus_nat @ N @ M ) )
=> ( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I2 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary @ I2 ) ) )
=> ( ( ( Mi = Ma )
=> ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X_1 ) ) )
=> ( ( ord_less_eq_nat @ Mi @ Ma )
=> ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
=> ( ( ( Mi != Ma )
=> ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma @ N )
= I2 )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I2 ) @ ( vEBT_VEBT_low @ Ma @ N ) ) )
& ! [X3: nat] :
( ( ( ( vEBT_VEBT_high @ X3 @ N )
= I2 )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I2 ) @ ( vEBT_VEBT_low @ X3 @ N ) ) )
=> ( ( ord_less_nat @ Mi @ X3 )
& ( ord_less_eq_nat @ X3 @ Ma ) ) ) ) ) )
=> ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(5)
thf(fact_9177_Bit__Operations_Oset__bit__eq,axiom,
( bit_se7879613467334960850it_int
= ( ^ [N3: nat,K2: int] :
( plus_plus_int @ K2
@ ( times_times_int
@ ( zero_n2684676970156552555ol_int
@ ~ ( bit_se1146084159140164899it_int @ K2 @ N3 ) )
@ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ).
% Bit_Operations.set_bit_eq
thf(fact_9178_unset__bit__eq,axiom,
( bit_se4203085406695923979it_int
= ( ^ [N3: nat,K2: int] : ( minus_minus_int @ K2 @ ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K2 @ N3 ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ).
% unset_bit_eq
thf(fact_9179_vebt__member_Oelims_I3_J,axiom,
! [X2: vEBT_VEBT,Xa3: nat] :
( ~ ( vEBT_vebt_member @ X2 @ Xa3 )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( ( Xa3 = zero_zero_nat )
=> A4 )
& ( ( Xa3 != zero_zero_nat )
=> ( ( ( Xa3 = one_one_nat )
=> B3 )
& ( Xa3 = one_one_nat ) ) ) ) )
=> ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( X2
!= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
=> ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( X2
!= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
=> ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc: vEBT_VEBT] :
( X2
!= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT] :
( ? [Summary2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( Xa3 != Mi2 )
=> ( ( Xa3 != Ma2 )
=> ( ~ ( ord_less_nat @ Xa3 @ Mi2 )
& ( ~ ( ord_less_nat @ Xa3 @ Mi2 )
=> ( ~ ( ord_less_nat @ Ma2 @ Xa3 )
& ( ~ ( ord_less_nat @ Ma2 @ Xa3 )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.elims(3)
thf(fact_9180_vebt__member_Oelims_I1_J,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: $o] :
( ( ( vEBT_vebt_member @ X2 @ Xa3 )
= Y2 )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( Y2
= ( ~ ( ( ( Xa3 = zero_zero_nat )
=> A4 )
& ( ( Xa3 != zero_zero_nat )
=> ( ( ( Xa3 = one_one_nat )
=> B3 )
& ( Xa3 = one_one_nat ) ) ) ) ) ) )
=> ( ( ? [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
=> Y2 )
=> ( ( ? [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
=> Y2 )
=> ( ( ? [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc ) )
=> Y2 )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT] :
( ? [Summary2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( Y2
= ( ~ ( ( Xa3 != Mi2 )
=> ( ( Xa3 != Ma2 )
=> ( ~ ( ord_less_nat @ Xa3 @ Mi2 )
& ( ~ ( ord_less_nat @ Xa3 @ Mi2 )
=> ( ~ ( ord_less_nat @ Ma2 @ Xa3 )
& ( ~ ( ord_less_nat @ Ma2 @ Xa3 )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.elims(1)
thf(fact_9181_take__bit__Suc__from__most,axiom,
! [N: nat,K: int] :
( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ K )
= ( plus_plus_int @ ( times_times_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K @ N ) ) ) @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).
% take_bit_Suc_from_most
thf(fact_9182_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_Oelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: nat] :
( ( ( vEBT_T_m_e_m_b_e_r @ X2 @ Xa3 )
= Y2 )
=> ( ( ? [A4: $o,B3: $o] :
( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( Y2
!= ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( if_nat @ ( Xa3 = zero_zero_nat ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) ) )
=> ( ( ? [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
=> ( Y2
!= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ? [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
=> ( Y2
!= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ? [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc ) )
=> ( Y2
!= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT] :
( ? [Summary2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( Y2
!= ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( if_nat @ ( Xa3 = Mi2 ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( Xa3 = Ma2 ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( ord_less_nat @ Ma2 @ Xa3 ) @ one_one_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_e_m_b_e_r @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r.elims
thf(fact_9183_num_Osize__gen_I2_J,axiom,
! [X23: num] :
( ( size_num @ ( bit0 @ X23 ) )
= ( plus_plus_nat @ ( size_num @ X23 ) @ ( suc @ zero_zero_nat ) ) ) ).
% num.size_gen(2)
thf(fact_9184_invar__vebt_Ocases,axiom,
! [A1: vEBT_VEBT,A22: nat] :
( ( vEBT_invar_vebt @ A1 @ A22 )
=> ( ( ? [A4: $o,B3: $o] :
( A1
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( A22
!= ( suc @ zero_zero_nat ) ) )
=> ( ! [TreeList2: list_VEBT_VEBT,N2: nat,Summary2: vEBT_VEBT,M3: nat,Deg2: nat] :
( ( A1
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( A22 = Deg2 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_invar_vebt @ X4 @ N2 ) )
=> ( ( vEBT_invar_vebt @ Summary2 @ M3 )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M3 ) )
=> ( ( M3 = N2 )
=> ( ( Deg2
= ( plus_plus_nat @ N2 @ M3 ) )
=> ( ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X_12 )
=> ~ ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_12 ) ) ) ) ) ) ) ) ) )
=> ( ! [TreeList2: list_VEBT_VEBT,N2: nat,Summary2: vEBT_VEBT,M3: nat,Deg2: nat] :
( ( A1
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( A22 = Deg2 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_invar_vebt @ X4 @ N2 ) )
=> ( ( vEBT_invar_vebt @ Summary2 @ M3 )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M3 ) )
=> ( ( M3
= ( suc @ N2 ) )
=> ( ( Deg2
= ( plus_plus_nat @ N2 @ M3 ) )
=> ( ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X_12 )
=> ~ ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_12 ) ) ) ) ) ) ) ) ) )
=> ( ! [TreeList2: list_VEBT_VEBT,N2: nat,Summary2: vEBT_VEBT,M3: nat,Deg2: nat,Mi2: nat,Ma2: nat] :
( ( A1
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( A22 = Deg2 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_invar_vebt @ X4 @ N2 ) )
=> ( ( vEBT_invar_vebt @ Summary2 @ M3 )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M3 ) )
=> ( ( M3 = N2 )
=> ( ( Deg2
= ( plus_plus_nat @ N2 @ M3 ) )
=> ( ! [I4: nat] :
( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M3 ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I4 ) ) )
=> ( ( ( Mi2 = Ma2 )
=> ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_12 ) ) )
=> ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
=> ( ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ~ ( ( Mi2 != Ma2 )
=> ! [I4: nat] :
( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M3 ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma2 @ N2 )
= I4 )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ ( vEBT_VEBT_low @ Ma2 @ N2 ) ) )
& ! [X4: nat] :
( ( ( ( vEBT_VEBT_high @ X4 @ N2 )
= I4 )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ ( vEBT_VEBT_low @ X4 @ N2 ) ) )
=> ( ( ord_less_nat @ Mi2 @ X4 )
& ( ord_less_eq_nat @ X4 @ Ma2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
=> ~ ! [TreeList2: list_VEBT_VEBT,N2: nat,Summary2: vEBT_VEBT,M3: nat,Deg2: nat,Mi2: nat,Ma2: nat] :
( ( A1
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( A22 = Deg2 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_invar_vebt @ X4 @ N2 ) )
=> ( ( vEBT_invar_vebt @ Summary2 @ M3 )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M3 ) )
=> ( ( M3
= ( suc @ N2 ) )
=> ( ( Deg2
= ( plus_plus_nat @ N2 @ M3 ) )
=> ( ! [I4: nat] :
( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M3 ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I4 ) ) )
=> ( ( ( Mi2 = Ma2 )
=> ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_12 ) ) )
=> ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
=> ( ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ~ ( ( Mi2 != Ma2 )
=> ! [I4: nat] :
( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M3 ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma2 @ N2 )
= I4 )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ ( vEBT_VEBT_low @ Ma2 @ N2 ) ) )
& ! [X4: nat] :
( ( ( ( vEBT_VEBT_high @ X4 @ N2 )
= I4 )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ ( vEBT_VEBT_low @ X4 @ N2 ) ) )
=> ( ( ord_less_nat @ Mi2 @ X4 )
& ( ord_less_eq_nat @ X4 @ Ma2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.cases
thf(fact_9185_invar__vebt_Osimps,axiom,
( vEBT_invar_vebt
= ( ^ [A12: vEBT_VEBT,A23: nat] :
( ( ? [A3: $o,B2: $o] :
( A12
= ( vEBT_Leaf @ A3 @ B2 ) )
& ( A23
= ( suc @ zero_zero_nat ) ) )
| ? [TreeList3: list_VEBT_VEBT,N3: nat,Summary3: vEBT_VEBT] :
( ( A12
= ( vEBT_Node @ none_P5556105721700978146at_nat @ A23 @ TreeList3 @ Summary3 ) )
& ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ( vEBT_invar_vebt @ X @ N3 ) )
& ( vEBT_invar_vebt @ Summary3 @ N3 )
& ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) )
& ( A23
= ( plus_plus_nat @ N3 @ N3 ) )
& ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X6 )
& ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X @ X6 ) ) )
| ? [TreeList3: list_VEBT_VEBT,N3: nat,Summary3: vEBT_VEBT] :
( ( A12
= ( vEBT_Node @ none_P5556105721700978146at_nat @ A23 @ TreeList3 @ Summary3 ) )
& ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ( vEBT_invar_vebt @ X @ N3 ) )
& ( vEBT_invar_vebt @ Summary3 @ ( suc @ N3 ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N3 ) ) )
& ( A23
= ( plus_plus_nat @ N3 @ ( suc @ N3 ) ) )
& ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X6 )
& ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X @ X6 ) ) )
| ? [TreeList3: list_VEBT_VEBT,N3: nat,Summary3: vEBT_VEBT,Mi3: nat,Ma3: nat] :
( ( A12
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ A23 @ TreeList3 @ Summary3 ) )
& ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ( vEBT_invar_vebt @ X @ N3 ) )
& ( vEBT_invar_vebt @ Summary3 @ N3 )
& ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) )
& ( A23
= ( plus_plus_nat @ N3 @ N3 ) )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I3 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary3 @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X @ X6 ) ) )
& ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A23 ) )
& ( ( Mi3 != Ma3 )
=> ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma3 @ N3 )
= I3 )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I3 ) @ ( vEBT_VEBT_low @ Ma3 @ N3 ) ) )
& ! [X: nat] :
( ( ( ( vEBT_VEBT_high @ X @ N3 )
= I3 )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I3 ) @ ( vEBT_VEBT_low @ X @ N3 ) ) )
=> ( ( ord_less_nat @ Mi3 @ X )
& ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) )
| ? [TreeList3: list_VEBT_VEBT,N3: nat,Summary3: vEBT_VEBT,Mi3: nat,Ma3: nat] :
( ( A12
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ A23 @ TreeList3 @ Summary3 ) )
& ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ( vEBT_invar_vebt @ X @ N3 ) )
& ( vEBT_invar_vebt @ Summary3 @ ( suc @ N3 ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N3 ) ) )
& ( A23
= ( plus_plus_nat @ N3 @ ( suc @ N3 ) ) )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N3 ) ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I3 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary3 @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X @ X6 ) ) )
& ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A23 ) )
& ( ( Mi3 != Ma3 )
=> ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N3 ) ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma3 @ N3 )
= I3 )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I3 ) @ ( vEBT_VEBT_low @ Ma3 @ N3 ) ) )
& ! [X: nat] :
( ( ( ( vEBT_VEBT_high @ X @ N3 )
= I3 )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I3 ) @ ( vEBT_VEBT_low @ X @ N3 ) ) )
=> ( ( ord_less_nat @ Mi3 @ X )
& ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.simps
thf(fact_9186_div__half__nat,axiom,
! [Y2: nat,X2: nat] :
( ( Y2 != zero_zero_nat )
=> ( ( product_Pair_nat_nat @ ( divide_divide_nat @ X2 @ Y2 ) @ ( modulo_modulo_nat @ X2 @ Y2 ) )
= ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ Y2 @ ( minus_minus_nat @ X2 @ ( times_times_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( divide_divide_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y2 ) ) @ Y2 ) ) ) @ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( divide_divide_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y2 ) ) @ one_one_nat ) @ ( minus_minus_nat @ ( minus_minus_nat @ X2 @ ( times_times_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( divide_divide_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y2 ) ) @ Y2 ) ) @ Y2 ) ) @ ( product_Pair_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( divide_divide_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y2 ) ) @ ( minus_minus_nat @ X2 @ ( times_times_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( divide_divide_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y2 ) ) @ Y2 ) ) ) ) ) ) ).
% div_half_nat
thf(fact_9187_pred__list__to__short,axiom,
! [Deg: nat,X2: nat,Ma: nat,TreeList: list_VEBT_VEBT,Mi: nat,Summary: vEBT_VEBT] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( ord_less_eq_nat @ X2 @ Ma )
=> ( ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ TreeList ) @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= none_nat ) ) ) ) ).
% pred_list_to_short
thf(fact_9188_succ__list__to__short,axiom,
! [Deg: nat,Mi: nat,X2: nat,TreeList: list_VEBT_VEBT,Ma: nat,Summary: vEBT_VEBT] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( ord_less_eq_nat @ Mi @ X2 )
=> ( ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ TreeList ) @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= none_nat ) ) ) ) ).
% succ_list_to_short
thf(fact_9189_power__shift,axiom,
! [X2: nat,Y2: nat,Z: nat] :
( ( ( power_power_nat @ X2 @ Y2 )
= Z )
= ( ( vEBT_VEBT_power @ ( some_nat @ X2 ) @ ( some_nat @ Y2 ) )
= ( some_nat @ Z ) ) ) ).
% power_shift
thf(fact_9190_succ__corr,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat,Sx: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_succ @ T2 @ X2 )
= ( some_nat @ Sx ) )
= ( vEBT_is_succ_in_set @ ( vEBT_VEBT_set_vebt @ T2 ) @ X2 @ Sx ) ) ) ).
% succ_corr
thf(fact_9191_pred__corr,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat,Px: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_pred @ T2 @ X2 )
= ( some_nat @ Px ) )
= ( vEBT_is_pred_in_set @ ( vEBT_VEBT_set_vebt @ T2 ) @ X2 @ Px ) ) ) ).
% pred_corr
thf(fact_9192_succ__correct,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat,Sx: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_succ @ T2 @ X2 )
= ( some_nat @ Sx ) )
= ( vEBT_is_succ_in_set @ ( vEBT_set_vebt @ T2 ) @ X2 @ Sx ) ) ) ).
% succ_correct
thf(fact_9193_pred__correct,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat,Sx: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_pred @ T2 @ X2 )
= ( some_nat @ Sx ) )
= ( vEBT_is_pred_in_set @ ( vEBT_set_vebt @ T2 ) @ X2 @ Sx ) ) ) ).
% pred_correct
thf(fact_9194_helpypredd,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat,Y2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_pred @ T2 @ X2 )
= ( some_nat @ Y2 ) )
=> ( ord_less_nat @ Y2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% helpypredd
thf(fact_9195_helpyd,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat,Y2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_succ @ T2 @ X2 )
= ( some_nat @ Y2 ) )
=> ( ord_less_nat @ Y2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% helpyd
thf(fact_9196_geqmaxNone,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ N )
=> ( ( ord_less_eq_nat @ Ma @ X2 )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= none_nat ) ) ) ).
% geqmaxNone
thf(fact_9197_succ__min,axiom,
! [Deg: nat,X2: nat,Mi: nat,Ma: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( ord_less_nat @ X2 @ Mi )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= ( some_nat @ Mi ) ) ) ) ).
% succ_min
thf(fact_9198_pred__max,axiom,
! [Deg: nat,Ma: nat,X2: nat,Mi: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( ord_less_nat @ Ma @ X2 )
=> ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= ( some_nat @ Ma ) ) ) ) ).
% pred_max
thf(fact_9199_lesseq__shift,axiom,
( ord_less_eq_nat
= ( ^ [X: nat,Y: nat] : ( vEBT_VEBT_lesseq @ ( some_nat @ X ) @ ( some_nat @ Y ) ) ) ) ).
% lesseq_shift
thf(fact_9200_vebt__pred_Osimps_I2_J,axiom,
! [A: $o,Uw: $o] :
( ( A
=> ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A @ Uw ) @ ( suc @ zero_zero_nat ) )
= ( some_nat @ zero_zero_nat ) ) )
& ( ~ A
=> ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A @ Uw ) @ ( suc @ zero_zero_nat ) )
= none_nat ) ) ) ).
% vebt_pred.simps(2)
thf(fact_9201_vebt__succ_Osimps_I1_J,axiom,
! [B: $o,Uu: $o] :
( ( B
=> ( ( vEBT_vebt_succ @ ( vEBT_Leaf @ Uu @ B ) @ zero_zero_nat )
= ( some_nat @ one_one_nat ) ) )
& ( ~ B
=> ( ( vEBT_vebt_succ @ ( vEBT_Leaf @ Uu @ B ) @ zero_zero_nat )
= none_nat ) ) ) ).
% vebt_succ.simps(1)
thf(fact_9202_bit__Suc__0__iff,axiom,
! [N: nat] :
( ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ N )
= ( N = zero_zero_nat ) ) ).
% bit_Suc_0_iff
thf(fact_9203_not__bit__Suc__0__Suc,axiom,
! [N: nat] :
~ ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ ( suc @ N ) ) ).
% not_bit_Suc_0_Suc
thf(fact_9204_vebt__pred_Osimps_I3_J,axiom,
! [B: $o,A: $o,Va: nat] :
( ( B
=> ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A @ B ) @ ( suc @ ( suc @ Va ) ) )
= ( some_nat @ one_one_nat ) ) )
& ( ~ B
=> ( ( A
=> ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A @ B ) @ ( suc @ ( suc @ Va ) ) )
= ( some_nat @ zero_zero_nat ) ) )
& ( ~ A
=> ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A @ B ) @ ( suc @ ( suc @ Va ) ) )
= none_nat ) ) ) ) ) ).
% vebt_pred.simps(3)
thf(fact_9205_VEBT__internal_Ovalid_H_Ocases,axiom,
! [X2: produc9072475918466114483BT_nat] :
( ! [Uu2: $o,Uv2: $o,D3: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ D3 ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,Deg3: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) @ Deg3 ) ) ) ).
% VEBT_internal.valid'.cases
thf(fact_9206_vebt__succ_Osimps_I2_J,axiom,
! [Uv: $o,Uw: $o,N: nat] :
( ( vEBT_vebt_succ @ ( vEBT_Leaf @ Uv @ Uw ) @ ( suc @ N ) )
= none_nat ) ).
% vebt_succ.simps(2)
thf(fact_9207_vebt__pred_Osimps_I1_J,axiom,
! [Uu: $o,Uv: $o] :
( ( vEBT_vebt_pred @ ( vEBT_Leaf @ Uu @ Uv ) @ zero_zero_nat )
= none_nat ) ).
% vebt_pred.simps(1)
thf(fact_9208_vebt__succ_Osimps_I3_J,axiom,
! [Ux: nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT,Va: nat] :
( ( vEBT_vebt_succ @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux @ Uy @ Uz ) @ Va )
= none_nat ) ).
% vebt_succ.simps(3)
thf(fact_9209_vebt__pred_Osimps_I4_J,axiom,
! [Uy: nat,Uz: list_VEBT_VEBT,Va: vEBT_VEBT,Vb: nat] :
( ( vEBT_vebt_pred @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy @ Uz @ Va ) @ Vb )
= none_nat ) ).
% vebt_pred.simps(4)
thf(fact_9210_not__bit__Suc__0__numeral,axiom,
! [N: num] :
~ ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ N ) ) ).
% not_bit_Suc_0_numeral
thf(fact_9211_xor__num_Ocases,axiom,
! [X2: product_prod_num_num] :
( ( X2
!= ( product_Pair_num_num @ one @ one ) )
=> ( ! [N2: num] :
( X2
!= ( product_Pair_num_num @ one @ ( bit0 @ N2 ) ) )
=> ( ! [N2: num] :
( X2
!= ( product_Pair_num_num @ one @ ( bit1 @ N2 ) ) )
=> ( ! [M3: num] :
( X2
!= ( product_Pair_num_num @ ( bit0 @ M3 ) @ one ) )
=> ( ! [M3: num,N2: num] :
( X2
!= ( product_Pair_num_num @ ( bit0 @ M3 ) @ ( bit0 @ N2 ) ) )
=> ( ! [M3: num,N2: num] :
( X2
!= ( product_Pair_num_num @ ( bit0 @ M3 ) @ ( bit1 @ N2 ) ) )
=> ( ! [M3: num] :
( X2
!= ( product_Pair_num_num @ ( bit1 @ M3 ) @ one ) )
=> ( ! [M3: num,N2: num] :
( X2
!= ( product_Pair_num_num @ ( bit1 @ M3 ) @ ( bit0 @ N2 ) ) )
=> ~ ! [M3: num,N2: num] :
( X2
!= ( product_Pair_num_num @ ( bit1 @ M3 ) @ ( bit1 @ N2 ) ) ) ) ) ) ) ) ) ) ) ).
% xor_num.cases
thf(fact_9212_vebt__succ_Osimps_I4_J,axiom,
! [V: product_prod_nat_nat,Vc2: list_VEBT_VEBT,Vd: vEBT_VEBT,Ve: nat] :
( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Vc2 @ Vd ) @ Ve )
= none_nat ) ).
% vebt_succ.simps(4)
thf(fact_9213_vebt__pred_Osimps_I5_J,axiom,
! [V: product_prod_nat_nat,Vd: list_VEBT_VEBT,Ve: vEBT_VEBT,Vf: nat] :
( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Vd @ Ve ) @ Vf )
= none_nat ) ).
% vebt_pred.simps(5)
thf(fact_9214_bit__nat__iff,axiom,
! [K: int,N: nat] :
( ( bit_se1148574629649215175it_nat @ ( nat2 @ K ) @ N )
= ( ( ord_less_eq_int @ zero_zero_int @ K )
& ( bit_se1146084159140164899it_int @ K @ N ) ) ) ).
% bit_nat_iff
thf(fact_9215_VEBT__internal_Onaive__member_Ocases,axiom,
! [X2: produc9072475918466114483BT_nat] :
( ! [A4: $o,B3: $o,X3: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ X3 ) )
=> ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT,Ux2: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) @ Ux2 ) )
=> ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT,S2: vEBT_VEBT,X3: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S2 ) @ X3 ) ) ) ) ).
% VEBT_internal.naive_member.cases
thf(fact_9216_vebt__pred_Osimps_I6_J,axiom,
! [V: product_prod_nat_nat,Vh: list_VEBT_VEBT,Vi: vEBT_VEBT,Vj: nat] :
( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vh @ Vi ) @ Vj )
= none_nat ) ).
% vebt_pred.simps(6)
thf(fact_9217_vebt__succ_Osimps_I5_J,axiom,
! [V: product_prod_nat_nat,Vg: list_VEBT_VEBT,Vh: vEBT_VEBT,Vi: nat] :
( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vg @ Vh ) @ Vi )
= none_nat ) ).
% vebt_succ.simps(5)
thf(fact_9218_bit__nat__def,axiom,
( bit_se1148574629649215175it_nat
= ( ^ [M5: nat,N3: nat] :
~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ M5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ).
% bit_nat_def
thf(fact_9219_VEBT__internal_Omembermima_Ocases,axiom,
! [X2: produc9072475918466114483BT_nat] :
( ! [Uu2: $o,Uv2: $o,Uw2: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Uw2 ) )
=> ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT,Uz2: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Uz2 ) )
=> ( ! [Mi2: nat,Ma2: nat,Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT,X3: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) @ X3 ) )
=> ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList2: list_VEBT_VEBT,Vc: vEBT_VEBT,X3: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc ) @ X3 ) )
=> ~ ! [V2: nat,TreeList2: list_VEBT_VEBT,Vd2: vEBT_VEBT,X3: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) @ X3 ) ) ) ) ) ) ).
% VEBT_internal.membermima.cases
thf(fact_9220_VEBT__internal_OT_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_H_Ocases,axiom,
! [X2: produc9072475918466114483BT_nat] :
( ! [A4: $o,B3: $o] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ zero_zero_nat ) )
=> ( ! [A4: $o,B3: $o] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ ( suc @ zero_zero_nat ) ) )
=> ( ! [A4: $o,B3: $o,N2: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ ( suc @ ( suc @ N2 ) ) ) )
=> ( ! [Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,Uu2: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) @ Uu2 ) )
=> ( ! [Mi2: nat,Ma2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,X3: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TreeList2 @ Summary2 ) @ X3 ) )
=> ( ! [Mi2: nat,Ma2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,X3: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ TreeList2 @ Summary2 ) @ X3 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,X3: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ X3 ) ) ) ) ) ) ) ) ).
% VEBT_internal.T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e'.cases
thf(fact_9221_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_H_Ocases,axiom,
! [X2: produc9072475918466114483BT_nat] :
( ! [Uu2: $o,Uv2: $o] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ zero_zero_nat ) )
=> ( ! [A4: $o,Uw2: $o] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ Uw2 ) @ ( suc @ zero_zero_nat ) ) )
=> ( ! [A4: $o,B3: $o,Va2: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ ( suc @ ( suc @ Va2 ) ) ) )
=> ( ! [Uy2: nat,Uz2: list_VEBT_VEBT,Va3: vEBT_VEBT,Vb2: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va3 ) @ Vb2 ) )
=> ( ! [V2: product_prod_nat_nat,Vd2: list_VEBT_VEBT,Ve2: vEBT_VEBT,Vf2: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vd2 @ Ve2 ) @ Vf2 ) )
=> ( ! [V2: product_prod_nat_nat,Vh2: list_VEBT_VEBT,Vi2: vEBT_VEBT,Vj2: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vh2 @ Vi2 ) @ Vj2 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,X3: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ X3 ) ) ) ) ) ) ) ) ).
% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d'.cases
thf(fact_9222_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_H_Ocases,axiom,
! [X2: produc9072475918466114483BT_nat] :
( ! [Uu2: $o,B3: $o] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ B3 ) @ zero_zero_nat ) )
=> ( ! [Uv2: $o,Uw2: $o,N2: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uv2 @ Uw2 ) @ ( suc @ N2 ) ) )
=> ( ! [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT,Va3: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) @ Va3 ) )
=> ( ! [V2: product_prod_nat_nat,Vc: list_VEBT_VEBT,Vd2: vEBT_VEBT,Ve2: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc @ Vd2 ) @ Ve2 ) )
=> ( ! [V2: product_prod_nat_nat,Vg2: list_VEBT_VEBT,Vh2: vEBT_VEBT,Vi2: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) @ Vi2 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,X3: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ X3 ) ) ) ) ) ) ) ).
% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c'.cases
thf(fact_9223_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_H_Ocases,axiom,
! [X2: produc9072475918466114483BT_nat] :
( ! [A4: $o,B3: $o,X3: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ X3 ) )
=> ( ! [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S2: vEBT_VEBT,X3: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts2 @ S2 ) @ X3 ) )
=> ( ! [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S2: vEBT_VEBT,X3: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts2 @ S2 ) @ X3 ) )
=> ( ! [V2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,X3: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary2 ) @ X3 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,X3: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ X3 ) ) ) ) ) ) ).
% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t'.cases
thf(fact_9224_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H_Ocases,axiom,
! [X2: produc9072475918466114483BT_nat] :
( ! [A4: $o,B3: $o,X3: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ X3 ) )
=> ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT,X3: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) @ X3 ) )
=> ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT,X3: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ X3 ) )
=> ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc: vEBT_VEBT,X3: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc ) @ X3 ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,X3: nat] :
( X2
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ X3 ) ) ) ) ) ) ).
% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r'.cases
thf(fact_9225_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H_Oelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: nat] :
( ( ( vEBT_T_m_e_m_b_e_r2 @ X2 @ Xa3 )
= Y2 )
=> ( ( ? [A4: $o,B3: $o] :
( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( Y2 != one_one_nat ) )
=> ( ( ? [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
=> ( Y2 != one_one_nat ) )
=> ( ( ? [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
=> ( Y2 != one_one_nat ) )
=> ( ( ? [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc ) )
=> ( Y2 != one_one_nat ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT] :
( ? [Summary2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( Y2
!= ( plus_plus_nat @ one_one_nat
@ ( if_nat @ ( Xa3 = Mi2 ) @ zero_zero_nat
@ ( if_nat @ ( Xa3 = Ma2 ) @ zero_zero_nat
@ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ zero_zero_nat
@ ( if_nat @ ( ord_less_nat @ Ma2 @ Xa3 ) @ zero_zero_nat
@ ( if_nat
@ ( ( ord_less_nat @ Mi2 @ Xa3 )
& ( ord_less_nat @ Xa3 @ Ma2 ) )
@ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) @ ( vEBT_T_m_e_m_b_e_r2 @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ zero_zero_nat )
@ zero_zero_nat ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r'.elims
thf(fact_9226_local_Opower__def,axiom,
( vEBT_VEBT_power
= ( vEBT_V4262088993061758097ft_nat @ power_power_nat ) ) ).
% local.power_def
thf(fact_9227_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H_Osimps_I1_J,axiom,
! [A: $o,B: $o,X2: nat] :
( ( vEBT_T_m_e_m_b_e_r2 @ ( vEBT_Leaf @ A @ B ) @ X2 )
= one_one_nat ) ).
% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r'.simps(1)
thf(fact_9228_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H_Osimps_I2_J,axiom,
! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT,X2: nat] :
( ( vEBT_T_m_e_m_b_e_r2 @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) @ X2 )
= one_one_nat ) ).
% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r'.simps(2)
thf(fact_9229_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H_Osimps_I3_J,axiom,
! [V: product_prod_nat_nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT,X2: nat] :
( ( vEBT_T_m_e_m_b_e_r2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Uy @ Uz ) @ X2 )
= one_one_nat ) ).
% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r'.simps(3)
thf(fact_9230_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H_Osimps_I4_J,axiom,
! [V: product_prod_nat_nat,Vb: list_VEBT_VEBT,Vc2: vEBT_VEBT,X2: nat] :
( ( vEBT_T_m_e_m_b_e_r2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vb @ Vc2 ) @ X2 )
= one_one_nat ) ).
% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r'.simps(4)
thf(fact_9231_member__bound__height_H,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ord_less_eq_nat @ ( vEBT_T_m_e_m_b_e_r2 @ T2 @ X2 ) @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ T2 ) ) ) ) ).
% member_bound_height'
thf(fact_9232_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H_Osimps_I5_J,axiom,
! [Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
( ( vEBT_T_m_e_m_b_e_r2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
= ( plus_plus_nat @ one_one_nat
@ ( if_nat @ ( X2 = Mi ) @ zero_zero_nat
@ ( if_nat @ ( X2 = Ma ) @ zero_zero_nat
@ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ zero_zero_nat
@ ( if_nat @ ( ord_less_nat @ Ma @ X2 ) @ zero_zero_nat
@ ( if_nat
@ ( ( ord_less_nat @ Mi @ X2 )
& ( ord_less_nat @ X2 @ Ma ) )
@ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) @ ( vEBT_T_m_e_m_b_e_r2 @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ zero_zero_nat )
@ zero_zero_nat ) ) ) ) ) ) ) ).
% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r'.simps(5)
thf(fact_9233_mintlistlength,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ N )
=> ( ( Mi != Ma )
=> ( ( ord_less_nat @ Mi @ Ma )
& ? [M3: nat] :
( ( ( some_nat @ M3 )
= ( vEBT_vebt_mint @ Summary ) )
& ( ord_less_nat @ M3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% mintlistlength
thf(fact_9234_del__single__cont,axiom,
! [X2: nat,Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( X2 = Mi )
& ( X2 = Ma ) )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList @ Summary ) ) ) ) ).
% del_single_cont
thf(fact_9235_delt__out__of__range,axiom,
! [X2: nat,Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less_nat @ X2 @ Mi )
| ( ord_less_nat @ Ma @ X2 ) )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) ) ) ) ).
% delt_out_of_range
thf(fact_9236_delete__pres__valid,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( vEBT_invar_vebt @ ( vEBT_vebt_delete @ T2 @ X2 ) @ N ) ) ).
% delete_pres_valid
thf(fact_9237_dele__bmo__cont__corr,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat,Y2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_delete @ T2 @ X2 ) @ Y2 )
= ( ( X2 != Y2 )
& ( vEBT_V8194947554948674370ptions @ T2 @ Y2 ) ) ) ) ).
% dele_bmo_cont_corr
thf(fact_9238_dele__member__cont__corr,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat,Y2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_vebt_member @ ( vEBT_vebt_delete @ T2 @ X2 ) @ Y2 )
= ( ( X2 != Y2 )
& ( vEBT_vebt_member @ T2 @ Y2 ) ) ) ) ).
% dele_member_cont_corr
thf(fact_9239_mint__member,axiom,
! [T2: vEBT_VEBT,N: nat,Maxi: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_mint @ T2 )
= ( some_nat @ Maxi ) )
=> ( vEBT_vebt_member @ T2 @ Maxi ) ) ) ).
% mint_member
thf(fact_9240_mint__corr__help,axiom,
! [T2: vEBT_VEBT,N: nat,Mini: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_mint @ T2 )
= ( some_nat @ Mini ) )
=> ( ( vEBT_vebt_member @ T2 @ X2 )
=> ( ord_less_eq_nat @ Mini @ X2 ) ) ) ) ).
% mint_corr_help
thf(fact_9241_mint__corr,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_mint @ T2 )
= ( some_nat @ X2 ) )
=> ( vEBT_VEBT_min_in_set @ ( vEBT_VEBT_set_vebt @ T2 ) @ X2 ) ) ) ).
% mint_corr
thf(fact_9242_mint__sound,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_VEBT_min_in_set @ ( vEBT_VEBT_set_vebt @ T2 ) @ X2 )
=> ( ( vEBT_vebt_mint @ T2 )
= ( some_nat @ X2 ) ) ) ) ).
% mint_sound
thf(fact_9243_misiz,axiom,
! [T2: vEBT_VEBT,N: nat,M: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( some_nat @ M )
= ( vEBT_vebt_mint @ T2 ) )
=> ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% misiz
thf(fact_9244_nested__mint,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat,Va: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ N )
=> ( ( N
= ( suc @ ( suc @ Va ) ) )
=> ( ~ ( ord_less_nat @ Ma @ Mi )
=> ( ( Ma != Mi )
=> ( ord_less_nat @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Va @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( suc @ ( divide_divide_nat @ Va @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ) ) ).
% nested_mint
thf(fact_9245_vebt__mint_Oelims,axiom,
! [X2: vEBT_VEBT,Y2: option_nat] :
( ( ( vEBT_vebt_mint @ X2 )
= Y2 )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ~ ( ( A4
=> ( Y2
= ( some_nat @ zero_zero_nat ) ) )
& ( ~ A4
=> ( ( B3
=> ( Y2
= ( some_nat @ one_one_nat ) ) )
& ( ~ B3
=> ( Y2 = none_nat ) ) ) ) ) )
=> ( ( ? [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
=> ( Y2 != none_nat ) )
=> ~ ! [Mi2: nat] :
( ? [Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
=> ( Y2
!= ( some_nat @ Mi2 ) ) ) ) ) ) ).
% vebt_mint.elims
thf(fact_9246_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_H_Oelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: nat] :
( ( ( vEBT_T_p_r_e_d2 @ X2 @ Xa3 )
= Y2 )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X2
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( Xa3 = zero_zero_nat )
=> ( Y2 != one_one_nat ) ) )
=> ( ( ? [A4: $o,Uw2: $o] :
( X2
= ( vEBT_Leaf @ A4 @ Uw2 ) )
=> ( ( Xa3
= ( suc @ zero_zero_nat ) )
=> ( Y2 != one_one_nat ) ) )
=> ( ( ? [A4: $o,B3: $o] :
( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ? [Va2: nat] :
( Xa3
= ( suc @ ( suc @ Va2 ) ) )
=> ( Y2 != one_one_nat ) ) )
=> ( ( ? [Uy2: nat,Uz2: list_VEBT_VEBT,Va3: vEBT_VEBT] :
( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va3 ) )
=> ( Y2 != one_one_nat ) )
=> ( ( ? [V2: product_prod_nat_nat,Vd2: list_VEBT_VEBT,Ve2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vd2 @ Ve2 ) )
=> ( Y2 != one_one_nat ) )
=> ( ( ? [V2: product_prod_nat_nat,Vh2: list_VEBT_VEBT,Vi2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vh2 @ Vi2 ) )
=> ( Y2 != one_one_nat ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ~ ( ( ( ord_less_nat @ Ma2 @ Xa3 )
=> ( Y2 = one_one_nat ) )
& ( ~ ( ord_less_nat @ Ma2 @ Xa3 )
=> ( Y2
= ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
@ ( if_nat
@ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_p_r_e_d2 @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( plus_plus_nat @ ( vEBT_T_p_r_e_d2 @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) )
@ one_one_nat ) ) ) ) ) ) ) ) ) ) ) ) ).
% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d'.elims
thf(fact_9247_greater__shift,axiom,
( ord_less_nat
= ( ^ [Y: nat,X: nat] : ( vEBT_VEBT_greater @ ( some_nat @ X ) @ ( some_nat @ Y ) ) ) ) ).
% greater_shift
thf(fact_9248_vebt__mint_Osimps_I2_J,axiom,
! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
( ( vEBT_vebt_mint @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) )
= none_nat ) ).
% vebt_mint.simps(2)
thf(fact_9249_vebt__mint_Osimps_I3_J,axiom,
! [Mi: nat,Ma: nat,Ux: nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT] :
( ( vEBT_vebt_mint @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Ux @ Uy @ Uz ) )
= ( some_nat @ Mi ) ) ).
% vebt_mint.simps(3)
thf(fact_9250_vebt__mint_Osimps_I1_J,axiom,
! [A: $o,B: $o] :
( ( A
=> ( ( vEBT_vebt_mint @ ( vEBT_Leaf @ A @ B ) )
= ( some_nat @ zero_zero_nat ) ) )
& ( ~ A
=> ( ( B
=> ( ( vEBT_vebt_mint @ ( vEBT_Leaf @ A @ B ) )
= ( some_nat @ one_one_nat ) ) )
& ( ~ B
=> ( ( vEBT_vebt_mint @ ( vEBT_Leaf @ A @ B ) )
= none_nat ) ) ) ) ) ).
% vebt_mint.simps(1)
thf(fact_9251_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_H_Osimps_I7_J,axiom,
! [Ma: nat,X2: nat,Mi: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less_nat @ Ma @ X2 )
=> ( ( vEBT_T_p_r_e_d2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
= one_one_nat ) )
& ( ~ ( ord_less_nat @ Ma @ X2 )
=> ( ( vEBT_T_p_r_e_d2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
= ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
@ ( if_nat
@ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_p_r_e_d2 @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( plus_plus_nat @ ( vEBT_T_p_r_e_d2 @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) )
@ one_one_nat ) ) ) ) ).
% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d'.simps(7)
thf(fact_9252_summaxma,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ Deg )
=> ( ( Mi != Ma )
=> ( ( the_nat @ ( vEBT_vebt_maxt @ Summary ) )
= ( vEBT_VEBT_high @ Ma @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% summaxma
thf(fact_9253_minNull__delete__time__bound,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ T2 @ X2 ) )
=> ( ord_less_eq_nat @ ( vEBT_T_d_e_l_e_t_e @ T2 @ X2 ) @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ).
% minNull_delete_time_bound
thf(fact_9254_mul__def,axiom,
( vEBT_VEBT_mul
= ( vEBT_V4262088993061758097ft_nat @ times_times_nat ) ) ).
% mul_def
thf(fact_9255_not__min__Null__member,axiom,
! [T2: vEBT_VEBT] :
( ~ ( vEBT_VEBT_minNull @ T2 )
=> ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ T2 @ X_1 ) ) ).
% not_min_Null_member
thf(fact_9256_min__Null__member,axiom,
! [T2: vEBT_VEBT,X2: nat] :
( ( vEBT_VEBT_minNull @ T2 )
=> ~ ( vEBT_vebt_member @ T2 @ X2 ) ) ).
% min_Null_member
thf(fact_9257_maxbmo,axiom,
! [T2: vEBT_VEBT,X2: nat] :
( ( ( vEBT_vebt_maxt @ T2 )
= ( some_nat @ X2 ) )
=> ( vEBT_V8194947554948674370ptions @ T2 @ X2 ) ) ).
% maxbmo
thf(fact_9258_minNullmin,axiom,
! [T2: vEBT_VEBT] :
( ( vEBT_VEBT_minNull @ T2 )
=> ( ( vEBT_vebt_mint @ T2 )
= none_nat ) ) ).
% minNullmin
thf(fact_9259_minminNull,axiom,
! [T2: vEBT_VEBT] :
( ( ( vEBT_vebt_mint @ T2 )
= none_nat )
=> ( vEBT_VEBT_minNull @ T2 ) ) ).
% minminNull
thf(fact_9260_mul__shift,axiom,
! [X2: nat,Y2: nat,Z: nat] :
( ( ( times_times_nat @ X2 @ Y2 )
= Z )
= ( ( vEBT_VEBT_mul @ ( some_nat @ X2 ) @ ( some_nat @ Y2 ) )
= ( some_nat @ Z ) ) ) ).
% mul_shift
thf(fact_9261_maxt__member,axiom,
! [T2: vEBT_VEBT,N: nat,Maxi: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_maxt @ T2 )
= ( some_nat @ Maxi ) )
=> ( vEBT_vebt_member @ T2 @ Maxi ) ) ) ).
% maxt_member
thf(fact_9262_maxt__corr__help,axiom,
! [T2: vEBT_VEBT,N: nat,Maxi: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_maxt @ T2 )
= ( some_nat @ Maxi ) )
=> ( ( vEBT_vebt_member @ T2 @ X2 )
=> ( ord_less_eq_nat @ X2 @ Maxi ) ) ) ) ).
% maxt_corr_help
thf(fact_9263_maxt__corr,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_maxt @ T2 )
= ( some_nat @ X2 ) )
=> ( vEBT_VEBT_max_in_set @ ( vEBT_VEBT_set_vebt @ T2 ) @ X2 ) ) ) ).
% maxt_corr
thf(fact_9264_maxt__sound,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_VEBT_max_in_set @ ( vEBT_VEBT_set_vebt @ T2 ) @ X2 )
=> ( ( vEBT_vebt_maxt @ T2 )
= ( some_nat @ X2 ) ) ) ) ).
% maxt_sound
thf(fact_9265_minNull__delete__time__bound_H,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ T2 @ X2 ) )
=> ( ord_less_eq_nat @ ( vEBT_V1232361888498592333_e_t_e @ T2 @ X2 ) @ one_one_nat ) ) ) ).
% minNull_delete_time_bound'
thf(fact_9266_VEBT__internal_OminNull_Osimps_I5_J,axiom,
! [Uz: product_prod_nat_nat,Va: nat,Vb: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
~ ( vEBT_VEBT_minNull @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz ) @ Va @ Vb @ Vc2 ) ) ).
% VEBT_internal.minNull.simps(5)
thf(fact_9267_VEBT__internal_OminNull_Osimps_I4_J,axiom,
! [Uw: nat,Ux: list_VEBT_VEBT,Uy: vEBT_VEBT] : ( vEBT_VEBT_minNull @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw @ Ux @ Uy ) ) ).
% VEBT_internal.minNull.simps(4)
thf(fact_9268_vebt__maxt_Osimps_I2_J,axiom,
! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
( ( vEBT_vebt_maxt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) )
= none_nat ) ).
% vebt_maxt.simps(2)
thf(fact_9269_VEBT__internal_OminNull_Oelims_I3_J,axiom,
! [X2: vEBT_VEBT] :
( ~ ( vEBT_VEBT_minNull @ X2 )
=> ( ! [Uv2: $o] :
( X2
!= ( vEBT_Leaf @ $true @ Uv2 ) )
=> ( ! [Uu2: $o] :
( X2
!= ( vEBT_Leaf @ Uu2 @ $true ) )
=> ~ ! [Uz2: product_prod_nat_nat,Va3: nat,Vb2: list_VEBT_VEBT,Vc: vEBT_VEBT] :
( X2
!= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va3 @ Vb2 @ Vc ) ) ) ) ) ).
% VEBT_internal.minNull.elims(3)
thf(fact_9270_VEBT__internal_OminNull_Oelims_I2_J,axiom,
! [X2: vEBT_VEBT] :
( ( vEBT_VEBT_minNull @ X2 )
=> ( ( X2
!= ( vEBT_Leaf @ $false @ $false ) )
=> ~ ! [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( X2
!= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) ) ) ) ).
% VEBT_internal.minNull.elims(2)
thf(fact_9271_vebt__maxt_Osimps_I3_J,axiom,
! [Mi: nat,Ma: nat,Ux: nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT] :
( ( vEBT_vebt_maxt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Ux @ Uy @ Uz ) )
= ( some_nat @ Ma ) ) ).
% vebt_maxt.simps(3)
thf(fact_9272_VEBT__internal_OminNull_Oelims_I1_J,axiom,
! [X2: vEBT_VEBT,Y2: $o] :
( ( ( vEBT_VEBT_minNull @ X2 )
= Y2 )
=> ( ( ( X2
= ( vEBT_Leaf @ $false @ $false ) )
=> ~ Y2 )
=> ( ( ? [Uv2: $o] :
( X2
= ( vEBT_Leaf @ $true @ Uv2 ) )
=> Y2 )
=> ( ( ? [Uu2: $o] :
( X2
= ( vEBT_Leaf @ Uu2 @ $true ) )
=> Y2 )
=> ( ( ? [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) )
=> ~ Y2 )
=> ~ ( ? [Uz2: product_prod_nat_nat,Va3: nat,Vb2: list_VEBT_VEBT,Vc: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va3 @ Vb2 @ Vc ) )
=> Y2 ) ) ) ) ) ) ).
% VEBT_internal.minNull.elims(1)
thf(fact_9273_vebt__maxt_Osimps_I1_J,axiom,
! [B: $o,A: $o] :
( ( B
=> ( ( vEBT_vebt_maxt @ ( vEBT_Leaf @ A @ B ) )
= ( some_nat @ one_one_nat ) ) )
& ( ~ B
=> ( ( A
=> ( ( vEBT_vebt_maxt @ ( vEBT_Leaf @ A @ B ) )
= ( some_nat @ zero_zero_nat ) ) )
& ( ~ A
=> ( ( vEBT_vebt_maxt @ ( vEBT_Leaf @ A @ B ) )
= none_nat ) ) ) ) ) ).
% vebt_maxt.simps(1)
thf(fact_9274_insertsimp,axiom,
! [T2: vEBT_VEBT,N: nat,L2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_VEBT_minNull @ T2 )
=> ( ord_less_eq_nat @ ( vEBT_T_i_n_s_e_r_t @ T2 @ L2 ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) ) ).
% insertsimp
thf(fact_9275_vebt__maxt_Oelims,axiom,
! [X2: vEBT_VEBT,Y2: option_nat] :
( ( ( vEBT_vebt_maxt @ X2 )
= Y2 )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ~ ( ( B3
=> ( Y2
= ( some_nat @ one_one_nat ) ) )
& ( ~ B3
=> ( ( A4
=> ( Y2
= ( some_nat @ zero_zero_nat ) ) )
& ( ~ A4
=> ( Y2 = none_nat ) ) ) ) ) )
=> ( ( ? [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
=> ( Y2 != none_nat ) )
=> ~ ! [Mi2: nat,Ma2: nat] :
( ? [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
=> ( Y2
!= ( some_nat @ Ma2 ) ) ) ) ) ) ).
% vebt_maxt.elims
thf(fact_9276_pred__less__length__list,axiom,
! [Deg: nat,X2: nat,Ma: nat,TreeList: list_VEBT_VEBT,Mi: nat,Summary: vEBT_VEBT] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( ord_less_eq_nat @ X2 @ Ma )
=> ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= ( if_option_nat
@ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( if_option_nat
@ ( ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= none_nat )
@ ( if_option_nat @ ( ord_less_nat @ Mi @ X2 ) @ ( some_nat @ Mi ) @ none_nat )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% pred_less_length_list
thf(fact_9277_pred__lesseq__max,axiom,
! [Deg: nat,X2: nat,Ma: nat,Mi: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( ord_less_eq_nat @ X2 @ Ma )
=> ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
@ ( if_option_nat
@ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( if_option_nat
@ ( ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= none_nat )
@ ( if_option_nat @ ( ord_less_nat @ Mi @ X2 ) @ ( some_nat @ Mi ) @ none_nat )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
@ none_nat ) ) ) ) ).
% pred_lesseq_max
thf(fact_9278_del__x__mia,axiom,
! [X2: nat,Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( X2 = Mi )
& ( ord_less_nat @ X2 @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= ( if_VEBT_VEBT @ ( ord_less_nat @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
@ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( vEBT_Node
@ ( some_P7363390416028606310at_nat
@ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
@ ( if_nat
@ ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
= Ma )
@ ( if_nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
= none_nat )
@ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
@ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( vEBT_Node
@ ( some_P7363390416028606310at_nat
@ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
@ ( if_nat
@ ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
= Ma )
@ ( plus_plus_nat @ ( times_times_nat @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ Summary ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) ) ) ) ) ) ).
% del_x_mia
thf(fact_9279_add__shift,axiom,
! [X2: nat,Y2: nat,Z: nat] :
( ( ( plus_plus_nat @ X2 @ Y2 )
= Z )
= ( ( vEBT_VEBT_add @ ( some_nat @ X2 ) @ ( some_nat @ Y2 ) )
= ( some_nat @ Z ) ) ) ).
% add_shift
thf(fact_9280_add__def,axiom,
( vEBT_VEBT_add
= ( vEBT_V4262088993061758097ft_nat @ plus_plus_nat ) ) ).
% add_def
thf(fact_9281_del__x__not__mi__newnode__not__nil,axiom,
! [Mi: nat,X2: nat,Ma: nat,Deg: nat,H2: nat,L2: nat,Newnode: vEBT_VEBT,TreeList: list_VEBT_VEBT,Newlist: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less_nat @ Mi @ X2 )
& ( ord_less_eq_nat @ X2 @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= H2 )
=> ( ( ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= L2 )
=> ( ( Newnode
= ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) )
=> ( ~ ( vEBT_VEBT_minNull @ Newnode )
=> ( ( Newlist
= ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ Newnode ) )
=> ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ ( if_nat @ ( X2 = Ma ) @ ( plus_plus_nat @ ( times_times_nat @ H2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ Newlist @ H2 ) ) ) ) @ Ma ) ) ) @ Deg @ Newlist @ Summary ) ) ) ) ) ) ) ) ) ) ) ).
% del_x_not_mi_newnode_not_nil
thf(fact_9282_del__x__mi__lets__in__not__minNull,axiom,
! [X2: nat,Mi: nat,Ma: nat,Deg: nat,Xn: nat,H2: nat,Summary: vEBT_VEBT,TreeList: list_VEBT_VEBT,L2: nat,Newnode: vEBT_VEBT,Newlist: list_VEBT_VEBT] :
( ( ( X2 = Mi )
& ( ord_less_nat @ X2 @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( ( vEBT_VEBT_high @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= H2 )
=> ( ( Xn
= ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) )
=> ( ( ( vEBT_VEBT_low @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= L2 )
=> ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( ( Newnode
= ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) )
=> ( ( Newlist
= ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ Newnode ) )
=> ( ~ ( vEBT_VEBT_minNull @ Newnode )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Xn @ ( if_nat @ ( Xn = Ma ) @ ( plus_plus_nat @ ( times_times_nat @ H2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ Newlist @ H2 ) ) ) ) @ Ma ) ) ) @ Deg @ Newlist @ Summary ) ) ) ) ) ) ) ) ) ) ) ) ).
% del_x_mi_lets_in_not_minNull
thf(fact_9283_del__x__not__mi,axiom,
! [Mi: nat,X2: nat,Ma: nat,Deg: nat,H2: nat,L2: nat,Newnode: vEBT_VEBT,TreeList: list_VEBT_VEBT,Newlist: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less_nat @ Mi @ X2 )
& ( ord_less_eq_nat @ X2 @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= H2 )
=> ( ( ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= L2 )
=> ( ( Newnode
= ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) )
=> ( ( Newlist
= ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ Newnode ) )
=> ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( ( ( vEBT_VEBT_minNull @ Newnode )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= ( vEBT_Node
@ ( some_P7363390416028606310at_nat
@ ( product_Pair_nat_nat @ Mi
@ ( if_nat @ ( X2 = Ma )
@ ( if_nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) )
= none_nat )
@ Mi
@ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ Newlist @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ Newlist
@ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) )
& ( ~ ( vEBT_VEBT_minNull @ Newnode )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ ( if_nat @ ( X2 = Ma ) @ ( plus_plus_nat @ ( times_times_nat @ H2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ Newlist @ H2 ) ) ) ) @ Ma ) ) ) @ Deg @ Newlist @ Summary ) ) ) ) ) ) ) ) ) ) ) ) ).
% del_x_not_mi
thf(fact_9284_del__x__not__mi__new__node__nil,axiom,
! [Mi: nat,X2: nat,Ma: nat,Deg: nat,H2: nat,L2: nat,Newnode: vEBT_VEBT,TreeList: list_VEBT_VEBT,Sn: vEBT_VEBT,Summary: vEBT_VEBT,Newlist: list_VEBT_VEBT] :
( ( ( ord_less_nat @ Mi @ X2 )
& ( ord_less_eq_nat @ X2 @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= H2 )
=> ( ( ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= L2 )
=> ( ( Newnode
= ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) )
=> ( ( vEBT_VEBT_minNull @ Newnode )
=> ( ( Sn
= ( vEBT_vebt_delete @ Summary @ H2 ) )
=> ( ( Newlist
= ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ Newnode ) )
=> ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= ( vEBT_Node
@ ( some_P7363390416028606310at_nat
@ ( product_Pair_nat_nat @ Mi
@ ( if_nat @ ( X2 = Ma )
@ ( if_nat
@ ( ( vEBT_vebt_maxt @ Sn )
= none_nat )
@ Mi
@ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ Sn ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ Newlist @ ( the_nat @ ( vEBT_vebt_maxt @ Sn ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ Newlist
@ Sn ) ) ) ) ) ) ) ) ) ) ) ) ).
% del_x_not_mi_new_node_nil
thf(fact_9285_del__x__not__mia,axiom,
! [Mi: nat,X2: nat,Ma: nat,Deg: nat,H2: nat,L2: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less_nat @ Mi @ X2 )
& ( ord_less_eq_nat @ X2 @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= H2 )
=> ( ( ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= L2 )
=> ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) )
@ ( vEBT_Node
@ ( some_P7363390416028606310at_nat
@ ( product_Pair_nat_nat @ Mi
@ ( if_nat @ ( X2 = Ma )
@ ( if_nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) )
= none_nat )
@ Mi
@ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) )
@ ( vEBT_vebt_delete @ Summary @ H2 ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ ( if_nat @ ( X2 = Ma ) @ ( plus_plus_nat @ ( times_times_nat @ H2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) ) @ H2 ) ) ) ) @ Ma ) ) ) @ Deg @ ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) ) @ Summary ) ) ) ) ) ) ) ) ) ).
% del_x_not_mia
thf(fact_9286_del__in__range,axiom,
! [Mi: nat,X2: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less_eq_nat @ Mi @ X2 )
& ( ord_less_eq_nat @ X2 @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= ( if_VEBT_VEBT @ ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
@ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( vEBT_Node
@ ( some_P7363390416028606310at_nat
@ ( product_Pair_nat_nat @ ( if_nat @ ( X2 = Mi ) @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ Mi )
@ ( if_nat
@ ( ( ( X2 = Mi )
=> ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
= Ma ) )
& ( ( X2 != Mi )
=> ( X2 = Ma ) ) )
@ ( if_nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
= none_nat )
@ ( if_nat @ ( X2 = Mi ) @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ Mi )
@ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( vEBT_Node
@ ( some_P7363390416028606310at_nat
@ ( product_Pair_nat_nat @ ( if_nat @ ( X2 = Mi ) @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ Mi )
@ ( if_nat
@ ( ( ( X2 = Mi )
=> ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
= Ma ) )
& ( ( X2 != Mi )
=> ( X2 = Ma ) ) )
@ ( plus_plus_nat @ ( times_times_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ Summary ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) ) ) ) ) ) ).
% del_in_range
thf(fact_9287_del__x__mi,axiom,
! [X2: nat,Mi: nat,Ma: nat,Deg: nat,Xn: nat,H2: nat,Summary: vEBT_VEBT,TreeList: list_VEBT_VEBT,L2: nat] :
( ( ( X2 = Mi )
& ( ord_less_nat @ X2 @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( ( vEBT_VEBT_high @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= H2 )
=> ( ( Xn
= ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) )
=> ( ( ( vEBT_VEBT_low @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= L2 )
=> ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) )
@ ( vEBT_Node
@ ( some_P7363390416028606310at_nat
@ ( product_Pair_nat_nat @ Xn
@ ( if_nat @ ( Xn = Ma )
@ ( if_nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) )
= none_nat )
@ Xn
@ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) )
@ ( vEBT_vebt_delete @ Summary @ H2 ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Xn @ ( if_nat @ ( Xn = Ma ) @ ( plus_plus_nat @ ( times_times_nat @ H2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) ) @ H2 ) ) ) ) @ Ma ) ) ) @ Deg @ ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) ) @ Summary ) ) ) ) ) ) ) ) ) ) ).
% del_x_mi
thf(fact_9288_del__x__mi__lets__in,axiom,
! [X2: nat,Mi: nat,Ma: nat,Deg: nat,Xn: nat,H2: nat,Summary: vEBT_VEBT,TreeList: list_VEBT_VEBT,L2: nat,Newnode: vEBT_VEBT,Newlist: list_VEBT_VEBT] :
( ( ( X2 = Mi )
& ( ord_less_nat @ X2 @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( ( vEBT_VEBT_high @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= H2 )
=> ( ( Xn
= ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) )
=> ( ( ( vEBT_VEBT_low @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= L2 )
=> ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( ( Newnode
= ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) )
=> ( ( Newlist
= ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ Newnode ) )
=> ( ( ( vEBT_VEBT_minNull @ Newnode )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= ( vEBT_Node
@ ( some_P7363390416028606310at_nat
@ ( product_Pair_nat_nat @ Xn
@ ( if_nat @ ( Xn = Ma )
@ ( if_nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) )
= none_nat )
@ Xn
@ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ Newlist @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ Newlist
@ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) )
& ( ~ ( vEBT_VEBT_minNull @ Newnode )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Xn @ ( if_nat @ ( Xn = Ma ) @ ( plus_plus_nat @ ( times_times_nat @ H2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ Newlist @ H2 ) ) ) ) @ Ma ) ) ) @ Deg @ Newlist @ Summary ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% del_x_mi_lets_in
thf(fact_9289_del__x__mi__lets__in__minNull,axiom,
! [X2: nat,Mi: nat,Ma: nat,Deg: nat,Xn: nat,H2: nat,Summary: vEBT_VEBT,TreeList: list_VEBT_VEBT,L2: nat,Newnode: vEBT_VEBT,Newlist: list_VEBT_VEBT,Sn: vEBT_VEBT] :
( ( ( X2 = Mi )
& ( ord_less_nat @ X2 @ Ma ) )
=> ( ( Mi != Ma )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( ( vEBT_VEBT_high @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= H2 )
=> ( ( Xn
= ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) )
=> ( ( ( vEBT_VEBT_low @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= L2 )
=> ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( ( Newnode
= ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) )
=> ( ( Newlist
= ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ Newnode ) )
=> ( ( vEBT_VEBT_minNull @ Newnode )
=> ( ( Sn
= ( vEBT_vebt_delete @ Summary @ H2 ) )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= ( vEBT_Node
@ ( some_P7363390416028606310at_nat
@ ( product_Pair_nat_nat @ Xn
@ ( if_nat @ ( Xn = Ma )
@ ( if_nat
@ ( ( vEBT_vebt_maxt @ Sn )
= none_nat )
@ Xn
@ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ Sn ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ Newlist @ ( the_nat @ ( vEBT_vebt_maxt @ Sn ) ) ) ) ) ) )
@ Ma ) ) )
@ Deg
@ Newlist
@ Sn ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% del_x_mi_lets_in_minNull
thf(fact_9290_VEBT__internal_OT_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_H_Osimps_I7_J,axiom,
! [X2: nat,Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ( ord_less_nat @ X2 @ Mi )
| ( ord_less_nat @ Ma @ X2 ) )
=> ( ( vEBT_V1232361888498592333_e_t_e @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
= one_one_nat ) )
& ( ~ ( ( ord_less_nat @ X2 @ Mi )
| ( ord_less_nat @ Ma @ X2 ) )
=> ( ( ( ( X2 = Mi )
& ( X2 = Ma ) )
=> ( ( vEBT_V1232361888498592333_e_t_e @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
= one_one_nat ) )
& ( ~ ( ( X2 = Mi )
& ( X2 = Ma ) )
=> ( ( vEBT_V1232361888498592333_e_t_e @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
= ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) @ ( plus_plus_nat @ ( vEBT_V1232361888498592333_e_t_e @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( if_nat @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_V1232361888498592333_e_t_e @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) ) @ one_one_nat ) ) ) ) ) ) ).
% VEBT_internal.T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e'.simps(7)
thf(fact_9291_VEBT__internal_OT_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_H_Oelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: nat] :
( ( ( vEBT_V1232361888498592333_e_t_e @ X2 @ Xa3 )
= Y2 )
=> ( ( ? [A4: $o,B3: $o] :
( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Xa3 = zero_zero_nat )
=> ( Y2 != one_one_nat ) ) )
=> ( ( ? [A4: $o,B3: $o] :
( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Xa3
= ( suc @ zero_zero_nat ) )
=> ( Y2 != one_one_nat ) ) )
=> ( ( ? [A4: $o,B3: $o] :
( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ? [N2: nat] :
( Xa3
= ( suc @ ( suc @ N2 ) ) )
=> ( Y2 != one_one_nat ) ) )
=> ( ( ? [Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( Y2 != one_one_nat ) )
=> ( ( ? [Mi2: nat,Ma2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TreeList2 @ Summary2 ) )
=> ( Y2 != one_one_nat ) )
=> ( ( ? [Mi2: nat,Ma2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ TreeList2 @ Summary2 ) )
=> ( Y2 != one_one_nat ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ~ ( ( ( ( ord_less_nat @ Xa3 @ Mi2 )
| ( ord_less_nat @ Ma2 @ Xa3 ) )
=> ( Y2 = one_one_nat ) )
& ( ~ ( ( ord_less_nat @ Xa3 @ Mi2 )
| ( ord_less_nat @ Ma2 @ Xa3 ) )
=> ( ( ( ( Xa3 = Mi2 )
& ( Xa3 = Ma2 ) )
=> ( Y2 = one_one_nat ) )
& ( ~ ( ( Xa3 = Mi2 )
& ( Xa3 = Ma2 ) )
=> ( Y2
= ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) @ ( plus_plus_nat @ ( vEBT_V1232361888498592333_e_t_e @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( if_nat @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_V1232361888498592333_e_t_e @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) ) @ one_one_nat ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e'.elims
thf(fact_9292_vebt__pred_Osimps_I7_J,axiom,
! [Ma: nat,X2: nat,Mi: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less_nat @ Ma @ X2 )
=> ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
= ( some_nat @ Ma ) ) )
& ( ~ ( ord_less_nat @ Ma @ X2 )
=> ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
= ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
@ ( if_option_nat
@ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( if_option_nat
@ ( ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= none_nat )
@ ( if_option_nat @ ( ord_less_nat @ Mi @ X2 ) @ ( some_nat @ Mi ) @ none_nat )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
@ none_nat ) ) ) ) ).
% vebt_pred.simps(7)
thf(fact_9293_vebt__pred_Oelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: option_nat] :
( ( ( vEBT_vebt_pred @ X2 @ Xa3 )
= Y2 )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X2
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( Xa3 = zero_zero_nat )
=> ( Y2 != none_nat ) ) )
=> ( ! [A4: $o] :
( ? [Uw2: $o] :
( X2
= ( vEBT_Leaf @ A4 @ Uw2 ) )
=> ( ( Xa3
= ( suc @ zero_zero_nat ) )
=> ~ ( ( A4
=> ( Y2
= ( some_nat @ zero_zero_nat ) ) )
& ( ~ A4
=> ( Y2 = none_nat ) ) ) ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ? [Va2: nat] :
( Xa3
= ( suc @ ( suc @ Va2 ) ) )
=> ~ ( ( B3
=> ( Y2
= ( some_nat @ one_one_nat ) ) )
& ( ~ B3
=> ( ( A4
=> ( Y2
= ( some_nat @ zero_zero_nat ) ) )
& ( ~ A4
=> ( Y2 = none_nat ) ) ) ) ) ) )
=> ( ( ? [Uy2: nat,Uz2: list_VEBT_VEBT,Va3: vEBT_VEBT] :
( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va3 ) )
=> ( Y2 != none_nat ) )
=> ( ( ? [V2: product_prod_nat_nat,Vd2: list_VEBT_VEBT,Ve2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vd2 @ Ve2 ) )
=> ( Y2 != none_nat ) )
=> ( ( ? [V2: product_prod_nat_nat,Vh2: list_VEBT_VEBT,Vi2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vh2 @ Vi2 ) )
=> ( Y2 != none_nat ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ~ ( ( ( ord_less_nat @ Ma2 @ Xa3 )
=> ( Y2
= ( some_nat @ Ma2 ) ) )
& ( ~ ( ord_less_nat @ Ma2 @ Xa3 )
=> ( Y2
= ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
@ ( if_option_nat
@ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( if_option_nat
@ ( ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= none_nat )
@ ( if_option_nat @ ( ord_less_nat @ Mi2 @ Xa3 ) @ ( some_nat @ Mi2 ) @ none_nat )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
@ none_nat ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_pred.elims
thf(fact_9294_succ__less__length__list,axiom,
! [Deg: nat,Mi: nat,X2: nat,TreeList: list_VEBT_VEBT,Ma: nat,Summary: vEBT_VEBT] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( ord_less_eq_nat @ Mi @ X2 )
=> ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= ( if_option_nat
@ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( if_option_nat
@ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= none_nat )
@ none_nat
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% succ_less_length_list
thf(fact_9295_succ__greatereq__min,axiom,
! [Deg: nat,Mi: nat,X2: nat,Ma: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( ord_less_eq_nat @ Mi @ X2 )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
@ ( if_option_nat
@ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( if_option_nat
@ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= none_nat )
@ none_nat
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
@ none_nat ) ) ) ) ).
% succ_greatereq_min
thf(fact_9296_vebt__delete_Oelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: vEBT_VEBT] :
( ( ( vEBT_vebt_delete @ X2 @ Xa3 )
= Y2 )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Xa3 = zero_zero_nat )
=> ( Y2
!= ( vEBT_Leaf @ $false @ B3 ) ) ) )
=> ( ! [A4: $o] :
( ? [B3: $o] :
( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Xa3
= ( suc @ zero_zero_nat ) )
=> ( Y2
!= ( vEBT_Leaf @ A4 @ $false ) ) ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ? [N2: nat] :
( Xa3
= ( suc @ ( suc @ N2 ) ) )
=> ( Y2
!= ( vEBT_Leaf @ A4 @ B3 ) ) ) )
=> ( ! [Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( Y2
!= ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) ) )
=> ( ! [Mi2: nat,Ma2: nat,TrLst: list_VEBT_VEBT,Smry: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TrLst @ Smry ) )
=> ( Y2
!= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TrLst @ Smry ) ) )
=> ( ! [Mi2: nat,Ma2: nat,Tr: list_VEBT_VEBT,Sm: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ Tr @ Sm ) )
=> ( Y2
!= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ Tr @ Sm ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ~ ( ( ( ( ord_less_nat @ Xa3 @ Mi2 )
| ( ord_less_nat @ Ma2 @ Xa3 ) )
=> ( Y2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) ) )
& ( ~ ( ( ord_less_nat @ Xa3 @ Mi2 )
| ( ord_less_nat @ Ma2 @ Xa3 ) )
=> ( ( ( ( Xa3 = Mi2 )
& ( Xa3 = Ma2 ) )
=> ( Y2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) ) )
& ( ~ ( ( Xa3 = Mi2 )
& ( Xa3 = Ma2 ) )
=> ( Y2
= ( if_VEBT_VEBT @ ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
@ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( vEBT_Node
@ ( some_P7363390416028606310at_nat
@ ( product_Pair_nat_nat @ ( if_nat @ ( Xa3 = Mi2 ) @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ Mi2 )
@ ( if_nat
@ ( ( ( Xa3 = Mi2 )
=> ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) )
= Ma2 ) )
& ( ( Xa3 != Mi2 )
=> ( Xa3 = Ma2 ) ) )
@ ( if_nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
= none_nat )
@ ( if_nat @ ( Xa3 = Mi2 ) @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ Mi2 )
@ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) )
@ Ma2 ) ) )
@ ( suc @ ( suc @ Va2 ) )
@ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( vEBT_Node
@ ( some_P7363390416028606310at_nat
@ ( product_Pair_nat_nat @ ( if_nat @ ( Xa3 = Mi2 ) @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ Mi2 )
@ ( if_nat
@ ( ( ( Xa3 = Mi2 )
=> ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) )
= Ma2 ) )
& ( ( Xa3 != Mi2 )
=> ( Xa3 = Ma2 ) ) )
@ ( plus_plus_nat @ ( times_times_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ Ma2 ) ) )
@ ( suc @ ( suc @ Va2 ) )
@ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ Summary2 ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_delete.elims
thf(fact_9297_less__shift,axiom,
( ord_less_nat
= ( ^ [X: nat,Y: nat] : ( vEBT_VEBT_less @ ( some_nat @ X ) @ ( some_nat @ Y ) ) ) ) ).
% less_shift
thf(fact_9298_vebt__delete_Osimps_I3_J,axiom,
! [A: $o,B: $o,N: nat] :
( ( vEBT_vebt_delete @ ( vEBT_Leaf @ A @ B ) @ ( suc @ ( suc @ N ) ) )
= ( vEBT_Leaf @ A @ B ) ) ).
% vebt_delete.simps(3)
thf(fact_9299_vebt__delete_Osimps_I1_J,axiom,
! [A: $o,B: $o] :
( ( vEBT_vebt_delete @ ( vEBT_Leaf @ A @ B ) @ zero_zero_nat )
= ( vEBT_Leaf @ $false @ B ) ) ).
% vebt_delete.simps(1)
thf(fact_9300_vebt__delete_Osimps_I4_J,axiom,
! [Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,Uu: nat] :
( ( vEBT_vebt_delete @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList @ Summary ) @ Uu )
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList @ Summary ) ) ).
% vebt_delete.simps(4)
thf(fact_9301_vebt__delete_Osimps_I2_J,axiom,
! [A: $o,B: $o] :
( ( vEBT_vebt_delete @ ( vEBT_Leaf @ A @ B ) @ ( suc @ zero_zero_nat ) )
= ( vEBT_Leaf @ A @ $false ) ) ).
% vebt_delete.simps(2)
thf(fact_9302_vebt__delete_Osimps_I5_J,axiom,
! [Mi: nat,Ma: nat,TrLst2: list_VEBT_VEBT,Smry2: vEBT_VEBT,X2: nat] :
( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ zero_zero_nat @ TrLst2 @ Smry2 ) @ X2 )
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ zero_zero_nat @ TrLst2 @ Smry2 ) ) ).
% vebt_delete.simps(5)
thf(fact_9303_vebt__delete_Osimps_I6_J,axiom,
! [Mi: nat,Ma: nat,Tr2: list_VEBT_VEBT,Sm2: vEBT_VEBT,X2: nat] :
( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ zero_zero_nat ) @ Tr2 @ Sm2 ) @ X2 )
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ zero_zero_nat ) @ Tr2 @ Sm2 ) ) ).
% vebt_delete.simps(6)
thf(fact_9304_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_H_Osimps_I6_J,axiom,
! [X2: nat,Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less_nat @ X2 @ Mi )
=> ( ( vEBT_T_s_u_c_c2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
= one_one_nat ) )
& ( ~ ( ord_less_nat @ X2 @ Mi )
=> ( ( vEBT_T_s_u_c_c2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
= ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
@ ( if_nat
@ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_s_u_c_c2 @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( plus_plus_nat @ ( vEBT_T_s_u_c_c2 @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) )
@ one_one_nat ) ) ) ) ).
% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c'.simps(6)
thf(fact_9305_vebt__succ_Osimps_I6_J,axiom,
! [X2: nat,Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ord_less_nat @ X2 @ Mi )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
= ( some_nat @ Mi ) ) )
& ( ~ ( ord_less_nat @ X2 @ Mi )
=> ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
= ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
@ ( if_option_nat
@ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( if_option_nat
@ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= none_nat )
@ none_nat
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
@ none_nat ) ) ) ) ).
% vebt_succ.simps(6)
thf(fact_9306_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_H_Oelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: nat] :
( ( ( vEBT_T_s_u_c_c2 @ X2 @ Xa3 )
= Y2 )
=> ( ( ? [Uu2: $o,B3: $o] :
( X2
= ( vEBT_Leaf @ Uu2 @ B3 ) )
=> ( ( Xa3 = zero_zero_nat )
=> ( Y2 != one_one_nat ) ) )
=> ( ( ? [Uv2: $o,Uw2: $o] :
( X2
= ( vEBT_Leaf @ Uv2 @ Uw2 ) )
=> ( ? [N2: nat] :
( Xa3
= ( suc @ N2 ) )
=> ( Y2 != one_one_nat ) ) )
=> ( ( ? [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) )
=> ( Y2 != one_one_nat ) )
=> ( ( ? [V2: product_prod_nat_nat,Vc: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc @ Vd2 ) )
=> ( Y2 != one_one_nat ) )
=> ( ( ? [V2: product_prod_nat_nat,Vg2: list_VEBT_VEBT,Vh2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) )
=> ( Y2 != one_one_nat ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ~ ( ( ( ord_less_nat @ Xa3 @ Mi2 )
=> ( Y2 = one_one_nat ) )
& ( ~ ( ord_less_nat @ Xa3 @ Mi2 )
=> ( Y2
= ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
@ ( if_nat
@ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_s_u_c_c2 @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( plus_plus_nat @ ( vEBT_T_s_u_c_c2 @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) )
@ one_one_nat ) ) ) ) ) ) ) ) ) ) ) ).
% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c'.elims
thf(fact_9307_vebt__succ_Oelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: option_nat] :
( ( ( vEBT_vebt_succ @ X2 @ Xa3 )
= Y2 )
=> ( ! [Uu2: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ Uu2 @ B3 ) )
=> ( ( Xa3 = zero_zero_nat )
=> ~ ( ( B3
=> ( Y2
= ( some_nat @ one_one_nat ) ) )
& ( ~ B3
=> ( Y2 = none_nat ) ) ) ) )
=> ( ( ? [Uv2: $o,Uw2: $o] :
( X2
= ( vEBT_Leaf @ Uv2 @ Uw2 ) )
=> ( ? [N2: nat] :
( Xa3
= ( suc @ N2 ) )
=> ( Y2 != none_nat ) ) )
=> ( ( ? [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) )
=> ( Y2 != none_nat ) )
=> ( ( ? [V2: product_prod_nat_nat,Vc: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc @ Vd2 ) )
=> ( Y2 != none_nat ) )
=> ( ( ? [V2: product_prod_nat_nat,Vg2: list_VEBT_VEBT,Vh2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) )
=> ( Y2 != none_nat ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ~ ( ( ( ord_less_nat @ Xa3 @ Mi2 )
=> ( Y2
= ( some_nat @ Mi2 ) ) )
& ( ~ ( ord_less_nat @ Xa3 @ Mi2 )
=> ( Y2
= ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
@ ( if_option_nat
@ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( if_option_nat
@ ( ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= none_nat )
@ none_nat
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
@ none_nat ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_succ.elims
thf(fact_9308_vebt__delete_Osimps_I7_J,axiom,
! [X2: nat,Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( ( ( ord_less_nat @ X2 @ Mi )
| ( ord_less_nat @ Ma @ X2 ) )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) ) )
& ( ~ ( ( ord_less_nat @ X2 @ Mi )
| ( ord_less_nat @ Ma @ X2 ) )
=> ( ( ( ( X2 = Mi )
& ( X2 = Ma ) )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) ) )
& ( ~ ( ( X2 = Mi )
& ( X2 = Ma ) )
=> ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
= ( if_VEBT_VEBT @ ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
@ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( vEBT_Node
@ ( some_P7363390416028606310at_nat
@ ( product_Pair_nat_nat @ ( if_nat @ ( X2 = Mi ) @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ Mi )
@ ( if_nat
@ ( ( ( X2 = Mi )
=> ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
= Ma ) )
& ( ( X2 != Mi )
=> ( X2 = Ma ) ) )
@ ( if_nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
= none_nat )
@ ( if_nat @ ( X2 = Mi ) @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ Mi )
@ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) )
@ Ma ) ) )
@ ( suc @ ( suc @ Va ) )
@ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( vEBT_Node
@ ( some_P7363390416028606310at_nat
@ ( product_Pair_nat_nat @ ( if_nat @ ( X2 = Mi ) @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ Mi )
@ ( if_nat
@ ( ( ( X2 = Mi )
=> ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
= Ma ) )
& ( ( X2 != Mi )
=> ( X2 = Ma ) ) )
@ ( plus_plus_nat @ ( times_times_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ Ma ) ) )
@ ( suc @ ( suc @ Va ) )
@ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ Summary ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) ) ) ) ) ) ) ).
% vebt_delete.simps(7)
thf(fact_9309_insert__simp__norm,axiom,
! [X2: nat,Deg: nat,TreeList: list_VEBT_VEBT,Mi: nat,Ma: nat,Summary: vEBT_VEBT] :
( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( ( ord_less_nat @ Mi @ X2 )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( X2 != Ma )
=> ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ ( ord_max_nat @ X2 @ Ma ) ) ) @ Deg @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary ) ) ) ) ) ) ) ).
% insert_simp_norm
thf(fact_9310_insert__simp__excp,axiom,
! [Mi: nat,Deg: nat,TreeList: list_VEBT_VEBT,X2: nat,Ma: nat,Summary: vEBT_VEBT] :
( ( ord_less_nat @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( ( ord_less_nat @ X2 @ Mi )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
=> ( ( X2 != Ma )
=> ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ X2 @ ( ord_max_nat @ Mi @ Ma ) ) ) @ Deg @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary ) ) ) ) ) ) ) ).
% insert_simp_excp
thf(fact_9311_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_Oelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: nat] :
( ( ( vEBT_T_i_n_s_e_r_t @ X2 @ Xa3 )
= Y2 )
=> ( ( ? [A4: $o,B3: $o] :
( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( Y2
!= ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( Xa3 = zero_zero_nat ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) ) )
=> ( ( ? [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts2 @ S2 ) )
=> ( Y2 != one_one_nat ) )
=> ( ( ? [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts2 @ S2 ) )
=> ( Y2 != one_one_nat ) )
=> ( ( ? [V2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary2 ) )
=> ( Y2
!= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( Y2
!= ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) )
@ ( if_nat
@ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
& ~ ( ( Xa3 = Mi2 )
| ( Xa3 = Ma2 ) ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ ( vEBT_T_i_n_s_e_r_t @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_T_m_i_n_N_u_l_l @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( if_nat @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_T_i_n_s_e_r_t @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) )
@ one_one_nat ) ) ) ) ) ) ) ) ) ).
% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t.elims
thf(fact_9312_max__Suc__Suc,axiom,
! [M: nat,N: nat] :
( ( ord_max_nat @ ( suc @ M ) @ ( suc @ N ) )
= ( suc @ ( ord_max_nat @ M @ N ) ) ) ).
% max_Suc_Suc
thf(fact_9313_max__nat_Oeq__neutr__iff,axiom,
! [A: nat,B: nat] :
( ( ( ord_max_nat @ A @ B )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
& ( B = zero_zero_nat ) ) ) ).
% max_nat.eq_neutr_iff
thf(fact_9314_max__nat_Oleft__neutral,axiom,
! [A: nat] :
( ( ord_max_nat @ zero_zero_nat @ A )
= A ) ).
% max_nat.left_neutral
thf(fact_9315_max__nat_Oneutr__eq__iff,axiom,
! [A: nat,B: nat] :
( ( zero_zero_nat
= ( ord_max_nat @ A @ B ) )
= ( ( A = zero_zero_nat )
& ( B = zero_zero_nat ) ) ) ).
% max_nat.neutr_eq_iff
thf(fact_9316_max__nat_Oright__neutral,axiom,
! [A: nat] :
( ( ord_max_nat @ A @ zero_zero_nat )
= A ) ).
% max_nat.right_neutral
thf(fact_9317_max__0L,axiom,
! [N: nat] :
( ( ord_max_nat @ zero_zero_nat @ N )
= N ) ).
% max_0L
thf(fact_9318_max__0R,axiom,
! [N: nat] :
( ( ord_max_nat @ N @ zero_zero_nat )
= N ) ).
% max_0R
thf(fact_9319_max__numeral__Suc,axiom,
! [K: num,N: nat] :
( ( ord_max_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
= ( suc @ ( ord_max_nat @ ( pred_numeral @ K ) @ N ) ) ) ).
% max_numeral_Suc
thf(fact_9320_max__Suc__numeral,axiom,
! [N: nat,K: num] :
( ( ord_max_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
= ( suc @ ( ord_max_nat @ N @ ( pred_numeral @ K ) ) ) ) ).
% max_Suc_numeral
thf(fact_9321_nat__add__max__right,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( plus_plus_nat @ M @ ( ord_max_nat @ N @ Q2 ) )
= ( ord_max_nat @ ( plus_plus_nat @ M @ N ) @ ( plus_plus_nat @ M @ Q2 ) ) ) ).
% nat_add_max_right
thf(fact_9322_nat__add__max__left,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( plus_plus_nat @ ( ord_max_nat @ M @ N ) @ Q2 )
= ( ord_max_nat @ ( plus_plus_nat @ M @ Q2 ) @ ( plus_plus_nat @ N @ Q2 ) ) ) ).
% nat_add_max_left
thf(fact_9323_nat__mult__max__left,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( times_times_nat @ ( ord_max_nat @ M @ N ) @ Q2 )
= ( ord_max_nat @ ( times_times_nat @ M @ Q2 ) @ ( times_times_nat @ N @ Q2 ) ) ) ).
% nat_mult_max_left
thf(fact_9324_nat__mult__max__right,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( times_times_nat @ M @ ( ord_max_nat @ N @ Q2 ) )
= ( ord_max_nat @ ( times_times_nat @ M @ N ) @ ( times_times_nat @ M @ Q2 ) ) ) ).
% nat_mult_max_right
thf(fact_9325_nat__minus__add__max,axiom,
! [N: nat,M: nat] :
( ( plus_plus_nat @ ( minus_minus_nat @ N @ M ) @ M )
= ( ord_max_nat @ N @ M ) ) ).
% nat_minus_add_max
thf(fact_9326_minNull__bound,axiom,
! [T2: vEBT_VEBT] : ( ord_less_eq_nat @ ( vEBT_T_m_i_n_N_u_l_l @ T2 ) @ one_one_nat ) ).
% minNull_bound
thf(fact_9327_T_092_060_094sub_062m_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062N_092_060_094sub_062u_092_060_094sub_062l_092_060_094sub_062l_Osimps_I3_J,axiom,
! [Uu: $o] :
( ( vEBT_T_m_i_n_N_u_l_l @ ( vEBT_Leaf @ Uu @ $true ) )
= one_one_nat ) ).
% T\<^sub>m\<^sub>i\<^sub>n\<^sub>N\<^sub>u\<^sub>l\<^sub>l.simps(3)
thf(fact_9328_T_092_060_094sub_062m_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062N_092_060_094sub_062u_092_060_094sub_062l_092_060_094sub_062l_Osimps_I2_J,axiom,
! [Uv: $o] :
( ( vEBT_T_m_i_n_N_u_l_l @ ( vEBT_Leaf @ $true @ Uv ) )
= one_one_nat ) ).
% T\<^sub>m\<^sub>i\<^sub>n\<^sub>N\<^sub>u\<^sub>l\<^sub>l.simps(2)
thf(fact_9329_T_092_060_094sub_062m_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062N_092_060_094sub_062u_092_060_094sub_062l_092_060_094sub_062l_Osimps_I1_J,axiom,
( ( vEBT_T_m_i_n_N_u_l_l @ ( vEBT_Leaf @ $false @ $false ) )
= one_one_nat ) ).
% T\<^sub>m\<^sub>i\<^sub>n\<^sub>N\<^sub>u\<^sub>l\<^sub>l.simps(1)
thf(fact_9330_T_092_060_094sub_062m_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062N_092_060_094sub_062u_092_060_094sub_062l_092_060_094sub_062l_Osimps_I5_J,axiom,
! [Uz: product_prod_nat_nat,Va: nat,Vb: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
( ( vEBT_T_m_i_n_N_u_l_l @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz ) @ Va @ Vb @ Vc2 ) )
= one_one_nat ) ).
% T\<^sub>m\<^sub>i\<^sub>n\<^sub>N\<^sub>u\<^sub>l\<^sub>l.simps(5)
thf(fact_9331_T_092_060_094sub_062m_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062N_092_060_094sub_062u_092_060_094sub_062l_092_060_094sub_062l_Osimps_I4_J,axiom,
! [Uw: nat,Ux: list_VEBT_VEBT,Uy: vEBT_VEBT] :
( ( vEBT_T_m_i_n_N_u_l_l @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw @ Ux @ Uy ) )
= one_one_nat ) ).
% T\<^sub>m\<^sub>i\<^sub>n\<^sub>N\<^sub>u\<^sub>l\<^sub>l.simps(4)
thf(fact_9332_T_092_060_094sub_062m_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062N_092_060_094sub_062u_092_060_094sub_062l_092_060_094sub_062l_Oelims,axiom,
! [X2: vEBT_VEBT,Y2: nat] :
( ( ( vEBT_T_m_i_n_N_u_l_l @ X2 )
= Y2 )
=> ( ( ( X2
= ( vEBT_Leaf @ $false @ $false ) )
=> ( Y2 != one_one_nat ) )
=> ( ( ? [Uv2: $o] :
( X2
= ( vEBT_Leaf @ $true @ Uv2 ) )
=> ( Y2 != one_one_nat ) )
=> ( ( ? [Uu2: $o] :
( X2
= ( vEBT_Leaf @ Uu2 @ $true ) )
=> ( Y2 != one_one_nat ) )
=> ( ( ? [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) )
=> ( Y2 != one_one_nat ) )
=> ~ ( ? [Uz2: product_prod_nat_nat,Va3: nat,Vb2: list_VEBT_VEBT,Vc: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va3 @ Vb2 @ Vc ) )
=> ( Y2 != one_one_nat ) ) ) ) ) ) ) ).
% T\<^sub>m\<^sub>i\<^sub>n\<^sub>N\<^sub>u\<^sub>l\<^sub>l.elims
thf(fact_9333_vebt__insert_Osimps_I5_J,axiom,
! [Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
= ( if_VEBT_VEBT
@ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
& ~ ( ( X2 = Mi )
| ( X2 = Ma ) ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ X2 @ Mi ) @ ( ord_max_nat @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ Ma ) ) ) @ ( suc @ ( suc @ Va ) ) @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) ) ) ).
% vebt_insert.simps(5)
thf(fact_9334_vebt__insert_Oelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: vEBT_VEBT] :
( ( ( vEBT_vebt_insert @ X2 @ Xa3 )
= Y2 )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ~ ( ( ( Xa3 = zero_zero_nat )
=> ( Y2
= ( vEBT_Leaf @ $true @ B3 ) ) )
& ( ( Xa3 != zero_zero_nat )
=> ( ( ( Xa3 = one_one_nat )
=> ( Y2
= ( vEBT_Leaf @ A4 @ $true ) ) )
& ( ( Xa3 != one_one_nat )
=> ( Y2
= ( vEBT_Leaf @ A4 @ B3 ) ) ) ) ) ) )
=> ( ! [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts2 @ S2 ) )
=> ( Y2
!= ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts2 @ S2 ) ) )
=> ( ! [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts2 @ S2 ) )
=> ( Y2
!= ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts2 @ S2 ) ) )
=> ( ! [V2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary2 ) )
=> ( Y2
!= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Xa3 @ Xa3 ) ) @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary2 ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( Y2
!= ( if_VEBT_VEBT
@ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
& ~ ( ( Xa3 = Mi2 )
| ( Xa3 = Ma2 ) ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Xa3 @ Mi2 ) @ ( ord_max_nat @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ Ma2 ) ) ) @ ( suc @ ( suc @ Va2 ) ) @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary2 ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) ) ) ) ) ) ) ) ) ).
% vebt_insert.elims
thf(fact_9335_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_Osimps_I5_J,axiom,
! [Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
( ( vEBT_T_i_n_s_e_r_t @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) )
@ ( if_nat
@ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
& ~ ( ( X2 = Mi )
| ( X2 = Ma ) ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ ( vEBT_T_i_n_s_e_r_t @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_T_m_i_n_N_u_l_l @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( if_nat @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_T_i_n_s_e_r_t @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) )
@ one_one_nat ) ) ) ).
% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t.simps(5)
thf(fact_9336_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_H_Oelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: nat] :
( ( ( vEBT_T_i_n_s_e_r_t2 @ X2 @ Xa3 )
= Y2 )
=> ( ( ? [A4: $o,B3: $o] :
( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( Y2 != one_one_nat ) )
=> ( ( ? [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts2 @ S2 ) )
=> ( Y2 != one_one_nat ) )
=> ( ( ? [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts2 @ S2 ) )
=> ( Y2 != one_one_nat ) )
=> ( ( ? [V2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary2 ) )
=> ( Y2 != one_one_nat ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( Y2
!= ( if_nat
@ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
& ~ ( ( Xa3 = Mi2 )
| ( Xa3 = Ma2 ) ) )
@ ( plus_plus_nat @ ( vEBT_T_i_n_s_e_r_t2 @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( if_nat @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_T_i_n_s_e_r_t2 @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) )
@ one_one_nat ) ) ) ) ) ) ) ) ).
% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t'.elims
thf(fact_9337_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_H_Osimps_I5_J,axiom,
! [Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
( ( vEBT_T_i_n_s_e_r_t2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
= ( if_nat
@ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
& ~ ( ( X2 = Mi )
| ( X2 = Ma ) ) )
@ ( plus_plus_nat @ ( vEBT_T_i_n_s_e_r_t2 @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( if_nat @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_T_i_n_s_e_r_t2 @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) )
@ one_one_nat ) ) ).
% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t'.simps(5)
thf(fact_9338_T_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_Oelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: nat] :
( ( ( vEBT_T_d_e_l_e_t_e @ X2 @ Xa3 )
= Y2 )
=> ( ( ? [A4: $o,B3: $o] :
( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Xa3 = zero_zero_nat )
=> ( Y2 != one_one_nat ) ) )
=> ( ( ? [A4: $o,B3: $o] :
( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Xa3
= ( suc @ zero_zero_nat ) )
=> ( Y2 != one_one_nat ) ) )
=> ( ( ? [A4: $o,B3: $o] :
( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ? [N2: nat] :
( Xa3
= ( suc @ ( suc @ N2 ) ) )
=> ( Y2 != one_one_nat ) ) )
=> ( ( ? [Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( Y2 != one_one_nat ) )
=> ( ( ? [Mi2: nat,Ma2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TreeList2 @ Summary2 ) )
=> ( Y2 != one_one_nat ) )
=> ( ( ? [Mi2: nat,Ma2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ TreeList2 @ Summary2 ) )
=> ( Y2 != one_one_nat ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( Y2
!= ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) )
@ ( if_nat
@ ( ( ord_less_nat @ Xa3 @ Mi2 )
| ( ord_less_nat @ Ma2 @ Xa3 ) )
@ one_one_nat
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) )
@ ( if_nat
@ ( ( Xa3 = Mi2 )
& ( Xa3 = Ma2 ) )
@ ( numeral_numeral_nat @ ( bit1 @ one ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit1 @ one ) ) ) ) @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( plus_plus_nat @ ( vEBT_T_m_i_n_t @ Summary2 ) @ ( vEBT_T_m_i_n_t @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ one ) ) ) ) @ one_one_nat ) ) @ one_one_nat )
@ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_d_e_l_e_t_e @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_i_n_N_u_l_l @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
@ ( if_nat @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_d_e_l_e_t_e @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) )
@ ( if_nat
@ ( ( ( Xa3 = Mi2 )
=> ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) )
= Ma2 ) )
& ( ( Xa3 != Mi2 )
=> ( Xa3 = Ma2 ) ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_a_x_t @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
@ ( plus_plus_nat @ one_one_nat
@ ( if_nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
= none_nat )
@ one_one_nat
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( vEBT_T_m_a_x_t @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) )
@ one_one_nat ) ) )
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) )
@ ( if_nat
@ ( ( ( Xa3 = Mi2 )
=> ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) )
= Ma2 ) )
& ( ( Xa3 != Mi2 )
=> ( Xa3 = Ma2 ) ) )
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ one ) ) ) @ ( vEBT_T_m_a_x_t @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
@ one_one_nat ) ) ) ) )
@ one_one_nat ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e.elims
thf(fact_9339_max__enat__simps_I3_J,axiom,
! [Q2: extended_enat] :
( ( ord_ma741700101516333627d_enat @ zero_z5237406670263579293d_enat @ Q2 )
= Q2 ) ).
% max_enat_simps(3)
thf(fact_9340_max__enat__simps_I2_J,axiom,
! [Q2: extended_enat] :
( ( ord_ma741700101516333627d_enat @ Q2 @ zero_z5237406670263579293d_enat )
= Q2 ) ).
% max_enat_simps(2)
thf(fact_9341_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_H_Osimps_I1_J,axiom,
! [A: $o,B: $o,X2: nat] :
( ( vEBT_T_i_n_s_e_r_t2 @ ( vEBT_Leaf @ A @ B ) @ X2 )
= one_one_nat ) ).
% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t'.simps(1)
thf(fact_9342_T_092_060_094sub_062m_092_060_094sub_062a_092_060_094sub_062x_092_060_094sub_062t_Osimps_I1_J,axiom,
! [A: $o,B: $o] :
( ( vEBT_T_m_a_x_t @ ( vEBT_Leaf @ A @ B ) )
= ( plus_plus_nat @ one_one_nat @ ( if_nat @ B @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) ) ).
% T\<^sub>m\<^sub>a\<^sub>x\<^sub>t.simps(1)
thf(fact_9343_T_092_060_094sub_062m_092_060_094sub_062a_092_060_094sub_062x_092_060_094sub_062t_Osimps_I2_J,axiom,
! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
( ( vEBT_T_m_a_x_t @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) )
= one_one_nat ) ).
% T\<^sub>m\<^sub>a\<^sub>x\<^sub>t.simps(2)
thf(fact_9344_T_092_060_094sub_062m_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062t_Osimps_I2_J,axiom,
! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
( ( vEBT_T_m_i_n_t @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) )
= one_one_nat ) ).
% T\<^sub>m\<^sub>i\<^sub>n\<^sub>t.simps(2)
thf(fact_9345_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_H_Osimps_I2_J,axiom,
! [Info: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S3: vEBT_VEBT,X2: nat] :
( ( vEBT_T_i_n_s_e_r_t2 @ ( vEBT_Node @ Info @ zero_zero_nat @ Ts @ S3 ) @ X2 )
= one_one_nat ) ).
% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t'.simps(2)
thf(fact_9346_maxt__bound,axiom,
! [T2: vEBT_VEBT] : ( ord_less_eq_nat @ ( vEBT_T_m_a_x_t @ T2 ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ).
% maxt_bound
thf(fact_9347_T_092_060_094sub_062m_092_060_094sub_062a_092_060_094sub_062x_092_060_094sub_062t_Osimps_I3_J,axiom,
! [Mi: nat,Ma: nat,Ux: nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT] :
( ( vEBT_T_m_a_x_t @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Ux @ Uy @ Uz ) )
= one_one_nat ) ).
% T\<^sub>m\<^sub>a\<^sub>x\<^sub>t.simps(3)
thf(fact_9348_mint__bound,axiom,
! [T2: vEBT_VEBT] : ( ord_less_eq_nat @ ( vEBT_T_m_i_n_t @ T2 ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ).
% mint_bound
thf(fact_9349_T_092_060_094sub_062m_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062t_Osimps_I1_J,axiom,
! [A: $o,B: $o] :
( ( vEBT_T_m_i_n_t @ ( vEBT_Leaf @ A @ B ) )
= ( plus_plus_nat @ one_one_nat @ ( if_nat @ A @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) ) ).
% T\<^sub>m\<^sub>i\<^sub>n\<^sub>t.simps(1)
thf(fact_9350_T_092_060_094sub_062m_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062t_Osimps_I3_J,axiom,
! [Mi: nat,Ma: nat,Ux: nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT] :
( ( vEBT_T_m_i_n_t @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Ux @ Uy @ Uz ) )
= one_one_nat ) ).
% T\<^sub>m\<^sub>i\<^sub>n\<^sub>t.simps(3)
thf(fact_9351_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_H_Osimps_I3_J,axiom,
! [Info: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S3: vEBT_VEBT,X2: nat] :
( ( vEBT_T_i_n_s_e_r_t2 @ ( vEBT_Node @ Info @ ( suc @ zero_zero_nat ) @ Ts @ S3 ) @ X2 )
= one_one_nat ) ).
% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t'.simps(3)
thf(fact_9352_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_H_Osimps_I4_J,axiom,
! [V: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
( ( vEBT_T_i_n_s_e_r_t2 @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V ) ) @ TreeList @ Summary ) @ X2 )
= one_one_nat ) ).
% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t'.simps(4)
thf(fact_9353_insersimp_H,axiom,
! [T2: vEBT_VEBT,N: nat,Y2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ T2 @ X_1 )
=> ( ord_less_eq_nat @ ( vEBT_T_i_n_s_e_r_t2 @ T2 @ Y2 ) @ one_one_nat ) ) ) ).
% insersimp'
thf(fact_9354_insertsimp_H,axiom,
! [T2: vEBT_VEBT,N: nat,L2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_VEBT_minNull @ T2 )
=> ( ord_less_eq_nat @ ( vEBT_T_i_n_s_e_r_t2 @ T2 @ L2 ) @ one_one_nat ) ) ) ).
% insertsimp'
thf(fact_9355_insert_H__bound__height,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ord_less_eq_nat @ ( vEBT_T_i_n_s_e_r_t2 @ T2 @ X2 ) @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ T2 ) ) ) ) ).
% insert'_bound_height
thf(fact_9356_T_092_060_094sub_062m_092_060_094sub_062a_092_060_094sub_062x_092_060_094sub_062t_Oelims,axiom,
! [X2: vEBT_VEBT,Y2: nat] :
( ( ( vEBT_T_m_a_x_t @ X2 )
= Y2 )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( Y2
!= ( plus_plus_nat @ one_one_nat @ ( if_nat @ B3 @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) ) )
=> ( ( ? [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
=> ( Y2 != one_one_nat ) )
=> ~ ( ? [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
=> ( Y2 != one_one_nat ) ) ) ) ) ).
% T\<^sub>m\<^sub>a\<^sub>x\<^sub>t.elims
thf(fact_9357_T_092_060_094sub_062m_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062t_Oelims,axiom,
! [X2: vEBT_VEBT,Y2: nat] :
( ( ( vEBT_T_m_i_n_t @ X2 )
= Y2 )
=> ( ! [A4: $o] :
( ? [B3: $o] :
( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( Y2
!= ( plus_plus_nat @ one_one_nat @ ( if_nat @ A4 @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) ) )
=> ( ( ? [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
=> ( Y2 != one_one_nat ) )
=> ~ ( ? [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
=> ( Y2 != one_one_nat ) ) ) ) ) ).
% T\<^sub>m\<^sub>i\<^sub>n\<^sub>t.elims
thf(fact_9358_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_Osimps_I7_J,axiom,
! [Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
( ( vEBT_T_p_r_e_d @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
= ( plus_plus_nat @ one_one_nat
@ ( if_nat @ ( ord_less_nat @ Ma @ X2 ) @ one_one_nat
@ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ one_one_nat )
@ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( vEBT_T_m_i_n_t @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
@ ( if_nat
@ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_p_r_e_d @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_p_r_e_d @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat )
@ ( if_nat
@ ( ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= none_nat )
@ ( plus_plus_nat @ one_one_nat @ one_one_nat )
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_m_a_x_t @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) )
@ one_one_nat ) ) ) ) ) ).
% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d.simps(7)
thf(fact_9359_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_Osimps_I6_J,axiom,
! [Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
( ( vEBT_T_s_u_c_c @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
= ( plus_plus_nat @ one_one_nat
@ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ one_one_nat
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) )
@ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_a_x_t @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) )
@ ( if_nat
@ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_s_u_c_c @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_s_u_c_c @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat )
@ ( if_nat
@ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= none_nat )
@ one_one_nat
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_m_i_n_t @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) )
@ one_one_nat ) ) ) ) ) ).
% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c.simps(6)
thf(fact_9360_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_Oelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: nat] :
( ( ( vEBT_T_p_r_e_d @ X2 @ Xa3 )
= Y2 )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X2
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( Xa3 = zero_zero_nat )
=> ( Y2 != one_one_nat ) ) )
=> ( ( ? [A4: $o,Uw2: $o] :
( X2
= ( vEBT_Leaf @ A4 @ Uw2 ) )
=> ( ( Xa3
= ( suc @ zero_zero_nat ) )
=> ( Y2
!= ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ? [Va2: nat] :
( Xa3
= ( suc @ ( suc @ Va2 ) ) )
=> ( Y2
!= ( plus_plus_nat @ one_one_nat @ ( if_nat @ B3 @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) ) ) )
=> ( ( ? [Uy2: nat,Uz2: list_VEBT_VEBT,Va3: vEBT_VEBT] :
( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va3 ) )
=> ( Y2 != one_one_nat ) )
=> ( ( ? [V2: product_prod_nat_nat,Vd2: list_VEBT_VEBT,Ve2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vd2 @ Ve2 ) )
=> ( Y2 != one_one_nat ) )
=> ( ( ? [V2: product_prod_nat_nat,Vh2: list_VEBT_VEBT,Vi2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vh2 @ Vi2 ) )
=> ( Y2 != one_one_nat ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( Y2
!= ( plus_plus_nat @ one_one_nat
@ ( if_nat @ ( ord_less_nat @ Ma2 @ Xa3 ) @ one_one_nat
@ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ one_one_nat )
@ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( vEBT_T_m_i_n_t @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
@ ( if_nat
@ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_p_r_e_d @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_p_r_e_d @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat )
@ ( if_nat
@ ( ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= none_nat )
@ ( plus_plus_nat @ one_one_nat @ one_one_nat )
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_m_a_x_t @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) )
@ one_one_nat ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d.elims
thf(fact_9361_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_Oelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: nat] :
( ( ( vEBT_T_s_u_c_c @ X2 @ Xa3 )
= Y2 )
=> ( ( ? [Uu2: $o,B3: $o] :
( X2
= ( vEBT_Leaf @ Uu2 @ B3 ) )
=> ( ( Xa3 = zero_zero_nat )
=> ( Y2
!= ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) )
=> ( ( ? [Uv2: $o,Uw2: $o] :
( X2
= ( vEBT_Leaf @ Uv2 @ Uw2 ) )
=> ( ? [N2: nat] :
( Xa3
= ( suc @ N2 ) )
=> ( Y2 != one_one_nat ) ) )
=> ( ( ? [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) )
=> ( Y2 != one_one_nat ) )
=> ( ( ? [V2: product_prod_nat_nat,Vc: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc @ Vd2 ) )
=> ( Y2 != one_one_nat ) )
=> ( ( ? [V2: product_prod_nat_nat,Vg2: list_VEBT_VEBT,Vh2: vEBT_VEBT] :
( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) )
=> ( Y2 != one_one_nat ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( Y2
!= ( plus_plus_nat @ one_one_nat
@ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ one_one_nat
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) )
@ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_a_x_t @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) )
@ ( if_nat
@ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_s_u_c_c @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_s_u_c_c @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat )
@ ( if_nat
@ ( ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= none_nat )
@ one_one_nat
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_m_i_n_t @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) )
@ one_one_nat ) ) ) ) ) ) ) ) ) ) ) ) ).
% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c.elims
thf(fact_9362_T_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_Osimps_I7_J,axiom,
! [Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
( ( vEBT_T_d_e_l_e_t_e @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) )
@ ( if_nat
@ ( ( ord_less_nat @ X2 @ Mi )
| ( ord_less_nat @ Ma @ X2 ) )
@ one_one_nat
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) )
@ ( if_nat
@ ( ( X2 = Mi )
& ( X2 = Ma ) )
@ ( numeral_numeral_nat @ ( bit1 @ one ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit1 @ one ) ) ) ) @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( plus_plus_nat @ ( vEBT_T_m_i_n_t @ Summary ) @ ( vEBT_T_m_i_n_t @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ one ) ) ) ) @ one_one_nat ) ) @ one_one_nat )
@ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_d_e_l_e_t_e @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_i_n_N_u_l_l @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
@ ( if_nat @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_d_e_l_e_t_e @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) )
@ ( if_nat
@ ( ( ( X2 = Mi )
=> ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
= Ma ) )
& ( ( X2 != Mi )
=> ( X2 = Ma ) ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_a_x_t @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
@ ( plus_plus_nat @ one_one_nat
@ ( if_nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
= none_nat )
@ one_one_nat
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( vEBT_T_m_a_x_t @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) )
@ one_one_nat ) ) )
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) )
@ ( if_nat
@ ( ( ( X2 = Mi )
=> ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
= Ma ) )
& ( ( X2 != Mi )
=> ( X2 = Ma ) ) )
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ one ) ) ) @ ( vEBT_T_m_a_x_t @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if_nat @ ( X2 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
@ one_one_nat ) ) ) ) )
@ one_one_nat ) ) ) ) ) ) ) ).
% T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e.simps(7)
thf(fact_9363_T_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_Opelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: nat] :
( ( ( vEBT_T_d_e_l_e_t_e @ X2 @ Xa3 )
= Y2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_T8441311223069195367_e_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Xa3 = zero_zero_nat )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8441311223069195367_e_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ zero_zero_nat ) ) ) ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Xa3
= ( suc @ zero_zero_nat ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8441311223069195367_e_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ ( suc @ zero_zero_nat ) ) ) ) ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ! [N2: nat] :
( ( Xa3
= ( suc @ ( suc @ N2 ) ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8441311223069195367_e_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ ( suc @ ( suc @ N2 ) ) ) ) ) ) )
=> ( ! [Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8441311223069195367_e_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TreeList2 @ Summary2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8441311223069195367_e_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ TreeList2 @ Summary2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8441311223069195367_e_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( Y2
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) )
@ ( if_nat
@ ( ( ord_less_nat @ Xa3 @ Mi2 )
| ( ord_less_nat @ Ma2 @ Xa3 ) )
@ one_one_nat
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) )
@ ( if_nat
@ ( ( Xa3 = Mi2 )
& ( Xa3 = Ma2 ) )
@ ( numeral_numeral_nat @ ( bit1 @ one ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit1 @ one ) ) ) ) @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( plus_plus_nat @ ( vEBT_T_m_i_n_t @ Summary2 ) @ ( vEBT_T_m_i_n_t @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ one ) ) ) ) @ one_one_nat ) ) @ one_one_nat )
@ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_d_e_l_e_t_e @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_i_n_N_u_l_l @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
@ ( if_nat @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_d_e_l_e_t_e @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) )
@ ( if_nat
@ ( ( ( Xa3 = Mi2 )
=> ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) )
= Ma2 ) )
& ( ( Xa3 != Mi2 )
=> ( Xa3 = Ma2 ) ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_a_x_t @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
@ ( plus_plus_nat @ one_one_nat
@ ( if_nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
= none_nat )
@ one_one_nat
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( vEBT_T_m_a_x_t @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) )
@ one_one_nat ) ) )
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) )
@ ( if_nat
@ ( ( ( Xa3 = Mi2 )
=> ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) )
= Ma2 ) )
& ( ( Xa3 != Mi2 )
=> ( Xa3 = Ma2 ) ) )
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ one ) ) ) @ ( vEBT_T_m_a_x_t @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
@ one_one_nat ) ) ) ) )
@ one_one_nat ) ) ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8441311223069195367_e_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) ) ) ) ) ) ) ) ) ) ).
% T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e.pelims
thf(fact_9364_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_Opelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: nat] :
( ( ( vEBT_T_s_u_c_c @ X2 @ Xa3 )
= Y2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel2 @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [Uu2: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ Uu2 @ B3 ) )
=> ( ( Xa3 = zero_zero_nat )
=> ( ( Y2
= ( plus_plus_nat @ one_one_nat @ one_one_nat ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ B3 ) @ zero_zero_nat ) ) ) ) )
=> ( ! [Uv2: $o,Uw2: $o] :
( ( X2
= ( vEBT_Leaf @ Uv2 @ Uw2 ) )
=> ! [N2: nat] :
( ( Xa3
= ( suc @ N2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uv2 @ Uw2 ) @ ( suc @ N2 ) ) ) ) ) )
=> ( ! [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) @ Xa3 ) ) ) )
=> ( ! [V2: product_prod_nat_nat,Vc: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc @ Vd2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc @ Vd2 ) @ Xa3 ) ) ) )
=> ( ! [V2: product_prod_nat_nat,Vg2: list_VEBT_VEBT,Vh2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) @ Xa3 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( Y2
= ( plus_plus_nat @ one_one_nat
@ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ one_one_nat
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) )
@ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_a_x_t @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) )
@ ( if_nat
@ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_s_u_c_c @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_s_u_c_c @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat )
@ ( if_nat
@ ( ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= none_nat )
@ one_one_nat
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_m_i_n_t @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) )
@ one_one_nat ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) ) ) ) ) ) ) ) ) ).
% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c.pelims
thf(fact_9365_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_Opelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: nat] :
( ( ( vEBT_T_p_r_e_d @ X2 @ Xa3 )
= Y2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel2 @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X2
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( Xa3 = zero_zero_nat )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ zero_zero_nat ) ) ) ) )
=> ( ! [A4: $o,Uw2: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ Uw2 ) )
=> ( ( Xa3
= ( suc @ zero_zero_nat ) )
=> ( ( Y2
= ( plus_plus_nat @ one_one_nat @ one_one_nat ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ Uw2 ) @ ( suc @ zero_zero_nat ) ) ) ) ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ! [Va2: nat] :
( ( Xa3
= ( suc @ ( suc @ Va2 ) ) )
=> ( ( Y2
= ( plus_plus_nat @ one_one_nat @ ( if_nat @ B3 @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ ( suc @ ( suc @ Va2 ) ) ) ) ) ) )
=> ( ! [Uy2: nat,Uz2: list_VEBT_VEBT,Va3: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va3 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va3 ) @ Xa3 ) ) ) )
=> ( ! [V2: product_prod_nat_nat,Vd2: list_VEBT_VEBT,Ve2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vd2 @ Ve2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vd2 @ Ve2 ) @ Xa3 ) ) ) )
=> ( ! [V2: product_prod_nat_nat,Vh2: list_VEBT_VEBT,Vi2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vh2 @ Vi2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vh2 @ Vi2 ) @ Xa3 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( Y2
= ( plus_plus_nat @ one_one_nat
@ ( if_nat @ ( ord_less_nat @ Ma2 @ Xa3 ) @ one_one_nat
@ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ one_one_nat )
@ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( vEBT_T_m_i_n_t @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
@ ( if_nat
@ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_p_r_e_d @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_p_r_e_d @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat )
@ ( if_nat
@ ( ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= none_nat )
@ ( plus_plus_nat @ one_one_nat @ one_one_nat )
@ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_m_a_x_t @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) )
@ one_one_nat ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) ) ) ) ) ) ) ) ) ) ).
% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d.pelims
thf(fact_9366_vebt__succ_Opelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: option_nat] :
( ( ( vEBT_vebt_succ @ X2 @ Xa3 )
= Y2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [Uu2: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ Uu2 @ B3 ) )
=> ( ( Xa3 = zero_zero_nat )
=> ( ( ( B3
=> ( Y2
= ( some_nat @ one_one_nat ) ) )
& ( ~ B3
=> ( Y2 = none_nat ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ B3 ) @ zero_zero_nat ) ) ) ) )
=> ( ! [Uv2: $o,Uw2: $o] :
( ( X2
= ( vEBT_Leaf @ Uv2 @ Uw2 ) )
=> ! [N2: nat] :
( ( Xa3
= ( suc @ N2 ) )
=> ( ( Y2 = none_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uv2 @ Uw2 ) @ ( suc @ N2 ) ) ) ) ) )
=> ( ! [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) )
=> ( ( Y2 = none_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) @ Xa3 ) ) ) )
=> ( ! [V2: product_prod_nat_nat,Vc: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc @ Vd2 ) )
=> ( ( Y2 = none_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc @ Vd2 ) @ Xa3 ) ) ) )
=> ( ! [V2: product_prod_nat_nat,Vg2: list_VEBT_VEBT,Vh2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) )
=> ( ( Y2 = none_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) @ Xa3 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( ( ( ord_less_nat @ Xa3 @ Mi2 )
=> ( Y2
= ( some_nat @ Mi2 ) ) )
& ( ~ ( ord_less_nat @ Xa3 @ Mi2 )
=> ( Y2
= ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
@ ( if_option_nat
@ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( if_option_nat
@ ( ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= none_nat )
@ none_nat
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
@ none_nat ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_succ.pelims
thf(fact_9367_vebt__pred_Opelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: option_nat] :
( ( ( vEBT_vebt_pred @ X2 @ Xa3 )
= Y2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X2
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( Xa3 = zero_zero_nat )
=> ( ( Y2 = none_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ zero_zero_nat ) ) ) ) )
=> ( ! [A4: $o,Uw2: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ Uw2 ) )
=> ( ( Xa3
= ( suc @ zero_zero_nat ) )
=> ( ( ( A4
=> ( Y2
= ( some_nat @ zero_zero_nat ) ) )
& ( ~ A4
=> ( Y2 = none_nat ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ Uw2 ) @ ( suc @ zero_zero_nat ) ) ) ) ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ! [Va2: nat] :
( ( Xa3
= ( suc @ ( suc @ Va2 ) ) )
=> ( ( ( B3
=> ( Y2
= ( some_nat @ one_one_nat ) ) )
& ( ~ B3
=> ( ( A4
=> ( Y2
= ( some_nat @ zero_zero_nat ) ) )
& ( ~ A4
=> ( Y2 = none_nat ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ ( suc @ ( suc @ Va2 ) ) ) ) ) ) )
=> ( ! [Uy2: nat,Uz2: list_VEBT_VEBT,Va3: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va3 ) )
=> ( ( Y2 = none_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va3 ) @ Xa3 ) ) ) )
=> ( ! [V2: product_prod_nat_nat,Vd2: list_VEBT_VEBT,Ve2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vd2 @ Ve2 ) )
=> ( ( Y2 = none_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vd2 @ Ve2 ) @ Xa3 ) ) ) )
=> ( ! [V2: product_prod_nat_nat,Vh2: list_VEBT_VEBT,Vi2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vh2 @ Vi2 ) )
=> ( ( Y2 = none_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vh2 @ Vi2 ) @ Xa3 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( ( ( ord_less_nat @ Ma2 @ Xa3 )
=> ( Y2
= ( some_nat @ Ma2 ) ) )
& ( ~ ( ord_less_nat @ Ma2 @ Xa3 )
=> ( Y2
= ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
@ ( if_option_nat
@ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( if_option_nat
@ ( ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= none_nat )
@ ( if_option_nat @ ( ord_less_nat @ Mi2 @ Xa3 ) @ ( some_nat @ Mi2 ) @ none_nat )
@ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
@ none_nat ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_pred.pelims
thf(fact_9368_VEBT__internal_OT_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_H_Opelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: nat] :
( ( ( vEBT_V1232361888498592333_e_t_e @ X2 @ Xa3 )
= Y2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V6368547301243506412_e_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Xa3 = zero_zero_nat )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V6368547301243506412_e_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ zero_zero_nat ) ) ) ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Xa3
= ( suc @ zero_zero_nat ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V6368547301243506412_e_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ ( suc @ zero_zero_nat ) ) ) ) ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ! [N2: nat] :
( ( Xa3
= ( suc @ ( suc @ N2 ) ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V6368547301243506412_e_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ ( suc @ ( suc @ N2 ) ) ) ) ) ) )
=> ( ! [Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V6368547301243506412_e_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TreeList2 @ Summary2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V6368547301243506412_e_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ TreeList2 @ Summary2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V6368547301243506412_e_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( ( ( ( ord_less_nat @ Xa3 @ Mi2 )
| ( ord_less_nat @ Ma2 @ Xa3 ) )
=> ( Y2 = one_one_nat ) )
& ( ~ ( ( ord_less_nat @ Xa3 @ Mi2 )
| ( ord_less_nat @ Ma2 @ Xa3 ) )
=> ( ( ( ( Xa3 = Mi2 )
& ( Xa3 = Ma2 ) )
=> ( Y2 = one_one_nat ) )
& ( ~ ( ( Xa3 = Mi2 )
& ( Xa3 = Ma2 ) )
=> ( Y2
= ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) @ ( plus_plus_nat @ ( vEBT_V1232361888498592333_e_t_e @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( if_nat @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_V1232361888498592333_e_t_e @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) ) @ one_one_nat ) ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V6368547301243506412_e_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e'.pelims
thf(fact_9369_vebt__delete_Opelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: vEBT_VEBT] :
( ( ( vEBT_vebt_delete @ X2 @ Xa3 )
= Y2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_delete_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Xa3 = zero_zero_nat )
=> ( ( Y2
= ( vEBT_Leaf @ $false @ B3 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_delete_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ zero_zero_nat ) ) ) ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Xa3
= ( suc @ zero_zero_nat ) )
=> ( ( Y2
= ( vEBT_Leaf @ A4 @ $false ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_delete_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ ( suc @ zero_zero_nat ) ) ) ) ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ! [N2: nat] :
( ( Xa3
= ( suc @ ( suc @ N2 ) ) )
=> ( ( Y2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_delete_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ ( suc @ ( suc @ N2 ) ) ) ) ) ) )
=> ( ! [Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( Y2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_delete_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,TrLst: list_VEBT_VEBT,Smry: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TrLst @ Smry ) )
=> ( ( Y2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TrLst @ Smry ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_delete_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TrLst @ Smry ) @ Xa3 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,Tr: list_VEBT_VEBT,Sm: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ Tr @ Sm ) )
=> ( ( Y2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ Tr @ Sm ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_delete_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ Tr @ Sm ) @ Xa3 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( ( ( ( ord_less_nat @ Xa3 @ Mi2 )
| ( ord_less_nat @ Ma2 @ Xa3 ) )
=> ( Y2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) ) )
& ( ~ ( ( ord_less_nat @ Xa3 @ Mi2 )
| ( ord_less_nat @ Ma2 @ Xa3 ) )
=> ( ( ( ( Xa3 = Mi2 )
& ( Xa3 = Ma2 ) )
=> ( Y2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) ) )
& ( ~ ( ( Xa3 = Mi2 )
& ( Xa3 = Ma2 ) )
=> ( Y2
= ( if_VEBT_VEBT @ ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
@ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( vEBT_Node
@ ( some_P7363390416028606310at_nat
@ ( product_Pair_nat_nat @ ( if_nat @ ( Xa3 = Mi2 ) @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ Mi2 )
@ ( if_nat
@ ( ( ( Xa3 = Mi2 )
=> ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) )
= Ma2 ) )
& ( ( Xa3 != Mi2 )
=> ( Xa3 = Ma2 ) ) )
@ ( if_nat
@ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
= none_nat )
@ ( if_nat @ ( Xa3 = Mi2 ) @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ Mi2 )
@ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) )
@ Ma2 ) ) )
@ ( suc @ ( suc @ Va2 ) )
@ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( vEBT_Node
@ ( some_P7363390416028606310at_nat
@ ( product_Pair_nat_nat @ ( if_nat @ ( Xa3 = Mi2 ) @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ Mi2 )
@ ( if_nat
@ ( ( ( Xa3 = Mi2 )
=> ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) )
= Ma2 ) )
& ( ( Xa3 != Mi2 )
=> ( Xa3 = Ma2 ) ) )
@ ( plus_plus_nat @ ( times_times_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ Ma2 ) ) )
@ ( suc @ ( suc @ Va2 ) )
@ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa3 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ Summary2 ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) ) ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_delete_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_delete.pelims
thf(fact_9370_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_H_Opelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: nat] :
( ( ( vEBT_T_s_u_c_c2 @ X2 @ Xa3 )
= Y2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [Uu2: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ Uu2 @ B3 ) )
=> ( ( Xa3 = zero_zero_nat )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ B3 ) @ zero_zero_nat ) ) ) ) )
=> ( ! [Uv2: $o,Uw2: $o] :
( ( X2
= ( vEBT_Leaf @ Uv2 @ Uw2 ) )
=> ! [N2: nat] :
( ( Xa3
= ( suc @ N2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uv2 @ Uw2 ) @ ( suc @ N2 ) ) ) ) ) )
=> ( ! [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) @ Xa3 ) ) ) )
=> ( ! [V2: product_prod_nat_nat,Vc: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc @ Vd2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc @ Vd2 ) @ Xa3 ) ) ) )
=> ( ! [V2: product_prod_nat_nat,Vg2: list_VEBT_VEBT,Vh2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) @ Xa3 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( ( ( ord_less_nat @ Xa3 @ Mi2 )
=> ( Y2 = one_one_nat ) )
& ( ~ ( ord_less_nat @ Xa3 @ Mi2 )
=> ( Y2
= ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
@ ( if_nat
@ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_s_u_c_c2 @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( plus_plus_nat @ ( vEBT_T_s_u_c_c2 @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) )
@ one_one_nat ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) ) ) ) ) ) ) ) ) ).
% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c'.pelims
thf(fact_9371_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_Opelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: nat] :
( ( ( vEBT_T_i_n_s_e_r_t @ X2 @ Xa3 )
= Y2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_T9217963907923527482_t_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Y2
= ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( Xa3 = zero_zero_nat ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T9217963907923527482_t_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ Xa3 ) ) ) )
=> ( ! [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts2 @ S2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T9217963907923527482_t_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts2 @ S2 ) @ Xa3 ) ) ) )
=> ( ! [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts2 @ S2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T9217963907923527482_t_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts2 @ S2 ) @ Xa3 ) ) ) )
=> ( ! [V2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( Y2
= ( numeral_numeral_nat @ ( bit0 @ one ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T9217963907923527482_t_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( Y2
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) )
@ ( if_nat
@ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
& ~ ( ( Xa3 = Mi2 )
| ( Xa3 = Ma2 ) ) )
@ ( plus_plus_nat @ ( plus_plus_nat @ ( vEBT_T_i_n_s_e_r_t @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_T_m_i_n_N_u_l_l @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( if_nat @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_T_i_n_s_e_r_t @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) )
@ one_one_nat ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T9217963907923527482_t_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) ) ) ) ) ) ) ) ).
% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t.pelims
thf(fact_9372_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_H_Opelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: nat] :
( ( ( vEBT_T_p_r_e_d2 @ X2 @ Xa3 )
= Y2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X2
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( Xa3 = zero_zero_nat )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ zero_zero_nat ) ) ) ) )
=> ( ! [A4: $o,Uw2: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ Uw2 ) )
=> ( ( Xa3
= ( suc @ zero_zero_nat ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ Uw2 ) @ ( suc @ zero_zero_nat ) ) ) ) ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ! [Va2: nat] :
( ( Xa3
= ( suc @ ( suc @ Va2 ) ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ ( suc @ ( suc @ Va2 ) ) ) ) ) ) )
=> ( ! [Uy2: nat,Uz2: list_VEBT_VEBT,Va3: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va3 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va3 ) @ Xa3 ) ) ) )
=> ( ! [V2: product_prod_nat_nat,Vd2: list_VEBT_VEBT,Ve2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vd2 @ Ve2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vd2 @ Ve2 ) @ Xa3 ) ) ) )
=> ( ! [V2: product_prod_nat_nat,Vh2: list_VEBT_VEBT,Vi2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vh2 @ Vi2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vh2 @ Vi2 ) @ Xa3 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( ( ( ord_less_nat @ Ma2 @ Xa3 )
=> ( Y2 = one_one_nat ) )
& ( ~ ( ord_less_nat @ Ma2 @ Xa3 )
=> ( Y2
= ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
@ ( if_nat
@ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
!= none_nat )
& ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
@ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_p_r_e_d2 @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( plus_plus_nat @ ( vEBT_T_p_r_e_d2 @ Summary2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) )
@ one_one_nat ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) ) ) ) ) ) ) ) ) ) ).
% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d'.pelims
thf(fact_9373_vebt__insert_Opelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: vEBT_VEBT] :
( ( ( vEBT_vebt_insert @ X2 @ Xa3 )
= Y2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( ( ( Xa3 = zero_zero_nat )
=> ( Y2
= ( vEBT_Leaf @ $true @ B3 ) ) )
& ( ( Xa3 != zero_zero_nat )
=> ( ( ( Xa3 = one_one_nat )
=> ( Y2
= ( vEBT_Leaf @ A4 @ $true ) ) )
& ( ( Xa3 != one_one_nat )
=> ( Y2
= ( vEBT_Leaf @ A4 @ B3 ) ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ Xa3 ) ) ) )
=> ( ! [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts2 @ S2 ) )
=> ( ( Y2
= ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts2 @ S2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts2 @ S2 ) @ Xa3 ) ) ) )
=> ( ! [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts2 @ S2 ) )
=> ( ( Y2
= ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts2 @ S2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts2 @ S2 ) @ Xa3 ) ) ) )
=> ( ! [V2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( Y2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Xa3 @ Xa3 ) ) @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( Y2
= ( if_VEBT_VEBT
@ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
& ~ ( ( Xa3 = Mi2 )
| ( Xa3 = Ma2 ) ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Xa3 @ Mi2 ) @ ( ord_max_nat @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ Ma2 ) ) ) @ ( suc @ ( suc @ Va2 ) ) @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary2 ) )
@ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) ) ) ) ) ) ) ) ).
% vebt_insert.pelims
thf(fact_9374_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_H_Opelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: nat] :
( ( ( vEBT_T_i_n_s_e_r_t2 @ X2 @ Xa3 )
= Y2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_T5076183648494686801_t_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5076183648494686801_t_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ Xa3 ) ) ) )
=> ( ! [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts2 @ S2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5076183648494686801_t_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts2 @ S2 ) @ Xa3 ) ) ) )
=> ( ! [Info2: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts2 @ S2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5076183648494686801_t_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts2 @ S2 ) @ Xa3 ) ) ) )
=> ( ! [V2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5076183648494686801_t_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( Y2
= ( if_nat
@ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
& ~ ( ( Xa3 = Mi2 )
| ( Xa3 = Ma2 ) ) )
@ ( plus_plus_nat @ ( vEBT_T_i_n_s_e_r_t2 @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( if_nat @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_T_i_n_s_e_r_t2 @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ Mi2 @ Xa3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) )
@ one_one_nat ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5076183648494686801_t_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) ) ) ) ) ) ) ) ).
% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t'.pelims
thf(fact_9375_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_Opelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: nat] :
( ( ( vEBT_T_m_e_m_b_e_r @ X2 @ Xa3 )
= Y2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_T5837161174952499735_r_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Y2
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( if_nat @ ( Xa3 = zero_zero_nat ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5837161174952499735_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ Xa3 ) ) ) )
=> ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
=> ( ( Y2
= ( numeral_numeral_nat @ ( bit0 @ one ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5837161174952499735_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) @ Xa3 ) ) ) )
=> ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
=> ( ( Y2
= ( numeral_numeral_nat @ ( bit0 @ one ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5837161174952499735_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ Xa3 ) ) ) )
=> ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc ) )
=> ( ( Y2
= ( numeral_numeral_nat @ ( bit0 @ one ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5837161174952499735_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc ) @ Xa3 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( Y2
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( if_nat @ ( Xa3 = Mi2 ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( Xa3 = Ma2 ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( ord_less_nat @ Ma2 @ Xa3 ) @ one_one_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_e_m_b_e_r @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat ) ) ) ) ) ) ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5837161174952499735_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) ) ) ) ) ) ) ) ).
% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r.pelims
thf(fact_9376_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H_Opelims,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: nat] :
( ( ( vEBT_T_m_e_m_b_e_r2 @ X2 @ Xa3 )
= Y2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_T8099345112685741742_r_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8099345112685741742_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ Xa3 ) ) ) )
=> ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8099345112685741742_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) @ Xa3 ) ) ) )
=> ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8099345112685741742_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ Xa3 ) ) ) )
=> ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8099345112685741742_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc ) @ Xa3 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( Y2
= ( plus_plus_nat @ one_one_nat
@ ( if_nat @ ( Xa3 = Mi2 ) @ zero_zero_nat
@ ( if_nat @ ( Xa3 = Ma2 ) @ zero_zero_nat
@ ( if_nat @ ( ord_less_nat @ Xa3 @ Mi2 ) @ zero_zero_nat
@ ( if_nat @ ( ord_less_nat @ Ma2 @ Xa3 ) @ zero_zero_nat
@ ( if_nat
@ ( ( ord_less_nat @ Mi2 @ Xa3 )
& ( ord_less_nat @ Xa3 @ Ma2 ) )
@ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) @ ( vEBT_T_m_e_m_b_e_r2 @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ zero_zero_nat )
@ zero_zero_nat ) ) ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8099345112685741742_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) ) ) ) ) ) ) ) ).
% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r'.pelims
thf(fact_9377_vebt__member_Opelims_I3_J,axiom,
! [X2: vEBT_VEBT,Xa3: nat] :
( ~ ( vEBT_vebt_member @ X2 @ Xa3 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ Xa3 ) )
=> ( ( ( Xa3 = zero_zero_nat )
=> A4 )
& ( ( Xa3 != zero_zero_nat )
=> ( ( ( Xa3 = one_one_nat )
=> B3 )
& ( Xa3 = one_one_nat ) ) ) ) ) )
=> ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) @ Xa3 ) ) )
=> ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ Xa3 ) ) )
=> ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc ) @ Xa3 ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ Xa3 ) )
=> ( ( Xa3 != Mi2 )
=> ( ( Xa3 != Ma2 )
=> ( ~ ( ord_less_nat @ Xa3 @ Mi2 )
& ( ~ ( ord_less_nat @ Xa3 @ Mi2 )
=> ( ~ ( ord_less_nat @ Ma2 @ Xa3 )
& ( ~ ( ord_less_nat @ Ma2 @ Xa3 )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.pelims(3)
thf(fact_9378_vebt__member_Opelims_I2_J,axiom,
! [X2: vEBT_VEBT,Xa3: nat] :
( ( vEBT_vebt_member @ X2 @ Xa3 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ Xa3 ) )
=> ~ ( ( ( Xa3 = zero_zero_nat )
=> A4 )
& ( ( Xa3 != zero_zero_nat )
=> ( ( ( Xa3 = one_one_nat )
=> B3 )
& ( Xa3 = one_one_nat ) ) ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ Xa3 ) )
=> ~ ( ( Xa3 != Mi2 )
=> ( ( Xa3 != Ma2 )
=> ( ~ ( ord_less_nat @ Xa3 @ Mi2 )
& ( ~ ( ord_less_nat @ Xa3 @ Mi2 )
=> ( ~ ( ord_less_nat @ Ma2 @ Xa3 )
& ( ~ ( ord_less_nat @ Ma2 @ Xa3 )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.pelims(2)
thf(fact_9379_vebt__member_Opelims_I1_J,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: $o] :
( ( ( vEBT_vebt_member @ X2 @ Xa3 )
= Y2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Y2
= ( ( ( Xa3 = zero_zero_nat )
=> A4 )
& ( ( Xa3 != zero_zero_nat )
=> ( ( ( Xa3 = one_one_nat )
=> B3 )
& ( Xa3 = one_one_nat ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ Xa3 ) ) ) )
=> ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
=> ( ~ Y2
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) @ Xa3 ) ) ) )
=> ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
=> ( ~ Y2
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ Xa3 ) ) ) )
=> ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc ) )
=> ( ~ Y2
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc ) @ Xa3 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
=> ( ( Y2
= ( ( Xa3 != Mi2 )
=> ( ( Xa3 != Ma2 )
=> ( ~ ( ord_less_nat @ Xa3 @ Mi2 )
& ( ~ ( ord_less_nat @ Xa3 @ Mi2 )
=> ( ~ ( ord_less_nat @ Ma2 @ Xa3 )
& ( ~ ( ord_less_nat @ Ma2 @ Xa3 )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) ) ) ) ) ) ) ) ).
% vebt_member.pelims(1)
thf(fact_9380_VEBT__internal_Onaive__member_Opelims_I1_J,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: $o] :
( ( ( vEBT_V5719532721284313246member @ X2 @ Xa3 )
= Y2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Y2
= ( ( ( Xa3 = zero_zero_nat )
=> A4 )
& ( ( Xa3 != zero_zero_nat )
=> ( ( ( Xa3 = one_one_nat )
=> B3 )
& ( Xa3 = one_one_nat ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ Xa3 ) ) ) )
=> ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
=> ( ~ Y2
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) @ Xa3 ) ) ) )
=> ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT,S2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S2 ) )
=> ( ( Y2
= ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S2 ) @ Xa3 ) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.pelims(1)
thf(fact_9381_VEBT__internal_Onaive__member_Opelims_I2_J,axiom,
! [X2: vEBT_VEBT,Xa3: nat] :
( ( vEBT_V5719532721284313246member @ X2 @ Xa3 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ Xa3 ) )
=> ~ ( ( ( Xa3 = zero_zero_nat )
=> A4 )
& ( ( Xa3 != zero_zero_nat )
=> ( ( ( Xa3 = one_one_nat )
=> B3 )
& ( Xa3 = one_one_nat ) ) ) ) ) )
=> ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT,S2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S2 ) @ Xa3 ) )
=> ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.pelims(2)
thf(fact_9382_VEBT__internal_Onaive__member_Opelims_I3_J,axiom,
! [X2: vEBT_VEBT,Xa3: nat] :
( ~ ( vEBT_V5719532721284313246member @ X2 @ Xa3 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ Xa3 ) )
=> ( ( ( Xa3 = zero_zero_nat )
=> A4 )
& ( ( Xa3 != zero_zero_nat )
=> ( ( ( Xa3 = one_one_nat )
=> B3 )
& ( Xa3 = one_one_nat ) ) ) ) ) )
=> ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) @ Xa3 ) ) )
=> ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT,S2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S2 ) @ Xa3 ) )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.pelims(3)
thf(fact_9383_VEBT__internal_Omembermima_Opelims_I3_J,axiom,
! [X2: vEBT_VEBT,Xa3: nat] :
( ~ ( vEBT_VEBT_membermima @ X2 @ Xa3 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X2
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa3 ) ) )
=> ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Xa3 ) ) )
=> ( ! [Mi2: nat,Ma2: nat,Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) @ Xa3 ) )
=> ( ( Xa3 = Mi2 )
| ( Xa3 = Ma2 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList2: list_VEBT_VEBT,Vc: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc ) @ Xa3 ) )
=> ( ( Xa3 = Mi2 )
| ( Xa3 = Ma2 )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) )
=> ~ ! [V2: nat,TreeList2: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) @ Xa3 ) )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.pelims(3)
thf(fact_9384_VEBT__internal_Omembermima_Opelims_I1_J,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: $o] :
( ( ( vEBT_VEBT_membermima @ X2 @ Xa3 )
= Y2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X2
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ~ Y2
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa3 ) ) ) )
=> ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
=> ( ~ Y2
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Xa3 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) )
=> ( ( Y2
= ( ( Xa3 = Mi2 )
| ( Xa3 = Ma2 ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) @ Xa3 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList2: list_VEBT_VEBT,Vc: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc ) )
=> ( ( Y2
= ( ( Xa3 = Mi2 )
| ( Xa3 = Ma2 )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc ) @ Xa3 ) ) ) )
=> ~ ! [V2: nat,TreeList2: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) )
=> ( ( Y2
= ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) @ Xa3 ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.pelims(1)
thf(fact_9385_VEBT__internal_Omembermima_Opelims_I2_J,axiom,
! [X2: vEBT_VEBT,Xa3: nat] :
( ( vEBT_VEBT_membermima @ X2 @ Xa3 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [Mi2: nat,Ma2: nat,Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) @ Xa3 ) )
=> ~ ( ( Xa3 = Mi2 )
| ( Xa3 = Ma2 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList2: list_VEBT_VEBT,Vc: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc ) @ Xa3 ) )
=> ~ ( ( Xa3 = Mi2 )
| ( Xa3 = Ma2 )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) )
=> ~ ! [V2: nat,TreeList2: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) @ Xa3 ) )
=> ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa3 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.pelims(2)
thf(fact_9386_succ__empty,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_succ @ T2 @ X2 )
= none_nat )
= ( ( collect_nat
@ ^ [Y: nat] :
( ( vEBT_vebt_member @ T2 @ Y )
& ( ord_less_nat @ X2 @ Y ) ) )
= bot_bot_set_nat ) ) ) ).
% succ_empty
thf(fact_9387_pred__empty,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_pred @ T2 @ X2 )
= none_nat )
= ( ( collect_nat
@ ^ [Y: nat] :
( ( vEBT_vebt_member @ T2 @ Y )
& ( ord_less_nat @ Y @ X2 ) ) )
= bot_bot_set_nat ) ) ) ).
% pred_empty
thf(fact_9388_buildup__gives__empty,axiom,
! [N: nat] :
( ( vEBT_VEBT_set_vebt @ ( vEBT_vebt_buildup @ N ) )
= bot_bot_set_nat ) ).
% buildup_gives_empty
thf(fact_9389_mint__corr__help__empty,axiom,
! [T2: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_mint @ T2 )
= none_nat )
=> ( ( vEBT_VEBT_set_vebt @ T2 )
= bot_bot_set_nat ) ) ) ).
% mint_corr_help_empty
thf(fact_9390_maxt__corr__help__empty,axiom,
! [T2: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( ( vEBT_vebt_maxt @ T2 )
= none_nat )
=> ( ( vEBT_VEBT_set_vebt @ T2 )
= bot_bot_set_nat ) ) ) ).
% maxt_corr_help_empty
thf(fact_9391_lessThan__0,axiom,
( ( set_ord_lessThan_nat @ zero_zero_nat )
= bot_bot_set_nat ) ).
% lessThan_0
thf(fact_9392_set__decode__zero,axiom,
( ( nat_set_decode @ zero_zero_nat )
= bot_bot_set_nat ) ).
% set_decode_zero
thf(fact_9393_set__encode__empty,axiom,
( ( nat_set_encode @ bot_bot_set_nat )
= zero_zero_nat ) ).
% set_encode_empty
thf(fact_9394_lessThan__empty__iff,axiom,
! [N: nat] :
( ( ( set_ord_lessThan_nat @ N )
= bot_bot_set_nat )
= ( N = zero_zero_nat ) ) ).
% lessThan_empty_iff
thf(fact_9395_delete__correct,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_VEBT_set_vebt @ ( vEBT_vebt_delete @ T2 @ X2 ) )
= ( minus_minus_set_nat @ ( vEBT_set_vebt @ T2 ) @ ( insert_nat @ X2 @ bot_bot_set_nat ) ) ) ) ).
% delete_correct
thf(fact_9396_floor__rat__def,axiom,
( archim3151403230148437115or_rat
= ( ^ [X: rat] :
( the_int
@ ^ [Z5: int] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z5 ) @ X )
& ( ord_less_rat @ X @ ( ring_1_of_int_rat @ ( plus_plus_int @ Z5 @ one_one_int ) ) ) ) ) ) ) ).
% floor_rat_def
thf(fact_9397_delete__correct_H,axiom,
! [T2: vEBT_VEBT,N: nat,X2: nat] :
( ( vEBT_invar_vebt @ T2 @ N )
=> ( ( vEBT_VEBT_set_vebt @ ( vEBT_vebt_delete @ T2 @ X2 ) )
= ( minus_minus_set_nat @ ( vEBT_VEBT_set_vebt @ T2 ) @ ( insert_nat @ X2 @ bot_bot_set_nat ) ) ) ) ).
% delete_correct'
thf(fact_9398_atMost__0,axiom,
( ( set_ord_atMost_nat @ zero_zero_nat )
= ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ).
% atMost_0
thf(fact_9399_set__encode__insert,axiom,
! [A2: set_nat,N: nat] :
( ( finite_finite_nat @ A2 )
=> ( ~ ( member_nat @ N @ A2 )
=> ( ( nat_set_encode @ ( insert_nat @ N @ A2 ) )
= ( plus_plus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ ( nat_set_encode @ A2 ) ) ) ) ) ).
% set_encode_insert
thf(fact_9400_bot__nat__def,axiom,
bot_bot_nat = zero_zero_nat ).
% bot_nat_def
thf(fact_9401_bot__enat__def,axiom,
bot_bo4199563552545308370d_enat = zero_z5237406670263579293d_enat ).
% bot_enat_def
thf(fact_9402_abs__rat__def,axiom,
( abs_abs_rat
= ( ^ [A3: rat] : ( if_rat @ ( ord_less_rat @ A3 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A3 ) @ A3 ) ) ) ).
% abs_rat_def
thf(fact_9403_obtain__pos__sum,axiom,
! [R2: rat] :
( ( ord_less_rat @ zero_zero_rat @ R2 )
=> ~ ! [S2: rat] :
( ( ord_less_rat @ zero_zero_rat @ S2 )
=> ! [T5: rat] :
( ( ord_less_rat @ zero_zero_rat @ T5 )
=> ( R2
!= ( plus_plus_rat @ S2 @ T5 ) ) ) ) ) ).
% obtain_pos_sum
thf(fact_9404_sgn__rat__def,axiom,
( sgn_sgn_rat
= ( ^ [A3: rat] : ( if_rat @ ( A3 = zero_zero_rat ) @ zero_zero_rat @ ( if_rat @ ( ord_less_rat @ zero_zero_rat @ A3 ) @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ) ) ) ).
% sgn_rat_def
thf(fact_9405_lessThan__Suc,axiom,
! [K: nat] :
( ( set_ord_lessThan_nat @ ( suc @ K ) )
= ( insert_nat @ K @ ( set_ord_lessThan_nat @ K ) ) ) ).
% lessThan_Suc
thf(fact_9406_atMost__Suc,axiom,
! [K: nat] :
( ( set_ord_atMost_nat @ ( suc @ K ) )
= ( insert_nat @ ( suc @ K ) @ ( set_ord_atMost_nat @ K ) ) ) ).
% atMost_Suc
thf(fact_9407_atLeast0__atMost__Suc,axiom,
! [N: nat] :
( ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) )
= ( insert_nat @ ( suc @ N ) @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ).
% atLeast0_atMost_Suc
thf(fact_9408_Icc__eq__insert__lb__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( set_or1269000886237332187st_nat @ M @ N )
= ( insert_nat @ M @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ).
% Icc_eq_insert_lb_nat
thf(fact_9409_atLeastAtMostSuc__conv,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) )
= ( insert_nat @ ( suc @ N ) @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ).
% atLeastAtMostSuc_conv
thf(fact_9410_atLeastAtMost__insertL,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( insert_nat @ M @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) )
= ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% atLeastAtMost_insertL
thf(fact_9411_lessThan__nat__numeral,axiom,
! [K: num] :
( ( set_ord_lessThan_nat @ ( numeral_numeral_nat @ K ) )
= ( insert_nat @ ( pred_numeral @ K ) @ ( set_ord_lessThan_nat @ ( pred_numeral @ K ) ) ) ) ).
% lessThan_nat_numeral
thf(fact_9412_atMost__nat__numeral,axiom,
! [K: num] :
( ( set_ord_atMost_nat @ ( numeral_numeral_nat @ K ) )
= ( insert_nat @ ( numeral_numeral_nat @ K ) @ ( set_ord_atMost_nat @ ( pred_numeral @ K ) ) ) ) ).
% atMost_nat_numeral
thf(fact_9413_divmod__int__def,axiom,
( unique5052692396658037445od_int
= ( ^ [M5: num,N3: num] : ( product_Pair_int_int @ ( divide_divide_int @ ( numeral_numeral_int @ M5 ) @ ( numeral_numeral_int @ N3 ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ M5 ) @ ( numeral_numeral_int @ N3 ) ) ) ) ) ).
% divmod_int_def
thf(fact_9414_atLeast1__atMost__eq__remove0,axiom,
! [N: nat] :
( ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N )
= ( minus_minus_set_nat @ ( set_ord_atMost_nat @ N ) @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ).
% atLeast1_atMost_eq_remove0
thf(fact_9415_divmod_H__nat__def,axiom,
( unique5055182867167087721od_nat
= ( ^ [M5: num,N3: num] : ( product_Pair_nat_nat @ ( divide_divide_nat @ ( numeral_numeral_nat @ M5 ) @ ( numeral_numeral_nat @ N3 ) ) @ ( modulo_modulo_nat @ ( numeral_numeral_nat @ M5 ) @ ( numeral_numeral_nat @ N3 ) ) ) ) ) ).
% divmod'_nat_def
thf(fact_9416_set__decode__plus__power__2,axiom,
! [N: nat,Z: nat] :
( ~ ( member_nat @ N @ ( nat_set_decode @ Z ) )
=> ( ( nat_set_decode @ ( plus_plus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ Z ) )
= ( insert_nat @ N @ ( nat_set_decode @ Z ) ) ) ) ).
% set_decode_plus_power_2
thf(fact_9417_minus__one__div__numeral,axiom,
! [N: num] :
( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ).
% minus_one_div_numeral
thf(fact_9418_one__div__minus__numeral,axiom,
! [N: num] :
( ( divide_divide_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ).
% one_div_minus_numeral
thf(fact_9419_Divides_Oadjust__div__eq,axiom,
! [Q2: int,R2: int] :
( ( adjust_div @ ( product_Pair_int_int @ Q2 @ R2 ) )
= ( plus_plus_int @ Q2 @ ( zero_n2684676970156552555ol_int @ ( R2 != zero_zero_int ) ) ) ) ).
% Divides.adjust_div_eq
thf(fact_9420_numeral__div__minus__numeral,axiom,
! [M: num,N: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ M @ N ) ) ) ) ).
% numeral_div_minus_numeral
thf(fact_9421_minus__numeral__div__numeral,axiom,
! [M: num,N: num] :
( ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ M @ N ) ) ) ) ).
% minus_numeral_div_numeral
thf(fact_9422_diff__rat__def,axiom,
( minus_minus_rat
= ( ^ [Q4: rat,R5: rat] : ( plus_plus_rat @ Q4 @ ( uminus_uminus_rat @ R5 ) ) ) ) ).
% diff_rat_def
thf(fact_9423_atLeastAtMostPlus1__int__conv,axiom,
! [M: int,N: int] :
( ( ord_less_eq_int @ M @ ( plus_plus_int @ one_one_int @ N ) )
=> ( ( set_or1266510415728281911st_int @ M @ ( plus_plus_int @ one_one_int @ N ) )
= ( insert_int @ ( plus_plus_int @ one_one_int @ N ) @ ( set_or1266510415728281911st_int @ M @ N ) ) ) ) ).
% atLeastAtMostPlus1_int_conv
thf(fact_9424_simp__from__to,axiom,
( set_or1266510415728281911st_int
= ( ^ [I3: int,J3: int] : ( if_set_int @ ( ord_less_int @ J3 @ I3 ) @ bot_bot_set_int @ ( insert_int @ I3 @ ( set_or1266510415728281911st_int @ ( plus_plus_int @ I3 @ one_one_int ) @ J3 ) ) ) ) ) ).
% simp_from_to
thf(fact_9425_neg__eucl__rel__int__mult__2,axiom,
! [B: int,A: int,Q2: int,R2: int] :
( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ( eucl_rel_int @ ( plus_plus_int @ A @ one_one_int ) @ B @ ( product_Pair_int_int @ Q2 @ R2 ) )
=> ( eucl_rel_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) @ ( product_Pair_int_int @ Q2 @ ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R2 ) @ one_one_int ) ) ) ) ) ).
% neg_eucl_rel_int_mult_2
thf(fact_9426_pos__eucl__rel__int__mult__2,axiom,
! [B: int,A: int,Q2: int,R2: int] :
( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q2 @ R2 ) )
=> ( eucl_rel_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) @ ( product_Pair_int_int @ Q2 @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R2 ) ) ) ) ) ) ).
% pos_eucl_rel_int_mult_2
thf(fact_9427_unique__remainder,axiom,
! [A: int,B: int,Q2: int,R2: int,Q5: int,R4: int] :
( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q2 @ R2 ) )
=> ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q5 @ R4 ) )
=> ( R2 = R4 ) ) ) ).
% unique_remainder
thf(fact_9428_unique__quotient,axiom,
! [A: int,B: int,Q2: int,R2: int,Q5: int,R4: int] :
( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q2 @ R2 ) )
=> ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q5 @ R4 ) )
=> ( Q2 = Q5 ) ) ) ).
% unique_quotient
thf(fact_9429_eucl__rel__int__by0,axiom,
! [K: int] : ( eucl_rel_int @ K @ zero_zero_int @ ( product_Pair_int_int @ zero_zero_int @ K ) ) ).
% eucl_rel_int_by0
thf(fact_9430_mod__int__unique,axiom,
! [K: int,L2: int,Q2: int,R2: int] :
( ( eucl_rel_int @ K @ L2 @ ( product_Pair_int_int @ Q2 @ R2 ) )
=> ( ( modulo_modulo_int @ K @ L2 )
= R2 ) ) ).
% mod_int_unique
thf(fact_9431_div__int__unique,axiom,
! [K: int,L2: int,Q2: int,R2: int] :
( ( eucl_rel_int @ K @ L2 @ ( product_Pair_int_int @ Q2 @ R2 ) )
=> ( ( divide_divide_int @ K @ L2 )
= Q2 ) ) ).
% div_int_unique
thf(fact_9432_eucl__rel__int__dividesI,axiom,
! [L2: int,K: int,Q2: int] :
( ( L2 != zero_zero_int )
=> ( ( K
= ( times_times_int @ Q2 @ L2 ) )
=> ( eucl_rel_int @ K @ L2 @ ( product_Pair_int_int @ Q2 @ zero_zero_int ) ) ) ) ).
% eucl_rel_int_dividesI
thf(fact_9433_eucl__rel__int,axiom,
! [K: int,L2: int] : ( eucl_rel_int @ K @ L2 @ ( product_Pair_int_int @ ( divide_divide_int @ K @ L2 ) @ ( modulo_modulo_int @ K @ L2 ) ) ) ).
% eucl_rel_int
thf(fact_9434_zminus1__lemma,axiom,
! [A: int,B: int,Q2: int,R2: int] :
( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q2 @ R2 ) )
=> ( ( B != zero_zero_int )
=> ( eucl_rel_int @ ( uminus_uminus_int @ A ) @ B @ ( product_Pair_int_int @ ( if_int @ ( R2 = zero_zero_int ) @ ( uminus_uminus_int @ Q2 ) @ ( minus_minus_int @ ( uminus_uminus_int @ Q2 ) @ one_one_int ) ) @ ( if_int @ ( R2 = zero_zero_int ) @ zero_zero_int @ ( minus_minus_int @ B @ R2 ) ) ) ) ) ) ).
% zminus1_lemma
thf(fact_9435_eucl__rel__int__iff,axiom,
! [K: int,L2: int,Q2: int,R2: int] :
( ( eucl_rel_int @ K @ L2 @ ( product_Pair_int_int @ Q2 @ R2 ) )
= ( ( K
= ( plus_plus_int @ ( times_times_int @ L2 @ Q2 ) @ R2 ) )
& ( ( ord_less_int @ zero_zero_int @ L2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ R2 )
& ( ord_less_int @ R2 @ L2 ) ) )
& ( ~ ( ord_less_int @ zero_zero_int @ L2 )
=> ( ( ( ord_less_int @ L2 @ zero_zero_int )
=> ( ( ord_less_int @ L2 @ R2 )
& ( ord_less_eq_int @ R2 @ zero_zero_int ) ) )
& ( ~ ( ord_less_int @ L2 @ zero_zero_int )
=> ( Q2 = zero_zero_int ) ) ) ) ) ) ).
% eucl_rel_int_iff
thf(fact_9436_eucl__rel__int__remainderI,axiom,
! [R2: int,L2: int,K: int,Q2: int] :
( ( ( sgn_sgn_int @ R2 )
= ( sgn_sgn_int @ L2 ) )
=> ( ( ord_less_int @ ( abs_abs_int @ R2 ) @ ( abs_abs_int @ L2 ) )
=> ( ( K
= ( plus_plus_int @ ( times_times_int @ Q2 @ L2 ) @ R2 ) )
=> ( eucl_rel_int @ K @ L2 @ ( product_Pair_int_int @ Q2 @ R2 ) ) ) ) ) ).
% eucl_rel_int_remainderI
thf(fact_9437_eucl__rel__int_Osimps,axiom,
( eucl_rel_int
= ( ^ [A12: int,A23: int,A32: product_prod_int_int] :
( ? [K2: int] :
( ( A12 = K2 )
& ( A23 = zero_zero_int )
& ( A32
= ( product_Pair_int_int @ zero_zero_int @ K2 ) ) )
| ? [L: int,K2: int,Q4: int] :
( ( A12 = K2 )
& ( A23 = L )
& ( A32
= ( product_Pair_int_int @ Q4 @ zero_zero_int ) )
& ( L != zero_zero_int )
& ( K2
= ( times_times_int @ Q4 @ L ) ) )
| ? [R5: int,L: int,K2: int,Q4: int] :
( ( A12 = K2 )
& ( A23 = L )
& ( A32
= ( product_Pair_int_int @ Q4 @ R5 ) )
& ( ( sgn_sgn_int @ R5 )
= ( sgn_sgn_int @ L ) )
& ( ord_less_int @ ( abs_abs_int @ R5 ) @ ( abs_abs_int @ L ) )
& ( K2
= ( plus_plus_int @ ( times_times_int @ Q4 @ L ) @ R5 ) ) ) ) ) ) ).
% eucl_rel_int.simps
thf(fact_9438_eucl__rel__int_Ocases,axiom,
! [A1: int,A22: int,A33: product_prod_int_int] :
( ( eucl_rel_int @ A1 @ A22 @ A33 )
=> ( ( ( A22 = zero_zero_int )
=> ( A33
!= ( product_Pair_int_int @ zero_zero_int @ A1 ) ) )
=> ( ! [Q3: int] :
( ( A33
= ( product_Pair_int_int @ Q3 @ zero_zero_int ) )
=> ( ( A22 != zero_zero_int )
=> ( A1
!= ( times_times_int @ Q3 @ A22 ) ) ) )
=> ~ ! [R3: int,Q3: int] :
( ( A33
= ( product_Pair_int_int @ Q3 @ R3 ) )
=> ( ( ( sgn_sgn_int @ R3 )
= ( sgn_sgn_int @ A22 ) )
=> ( ( ord_less_int @ ( abs_abs_int @ R3 ) @ ( abs_abs_int @ A22 ) )
=> ( A1
!= ( plus_plus_int @ ( times_times_int @ Q3 @ A22 ) @ R3 ) ) ) ) ) ) ) ) ).
% eucl_rel_int.cases
thf(fact_9439_and__int_Oelims,axiom,
! [X2: int,Xa3: int,Y2: int] :
( ( ( bit_se725231765392027082nd_int @ X2 @ Xa3 )
= Y2 )
=> ( ( ( ( member_int @ X2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ Xa3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( Y2
= ( uminus_uminus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X2 )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa3 ) ) ) ) ) )
& ( ~ ( ( member_int @ X2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ Xa3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( Y2
= ( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X2 )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa3 ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ X2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ Xa3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% and_int.elims
thf(fact_9440_and__int_Osimps,axiom,
( bit_se725231765392027082nd_int
= ( ^ [K2: int,L: int] :
( if_int
@ ( ( member_int @ K2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ L @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
@ ( uminus_uminus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) ) )
@ ( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% and_int.simps
thf(fact_9441_and__nonnegative__int__iff,axiom,
! [K: int,L2: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se725231765392027082nd_int @ K @ L2 ) )
= ( ( ord_less_eq_int @ zero_zero_int @ K )
| ( ord_less_eq_int @ zero_zero_int @ L2 ) ) ) ).
% and_nonnegative_int_iff
thf(fact_9442_and__negative__int__iff,axiom,
! [K: int,L2: int] :
( ( ord_less_int @ ( bit_se725231765392027082nd_int @ K @ L2 ) @ zero_zero_int )
= ( ( ord_less_int @ K @ zero_zero_int )
& ( ord_less_int @ L2 @ zero_zero_int ) ) ) ).
% and_negative_int_iff
thf(fact_9443_and__minus__numerals_I2_J,axiom,
! [N: num] :
( ( bit_se725231765392027082nd_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= one_one_int ) ).
% and_minus_numerals(2)
thf(fact_9444_and__minus__numerals_I6_J,axiom,
! [N: num] :
( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ one_one_int )
= one_one_int ) ).
% and_minus_numerals(6)
thf(fact_9445_and__minus__numerals_I5_J,axiom,
! [N: num] :
( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ one_one_int )
= zero_zero_int ) ).
% and_minus_numerals(5)
thf(fact_9446_and__minus__numerals_I1_J,axiom,
! [N: num] :
( ( bit_se725231765392027082nd_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= zero_zero_int ) ).
% and_minus_numerals(1)
thf(fact_9447_bit__and__int__iff,axiom,
! [K: int,L2: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_se725231765392027082nd_int @ K @ L2 ) @ N )
= ( ( bit_se1146084159140164899it_int @ K @ N )
& ( bit_se1146084159140164899it_int @ L2 @ N ) ) ) ).
% bit_and_int_iff
thf(fact_9448_AND__upper2_H,axiom,
! [Y2: int,Z: int,X2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Y2 )
=> ( ( ord_less_eq_int @ Y2 @ Z )
=> ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X2 @ Y2 ) @ Z ) ) ) ).
% AND_upper2'
thf(fact_9449_AND__upper1_H,axiom,
! [Y2: int,Z: int,Ya: int] :
( ( ord_less_eq_int @ zero_zero_int @ Y2 )
=> ( ( ord_less_eq_int @ Y2 @ Z )
=> ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ Y2 @ Ya ) @ Z ) ) ) ).
% AND_upper1'
thf(fact_9450_AND__upper2,axiom,
! [Y2: int,X2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Y2 )
=> ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X2 @ Y2 ) @ Y2 ) ) ).
% AND_upper2
thf(fact_9451_AND__upper1,axiom,
! [X2: int,Y2: int] :
( ( ord_less_eq_int @ zero_zero_int @ X2 )
=> ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X2 @ Y2 ) @ X2 ) ) ).
% AND_upper1
thf(fact_9452_AND__lower,axiom,
! [X2: int,Y2: int] :
( ( ord_less_eq_int @ zero_zero_int @ X2 )
=> ( ord_less_eq_int @ zero_zero_int @ ( bit_se725231765392027082nd_int @ X2 @ Y2 ) ) ) ).
% AND_lower
thf(fact_9453_AND__upper2_H_H,axiom,
! [Y2: int,Z: int,X2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Y2 )
=> ( ( ord_less_int @ Y2 @ Z )
=> ( ord_less_int @ ( bit_se725231765392027082nd_int @ X2 @ Y2 ) @ Z ) ) ) ).
% AND_upper2''
thf(fact_9454_AND__upper1_H_H,axiom,
! [Y2: int,Z: int,Ya: int] :
( ( ord_less_eq_int @ zero_zero_int @ Y2 )
=> ( ( ord_less_int @ Y2 @ Z )
=> ( ord_less_int @ ( bit_se725231765392027082nd_int @ Y2 @ Ya ) @ Z ) ) ) ).
% AND_upper1''
thf(fact_9455_and__less__eq,axiom,
! [L2: int,K: int] :
( ( ord_less_int @ L2 @ zero_zero_int )
=> ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ K @ L2 ) @ K ) ) ).
% and_less_eq
thf(fact_9456_even__and__iff__int,axiom,
! [K: int,L2: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ K @ L2 ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
| ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) ) ).
% even_and_iff_int
thf(fact_9457_and__int__rec,axiom,
( bit_se725231765392027082nd_int
= ( ^ [K2: int,L: int] :
( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% and_int_rec
thf(fact_9458_and__int__unfold,axiom,
( bit_se725231765392027082nd_int
= ( ^ [K2: int,L: int] :
( if_int
@ ( ( K2 = zero_zero_int )
| ( L = zero_zero_int ) )
@ zero_zero_int
@ ( if_int
@ ( K2
= ( uminus_uminus_int @ one_one_int ) )
@ L
@ ( if_int
@ ( L
= ( uminus_uminus_int @ one_one_int ) )
@ K2
@ ( plus_plus_int @ ( times_times_int @ ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).
% and_int_unfold
thf(fact_9459_sgn__integer__code,axiom,
( sgn_sgn_Code_integer
= ( ^ [K2: code_integer] : ( if_Code_integer @ ( K2 = zero_z3403309356797280102nteger ) @ zero_z3403309356797280102nteger @ ( if_Code_integer @ ( ord_le6747313008572928689nteger @ K2 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ) ) ) ) ).
% sgn_integer_code
thf(fact_9460_and__int_Opsimps,axiom,
! [K: int,L2: int] :
( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ K @ L2 ) )
=> ( ( ( ( member_int @ K @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ L2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( ( bit_se725231765392027082nd_int @ K @ L2 )
= ( uminus_uminus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) ) ) ) )
& ( ~ ( ( member_int @ K @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ L2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( ( bit_se725231765392027082nd_int @ K @ L2 )
= ( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% and_int.psimps
thf(fact_9461_and__int_Opelims,axiom,
! [X2: int,Xa3: int,Y2: int] :
( ( ( bit_se725231765392027082nd_int @ X2 @ Xa3 )
= Y2 )
=> ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ X2 @ Xa3 ) )
=> ~ ( ( ( ( ( member_int @ X2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ Xa3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( Y2
= ( uminus_uminus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X2 )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa3 ) ) ) ) ) )
& ( ~ ( ( member_int @ X2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ Xa3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( Y2
= ( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X2 )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa3 ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ X2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ Xa3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) )
=> ~ ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ X2 @ Xa3 ) ) ) ) ) ).
% and_int.pelims
thf(fact_9462_and__nat__numerals_I3_J,axiom,
! [X2: num] :
( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit0 @ X2 ) ) @ ( suc @ zero_zero_nat ) )
= zero_zero_nat ) ).
% and_nat_numerals(3)
thf(fact_9463_and__nat__numerals_I1_J,axiom,
! [Y2: num] :
( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) )
= zero_zero_nat ) ).
% and_nat_numerals(1)
thf(fact_9464_and__nat__numerals_I4_J,axiom,
! [X2: num] :
( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit1 @ X2 ) ) @ ( suc @ zero_zero_nat ) )
= one_one_nat ) ).
% and_nat_numerals(4)
thf(fact_9465_and__nat__numerals_I2_J,axiom,
! [Y2: num] :
( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) )
= one_one_nat ) ).
% and_nat_numerals(2)
thf(fact_9466_Suc__0__and__eq,axiom,
! [N: nat] :
( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ N )
= ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% Suc_0_and_eq
thf(fact_9467_and__Suc__0__eq,axiom,
! [N: nat] :
( ( bit_se727722235901077358nd_nat @ N @ ( suc @ zero_zero_nat ) )
= ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% and_Suc_0_eq
thf(fact_9468_and__nat__def,axiom,
( bit_se727722235901077358nd_nat
= ( ^ [M5: nat,N3: nat] : ( nat2 @ ( bit_se725231765392027082nd_int @ ( semiri1314217659103216013at_int @ M5 ) @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).
% and_nat_def
thf(fact_9469_zero__natural_Orsp,axiom,
zero_zero_nat = zero_zero_nat ).
% zero_natural.rsp
thf(fact_9470_one__natural_Orsp,axiom,
one_one_nat = one_one_nat ).
% one_natural.rsp
thf(fact_9471_zero__integer_Orsp,axiom,
zero_zero_int = zero_zero_int ).
% zero_integer.rsp
thf(fact_9472_one__integer_Orsp,axiom,
one_one_int = one_one_int ).
% one_integer.rsp
thf(fact_9473_less__eq__integer__code_I1_J,axiom,
ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger ).
% less_eq_integer_code(1)
thf(fact_9474_uminus__integer__code_I1_J,axiom,
( ( uminus1351360451143612070nteger @ zero_z3403309356797280102nteger )
= zero_z3403309356797280102nteger ) ).
% uminus_integer_code(1)
thf(fact_9475_times__integer__code_I1_J,axiom,
! [K: code_integer] :
( ( times_3573771949741848930nteger @ K @ zero_z3403309356797280102nteger )
= zero_z3403309356797280102nteger ) ).
% times_integer_code(1)
thf(fact_9476_times__integer__code_I2_J,axiom,
! [L2: code_integer] :
( ( times_3573771949741848930nteger @ zero_z3403309356797280102nteger @ L2 )
= zero_z3403309356797280102nteger ) ).
% times_integer_code(2)
thf(fact_9477_and__nat__unfold,axiom,
( bit_se727722235901077358nd_nat
= ( ^ [M5: nat,N3: nat] :
( if_nat
@ ( ( M5 = zero_zero_nat )
| ( N3 = zero_zero_nat ) )
@ zero_zero_nat
@ ( plus_plus_nat @ ( times_times_nat @ ( modulo_modulo_nat @ M5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( divide_divide_nat @ M5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% and_nat_unfold
thf(fact_9478_and__nat__rec,axiom,
( bit_se727722235901077358nd_nat
= ( ^ [M5: nat,N3: nat] :
( plus_plus_nat
@ ( zero_n2687167440665602831ol_nat
@ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M5 )
& ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) )
@ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( divide_divide_nat @ M5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% and_nat_rec
thf(fact_9479_abs__integer__code,axiom,
( abs_abs_Code_integer
= ( ^ [K2: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ K2 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ K2 ) @ K2 ) ) ) ).
% abs_integer_code
thf(fact_9480_less__integer__code_I1_J,axiom,
~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger ) ).
% less_integer_code(1)
thf(fact_9481_and__int_Opinduct,axiom,
! [A0: int,A1: int,P: int > int > $o] :
( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ A0 @ A1 ) )
=> ( ! [K3: int,L4: int] :
( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ K3 @ L4 ) )
=> ( ( ~ ( ( member_int @ K3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ L4 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( P @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
=> ( P @ K3 @ L4 ) ) )
=> ( P @ A0 @ A1 ) ) ) ).
% and_int.pinduct
thf(fact_9482_plus__integer__code_I1_J,axiom,
! [K: code_integer] :
( ( plus_p5714425477246183910nteger @ K @ zero_z3403309356797280102nteger )
= K ) ).
% plus_integer_code(1)
thf(fact_9483_plus__integer__code_I2_J,axiom,
! [L2: code_integer] :
( ( plus_p5714425477246183910nteger @ zero_z3403309356797280102nteger @ L2 )
= L2 ) ).
% plus_integer_code(2)
thf(fact_9484_minus__integer__code_I2_J,axiom,
! [L2: code_integer] :
( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ L2 )
= ( uminus1351360451143612070nteger @ L2 ) ) ).
% minus_integer_code(2)
thf(fact_9485_minus__integer__code_I1_J,axiom,
! [K: code_integer] :
( ( minus_8373710615458151222nteger @ K @ zero_z3403309356797280102nteger )
= K ) ).
% minus_integer_code(1)
thf(fact_9486_upto_Opinduct,axiom,
! [A0: int,A1: int,P: int > int > $o] :
( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ A0 @ A1 ) )
=> ( ! [I2: int,J2: int] :
( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ I2 @ J2 ) )
=> ( ( ( ord_less_eq_int @ I2 @ J2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) @ J2 ) )
=> ( P @ I2 @ J2 ) ) )
=> ( P @ A0 @ A1 ) ) ) ).
% upto.pinduct
thf(fact_9487_integer__of__int__code,axiom,
( code_integer_of_int
= ( ^ [K2: int] :
( if_Code_integer @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus1351360451143612070nteger @ ( code_integer_of_int @ ( uminus_uminus_int @ K2 ) ) )
@ ( if_Code_integer @ ( K2 = zero_zero_int ) @ zero_z3403309356797280102nteger
@ ( if_Code_integer
@ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int )
@ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( code_integer_of_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
@ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( code_integer_of_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_Code_integer ) ) ) ) ) ) ).
% integer_of_int_code
thf(fact_9488_Arg__def,axiom,
( arg
= ( ^ [Z5: complex] :
( if_real @ ( Z5 = zero_zero_complex ) @ zero_zero_real
@ ( fChoice_real
@ ^ [A3: real] :
( ( ( sgn_sgn_complex @ Z5 )
= ( cis @ A3 ) )
& ( ord_less_real @ ( uminus_uminus_real @ pi ) @ A3 )
& ( ord_less_eq_real @ A3 @ pi ) ) ) ) ) ) ).
% Arg_def
thf(fact_9489_divide__integer_Oabs__eq,axiom,
! [Xa3: int,X2: int] :
( ( divide6298287555418463151nteger @ ( code_integer_of_int @ Xa3 ) @ ( code_integer_of_int @ X2 ) )
= ( code_integer_of_int @ ( divide_divide_int @ Xa3 @ X2 ) ) ) ).
% divide_integer.abs_eq
thf(fact_9490_times__integer_Oabs__eq,axiom,
! [Xa3: int,X2: int] :
( ( times_3573771949741848930nteger @ ( code_integer_of_int @ Xa3 ) @ ( code_integer_of_int @ X2 ) )
= ( code_integer_of_int @ ( times_times_int @ Xa3 @ X2 ) ) ) ).
% times_integer.abs_eq
thf(fact_9491_zero__integer__def,axiom,
( zero_z3403309356797280102nteger
= ( code_integer_of_int @ zero_zero_int ) ) ).
% zero_integer_def
thf(fact_9492_one__integer__def,axiom,
( one_one_Code_integer
= ( code_integer_of_int @ one_one_int ) ) ).
% one_integer_def
thf(fact_9493_plus__integer_Oabs__eq,axiom,
! [Xa3: int,X2: int] :
( ( plus_p5714425477246183910nteger @ ( code_integer_of_int @ Xa3 ) @ ( code_integer_of_int @ X2 ) )
= ( code_integer_of_int @ ( plus_plus_int @ Xa3 @ X2 ) ) ) ).
% plus_integer.abs_eq
thf(fact_9494_divmod__BitM__2__eq,axiom,
! [M: num] :
( ( unique5052692396658037445od_int @ ( bitM @ M ) @ ( bit0 @ one ) )
= ( product_Pair_int_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ one_one_int ) ) ).
% divmod_BitM_2_eq
thf(fact_9495_pred__numeral__simps_I2_J,axiom,
! [K: num] :
( ( pred_numeral @ ( bit0 @ K ) )
= ( numeral_numeral_nat @ ( bitM @ K ) ) ) ).
% pred_numeral_simps(2)
thf(fact_9496_semiring__norm_I26_J,axiom,
( ( bitM @ one )
= one ) ).
% semiring_norm(26)
thf(fact_9497_semiring__norm_I27_J,axiom,
! [N: num] :
( ( bitM @ ( bit0 @ N ) )
= ( bit1 @ ( bitM @ N ) ) ) ).
% semiring_norm(27)
thf(fact_9498_semiring__norm_I28_J,axiom,
! [N: num] :
( ( bitM @ ( bit1 @ N ) )
= ( bit1 @ ( bit0 @ N ) ) ) ).
% semiring_norm(28)
thf(fact_9499_inc__BitM__eq,axiom,
! [N: num] :
( ( inc @ ( bitM @ N ) )
= ( bit0 @ N ) ) ).
% inc_BitM_eq
thf(fact_9500_BitM__inc__eq,axiom,
! [N: num] :
( ( bitM @ ( inc @ N ) )
= ( bit1 @ N ) ) ).
% BitM_inc_eq
thf(fact_9501_eval__nat__numeral_I2_J,axiom,
! [N: num] :
( ( numeral_numeral_nat @ ( bit0 @ N ) )
= ( suc @ ( numeral_numeral_nat @ ( bitM @ N ) ) ) ) ).
% eval_nat_numeral(2)
thf(fact_9502_one__plus__BitM,axiom,
! [N: num] :
( ( plus_plus_num @ one @ ( bitM @ N ) )
= ( bit0 @ N ) ) ).
% one_plus_BitM
thf(fact_9503_BitM__plus__one,axiom,
! [N: num] :
( ( plus_plus_num @ ( bitM @ N ) @ one )
= ( bit0 @ N ) ) ).
% BitM_plus_one
thf(fact_9504_mask__nat__positive__iff,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( bit_se2002935070580805687sk_nat @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% mask_nat_positive_iff
thf(fact_9505_nat__mask__eq,axiom,
! [N: nat] :
( ( nat2 @ ( bit_se2000444600071755411sk_int @ N ) )
= ( bit_se2002935070580805687sk_nat @ N ) ) ).
% nat_mask_eq
thf(fact_9506_less__eq__mask,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ ( bit_se2002935070580805687sk_nat @ N ) ) ).
% less_eq_mask
thf(fact_9507_mask__nonnegative__int,axiom,
! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( bit_se2000444600071755411sk_int @ N ) ) ).
% mask_nonnegative_int
thf(fact_9508_not__mask__negative__int,axiom,
! [N: nat] :
~ ( ord_less_int @ ( bit_se2000444600071755411sk_int @ N ) @ zero_zero_int ) ).
% not_mask_negative_int
thf(fact_9509_less__mask,axiom,
! [N: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ord_less_nat @ N @ ( bit_se2002935070580805687sk_nat @ N ) ) ) ).
% less_mask
thf(fact_9510_take__bit__eq__mask__iff,axiom,
! [N: nat,K: int] :
( ( ( bit_se2923211474154528505it_int @ N @ K )
= ( bit_se2000444600071755411sk_int @ N ) )
= ( ( bit_se2923211474154528505it_int @ N @ ( plus_plus_int @ K @ one_one_int ) )
= zero_zero_int ) ) ).
% take_bit_eq_mask_iff
thf(fact_9511_Suc__mask__eq__exp,axiom,
! [N: nat] :
( ( suc @ ( bit_se2002935070580805687sk_nat @ N ) )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% Suc_mask_eq_exp
thf(fact_9512_mask__nat__less__exp,axiom,
! [N: nat] : ( ord_less_nat @ ( bit_se2002935070580805687sk_nat @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% mask_nat_less_exp
thf(fact_9513_mask__half__int,axiom,
! [N: nat] :
( ( divide_divide_int @ ( bit_se2000444600071755411sk_int @ N ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( bit_se2000444600071755411sk_int @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ).
% mask_half_int
thf(fact_9514_mask__int__def,axiom,
( bit_se2000444600071755411sk_int
= ( ^ [N3: nat] : ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) @ one_one_int ) ) ) ).
% mask_int_def
thf(fact_9515_mask__nat__def,axiom,
( bit_se2002935070580805687sk_nat
= ( ^ [N3: nat] : ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) ) ).
% mask_nat_def
thf(fact_9516_divmod__step__nat__def,axiom,
( unique5026877609467782581ep_nat
= ( ^ [L: num] :
( produc2626176000494625587at_nat
@ ^ [Q4: nat,R5: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ L ) @ R5 ) @ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q4 ) @ one_one_nat ) @ ( minus_minus_nat @ R5 @ ( numeral_numeral_nat @ L ) ) ) @ ( product_Pair_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).
% divmod_step_nat_def
thf(fact_9517_take__bit__eq__mask__iff__exp__dvd,axiom,
! [N: nat,K: int] :
( ( ( bit_se2923211474154528505it_int @ N @ K )
= ( bit_se2000444600071755411sk_int @ N ) )
= ( dvd_dvd_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ ( plus_plus_int @ K @ one_one_int ) ) ) ).
% take_bit_eq_mask_iff_exp_dvd
thf(fact_9518_divmod__step__int__def,axiom,
( unique5024387138958732305ep_int
= ( ^ [L: num] :
( produc4245557441103728435nt_int
@ ^ [Q4: int,R5: int] : ( if_Pro3027730157355071871nt_int @ ( ord_less_eq_int @ ( numeral_numeral_int @ L ) @ R5 ) @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q4 ) @ one_one_int ) @ ( minus_minus_int @ R5 @ ( numeral_numeral_int @ L ) ) ) @ ( product_Pair_int_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).
% divmod_step_int_def
thf(fact_9519_divmod__step__integer__def,axiom,
( unique4921790084139445826nteger
= ( ^ [L: num] :
( produc6916734918728496179nteger
@ ^ [Q4: code_integer,R5: code_integer] : ( if_Pro6119634080678213985nteger @ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L ) @ R5 ) @ ( produc1086072967326762835nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q4 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ R5 @ ( numera6620942414471956472nteger @ L ) ) ) @ ( produc1086072967326762835nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).
% divmod_step_integer_def
thf(fact_9520_divmod__nat__if,axiom,
( divmod_nat
= ( ^ [M5: nat,N3: nat] :
( if_Pro6206227464963214023at_nat
@ ( ( N3 = zero_zero_nat )
| ( ord_less_nat @ M5 @ N3 ) )
@ ( product_Pair_nat_nat @ zero_zero_nat @ M5 )
@ ( produc2626176000494625587at_nat
@ ^ [Q4: nat] : ( product_Pair_nat_nat @ ( suc @ Q4 ) )
@ ( divmod_nat @ ( minus_minus_nat @ M5 @ N3 ) @ N3 ) ) ) ) ) ).
% divmod_nat_if
thf(fact_9521_not__nonnegative__int__iff,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_ri7919022796975470100ot_int @ K ) )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% not_nonnegative_int_iff
thf(fact_9522_not__negative__int__iff,axiom,
! [K: int] :
( ( ord_less_int @ ( bit_ri7919022796975470100ot_int @ K ) @ zero_zero_int )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% not_negative_int_iff
thf(fact_9523_bit__not__int__iff,axiom,
! [K: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_ri7919022796975470100ot_int @ K ) @ N )
= ( ~ ( bit_se1146084159140164899it_int @ K @ N ) ) ) ).
% bit_not_int_iff
thf(fact_9524_not__int__def,axiom,
( bit_ri7919022796975470100ot_int
= ( ^ [K2: int] : ( minus_minus_int @ ( uminus_uminus_int @ K2 ) @ one_one_int ) ) ) ).
% not_int_def
thf(fact_9525_and__not__numerals_I1_J,axiom,
( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
= zero_zero_int ) ).
% and_not_numerals(1)
thf(fact_9526_not__int__div__2,axiom,
! [K: int] :
( ( divide_divide_int @ ( bit_ri7919022796975470100ot_int @ K ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( bit_ri7919022796975470100ot_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% not_int_div_2
thf(fact_9527_even__not__iff__int,axiom,
! [K: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri7919022796975470100ot_int @ K ) )
= ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ) ).
% even_not_iff_int
thf(fact_9528_and__not__numerals_I4_J,axiom,
! [M: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
= ( numeral_numeral_int @ ( bit0 @ M ) ) ) ).
% and_not_numerals(4)
thf(fact_9529_and__not__numerals_I2_J,axiom,
! [N: num] :
( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= one_one_int ) ).
% and_not_numerals(2)
thf(fact_9530_bit__minus__int__iff,axiom,
! [K: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ K ) @ N )
= ( bit_se1146084159140164899it_int @ ( bit_ri7919022796975470100ot_int @ ( minus_minus_int @ K @ one_one_int ) ) @ N ) ) ).
% bit_minus_int_iff
thf(fact_9531_and__not__numerals_I5_J,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).
% and_not_numerals(5)
thf(fact_9532_and__not__numerals_I7_J,axiom,
! [M: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
= ( numeral_numeral_int @ ( bit0 @ M ) ) ) ).
% and_not_numerals(7)
thf(fact_9533_and__not__numerals_I3_J,axiom,
! [N: num] :
( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= zero_zero_int ) ).
% and_not_numerals(3)
thf(fact_9534_Divides_Oadjust__div__def,axiom,
( adjust_div
= ( produc8211389475949308722nt_int
@ ^ [Q4: int,R5: int] : ( plus_plus_int @ Q4 @ ( zero_n2684676970156552555ol_int @ ( R5 != zero_zero_int ) ) ) ) ) ).
% Divides.adjust_div_def
thf(fact_9535_and__not__numerals_I6_J,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).
% and_not_numerals(6)
thf(fact_9536_and__not__numerals_I9_J,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).
% and_not_numerals(9)
thf(fact_9537_divmod__nat__def,axiom,
( divmod_nat
= ( ^ [M5: nat,N3: nat] : ( product_Pair_nat_nat @ ( divide_divide_nat @ M5 @ N3 ) @ ( modulo_modulo_nat @ M5 @ N3 ) ) ) ) ).
% divmod_nat_def
thf(fact_9538_and__not__numerals_I8_J,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).
% and_not_numerals(8)
thf(fact_9539_not__int__rec,axiom,
( bit_ri7919022796975470100ot_int
= ( ^ [K2: int] : ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri7919022796975470100ot_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% not_int_rec
thf(fact_9540_int__not__code_I1_J,axiom,
( ( bit_ri7919022796975470100ot_int @ zero_zero_int )
= ( uminus_uminus_int @ one_one_int ) ) ).
% int_not_code(1)
thf(fact_9541_bitNOT__integer__code,axiom,
( bit_ri7632146776885996613nteger
= ( ^ [I3: code_integer] : ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ I3 ) @ one_one_Code_integer ) ) ) ).
% bitNOT_integer_code
thf(fact_9542_or__nonnegative__int__iff,axiom,
! [K: int,L2: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se1409905431419307370or_int @ K @ L2 ) )
= ( ( ord_less_eq_int @ zero_zero_int @ K )
& ( ord_less_eq_int @ zero_zero_int @ L2 ) ) ) ).
% or_nonnegative_int_iff
thf(fact_9543_or__negative__int__iff,axiom,
! [K: int,L2: int] :
( ( ord_less_int @ ( bit_se1409905431419307370or_int @ K @ L2 ) @ zero_zero_int )
= ( ( ord_less_int @ K @ zero_zero_int )
| ( ord_less_int @ L2 @ zero_zero_int ) ) ) ).
% or_negative_int_iff
thf(fact_9544_or__minus__numerals_I6_J,axiom,
! [N: num] :
( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ) ).
% or_minus_numerals(6)
thf(fact_9545_or__minus__numerals_I2_J,axiom,
! [N: num] :
( ( bit_se1409905431419307370or_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ) ).
% or_minus_numerals(2)
thf(fact_9546_or__nat__numerals_I4_J,axiom,
! [X2: num] :
( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X2 ) ) @ ( suc @ zero_zero_nat ) )
= ( numeral_numeral_nat @ ( bit1 @ X2 ) ) ) ).
% or_nat_numerals(4)
thf(fact_9547_or__nat__numerals_I2_J,axiom,
! [Y2: num] :
( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) )
= ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) ) ).
% or_nat_numerals(2)
thf(fact_9548_or__nat__numerals_I3_J,axiom,
! [X2: num] :
( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X2 ) ) @ ( suc @ zero_zero_nat ) )
= ( numeral_numeral_nat @ ( bit1 @ X2 ) ) ) ).
% or_nat_numerals(3)
thf(fact_9549_or__nat__numerals_I1_J,axiom,
! [Y2: num] :
( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) )
= ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) ) ).
% or_nat_numerals(1)
thf(fact_9550_and__minus__minus__numerals,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( bit_ri7919022796975470100ot_int @ ( bit_se1409905431419307370or_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( minus_minus_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ) ) ) ).
% and_minus_minus_numerals
thf(fact_9551_or__minus__minus__numerals,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( bit_ri7919022796975470100ot_int @ ( bit_se725231765392027082nd_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( minus_minus_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ) ) ) ).
% or_minus_minus_numerals
thf(fact_9552_bit__or__int__iff,axiom,
! [K: int,L2: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_se1409905431419307370or_int @ K @ L2 ) @ N )
= ( ( bit_se1146084159140164899it_int @ K @ N )
| ( bit_se1146084159140164899it_int @ L2 @ N ) ) ) ).
% bit_or_int_iff
thf(fact_9553_or__nat__def,axiom,
( bit_se1412395901928357646or_nat
= ( ^ [M5: nat,N3: nat] : ( nat2 @ ( bit_se1409905431419307370or_int @ ( semiri1314217659103216013at_int @ M5 ) @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).
% or_nat_def
thf(fact_9554_int__or__code_I2_J,axiom,
! [I: int] :
( ( bit_se1409905431419307370or_int @ I @ zero_zero_int )
= I ) ).
% int_or_code(2)
thf(fact_9555_int__or__code_I1_J,axiom,
! [J: int] :
( ( bit_se1409905431419307370or_int @ zero_zero_int @ J )
= J ) ).
% int_or_code(1)
thf(fact_9556_OR__lower,axiom,
! [X2: int,Y2: int] :
( ( ord_less_eq_int @ zero_zero_int @ X2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
=> ( ord_less_eq_int @ zero_zero_int @ ( bit_se1409905431419307370or_int @ X2 @ Y2 ) ) ) ) ).
% OR_lower
thf(fact_9557_or__greater__eq,axiom,
! [L2: int,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ L2 )
=> ( ord_less_eq_int @ K @ ( bit_se1409905431419307370or_int @ K @ L2 ) ) ) ).
% or_greater_eq
thf(fact_9558_plus__and__or,axiom,
! [X2: int,Y2: int] :
( ( plus_plus_int @ ( bit_se725231765392027082nd_int @ X2 @ Y2 ) @ ( bit_se1409905431419307370or_int @ X2 @ Y2 ) )
= ( plus_plus_int @ X2 @ Y2 ) ) ).
% plus_and_or
thf(fact_9559_or__int__def,axiom,
( bit_se1409905431419307370or_int
= ( ^ [K2: int,L: int] : ( bit_ri7919022796975470100ot_int @ ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ K2 ) @ ( bit_ri7919022796975470100ot_int @ L ) ) ) ) ) ).
% or_int_def
thf(fact_9560_or__not__numerals_I1_J,axiom,
( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
= ( bit_ri7919022796975470100ot_int @ zero_zero_int ) ) ).
% or_not_numerals(1)
thf(fact_9561_or__not__numerals_I2_J,axiom,
! [N: num] :
( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ) ).
% or_not_numerals(2)
thf(fact_9562_or__not__numerals_I4_J,axiom,
! [M: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
= ( bit_ri7919022796975470100ot_int @ one_one_int ) ) ).
% or_not_numerals(4)
thf(fact_9563_or__not__numerals_I3_J,axiom,
! [N: num] :
( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ) ).
% or_not_numerals(3)
thf(fact_9564_or__not__numerals_I7_J,axiom,
! [M: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
= ( bit_ri7919022796975470100ot_int @ zero_zero_int ) ) ).
% or_not_numerals(7)
thf(fact_9565_or__not__numerals_I6_J,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).
% or_not_numerals(6)
thf(fact_9566_OR__upper,axiom,
! [X2: int,N: nat,Y2: int] :
( ( ord_less_eq_int @ zero_zero_int @ X2 )
=> ( ( ord_less_int @ X2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
=> ( ( ord_less_int @ Y2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
=> ( ord_less_int @ ( bit_se1409905431419307370or_int @ X2 @ Y2 ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).
% OR_upper
thf(fact_9567_or__not__numerals_I5_J,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).
% or_not_numerals(5)
thf(fact_9568_test__bit__int__code_I1_J,axiom,
! [N: nat] :
~ ( bit_se1146084159140164899it_int @ zero_zero_int @ N ) ).
% test_bit_int_code(1)
thf(fact_9569_int__and__code_I1_J,axiom,
! [J: int] :
( ( bit_se725231765392027082nd_int @ zero_zero_int @ J )
= zero_zero_int ) ).
% int_and_code(1)
thf(fact_9570_int__and__code_I2_J,axiom,
! [I: int] :
( ( bit_se725231765392027082nd_int @ I @ zero_zero_int )
= zero_zero_int ) ).
% int_and_code(2)
thf(fact_9571_Suc__0__or__eq,axiom,
! [N: nat] :
( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ N )
= ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% Suc_0_or_eq
thf(fact_9572_or__Suc__0__eq,axiom,
! [N: nat] :
( ( bit_se1412395901928357646or_nat @ N @ ( suc @ zero_zero_nat ) )
= ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% or_Suc_0_eq
thf(fact_9573_or__nat__rec,axiom,
( bit_se1412395901928357646or_nat
= ( ^ [M5: nat,N3: nat] :
( plus_plus_nat
@ ( zero_n2687167440665602831ol_nat
@ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M5 )
| ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) )
@ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( divide_divide_nat @ M5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% or_nat_rec
thf(fact_9574_or__not__numerals_I8_J,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).
% or_not_numerals(8)
thf(fact_9575_or__not__numerals_I9_J,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).
% or_not_numerals(9)
thf(fact_9576_or__int__rec,axiom,
( bit_se1409905431419307370or_int
= ( ^ [K2: int,L: int] :
( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 )
| ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% or_int_rec
thf(fact_9577_or__nat__unfold,axiom,
( bit_se1412395901928357646or_nat
= ( ^ [M5: nat,N3: nat] : ( if_nat @ ( M5 = zero_zero_nat ) @ N3 @ ( if_nat @ ( N3 = zero_zero_nat ) @ M5 @ ( plus_plus_nat @ ( ord_max_nat @ ( modulo_modulo_nat @ M5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( divide_divide_nat @ M5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% or_nat_unfold
thf(fact_9578_or__int__unfold,axiom,
( bit_se1409905431419307370or_int
= ( ^ [K2: int,L: int] :
( if_int
@ ( ( K2
= ( uminus_uminus_int @ one_one_int ) )
| ( L
= ( uminus_uminus_int @ one_one_int ) ) )
@ ( uminus_uminus_int @ one_one_int )
@ ( if_int @ ( K2 = zero_zero_int ) @ L @ ( if_int @ ( L = zero_zero_int ) @ K2 @ ( plus_plus_int @ ( ord_max_int @ ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).
% or_int_unfold
thf(fact_9579_Bit__integer_Oabs__eq,axiom,
! [Xa3: int,X2: $o] :
( ( bits_Bit_integer @ ( code_integer_of_int @ Xa3 ) @ X2 )
= ( code_integer_of_int @ ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ X2 ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa3 ) ) ) ) ).
% Bit_integer.abs_eq
thf(fact_9580_xor__int__unfold,axiom,
( bit_se6526347334894502574or_int
= ( ^ [K2: int,L: int] :
( if_int
@ ( K2
= ( uminus_uminus_int @ one_one_int ) )
@ ( bit_ri7919022796975470100ot_int @ L )
@ ( if_int
@ ( L
= ( uminus_uminus_int @ one_one_int ) )
@ ( bit_ri7919022796975470100ot_int @ K2 )
@ ( if_int @ ( K2 = zero_zero_int ) @ L @ ( if_int @ ( L = zero_zero_int ) @ K2 @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).
% xor_int_unfold
thf(fact_9581_or__minus__numerals_I5_J,axiom,
! [N: num] :
( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ one @ ( bitM @ N ) ) ) ) ) ).
% or_minus_numerals(5)
thf(fact_9582_xor__nonnegative__int__iff,axiom,
! [K: int,L2: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se6526347334894502574or_int @ K @ L2 ) )
= ( ( ord_less_eq_int @ zero_zero_int @ K )
= ( ord_less_eq_int @ zero_zero_int @ L2 ) ) ) ).
% xor_nonnegative_int_iff
thf(fact_9583_xor__negative__int__iff,axiom,
! [K: int,L2: int] :
( ( ord_less_int @ ( bit_se6526347334894502574or_int @ K @ L2 ) @ zero_zero_int )
= ( ( ord_less_int @ K @ zero_zero_int )
!= ( ord_less_int @ L2 @ zero_zero_int ) ) ) ).
% xor_negative_int_iff
thf(fact_9584_or__minus__numerals_I8_J,axiom,
! [N: num,M: num] :
( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bit0 @ N ) ) ) ) ) ).
% or_minus_numerals(8)
thf(fact_9585_or__minus__numerals_I4_J,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bit0 @ N ) ) ) ) ) ).
% or_minus_numerals(4)
thf(fact_9586_or__minus__numerals_I3_J,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bitM @ N ) ) ) ) ) ).
% or_minus_numerals(3)
thf(fact_9587_or__minus__numerals_I7_J,axiom,
! [N: num,M: num] :
( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bitM @ N ) ) ) ) ) ).
% or_minus_numerals(7)
thf(fact_9588_or__minus__numerals_I1_J,axiom,
! [N: num] :
( ( bit_se1409905431419307370or_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ one @ ( bitM @ N ) ) ) ) ) ).
% or_minus_numerals(1)
thf(fact_9589_int__xor__code_I1_J,axiom,
! [J: int] :
( ( bit_se6526347334894502574or_int @ zero_zero_int @ J )
= J ) ).
% int_xor_code(1)
thf(fact_9590_int__xor__code_I2_J,axiom,
! [I: int] :
( ( bit_se6526347334894502574or_int @ I @ zero_zero_int )
= I ) ).
% int_xor_code(2)
thf(fact_9591_XOR__lower,axiom,
! [X2: int,Y2: int] :
( ( ord_less_eq_int @ zero_zero_int @ X2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
=> ( ord_less_eq_int @ zero_zero_int @ ( bit_se6526347334894502574or_int @ X2 @ Y2 ) ) ) ) ).
% XOR_lower
thf(fact_9592_bit__xor__int__iff,axiom,
! [K: int,L2: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_se6526347334894502574or_int @ K @ L2 ) @ N )
= ( ( bit_se1146084159140164899it_int @ K @ N )
!= ( bit_se1146084159140164899it_int @ L2 @ N ) ) ) ).
% bit_xor_int_iff
thf(fact_9593_or__not__num__neg_Osimps_I1_J,axiom,
( ( bit_or_not_num_neg @ one @ one )
= one ) ).
% or_not_num_neg.simps(1)
thf(fact_9594_or__not__num__neg_Osimps_I4_J,axiom,
! [N: num] :
( ( bit_or_not_num_neg @ ( bit0 @ N ) @ one )
= ( bit0 @ one ) ) ).
% or_not_num_neg.simps(4)
thf(fact_9595_or__not__num__neg_Osimps_I6_J,axiom,
! [N: num,M: num] :
( ( bit_or_not_num_neg @ ( bit0 @ N ) @ ( bit1 @ M ) )
= ( bit0 @ ( bit_or_not_num_neg @ N @ M ) ) ) ).
% or_not_num_neg.simps(6)
thf(fact_9596_or__not__num__neg_Osimps_I3_J,axiom,
! [M: num] :
( ( bit_or_not_num_neg @ one @ ( bit1 @ M ) )
= ( bit1 @ M ) ) ).
% or_not_num_neg.simps(3)
thf(fact_9597_or__not__num__neg_Osimps_I7_J,axiom,
! [N: num] :
( ( bit_or_not_num_neg @ ( bit1 @ N ) @ one )
= one ) ).
% or_not_num_neg.simps(7)
thf(fact_9598_or__not__num__neg_Osimps_I5_J,axiom,
! [N: num,M: num] :
( ( bit_or_not_num_neg @ ( bit0 @ N ) @ ( bit0 @ M ) )
= ( bitM @ ( bit_or_not_num_neg @ N @ M ) ) ) ).
% or_not_num_neg.simps(5)
thf(fact_9599_or__not__num__neg_Osimps_I9_J,axiom,
! [N: num,M: num] :
( ( bit_or_not_num_neg @ ( bit1 @ N ) @ ( bit1 @ M ) )
= ( bitM @ ( bit_or_not_num_neg @ N @ M ) ) ) ).
% or_not_num_neg.simps(9)
thf(fact_9600_xor__int__def,axiom,
( bit_se6526347334894502574or_int
= ( ^ [K2: int,L: int] : ( bit_se1409905431419307370or_int @ ( bit_se725231765392027082nd_int @ K2 @ ( bit_ri7919022796975470100ot_int @ L ) ) @ ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ K2 ) @ L ) ) ) ) ).
% xor_int_def
thf(fact_9601_or__not__num__neg_Osimps_I2_J,axiom,
! [M: num] :
( ( bit_or_not_num_neg @ one @ ( bit0 @ M ) )
= ( bit1 @ M ) ) ).
% or_not_num_neg.simps(2)
thf(fact_9602_or__not__num__neg_Osimps_I8_J,axiom,
! [N: num,M: num] :
( ( bit_or_not_num_neg @ ( bit1 @ N ) @ ( bit0 @ M ) )
= ( bitM @ ( bit_or_not_num_neg @ N @ M ) ) ) ).
% or_not_num_neg.simps(8)
thf(fact_9603_or__not__num__neg_Oelims,axiom,
! [X2: num,Xa3: num,Y2: num] :
( ( ( bit_or_not_num_neg @ X2 @ Xa3 )
= Y2 )
=> ( ( ( X2 = one )
=> ( ( Xa3 = one )
=> ( Y2 != one ) ) )
=> ( ( ( X2 = one )
=> ! [M3: num] :
( ( Xa3
= ( bit0 @ M3 ) )
=> ( Y2
!= ( bit1 @ M3 ) ) ) )
=> ( ( ( X2 = one )
=> ! [M3: num] :
( ( Xa3
= ( bit1 @ M3 ) )
=> ( Y2
!= ( bit1 @ M3 ) ) ) )
=> ( ( ? [N2: num] :
( X2
= ( bit0 @ N2 ) )
=> ( ( Xa3 = one )
=> ( Y2
!= ( bit0 @ one ) ) ) )
=> ( ! [N2: num] :
( ( X2
= ( bit0 @ N2 ) )
=> ! [M3: num] :
( ( Xa3
= ( bit0 @ M3 ) )
=> ( Y2
!= ( bitM @ ( bit_or_not_num_neg @ N2 @ M3 ) ) ) ) )
=> ( ! [N2: num] :
( ( X2
= ( bit0 @ N2 ) )
=> ! [M3: num] :
( ( Xa3
= ( bit1 @ M3 ) )
=> ( Y2
!= ( bit0 @ ( bit_or_not_num_neg @ N2 @ M3 ) ) ) ) )
=> ( ( ? [N2: num] :
( X2
= ( bit1 @ N2 ) )
=> ( ( Xa3 = one )
=> ( Y2 != one ) ) )
=> ( ! [N2: num] :
( ( X2
= ( bit1 @ N2 ) )
=> ! [M3: num] :
( ( Xa3
= ( bit0 @ M3 ) )
=> ( Y2
!= ( bitM @ ( bit_or_not_num_neg @ N2 @ M3 ) ) ) ) )
=> ~ ! [N2: num] :
( ( X2
= ( bit1 @ N2 ) )
=> ! [M3: num] :
( ( Xa3
= ( bit1 @ M3 ) )
=> ( Y2
!= ( bitM @ ( bit_or_not_num_neg @ N2 @ M3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% or_not_num_neg.elims
thf(fact_9604_numeral__or__not__num__eq,axiom,
! [M: num,N: num] :
( ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ N ) )
= ( uminus_uminus_int @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).
% numeral_or_not_num_eq
thf(fact_9605_int__numeral__not__or__num__neg,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ N @ M ) ) ) ) ).
% int_numeral_not_or_num_neg
thf(fact_9606_int__numeral__or__not__num__neg,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ N ) ) ) ) ).
% int_numeral_or_not_num_neg
thf(fact_9607_XOR__upper,axiom,
! [X2: int,N: nat,Y2: int] :
( ( ord_less_eq_int @ zero_zero_int @ X2 )
=> ( ( ord_less_int @ X2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
=> ( ( ord_less_int @ Y2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
=> ( ord_less_int @ ( bit_se6526347334894502574or_int @ X2 @ Y2 ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).
% XOR_upper
thf(fact_9608_xor__int__rec,axiom,
( bit_se6526347334894502574or_int
= ( ^ [K2: int,L: int] :
( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 ) )
!= ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% xor_int_rec
thf(fact_9609_int__ge__less__than__def,axiom,
( int_ge_less_than
= ( ^ [D: int] :
( collec213857154873943460nt_int
@ ( produc4947309494688390418_int_o
@ ^ [Z7: int,Z5: int] :
( ( ord_less_eq_int @ D @ Z7 )
& ( ord_less_int @ Z7 @ Z5 ) ) ) ) ) ) ).
% int_ge_less_than_def
thf(fact_9610_int__ge__less__than2__def,axiom,
( int_ge_less_than2
= ( ^ [D: int] :
( collec213857154873943460nt_int
@ ( produc4947309494688390418_int_o
@ ^ [Z7: int,Z5: int] :
( ( ord_less_eq_int @ D @ Z5 )
& ( ord_less_int @ Z7 @ Z5 ) ) ) ) ) ) ).
% int_ge_less_than2_def
thf(fact_9611_xor__nat__numerals_I4_J,axiom,
! [X2: num] :
( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X2 ) ) @ ( suc @ zero_zero_nat ) )
= ( numeral_numeral_nat @ ( bit0 @ X2 ) ) ) ).
% xor_nat_numerals(4)
thf(fact_9612_xor__nat__numerals_I3_J,axiom,
! [X2: num] :
( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X2 ) ) @ ( suc @ zero_zero_nat ) )
= ( numeral_numeral_nat @ ( bit1 @ X2 ) ) ) ).
% xor_nat_numerals(3)
thf(fact_9613_xor__nat__numerals_I2_J,axiom,
! [Y2: num] :
( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) )
= ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) ) ).
% xor_nat_numerals(2)
thf(fact_9614_xor__nat__numerals_I1_J,axiom,
! [Y2: num] :
( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) )
= ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) ) ).
% xor_nat_numerals(1)
thf(fact_9615_xor__nat__def,axiom,
( bit_se6528837805403552850or_nat
= ( ^ [M5: nat,N3: nat] : ( nat2 @ ( bit_se6526347334894502574or_int @ ( semiri1314217659103216013at_int @ M5 ) @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).
% xor_nat_def
thf(fact_9616_xor__nat__unfold,axiom,
( bit_se6528837805403552850or_nat
= ( ^ [M5: nat,N3: nat] : ( if_nat @ ( M5 = zero_zero_nat ) @ N3 @ ( if_nat @ ( N3 = zero_zero_nat ) @ M5 @ ( plus_plus_nat @ ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ M5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( divide_divide_nat @ M5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% xor_nat_unfold
thf(fact_9617_xor__nat__rec,axiom,
( bit_se6528837805403552850or_nat
= ( ^ [M5: nat,N3: nat] :
( plus_plus_nat
@ ( zero_n2687167440665602831ol_nat
@ ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M5 ) )
!= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) )
@ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( divide_divide_nat @ M5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% xor_nat_rec
thf(fact_9618_Suc__0__xor__eq,axiom,
! [N: nat] :
( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ N )
= ( minus_minus_nat @ ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
@ ( zero_n2687167440665602831ol_nat
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% Suc_0_xor_eq
thf(fact_9619_xor__Suc__0__eq,axiom,
! [N: nat] :
( ( bit_se6528837805403552850or_nat @ N @ ( suc @ zero_zero_nat ) )
= ( minus_minus_nat @ ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
@ ( zero_n2687167440665602831ol_nat
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% xor_Suc_0_eq
thf(fact_9620_dup__1,axiom,
( ( code_dup @ one_one_Code_integer )
= ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ).
% dup_1
thf(fact_9621_VEBT__internal_OT__vebt__buildupi_H_Opelims,axiom,
! [X2: nat,Y2: int] :
( ( ( vEBT_V9176841429113362141ildupi @ X2 )
= Y2 )
=> ( ( accp_nat @ vEBT_V3352910403632780892pi_rel @ X2 )
=> ( ( ( X2 = zero_zero_nat )
=> ( ( Y2 = one_one_int )
=> ~ ( accp_nat @ vEBT_V3352910403632780892pi_rel @ zero_zero_nat ) ) )
=> ( ( ( X2
= ( suc @ zero_zero_nat ) )
=> ( ( Y2 = one_one_int )
=> ~ ( accp_nat @ vEBT_V3352910403632780892pi_rel @ ( suc @ zero_zero_nat ) ) ) )
=> ~ ! [N2: nat] :
( ( X2
= ( suc @ ( suc @ N2 ) ) )
=> ( ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( Y2
= ( plus_plus_int @ ( numeral_numeral_int @ ( bit1 @ one ) ) @ ( plus_plus_int @ ( vEBT_V9176841429113362141ildupi @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( times_times_int @ ( vEBT_V9176841429113362141ildupi @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( Y2
= ( plus_plus_int @ ( numeral_numeral_int @ ( bit1 @ one ) ) @ ( plus_plus_int @ ( vEBT_V9176841429113362141ildupi @ ( suc @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( vEBT_V9176841429113362141ildupi @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) )
=> ~ ( accp_nat @ vEBT_V3352910403632780892pi_rel @ ( suc @ ( suc @ N2 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.T_vebt_buildupi'.pelims
thf(fact_9622_int__lsb__numeral_I1_J,axiom,
~ ( least_4859182151741483524sb_int @ zero_zero_int ) ).
% int_lsb_numeral(1)
thf(fact_9623_int__lsb__numeral_I2_J,axiom,
least_4859182151741483524sb_int @ one_one_int ).
% int_lsb_numeral(2)
thf(fact_9624_int__lsb__numeral_I6_J,axiom,
! [W: num] :
~ ( least_4859182151741483524sb_int @ ( numeral_numeral_int @ ( bit0 @ W ) ) ) ).
% int_lsb_numeral(6)
thf(fact_9625_int__lsb__numeral_I3_J,axiom,
least_4859182151741483524sb_int @ ( numeral_numeral_int @ one ) ).
% int_lsb_numeral(3)
thf(fact_9626_int__lsb__numeral_I7_J,axiom,
! [W: num] : ( least_4859182151741483524sb_int @ ( numeral_numeral_int @ ( bit1 @ W ) ) ) ).
% int_lsb_numeral(7)
thf(fact_9627_int__lsb__numeral_I4_J,axiom,
least_4859182151741483524sb_int @ ( uminus_uminus_int @ one_one_int ) ).
% int_lsb_numeral(4)
thf(fact_9628_int__lsb__numeral_I8_J,axiom,
! [W: num] :
~ ( least_4859182151741483524sb_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ W ) ) ) ) ).
% int_lsb_numeral(8)
thf(fact_9629_int__lsb__numeral_I5_J,axiom,
least_4859182151741483524sb_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) ).
% int_lsb_numeral(5)
thf(fact_9630_int__lsb__numeral_I9_J,axiom,
! [W: num] : ( least_4859182151741483524sb_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ W ) ) ) ) ).
% int_lsb_numeral(9)
thf(fact_9631_Code__Numeral_Odup__code_I1_J,axiom,
( ( code_dup @ zero_z3403309356797280102nteger )
= zero_z3403309356797280102nteger ) ).
% Code_Numeral.dup_code(1)
thf(fact_9632_lsb__integer__code,axiom,
( least_7544222001954398261nteger
= ( ^ [X: code_integer] : ( bit_se9216721137139052372nteger @ X @ zero_zero_nat ) ) ) ).
% lsb_integer_code
thf(fact_9633_pow_Osimps_I1_J,axiom,
! [X2: num] :
( ( pow @ X2 @ one )
= X2 ) ).
% pow.simps(1)
thf(fact_9634_lsb__int__def,axiom,
( least_4859182151741483524sb_int
= ( ^ [I3: int] : ( bit_se1146084159140164899it_int @ I3 @ zero_zero_nat ) ) ) ).
% lsb_int_def
thf(fact_9635_dup_Oabs__eq,axiom,
! [X2: int] :
( ( code_dup @ ( code_integer_of_int @ X2 ) )
= ( code_integer_of_int @ ( plus_plus_int @ X2 @ X2 ) ) ) ).
% dup.abs_eq
thf(fact_9636_bin__last__conv__lsb,axiom,
( ( ^ [A3: int] :
~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A3 ) )
= least_4859182151741483524sb_int ) ).
% bin_last_conv_lsb
thf(fact_9637_vebt__buildup_Opelims,axiom,
! [X2: nat,Y2: vEBT_VEBT] :
( ( ( vEBT_vebt_buildup @ X2 )
= Y2 )
=> ( ( accp_nat @ vEBT_v4011308405150292612up_rel @ X2 )
=> ( ( ( X2 = zero_zero_nat )
=> ( ( Y2
= ( vEBT_Leaf @ $false @ $false ) )
=> ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ zero_zero_nat ) ) )
=> ( ( ( X2
= ( suc @ zero_zero_nat ) )
=> ( ( Y2
= ( vEBT_Leaf @ $false @ $false ) )
=> ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ ( suc @ zero_zero_nat ) ) ) )
=> ~ ! [Va2: nat] :
( ( X2
= ( suc @ ( suc @ Va2 ) ) )
=> ( ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( Y2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va2 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( Y2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va2 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
=> ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ ( suc @ ( suc @ Va2 ) ) ) ) ) ) ) ) ) ).
% vebt_buildup.pelims
thf(fact_9638_VEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_Opelims,axiom,
! [X2: nat,Y2: nat] :
( ( ( vEBT_V8646137997579335489_i_l_d @ X2 )
= Y2 )
=> ( ( accp_nat @ vEBT_V5144397997797733112_d_rel @ X2 )
=> ( ( ( X2 = zero_zero_nat )
=> ( ( Y2
= ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
=> ~ ( accp_nat @ vEBT_V5144397997797733112_d_rel @ zero_zero_nat ) ) )
=> ( ( ( X2
= ( suc @ zero_zero_nat ) )
=> ( ( Y2
= ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
=> ~ ( accp_nat @ vEBT_V5144397997797733112_d_rel @ ( suc @ zero_zero_nat ) ) ) )
=> ~ ! [Va2: nat] :
( ( X2
= ( suc @ ( suc @ Va2 ) ) )
=> ( ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( Y2
= ( plus_plus_nat @ one_one_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( vEBT_V8646137997579335489_i_l_d @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_V8646137997579335489_i_l_d @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( Y2
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit1 @ one ) ) ) ) @ ( vEBT_V8646137997579335489_i_l_d @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_V8646137997579335489_i_l_d @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
=> ~ ( accp_nat @ vEBT_V5144397997797733112_d_rel @ ( suc @ ( suc @ Va2 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.T\<^sub>b\<^sub>u\<^sub>i\<^sub>l\<^sub>d.pelims
thf(fact_9639_VEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_092_060_094sub_062u_092_060_094sub_062p_Opelims,axiom,
! [X2: nat,Y2: nat] :
( ( ( vEBT_V8346862874174094_d_u_p @ X2 )
= Y2 )
=> ( ( accp_nat @ vEBT_V1247956027447740395_p_rel @ X2 )
=> ( ( ( X2 = zero_zero_nat )
=> ( ( Y2
= ( numeral_numeral_nat @ ( bit1 @ one ) ) )
=> ~ ( accp_nat @ vEBT_V1247956027447740395_p_rel @ zero_zero_nat ) ) )
=> ( ( ( X2
= ( suc @ zero_zero_nat ) )
=> ( ( Y2
= ( numeral_numeral_nat @ ( bit1 @ one ) ) )
=> ~ ( accp_nat @ vEBT_V1247956027447740395_p_rel @ ( suc @ zero_zero_nat ) ) ) )
=> ~ ! [Va2: nat] :
( ( X2
= ( suc @ ( suc @ Va2 ) ) )
=> ( ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( Y2
= ( plus_plus_nat @ one_one_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( vEBT_V8346862874174094_d_u_p @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_nat @ ( vEBT_V8346862874174094_d_u_p @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_nat ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( Y2
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( vEBT_V8346862874174094_d_u_p @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_nat @ ( vEBT_V8346862874174094_d_u_p @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_nat ) ) ) ) ) )
=> ~ ( accp_nat @ vEBT_V1247956027447740395_p_rel @ ( suc @ ( suc @ Va2 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.T\<^sub>b\<^sub>u\<^sub>i\<^sub>l\<^sub>d\<^sub>u\<^sub>p.pelims
thf(fact_9640_VEBT__internal_OTb_Opelims,axiom,
! [X2: nat,Y2: int] :
( ( ( vEBT_VEBT_Tb @ X2 )
= Y2 )
=> ( ( accp_nat @ vEBT_VEBT_Tb_rel2 @ X2 )
=> ( ( ( X2 = zero_zero_nat )
=> ( ( Y2
= ( numeral_numeral_int @ ( bit1 @ one ) ) )
=> ~ ( accp_nat @ vEBT_VEBT_Tb_rel2 @ zero_zero_nat ) ) )
=> ( ( ( X2
= ( suc @ zero_zero_nat ) )
=> ( ( Y2
= ( numeral_numeral_int @ ( bit1 @ one ) ) )
=> ~ ( accp_nat @ vEBT_VEBT_Tb_rel2 @ ( suc @ zero_zero_nat ) ) ) )
=> ~ ! [N2: nat] :
( ( X2
= ( suc @ ( suc @ N2 ) ) )
=> ( ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( Y2
= ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ ( bit1 @ ( bit0 @ one ) ) ) @ ( vEBT_VEBT_Tb @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( times_times_int @ ( vEBT_VEBT_Tb @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( Y2
= ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ ( bit1 @ ( bit0 @ one ) ) ) @ ( vEBT_VEBT_Tb @ ( suc @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( times_times_int @ ( vEBT_VEBT_Tb @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
=> ~ ( accp_nat @ vEBT_VEBT_Tb_rel2 @ ( suc @ ( suc @ N2 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.Tb.pelims
thf(fact_9641_VEBT__internal_OTb_H_Opelims,axiom,
! [X2: nat,Y2: nat] :
( ( ( vEBT_VEBT_Tb2 @ X2 )
= Y2 )
=> ( ( accp_nat @ vEBT_VEBT_Tb_rel @ X2 )
=> ( ( ( X2 = zero_zero_nat )
=> ( ( Y2
= ( numeral_numeral_nat @ ( bit1 @ one ) ) )
=> ~ ( accp_nat @ vEBT_VEBT_Tb_rel @ zero_zero_nat ) ) )
=> ( ( ( X2
= ( suc @ zero_zero_nat ) )
=> ( ( Y2
= ( numeral_numeral_nat @ ( bit1 @ one ) ) )
=> ~ ( accp_nat @ vEBT_VEBT_Tb_rel @ ( suc @ zero_zero_nat ) ) ) )
=> ~ ! [N2: nat] :
( ( X2
= ( suc @ ( suc @ N2 ) ) )
=> ( ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( Y2
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ one ) ) ) @ ( vEBT_VEBT_Tb2 @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( times_times_nat @ ( vEBT_VEBT_Tb2 @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( Y2
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ one ) ) ) @ ( vEBT_VEBT_Tb2 @ ( suc @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( times_times_nat @ ( vEBT_VEBT_Tb2 @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
=> ~ ( accp_nat @ vEBT_VEBT_Tb_rel @ ( suc @ ( suc @ N2 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.Tb'.pelims
thf(fact_9642_VEBT__internal_OT__vebt__buildupi_Opelims,axiom,
! [X2: nat,Y2: nat] :
( ( ( vEBT_V441764108873111860ildupi @ X2 )
= Y2 )
=> ( ( accp_nat @ vEBT_V2957053500504383685pi_rel @ X2 )
=> ( ( ( X2 = zero_zero_nat )
=> ( ( Y2
= ( suc @ zero_zero_nat ) )
=> ~ ( accp_nat @ vEBT_V2957053500504383685pi_rel @ zero_zero_nat ) ) )
=> ( ( ( X2
= ( suc @ zero_zero_nat ) )
=> ( ( Y2
= ( suc @ zero_zero_nat ) )
=> ~ ( accp_nat @ vEBT_V2957053500504383685pi_rel @ ( suc @ zero_zero_nat ) ) ) )
=> ~ ! [N2: nat] :
( ( X2
= ( suc @ ( suc @ N2 ) ) )
=> ( ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( Y2
= ( suc @ ( suc @ ( suc @ ( plus_plus_nat @ ( vEBT_V441764108873111860ildupi @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( vEBT_V441764108873111860ildupi @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( Y2
= ( suc @ ( suc @ ( suc @ ( plus_plus_nat @ ( vEBT_V441764108873111860ildupi @ ( suc @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( vEBT_V441764108873111860ildupi @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) )
=> ~ ( accp_nat @ vEBT_V2957053500504383685pi_rel @ ( suc @ ( suc @ N2 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.T_vebt_buildupi.pelims
thf(fact_9643_cis__multiple__2pi,axiom,
! [N: real] :
( ( member_real @ N @ ring_1_Ints_real )
=> ( ( cis @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N ) )
= one_one_complex ) ) ).
% cis_multiple_2pi
thf(fact_9644_rat__inverse__code,axiom,
! [P2: rat] :
( ( quotient_of @ ( inverse_inverse_rat @ P2 ) )
= ( produc4245557441103728435nt_int
@ ^ [A3: int,B2: int] : ( if_Pro3027730157355071871nt_int @ ( A3 = zero_zero_int ) @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ ( product_Pair_int_int @ ( times_times_int @ ( sgn_sgn_int @ A3 ) @ B2 ) @ ( abs_abs_int @ A3 ) ) )
@ ( quotient_of @ P2 ) ) ) ).
% rat_inverse_code
thf(fact_9645_quotient__of__number_I3_J,axiom,
! [K: num] :
( ( quotient_of @ ( numeral_numeral_rat @ K ) )
= ( product_Pair_int_int @ ( numeral_numeral_int @ K ) @ one_one_int ) ) ).
% quotient_of_number(3)
thf(fact_9646_rat__one__code,axiom,
( ( quotient_of @ one_one_rat )
= ( product_Pair_int_int @ one_one_int @ one_one_int ) ) ).
% rat_one_code
thf(fact_9647_rat__zero__code,axiom,
( ( quotient_of @ zero_zero_rat )
= ( product_Pair_int_int @ zero_zero_int @ one_one_int ) ) ).
% rat_zero_code
thf(fact_9648_quotient__of__number_I5_J,axiom,
! [K: num] :
( ( quotient_of @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
= ( product_Pair_int_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) ).
% quotient_of_number(5)
thf(fact_9649_quotient__of__number_I4_J,axiom,
( ( quotient_of @ ( uminus_uminus_rat @ one_one_rat ) )
= ( product_Pair_int_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ) ) ).
% quotient_of_number(4)
thf(fact_9650_divide__rat__def,axiom,
( divide_divide_rat
= ( ^ [Q4: rat,R5: rat] : ( times_times_rat @ Q4 @ ( inverse_inverse_rat @ R5 ) ) ) ) ).
% divide_rat_def
thf(fact_9651_quotient__of__denom__pos,axiom,
! [R2: rat,P2: int,Q2: int] :
( ( ( quotient_of @ R2 )
= ( product_Pair_int_int @ P2 @ Q2 ) )
=> ( ord_less_int @ zero_zero_int @ Q2 ) ) ).
% quotient_of_denom_pos
thf(fact_9652_sin__times__pi__eq__0,axiom,
! [X2: real] :
( ( ( sin_real @ ( times_times_real @ X2 @ pi ) )
= zero_zero_real )
= ( member_real @ X2 @ ring_1_Ints_real ) ) ).
% sin_times_pi_eq_0
thf(fact_9653_rat__uminus__code,axiom,
! [P2: rat] :
( ( quotient_of @ ( uminus_uminus_rat @ P2 ) )
= ( produc4245557441103728435nt_int
@ ^ [A3: int] : ( product_Pair_int_int @ ( uminus_uminus_int @ A3 ) )
@ ( quotient_of @ P2 ) ) ) ).
% rat_uminus_code
thf(fact_9654_rat__less__code,axiom,
( ord_less_rat
= ( ^ [P3: rat,Q4: rat] :
( produc4947309494688390418_int_o
@ ^ [A3: int,C2: int] :
( produc4947309494688390418_int_o
@ ^ [B2: int,D: int] : ( ord_less_int @ ( times_times_int @ A3 @ D ) @ ( times_times_int @ C2 @ B2 ) )
@ ( quotient_of @ Q4 ) )
@ ( quotient_of @ P3 ) ) ) ) ).
% rat_less_code
thf(fact_9655_rat__floor__code,axiom,
( archim3151403230148437115or_rat
= ( ^ [P3: rat] : ( produc8211389475949308722nt_int @ divide_divide_int @ ( quotient_of @ P3 ) ) ) ) ).
% rat_floor_code
thf(fact_9656_rat__abs__code,axiom,
! [P2: rat] :
( ( quotient_of @ ( abs_abs_rat @ P2 ) )
= ( produc4245557441103728435nt_int
@ ^ [A3: int] : ( product_Pair_int_int @ ( abs_abs_int @ A3 ) )
@ ( quotient_of @ P2 ) ) ) ).
% rat_abs_code
thf(fact_9657_rat__less__eq__code,axiom,
( ord_less_eq_rat
= ( ^ [P3: rat,Q4: rat] :
( produc4947309494688390418_int_o
@ ^ [A3: int,C2: int] :
( produc4947309494688390418_int_o
@ ^ [B2: int,D: int] : ( ord_less_eq_int @ ( times_times_int @ A3 @ D ) @ ( times_times_int @ C2 @ B2 ) )
@ ( quotient_of @ Q4 ) )
@ ( quotient_of @ P3 ) ) ) ) ).
% rat_less_eq_code
thf(fact_9658_sin__integer__2pi,axiom,
! [N: real] :
( ( member_real @ N @ ring_1_Ints_real )
=> ( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N ) )
= zero_zero_real ) ) ).
% sin_integer_2pi
thf(fact_9659_cos__integer__2pi,axiom,
! [N: real] :
( ( member_real @ N @ ring_1_Ints_real )
=> ( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N ) )
= one_one_real ) ) ).
% cos_integer_2pi
thf(fact_9660_quotient__of__int,axiom,
! [A: int] :
( ( quotient_of @ ( of_int @ A ) )
= ( product_Pair_int_int @ A @ one_one_int ) ) ).
% quotient_of_int
thf(fact_9661_rat__minus__code,axiom,
! [P2: rat,Q2: rat] :
( ( quotient_of @ ( minus_minus_rat @ P2 @ Q2 ) )
= ( produc4245557441103728435nt_int
@ ^ [A3: int,C2: int] :
( produc4245557441103728435nt_int
@ ^ [B2: int,D: int] : ( normalize @ ( product_Pair_int_int @ ( minus_minus_int @ ( times_times_int @ A3 @ D ) @ ( times_times_int @ B2 @ C2 ) ) @ ( times_times_int @ C2 @ D ) ) )
@ ( quotient_of @ Q2 ) )
@ ( quotient_of @ P2 ) ) ) ).
% rat_minus_code
thf(fact_9662_normalize__denom__zero,axiom,
! [P2: int] :
( ( normalize @ ( product_Pair_int_int @ P2 @ zero_zero_int ) )
= ( product_Pair_int_int @ zero_zero_int @ one_one_int ) ) ).
% normalize_denom_zero
thf(fact_9663_normalize__negative,axiom,
! [Q2: int,P2: int] :
( ( ord_less_int @ Q2 @ zero_zero_int )
=> ( ( normalize @ ( product_Pair_int_int @ P2 @ Q2 ) )
= ( normalize @ ( product_Pair_int_int @ ( uminus_uminus_int @ P2 ) @ ( uminus_uminus_int @ Q2 ) ) ) ) ) ).
% normalize_negative
thf(fact_9664_normalize__denom__pos,axiom,
! [R2: product_prod_int_int,P2: int,Q2: int] :
( ( ( normalize @ R2 )
= ( product_Pair_int_int @ P2 @ Q2 ) )
=> ( ord_less_int @ zero_zero_int @ Q2 ) ) ).
% normalize_denom_pos
thf(fact_9665_normalize__crossproduct,axiom,
! [Q2: int,S3: int,P2: int,R2: int] :
( ( Q2 != zero_zero_int )
=> ( ( S3 != zero_zero_int )
=> ( ( ( normalize @ ( product_Pair_int_int @ P2 @ Q2 ) )
= ( normalize @ ( product_Pair_int_int @ R2 @ S3 ) ) )
=> ( ( times_times_int @ P2 @ S3 )
= ( times_times_int @ R2 @ Q2 ) ) ) ) ) ).
% normalize_crossproduct
thf(fact_9666_rat__times__code,axiom,
! [P2: rat,Q2: rat] :
( ( quotient_of @ ( times_times_rat @ P2 @ Q2 ) )
= ( produc4245557441103728435nt_int
@ ^ [A3: int,C2: int] :
( produc4245557441103728435nt_int
@ ^ [B2: int,D: int] : ( normalize @ ( product_Pair_int_int @ ( times_times_int @ A3 @ B2 ) @ ( times_times_int @ C2 @ D ) ) )
@ ( quotient_of @ Q2 ) )
@ ( quotient_of @ P2 ) ) ) ).
% rat_times_code
thf(fact_9667_rat__divide__code,axiom,
! [P2: rat,Q2: rat] :
( ( quotient_of @ ( divide_divide_rat @ P2 @ Q2 ) )
= ( produc4245557441103728435nt_int
@ ^ [A3: int,C2: int] :
( produc4245557441103728435nt_int
@ ^ [B2: int,D: int] : ( normalize @ ( product_Pair_int_int @ ( times_times_int @ A3 @ D ) @ ( times_times_int @ C2 @ B2 ) ) )
@ ( quotient_of @ Q2 ) )
@ ( quotient_of @ P2 ) ) ) ).
% rat_divide_code
thf(fact_9668_rat__plus__code,axiom,
! [P2: rat,Q2: rat] :
( ( quotient_of @ ( plus_plus_rat @ P2 @ Q2 ) )
= ( produc4245557441103728435nt_int
@ ^ [A3: int,C2: int] :
( produc4245557441103728435nt_int
@ ^ [B2: int,D: int] : ( normalize @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ A3 @ D ) @ ( times_times_int @ B2 @ C2 ) ) @ ( times_times_int @ C2 @ D ) ) )
@ ( quotient_of @ Q2 ) )
@ ( quotient_of @ P2 ) ) ) ).
% rat_plus_code
thf(fact_9669_Frct__code__post_I5_J,axiom,
! [K: num] :
( ( frct @ ( product_Pair_int_int @ one_one_int @ ( numeral_numeral_int @ K ) ) )
= ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ K ) ) ) ).
% Frct_code_post(5)
thf(fact_9670_setceilmax,axiom,
! [S3: vEBT_VEBT,M: nat,Listy: list_VEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ S3 @ M )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ Listy ) )
=> ( vEBT_invar_vebt @ X3 @ N ) )
=> ( ( M
= ( suc @ N ) )
=> ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ Listy ) )
=> ( ( semiri1314217659103216013at_int @ ( vEBT_VEBT_height @ X3 ) )
= ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) )
=> ( ( ( semiri1314217659103216013at_int @ ( vEBT_VEBT_height @ S3 ) )
= ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) )
=> ( ( semiri1314217659103216013at_int @ ( lattic8265883725875713057ax_nat @ ( image_VEBT_VEBT_nat @ vEBT_VEBT_height @ ( insert_VEBT_VEBT @ S3 @ ( set_VEBT_VEBT2 @ Listy ) ) ) ) )
= ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ) ) ) ) ) ).
% setceilmax
thf(fact_9671_VEBT__internal_Ospace_Opelims,axiom,
! [X2: vEBT_VEBT,Y2: nat] :
( ( ( vEBT_VEBT_space @ X2 )
= Y2 )
=> ( ( accp_VEBT_VEBT @ vEBT_VEBT_space_rel2 @ X2 )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Y2
= ( numeral_numeral_nat @ ( bit1 @ one ) ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_VEBT_space_rel2 @ ( vEBT_Leaf @ A4 @ B3 ) ) ) )
=> ~ ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( Y2
= ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ one ) ) ) @ ( vEBT_VEBT_space @ Summary2 ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) @ ( foldr_nat_nat @ plus_plus_nat @ ( map_VEBT_VEBT_nat @ vEBT_VEBT_space @ TreeList2 ) @ zero_zero_nat ) ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_VEBT_space_rel2 @ ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) ) ) ) ) ) ) ).
% VEBT_internal.space.pelims
thf(fact_9672_height__compose__list,axiom,
! [T2: vEBT_VEBT,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( member_VEBT_VEBT @ T2 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ( ord_less_eq_nat @ ( vEBT_VEBT_height @ T2 ) @ ( lattic8265883725875713057ax_nat @ ( image_VEBT_VEBT_nat @ vEBT_VEBT_height @ ( insert_VEBT_VEBT @ Summary @ ( set_VEBT_VEBT2 @ TreeList ) ) ) ) ) ) ).
% height_compose_list
thf(fact_9673_max__ins__scaled,axiom,
! [N: nat,X14: vEBT_VEBT,M: nat,X13: list_VEBT_VEBT] : ( ord_less_eq_nat @ ( times_times_nat @ N @ ( vEBT_VEBT_height @ X14 ) ) @ ( plus_plus_nat @ M @ ( times_times_nat @ N @ ( lattic8265883725875713057ax_nat @ ( insert_nat @ ( vEBT_VEBT_height @ X14 ) @ ( image_VEBT_VEBT_nat @ vEBT_VEBT_height @ ( set_VEBT_VEBT2 @ X13 ) ) ) ) ) ) ) ).
% max_ins_scaled
thf(fact_9674_height__i__max,axiom,
! [I: nat,X13: list_VEBT_VEBT,Foo: nat] :
( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ X13 ) )
=> ( ord_less_eq_nat @ ( vEBT_VEBT_height @ ( nth_VEBT_VEBT @ X13 @ I ) ) @ ( ord_max_nat @ Foo @ ( lattic8265883725875713057ax_nat @ ( image_VEBT_VEBT_nat @ vEBT_VEBT_height @ ( set_VEBT_VEBT2 @ X13 ) ) ) ) ) ) ).
% height_i_max
thf(fact_9675_max__idx__list,axiom,
! [I: nat,X13: list_VEBT_VEBT,N: nat,X14: vEBT_VEBT] :
( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ X13 ) )
=> ( ord_less_eq_nat @ ( times_times_nat @ N @ ( vEBT_VEBT_height @ ( nth_VEBT_VEBT @ X13 @ I ) ) ) @ ( suc @ ( suc @ ( times_times_nat @ N @ ( ord_max_nat @ ( vEBT_VEBT_height @ X14 ) @ ( lattic8265883725875713057ax_nat @ ( image_VEBT_VEBT_nat @ vEBT_VEBT_height @ ( set_VEBT_VEBT2 @ X13 ) ) ) ) ) ) ) ) ) ).
% max_idx_list
thf(fact_9676_Max__divisors__self__nat,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ( lattic8265883725875713057ax_nat
@ ( collect_nat
@ ^ [D: nat] : ( dvd_dvd_nat @ D @ N ) ) )
= N ) ) ).
% Max_divisors_self_nat
thf(fact_9677_VEBT__internal_Oheight_Osimps_I2_J,axiom,
! [Uu: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( vEBT_VEBT_height @ ( vEBT_Node @ Uu @ Deg @ TreeList @ Summary ) )
= ( plus_plus_nat @ one_one_nat @ ( lattic8265883725875713057ax_nat @ ( image_VEBT_VEBT_nat @ vEBT_VEBT_height @ ( insert_VEBT_VEBT @ Summary @ ( set_VEBT_VEBT2 @ TreeList ) ) ) ) ) ) ).
% VEBT_internal.height.simps(2)
thf(fact_9678_VEBT__internal_Oheight_Oelims,axiom,
! [X2: vEBT_VEBT,Y2: nat] :
( ( ( vEBT_VEBT_height @ X2 )
= Y2 )
=> ( ( ? [A4: $o,B3: $o] :
( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( Y2 != zero_zero_nat ) )
=> ~ ! [Uu2: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Uu2 @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( Y2
!= ( plus_plus_nat @ one_one_nat @ ( lattic8265883725875713057ax_nat @ ( image_VEBT_VEBT_nat @ vEBT_VEBT_height @ ( insert_VEBT_VEBT @ Summary2 @ ( set_VEBT_VEBT2 @ TreeList2 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.height.elims
thf(fact_9679_divide__nat__def,axiom,
( divide_divide_nat
= ( ^ [M5: nat,N3: nat] :
( if_nat @ ( N3 = zero_zero_nat ) @ zero_zero_nat
@ ( lattic8265883725875713057ax_nat
@ ( collect_nat
@ ^ [K2: nat] : ( ord_less_eq_nat @ ( times_times_nat @ K2 @ N3 ) @ M5 ) ) ) ) ) ) ).
% divide_nat_def
thf(fact_9680_Frct__code__post_I1_J,axiom,
! [A: int] :
( ( frct @ ( product_Pair_int_int @ zero_zero_int @ A ) )
= zero_zero_rat ) ).
% Frct_code_post(1)
thf(fact_9681_Frct__code__post_I2_J,axiom,
! [A: int] :
( ( frct @ ( product_Pair_int_int @ A @ zero_zero_int ) )
= zero_zero_rat ) ).
% Frct_code_post(2)
thf(fact_9682_Frct__code__post_I3_J,axiom,
( ( frct @ ( product_Pair_int_int @ one_one_int @ one_one_int ) )
= one_one_rat ) ).
% Frct_code_post(3)
thf(fact_9683_Frct__code__post_I4_J,axiom,
! [K: num] :
( ( frct @ ( product_Pair_int_int @ ( numeral_numeral_int @ K ) @ one_one_int ) )
= ( numeral_numeral_rat @ K ) ) ).
% Frct_code_post(4)
thf(fact_9684_Frct__code__post_I6_J,axiom,
! [K: num,L2: num] :
( ( frct @ ( product_Pair_int_int @ ( numeral_numeral_int @ K ) @ ( numeral_numeral_int @ L2 ) ) )
= ( divide_divide_rat @ ( numeral_numeral_rat @ K ) @ ( numeral_numeral_rat @ L2 ) ) ) ).
% Frct_code_post(6)
thf(fact_9685_VEBT__internal_Ospace_H_Opelims,axiom,
! [X2: vEBT_VEBT,Y2: nat] :
( ( ( vEBT_VEBT_space2 @ X2 )
= Y2 )
=> ( ( accp_VEBT_VEBT @ vEBT_VEBT_space_rel @ X2 )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Y2
= ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_VEBT_space_rel @ ( vEBT_Leaf @ A4 @ B3 ) ) ) )
=> ~ ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( Y2
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ one ) ) ) @ ( vEBT_VEBT_space2 @ Summary2 ) ) @ ( foldr_nat_nat @ plus_plus_nat @ ( map_VEBT_VEBT_nat @ vEBT_VEBT_space2 @ TreeList2 ) @ zero_zero_nat ) ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_VEBT_space_rel @ ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) ) ) ) ) ) ) ).
% VEBT_internal.space'.pelims
thf(fact_9686_VEBT__internal_Oheight_Opelims,axiom,
! [X2: vEBT_VEBT,Y2: nat] :
( ( ( vEBT_VEBT_height @ X2 )
= Y2 )
=> ( ( accp_VEBT_VEBT @ vEBT_VEBT_height_rel @ X2 )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Y2 = zero_zero_nat )
=> ~ ( accp_VEBT_VEBT @ vEBT_VEBT_height_rel @ ( vEBT_Leaf @ A4 @ B3 ) ) ) )
=> ~ ! [Uu2: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Uu2 @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( Y2
= ( plus_plus_nat @ one_one_nat @ ( lattic8265883725875713057ax_nat @ ( image_VEBT_VEBT_nat @ vEBT_VEBT_height @ ( insert_VEBT_VEBT @ Summary2 @ ( set_VEBT_VEBT2 @ TreeList2 ) ) ) ) ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_VEBT_height_rel @ ( vEBT_Node @ Uu2 @ Deg2 @ TreeList2 @ Summary2 ) ) ) ) ) ) ) ).
% VEBT_internal.height.pelims
thf(fact_9687_VEBT__internal_Ocnt_Opelims,axiom,
! [X2: vEBT_VEBT,Y2: real] :
( ( ( vEBT_VEBT_cnt @ X2 )
= Y2 )
=> ( ( accp_VEBT_VEBT @ vEBT_VEBT_cnt_rel2 @ X2 )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Y2 = one_one_real )
=> ~ ( accp_VEBT_VEBT @ vEBT_VEBT_cnt_rel2 @ ( vEBT_Leaf @ A4 @ B3 ) ) ) )
=> ~ ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( Y2
= ( plus_plus_real @ ( plus_plus_real @ one_one_real @ ( vEBT_VEBT_cnt @ Summary2 ) ) @ ( foldr_real_real @ plus_plus_real @ ( map_VEBT_VEBT_real @ vEBT_VEBT_cnt @ TreeList2 ) @ zero_zero_real ) ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_VEBT_cnt_rel2 @ ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) ) ) ) ) ) ) ).
% VEBT_internal.cnt.pelims
thf(fact_9688_bij__betw__Suc,axiom,
! [M7: set_nat,N5: set_nat] :
( ( bij_betw_nat_nat @ suc @ M7 @ N5 )
= ( ( image_nat_nat @ suc @ M7 )
= N5 ) ) ).
% bij_betw_Suc
thf(fact_9689_image__Suc__atLeastAtMost,axiom,
! [I: nat,J: nat] :
( ( image_nat_nat @ suc @ ( set_or1269000886237332187st_nat @ I @ J ) )
= ( set_or1269000886237332187st_nat @ ( suc @ I ) @ ( suc @ J ) ) ) ).
% image_Suc_atLeastAtMost
thf(fact_9690_Max__divisors__self__int,axiom,
! [N: int] :
( ( N != zero_zero_int )
=> ( ( lattic8263393255366662781ax_int
@ ( collect_int
@ ^ [D: int] : ( dvd_dvd_int @ D @ N ) ) )
= ( abs_abs_int @ N ) ) ) ).
% Max_divisors_self_int
thf(fact_9691_zero__notin__Suc__image,axiom,
! [A2: set_nat] :
~ ( member_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ A2 ) ) ).
% zero_notin_Suc_image
thf(fact_9692_image__int__atLeastAtMost,axiom,
! [A: nat,B: nat] :
( ( image_nat_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_or1266510415728281911st_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% image_int_atLeastAtMost
thf(fact_9693_image__Suc__lessThan,axiom,
! [N: nat] :
( ( image_nat_nat @ suc @ ( set_ord_lessThan_nat @ N ) )
= ( set_or1269000886237332187st_nat @ one_one_nat @ N ) ) ).
% image_Suc_lessThan
thf(fact_9694_image__Suc__atMost,axiom,
! [N: nat] :
( ( image_nat_nat @ suc @ ( set_ord_atMost_nat @ N ) )
= ( set_or1269000886237332187st_nat @ one_one_nat @ ( suc @ N ) ) ) ).
% image_Suc_atMost
thf(fact_9695_atLeast0__atMost__Suc__eq__insert__0,axiom,
! [N: nat] :
( ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) )
= ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ) ).
% atLeast0_atMost_Suc_eq_insert_0
thf(fact_9696_lessThan__Suc__eq__insert__0,axiom,
! [N: nat] :
( ( set_ord_lessThan_nat @ ( suc @ N ) )
= ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% lessThan_Suc_eq_insert_0
thf(fact_9697_atMost__Suc__eq__insert__0,axiom,
! [N: nat] :
( ( set_ord_atMost_nat @ ( suc @ N ) )
= ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_ord_atMost_nat @ N ) ) ) ) ).
% atMost_Suc_eq_insert_0
thf(fact_9698_VEBT__internal_Ocnt_H_Opelims,axiom,
! [X2: vEBT_VEBT,Y2: nat] :
( ( ( vEBT_VEBT_cnt2 @ X2 )
= Y2 )
=> ( ( accp_VEBT_VEBT @ vEBT_VEBT_cnt_rel @ X2 )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_VEBT_VEBT @ vEBT_VEBT_cnt_rel @ ( vEBT_Leaf @ A4 @ B3 ) ) ) )
=> ~ ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( Y2
= ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_cnt2 @ Summary2 ) ) @ ( foldr_nat_nat @ plus_plus_nat @ ( map_VEBT_VEBT_nat @ vEBT_VEBT_cnt2 @ TreeList2 ) @ zero_zero_nat ) ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_VEBT_cnt_rel @ ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) ) ) ) ) ) ) ).
% VEBT_internal.cnt'.pelims
thf(fact_9699_vebt__maxt_Opelims,axiom,
! [X2: vEBT_VEBT,Y2: option_nat] :
( ( ( vEBT_vebt_maxt @ X2 )
= Y2 )
=> ( ( accp_VEBT_VEBT @ vEBT_vebt_maxt_rel @ X2 )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( ( B3
=> ( Y2
= ( some_nat @ one_one_nat ) ) )
& ( ~ B3
=> ( ( A4
=> ( Y2
= ( some_nat @ zero_zero_nat ) ) )
& ( ~ A4
=> ( Y2 = none_nat ) ) ) ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_vebt_maxt_rel @ ( vEBT_Leaf @ A4 @ B3 ) ) ) )
=> ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
=> ( ( Y2 = none_nat )
=> ~ ( accp_VEBT_VEBT @ vEBT_vebt_maxt_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
=> ( ( Y2
= ( some_nat @ Ma2 ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_vebt_maxt_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ) ) ) ) ).
% vebt_maxt.pelims
thf(fact_9700_vebt__mint_Opelims,axiom,
! [X2: vEBT_VEBT,Y2: option_nat] :
( ( ( vEBT_vebt_mint @ X2 )
= Y2 )
=> ( ( accp_VEBT_VEBT @ vEBT_vebt_mint_rel @ X2 )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( ( A4
=> ( Y2
= ( some_nat @ zero_zero_nat ) ) )
& ( ~ A4
=> ( ( B3
=> ( Y2
= ( some_nat @ one_one_nat ) ) )
& ( ~ B3
=> ( Y2 = none_nat ) ) ) ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_vebt_mint_rel @ ( vEBT_Leaf @ A4 @ B3 ) ) ) )
=> ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
=> ( ( Y2 = none_nat )
=> ~ ( accp_VEBT_VEBT @ vEBT_vebt_mint_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
=> ( ( Y2
= ( some_nat @ Mi2 ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_vebt_mint_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ) ) ) ) ).
% vebt_mint.pelims
thf(fact_9701_T_092_060_094sub_062m_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062t_Opelims,axiom,
! [X2: vEBT_VEBT,Y2: nat] :
( ( ( vEBT_T_m_i_n_t @ X2 )
= Y2 )
=> ( ( accp_VEBT_VEBT @ vEBT_T_m_i_n_t_rel @ X2 )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Y2
= ( plus_plus_nat @ one_one_nat @ ( if_nat @ A4 @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_T_m_i_n_t_rel @ ( vEBT_Leaf @ A4 @ B3 ) ) ) )
=> ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_VEBT_VEBT @ vEBT_T_m_i_n_t_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_VEBT_VEBT @ vEBT_T_m_i_n_t_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ) ) ) ) ).
% T\<^sub>m\<^sub>i\<^sub>n\<^sub>t.pelims
thf(fact_9702_T_092_060_094sub_062m_092_060_094sub_062a_092_060_094sub_062x_092_060_094sub_062t_Opelims,axiom,
! [X2: vEBT_VEBT,Y2: nat] :
( ( ( vEBT_T_m_a_x_t @ X2 )
= Y2 )
=> ( ( accp_VEBT_VEBT @ vEBT_T_m_a_x_t_rel @ X2 )
=> ( ! [A4: $o,B3: $o] :
( ( X2
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Y2
= ( plus_plus_nat @ one_one_nat @ ( if_nat @ B3 @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_T_m_a_x_t_rel @ ( vEBT_Leaf @ A4 @ B3 ) ) ) )
=> ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_VEBT_VEBT @ vEBT_T_m_a_x_t_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) ) ) )
=> ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_VEBT_VEBT @ vEBT_T_m_a_x_t_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ) ) ) ) ).
% T\<^sub>m\<^sub>a\<^sub>x\<^sub>t.pelims
thf(fact_9703_T_092_060_094sub_062m_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062N_092_060_094sub_062u_092_060_094sub_062l_092_060_094sub_062l_Opelims,axiom,
! [X2: vEBT_VEBT,Y2: nat] :
( ( ( vEBT_T_m_i_n_N_u_l_l @ X2 )
= Y2 )
=> ( ( accp_VEBT_VEBT @ vEBT_T5462971552011256508_l_rel @ X2 )
=> ( ( ( X2
= ( vEBT_Leaf @ $false @ $false ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_VEBT_VEBT @ vEBT_T5462971552011256508_l_rel @ ( vEBT_Leaf @ $false @ $false ) ) ) )
=> ( ! [Uv2: $o] :
( ( X2
= ( vEBT_Leaf @ $true @ Uv2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_VEBT_VEBT @ vEBT_T5462971552011256508_l_rel @ ( vEBT_Leaf @ $true @ Uv2 ) ) ) )
=> ( ! [Uu2: $o] :
( ( X2
= ( vEBT_Leaf @ Uu2 @ $true ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_VEBT_VEBT @ vEBT_T5462971552011256508_l_rel @ ( vEBT_Leaf @ Uu2 @ $true ) ) ) )
=> ( ! [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_VEBT_VEBT @ vEBT_T5462971552011256508_l_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) ) ) )
=> ~ ! [Uz2: product_prod_nat_nat,Va3: nat,Vb2: list_VEBT_VEBT,Vc: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va3 @ Vb2 @ Vc ) )
=> ( ( Y2 = one_one_nat )
=> ~ ( accp_VEBT_VEBT @ vEBT_T5462971552011256508_l_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va3 @ Vb2 @ Vc ) ) ) ) ) ) ) ) ) ) ).
% T\<^sub>m\<^sub>i\<^sub>n\<^sub>N\<^sub>u\<^sub>l\<^sub>l.pelims
thf(fact_9704_VEBT__internal_OminNull_Opelims_I1_J,axiom,
! [X2: vEBT_VEBT,Y2: $o] :
( ( ( vEBT_VEBT_minNull @ X2 )
= Y2 )
=> ( ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ X2 )
=> ( ( ( X2
= ( vEBT_Leaf @ $false @ $false ) )
=> ( Y2
=> ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $false @ $false ) ) ) )
=> ( ! [Uv2: $o] :
( ( X2
= ( vEBT_Leaf @ $true @ Uv2 ) )
=> ( ~ Y2
=> ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $true @ Uv2 ) ) ) )
=> ( ! [Uu2: $o] :
( ( X2
= ( vEBT_Leaf @ Uu2 @ $true ) )
=> ( ~ Y2
=> ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ Uu2 @ $true ) ) ) )
=> ( ! [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) )
=> ( Y2
=> ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) ) ) )
=> ~ ! [Uz2: product_prod_nat_nat,Va3: nat,Vb2: list_VEBT_VEBT,Vc: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va3 @ Vb2 @ Vc ) )
=> ( ~ Y2
=> ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va3 @ Vb2 @ Vc ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.minNull.pelims(1)
thf(fact_9705_VEBT__internal_OminNull_Opelims_I3_J,axiom,
! [X2: vEBT_VEBT] :
( ~ ( vEBT_VEBT_minNull @ X2 )
=> ( ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ X2 )
=> ( ! [Uv2: $o] :
( ( X2
= ( vEBT_Leaf @ $true @ Uv2 ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $true @ Uv2 ) ) )
=> ( ! [Uu2: $o] :
( ( X2
= ( vEBT_Leaf @ Uu2 @ $true ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ Uu2 @ $true ) ) )
=> ~ ! [Uz2: product_prod_nat_nat,Va3: nat,Vb2: list_VEBT_VEBT,Vc: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va3 @ Vb2 @ Vc ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va3 @ Vb2 @ Vc ) ) ) ) ) ) ) ).
% VEBT_internal.minNull.pelims(3)
thf(fact_9706_VEBT__internal_OminNull_Opelims_I2_J,axiom,
! [X2: vEBT_VEBT] :
( ( vEBT_VEBT_minNull @ X2 )
=> ( ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ X2 )
=> ( ( ( X2
= ( vEBT_Leaf @ $false @ $false ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $false @ $false ) ) )
=> ~ ! [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) ) ) ) ) ) ).
% VEBT_internal.minNull.pelims(2)
thf(fact_9707_drop__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se8568078237143864401it_int @ N @ K ) )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% drop_bit_nonnegative_int_iff
thf(fact_9708_drop__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se8568078237143864401it_int @ N @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% drop_bit_negative_int_iff
thf(fact_9709_drop__bit__minus__one,axiom,
! [N: nat] :
( ( bit_se8568078237143864401it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% drop_bit_minus_one
thf(fact_9710_drop__bit__Suc__minus__bit0,axiom,
! [N: nat,K: num] :
( ( bit_se8568078237143864401it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
= ( bit_se8568078237143864401it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) ) ).
% drop_bit_Suc_minus_bit0
thf(fact_9711_drop__bit__of__Suc__0,axiom,
! [N: nat] :
( ( bit_se8570568707652914677it_nat @ N @ ( suc @ zero_zero_nat ) )
= ( zero_n2687167440665602831ol_nat @ ( N = zero_zero_nat ) ) ) ).
% drop_bit_of_Suc_0
thf(fact_9712_drop__bit__numeral__minus__bit0,axiom,
! [L2: num,K: num] :
( ( bit_se8568078237143864401it_int @ ( numeral_numeral_nat @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
= ( bit_se8568078237143864401it_int @ ( pred_numeral @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) ) ).
% drop_bit_numeral_minus_bit0
thf(fact_9713_drop__bit__Suc__minus__bit1,axiom,
! [N: nat,K: num] :
( ( bit_se8568078237143864401it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
= ( bit_se8568078237143864401it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) ) ).
% drop_bit_Suc_minus_bit1
thf(fact_9714_drop__bit__numeral__minus__bit1,axiom,
! [L2: num,K: num] :
( ( bit_se8568078237143864401it_int @ ( numeral_numeral_nat @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
= ( bit_se8568078237143864401it_int @ ( pred_numeral @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) ) ).
% drop_bit_numeral_minus_bit1
thf(fact_9715_drop__bit__nat__eq,axiom,
! [N: nat,K: int] :
( ( bit_se8570568707652914677it_nat @ N @ ( nat2 @ K ) )
= ( nat2 @ ( bit_se8568078237143864401it_int @ N @ K ) ) ) ).
% drop_bit_nat_eq
thf(fact_9716_drop__bit__int__code_I2_J,axiom,
! [N: nat] :
( ( bit_se8568078237143864401it_int @ ( suc @ N ) @ zero_zero_int )
= zero_zero_int ) ).
% drop_bit_int_code(2)
thf(fact_9717_drop__bit__int__code_I1_J,axiom,
! [I: int] :
( ( bit_se8568078237143864401it_int @ zero_zero_nat @ I )
= I ) ).
% drop_bit_int_code(1)
thf(fact_9718_shiftr__integer__conv__div__pow2,axiom,
( bit_se3928097537394005634nteger
= ( ^ [N3: nat,X: code_integer] : ( divide6298287555418463151nteger @ X @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).
% shiftr_integer_conv_div_pow2
thf(fact_9719_bin__rest__code,axiom,
! [I: int] :
( ( divide_divide_int @ I @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( bit_se8568078237143864401it_int @ one_one_nat @ I ) ) ).
% bin_rest_code
thf(fact_9720_drop__bit__int__def,axiom,
( bit_se8568078237143864401it_int
= ( ^ [N3: nat,K2: int] : ( divide_divide_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).
% drop_bit_int_def
thf(fact_9721_drop__bit__nat__def,axiom,
( bit_se8570568707652914677it_nat
= ( ^ [N3: nat,M5: nat] : ( divide_divide_nat @ M5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).
% drop_bit_nat_def
thf(fact_9722_push__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se545348938243370406it_int @ N @ K ) )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% push_bit_nonnegative_int_iff
thf(fact_9723_push__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se545348938243370406it_int @ N @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% push_bit_negative_int_iff
thf(fact_9724_push__bit__of__Suc__0,axiom,
! [N: nat] :
( ( bit_se547839408752420682it_nat @ N @ ( suc @ zero_zero_nat ) )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% push_bit_of_Suc_0
thf(fact_9725_drop__bit__push__bit__int,axiom,
! [M: nat,N: nat,K: int] :
( ( bit_se8568078237143864401it_int @ M @ ( bit_se545348938243370406it_int @ N @ K ) )
= ( bit_se8568078237143864401it_int @ ( minus_minus_nat @ M @ N ) @ ( bit_se545348938243370406it_int @ ( minus_minus_nat @ N @ M ) @ K ) ) ) ).
% drop_bit_push_bit_int
thf(fact_9726_push__bit__int__code_I1_J,axiom,
! [I: int] :
( ( bit_se545348938243370406it_int @ zero_zero_nat @ I )
= I ) ).
% push_bit_int_code(1)
thf(fact_9727_push__bit__nat__eq,axiom,
! [N: nat,K: int] :
( ( bit_se547839408752420682it_nat @ N @ ( nat2 @ K ) )
= ( nat2 @ ( bit_se545348938243370406it_int @ N @ K ) ) ) ).
% push_bit_nat_eq
thf(fact_9728_flip__bit__nat__def,axiom,
( bit_se2161824704523386999it_nat
= ( ^ [M5: nat,N3: nat] : ( bit_se6528837805403552850or_nat @ N3 @ ( bit_se547839408752420682it_nat @ M5 @ one_one_nat ) ) ) ) ).
% flip_bit_nat_def
thf(fact_9729_set__bit__nat__def,axiom,
( bit_se7882103937844011126it_nat
= ( ^ [M5: nat,N3: nat] : ( bit_se1412395901928357646or_nat @ N3 @ ( bit_se547839408752420682it_nat @ M5 @ one_one_nat ) ) ) ) ).
% set_bit_nat_def
thf(fact_9730_Bit__integer__code_I1_J,axiom,
! [I: code_integer] :
( ( bits_Bit_integer @ I @ $false )
= ( bit_se7788150548672797655nteger @ one_one_nat @ I ) ) ).
% Bit_integer_code(1)
thf(fact_9731_bit__push__bit__iff__int,axiom,
! [M: nat,K: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_se545348938243370406it_int @ M @ K ) @ N )
= ( ( ord_less_eq_nat @ M @ N )
& ( bit_se1146084159140164899it_int @ K @ ( minus_minus_nat @ N @ M ) ) ) ) ).
% bit_push_bit_iff_int
thf(fact_9732_Bit__Operations_Oset__bit__int__def,axiom,
( bit_se7879613467334960850it_int
= ( ^ [N3: nat,K2: int] : ( bit_se1409905431419307370or_int @ K2 @ ( bit_se545348938243370406it_int @ N3 @ one_one_int ) ) ) ) ).
% Bit_Operations.set_bit_int_def
thf(fact_9733_bit__push__bit__iff__nat,axiom,
! [M: nat,Q2: nat,N: nat] :
( ( bit_se1148574629649215175it_nat @ ( bit_se547839408752420682it_nat @ M @ Q2 ) @ N )
= ( ( ord_less_eq_nat @ M @ N )
& ( bit_se1148574629649215175it_nat @ Q2 @ ( minus_minus_nat @ N @ M ) ) ) ) ).
% bit_push_bit_iff_nat
thf(fact_9734_flip__bit__int__def,axiom,
( bit_se2159334234014336723it_int
= ( ^ [N3: nat,K2: int] : ( bit_se6526347334894502574or_int @ K2 @ ( bit_se545348938243370406it_int @ N3 @ one_one_int ) ) ) ) ).
% flip_bit_int_def
thf(fact_9735_shiftl__integer__conv__mult__pow2,axiom,
( bit_se7788150548672797655nteger
= ( ^ [N3: nat,X: code_integer] : ( times_3573771949741848930nteger @ X @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).
% shiftl_integer_conv_mult_pow2
thf(fact_9736_unset__bit__int__def,axiom,
( bit_se4203085406695923979it_int
= ( ^ [N3: nat,K2: int] : ( bit_se725231765392027082nd_int @ K2 @ ( bit_ri7919022796975470100ot_int @ ( bit_se545348938243370406it_int @ N3 @ one_one_int ) ) ) ) ) ).
% unset_bit_int_def
thf(fact_9737_push__bit__int__def,axiom,
( bit_se545348938243370406it_int
= ( ^ [N3: nat,K2: int] : ( times_times_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).
% push_bit_int_def
thf(fact_9738_Bit__integer__code_I2_J,axiom,
! [I: code_integer] :
( ( bits_Bit_integer @ I @ $true )
= ( plus_p5714425477246183910nteger @ ( bit_se7788150548672797655nteger @ one_one_nat @ I ) @ one_one_Code_integer ) ) ).
% Bit_integer_code(2)
thf(fact_9739_push__bit__nat__def,axiom,
( bit_se547839408752420682it_nat
= ( ^ [N3: nat,M5: nat] : ( times_times_nat @ M5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).
% push_bit_nat_def
thf(fact_9740_push__bit__minus__one,axiom,
! [N: nat] :
( ( bit_se545348938243370406it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).
% push_bit_minus_one
thf(fact_9741_bin__rest__integer_Oabs__eq,axiom,
! [X2: int] :
( ( bits_b2549910563261871055nteger @ ( code_integer_of_int @ X2 ) )
= ( code_integer_of_int @ ( divide_divide_int @ X2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% bin_rest_integer.abs_eq
thf(fact_9742_concat__bit__Suc,axiom,
! [N: nat,K: int,L2: int] :
( ( bit_concat_bit @ ( suc @ N ) @ K @ L2 )
= ( plus_plus_int @ ( modulo_modulo_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_concat_bit @ N @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ L2 ) ) ) ) ).
% concat_bit_Suc
thf(fact_9743_concat__bit__0,axiom,
! [K: int,L2: int] :
( ( bit_concat_bit @ zero_zero_nat @ K @ L2 )
= L2 ) ).
% concat_bit_0
thf(fact_9744_concat__bit__of__zero__2,axiom,
! [N: nat,K: int] :
( ( bit_concat_bit @ N @ K @ zero_zero_int )
= ( bit_se2923211474154528505it_int @ N @ K ) ) ).
% concat_bit_of_zero_2
thf(fact_9745_concat__bit__nonnegative__iff,axiom,
! [N: nat,K: int,L2: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_concat_bit @ N @ K @ L2 ) )
= ( ord_less_eq_int @ zero_zero_int @ L2 ) ) ).
% concat_bit_nonnegative_iff
thf(fact_9746_concat__bit__negative__iff,axiom,
! [N: nat,K: int,L2: int] :
( ( ord_less_int @ ( bit_concat_bit @ N @ K @ L2 ) @ zero_zero_int )
= ( ord_less_int @ L2 @ zero_zero_int ) ) ).
% concat_bit_negative_iff
thf(fact_9747_concat__bit__of__zero__1,axiom,
! [N: nat,L2: int] :
( ( bit_concat_bit @ N @ zero_zero_int @ L2 )
= ( bit_se545348938243370406it_int @ N @ L2 ) ) ).
% concat_bit_of_zero_1
thf(fact_9748_concat__bit__take__bit__eq,axiom,
! [N: nat,B: int] :
( ( bit_concat_bit @ N @ ( bit_se2923211474154528505it_int @ N @ B ) )
= ( bit_concat_bit @ N @ B ) ) ).
% concat_bit_take_bit_eq
thf(fact_9749_concat__bit__eq__iff,axiom,
! [N: nat,K: int,L2: int,R2: int,S3: int] :
( ( ( bit_concat_bit @ N @ K @ L2 )
= ( bit_concat_bit @ N @ R2 @ S3 ) )
= ( ( ( bit_se2923211474154528505it_int @ N @ K )
= ( bit_se2923211474154528505it_int @ N @ R2 ) )
& ( L2 = S3 ) ) ) ).
% concat_bit_eq_iff
thf(fact_9750_concat__bit__assoc,axiom,
! [N: nat,K: int,M: nat,L2: int,R2: int] :
( ( bit_concat_bit @ N @ K @ ( bit_concat_bit @ M @ L2 @ R2 ) )
= ( bit_concat_bit @ ( plus_plus_nat @ M @ N ) @ ( bit_concat_bit @ N @ K @ L2 ) @ R2 ) ) ).
% concat_bit_assoc
thf(fact_9751_concat__bit__eq,axiom,
( bit_concat_bit
= ( ^ [N3: nat,K2: int,L: int] : ( plus_plus_int @ ( bit_se2923211474154528505it_int @ N3 @ K2 ) @ ( bit_se545348938243370406it_int @ N3 @ L ) ) ) ) ).
% concat_bit_eq
thf(fact_9752_concat__bit__def,axiom,
( bit_concat_bit
= ( ^ [N3: nat,K2: int,L: int] : ( bit_se1409905431419307370or_int @ ( bit_se2923211474154528505it_int @ N3 @ K2 ) @ ( bit_se545348938243370406it_int @ N3 @ L ) ) ) ) ).
% concat_bit_def
thf(fact_9753_bit__concat__bit__iff,axiom,
! [M: nat,K: int,L2: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_concat_bit @ M @ K @ L2 ) @ N )
= ( ( ( ord_less_nat @ N @ M )
& ( bit_se1146084159140164899it_int @ K @ N ) )
| ( ( ord_less_eq_nat @ M @ N )
& ( bit_se1146084159140164899it_int @ L2 @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).
% bit_concat_bit_iff
thf(fact_9754_signed__take__bit__eq__concat__bit,axiom,
( bit_ri631733984087533419it_int
= ( ^ [N3: nat,K2: int] : ( bit_concat_bit @ N3 @ K2 @ ( uminus_uminus_int @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K2 @ N3 ) ) ) ) ) ) ).
% signed_take_bit_eq_concat_bit
thf(fact_9755_bin__rest__integer__code,axiom,
( bits_b2549910563261871055nteger
= ( ^ [I3: code_integer] : ( divide6298287555418463151nteger @ I3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).
% bin_rest_integer_code
thf(fact_9756_bitXOR__integer__unfold,axiom,
( bit_se3222712562003087583nteger
= ( ^ [X: code_integer,Y: code_integer] :
( if_Code_integer @ ( X = zero_z3403309356797280102nteger ) @ Y
@ ( if_Code_integer
@ ( X
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
@ ( bit_ri7632146776885996613nteger @ Y )
@ ( bits_Bit_integer @ ( bit_se3222712562003087583nteger @ ( bits_b2549910563261871055nteger @ X ) @ ( bits_b2549910563261871055nteger @ Y ) )
@ ( ( ~ ( bits_b8758750999018896077nteger @ X ) )
= ( bits_b8758750999018896077nteger @ Y ) ) ) ) ) ) ) ).
% bitXOR_integer_unfold
thf(fact_9757_bitOR__integer__unfold,axiom,
( bit_se1080825931792720795nteger
= ( ^ [X: code_integer,Y: code_integer] :
( if_Code_integer @ ( X = zero_z3403309356797280102nteger ) @ Y
@ ( if_Code_integer
@ ( X
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
@ ( uminus1351360451143612070nteger @ one_one_Code_integer )
@ ( bits_Bit_integer @ ( bit_se1080825931792720795nteger @ ( bits_b2549910563261871055nteger @ X ) @ ( bits_b2549910563261871055nteger @ Y ) )
@ ( ( bits_b8758750999018896077nteger @ X )
| ( bits_b8758750999018896077nteger @ Y ) ) ) ) ) ) ) ).
% bitOR_integer_unfold
thf(fact_9758_bitAND__integer__unfold,axiom,
( bit_se3949692690581998587nteger
= ( ^ [X: code_integer,Y: code_integer] :
( if_Code_integer @ ( X = zero_z3403309356797280102nteger ) @ zero_z3403309356797280102nteger
@ ( if_Code_integer
@ ( X
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
@ Y
@ ( bits_Bit_integer @ ( bit_se3949692690581998587nteger @ ( bits_b2549910563261871055nteger @ X ) @ ( bits_b2549910563261871055nteger @ Y ) )
@ ( ( bits_b8758750999018896077nteger @ X )
& ( bits_b8758750999018896077nteger @ Y ) ) ) ) ) ) ) ).
% bitAND_integer_unfold
thf(fact_9759_bitval__bin__last__integer,axiom,
! [I: code_integer] :
( ( zero_n356916108424825756nteger @ ( bits_b8758750999018896077nteger @ I ) )
= ( bit_se3949692690581998587nteger @ I @ one_one_Code_integer ) ) ).
% bitval_bin_last_integer
thf(fact_9760_bin__last__integer__code,axiom,
( bits_b8758750999018896077nteger
= ( ^ [I3: code_integer] :
( ( bit_se3949692690581998587nteger @ I3 @ one_one_Code_integer )
!= zero_z3403309356797280102nteger ) ) ) ).
% bin_last_integer_code
thf(fact_9761_bin__last__integer__nbe,axiom,
( bits_b8758750999018896077nteger
= ( ^ [I3: code_integer] :
( ( modulo364778990260209775nteger @ I3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
!= zero_z3403309356797280102nteger ) ) ) ).
% bin_last_integer_nbe
thf(fact_9762_bin__last__integer_Oabs__eq,axiom,
! [X2: int] :
( ( bits_b8758750999018896077nteger @ ( code_integer_of_int @ X2 ) )
= ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X2 ) ) ) ).
% bin_last_integer.abs_eq
thf(fact_9763_set__bit__integer__conv__masks,axiom,
( generi2397576812484419408nteger
= ( ^ [X: code_integer,I3: nat,B2: $o] : ( if_Code_integer @ B2 @ ( bit_se1080825931792720795nteger @ X @ ( bit_se7788150548672797655nteger @ I3 @ one_one_Code_integer ) ) @ ( bit_se3949692690581998587nteger @ X @ ( bit_ri7632146776885996613nteger @ ( bit_se7788150548672797655nteger @ I3 @ one_one_Code_integer ) ) ) ) ) ) ).
% set_bit_integer_conv_masks
thf(fact_9764_Uint32__code,axiom,
( uint322
= ( ^ [I3: code_integer] : ( if_uint32 @ ( bit_se9216721137139052372nteger @ ( bit_se3949692690581998587nteger @ I3 @ ( numera6620942414471956472nteger @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) @ ( uint32_signed @ ( minus_8373710615458151222nteger @ ( bit_se3949692690581998587nteger @ I3 @ ( numera6620942414471956472nteger @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ ( uint32_signed @ ( bit_se3949692690581998587nteger @ I3 @ ( numera6620942414471956472nteger @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% Uint32_code
thf(fact_9765_Uint32__signed__def,axiom,
( uint32_signed
= ( ^ [I3: code_integer] :
( if_uint32
@ ( ( ord_le6747313008572928689nteger @ I3 @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
| ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) @ I3 ) )
@ ( undefi2040150642751712519uint32 @ uint322 @ I3 )
@ ( uint322 @ I3 ) ) ) ) ).
% Uint32_signed_def
thf(fact_9766_int__set__bit__True__conv__OR,axiom,
! [I: int,N: nat] :
( ( generi8991105624351003935it_int @ I @ N @ $true )
= ( bit_se1409905431419307370or_int @ I @ ( bit_se545348938243370406it_int @ N @ one_one_int ) ) ) ).
% int_set_bit_True_conv_OR
thf(fact_9767_int__set__bit__False__conv__NAND,axiom,
! [I: int,N: nat] :
( ( generi8991105624351003935it_int @ I @ N @ $false )
= ( bit_se725231765392027082nd_int @ I @ ( bit_ri7919022796975470100ot_int @ ( bit_se545348938243370406it_int @ N @ one_one_int ) ) ) ) ).
% int_set_bit_False_conv_NAND
thf(fact_9768_int__set__bit__conv__ops,axiom,
( generi8991105624351003935it_int
= ( ^ [I3: int,N3: nat,B2: $o] : ( if_int @ B2 @ ( bit_se1409905431419307370or_int @ I3 @ ( bit_se545348938243370406it_int @ N3 @ one_one_int ) ) @ ( bit_se725231765392027082nd_int @ I3 @ ( bit_ri7919022796975470100ot_int @ ( bit_se545348938243370406it_int @ N3 @ one_one_int ) ) ) ) ) ) ).
% int_set_bit_conv_ops
thf(fact_9769_int__sdiv__simps_I2_J,axiom,
! [A: int] :
( ( signed6714573509424544716de_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% int_sdiv_simps(2)
thf(fact_9770_sdiv__int__0__div,axiom,
! [X2: int] :
( ( signed6714573509424544716de_int @ zero_zero_int @ X2 )
= zero_zero_int ) ).
% sdiv_int_0_div
thf(fact_9771_sdiv__int__div__0,axiom,
! [X2: int] :
( ( signed6714573509424544716de_int @ X2 @ zero_zero_int )
= zero_zero_int ) ).
% sdiv_int_div_0
thf(fact_9772_int__sdiv__simps_I1_J,axiom,
! [A: int] :
( ( signed6714573509424544716de_int @ A @ one_one_int )
= A ) ).
% int_sdiv_simps(1)
thf(fact_9773_int__sdiv__same__is__1,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( ( signed6714573509424544716de_int @ A @ B )
= A )
= ( B = one_one_int ) ) ) ).
% int_sdiv_same_is_1
thf(fact_9774_int__sdiv__simps_I3_J,axiom,
! [A: int] :
( ( signed6714573509424544716de_int @ A @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ A ) ) ).
% int_sdiv_simps(3)
thf(fact_9775_sdiv__int__numeral__numeral,axiom,
! [M: num,N: num] :
( ( signed6714573509424544716de_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( divide_divide_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) ) ) ).
% sdiv_int_numeral_numeral
thf(fact_9776_int__sdiv__negated__is__minus1,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( ( signed6714573509424544716de_int @ A @ B )
= ( uminus_uminus_int @ A ) )
= ( B
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% int_sdiv_negated_is_minus1
thf(fact_9777_sgn__sdiv__eq__sgn__mult,axiom,
! [A: int,B: int] :
( ( ( signed6714573509424544716de_int @ A @ B )
!= zero_zero_int )
=> ( ( sgn_sgn_int @ ( signed6714573509424544716de_int @ A @ B ) )
= ( sgn_sgn_int @ ( times_times_int @ A @ B ) ) ) ) ).
% sgn_sdiv_eq_sgn_mult
thf(fact_9778_signed__divide__int__def,axiom,
( signed6714573509424544716de_int
= ( ^ [K2: int,L: int] : ( times_times_int @ ( times_times_int @ ( sgn_sgn_int @ K2 ) @ ( sgn_sgn_int @ L ) ) @ ( divide_divide_int @ ( abs_abs_int @ K2 ) @ ( abs_abs_int @ L ) ) ) ) ) ).
% signed_divide_int_def
thf(fact_9779_horner__sum__of__bool__2__less,axiom,
! [Bs: list_o] : ( ord_less_int @ ( groups9116527308978886569_o_int @ zero_n2684676970156552555ol_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Bs ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( size_size_list_o @ Bs ) ) ) ).
% horner_sum_of_bool_2_less
thf(fact_9780_Cauchy__iff2,axiom,
( topolo4055970368930404560y_real
= ( ^ [X6: nat > real] :
! [J3: nat] :
? [M9: nat] :
! [M5: nat] :
( ( ord_less_eq_nat @ M9 @ M5 )
=> ! [N3: nat] :
( ( ord_less_eq_nat @ M9 @ N3 )
=> ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ ( X6 @ M5 ) @ ( X6 @ N3 ) ) ) @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ J3 ) ) ) ) ) ) ) ) ).
% Cauchy_iff2
thf(fact_9781_nth__upt,axiom,
! [I: nat,K: nat,J: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J )
=> ( ( nth_nat @ ( upt @ I @ J ) @ K )
= ( plus_plus_nat @ I @ K ) ) ) ).
% nth_upt
thf(fact_9782_map__add__upt,axiom,
! [N: nat,M: nat] :
( ( map_nat_nat
@ ^ [I3: nat] : ( plus_plus_nat @ I3 @ N )
@ ( upt @ zero_zero_nat @ M ) )
= ( upt @ N @ ( plus_plus_nat @ M @ N ) ) ) ).
% map_add_upt
thf(fact_9783_map__add__upt_H,axiom,
! [Ofs: nat,A: nat,B: nat] :
( ( map_nat_nat
@ ^ [I3: nat] : ( plus_plus_nat @ I3 @ Ofs )
@ ( upt @ A @ B ) )
= ( upt @ ( plus_plus_nat @ A @ Ofs ) @ ( plus_plus_nat @ B @ Ofs ) ) ) ).
% map_add_upt'
thf(fact_9784_map__Suc__upt,axiom,
! [M: nat,N: nat] :
( ( map_nat_nat @ suc @ ( upt @ M @ N ) )
= ( upt @ ( suc @ M ) @ ( suc @ N ) ) ) ).
% map_Suc_upt
thf(fact_9785_map__decr__upt,axiom,
! [M: nat,N: nat] :
( ( map_nat_nat
@ ^ [N3: nat] : ( minus_minus_nat @ N3 @ ( suc @ zero_zero_nat ) )
@ ( upt @ ( suc @ M ) @ ( suc @ N ) ) )
= ( upt @ M @ N ) ) ).
% map_decr_upt
thf(fact_9786_atLeastAtMost__upt,axiom,
( set_or1269000886237332187st_nat
= ( ^ [N3: nat,M5: nat] : ( set_nat2 @ ( upt @ N3 @ ( suc @ M5 ) ) ) ) ) ).
% atLeastAtMost_upt
thf(fact_9787_atLeast__upt,axiom,
( set_ord_lessThan_nat
= ( ^ [N3: nat] : ( set_nat2 @ ( upt @ zero_zero_nat @ N3 ) ) ) ) ).
% atLeast_upt
thf(fact_9788_atMost__upto,axiom,
( set_ord_atMost_nat
= ( ^ [N3: nat] : ( set_nat2 @ ( upt @ zero_zero_nat @ ( suc @ N3 ) ) ) ) ) ).
% atMost_upto
thf(fact_9789_map__bit__range__eq__if__take__bit__eq,axiom,
! [N: nat,K: int,L2: int] :
( ( ( bit_se2923211474154528505it_int @ N @ K )
= ( bit_se2923211474154528505it_int @ N @ L2 ) )
=> ( ( map_nat_o @ ( bit_se1146084159140164899it_int @ K ) @ ( upt @ zero_zero_nat @ N ) )
= ( map_nat_o @ ( bit_se1146084159140164899it_int @ L2 ) @ ( upt @ zero_zero_nat @ N ) ) ) ) ).
% map_bit_range_eq_if_take_bit_eq
thf(fact_9790_Sum__Ico__nat,axiom,
! [M: nat,N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [X: nat] : X
@ ( set_or4665077453230672383an_nat @ M @ N ) )
= ( divide_divide_nat @ ( minus_minus_nat @ ( times_times_nat @ N @ ( minus_minus_nat @ N @ one_one_nat ) ) @ ( times_times_nat @ M @ ( minus_minus_nat @ M @ one_one_nat ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% Sum_Ico_nat
thf(fact_9791_VEBT_Osize_I3_J,axiom,
! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT] :
( ( size_size_VEBT_VEBT @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( size_list_VEBT_VEBT @ size_size_VEBT_VEBT @ X13 ) @ ( size_size_VEBT_VEBT @ X14 ) ) @ ( suc @ zero_zero_nat ) ) ) ).
% VEBT.size(3)
thf(fact_9792_image__Suc__atLeastLessThan,axiom,
! [I: nat,J: nat] :
( ( image_nat_nat @ suc @ ( set_or4665077453230672383an_nat @ I @ J ) )
= ( set_or4665077453230672383an_nat @ ( suc @ I ) @ ( suc @ J ) ) ) ).
% image_Suc_atLeastLessThan
thf(fact_9793_atLeastLessThan__singleton,axiom,
! [M: nat] :
( ( set_or4665077453230672383an_nat @ M @ ( suc @ M ) )
= ( insert_nat @ M @ bot_bot_set_nat ) ) ).
% atLeastLessThan_singleton
thf(fact_9794_all__nat__less__eq,axiom,
! [N: nat,P: nat > $o] :
( ( ! [M5: nat] :
( ( ord_less_nat @ M5 @ N )
=> ( P @ M5 ) ) )
= ( ! [X: nat] :
( ( member_nat @ X @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
=> ( P @ X ) ) ) ) ).
% all_nat_less_eq
thf(fact_9795_ex__nat__less__eq,axiom,
! [N: nat,P: nat > $o] :
( ( ? [M5: nat] :
( ( ord_less_nat @ M5 @ N )
& ( P @ M5 ) ) )
= ( ? [X: nat] :
( ( member_nat @ X @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
& ( P @ X ) ) ) ) ).
% ex_nat_less_eq
thf(fact_9796_lessThan__atLeast0,axiom,
( set_ord_lessThan_nat
= ( set_or4665077453230672383an_nat @ zero_zero_nat ) ) ).
% lessThan_atLeast0
thf(fact_9797_atLeastLessThanSuc__atLeastAtMost,axiom,
! [L2: nat,U: nat] :
( ( set_or4665077453230672383an_nat @ L2 @ ( suc @ U ) )
= ( set_or1269000886237332187st_nat @ L2 @ U ) ) ).
% atLeastLessThanSuc_atLeastAtMost
thf(fact_9798_atLeastLessThan0,axiom,
! [M: nat] :
( ( set_or4665077453230672383an_nat @ M @ zero_zero_nat )
= bot_bot_set_nat ) ).
% atLeastLessThan0
thf(fact_9799_atLeast0__lessThan__Suc,axiom,
! [N: nat] :
( ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( suc @ N ) )
= ( insert_nat @ N @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ).
% atLeast0_lessThan_Suc
thf(fact_9800_subset__eq__atLeast0__lessThan__finite,axiom,
! [N5: set_nat,N: nat] :
( ( ord_less_eq_set_nat @ N5 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
=> ( finite_finite_nat @ N5 ) ) ).
% subset_eq_atLeast0_lessThan_finite
thf(fact_9801_atLeastLessThanSuc,axiom,
! [M: nat,N: nat] :
( ( ( ord_less_eq_nat @ M @ N )
=> ( ( set_or4665077453230672383an_nat @ M @ ( suc @ N ) )
= ( insert_nat @ N @ ( set_or4665077453230672383an_nat @ M @ N ) ) ) )
& ( ~ ( ord_less_eq_nat @ M @ N )
=> ( ( set_or4665077453230672383an_nat @ M @ ( suc @ N ) )
= bot_bot_set_nat ) ) ) ).
% atLeastLessThanSuc
thf(fact_9802_atLeast0__lessThan__Suc__eq__insert__0,axiom,
! [N: nat] :
( ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( suc @ N ) )
= ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ) ).
% atLeast0_lessThan_Suc_eq_insert_0
thf(fact_9803_prod__Suc__fact,axiom,
! [N: nat] :
( ( groups708209901874060359at_nat @ suc @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
= ( semiri1408675320244567234ct_nat @ N ) ) ).
% prod_Suc_fact
thf(fact_9804_prod__Suc__Suc__fact,axiom,
! [N: nat] :
( ( groups708209901874060359at_nat @ suc @ ( set_or4665077453230672383an_nat @ ( suc @ zero_zero_nat ) @ N ) )
= ( semiri1408675320244567234ct_nat @ N ) ) ).
% prod_Suc_Suc_fact
thf(fact_9805_atLeastLessThan__nat__numeral,axiom,
! [M: nat,K: num] :
( ( ( ord_less_eq_nat @ M @ ( pred_numeral @ K ) )
=> ( ( set_or4665077453230672383an_nat @ M @ ( numeral_numeral_nat @ K ) )
= ( insert_nat @ ( pred_numeral @ K ) @ ( set_or4665077453230672383an_nat @ M @ ( pred_numeral @ K ) ) ) ) )
& ( ~ ( ord_less_eq_nat @ M @ ( pred_numeral @ K ) )
=> ( ( set_or4665077453230672383an_nat @ M @ ( numeral_numeral_nat @ K ) )
= bot_bot_set_nat ) ) ) ).
% atLeastLessThan_nat_numeral
thf(fact_9806_atLeast1__lessThan__eq__remove0,axiom,
! [N: nat] :
( ( set_or4665077453230672383an_nat @ ( suc @ zero_zero_nat ) @ N )
= ( minus_minus_set_nat @ ( set_ord_lessThan_nat @ N ) @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ).
% atLeast1_lessThan_eq_remove0
thf(fact_9807_image__minus__const__atLeastLessThan__nat,axiom,
! [C: nat,Y2: nat,X2: nat] :
( ( ( ord_less_nat @ C @ Y2 )
=> ( ( image_nat_nat
@ ^ [I3: nat] : ( minus_minus_nat @ I3 @ C )
@ ( set_or4665077453230672383an_nat @ X2 @ Y2 ) )
= ( set_or4665077453230672383an_nat @ ( minus_minus_nat @ X2 @ C ) @ ( minus_minus_nat @ Y2 @ C ) ) ) )
& ( ~ ( ord_less_nat @ C @ Y2 )
=> ( ( ( ord_less_nat @ X2 @ Y2 )
=> ( ( image_nat_nat
@ ^ [I3: nat] : ( minus_minus_nat @ I3 @ C )
@ ( set_or4665077453230672383an_nat @ X2 @ Y2 ) )
= ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) )
& ( ~ ( ord_less_nat @ X2 @ Y2 )
=> ( ( image_nat_nat
@ ^ [I3: nat] : ( minus_minus_nat @ I3 @ C )
@ ( set_or4665077453230672383an_nat @ X2 @ Y2 ) )
= bot_bot_set_nat ) ) ) ) ) ).
% image_minus_const_atLeastLessThan_nat
thf(fact_9808_sum__power2,axiom,
! [K: nat] :
( ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ K ) )
= ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K ) @ one_one_nat ) ) ).
% sum_power2
thf(fact_9809_Chebyshev__sum__upper__nat,axiom,
! [N: nat,A: nat > nat,B: nat > nat] :
( ! [I2: nat,J2: nat] :
( ( ord_less_eq_nat @ I2 @ J2 )
=> ( ( ord_less_nat @ J2 @ N )
=> ( ord_less_eq_nat @ ( A @ I2 ) @ ( A @ J2 ) ) ) )
=> ( ! [I2: nat,J2: nat] :
( ( ord_less_eq_nat @ I2 @ J2 )
=> ( ( ord_less_nat @ J2 @ N )
=> ( ord_less_eq_nat @ ( B @ J2 ) @ ( B @ I2 ) ) ) )
=> ( ord_less_eq_nat
@ ( times_times_nat @ N
@ ( groups3542108847815614940at_nat
@ ^ [I3: nat] : ( times_times_nat @ ( A @ I3 ) @ ( B @ I3 ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) )
@ ( times_times_nat @ ( groups3542108847815614940at_nat @ A @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) @ ( groups3542108847815614940at_nat @ B @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ) ) ) ).
% Chebyshev_sum_upper_nat
thf(fact_9810_finite__atLeastZeroLessThan__integer,axiom,
! [U: code_integer] : ( finite6017078050557962740nteger @ ( set_or8404916559141939852nteger @ zero_z3403309356797280102nteger @ U ) ) ).
% finite_atLeastZeroLessThan_integer
thf(fact_9811_finite__atLeastZeroLessThan__int,axiom,
! [U: int] : ( finite_finite_int @ ( set_or4662586982721622107an_int @ zero_zero_int @ U ) ) ).
% finite_atLeastZeroLessThan_int
thf(fact_9812_atLeastLessThanPlusOne__atLeastAtMost__integer,axiom,
! [L2: code_integer,U: code_integer] :
( ( set_or8404916559141939852nteger @ L2 @ ( plus_p5714425477246183910nteger @ U @ one_one_Code_integer ) )
= ( set_or189985376899183464nteger @ L2 @ U ) ) ).
% atLeastLessThanPlusOne_atLeastAtMost_integer
thf(fact_9813_atLeastLessThanPlusOne__atLeastAtMost__int,axiom,
! [L2: int,U: int] :
( ( set_or4662586982721622107an_int @ L2 @ ( plus_plus_int @ U @ one_one_int ) )
= ( set_or1266510415728281911st_int @ L2 @ U ) ) ).
% atLeastLessThanPlusOne_atLeastAtMost_int
thf(fact_9814_image__add__int__atLeastLessThan,axiom,
! [L2: int,U: int] :
( ( image_int_int
@ ^ [X: int] : ( plus_plus_int @ X @ L2 )
@ ( set_or4662586982721622107an_int @ zero_zero_int @ ( minus_minus_int @ U @ L2 ) ) )
= ( set_or4662586982721622107an_int @ L2 @ U ) ) ).
% image_add_int_atLeastLessThan
thf(fact_9815_image__int__atLeastLessThan,axiom,
! [A: nat,B: nat] :
( ( image_nat_int @ semiri1314217659103216013at_int @ ( set_or4665077453230672383an_nat @ A @ B ) )
= ( set_or4662586982721622107an_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% image_int_atLeastLessThan
thf(fact_9816_image__add__integer__atLeastLessThan,axiom,
! [L2: code_integer,U: code_integer] :
( ( image_4470545334726330049nteger
@ ^ [X: code_integer] : ( plus_p5714425477246183910nteger @ X @ L2 )
@ ( set_or8404916559141939852nteger @ zero_z3403309356797280102nteger @ ( minus_8373710615458151222nteger @ U @ L2 ) ) )
= ( set_or8404916559141939852nteger @ L2 @ U ) ) ).
% image_add_integer_atLeastLessThan
thf(fact_9817_image__atLeastZeroLessThan__int,axiom,
! [U: int] :
( ( ord_less_eq_int @ zero_zero_int @ U )
=> ( ( set_or4662586982721622107an_int @ zero_zero_int @ U )
= ( image_nat_int @ semiri1314217659103216013at_int @ ( set_ord_lessThan_nat @ ( nat2 @ U ) ) ) ) ) ).
% image_atLeastZeroLessThan_int
thf(fact_9818_VEBT_Osize__gen_I1_J,axiom,
! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT] :
( ( vEBT_size_VEBT @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( size_list_VEBT_VEBT @ vEBT_size_VEBT @ X13 ) @ ( vEBT_size_VEBT @ X14 ) ) @ ( suc @ zero_zero_nat ) ) ) ).
% VEBT.size_gen(1)
thf(fact_9819_int__of__nat__def,axiom,
code_T6385005292777649522of_nat = semiri1314217659103216013at_int ).
% int_of_nat_def
thf(fact_9820_VEBT_Osize__gen_I2_J,axiom,
! [X21: $o,X222: $o] :
( ( vEBT_size_VEBT @ ( vEBT_Leaf @ X21 @ X222 ) )
= zero_zero_nat ) ).
% VEBT.size_gen(2)
thf(fact_9821_smod__int__range,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( member_int @ ( signed6292675348222524329lo_int @ A @ B ) @ ( set_or1266510415728281911st_int @ ( plus_plus_int @ ( uminus_uminus_int @ ( abs_abs_int @ B ) ) @ one_one_int ) @ ( minus_minus_int @ ( abs_abs_int @ B ) @ one_one_int ) ) ) ) ).
% smod_int_range
thf(fact_9822_smod__int__0__mod,axiom,
! [X2: int] :
( ( signed6292675348222524329lo_int @ zero_zero_int @ X2 )
= zero_zero_int ) ).
% smod_int_0_mod
thf(fact_9823_smod__int__mod__0,axiom,
! [X2: int] :
( ( signed6292675348222524329lo_int @ X2 @ zero_zero_int )
= X2 ) ).
% smod_int_mod_0
thf(fact_9824_smod__int__numeral__numeral,axiom,
! [M: num,N: num] :
( ( signed6292675348222524329lo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) ) ) ).
% smod_int_numeral_numeral
thf(fact_9825_smod__int__compares_I1_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( signed6292675348222524329lo_int @ A @ B ) @ B ) ) ) ).
% smod_int_compares(1)
thf(fact_9826_smod__int__compares_I2_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ zero_zero_int @ ( signed6292675348222524329lo_int @ A @ B ) ) ) ) ).
% smod_int_compares(2)
thf(fact_9827_smod__int__compares_I4_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( signed6292675348222524329lo_int @ A @ B ) @ zero_zero_int ) ) ) ).
% smod_int_compares(4)
thf(fact_9828_smod__int__compares_I6_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ zero_zero_int @ ( signed6292675348222524329lo_int @ A @ B ) ) ) ) ).
% smod_int_compares(6)
thf(fact_9829_smod__int__compares_I7_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( signed6292675348222524329lo_int @ A @ B ) @ zero_zero_int ) ) ) ).
% smod_int_compares(7)
thf(fact_9830_smod__int__compares_I8_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ B @ ( signed6292675348222524329lo_int @ A @ B ) ) ) ) ).
% smod_int_compares(8)
thf(fact_9831_smod__mod__positive,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( signed6292675348222524329lo_int @ A @ B )
= ( modulo_modulo_int @ A @ B ) ) ) ) ).
% smod_mod_positive
thf(fact_9832_signed__modulo__int__def,axiom,
( signed6292675348222524329lo_int
= ( ^ [K2: int,L: int] : ( minus_minus_int @ K2 @ ( times_times_int @ ( signed6714573509424544716de_int @ K2 @ L ) @ L ) ) ) ) ).
% signed_modulo_int_def
thf(fact_9833_smod__int__compares_I3_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( signed6292675348222524329lo_int @ A @ B ) ) ) ) ).
% smod_int_compares(3)
thf(fact_9834_smod__int__compares_I5_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( signed6292675348222524329lo_int @ A @ B ) @ ( uminus_uminus_int @ B ) ) ) ) ).
% smod_int_compares(5)
thf(fact_9835_smod__int__alt__def,axiom,
( signed6292675348222524329lo_int
= ( ^ [A3: int,B2: int] : ( times_times_int @ ( sgn_sgn_int @ A3 ) @ ( modulo_modulo_int @ ( abs_abs_int @ A3 ) @ ( abs_abs_int @ B2 ) ) ) ) ) ).
% smod_int_alt_def
thf(fact_9836_valid__eq,axiom,
vEBT_VEBT_valid = vEBT_invar_vebt ).
% valid_eq
thf(fact_9837_valid__eq2,axiom,
! [T2: vEBT_VEBT,D2: nat] :
( ( vEBT_VEBT_valid @ T2 @ D2 )
=> ( vEBT_invar_vebt @ T2 @ D2 ) ) ).
% valid_eq2
thf(fact_9838_valid__eq1,axiom,
! [T2: vEBT_VEBT,D2: nat] :
( ( vEBT_invar_vebt @ T2 @ D2 )
=> ( vEBT_VEBT_valid @ T2 @ D2 ) ) ).
% valid_eq1
thf(fact_9839_VEBT__internal_Ovalid_H_Osimps_I1_J,axiom,
! [Uu: $o,Uv: $o,D2: nat] :
( ( vEBT_VEBT_valid @ ( vEBT_Leaf @ Uu @ Uv ) @ D2 )
= ( D2 = one_one_nat ) ) ).
% VEBT_internal.valid'.simps(1)
thf(fact_9840_uint32_Osize__eq__length,axiom,
( ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) )
= ( type_l796852477590012082l_num1 @ type_N8448461349408098053l_num1 ) ) ).
% uint32.size_eq_length
thf(fact_9841_len__num0,axiom,
( type_l4264026598287037464l_num0
= ( ^ [Uu4: itself_Numeral_num0] : zero_zero_nat ) ) ).
% len_num0
thf(fact_9842_len__num1,axiom,
( type_l4264026598287037465l_num1
= ( ^ [Uu4: itself_Numeral_num1] : one_one_nat ) ) ).
% len_num1
thf(fact_9843_len__of__finite__1__def,axiom,
( type_l31302759751748491nite_1
= ( ^ [X: itself_finite_1] : one_one_nat ) ) ).
% len_of_finite_1_def
thf(fact_9844_len__of__finite__3__def,axiom,
( type_l31302759751748493nite_3
= ( ^ [X: itself_finite_3] : ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ).
% len_of_finite_3_def
thf(fact_9845_len__of__finite__2__def,axiom,
( type_l31302759751748492nite_2
= ( ^ [X: itself_finite_2] : ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% len_of_finite_2_def
thf(fact_9846_min__Suc__Suc,axiom,
! [M: nat,N: nat] :
( ( ord_min_nat @ ( suc @ M ) @ ( suc @ N ) )
= ( suc @ ( ord_min_nat @ M @ N ) ) ) ).
% min_Suc_Suc
thf(fact_9847_min__0L,axiom,
! [N: nat] :
( ( ord_min_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% min_0L
thf(fact_9848_min__0R,axiom,
! [N: nat] :
( ( ord_min_nat @ N @ zero_zero_nat )
= zero_zero_nat ) ).
% min_0R
thf(fact_9849_min__Suc__gt_I1_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_min_nat @ ( suc @ A ) @ B )
= ( suc @ A ) ) ) ).
% min_Suc_gt(1)
thf(fact_9850_min__Suc__gt_I2_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_min_nat @ B @ ( suc @ A ) )
= ( suc @ A ) ) ) ).
% min_Suc_gt(2)
thf(fact_9851_rev__min__pm1,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ ( ord_min_nat @ B @ A ) )
= A ) ).
% rev_min_pm1
thf(fact_9852_rev__min__pm,axiom,
! [B: nat,A: nat] :
( ( plus_plus_nat @ ( ord_min_nat @ B @ A ) @ ( minus_minus_nat @ A @ B ) )
= A ) ).
% rev_min_pm
thf(fact_9853_min__pm1,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ ( ord_min_nat @ A @ B ) )
= A ) ).
% min_pm1
thf(fact_9854_min__pm,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ ( ord_min_nat @ A @ B ) @ ( minus_minus_nat @ A @ B ) )
= A ) ).
% min_pm
thf(fact_9855_min__Suc__numeral,axiom,
! [N: nat,K: num] :
( ( ord_min_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
= ( suc @ ( ord_min_nat @ N @ ( pred_numeral @ K ) ) ) ) ).
% min_Suc_numeral
thf(fact_9856_min__numeral__Suc,axiom,
! [K: num,N: nat] :
( ( ord_min_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
= ( suc @ ( ord_min_nat @ ( pred_numeral @ K ) @ N ) ) ) ).
% min_numeral_Suc
thf(fact_9857_min__diff,axiom,
! [M: nat,I: nat,N: nat] :
( ( ord_min_nat @ ( minus_minus_nat @ M @ I ) @ ( minus_minus_nat @ N @ I ) )
= ( minus_minus_nat @ ( ord_min_nat @ M @ N ) @ I ) ) ).
% min_diff
thf(fact_9858_nat__mult__min__left,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( times_times_nat @ ( ord_min_nat @ M @ N ) @ Q2 )
= ( ord_min_nat @ ( times_times_nat @ M @ Q2 ) @ ( times_times_nat @ N @ Q2 ) ) ) ).
% nat_mult_min_left
thf(fact_9859_nat__mult__min__right,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( times_times_nat @ M @ ( ord_min_nat @ N @ Q2 ) )
= ( ord_min_nat @ ( times_times_nat @ M @ N ) @ ( times_times_nat @ M @ Q2 ) ) ) ).
% nat_mult_min_right
thf(fact_9860_concat__bit__assoc__sym,axiom,
! [M: nat,N: nat,K: int,L2: int,R2: int] :
( ( bit_concat_bit @ M @ ( bit_concat_bit @ N @ K @ L2 ) @ R2 )
= ( bit_concat_bit @ ( ord_min_nat @ M @ N ) @ K @ ( bit_concat_bit @ ( minus_minus_nat @ M @ N ) @ L2 @ R2 ) ) ) ).
% concat_bit_assoc_sym
thf(fact_9861_take__bit__concat__bit__eq,axiom,
! [M: nat,N: nat,K: int,L2: int] :
( ( bit_se2923211474154528505it_int @ M @ ( bit_concat_bit @ N @ K @ L2 ) )
= ( bit_concat_bit @ ( ord_min_nat @ M @ N ) @ K @ ( bit_se2923211474154528505it_int @ ( minus_minus_nat @ M @ N ) @ L2 ) ) ) ).
% take_bit_concat_bit_eq
thf(fact_9862_mod__mod__power,axiom,
! [K: nat,M: nat,N: nat] :
( ( modulo_modulo_nat @ ( modulo_modulo_nat @ K @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( modulo_modulo_nat @ K @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( ord_min_nat @ M @ N ) ) ) ) ).
% mod_mod_power
thf(fact_9863_min__enat__simps_I3_J,axiom,
! [Q2: extended_enat] :
( ( ord_mi8085742599997312461d_enat @ zero_z5237406670263579293d_enat @ Q2 )
= zero_z5237406670263579293d_enat ) ).
% min_enat_simps(3)
thf(fact_9864_min__enat__simps_I2_J,axiom,
! [Q2: extended_enat] :
( ( ord_mi8085742599997312461d_enat @ Q2 @ zero_z5237406670263579293d_enat )
= zero_z5237406670263579293d_enat ) ).
% min_enat_simps(2)
thf(fact_9865_int__set__bits__K__False,axiom,
( ( bit_bi6516823479961619367ts_int
@ ^ [Uu3: nat] : $false )
= zero_zero_int ) ).
% int_set_bits_K_False
thf(fact_9866_range__mult,axiom,
! [A: real] :
( ( ( A = zero_zero_real )
=> ( ( image_real_real @ ( times_times_real @ A ) @ top_top_set_real )
= ( insert_real @ zero_zero_real @ bot_bot_set_real ) ) )
& ( ( A != zero_zero_real )
=> ( ( image_real_real @ ( times_times_real @ A ) @ top_top_set_real )
= top_top_set_real ) ) ) ).
% range_mult
thf(fact_9867_int__set__bits__K__True,axiom,
( ( bit_bi6516823479961619367ts_int
@ ^ [Uu3: nat] : $true )
= ( uminus_uminus_int @ one_one_int ) ) ).
% int_set_bits_K_True
thf(fact_9868_int__in__range__abs,axiom,
! [N: nat] : ( member_int @ ( semiri1314217659103216013at_int @ N ) @ ( image_int_int @ abs_abs_int @ top_top_set_int ) ) ).
% int_in_range_abs
thf(fact_9869_range__mod,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( image_nat_nat
@ ^ [M5: nat] : ( modulo_modulo_nat @ M5 @ N )
@ top_top_set_nat )
= ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ).
% range_mod
thf(fact_9870_upt__conv__Cons__Cons,axiom,
! [M: nat,N: nat,Ns: list_nat,Q2: nat] :
( ( ( cons_nat @ M @ ( cons_nat @ N @ Ns ) )
= ( upt @ M @ Q2 ) )
= ( ( cons_nat @ N @ Ns )
= ( upt @ ( suc @ M ) @ Q2 ) ) ) ).
% upt_conv_Cons_Cons
thf(fact_9871_upt__conv__Cons,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( upt @ I @ J )
= ( cons_nat @ I @ ( upt @ ( suc @ I ) @ J ) ) ) ) ).
% upt_conv_Cons
thf(fact_9872_upt__eq__Cons__conv,axiom,
! [I: nat,J: nat,X2: nat,Xs2: list_nat] :
( ( ( upt @ I @ J )
= ( cons_nat @ X2 @ Xs2 ) )
= ( ( ord_less_nat @ I @ J )
& ( I = X2 )
& ( ( upt @ ( plus_plus_nat @ I @ one_one_nat ) @ J )
= Xs2 ) ) ) ).
% upt_eq_Cons_conv
thf(fact_9873_UNIV__nat__eq,axiom,
( top_top_set_nat
= ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ top_top_set_nat ) ) ) ).
% UNIV_nat_eq
thf(fact_9874_bin__last__set__bits,axiom,
! [F: nat > $o] :
( ( bit_wf_set_bits_int @ F )
=> ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_bi6516823479961619367ts_int @ F ) ) )
= ( F @ zero_zero_nat ) ) ) ).
% bin_last_set_bits
thf(fact_9875_wf__set__bits__int__Suc,axiom,
! [F: nat > $o] :
( ( bit_wf_set_bits_int
@ ^ [N3: nat] : ( F @ ( suc @ N3 ) ) )
= ( bit_wf_set_bits_int @ F ) ) ).
% wf_set_bits_int_Suc
thf(fact_9876_wf__set__bits__int__const,axiom,
! [B: $o] :
( bit_wf_set_bits_int
@ ^ [Uu3: nat] : B ) ).
% wf_set_bits_int_const
thf(fact_9877_ones,axiom,
! [N: nat,F: nat > $o] :
( ! [N7: nat] :
( ( ord_less_eq_nat @ N @ N7 )
=> ( F @ N7 ) )
=> ( bit_wf_set_bits_int @ F ) ) ).
% ones
thf(fact_9878_wf__set__bits__int_Ocases,axiom,
! [F: nat > $o] :
( ( bit_wf_set_bits_int @ F )
=> ( ! [N2: nat] :
~ ! [N6: nat] :
( ( ord_less_eq_nat @ N2 @ N6 )
=> ~ ( F @ N6 ) )
=> ~ ! [N2: nat] :
~ ! [N6: nat] :
( ( ord_less_eq_nat @ N2 @ N6 )
=> ( F @ N6 ) ) ) ) ).
% wf_set_bits_int.cases
thf(fact_9879_wf__set__bits__int_Osimps,axiom,
( bit_wf_set_bits_int
= ( ^ [F3: nat > $o] :
( ? [N3: nat] :
! [N12: nat] :
( ( ord_less_eq_nat @ N3 @ N12 )
=> ~ ( F3 @ N12 ) )
| ? [N3: nat] :
! [N12: nat] :
( ( ord_less_eq_nat @ N3 @ N12 )
=> ( F3 @ N12 ) ) ) ) ) ).
% wf_set_bits_int.simps
thf(fact_9880_zeros,axiom,
! [N: nat,F: nat > $o] :
( ! [N7: nat] :
( ( ord_less_eq_nat @ N @ N7 )
=> ~ ( F @ N7 ) )
=> ( bit_wf_set_bits_int @ F ) ) ).
% zeros
thf(fact_9881_wf__set__bits__int__simps,axiom,
( bit_wf_set_bits_int
= ( ^ [F3: nat > $o] :
? [N3: nat] :
( ! [N12: nat] :
( ( ord_less_eq_nat @ N3 @ N12 )
=> ~ ( F3 @ N12 ) )
| ! [N12: nat] :
( ( ord_less_eq_nat @ N3 @ N12 )
=> ( F3 @ N12 ) ) ) ) ) ).
% wf_set_bits_int_simps
thf(fact_9882_root__def,axiom,
( root
= ( ^ [N3: nat,X: real] :
( if_real @ ( N3 = zero_zero_nat ) @ zero_zero_real
@ ( the_in5290026491893676941l_real @ top_top_set_real
@ ^ [Y: real] : ( times_times_real @ ( sgn_sgn_real @ Y ) @ ( power_power_real @ ( abs_abs_real @ Y ) @ N3 ) )
@ X ) ) ) ) ).
% root_def
thf(fact_9883_int__set__bits__unfold__BIT,axiom,
! [F: nat > $o] :
( ( bit_wf_set_bits_int @ F )
=> ( ( bit_bi6516823479961619367ts_int @ F )
= ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ ( F @ zero_zero_nat ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_bi6516823479961619367ts_int @ ( comp_nat_o_nat @ F @ suc ) ) ) ) ) ) ).
% int_set_bits_unfold_BIT
thf(fact_9884_bin__rest__set__bits,axiom,
! [F: nat > $o] :
( ( bit_wf_set_bits_int @ F )
=> ( ( divide_divide_int @ ( bit_bi6516823479961619367ts_int @ F ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( bit_bi6516823479961619367ts_int @ ( comp_nat_o_nat @ F @ suc ) ) ) ) ).
% bin_rest_set_bits
thf(fact_9885_card_Ocomp__fun__commute__on,axiom,
( ( comp_nat_nat_nat @ suc @ suc )
= ( comp_nat_nat_nat @ suc @ suc ) ) ).
% card.comp_fun_commute_on
thf(fact_9886_Code__Target__Int_Onegative__def,axiom,
( code_Target_negative
= ( comp_int_int_num @ uminus_uminus_int @ numeral_numeral_int ) ) ).
% Code_Target_Int.negative_def
thf(fact_9887_shiftl__Suc__0,axiom,
! [N: nat] :
( ( bit_Sh3965577149348748681tl_nat @ ( suc @ zero_zero_nat ) @ N )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% shiftl_Suc_0
thf(fact_9888_shiftr__Suc__0,axiom,
! [N: nat] :
( ( bit_Sh2154871086232339855tr_nat @ ( suc @ zero_zero_nat ) @ N )
= ( zero_n2687167440665602831ol_nat @ ( N = zero_zero_nat ) ) ) ).
% shiftr_Suc_0
thf(fact_9889_upto__aux__rec,axiom,
( upto_aux
= ( ^ [I3: int,J3: int,Js: list_int] : ( if_list_int @ ( ord_less_int @ J3 @ I3 ) @ Js @ ( upto_aux @ I3 @ ( minus_minus_int @ J3 @ one_one_int ) @ ( cons_int @ J3 @ Js ) ) ) ) ) ).
% upto_aux_rec
thf(fact_9890_inj__on__diff__nat,axiom,
! [N5: set_nat,K: nat] :
( ! [N2: nat] :
( ( member_nat @ N2 @ N5 )
=> ( ord_less_eq_nat @ K @ N2 ) )
=> ( inj_on_nat_nat
@ ^ [N3: nat] : ( minus_minus_nat @ N3 @ K )
@ N5 ) ) ).
% inj_on_diff_nat
thf(fact_9891_inj__Suc,axiom,
! [N5: set_nat] : ( inj_on_nat_nat @ suc @ N5 ) ).
% inj_Suc
thf(fact_9892_inj__on__set__encode,axiom,
inj_on_set_nat_nat @ nat_set_encode @ ( collect_set_nat @ finite_finite_nat ) ).
% inj_on_set_encode
thf(fact_9893_summable__reindex,axiom,
! [F: nat > real,G: nat > nat] :
( ( summable_real @ F )
=> ( ( inj_on_nat_nat @ G @ top_top_set_nat )
=> ( ! [X3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) )
=> ( summable_real @ ( comp_nat_real_nat @ F @ G ) ) ) ) ) ).
% summable_reindex
thf(fact_9894_suminf__reindex__mono,axiom,
! [F: nat > real,G: nat > nat] :
( ( summable_real @ F )
=> ( ( inj_on_nat_nat @ G @ top_top_set_nat )
=> ( ! [X3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) )
=> ( ord_less_eq_real @ ( suminf_real @ ( comp_nat_real_nat @ F @ G ) ) @ ( suminf_real @ F ) ) ) ) ) ).
% suminf_reindex_mono
thf(fact_9895_suminf__reindex,axiom,
! [F: nat > real,G: nat > nat] :
( ( summable_real @ F )
=> ( ( inj_on_nat_nat @ G @ top_top_set_nat )
=> ( ! [X3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) )
=> ( ! [X3: nat] :
( ~ ( member_nat @ X3 @ ( image_nat_nat @ G @ top_top_set_nat ) )
=> ( ( F @ X3 )
= zero_zero_real ) )
=> ( ( suminf_real @ ( comp_nat_real_nat @ F @ G ) )
= ( suminf_real @ F ) ) ) ) ) ) ).
% suminf_reindex
thf(fact_9896_inj__sgn__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( inj_on_real_real
@ ^ [Y: real] : ( times_times_real @ ( sgn_sgn_real @ Y ) @ ( power_power_real @ ( abs_abs_real @ Y ) @ N ) )
@ top_top_set_real ) ) ).
% inj_sgn_power
thf(fact_9897_DERIV__even__real__root,axiom,
! [N: nat,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_real @ X2 @ zero_zero_real )
=> ( has_fi5821293074295781190e_real @ ( root @ N ) @ ( inverse_inverse_real @ ( times_times_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ ( power_power_real @ ( root @ N @ X2 ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ) ).
% DERIV_even_real_root
thf(fact_9898_DERIV__const__ratio__const2,axiom,
! [A: real,B: real,F: real > real,K: real] :
( ( A != B )
=> ( ! [X3: real] : ( has_fi5821293074295781190e_real @ F @ K @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
=> ( ( divide_divide_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ ( minus_minus_real @ B @ A ) )
= K ) ) ) ).
% DERIV_const_ratio_const2
thf(fact_9899_DERIV__const__ratio__const,axiom,
! [A: real,B: real,F: real > real,K: real] :
( ( A != B )
=> ( ! [X3: real] : ( has_fi5821293074295781190e_real @ F @ K @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
=> ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
= ( times_times_real @ ( minus_minus_real @ B @ A ) @ K ) ) ) ) ).
% DERIV_const_ratio_const
thf(fact_9900_DERIV__neg__dec__right,axiom,
! [F: real > real,L2: real,X2: real] :
( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
=> ( ( ord_less_real @ L2 @ zero_zero_real )
=> ? [D3: real] :
( ( ord_less_real @ zero_zero_real @ D3 )
& ! [H4: real] :
( ( ord_less_real @ zero_zero_real @ H4 )
=> ( ( ord_less_real @ H4 @ D3 )
=> ( ord_less_real @ ( F @ ( plus_plus_real @ X2 @ H4 ) ) @ ( F @ X2 ) ) ) ) ) ) ) ).
% DERIV_neg_dec_right
thf(fact_9901_DERIV__pos__inc__right,axiom,
! [F: real > real,L2: real,X2: real] :
( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ L2 )
=> ? [D3: real] :
( ( ord_less_real @ zero_zero_real @ D3 )
& ! [H4: real] :
( ( ord_less_real @ zero_zero_real @ H4 )
=> ( ( ord_less_real @ H4 @ D3 )
=> ( ord_less_real @ ( F @ X2 ) @ ( F @ ( plus_plus_real @ X2 @ H4 ) ) ) ) ) ) ) ) ).
% DERIV_pos_inc_right
thf(fact_9902_DERIV__local__const,axiom,
! [F: real > real,L2: real,X2: real,D2: real] :
( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ D2 )
=> ( ! [Y3: real] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ Y3 ) ) @ D2 )
=> ( ( F @ X2 )
= ( F @ Y3 ) ) )
=> ( L2 = zero_zero_real ) ) ) ) ).
% DERIV_local_const
thf(fact_9903_DERIV__isconst__all,axiom,
! [F: real > real,X2: real,Y2: real] :
( ! [X3: real] : ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
=> ( ( F @ X2 )
= ( F @ Y2 ) ) ) ).
% DERIV_isconst_all
thf(fact_9904_DERIV__pos__inc__left,axiom,
! [F: real > real,L2: real,X2: real] :
( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ L2 )
=> ? [D3: real] :
( ( ord_less_real @ zero_zero_real @ D3 )
& ! [H4: real] :
( ( ord_less_real @ zero_zero_real @ H4 )
=> ( ( ord_less_real @ H4 @ D3 )
=> ( ord_less_real @ ( F @ ( minus_minus_real @ X2 @ H4 ) ) @ ( F @ X2 ) ) ) ) ) ) ) ).
% DERIV_pos_inc_left
thf(fact_9905_DERIV__neg__dec__left,axiom,
! [F: real > real,L2: real,X2: real] :
( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
=> ( ( ord_less_real @ L2 @ zero_zero_real )
=> ? [D3: real] :
( ( ord_less_real @ zero_zero_real @ D3 )
& ! [H4: real] :
( ( ord_less_real @ zero_zero_real @ H4 )
=> ( ( ord_less_real @ H4 @ D3 )
=> ( ord_less_real @ ( F @ X2 ) @ ( F @ ( minus_minus_real @ X2 @ H4 ) ) ) ) ) ) ) ) ).
% DERIV_neg_dec_left
thf(fact_9906_DERIV__mirror,axiom,
! [F: real > real,Y2: real,X2: real] :
( ( has_fi5821293074295781190e_real @ F @ Y2 @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ X2 ) @ top_top_set_real ) )
= ( has_fi5821293074295781190e_real
@ ^ [X: real] : ( F @ ( uminus_uminus_real @ X ) )
@ ( uminus_uminus_real @ Y2 )
@ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ).
% DERIV_mirror
thf(fact_9907_DERIV__ln,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( has_fi5821293074295781190e_real @ ln_ln_real @ ( inverse_inverse_real @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ).
% DERIV_ln
thf(fact_9908_MVT2,axiom,
! [A: real,B: real,F: real > real,F4: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [X3: real] :
( ( ord_less_eq_real @ A @ X3 )
=> ( ( ord_less_eq_real @ X3 @ B )
=> ( has_fi5821293074295781190e_real @ F @ ( F4 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) )
=> ? [Z2: real] :
( ( ord_less_real @ A @ Z2 )
& ( ord_less_real @ Z2 @ B )
& ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
= ( times_times_real @ ( minus_minus_real @ B @ A ) @ ( F4 @ Z2 ) ) ) ) ) ) ).
% MVT2
thf(fact_9909_DERIV__nonpos__imp__nonincreasing,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_eq_real @ A @ B )
=> ( ! [X3: real] :
( ( ord_less_eq_real @ A @ X3 )
=> ( ( ord_less_eq_real @ X3 @ B )
=> ? [Y4: real] :
( ( has_fi5821293074295781190e_real @ F @ Y4 @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
& ( ord_less_eq_real @ Y4 @ zero_zero_real ) ) ) )
=> ( ord_less_eq_real @ ( F @ B ) @ ( F @ A ) ) ) ) ).
% DERIV_nonpos_imp_nonincreasing
thf(fact_9910_DERIV__nonneg__imp__nondecreasing,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_eq_real @ A @ B )
=> ( ! [X3: real] :
( ( ord_less_eq_real @ A @ X3 )
=> ( ( ord_less_eq_real @ X3 @ B )
=> ? [Y4: real] :
( ( has_fi5821293074295781190e_real @ F @ Y4 @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
& ( ord_less_eq_real @ zero_zero_real @ Y4 ) ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ ( F @ B ) ) ) ) ).
% DERIV_nonneg_imp_nondecreasing
thf(fact_9911_DERIV__pos__imp__increasing,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [X3: real] :
( ( ord_less_eq_real @ A @ X3 )
=> ( ( ord_less_eq_real @ X3 @ B )
=> ? [Y4: real] :
( ( has_fi5821293074295781190e_real @ F @ Y4 @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
& ( ord_less_real @ zero_zero_real @ Y4 ) ) ) )
=> ( ord_less_real @ ( F @ A ) @ ( F @ B ) ) ) ) ).
% DERIV_pos_imp_increasing
thf(fact_9912_DERIV__neg__imp__decreasing,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [X3: real] :
( ( ord_less_eq_real @ A @ X3 )
=> ( ( ord_less_eq_real @ X3 @ B )
=> ? [Y4: real] :
( ( has_fi5821293074295781190e_real @ F @ Y4 @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
& ( ord_less_real @ Y4 @ zero_zero_real ) ) ) )
=> ( ord_less_real @ ( F @ B ) @ ( F @ A ) ) ) ) ).
% DERIV_neg_imp_decreasing
thf(fact_9913_deriv__nonneg__imp__mono,axiom,
! [A: real,B: real,G: real > real,G2: real > real] :
( ! [X3: real] :
( ( member_real @ X3 @ ( set_or1222579329274155063t_real @ A @ B ) )
=> ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) )
=> ( ! [X3: real] :
( ( member_real @ X3 @ ( set_or1222579329274155063t_real @ A @ B ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( G2 @ X3 ) ) )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( G @ A ) @ ( G @ B ) ) ) ) ) ).
% deriv_nonneg_imp_mono
thf(fact_9914_has__real__derivative__neg__dec__right,axiom,
! [F: real > real,L2: real,X2: real,S: set_real] :
( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X2 @ S ) )
=> ( ( ord_less_real @ L2 @ zero_zero_real )
=> ? [D3: real] :
( ( ord_less_real @ zero_zero_real @ D3 )
& ! [H4: real] :
( ( ord_less_real @ zero_zero_real @ H4 )
=> ( ( member_real @ ( plus_plus_real @ X2 @ H4 ) @ S )
=> ( ( ord_less_real @ H4 @ D3 )
=> ( ord_less_real @ ( F @ ( plus_plus_real @ X2 @ H4 ) ) @ ( F @ X2 ) ) ) ) ) ) ) ) ).
% has_real_derivative_neg_dec_right
thf(fact_9915_has__real__derivative__pos__inc__right,axiom,
! [F: real > real,L2: real,X2: real,S: set_real] :
( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X2 @ S ) )
=> ( ( ord_less_real @ zero_zero_real @ L2 )
=> ? [D3: real] :
( ( ord_less_real @ zero_zero_real @ D3 )
& ! [H4: real] :
( ( ord_less_real @ zero_zero_real @ H4 )
=> ( ( member_real @ ( plus_plus_real @ X2 @ H4 ) @ S )
=> ( ( ord_less_real @ H4 @ D3 )
=> ( ord_less_real @ ( F @ X2 ) @ ( F @ ( plus_plus_real @ X2 @ H4 ) ) ) ) ) ) ) ) ) ).
% has_real_derivative_pos_inc_right
thf(fact_9916_has__real__derivative__pos__inc__left,axiom,
! [F: real > real,L2: real,X2: real,S: set_real] :
( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X2 @ S ) )
=> ( ( ord_less_real @ zero_zero_real @ L2 )
=> ? [D3: real] :
( ( ord_less_real @ zero_zero_real @ D3 )
& ! [H4: real] :
( ( ord_less_real @ zero_zero_real @ H4 )
=> ( ( member_real @ ( minus_minus_real @ X2 @ H4 ) @ S )
=> ( ( ord_less_real @ H4 @ D3 )
=> ( ord_less_real @ ( F @ ( minus_minus_real @ X2 @ H4 ) ) @ ( F @ X2 ) ) ) ) ) ) ) ) ).
% has_real_derivative_pos_inc_left
thf(fact_9917_has__real__derivative__neg__dec__left,axiom,
! [F: real > real,L2: real,X2: real,S: set_real] :
( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X2 @ S ) )
=> ( ( ord_less_real @ L2 @ zero_zero_real )
=> ? [D3: real] :
( ( ord_less_real @ zero_zero_real @ D3 )
& ! [H4: real] :
( ( ord_less_real @ zero_zero_real @ H4 )
=> ( ( member_real @ ( minus_minus_real @ X2 @ H4 ) @ S )
=> ( ( ord_less_real @ H4 @ D3 )
=> ( ord_less_real @ ( F @ X2 ) @ ( F @ ( minus_minus_real @ X2 @ H4 ) ) ) ) ) ) ) ) ) ).
% has_real_derivative_neg_dec_left
thf(fact_9918_DERIV__const__average,axiom,
! [A: real,B: real,V: real > real,K: real] :
( ( A != B )
=> ( ! [X3: real] : ( has_fi5821293074295781190e_real @ V @ K @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
=> ( ( V @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= ( divide_divide_real @ ( plus_plus_real @ ( V @ A ) @ ( V @ B ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% DERIV_const_average
thf(fact_9919_DERIV__local__max,axiom,
! [F: real > real,L2: real,X2: real,D2: real] :
( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ D2 )
=> ( ! [Y3: real] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ Y3 ) ) @ D2 )
=> ( ord_less_eq_real @ ( F @ Y3 ) @ ( F @ X2 ) ) )
=> ( L2 = zero_zero_real ) ) ) ) ).
% DERIV_local_max
thf(fact_9920_DERIV__local__min,axiom,
! [F: real > real,L2: real,X2: real,D2: real] :
( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ D2 )
=> ( ! [Y3: real] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ Y3 ) ) @ D2 )
=> ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y3 ) ) )
=> ( L2 = zero_zero_real ) ) ) ) ).
% DERIV_local_min
thf(fact_9921_DERIV__ln__divide,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( has_fi5821293074295781190e_real @ ln_ln_real @ ( divide_divide_real @ one_one_real @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ).
% DERIV_ln_divide
thf(fact_9922_DERIV__pow,axiom,
! [N: nat,X2: real,S3: set_real] :
( has_fi5821293074295781190e_real
@ ^ [X: real] : ( power_power_real @ X @ N )
@ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ X2 @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) )
@ ( topolo2177554685111907308n_real @ X2 @ S3 ) ) ).
% DERIV_pow
thf(fact_9923_DERIV__fun__pow,axiom,
! [G: real > real,M: real,X2: real,N: nat] :
( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
=> ( has_fi5821293074295781190e_real
@ ^ [X: real] : ( power_power_real @ ( G @ X ) @ N )
@ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( G @ X2 ) @ ( minus_minus_nat @ N @ one_one_nat ) ) ) @ M )
@ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ).
% DERIV_fun_pow
thf(fact_9924_has__real__derivative__powr,axiom,
! [Z: real,R2: real] :
( ( ord_less_real @ zero_zero_real @ Z )
=> ( has_fi5821293074295781190e_real
@ ^ [Z5: real] : ( powr_real @ Z5 @ R2 )
@ ( times_times_real @ R2 @ ( powr_real @ Z @ ( minus_minus_real @ R2 @ one_one_real ) ) )
@ ( topolo2177554685111907308n_real @ Z @ top_top_set_real ) ) ) ).
% has_real_derivative_powr
thf(fact_9925_DERIV__fun__powr,axiom,
! [G: real > real,M: real,X2: real,R2: real] :
( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ ( G @ X2 ) )
=> ( has_fi5821293074295781190e_real
@ ^ [X: real] : ( powr_real @ ( G @ X ) @ R2 )
@ ( times_times_real @ ( times_times_real @ R2 @ ( powr_real @ ( G @ X2 ) @ ( minus_minus_real @ R2 @ ( semiri5074537144036343181t_real @ one_one_nat ) ) ) ) @ M )
@ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ).
% DERIV_fun_powr
thf(fact_9926_DERIV__log,axiom,
! [X2: real,B: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( has_fi5821293074295781190e_real @ ( log @ B ) @ ( divide_divide_real @ one_one_real @ ( times_times_real @ ( ln_ln_real @ B ) @ X2 ) ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ).
% DERIV_log
thf(fact_9927_DERIV__powr,axiom,
! [G: real > real,M: real,X2: real,F: real > real,R2: real] :
( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ ( G @ X2 ) )
=> ( ( has_fi5821293074295781190e_real @ F @ R2 @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
=> ( has_fi5821293074295781190e_real
@ ^ [X: real] : ( powr_real @ ( G @ X ) @ ( F @ X ) )
@ ( times_times_real @ ( powr_real @ ( G @ X2 ) @ ( F @ X2 ) ) @ ( plus_plus_real @ ( times_times_real @ R2 @ ( ln_ln_real @ ( G @ X2 ) ) ) @ ( divide_divide_real @ ( times_times_real @ M @ ( F @ X2 ) ) @ ( G @ X2 ) ) ) )
@ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ) ).
% DERIV_powr
thf(fact_9928_DERIV__real__sqrt,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( has_fi5821293074295781190e_real @ sqrt @ ( divide_divide_real @ ( inverse_inverse_real @ ( sqrt @ X2 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ).
% DERIV_real_sqrt
thf(fact_9929_DERIV__arctan,axiom,
! [X2: real] : ( has_fi5821293074295781190e_real @ arctan @ ( inverse_inverse_real @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ).
% DERIV_arctan
thf(fact_9930_arsinh__real__has__field__derivative,axiom,
! [X2: real,A2: set_real] : ( has_fi5821293074295781190e_real @ arsinh_real @ ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ A2 ) ) ).
% arsinh_real_has_field_derivative
thf(fact_9931_DERIV__real__sqrt__generic,axiom,
! [X2: real,D4: real] :
( ( X2 != zero_zero_real )
=> ( ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( D4
= ( divide_divide_real @ ( inverse_inverse_real @ ( sqrt @ X2 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
=> ( ( ( ord_less_real @ X2 @ zero_zero_real )
=> ( D4
= ( divide_divide_real @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( sqrt @ X2 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
=> ( has_fi5821293074295781190e_real @ sqrt @ D4 @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ) ).
% DERIV_real_sqrt_generic
thf(fact_9932_arcosh__real__has__field__derivative,axiom,
! [X2: real,A2: set_real] :
( ( ord_less_real @ one_one_real @ X2 )
=> ( has_fi5821293074295781190e_real @ arcosh_real @ ( divide_divide_real @ one_one_real @ ( sqrt @ ( minus_minus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ A2 ) ) ) ).
% arcosh_real_has_field_derivative
thf(fact_9933_artanh__real__has__field__derivative,axiom,
! [X2: real,A2: set_real] :
( ( ord_less_real @ ( abs_abs_real @ X2 ) @ one_one_real )
=> ( has_fi5821293074295781190e_real @ artanh_real @ ( divide_divide_real @ one_one_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ A2 ) ) ) ).
% artanh_real_has_field_derivative
thf(fact_9934_DERIV__real__root,axiom,
! [N: nat,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( has_fi5821293074295781190e_real @ ( root @ N ) @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X2 ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ).
% DERIV_real_root
thf(fact_9935_DERIV__arccos,axiom,
! [X2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
=> ( ( ord_less_real @ X2 @ one_one_real )
=> ( has_fi5821293074295781190e_real @ arccos @ ( inverse_inverse_real @ ( uminus_uminus_real @ ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ).
% DERIV_arccos
thf(fact_9936_DERIV__arcsin,axiom,
! [X2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
=> ( ( ord_less_real @ X2 @ one_one_real )
=> ( has_fi5821293074295781190e_real @ arcsin @ ( inverse_inverse_real @ ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ).
% DERIV_arcsin
thf(fact_9937_Maclaurin__all__le,axiom,
! [Diff: nat > real > real,F: real > real,X2: real,N: nat] :
( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M3: nat,X3: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M3 ) @ ( Diff @ ( suc @ M3 ) @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
=> ? [T5: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) )
& ( ( F @ X2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ X2 @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ) ) ).
% Maclaurin_all_le
thf(fact_9938_Maclaurin__all__le__objl,axiom,
! [Diff: nat > real > real,F: real > real,X2: real,N: nat] :
( ( ( ( Diff @ zero_zero_nat )
= F )
& ! [M3: nat,X3: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M3 ) @ ( Diff @ ( suc @ M3 ) @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) )
=> ? [T5: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) )
& ( ( F @ X2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ X2 @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ) ).
% Maclaurin_all_le_objl
thf(fact_9939_DERIV__odd__real__root,axiom,
! [N: nat,X2: real] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( X2 != zero_zero_real )
=> ( has_fi5821293074295781190e_real @ ( root @ N ) @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X2 ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ).
% DERIV_odd_real_root
thf(fact_9940_Maclaurin,axiom,
! [H2: real,N: nat,Diff: nat > real > real,F: real > real] :
( ( ord_less_real @ zero_zero_real @ H2 )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M3: nat,T5: real] :
( ( ( ord_less_nat @ M3 @ N )
& ( ord_less_eq_real @ zero_zero_real @ T5 )
& ( ord_less_eq_real @ T5 @ H2 ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M3 ) @ ( Diff @ ( suc @ M3 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
=> ? [T5: real] :
( ( ord_less_real @ zero_zero_real @ T5 )
& ( ord_less_real @ T5 @ H2 )
& ( ( F @ H2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ H2 @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ H2 @ N ) ) ) ) ) ) ) ) ) ).
% Maclaurin
thf(fact_9941_Maclaurin2,axiom,
! [H2: real,Diff: nat > real > real,F: real > real,N: nat] :
( ( ord_less_real @ zero_zero_real @ H2 )
=> ( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M3: nat,T5: real] :
( ( ( ord_less_nat @ M3 @ N )
& ( ord_less_eq_real @ zero_zero_real @ T5 )
& ( ord_less_eq_real @ T5 @ H2 ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M3 ) @ ( Diff @ ( suc @ M3 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
=> ? [T5: real] :
( ( ord_less_real @ zero_zero_real @ T5 )
& ( ord_less_eq_real @ T5 @ H2 )
& ( ( F @ H2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ H2 @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ H2 @ N ) ) ) ) ) ) ) ) ).
% Maclaurin2
thf(fact_9942_Maclaurin__minus,axiom,
! [H2: real,N: nat,Diff: nat > real > real,F: real > real] :
( ( ord_less_real @ H2 @ zero_zero_real )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M3: nat,T5: real] :
( ( ( ord_less_nat @ M3 @ N )
& ( ord_less_eq_real @ H2 @ T5 )
& ( ord_less_eq_real @ T5 @ zero_zero_real ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M3 ) @ ( Diff @ ( suc @ M3 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
=> ? [T5: real] :
( ( ord_less_real @ H2 @ T5 )
& ( ord_less_real @ T5 @ zero_zero_real )
& ( ( F @ H2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ H2 @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ H2 @ N ) ) ) ) ) ) ) ) ) ).
% Maclaurin_minus
thf(fact_9943_Maclaurin__all__lt,axiom,
! [Diff: nat > real > real,F: real > real,N: nat,X2: real] :
( ( ( Diff @ zero_zero_nat )
= F )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( X2 != zero_zero_real )
=> ( ! [M3: nat,X3: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M3 ) @ ( Diff @ ( suc @ M3 ) @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
=> ? [T5: real] :
( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ T5 ) )
& ( ord_less_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) )
& ( ( F @ X2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ X2 @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ) ) ) ) ).
% Maclaurin_all_lt
thf(fact_9944_Maclaurin__bi__le,axiom,
! [Diff: nat > real > real,F: real > real,N: nat,X2: real] :
( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M3: nat,T5: real] :
( ( ( ord_less_nat @ M3 @ N )
& ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M3 ) @ ( Diff @ ( suc @ M3 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
=> ? [T5: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) )
& ( ( F @ X2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ X2 @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ) ) ).
% Maclaurin_bi_le
thf(fact_9945_Taylor,axiom,
! [N: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real,X2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M3: nat,T5: real] :
( ( ( ord_less_nat @ M3 @ N )
& ( ord_less_eq_real @ A @ T5 )
& ( ord_less_eq_real @ T5 @ B ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M3 ) @ ( Diff @ ( suc @ M3 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
=> ( ( ord_less_eq_real @ A @ C )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ( ord_less_eq_real @ A @ X2 )
=> ( ( ord_less_eq_real @ X2 @ B )
=> ( ( X2 != C )
=> ? [T5: real] :
( ( ( ord_less_real @ X2 @ C )
=> ( ( ord_less_real @ X2 @ T5 )
& ( ord_less_real @ T5 @ C ) ) )
& ( ~ ( ord_less_real @ X2 @ C )
=> ( ( ord_less_real @ C @ T5 )
& ( ord_less_real @ T5 @ X2 ) ) )
& ( ( F @ X2 )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ C ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ ( minus_minus_real @ X2 @ C ) @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( minus_minus_real @ X2 @ C ) @ N ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% Taylor
thf(fact_9946_Taylor__up,axiom,
! [N: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M3: nat,T5: real] :
( ( ( ord_less_nat @ M3 @ N )
& ( ord_less_eq_real @ A @ T5 )
& ( ord_less_eq_real @ T5 @ B ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M3 ) @ ( Diff @ ( suc @ M3 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
=> ( ( ord_less_eq_real @ A @ C )
=> ( ( ord_less_real @ C @ B )
=> ? [T5: real] :
( ( ord_less_real @ C @ T5 )
& ( ord_less_real @ T5 @ B )
& ( ( F @ B )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ C ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ ( minus_minus_real @ B @ C ) @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( minus_minus_real @ B @ C ) @ N ) ) ) ) ) ) ) ) ) ) ).
% Taylor_up
thf(fact_9947_Taylor__down,axiom,
! [N: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M3: nat,T5: real] :
( ( ( ord_less_nat @ M3 @ N )
& ( ord_less_eq_real @ A @ T5 )
& ( ord_less_eq_real @ T5 @ B ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M3 ) @ ( Diff @ ( suc @ M3 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
=> ( ( ord_less_real @ A @ C )
=> ( ( ord_less_eq_real @ C @ B )
=> ? [T5: real] :
( ( ord_less_real @ A @ T5 )
& ( ord_less_real @ T5 @ C )
& ( ( F @ A )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ C ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ ( minus_minus_real @ A @ C ) @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( minus_minus_real @ A @ C ) @ N ) ) ) ) ) ) ) ) ) ) ).
% Taylor_down
thf(fact_9948_Maclaurin__lemma2,axiom,
! [N: nat,H2: real,Diff: nat > real > real,K: nat,B4: real] :
( ! [M3: nat,T5: real] :
( ( ( ord_less_nat @ M3 @ N )
& ( ord_less_eq_real @ zero_zero_real @ T5 )
& ( ord_less_eq_real @ T5 @ H2 ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M3 ) @ ( Diff @ ( suc @ M3 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
=> ( ( N
= ( suc @ K ) )
=> ! [M4: nat,T6: real] :
( ( ( ord_less_nat @ M4 @ N )
& ( ord_less_eq_real @ zero_zero_real @ T6 )
& ( ord_less_eq_real @ T6 @ H2 ) )
=> ( has_fi5821293074295781190e_real
@ ^ [U2: real] :
( minus_minus_real @ ( Diff @ M4 @ U2 )
@ ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [P3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ ( plus_plus_nat @ M4 @ P3 ) @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ P3 ) ) @ ( power_power_real @ U2 @ P3 ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ M4 ) ) )
@ ( times_times_real @ B4 @ ( divide_divide_real @ ( power_power_real @ U2 @ ( minus_minus_nat @ N @ M4 ) ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ M4 ) ) ) ) ) )
@ ( minus_minus_real @ ( Diff @ ( suc @ M4 ) @ T6 )
@ ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [P3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ ( plus_plus_nat @ ( suc @ M4 ) @ P3 ) @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ P3 ) ) @ ( power_power_real @ T6 @ P3 ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ ( suc @ M4 ) ) ) )
@ ( times_times_real @ B4 @ ( divide_divide_real @ ( power_power_real @ T6 @ ( minus_minus_nat @ N @ ( suc @ M4 ) ) ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ ( suc @ M4 ) ) ) ) ) ) )
@ ( topolo2177554685111907308n_real @ T6 @ top_top_set_real ) ) ) ) ) ).
% Maclaurin_lemma2
thf(fact_9949_DERIV__arctan__series,axiom,
! [X2: real] :
( ( ord_less_real @ ( abs_abs_real @ X2 ) @ one_one_real )
=> ( has_fi5821293074295781190e_real
@ ^ [X9: real] :
( suminf_real
@ ^ [K2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X9 @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) )
@ ( suminf_real
@ ^ [K2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( power_power_real @ X2 @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ).
% DERIV_arctan_series
thf(fact_9950_DERIV__real__root__generic,axiom,
! [N: nat,X2: real,D4: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( X2 != zero_zero_real )
=> ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_real @ zero_zero_real @ X2 )
=> ( D4
= ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X2 ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) )
=> ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_real @ X2 @ zero_zero_real )
=> ( D4
= ( uminus_uminus_real @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X2 ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ) )
=> ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( D4
= ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X2 ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) )
=> ( has_fi5821293074295781190e_real @ ( root @ N ) @ D4 @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ) ) ) ).
% DERIV_real_root_generic
thf(fact_9951_DERIV__power__series_H,axiom,
! [R: real,F: nat > real,X0: real] :
( ! [X3: real] :
( ( member_real @ X3 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ R ) @ R ) )
=> ( summable_real
@ ^ [N3: nat] : ( times_times_real @ ( times_times_real @ ( F @ N3 ) @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) @ ( power_power_real @ X3 @ N3 ) ) ) )
=> ( ( member_real @ X0 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ R ) @ R ) )
=> ( ( ord_less_real @ zero_zero_real @ R )
=> ( has_fi5821293074295781190e_real
@ ^ [X: real] :
( suminf_real
@ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ X @ ( suc @ N3 ) ) ) )
@ ( suminf_real
@ ^ [N3: nat] : ( times_times_real @ ( times_times_real @ ( F @ N3 ) @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) @ ( power_power_real @ X0 @ N3 ) ) )
@ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) ) ) ) ) ).
% DERIV_power_series'
thf(fact_9952_tanh__real__bounds,axiom,
! [X2: real] : ( member_real @ ( tanh_real @ X2 ) @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) ) ).
% tanh_real_bounds
thf(fact_9953_DERIV__isconst3,axiom,
! [A: real,B: real,X2: real,Y2: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ( member_real @ X2 @ ( set_or1633881224788618240n_real @ A @ B ) )
=> ( ( member_real @ Y2 @ ( set_or1633881224788618240n_real @ A @ B ) )
=> ( ! [X3: real] :
( ( member_real @ X3 @ ( set_or1633881224788618240n_real @ A @ B ) )
=> ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) )
=> ( ( F @ X2 )
= ( F @ Y2 ) ) ) ) ) ) ).
% DERIV_isconst3
thf(fact_9954_DERIV__series_H,axiom,
! [F: real > nat > real,F4: real > nat > real,X0: real,A: real,B: real,L5: nat > real] :
( ! [N2: nat] :
( has_fi5821293074295781190e_real
@ ^ [X: real] : ( F @ X @ N2 )
@ ( F4 @ X0 @ N2 )
@ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) )
=> ( ! [X3: real] :
( ( member_real @ X3 @ ( set_or1633881224788618240n_real @ A @ B ) )
=> ( summable_real @ ( F @ X3 ) ) )
=> ( ( member_real @ X0 @ ( set_or1633881224788618240n_real @ A @ B ) )
=> ( ( summable_real @ ( F4 @ X0 ) )
=> ( ( summable_real @ L5 )
=> ( ! [N2: nat,X3: real,Y3: real] :
( ( member_real @ X3 @ ( set_or1633881224788618240n_real @ A @ B ) )
=> ( ( member_real @ Y3 @ ( set_or1633881224788618240n_real @ A @ B ) )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( F @ X3 @ N2 ) @ ( F @ Y3 @ N2 ) ) ) @ ( times_times_real @ ( L5 @ N2 ) @ ( abs_abs_real @ ( minus_minus_real @ X3 @ Y3 ) ) ) ) ) )
=> ( has_fi5821293074295781190e_real
@ ^ [X: real] : ( suminf_real @ ( F @ X ) )
@ ( suminf_real @ ( F4 @ X0 ) )
@ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) ) ) ) ) ) ) ) ).
% DERIV_series'
thf(fact_9955_atLeastSucLessThan__greaterThanLessThan,axiom,
! [L2: nat,U: nat] :
( ( set_or4665077453230672383an_nat @ ( suc @ L2 ) @ U )
= ( set_or5834768355832116004an_nat @ L2 @ U ) ) ).
% atLeastSucLessThan_greaterThanLessThan
thf(fact_9956_isCont__Lb__Ub,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_eq_real @ A @ B )
=> ( ! [X3: real] :
( ( ( ord_less_eq_real @ A @ X3 )
& ( ord_less_eq_real @ X3 @ B ) )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) @ F ) )
=> ? [L6: real,M8: real] :
( ! [X4: real] :
( ( ( ord_less_eq_real @ A @ X4 )
& ( ord_less_eq_real @ X4 @ B ) )
=> ( ( ord_less_eq_real @ L6 @ ( F @ X4 ) )
& ( ord_less_eq_real @ ( F @ X4 ) @ M8 ) ) )
& ! [Y4: real] :
( ( ( ord_less_eq_real @ L6 @ Y4 )
& ( ord_less_eq_real @ Y4 @ M8 ) )
=> ? [X3: real] :
( ( ord_less_eq_real @ A @ X3 )
& ( ord_less_eq_real @ X3 @ B )
& ( ( F @ X3 )
= Y4 ) ) ) ) ) ) ).
% isCont_Lb_Ub
thf(fact_9957_LIM__fun__less__zero,axiom,
! [F: real > real,L2: real,C: real] :
( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L2 ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
=> ( ( ord_less_real @ L2 @ zero_zero_real )
=> ? [R3: real] :
( ( ord_less_real @ zero_zero_real @ R3 )
& ! [X4: real] :
( ( ( X4 != C )
& ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X4 ) ) @ R3 ) )
=> ( ord_less_real @ ( F @ X4 ) @ zero_zero_real ) ) ) ) ) ).
% LIM_fun_less_zero
thf(fact_9958_LIM__fun__not__zero,axiom,
! [F: real > real,L2: real,C: real] :
( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L2 ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
=> ( ( L2 != zero_zero_real )
=> ? [R3: real] :
( ( ord_less_real @ zero_zero_real @ R3 )
& ! [X4: real] :
( ( ( X4 != C )
& ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X4 ) ) @ R3 ) )
=> ( ( F @ X4 )
!= zero_zero_real ) ) ) ) ) ).
% LIM_fun_not_zero
thf(fact_9959_LIM__fun__gt__zero,axiom,
! [F: real > real,L2: real,C: real] :
( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L2 ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ L2 )
=> ? [R3: real] :
( ( ord_less_real @ zero_zero_real @ R3 )
& ! [X4: real] :
( ( ( X4 != C )
& ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X4 ) ) @ R3 ) )
=> ( ord_less_real @ zero_zero_real @ ( F @ X4 ) ) ) ) ) ) ).
% LIM_fun_gt_zero
thf(fact_9960_isCont__real__sqrt,axiom,
! [X2: real] : ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ sqrt ) ).
% isCont_real_sqrt
thf(fact_9961_isCont__real__root,axiom,
! [X2: real,N: nat] : ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ ( root @ N ) ) ).
% isCont_real_root
thf(fact_9962_atLeastPlusOneLessThan__greaterThanLessThan__int,axiom,
! [L2: int,U: int] :
( ( set_or4662586982721622107an_int @ ( plus_plus_int @ L2 @ one_one_int ) @ U )
= ( set_or5832277885323065728an_int @ L2 @ U ) ) ).
% atLeastPlusOneLessThan_greaterThanLessThan_int
thf(fact_9963_greaterThanLessThan__upt,axiom,
( set_or5834768355832116004an_nat
= ( ^ [N3: nat,M5: nat] : ( set_nat2 @ ( upt @ ( suc @ N3 ) @ M5 ) ) ) ) ).
% greaterThanLessThan_upt
thf(fact_9964_isCont__inverse__function2,axiom,
! [A: real,X2: real,B: real,G: real > real,F: real > real] :
( ( ord_less_real @ A @ X2 )
=> ( ( ord_less_real @ X2 @ B )
=> ( ! [Z2: real] :
( ( ord_less_eq_real @ A @ Z2 )
=> ( ( ord_less_eq_real @ Z2 @ B )
=> ( ( G @ ( F @ Z2 ) )
= Z2 ) ) )
=> ( ! [Z2: real] :
( ( ord_less_eq_real @ A @ Z2 )
=> ( ( ord_less_eq_real @ Z2 @ B )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z2 @ top_top_set_real ) @ F ) ) )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ ( F @ X2 ) @ top_top_set_real ) @ G ) ) ) ) ) ).
% isCont_inverse_function2
thf(fact_9965_isCont__ln,axiom,
! [X2: real] :
( ( X2 != zero_zero_real )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ ln_ln_real ) ) ).
% isCont_ln
thf(fact_9966_atLeastPlusOneLessThan__greaterThanLessThan__integer,axiom,
! [L2: code_integer,U: code_integer] :
( ( set_or8404916559141939852nteger @ ( plus_p5714425477246183910nteger @ L2 @ one_one_Code_integer ) @ U )
= ( set_or4266950643985792945nteger @ L2 @ U ) ) ).
% atLeastPlusOneLessThan_greaterThanLessThan_integer
thf(fact_9967_isCont__arcosh,axiom,
! [X2: real] :
( ( ord_less_real @ one_one_real @ X2 )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ arcosh_real ) ) ).
% isCont_arcosh
thf(fact_9968_LIM__cos__div__sin,axiom,
( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( cos_real @ X ) @ ( sin_real @ X ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ ( topolo2177554685111907308n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ top_top_set_real ) ) ).
% LIM_cos_div_sin
thf(fact_9969_DERIV__inverse__function,axiom,
! [F: real > real,D4: real,G: real > real,X2: real,A: real,B: real] :
( ( has_fi5821293074295781190e_real @ F @ D4 @ ( topolo2177554685111907308n_real @ ( G @ X2 ) @ top_top_set_real ) )
=> ( ( D4 != zero_zero_real )
=> ( ( ord_less_real @ A @ X2 )
=> ( ( ord_less_real @ X2 @ B )
=> ( ! [Y3: real] :
( ( ord_less_real @ A @ Y3 )
=> ( ( ord_less_real @ Y3 @ B )
=> ( ( F @ ( G @ Y3 ) )
= Y3 ) ) )
=> ( ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ G )
=> ( has_fi5821293074295781190e_real @ G @ ( inverse_inverse_real @ D4 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ) ) ) ) ).
% DERIV_inverse_function
thf(fact_9970_isCont__arccos,axiom,
! [X2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
=> ( ( ord_less_real @ X2 @ one_one_real )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ arccos ) ) ) ).
% isCont_arccos
thf(fact_9971_isCont__arcsin,axiom,
! [X2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
=> ( ( ord_less_real @ X2 @ one_one_real )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ arcsin ) ) ) ).
% isCont_arcsin
thf(fact_9972_LIM__less__bound,axiom,
! [B: real,X2: real,F: real > real] :
( ( ord_less_real @ B @ X2 )
=> ( ! [X3: real] :
( ( member_real @ X3 @ ( set_or1633881224788618240n_real @ B @ X2 ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
=> ( ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ F )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X2 ) ) ) ) ) ).
% LIM_less_bound
thf(fact_9973_isCont__artanh,axiom,
! [X2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
=> ( ( ord_less_real @ X2 @ one_one_real )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ artanh_real ) ) ) ).
% isCont_artanh
thf(fact_9974_isCont__inverse__function,axiom,
! [D2: real,X2: real,G: real > real,F: real > real] :
( ( ord_less_real @ zero_zero_real @ D2 )
=> ( ! [Z2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z2 @ X2 ) ) @ D2 )
=> ( ( G @ ( F @ Z2 ) )
= Z2 ) )
=> ( ! [Z2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z2 @ X2 ) ) @ D2 )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z2 @ top_top_set_real ) @ F ) )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ ( F @ X2 ) @ top_top_set_real ) @ G ) ) ) ) ).
% isCont_inverse_function
thf(fact_9975_GMVT_H,axiom,
! [A: real,B: real,F: real > real,G: real > real,G2: real > real,F4: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [Z2: real] :
( ( ord_less_eq_real @ A @ Z2 )
=> ( ( ord_less_eq_real @ Z2 @ B )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z2 @ top_top_set_real ) @ F ) ) )
=> ( ! [Z2: real] :
( ( ord_less_eq_real @ A @ Z2 )
=> ( ( ord_less_eq_real @ Z2 @ B )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z2 @ top_top_set_real ) @ G ) ) )
=> ( ! [Z2: real] :
( ( ord_less_real @ A @ Z2 )
=> ( ( ord_less_real @ Z2 @ B )
=> ( has_fi5821293074295781190e_real @ G @ ( G2 @ Z2 ) @ ( topolo2177554685111907308n_real @ Z2 @ top_top_set_real ) ) ) )
=> ( ! [Z2: real] :
( ( ord_less_real @ A @ Z2 )
=> ( ( ord_less_real @ Z2 @ B )
=> ( has_fi5821293074295781190e_real @ F @ ( F4 @ Z2 ) @ ( topolo2177554685111907308n_real @ Z2 @ top_top_set_real ) ) ) )
=> ? [C3: real] :
( ( ord_less_real @ A @ C3 )
& ( ord_less_real @ C3 @ B )
& ( ( times_times_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ ( G2 @ C3 ) )
= ( times_times_real @ ( minus_minus_real @ ( G @ B ) @ ( G @ A ) ) @ ( F4 @ C3 ) ) ) ) ) ) ) ) ) ).
% GMVT'
thf(fact_9976_summable__Leibniz_I2_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ( topolo6980174941875973593q_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ ( A @ zero_zero_nat ) )
=> ! [N11: nat] :
( member_real
@ ( suminf_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) ) )
@ ( set_or1222579329274155063t_real
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N11 ) ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N11 ) @ one_one_nat ) ) ) ) ) ) ) ) ).
% summable_Leibniz(2)
thf(fact_9977_summable__Leibniz_I3_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ( topolo6980174941875973593q_real @ A )
=> ( ( ord_less_real @ ( A @ zero_zero_nat ) @ zero_zero_real )
=> ! [N11: nat] :
( member_real
@ ( suminf_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) ) )
@ ( set_or1222579329274155063t_real
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N11 ) @ one_one_nat ) ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N11 ) ) ) ) ) ) ) ) ).
% summable_Leibniz(3)
thf(fact_9978_mult__nat__left__at__top,axiom,
! [C: nat] :
( ( ord_less_nat @ zero_zero_nat @ C )
=> ( filterlim_nat_nat @ ( times_times_nat @ C ) @ at_top_nat @ at_top_nat ) ) ).
% mult_nat_left_at_top
thf(fact_9979_mult__nat__right__at__top,axiom,
! [C: nat] :
( ( ord_less_nat @ zero_zero_nat @ C )
=> ( filterlim_nat_nat
@ ^ [X: nat] : ( times_times_nat @ X @ C )
@ at_top_nat
@ at_top_nat ) ) ).
% mult_nat_right_at_top
thf(fact_9980_monoseq__convergent,axiom,
! [X7: nat > real,B4: real] :
( ( topolo6980174941875973593q_real @ X7 )
=> ( ! [I2: nat] : ( ord_less_eq_real @ ( abs_abs_real @ ( X7 @ I2 ) ) @ B4 )
=> ~ ! [L6: real] :
~ ( filterlim_nat_real @ X7 @ ( topolo2815343760600316023s_real @ L6 ) @ at_top_nat ) ) ) ).
% monoseq_convergent
thf(fact_9981_LIMSEQ__root,axiom,
( filterlim_nat_real
@ ^ [N3: nat] : ( root @ N3 @ ( semiri5074537144036343181t_real @ N3 ) )
@ ( topolo2815343760600316023s_real @ one_one_real )
@ at_top_nat ) ).
% LIMSEQ_root
thf(fact_9982_nested__sequence__unique,axiom,
! [F: nat > real,G: nat > real] :
( ! [N2: nat] : ( ord_less_eq_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ! [N2: nat] : ( ord_less_eq_real @ ( G @ ( suc @ N2 ) ) @ ( G @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq_real @ ( F @ N2 ) @ ( G @ N2 ) )
=> ( ( filterlim_nat_real
@ ^ [N3: nat] : ( minus_minus_real @ ( F @ N3 ) @ ( G @ N3 ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat )
=> ? [L4: real] :
( ! [N11: nat] : ( ord_less_eq_real @ ( F @ N11 ) @ L4 )
& ( filterlim_nat_real @ F @ ( topolo2815343760600316023s_real @ L4 ) @ at_top_nat )
& ! [N11: nat] : ( ord_less_eq_real @ L4 @ ( G @ N11 ) )
& ( filterlim_nat_real @ G @ ( topolo2815343760600316023s_real @ L4 ) @ at_top_nat ) ) ) ) ) ) ).
% nested_sequence_unique
thf(fact_9983_LIMSEQ__inverse__zero,axiom,
! [X7: nat > real] :
( ! [R3: real] :
? [N9: nat] :
! [N2: nat] :
( ( ord_less_eq_nat @ N9 @ N2 )
=> ( ord_less_real @ R3 @ ( X7 @ N2 ) ) )
=> ( filterlim_nat_real
@ ^ [N3: nat] : ( inverse_inverse_real @ ( X7 @ N3 ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ) ).
% LIMSEQ_inverse_zero
thf(fact_9984_lim__inverse__n_H,axiom,
( filterlim_nat_real
@ ^ [N3: nat] : ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N3 ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ).
% lim_inverse_n'
thf(fact_9985_LIMSEQ__inverse__real__of__nat,axiom,
( filterlim_nat_real
@ ^ [N3: nat] : ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ).
% LIMSEQ_inverse_real_of_nat
thf(fact_9986_LIMSEQ__root__const,axiom,
! [C: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( filterlim_nat_real
@ ^ [N3: nat] : ( root @ N3 @ C )
@ ( topolo2815343760600316023s_real @ one_one_real )
@ at_top_nat ) ) ).
% LIMSEQ_root_const
thf(fact_9987_LIMSEQ__inverse__real__of__nat__add,axiom,
! [R2: real] :
( filterlim_nat_real
@ ^ [N3: nat] : ( plus_plus_real @ R2 @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) )
@ ( topolo2815343760600316023s_real @ R2 )
@ at_top_nat ) ).
% LIMSEQ_inverse_real_of_nat_add
thf(fact_9988_increasing__LIMSEQ,axiom,
! [F: nat > real,L2: real] :
( ! [N2: nat] : ( ord_less_eq_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ! [N2: nat] : ( ord_less_eq_real @ ( F @ N2 ) @ L2 )
=> ( ! [E2: real] :
( ( ord_less_real @ zero_zero_real @ E2 )
=> ? [N11: nat] : ( ord_less_eq_real @ L2 @ ( plus_plus_real @ ( F @ N11 ) @ E2 ) ) )
=> ( filterlim_nat_real @ F @ ( topolo2815343760600316023s_real @ L2 ) @ at_top_nat ) ) ) ) ).
% increasing_LIMSEQ
thf(fact_9989_LIMSEQ__realpow__zero,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_real @ X2 @ one_one_real )
=> ( filterlim_nat_real @ ( power_power_real @ X2 ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ) ).
% LIMSEQ_realpow_zero
thf(fact_9990_LIMSEQ__divide__realpow__zero,axiom,
! [X2: real,A: real] :
( ( ord_less_real @ one_one_real @ X2 )
=> ( filterlim_nat_real
@ ^ [N3: nat] : ( divide_divide_real @ A @ ( power_power_real @ X2 @ N3 ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ) ).
% LIMSEQ_divide_realpow_zero
thf(fact_9991_LIMSEQ__abs__realpow__zero2,axiom,
! [C: real] :
( ( ord_less_real @ ( abs_abs_real @ C ) @ one_one_real )
=> ( filterlim_nat_real @ ( power_power_real @ C ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ).
% LIMSEQ_abs_realpow_zero2
thf(fact_9992_LIMSEQ__abs__realpow__zero,axiom,
! [C: real] :
( ( ord_less_real @ ( abs_abs_real @ C ) @ one_one_real )
=> ( filterlim_nat_real @ ( power_power_real @ ( abs_abs_real @ C ) ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ).
% LIMSEQ_abs_realpow_zero
thf(fact_9993_LIMSEQ__inverse__realpow__zero,axiom,
! [X2: real] :
( ( ord_less_real @ one_one_real @ X2 )
=> ( filterlim_nat_real
@ ^ [N3: nat] : ( inverse_inverse_real @ ( power_power_real @ X2 @ N3 ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ) ).
% LIMSEQ_inverse_realpow_zero
thf(fact_9994_LIMSEQ__inverse__real__of__nat__add__minus,axiom,
! [R2: real] :
( filterlim_nat_real
@ ^ [N3: nat] : ( plus_plus_real @ R2 @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) ) )
@ ( topolo2815343760600316023s_real @ R2 )
@ at_top_nat ) ).
% LIMSEQ_inverse_real_of_nat_add_minus
thf(fact_9995_tendsto__exp__limit__sequentially,axiom,
! [X2: real] :
( filterlim_nat_real
@ ^ [N3: nat] : ( power_power_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X2 @ ( semiri5074537144036343181t_real @ N3 ) ) ) @ N3 )
@ ( topolo2815343760600316023s_real @ ( exp_real @ X2 ) )
@ at_top_nat ) ).
% tendsto_exp_limit_sequentially
thf(fact_9996_LIMSEQ__inverse__real__of__nat__add__minus__mult,axiom,
! [R2: real] :
( filterlim_nat_real
@ ^ [N3: nat] : ( times_times_real @ R2 @ ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) ) ) )
@ ( topolo2815343760600316023s_real @ R2 )
@ at_top_nat ) ).
% LIMSEQ_inverse_real_of_nat_add_minus_mult
thf(fact_9997_summable__Leibniz_I1_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ( topolo6980174941875973593q_real @ A )
=> ( summable_real
@ ^ [N3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N3 ) @ ( A @ N3 ) ) ) ) ) ).
% summable_Leibniz(1)
thf(fact_9998_summable,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N2 ) ) @ ( A @ N2 ) )
=> ( summable_real
@ ^ [N3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N3 ) @ ( A @ N3 ) ) ) ) ) ) ).
% summable
thf(fact_9999_cos__diff__limit__1,axiom,
! [Theta: nat > real,Theta2: real] :
( ( filterlim_nat_real
@ ^ [J3: nat] : ( cos_real @ ( minus_minus_real @ ( Theta @ J3 ) @ Theta2 ) )
@ ( topolo2815343760600316023s_real @ one_one_real )
@ at_top_nat )
=> ~ ! [K3: nat > int] :
~ ( filterlim_nat_real
@ ^ [J3: nat] : ( minus_minus_real @ ( Theta @ J3 ) @ ( times_times_real @ ( ring_1_of_int_real @ ( K3 @ J3 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
@ ( topolo2815343760600316023s_real @ Theta2 )
@ at_top_nat ) ) ).
% cos_diff_limit_1
thf(fact_10000_cos__limit__1,axiom,
! [Theta: nat > real] :
( ( filterlim_nat_real
@ ^ [J3: nat] : ( cos_real @ ( Theta @ J3 ) )
@ ( topolo2815343760600316023s_real @ one_one_real )
@ at_top_nat )
=> ? [K3: nat > int] :
( filterlim_nat_real
@ ^ [J3: nat] : ( minus_minus_real @ ( Theta @ J3 ) @ ( times_times_real @ ( ring_1_of_int_real @ ( K3 @ J3 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ) ).
% cos_limit_1
thf(fact_10001_summable__Leibniz_I4_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ( topolo6980174941875973593q_real @ A )
=> ( filterlim_nat_real
@ ^ [N3: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) )
@ ( topolo2815343760600316023s_real
@ ( suminf_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) ) ) )
@ at_top_nat ) ) ) ).
% summable_Leibniz(4)
thf(fact_10002_zeroseq__arctan__series,axiom,
! [X2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
=> ( filterlim_nat_real
@ ^ [N3: nat] : ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X2 @ ( plus_plus_nat @ ( times_times_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ) ).
% zeroseq_arctan_series
thf(fact_10003_summable__Leibniz_H_I3_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N2 ) ) @ ( A @ N2 ) )
=> ( filterlim_nat_real
@ ^ [N3: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) )
@ ( topolo2815343760600316023s_real
@ ( suminf_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) ) ) )
@ at_top_nat ) ) ) ) ).
% summable_Leibniz'(3)
thf(fact_10004_summable__Leibniz_H_I2_J,axiom,
! [A: nat > real,N: nat] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N2 ) ) @ ( A @ N2 ) )
=> ( ord_less_eq_real
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
@ ( suminf_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) ) ) ) ) ) ) ).
% summable_Leibniz'(2)
thf(fact_10005_sums__alternating__upper__lower,axiom,
! [A: nat > real] :
( ! [N2: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N2 ) ) @ ( A @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
=> ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ? [L4: real] :
( ! [N11: nat] :
( ord_less_eq_real
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N11 ) ) )
@ L4 )
& ( filterlim_nat_real
@ ^ [N3: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) )
@ ( topolo2815343760600316023s_real @ L4 )
@ at_top_nat )
& ! [N11: nat] :
( ord_less_eq_real @ L4
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N11 ) @ one_one_nat ) ) ) )
& ( filterlim_nat_real
@ ^ [N3: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) )
@ ( topolo2815343760600316023s_real @ L4 )
@ at_top_nat ) ) ) ) ) ).
% sums_alternating_upper_lower
thf(fact_10006_summable__Leibniz_I5_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ( topolo6980174941875973593q_real @ A )
=> ( filterlim_nat_real
@ ^ [N3: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) )
@ ( topolo2815343760600316023s_real
@ ( suminf_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) ) ) )
@ at_top_nat ) ) ) ).
% summable_Leibniz(5)
thf(fact_10007_summable__Leibniz_H_I4_J,axiom,
! [A: nat > real,N: nat] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N2 ) ) @ ( A @ N2 ) )
=> ( ord_less_eq_real
@ ( suminf_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) ) )
@ ( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ) ) ) ) ).
% summable_Leibniz'(4)
thf(fact_10008_summable__Leibniz_H_I5_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N2 ) ) @ ( A @ N2 ) )
=> ( filterlim_nat_real
@ ^ [N3: nat] :
( groups6591440286371151544t_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) )
@ ( topolo2815343760600316023s_real
@ ( suminf_real
@ ^ [I3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I3 ) @ ( A @ I3 ) ) ) )
@ at_top_nat ) ) ) ) ).
% summable_Leibniz'(5)
thf(fact_10009_real__bounded__linear,axiom,
( real_V5970128139526366754l_real
= ( ^ [F3: real > real] :
? [C2: real] :
( F3
= ( ^ [X: real] : ( times_times_real @ X @ C2 ) ) ) ) ) ).
% real_bounded_linear
thf(fact_10010_filterlim__Suc,axiom,
filterlim_nat_nat @ suc @ at_top_nat @ at_top_nat ).
% filterlim_Suc
thf(fact_10011_tendsto__exp__limit__at__right,axiom,
! [X2: real] :
( filterlim_real_real
@ ^ [Y: real] : ( powr_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ X2 @ Y ) ) @ ( divide_divide_real @ one_one_real @ Y ) )
@ ( topolo2815343760600316023s_real @ ( exp_real @ X2 ) )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ).
% tendsto_exp_limit_at_right
thf(fact_10012_tendsto__arctan__at__bot,axiom,
filterlim_real_real @ arctan @ ( topolo2815343760600316023s_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ at_bot_real ).
% tendsto_arctan_at_bot
thf(fact_10013_ln__at__0,axiom,
filterlim_real_real @ ln_ln_real @ at_bot_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ).
% ln_at_0
thf(fact_10014_artanh__real__at__right__1,axiom,
filterlim_real_real @ artanh_real @ at_bot_real @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ one_one_real ) @ ( set_or5849166863359141190n_real @ ( uminus_uminus_real @ one_one_real ) ) ) ).
% artanh_real_at_right_1
thf(fact_10015_filterlim__tan__at__right,axiom,
filterlim_real_real @ tan_real @ at_bot_real @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( set_or5849166863359141190n_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% filterlim_tan_at_right
thf(fact_10016_exp__at__bot,axiom,
filterlim_real_real @ exp_real @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_bot_real ).
% exp_at_bot
thf(fact_10017_filterlim__inverse__at__bot__neg,axiom,
filterlim_real_real @ inverse_inverse_real @ at_bot_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5984915006950818249n_real @ zero_zero_real ) ) ).
% filterlim_inverse_at_bot_neg
thf(fact_10018_log__inj,axiom,
! [B: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( inj_on_real_real @ ( log @ B ) @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ).
% log_inj
thf(fact_10019_tanh__real__at__bot,axiom,
filterlim_real_real @ tanh_real @ ( topolo2815343760600316023s_real @ ( uminus_uminus_real @ one_one_real ) ) @ at_bot_real ).
% tanh_real_at_bot
thf(fact_10020_tendsto__arcosh__at__left__1,axiom,
filterlim_real_real @ arcosh_real @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ one_one_real @ ( set_or5849166863359141190n_real @ one_one_real ) ) ).
% tendsto_arcosh_at_left_1
thf(fact_10021_DERIV__pos__imp__increasing__at__bot,axiom,
! [B: real,F: real > real,Flim: real] :
( ! [X3: real] :
( ( ord_less_eq_real @ X3 @ B )
=> ? [Y4: real] :
( ( has_fi5821293074295781190e_real @ F @ Y4 @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
& ( ord_less_real @ zero_zero_real @ Y4 ) ) )
=> ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ Flim ) @ at_bot_real )
=> ( ord_less_real @ Flim @ ( F @ B ) ) ) ) ).
% DERIV_pos_imp_increasing_at_bot
thf(fact_10022_filterlim__pow__at__bot__odd,axiom,
! [N: nat,F: real > real,F2: filter_real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( filterlim_real_real @ F @ at_bot_real @ F2 )
=> ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( filterlim_real_real
@ ^ [X: real] : ( power_power_real @ ( F @ X ) @ N )
@ at_bot_real
@ F2 ) ) ) ) ).
% filterlim_pow_at_bot_odd
thf(fact_10023_filterlim__pow__at__bot__even,axiom,
! [N: nat,F: real > real,F2: filter_real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( filterlim_real_real @ F @ at_bot_real @ F2 )
=> ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( filterlim_real_real
@ ^ [X: real] : ( power_power_real @ ( F @ X ) @ N )
@ at_top_real
@ F2 ) ) ) ) ).
% filterlim_pow_at_bot_even
thf(fact_10024_exp__at__top,axiom,
filterlim_real_real @ exp_real @ at_top_real @ at_top_real ).
% exp_at_top
thf(fact_10025_sqrt__at__top,axiom,
filterlim_real_real @ sqrt @ at_top_real @ at_top_real ).
% sqrt_at_top
thf(fact_10026_ln__at__top,axiom,
filterlim_real_real @ ln_ln_real @ at_top_real @ at_top_real ).
% ln_at_top
thf(fact_10027_filterlim__real__sequentially,axiom,
filterlim_nat_real @ semiri5074537144036343181t_real @ at_top_real @ at_top_nat ).
% filterlim_real_sequentially
thf(fact_10028_filterlim__uminus__at__bot__at__top,axiom,
filterlim_real_real @ uminus_uminus_real @ at_bot_real @ at_top_real ).
% filterlim_uminus_at_bot_at_top
thf(fact_10029_filterlim__uminus__at__top__at__bot,axiom,
filterlim_real_real @ uminus_uminus_real @ at_top_real @ at_bot_real ).
% filterlim_uminus_at_top_at_bot
thf(fact_10030_filterlim__real__at__infinity__sequentially,axiom,
filterlim_nat_real @ semiri5074537144036343181t_real @ at_infinity_real @ at_top_nat ).
% filterlim_real_at_infinity_sequentially
thf(fact_10031_greaterThan__0,axiom,
( ( set_or1210151606488870762an_nat @ zero_zero_nat )
= ( image_nat_nat @ suc @ top_top_set_nat ) ) ).
% greaterThan_0
thf(fact_10032_greaterThan__Suc,axiom,
! [K: nat] :
( ( set_or1210151606488870762an_nat @ ( suc @ K ) )
= ( minus_minus_set_nat @ ( set_or1210151606488870762an_nat @ K ) @ ( insert_nat @ ( suc @ K ) @ bot_bot_set_nat ) ) ) ).
% greaterThan_Suc
thf(fact_10033_tanh__real__at__top,axiom,
filterlim_real_real @ tanh_real @ ( topolo2815343760600316023s_real @ one_one_real ) @ at_top_real ).
% tanh_real_at_top
thf(fact_10034_artanh__real__at__left__1,axiom,
filterlim_real_real @ artanh_real @ at_top_real @ ( topolo2177554685111907308n_real @ one_one_real @ ( set_or5984915006950818249n_real @ one_one_real ) ) ).
% artanh_real_at_left_1
thf(fact_10035_ln__x__over__x__tendsto__0,axiom,
( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( ln_ln_real @ X ) @ X )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_real ) ).
% ln_x_over_x_tendsto_0
thf(fact_10036_filterlim__inverse__at__right__top,axiom,
filterlim_real_real @ inverse_inverse_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) @ at_top_real ).
% filterlim_inverse_at_right_top
thf(fact_10037_filterlim__inverse__at__top__right,axiom,
filterlim_real_real @ inverse_inverse_real @ at_top_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ).
% filterlim_inverse_at_top_right
thf(fact_10038_tendsto__power__div__exp__0,axiom,
! [K: nat] :
( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( power_power_real @ X @ K ) @ ( exp_real @ X ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_real ) ).
% tendsto_power_div_exp_0
thf(fact_10039_tendsto__exp__limit__at__top,axiom,
! [X2: real] :
( filterlim_real_real
@ ^ [Y: real] : ( powr_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X2 @ Y ) ) @ Y )
@ ( topolo2815343760600316023s_real @ ( exp_real @ X2 ) )
@ at_top_real ) ).
% tendsto_exp_limit_at_top
thf(fact_10040_filterlim__tan__at__left,axiom,
filterlim_real_real @ tan_real @ at_top_real @ ( topolo2177554685111907308n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( set_or5984915006950818249n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% filterlim_tan_at_left
thf(fact_10041_tendsto__arctan__at__top,axiom,
filterlim_real_real @ arctan @ ( topolo2815343760600316023s_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ at_top_real ).
% tendsto_arctan_at_top
thf(fact_10042_DERIV__neg__imp__decreasing__at__top,axiom,
! [B: real,F: real > real,Flim: real] :
( ! [X3: real] :
( ( ord_less_eq_real @ B @ X3 )
=> ? [Y4: real] :
( ( has_fi5821293074295781190e_real @ F @ Y4 @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
& ( ord_less_real @ Y4 @ zero_zero_real ) ) )
=> ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ Flim ) @ at_top_real )
=> ( ord_less_real @ Flim @ ( F @ B ) ) ) ) ).
% DERIV_neg_imp_decreasing_at_top
thf(fact_10043_lhopital__left__at__top,axiom,
! [G: real > real,X2: real,G2: real > real,F: real > real,F4: real > real,Y2: real] :
( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
=> ( ( eventually_real
@ ^ [X: real] :
( ( G2 @ X )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
=> ( ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
@ ( topolo2815343760600316023s_real @ Y2 )
@ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
=> ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
@ ( topolo2815343760600316023s_real @ Y2 )
@ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) ) ) ) ) ) ) ).
% lhopital_left_at_top
thf(fact_10044_eventually__sequentially__Suc,axiom,
! [P: nat > $o] :
( ( eventually_nat
@ ^ [I3: nat] : ( P @ ( suc @ I3 ) )
@ at_top_nat )
= ( eventually_nat @ P @ at_top_nat ) ) ).
% eventually_sequentially_Suc
thf(fact_10045_eventually__sequentially__seg,axiom,
! [P: nat > $o,K: nat] :
( ( eventually_nat
@ ^ [N3: nat] : ( P @ ( plus_plus_nat @ N3 @ K ) )
@ at_top_nat )
= ( eventually_nat @ P @ at_top_nat ) ) ).
% eventually_sequentially_seg
thf(fact_10046_sequentially__offset,axiom,
! [P: nat > $o,K: nat] :
( ( eventually_nat @ P @ at_top_nat )
=> ( eventually_nat
@ ^ [I3: nat] : ( P @ ( plus_plus_nat @ I3 @ K ) )
@ at_top_nat ) ) ).
% sequentially_offset
thf(fact_10047_eventually__sequentially,axiom,
! [P: nat > $o] :
( ( eventually_nat @ P @ at_top_nat )
= ( ? [N8: nat] :
! [N3: nat] :
( ( ord_less_eq_nat @ N8 @ N3 )
=> ( P @ N3 ) ) ) ) ).
% eventually_sequentially
thf(fact_10048_eventually__sequentiallyI,axiom,
! [C: nat,P: nat > $o] :
( ! [X3: nat] :
( ( ord_less_eq_nat @ C @ X3 )
=> ( P @ X3 ) )
=> ( eventually_nat @ P @ at_top_nat ) ) ).
% eventually_sequentiallyI
thf(fact_10049_le__sequentially,axiom,
! [F2: filter_nat] :
( ( ord_le2510731241096832064er_nat @ F2 @ at_top_nat )
= ( ! [N8: nat] : ( eventually_nat @ ( ord_less_eq_nat @ N8 ) @ F2 ) ) ) ).
% le_sequentially
thf(fact_10050_eventually__False__sequentially,axiom,
~ ( eventually_nat
@ ^ [N3: nat] : $false
@ at_top_nat ) ).
% eventually_False_sequentially
thf(fact_10051_eventually__at__right__to__0,axiom,
! [P: real > $o,A: real] :
( ( eventually_real @ P @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
= ( eventually_real
@ ^ [X: real] : ( P @ ( plus_plus_real @ X @ A ) )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).
% eventually_at_right_to_0
thf(fact_10052_eventually__at__left__to__right,axiom,
! [P: real > $o,A: real] :
( ( eventually_real @ P @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
= ( eventually_real
@ ^ [X: real] : ( P @ ( uminus_uminus_real @ X ) )
@ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ A ) @ ( set_or5849166863359141190n_real @ ( uminus_uminus_real @ A ) ) ) ) ) ).
% eventually_at_left_to_right
thf(fact_10053_eventually__at__right__real,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( eventually_real
@ ^ [X: real] : ( member_real @ X @ ( set_or1633881224788618240n_real @ A @ B ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) ) ) ).
% eventually_at_right_real
thf(fact_10054_eventually__at__left__real,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ( eventually_real
@ ^ [X: real] : ( member_real @ X @ ( set_or1633881224788618240n_real @ B @ A ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) ) ) ).
% eventually_at_left_real
thf(fact_10055_eventually__at__right__to__top,axiom,
! [P: real > $o] :
( ( eventually_real @ P @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
= ( eventually_real
@ ^ [X: real] : ( P @ ( inverse_inverse_real @ X ) )
@ at_top_real ) ) ).
% eventually_at_right_to_top
thf(fact_10056_eventually__at__top__to__right,axiom,
! [P: real > $o] :
( ( eventually_real @ P @ at_top_real )
= ( eventually_real
@ ^ [X: real] : ( P @ ( inverse_inverse_real @ X ) )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).
% eventually_at_top_to_right
thf(fact_10057_lhopital__at__top__at__top,axiom,
! [F: real > real,A: real,G: real > real,F4: real > real,G2: real > real] :
( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
@ at_top_real
@ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
@ at_top_real
@ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) ) ) ) ) ) ) ).
% lhopital_at_top_at_top
thf(fact_10058_lhopital,axiom,
! [F: real > real,X2: real,G: real > real,G2: real > real,F4: real > real,F2: filter_real] :
( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
=> ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X: real] :
( ( G @ X )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X: real] :
( ( G2 @ X )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
=> ( ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
@ F2
@ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
=> ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
@ F2
@ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ) ) ) ) ) ).
% lhopital
thf(fact_10059_lhopital__right__at__top__at__top,axiom,
! [F: real > real,A: real,G: real > real,F4: real > real,G2: real > real] :
( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
@ at_top_real
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
@ at_top_real
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) ) ) ) ) ) ) ).
% lhopital_right_at_top_at_top
thf(fact_10060_lhopital__at__top__at__bot,axiom,
! [F: real > real,A: real,G: real > real,F4: real > real,G2: real > real] :
( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( ( filterlim_real_real @ G @ at_bot_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
@ at_bot_real
@ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
@ at_bot_real
@ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) ) ) ) ) ) ) ).
% lhopital_at_top_at_bot
thf(fact_10061_lhopital__left__at__top__at__top,axiom,
! [F: real > real,A: real,G: real > real,F4: real > real,G2: real > real] :
( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
@ at_top_real
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
@ at_top_real
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) ) ) ) ) ) ) ).
% lhopital_left_at_top_at_top
thf(fact_10062_lhopital__at__top,axiom,
! [G: real > real,X2: real,G2: real > real,F: real > real,F4: real > real,Y2: real] :
( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X: real] :
( ( G2 @ X )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
=> ( ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
@ ( topolo2815343760600316023s_real @ Y2 )
@ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
=> ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
@ ( topolo2815343760600316023s_real @ Y2 )
@ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ) ) ) ).
% lhopital_at_top
thf(fact_10063_lhospital__at__top__at__top,axiom,
! [G: real > real,G2: real > real,F: real > real,F4: real > real,X2: real] :
( ( filterlim_real_real @ G @ at_top_real @ at_top_real )
=> ( ( eventually_real
@ ^ [X: real] :
( ( G2 @ X )
!= zero_zero_real )
@ at_top_real )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ at_top_real )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ at_top_real )
=> ( ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
@ ( topolo2815343760600316023s_real @ X2 )
@ at_top_real )
=> ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
@ ( topolo2815343760600316023s_real @ X2 )
@ at_top_real ) ) ) ) ) ) ).
% lhospital_at_top_at_top
thf(fact_10064_lhopital__right,axiom,
! [F: real > real,X2: real,G: real > real,G2: real > real,F4: real > real,F2: filter_real] :
( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
=> ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
=> ( ( eventually_real
@ ^ [X: real] :
( ( G @ X )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
=> ( ( eventually_real
@ ^ [X: real] :
( ( G2 @ X )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
=> ( ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
@ F2
@ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
=> ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
@ F2
@ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) ) ) ) ) ) ) ) ) ).
% lhopital_right
thf(fact_10065_lhopital__right__0,axiom,
! [F0: real > real,G0: real > real,G2: real > real,F4: real > real,F2: filter_real] :
( ( filterlim_real_real @ F0 @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( filterlim_real_real @ G0 @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( eventually_real
@ ^ [X: real] :
( ( G0 @ X )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( eventually_real
@ ^ [X: real] :
( ( G2 @ X )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ F0 @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ G0 @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
@ F2
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F0 @ X ) @ ( G0 @ X ) )
@ F2
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ) ) ) ) ) ) ).
% lhopital_right_0
thf(fact_10066_lhopital__left,axiom,
! [F: real > real,X2: real,G: real > real,G2: real > real,F4: real > real,F2: filter_real] :
( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
=> ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
=> ( ( eventually_real
@ ^ [X: real] :
( ( G @ X )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
=> ( ( eventually_real
@ ^ [X: real] :
( ( G2 @ X )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
=> ( ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
@ F2
@ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
=> ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
@ F2
@ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) ) ) ) ) ) ) ) ) ).
% lhopital_left
thf(fact_10067_lhopital__right__at__top__at__bot,axiom,
! [F: real > real,A: real,G: real > real,F4: real > real,G2: real > real] :
( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( ( filterlim_real_real @ G @ at_bot_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
@ at_bot_real
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
@ at_bot_real
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) ) ) ) ) ) ) ).
% lhopital_right_at_top_at_bot
thf(fact_10068_lhopital__left__at__top__at__bot,axiom,
! [F: real > real,A: real,G: real > real,F4: real > real,G2: real > real] :
( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( ( filterlim_real_real @ G @ at_bot_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
@ at_bot_real
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
@ at_bot_real
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) ) ) ) ) ) ) ).
% lhopital_left_at_top_at_bot
thf(fact_10069_lhopital__right__at__top,axiom,
! [G: real > real,X2: real,G2: real > real,F: real > real,F4: real > real,Y2: real] :
( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
=> ( ( eventually_real
@ ^ [X: real] :
( ( G2 @ X )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
=> ( ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
@ ( topolo2815343760600316023s_real @ Y2 )
@ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
=> ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
@ ( topolo2815343760600316023s_real @ Y2 )
@ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) ) ) ) ) ) ) ).
% lhopital_right_at_top
thf(fact_10070_lhopital__right__0__at__top,axiom,
! [G: real > real,G2: real > real,F: real > real,F4: real > real,X2: real] :
( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( eventually_real
@ ^ [X: real] :
( ( G2 @ X )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( eventually_real
@ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F4 @ X ) @ ( G2 @ X ) )
@ ( topolo2815343760600316023s_real @ X2 )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( filterlim_real_real
@ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
@ ( topolo2815343760600316023s_real @ X2 )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ) ) ) ) ).
% lhopital_right_0_at_top
thf(fact_10071_filterlim__int__sequentially,axiom,
filterlim_nat_int @ semiri1314217659103216013at_int @ at_top_int @ at_top_nat ).
% filterlim_int_sequentially
thf(fact_10072_Bseq__realpow,axiom,
! [X2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ X2 @ one_one_real )
=> ( bfun_nat_real @ ( power_power_real @ X2 ) @ at_top_nat ) ) ) ).
% Bseq_realpow
thf(fact_10073_GreatestI__ex__nat,axiom,
! [P: nat > $o,B: nat] :
( ? [X_12: nat] : ( P @ X_12 )
=> ( ! [Y3: nat] :
( ( P @ Y3 )
=> ( ord_less_eq_nat @ Y3 @ B ) )
=> ( P @ ( order_Greatest_nat @ P ) ) ) ) ).
% GreatestI_ex_nat
thf(fact_10074_Greatest__le__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y3: nat] :
( ( P @ Y3 )
=> ( ord_less_eq_nat @ Y3 @ B ) )
=> ( ord_less_eq_nat @ K @ ( order_Greatest_nat @ P ) ) ) ) ).
% Greatest_le_nat
thf(fact_10075_GreatestI__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y3: nat] :
( ( P @ Y3 )
=> ( ord_less_eq_nat @ Y3 @ B ) )
=> ( P @ ( order_Greatest_nat @ P ) ) ) ) ).
% GreatestI_nat
thf(fact_10076_atLeastSucAtMost__greaterThanAtMost,axiom,
! [L2: nat,U: nat] :
( ( set_or1269000886237332187st_nat @ ( suc @ L2 ) @ U )
= ( set_or6659071591806873216st_nat @ L2 @ U ) ) ).
% atLeastSucAtMost_greaterThanAtMost
thf(fact_10077_greaterThanAtMost__upt,axiom,
( set_or6659071591806873216st_nat
= ( ^ [N3: nat,M5: nat] : ( set_nat2 @ ( upt @ ( suc @ N3 ) @ ( suc @ M5 ) ) ) ) ) ).
% greaterThanAtMost_upt
thf(fact_10078_atLeastPlusOneAtMost__greaterThanAtMost__int,axiom,
! [L2: int,U: int] :
( ( set_or1266510415728281911st_int @ ( plus_plus_int @ L2 @ one_one_int ) @ U )
= ( set_or6656581121297822940st_int @ L2 @ U ) ) ).
% atLeastPlusOneAtMost_greaterThanAtMost_int
thf(fact_10079_decseq__bounded,axiom,
! [X7: nat > real,B4: real] :
( ( order_9091379641038594480t_real @ X7 )
=> ( ! [I2: nat] : ( ord_less_eq_real @ B4 @ ( X7 @ I2 ) )
=> ( bfun_nat_real @ X7 @ at_top_nat ) ) ) ).
% decseq_bounded
thf(fact_10080_atLeastPlusOneAtMost__greaterThanAtMost__integer,axiom,
! [L2: code_integer,U: code_integer] :
( ( set_or189985376899183464nteger @ ( plus_p5714425477246183910nteger @ L2 @ one_one_Code_integer ) @ U )
= ( set_or2715278749043346189nteger @ L2 @ U ) ) ).
% atLeastPlusOneAtMost_greaterThanAtMost_integer
thf(fact_10081_decseq__convergent,axiom,
! [X7: nat > real,B4: real] :
( ( order_9091379641038594480t_real @ X7 )
=> ( ! [I2: nat] : ( ord_less_eq_real @ B4 @ ( X7 @ I2 ) )
=> ~ ! [L6: real] :
( ( filterlim_nat_real @ X7 @ ( topolo2815343760600316023s_real @ L6 ) @ at_top_nat )
=> ~ ! [I4: nat] : ( ord_less_eq_real @ L6 @ ( X7 @ I4 ) ) ) ) ) ).
% decseq_convergent
thf(fact_10082_GMVT,axiom,
! [A: real,B: real,F: real > real,G: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [X3: real] :
( ( ( ord_less_eq_real @ A @ X3 )
& ( ord_less_eq_real @ X3 @ B ) )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) @ F ) )
=> ( ! [X3: real] :
( ( ( ord_less_real @ A @ X3 )
& ( ord_less_real @ X3 @ B ) )
=> ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) )
=> ( ! [X3: real] :
( ( ( ord_less_eq_real @ A @ X3 )
& ( ord_less_eq_real @ X3 @ B ) )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) @ G ) )
=> ( ! [X3: real] :
( ( ( ord_less_real @ A @ X3 )
& ( ord_less_real @ X3 @ B ) )
=> ( differ6690327859849518006l_real @ G @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) )
=> ? [G_c: real,F_c: real,C3: real] :
( ( has_fi5821293074295781190e_real @ G @ G_c @ ( topolo2177554685111907308n_real @ C3 @ top_top_set_real ) )
& ( has_fi5821293074295781190e_real @ F @ F_c @ ( topolo2177554685111907308n_real @ C3 @ top_top_set_real ) )
& ( ord_less_real @ A @ C3 )
& ( ord_less_real @ C3 @ B )
& ( ( times_times_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ G_c )
= ( times_times_real @ ( minus_minus_real @ ( G @ B ) @ ( G @ A ) ) @ F_c ) ) ) ) ) ) ) ) ).
% GMVT
thf(fact_10083_MVT,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ! [X3: real] :
( ( ord_less_real @ A @ X3 )
=> ( ( ord_less_real @ X3 @ B )
=> ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) )
=> ? [L4: real,Z2: real] :
( ( ord_less_real @ A @ Z2 )
& ( ord_less_real @ Z2 @ B )
& ( has_fi5821293074295781190e_real @ F @ L4 @ ( topolo2177554685111907308n_real @ Z2 @ top_top_set_real ) )
& ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
= ( times_times_real @ ( minus_minus_real @ B @ A ) @ L4 ) ) ) ) ) ) ).
% MVT
thf(fact_10084_atLeast__0,axiom,
( ( set_ord_atLeast_nat @ zero_zero_nat )
= top_top_set_nat ) ).
% atLeast_0
thf(fact_10085_atLeast__Suc__greaterThan,axiom,
! [K: nat] :
( ( set_ord_atLeast_nat @ ( suc @ K ) )
= ( set_or1210151606488870762an_nat @ K ) ) ).
% atLeast_Suc_greaterThan
thf(fact_10086_continuous__on__arsinh_H,axiom,
! [A2: set_real,F: real > real] :
( ( topolo5044208981011980120l_real @ A2 @ F )
=> ( topolo5044208981011980120l_real @ A2
@ ^ [X: real] : ( arsinh_real @ ( F @ X ) ) ) ) ).
% continuous_on_arsinh'
thf(fact_10087_continuous__on__arcosh,axiom,
! [A2: set_real] :
( ( ord_less_eq_set_real @ A2 @ ( set_ord_atLeast_real @ one_one_real ) )
=> ( topolo5044208981011980120l_real @ A2 @ arcosh_real ) ) ).
% continuous_on_arcosh
thf(fact_10088_continuous__on__arcosh_H,axiom,
! [A2: set_real,F: real > real] :
( ( topolo5044208981011980120l_real @ A2 @ F )
=> ( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( ord_less_eq_real @ one_one_real @ ( F @ X3 ) ) )
=> ( topolo5044208981011980120l_real @ A2
@ ^ [X: real] : ( arcosh_real @ ( F @ X ) ) ) ) ) ).
% continuous_on_arcosh'
thf(fact_10089_continuous__image__closed__interval,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ? [C3: real,D3: real] :
( ( ( image_real_real @ F @ ( set_or1222579329274155063t_real @ A @ B ) )
= ( set_or1222579329274155063t_real @ C3 @ D3 ) )
& ( ord_less_eq_real @ C3 @ D3 ) ) ) ) ).
% continuous_image_closed_interval
thf(fact_10090_continuous__on__arccos_H,axiom,
topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) @ arccos ).
% continuous_on_arccos'
thf(fact_10091_continuous__on__arcsin_H,axiom,
topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) @ arcsin ).
% continuous_on_arcsin'
thf(fact_10092_continuous__on__artanh,axiom,
! [A2: set_real] :
( ( ord_less_eq_set_real @ A2 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) )
=> ( topolo5044208981011980120l_real @ A2 @ artanh_real ) ) ).
% continuous_on_artanh
thf(fact_10093_continuous__on__artanh_H,axiom,
! [A2: set_real,F: real > real] :
( ( topolo5044208981011980120l_real @ A2 @ F )
=> ( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( member_real @ ( F @ X3 ) @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) ) )
=> ( topolo5044208981011980120l_real @ A2
@ ^ [X: real] : ( artanh_real @ ( F @ X ) ) ) ) ) ).
% continuous_on_artanh'
thf(fact_10094_atLeast__Suc,axiom,
! [K: nat] :
( ( set_ord_atLeast_nat @ ( suc @ K ) )
= ( minus_minus_set_nat @ ( set_ord_atLeast_nat @ K ) @ ( insert_nat @ K @ bot_bot_set_nat ) ) ) ).
% atLeast_Suc
thf(fact_10095_Rolle__deriv,axiom,
! [A: real,B: real,F: real > real,F4: real > real > real] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ A )
= ( F @ B ) )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ! [X3: real] :
( ( ord_less_real @ A @ X3 )
=> ( ( ord_less_real @ X3 @ B )
=> ( has_de1759254742604945161l_real @ F @ ( F4 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) )
=> ? [Z2: real] :
( ( ord_less_real @ A @ Z2 )
& ( ord_less_real @ Z2 @ B )
& ( ( F4 @ Z2 )
= ( ^ [V4: real] : zero_zero_real ) ) ) ) ) ) ) ).
% Rolle_deriv
thf(fact_10096_DERIV__isconst__end,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ! [X3: real] :
( ( ord_less_real @ A @ X3 )
=> ( ( ord_less_real @ X3 @ B )
=> ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) )
=> ( ( F @ B )
= ( F @ A ) ) ) ) ) ).
% DERIV_isconst_end
thf(fact_10097_DERIV__neg__imp__decreasing__open,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [X3: real] :
( ( ord_less_real @ A @ X3 )
=> ( ( ord_less_real @ X3 @ B )
=> ? [Y4: real] :
( ( has_fi5821293074295781190e_real @ F @ Y4 @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
& ( ord_less_real @ Y4 @ zero_zero_real ) ) ) )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ord_less_real @ ( F @ B ) @ ( F @ A ) ) ) ) ) ).
% DERIV_neg_imp_decreasing_open
thf(fact_10098_DERIV__pos__imp__increasing__open,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [X3: real] :
( ( ord_less_real @ A @ X3 )
=> ( ( ord_less_real @ X3 @ B )
=> ? [Y4: real] :
( ( has_fi5821293074295781190e_real @ F @ Y4 @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
& ( ord_less_real @ zero_zero_real @ Y4 ) ) ) )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ord_less_real @ ( F @ A ) @ ( F @ B ) ) ) ) ) ).
% DERIV_pos_imp_increasing_open
thf(fact_10099_DERIV__isconst2,axiom,
! [A: real,B: real,F: real > real,X2: real] :
( ( ord_less_real @ A @ B )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ! [X3: real] :
( ( ord_less_real @ A @ X3 )
=> ( ( ord_less_real @ X3 @ B )
=> ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) )
=> ( ( ord_less_eq_real @ A @ X2 )
=> ( ( ord_less_eq_real @ X2 @ B )
=> ( ( F @ X2 )
= ( F @ A ) ) ) ) ) ) ) ).
% DERIV_isconst2
thf(fact_10100_Rolle,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ A )
= ( F @ B ) )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ! [X3: real] :
( ( ord_less_real @ A @ X3 )
=> ( ( ord_less_real @ X3 @ B )
=> ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) )
=> ? [Z2: real] :
( ( ord_less_real @ A @ Z2 )
& ( ord_less_real @ Z2 @ B )
& ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ Z2 @ top_top_set_real ) ) ) ) ) ) ) ).
% Rolle
thf(fact_10101_set__bits__int__def,axiom,
( bit_bi6516823479961619367ts_int
= ( ^ [F3: nat > $o] :
( if_int
@ ? [N3: nat] :
! [M5: nat] :
( ( ord_less_eq_nat @ N3 @ M5 )
=> ( ( F3 @ M5 )
= ( F3 @ N3 ) ) )
@ ( bit_ri631733984087533419it_int
@ ( ord_Least_nat
@ ^ [N3: nat] :
! [M5: nat] :
( ( ord_less_eq_nat @ N3 @ M5 )
=> ( ( F3 @ M5 )
= ( F3 @ N3 ) ) ) )
@ ( groups9116527308978886569_o_int @ zero_n2684676970156552555ol_int @ ( numeral_numeral_int @ ( bit0 @ one ) )
@ ( map_nat_o @ F3
@ ( upt @ zero_zero_nat
@ ( suc
@ ( ord_Least_nat
@ ^ [N3: nat] :
! [M5: nat] :
( ( ord_less_eq_nat @ N3 @ M5 )
=> ( ( F3 @ M5 )
= ( F3 @ N3 ) ) ) ) ) ) ) ) )
@ zero_zero_int ) ) ) ).
% set_bits_int_def
thf(fact_10102_nth__sorted__list__of__set__greaterThanLessThan,axiom,
! [N: nat,J: nat,I: nat] :
( ( ord_less_nat @ N @ ( minus_minus_nat @ J @ ( suc @ I ) ) )
=> ( ( nth_nat @ ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ I @ J ) ) @ N )
= ( suc @ ( plus_plus_nat @ I @ N ) ) ) ) ).
% nth_sorted_list_of_set_greaterThanLessThan
thf(fact_10103_Least__eq__0,axiom,
! [P: nat > $o] :
( ( P @ zero_zero_nat )
=> ( ( ord_Least_nat @ P )
= zero_zero_nat ) ) ).
% Least_eq_0
thf(fact_10104_Least__Suc2,axiom,
! [P: nat > $o,N: nat,Q: nat > $o,M: nat] :
( ( P @ N )
=> ( ( Q @ M )
=> ( ~ ( P @ zero_zero_nat )
=> ( ! [K3: nat] :
( ( P @ ( suc @ K3 ) )
= ( Q @ K3 ) )
=> ( ( ord_Least_nat @ P )
= ( suc @ ( ord_Least_nat @ Q ) ) ) ) ) ) ) ).
% Least_Suc2
thf(fact_10105_Least__Suc,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ( ( ord_Least_nat @ P )
= ( suc
@ ( ord_Least_nat
@ ^ [M5: nat] : ( P @ ( suc @ M5 ) ) ) ) ) ) ) ).
% Least_Suc
thf(fact_10106_sorted__list__of__set__greaterThanAtMost,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ ( suc @ I ) @ J )
=> ( ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ I @ J ) )
= ( cons_nat @ ( suc @ I ) @ ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ ( suc @ I ) @ J ) ) ) ) ) ).
% sorted_list_of_set_greaterThanAtMost
thf(fact_10107_sorted__list__of__set__greaterThanLessThan,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ ( suc @ I ) @ J )
=> ( ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ I @ J ) )
= ( cons_nat @ ( suc @ I ) @ ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ ( suc @ I ) @ J ) ) ) ) ) ).
% sorted_list_of_set_greaterThanLessThan
thf(fact_10108_nth__sorted__list__of__set__greaterThanAtMost,axiom,
! [N: nat,J: nat,I: nat] :
( ( ord_less_nat @ N @ ( minus_minus_nat @ J @ I ) )
=> ( ( nth_nat @ ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ I @ J ) ) @ N )
= ( suc @ ( plus_plus_nat @ I @ N ) ) ) ) ).
% nth_sorted_list_of_set_greaterThanAtMost
thf(fact_10109_VEBT__internal_Ovalid_H_Oelims_I3_J,axiom,
! [X2: vEBT_VEBT,Xa3: nat] :
( ~ ( vEBT_VEBT_valid @ X2 @ Xa3 )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X2
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( Xa3 = one_one_nat ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( Deg2 = Xa3 )
& ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_VEBT_valid @ X3 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X6 )
& ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X @ X6 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X @ X6 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
& ! [X: nat] :
( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X )
=> ( ( ord_less_nat @ Mi3 @ X )
& ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ).
% VEBT_internal.valid'.elims(3)
thf(fact_10110_VEBT__internal_Ovalid_H_Osimps_I2_J,axiom,
! [Mima2: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,Deg4: nat] :
( ( vEBT_VEBT_valid @ ( vEBT_Node @ Mima2 @ Deg @ TreeList @ Summary ) @ Deg4 )
= ( ( Deg = Deg4 )
& ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ( vEBT_VEBT_valid @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X6 )
& ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X @ X6 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X @ X6 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList @ Ma3 )
& ! [X: nat] :
( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList @ X )
=> ( ( ord_less_nat @ Mi3 @ X )
& ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) )
@ Mima2 ) ) ) ).
% VEBT_internal.valid'.simps(2)
thf(fact_10111_VEBT__internal_Ovalid_H_Oelims_I1_J,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: $o] :
( ( ( vEBT_VEBT_valid @ X2 @ Xa3 )
= Y2 )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X2
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( Y2
= ( Xa3 != one_one_nat ) ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( Y2
= ( ~ ( ( Deg2 = Xa3 )
& ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_VEBT_valid @ X @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X6 )
& ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X @ X6 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X @ X6 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
& ! [X: nat] :
( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X )
=> ( ( ord_less_nat @ Mi3 @ X )
& ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ) ) ).
% VEBT_internal.valid'.elims(1)
thf(fact_10112_VEBT__internal_Ovalid_H_Oelims_I2_J,axiom,
! [X2: vEBT_VEBT,Xa3: nat] :
( ( vEBT_VEBT_valid @ X2 @ Xa3 )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X2
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( Xa3 != one_one_nat ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
=> ~ ( ( Deg2 = Xa3 )
& ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_VEBT_valid @ X4 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X6 )
& ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X @ X6 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X @ X6 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
& ! [X: nat] :
( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X )
=> ( ( ord_less_nat @ Mi3 @ X )
& ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ).
% VEBT_internal.valid'.elims(2)
thf(fact_10113_VEBT__internal_Ovalid_H_Opelims_I3_J,axiom,
! [X2: vEBT_VEBT,Xa3: nat] :
( ~ ( vEBT_VEBT_valid @ X2 @ Xa3 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X2
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa3 ) )
=> ( Xa3 = one_one_nat ) ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) @ Xa3 ) )
=> ( ( Deg2 = Xa3 )
& ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_VEBT_valid @ X3 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X6 )
& ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X @ X6 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X @ X6 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
& ! [X: nat] :
( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X )
=> ( ( ord_less_nat @ Mi3 @ X )
& ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ) ) ).
% VEBT_internal.valid'.pelims(3)
thf(fact_10114_VEBT__internal_Ovalid_H_Opelims_I2_J,axiom,
! [X2: vEBT_VEBT,Xa3: nat] :
( ( vEBT_VEBT_valid @ X2 @ Xa3 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X2
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa3 ) )
=> ( Xa3 != one_one_nat ) ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) @ Xa3 ) )
=> ~ ( ( Deg2 = Xa3 )
& ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_VEBT_valid @ X4 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X6 )
& ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X @ X6 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X @ X6 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
& ! [X: nat] :
( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X )
=> ( ( ord_less_nat @ Mi3 @ X )
& ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ) ) ).
% VEBT_internal.valid'.pelims(2)
thf(fact_10115_VEBT__internal_Ovalid_H_Opelims_I1_J,axiom,
! [X2: vEBT_VEBT,Xa3: nat,Y2: $o] :
( ( ( vEBT_VEBT_valid @ X2 @ Xa3 )
= Y2 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa3 ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X2
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( Y2
= ( Xa3 = one_one_nat ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa3 ) ) ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X2
= ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( Y2
= ( ( Deg2 = Xa3 )
& ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_VEBT_valid @ X @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X6 )
& ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X @ X6 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ X6 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I3 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X6: nat] : ( vEBT_V8194947554948674370ptions @ X @ X6 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
& ! [X: nat] :
( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X )
=> ( ( ord_less_nat @ Mi3 @ X )
& ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) @ Xa3 ) ) ) ) ) ) ) ).
% VEBT_internal.valid'.pelims(1)
thf(fact_10116_take__bit__numeral__minus__numeral__int,axiom,
! [M: num,N: num] :
( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( case_option_int_num @ zero_zero_int
@ ^ [Q4: num] : ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ M ) @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_int @ Q4 ) ) )
@ ( bit_take_bit_num @ ( numeral_numeral_nat @ M ) @ N ) ) ) ).
% take_bit_numeral_minus_numeral_int
thf(fact_10117_take__bit__num__simps_I1_J,axiom,
! [M: num] :
( ( bit_take_bit_num @ zero_zero_nat @ M )
= none_num ) ).
% take_bit_num_simps(1)
thf(fact_10118_take__bit__num__simps_I2_J,axiom,
! [N: nat] :
( ( bit_take_bit_num @ ( suc @ N ) @ one )
= ( some_num @ one ) ) ).
% take_bit_num_simps(2)
thf(fact_10119_take__bit__num__simps_I5_J,axiom,
! [R2: num] :
( ( bit_take_bit_num @ ( numeral_numeral_nat @ R2 ) @ one )
= ( some_num @ one ) ) ).
% take_bit_num_simps(5)
thf(fact_10120_take__bit__num__simps_I3_J,axiom,
! [N: nat,M: num] :
( ( bit_take_bit_num @ ( suc @ N ) @ ( bit0 @ M ) )
= ( case_o6005452278849405969um_num @ none_num
@ ^ [Q4: num] : ( some_num @ ( bit0 @ Q4 ) )
@ ( bit_take_bit_num @ N @ M ) ) ) ).
% take_bit_num_simps(3)
thf(fact_10121_take__bit__num__simps_I4_J,axiom,
! [N: nat,M: num] :
( ( bit_take_bit_num @ ( suc @ N ) @ ( bit1 @ M ) )
= ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ N @ M ) ) ) ) ).
% take_bit_num_simps(4)
thf(fact_10122_take__bit__num__simps_I6_J,axiom,
! [R2: num,M: num] :
( ( bit_take_bit_num @ ( numeral_numeral_nat @ R2 ) @ ( bit0 @ M ) )
= ( case_o6005452278849405969um_num @ none_num
@ ^ [Q4: num] : ( some_num @ ( bit0 @ Q4 ) )
@ ( bit_take_bit_num @ ( pred_numeral @ R2 ) @ M ) ) ) ).
% take_bit_num_simps(6)
thf(fact_10123_take__bit__num__simps_I7_J,axiom,
! [R2: num,M: num] :
( ( bit_take_bit_num @ ( numeral_numeral_nat @ R2 ) @ ( bit1 @ M ) )
= ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ ( pred_numeral @ R2 ) @ M ) ) ) ) ).
% take_bit_num_simps(7)
thf(fact_10124_and__minus__numerals_I3_J,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bitM @ N ) ) ) ) ).
% and_minus_numerals(3)
thf(fact_10125_and__minus__numerals_I7_J,axiom,
! [N: num,M: num] :
( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
= ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bitM @ N ) ) ) ) ).
% and_minus_numerals(7)
thf(fact_10126_and__minus__numerals_I4_J,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bit0 @ N ) ) ) ) ).
% and_minus_numerals(4)
thf(fact_10127_and__minus__numerals_I8_J,axiom,
! [N: num,M: num] :
( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
= ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bit0 @ N ) ) ) ) ).
% and_minus_numerals(8)
thf(fact_10128_and__not__num_Osimps_I4_J,axiom,
! [M: num] :
( ( bit_and_not_num @ ( bit0 @ M ) @ one )
= ( some_num @ ( bit0 @ M ) ) ) ).
% and_not_num.simps(4)
thf(fact_10129_and__not__num_Osimps_I2_J,axiom,
! [N: num] :
( ( bit_and_not_num @ one @ ( bit0 @ N ) )
= ( some_num @ one ) ) ).
% and_not_num.simps(2)
thf(fact_10130_and__not__num_Osimps_I3_J,axiom,
! [N: num] :
( ( bit_and_not_num @ one @ ( bit1 @ N ) )
= none_num ) ).
% and_not_num.simps(3)
thf(fact_10131_and__not__num_Osimps_I1_J,axiom,
( ( bit_and_not_num @ one @ one )
= none_num ) ).
% and_not_num.simps(1)
thf(fact_10132_and__not__num_Osimps_I7_J,axiom,
! [M: num] :
( ( bit_and_not_num @ ( bit1 @ M ) @ one )
= ( some_num @ ( bit0 @ M ) ) ) ).
% and_not_num.simps(7)
thf(fact_10133_and__not__num__eq__Some__iff,axiom,
! [M: num,N: num,Q2: num] :
( ( ( bit_and_not_num @ M @ N )
= ( some_num @ Q2 ) )
= ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
= ( numeral_numeral_int @ Q2 ) ) ) ).
% and_not_num_eq_Some_iff
thf(fact_10134_and__not__num_Osimps_I8_J,axiom,
! [M: num,N: num] :
( ( bit_and_not_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( case_o6005452278849405969um_num @ ( some_num @ one )
@ ^ [N12: num] : ( some_num @ ( bit1 @ N12 ) )
@ ( bit_and_not_num @ M @ N ) ) ) ).
% and_not_num.simps(8)
thf(fact_10135_and__not__num__eq__None__iff,axiom,
! [M: num,N: num] :
( ( ( bit_and_not_num @ M @ N )
= none_num )
= ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
= zero_zero_int ) ) ).
% and_not_num_eq_None_iff
thf(fact_10136_int__numeral__and__not__num,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
= ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ N ) ) ) ).
% int_numeral_and_not_num
thf(fact_10137_int__numeral__not__and__num,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ N @ M ) ) ) ).
% int_numeral_not_and_num
thf(fact_10138_Code__Abstract__Nat_Otake__bit__num__code_I3_J,axiom,
! [N: nat,M: num] :
( ( bit_take_bit_num @ N @ ( bit1 @ M ) )
= ( case_nat_option_num @ none_num
@ ^ [N3: nat] : ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ N3 @ M ) ) )
@ N ) ) ).
% Code_Abstract_Nat.take_bit_num_code(3)
thf(fact_10139_Code__Abstract__Nat_Otake__bit__num__code_I1_J,axiom,
! [N: nat] :
( ( bit_take_bit_num @ N @ one )
= ( case_nat_option_num @ none_num
@ ^ [N3: nat] : ( some_num @ one )
@ N ) ) ).
% Code_Abstract_Nat.take_bit_num_code(1)
thf(fact_10140_Code__Abstract__Nat_Otake__bit__num__code_I2_J,axiom,
! [N: nat,M: num] :
( ( bit_take_bit_num @ N @ ( bit0 @ M ) )
= ( case_nat_option_num @ none_num
@ ^ [N3: nat] :
( case_o6005452278849405969um_num @ none_num
@ ^ [Q4: num] : ( some_num @ ( bit0 @ Q4 ) )
@ ( bit_take_bit_num @ N3 @ M ) )
@ N ) ) ).
% Code_Abstract_Nat.take_bit_num_code(2)
thf(fact_10141_Bit__Operations_Otake__bit__num__code,axiom,
( bit_take_bit_num
= ( ^ [N3: nat,M5: num] :
( produc478579273971653890on_num
@ ^ [A3: nat,X: num] :
( case_nat_option_num @ none_num
@ ^ [O: nat] :
( case_num_option_num @ ( some_num @ one )
@ ^ [P3: num] :
( case_o6005452278849405969um_num @ none_num
@ ^ [Q4: num] : ( some_num @ ( bit0 @ Q4 ) )
@ ( bit_take_bit_num @ O @ P3 ) )
@ ^ [P3: num] : ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ O @ P3 ) ) )
@ X )
@ A3 )
@ ( product_Pair_nat_num @ N3 @ M5 ) ) ) ) ).
% Bit_Operations.take_bit_num_code
thf(fact_10142_take__bit__num__def,axiom,
( bit_take_bit_num
= ( ^ [N3: nat,M5: num] :
( if_option_num
@ ( ( bit_se2925701944663578781it_nat @ N3 @ ( numeral_numeral_nat @ M5 ) )
= zero_zero_nat )
@ none_num
@ ( some_num @ ( num_of_nat @ ( bit_se2925701944663578781it_nat @ N3 @ ( numeral_numeral_nat @ M5 ) ) ) ) ) ) ) ).
% take_bit_num_def
thf(fact_10143_num__of__nat__numeral__eq,axiom,
! [Q2: num] :
( ( num_of_nat @ ( numeral_numeral_nat @ Q2 ) )
= Q2 ) ).
% num_of_nat_numeral_eq
thf(fact_10144_nat_Odisc__eq__case_I2_J,axiom,
! [Nat: nat] :
( ( Nat != zero_zero_nat )
= ( case_nat_o @ $false
@ ^ [Uu3: nat] : $true
@ Nat ) ) ).
% nat.disc_eq_case(2)
thf(fact_10145_nat_Odisc__eq__case_I1_J,axiom,
! [Nat: nat] :
( ( Nat = zero_zero_nat )
= ( case_nat_o @ $true
@ ^ [Uu3: nat] : $false
@ Nat ) ) ).
% nat.disc_eq_case(1)
thf(fact_10146_less__eq__nat_Osimps_I2_J,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
= ( case_nat_o @ $false @ ( ord_less_eq_nat @ M ) @ N ) ) ).
% less_eq_nat.simps(2)
thf(fact_10147_num__of__nat_Osimps_I1_J,axiom,
( ( num_of_nat @ zero_zero_nat )
= one ) ).
% num_of_nat.simps(1)
thf(fact_10148_max__Suc1,axiom,
! [N: nat,M: nat] :
( ( ord_max_nat @ ( suc @ N ) @ M )
= ( case_nat_nat @ ( suc @ N )
@ ^ [M6: nat] : ( suc @ ( ord_max_nat @ N @ M6 ) )
@ M ) ) ).
% max_Suc1
thf(fact_10149_max__Suc2,axiom,
! [M: nat,N: nat] :
( ( ord_max_nat @ M @ ( suc @ N ) )
= ( case_nat_nat @ ( suc @ N )
@ ^ [M6: nat] : ( suc @ ( ord_max_nat @ M6 @ N ) )
@ M ) ) ).
% max_Suc2
thf(fact_10150_numeral__num__of__nat,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( numeral_numeral_nat @ ( num_of_nat @ N ) )
= N ) ) ).
% numeral_num_of_nat
thf(fact_10151_num__of__nat__One,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ one_one_nat )
=> ( ( num_of_nat @ N )
= one ) ) ).
% num_of_nat_One
thf(fact_10152_diff__Suc,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ M @ ( suc @ N ) )
= ( case_nat_nat @ zero_zero_nat
@ ^ [K2: nat] : K2
@ ( minus_minus_nat @ M @ N ) ) ) ).
% diff_Suc
thf(fact_10153_min__Suc2,axiom,
! [M: nat,N: nat] :
( ( ord_min_nat @ M @ ( suc @ N ) )
= ( case_nat_nat @ zero_zero_nat
@ ^ [M6: nat] : ( suc @ ( ord_min_nat @ M6 @ N ) )
@ M ) ) ).
% min_Suc2
thf(fact_10154_min__Suc1,axiom,
! [N: nat,M: nat] :
( ( ord_min_nat @ ( suc @ N ) @ M )
= ( case_nat_nat @ zero_zero_nat
@ ^ [M6: nat] : ( suc @ ( ord_min_nat @ N @ M6 ) )
@ M ) ) ).
% min_Suc1
thf(fact_10155_num__of__nat__double,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( num_of_nat @ ( plus_plus_nat @ N @ N ) )
= ( bit0 @ ( num_of_nat @ N ) ) ) ) ).
% num_of_nat_double
thf(fact_10156_num__of__nat__plus__distrib,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( num_of_nat @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_num @ ( num_of_nat @ M ) @ ( num_of_nat @ N ) ) ) ) ) ).
% num_of_nat_plus_distrib
thf(fact_10157_num__of__nat_Osimps_I2_J,axiom,
! [N: nat] :
( ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( num_of_nat @ ( suc @ N ) )
= ( inc @ ( num_of_nat @ N ) ) ) )
& ( ~ ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( num_of_nat @ ( suc @ N ) )
= one ) ) ) ).
% num_of_nat.simps(2)
thf(fact_10158_set__bits__int__unfold_H,axiom,
( bit_bi6516823479961619367ts_int
= ( ^ [F3: nat > $o] :
( if_int
@ ? [N3: nat] :
! [N12: nat] :
( ( ord_less_eq_nat @ N3 @ N12 )
=> ~ ( F3 @ N12 ) )
@ ( groups9116527308978886569_o_int @ zero_n2684676970156552555ol_int @ ( numeral_numeral_int @ ( bit0 @ one ) )
@ ( map_nat_o @ F3
@ ( upt @ zero_zero_nat
@ ( ord_Least_nat
@ ^ [N3: nat] :
! [N12: nat] :
( ( ord_less_eq_nat @ N3 @ N12 )
=> ~ ( F3 @ N12 ) ) ) ) ) )
@ ( if_int
@ ? [N3: nat] :
! [N12: nat] :
( ( ord_less_eq_nat @ N3 @ N12 )
=> ( F3 @ N12 ) )
@ ( bit_ri631733984087533419it_int
@ ( ord_Least_nat
@ ^ [N3: nat] :
! [N12: nat] :
( ( ord_less_eq_nat @ N3 @ N12 )
=> ( F3 @ N12 ) ) )
@ ( groups9116527308978886569_o_int @ zero_n2684676970156552555ol_int @ ( numeral_numeral_int @ ( bit0 @ one ) )
@ ( append_o
@ ( map_nat_o @ F3
@ ( upt @ zero_zero_nat
@ ( ord_Least_nat
@ ^ [N3: nat] :
! [N12: nat] :
( ( ord_less_eq_nat @ N3 @ N12 )
=> ( F3 @ N12 ) ) ) ) )
@ ( cons_o @ $true @ nil_o ) ) ) )
@ zero_zero_int ) ) ) ) ).
% set_bits_int_unfold'
thf(fact_10159_upt__0__eq__Nil__conv,axiom,
! [J: nat] :
( ( ( upt @ zero_zero_nat @ J )
= nil_nat )
= ( J = zero_zero_nat ) ) ).
% upt_0_eq_Nil_conv
thf(fact_10160_upt__conv__Nil,axiom,
! [J: nat,I: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( upt @ I @ J )
= nil_nat ) ) ).
% upt_conv_Nil
thf(fact_10161_upt__merge,axiom,
! [I: nat,J: nat,K: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( ord_less_eq_nat @ J @ K ) )
=> ( ( append_nat @ ( upt @ I @ J ) @ ( upt @ J @ K ) )
= ( upt @ I @ K ) ) ) ).
% upt_merge
thf(fact_10162_upt__eq__Nil__conv,axiom,
! [I: nat,J: nat] :
( ( ( upt @ I @ J )
= nil_nat )
= ( ( J = zero_zero_nat )
| ( ord_less_eq_nat @ J @ I ) ) ) ).
% upt_eq_Nil_conv
thf(fact_10163_sorted__list__of__set__lessThan__Suc,axiom,
! [K: nat] :
( ( linord2614967742042102400et_nat @ ( set_ord_lessThan_nat @ ( suc @ K ) ) )
= ( append_nat @ ( linord2614967742042102400et_nat @ ( set_ord_lessThan_nat @ K ) ) @ ( cons_nat @ K @ nil_nat ) ) ) ).
% sorted_list_of_set_lessThan_Suc
thf(fact_10164_sorted__list__of__set__atMost__Suc,axiom,
! [K: nat] :
( ( linord2614967742042102400et_nat @ ( set_ord_atMost_nat @ ( suc @ K ) ) )
= ( append_nat @ ( linord2614967742042102400et_nat @ ( set_ord_atMost_nat @ K ) ) @ ( cons_nat @ ( suc @ K ) @ nil_nat ) ) ) ).
% sorted_list_of_set_atMost_Suc
thf(fact_10165_upt__rec__numeral,axiom,
! [M: num,N: num] :
( ( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
=> ( ( upt @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( cons_nat @ ( numeral_numeral_nat @ M ) @ ( upt @ ( suc @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) ) ) ) )
& ( ~ ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
=> ( ( upt @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= nil_nat ) ) ) ).
% upt_rec_numeral
thf(fact_10166_upt__eq__append__conv,axiom,
! [I: nat,J: nat,Xs2: list_nat,Ys: list_nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ( upt @ I @ J )
= ( append_nat @ Xs2 @ Ys ) )
= ( ? [K2: nat] :
( ( ord_less_eq_nat @ I @ K2 )
& ( ord_less_eq_nat @ K2 @ J )
& ( ( upt @ I @ K2 )
= Xs2 )
& ( ( upt @ K2 @ J )
= Ys ) ) ) ) ) ).
% upt_eq_append_conv
thf(fact_10167_upt__Suc,axiom,
! [I: nat,J: nat] :
( ( ( ord_less_eq_nat @ I @ J )
=> ( ( upt @ I @ ( suc @ J ) )
= ( append_nat @ ( upt @ I @ J ) @ ( cons_nat @ J @ nil_nat ) ) ) )
& ( ~ ( ord_less_eq_nat @ I @ J )
=> ( ( upt @ I @ ( suc @ J ) )
= nil_nat ) ) ) ).
% upt_Suc
thf(fact_10168_upt__Suc__append,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( upt @ I @ ( suc @ J ) )
= ( append_nat @ ( upt @ I @ J ) @ ( cons_nat @ J @ nil_nat ) ) ) ) ).
% upt_Suc_append
thf(fact_10169_upt__add__eq__append,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( upt @ I @ ( plus_plus_nat @ J @ K ) )
= ( append_nat @ ( upt @ I @ J ) @ ( upt @ J @ ( plus_plus_nat @ J @ K ) ) ) ) ) ).
% upt_add_eq_append
thf(fact_10170_upt__append,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( append_nat @ ( upt @ zero_zero_nat @ I ) @ ( upt @ I @ J ) )
= ( upt @ zero_zero_nat @ J ) ) ) ).
% upt_append
thf(fact_10171_upt__0,axiom,
! [I: nat] :
( ( upt @ I @ zero_zero_nat )
= nil_nat ) ).
% upt_0
thf(fact_10172_list__encode_Ocases,axiom,
! [X2: list_nat] :
( ( X2 != nil_nat )
=> ~ ! [X3: nat,Xs3: list_nat] :
( X2
!= ( cons_nat @ X3 @ Xs3 ) ) ) ).
% list_encode.cases
thf(fact_10173_upt__rec,axiom,
( upt
= ( ^ [I3: nat,J3: nat] : ( if_list_nat @ ( ord_less_nat @ I3 @ J3 ) @ ( cons_nat @ I3 @ ( upt @ ( suc @ I3 ) @ J3 ) ) @ nil_nat ) ) ) ).
% upt_rec
thf(fact_10174_upt__eq__lel__conv,axiom,
! [L2: nat,H2: nat,Is1: list_nat,I: nat,Is2: list_nat] :
( ( ( upt @ L2 @ H2 )
= ( append_nat @ Is1 @ ( cons_nat @ I @ Is2 ) ) )
= ( ( Is1
= ( upt @ L2 @ I ) )
& ( Is2
= ( upt @ ( suc @ I ) @ H2 ) )
& ( ord_less_eq_nat @ L2 @ I )
& ( ord_less_nat @ I @ H2 ) ) ) ).
% upt_eq_lel_conv
thf(fact_10175_less__eq__char__simp,axiom,
! [B0: $o,B1: $o,B22: $o,B32: $o,B42: $o,B52: $o,B62: $o,B72: $o,C0: $o,C1: $o,C22: $o,C32: $o,C42: $o,C52: $o,C6: $o,C7: $o] :
( ( ord_less_eq_char @ ( char2 @ B0 @ B1 @ B22 @ B32 @ B42 @ B52 @ B62 @ B72 ) @ ( char2 @ C0 @ C1 @ C22 @ C32 @ C42 @ C52 @ C6 @ C7 ) )
= ( ord_less_eq_nat
@ ( foldr_o_nat
@ ^ [B2: $o,K2: nat] : ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ B2 ) @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
@ ( cons_o @ B0 @ ( cons_o @ B1 @ ( cons_o @ B22 @ ( cons_o @ B32 @ ( cons_o @ B42 @ ( cons_o @ B52 @ ( cons_o @ B62 @ ( cons_o @ B72 @ nil_o ) ) ) ) ) ) ) )
@ zero_zero_nat )
@ ( foldr_o_nat
@ ^ [B2: $o,K2: nat] : ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ B2 ) @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
@ ( cons_o @ C0 @ ( cons_o @ C1 @ ( cons_o @ C22 @ ( cons_o @ C32 @ ( cons_o @ C42 @ ( cons_o @ C52 @ ( cons_o @ C6 @ ( cons_o @ C7 @ nil_o ) ) ) ) ) ) ) )
@ zero_zero_nat ) ) ) ).
% less_eq_char_simp
thf(fact_10176_less__char__simp,axiom,
! [B0: $o,B1: $o,B22: $o,B32: $o,B42: $o,B52: $o,B62: $o,B72: $o,C0: $o,C1: $o,C22: $o,C32: $o,C42: $o,C52: $o,C6: $o,C7: $o] :
( ( ord_less_char @ ( char2 @ B0 @ B1 @ B22 @ B32 @ B42 @ B52 @ B62 @ B72 ) @ ( char2 @ C0 @ C1 @ C22 @ C32 @ C42 @ C52 @ C6 @ C7 ) )
= ( ord_less_nat
@ ( foldr_o_nat
@ ^ [B2: $o,K2: nat] : ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ B2 ) @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
@ ( cons_o @ B0 @ ( cons_o @ B1 @ ( cons_o @ B22 @ ( cons_o @ B32 @ ( cons_o @ B42 @ ( cons_o @ B52 @ ( cons_o @ B62 @ ( cons_o @ B72 @ nil_o ) ) ) ) ) ) ) )
@ zero_zero_nat )
@ ( foldr_o_nat
@ ^ [B2: $o,K2: nat] : ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ B2 ) @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
@ ( cons_o @ C0 @ ( cons_o @ C1 @ ( cons_o @ C22 @ ( cons_o @ C32 @ ( cons_o @ C42 @ ( cons_o @ C52 @ ( cons_o @ C6 @ ( cons_o @ C7 @ nil_o ) ) ) ) ) ) ) )
@ zero_zero_nat ) ) ) ).
% less_char_simp
thf(fact_10177_integer__of__char__code,axiom,
! [B0: $o,B1: $o,B22: $o,B32: $o,B42: $o,B52: $o,B62: $o,B72: $o] :
( ( integer_of_char @ ( char2 @ B0 @ B1 @ B22 @ B32 @ B42 @ B52 @ B62 @ B72 ) )
= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ B72 ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B62 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B52 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B42 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B32 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B22 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B1 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B0 ) ) ) ).
% integer_of_char_code
thf(fact_10178_nat__of__char__less__256,axiom,
! [C: char] : ( ord_less_nat @ ( comm_s629917340098488124ar_nat @ C ) @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% nat_of_char_less_256
thf(fact_10179_less__eq__char__def,axiom,
( ord_less_eq_char
= ( ^ [C12: char,C23: char] : ( ord_less_eq_nat @ ( comm_s629917340098488124ar_nat @ C12 ) @ ( comm_s629917340098488124ar_nat @ C23 ) ) ) ) ).
% less_eq_char_def
thf(fact_10180_range__nat__of__char,axiom,
( ( image_char_nat @ comm_s629917340098488124ar_nat @ top_top_set_char )
= ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).
% range_nat_of_char
thf(fact_10181_char_Osize_I2_J,axiom,
! [X15: $o,X23: $o,X33: $o,X42: $o,X52: $o,X62: $o,X72: $o,X82: $o] :
( ( size_size_char @ ( char2 @ X15 @ X23 @ X33 @ X42 @ X52 @ X62 @ X72 @ X82 ) )
= zero_zero_nat ) ).
% char.size(2)
thf(fact_10182_char_Osize__gen,axiom,
! [X15: $o,X23: $o,X33: $o,X42: $o,X52: $o,X62: $o,X72: $o,X82: $o] :
( ( size_char @ ( char2 @ X15 @ X23 @ X33 @ X42 @ X52 @ X62 @ X72 @ X82 ) )
= zero_zero_nat ) ).
% char.size_gen
thf(fact_10183_UNIV__char__of__nat,axiom,
( top_top_set_char
= ( image_nat_char @ unique3096191561947761185of_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).
% UNIV_char_of_nat
thf(fact_10184_inj__on__char__of__nat,axiom,
inj_on_nat_char @ unique3096191561947761185of_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% inj_on_char_of_nat
thf(fact_10185_String_Ochar__of__ascii__of,axiom,
! [C: char] :
( ( comm_s629917340098488124ar_nat @ ( ascii_of @ C ) )
= ( bit_se2925701944663578781it_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ one ) ) ) @ ( comm_s629917340098488124ar_nat @ C ) ) ) ).
% String.char_of_ascii_of
thf(fact_10186_upto_Opsimps,axiom,
! [I: int,J: int] :
( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ I @ J ) )
=> ( ( ( ord_less_eq_int @ I @ J )
=> ( ( upto @ I @ J )
= ( cons_int @ I @ ( upto @ ( plus_plus_int @ I @ one_one_int ) @ J ) ) ) )
& ( ~ ( ord_less_eq_int @ I @ J )
=> ( ( upto @ I @ J )
= nil_int ) ) ) ) ).
% upto.psimps
thf(fact_10187_nth__upto,axiom,
! [I: int,K: nat,J: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ I @ ( semiri1314217659103216013at_int @ K ) ) @ J )
=> ( ( nth_int @ ( upto @ I @ J ) @ K )
= ( plus_plus_int @ I @ ( semiri1314217659103216013at_int @ K ) ) ) ) ).
% nth_upto
thf(fact_10188_length__upto,axiom,
! [I: int,J: int] :
( ( size_size_list_int @ ( upto @ I @ J ) )
= ( nat2 @ ( plus_plus_int @ ( minus_minus_int @ J @ I ) @ one_one_int ) ) ) ).
% length_upto
thf(fact_10189_upto__rec__numeral_I1_J,axiom,
! [M: num,N: num] :
( ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
=> ( ( upto @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( cons_int @ ( numeral_numeral_int @ M ) @ ( upto @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( numeral_numeral_int @ N ) ) ) ) )
& ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
=> ( ( upto @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= nil_int ) ) ) ).
% upto_rec_numeral(1)
thf(fact_10190_upto__rec__numeral_I2_J,axiom,
! [M: num,N: num] :
( ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
=> ( ( upto @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( cons_int @ ( numeral_numeral_int @ M ) @ ( upto @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ) ) )
& ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
=> ( ( upto @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= nil_int ) ) ) ).
% upto_rec_numeral(2)
thf(fact_10191_upto__rec__numeral_I3_J,axiom,
! [M: num,N: num] :
( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
=> ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( cons_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( upto @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) @ ( numeral_numeral_int @ N ) ) ) ) )
& ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
=> ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= nil_int ) ) ) ).
% upto_rec_numeral(3)
thf(fact_10192_upto__rec__numeral_I4_J,axiom,
! [M: num,N: num] :
( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
=> ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( cons_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( upto @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ) ) )
& ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
=> ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= nil_int ) ) ) ).
% upto_rec_numeral(4)
thf(fact_10193_upto__split2,axiom,
! [I: int,J: int,K: int] :
( ( ord_less_eq_int @ I @ J )
=> ( ( ord_less_eq_int @ J @ K )
=> ( ( upto @ I @ K )
= ( append_int @ ( upto @ I @ J ) @ ( upto @ ( plus_plus_int @ J @ one_one_int ) @ K ) ) ) ) ) ).
% upto_split2
thf(fact_10194_upto__split1,axiom,
! [I: int,J: int,K: int] :
( ( ord_less_eq_int @ I @ J )
=> ( ( ord_less_eq_int @ J @ K )
=> ( ( upto @ I @ K )
= ( append_int @ ( upto @ I @ ( minus_minus_int @ J @ one_one_int ) ) @ ( upto @ J @ K ) ) ) ) ) ).
% upto_split1
thf(fact_10195_atLeastLessThan__upto,axiom,
( set_or4662586982721622107an_int
= ( ^ [I3: int,J3: int] : ( set_int2 @ ( upto @ I3 @ ( minus_minus_int @ J3 @ one_one_int ) ) ) ) ) ).
% atLeastLessThan_upto
thf(fact_10196_greaterThanAtMost__upto,axiom,
( set_or6656581121297822940st_int
= ( ^ [I3: int,J3: int] : ( set_int2 @ ( upto @ ( plus_plus_int @ I3 @ one_one_int ) @ J3 ) ) ) ) ).
% greaterThanAtMost_upto
thf(fact_10197_upto__rec1,axiom,
! [I: int,J: int] :
( ( ord_less_eq_int @ I @ J )
=> ( ( upto @ I @ J )
= ( cons_int @ I @ ( upto @ ( plus_plus_int @ I @ one_one_int ) @ J ) ) ) ) ).
% upto_rec1
thf(fact_10198_upto_Oelims,axiom,
! [X2: int,Xa3: int,Y2: list_int] :
( ( ( upto @ X2 @ Xa3 )
= Y2 )
=> ( ( ( ord_less_eq_int @ X2 @ Xa3 )
=> ( Y2
= ( cons_int @ X2 @ ( upto @ ( plus_plus_int @ X2 @ one_one_int ) @ Xa3 ) ) ) )
& ( ~ ( ord_less_eq_int @ X2 @ Xa3 )
=> ( Y2 = nil_int ) ) ) ) ).
% upto.elims
thf(fact_10199_upto_Osimps,axiom,
( upto
= ( ^ [I3: int,J3: int] : ( if_list_int @ ( ord_less_eq_int @ I3 @ J3 ) @ ( cons_int @ I3 @ ( upto @ ( plus_plus_int @ I3 @ one_one_int ) @ J3 ) ) @ nil_int ) ) ) ).
% upto.simps
thf(fact_10200_upto__rec2,axiom,
! [I: int,J: int] :
( ( ord_less_eq_int @ I @ J )
=> ( ( upto @ I @ J )
= ( append_int @ ( upto @ I @ ( minus_minus_int @ J @ one_one_int ) ) @ ( cons_int @ J @ nil_int ) ) ) ) ).
% upto_rec2
thf(fact_10201_greaterThanLessThan__upto,axiom,
( set_or5832277885323065728an_int
= ( ^ [I3: int,J3: int] : ( set_int2 @ ( upto @ ( plus_plus_int @ I3 @ one_one_int ) @ ( minus_minus_int @ J3 @ one_one_int ) ) ) ) ) ).
% greaterThanLessThan_upto
thf(fact_10202_upto__split3,axiom,
! [I: int,J: int,K: int] :
( ( ord_less_eq_int @ I @ J )
=> ( ( ord_less_eq_int @ J @ K )
=> ( ( upto @ I @ K )
= ( append_int @ ( upto @ I @ ( minus_minus_int @ J @ one_one_int ) ) @ ( cons_int @ J @ ( upto @ ( plus_plus_int @ J @ one_one_int ) @ K ) ) ) ) ) ) ).
% upto_split3
thf(fact_10203_upto_Opelims,axiom,
! [X2: int,Xa3: int,Y2: list_int] :
( ( ( upto @ X2 @ Xa3 )
= Y2 )
=> ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ X2 @ Xa3 ) )
=> ~ ( ( ( ( ord_less_eq_int @ X2 @ Xa3 )
=> ( Y2
= ( cons_int @ X2 @ ( upto @ ( plus_plus_int @ X2 @ one_one_int ) @ Xa3 ) ) ) )
& ( ~ ( ord_less_eq_int @ X2 @ Xa3 )
=> ( Y2 = nil_int ) ) )
=> ~ ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ X2 @ Xa3 ) ) ) ) ) ).
% upto.pelims
thf(fact_10204_upt__filter__extend,axiom,
! [U: nat,U3: nat,P: nat > $o] :
( ( ord_less_eq_nat @ U @ U3 )
=> ( ! [I2: nat] :
( ( ( ord_less_eq_nat @ U @ I2 )
& ( ord_less_nat @ I2 @ U3 ) )
=> ~ ( P @ I2 ) )
=> ( ( filter_nat2 @ P @ ( upt @ zero_zero_nat @ U ) )
= ( filter_nat2 @ P @ ( upt @ zero_zero_nat @ U3 ) ) ) ) ) ).
% upt_filter_extend
thf(fact_10205_sort__upt,axiom,
! [M: nat,N: nat] :
( ( linord738340561235409698at_nat
@ ^ [X: nat] : X
@ ( upt @ M @ N ) )
= ( upt @ M @ N ) ) ).
% sort_upt
% Helper facts (34)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
! [X2: int,Y2: int] :
( ( if_int @ $false @ X2 @ Y2 )
= Y2 ) ).
thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
! [X2: int,Y2: int] :
( ( if_int @ $true @ X2 @ Y2 )
= X2 ) ).
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
! [X2: nat,Y2: nat] :
( ( if_nat @ $false @ X2 @ Y2 )
= Y2 ) ).
thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
! [X2: nat,Y2: nat] :
( ( if_nat @ $true @ X2 @ Y2 )
= X2 ) ).
thf(help_If_2_1_If_001t__Rat__Orat_T,axiom,
! [X2: rat,Y2: rat] :
( ( if_rat @ $false @ X2 @ Y2 )
= Y2 ) ).
thf(help_If_1_1_If_001t__Rat__Orat_T,axiom,
! [X2: rat,Y2: rat] :
( ( if_rat @ $true @ X2 @ Y2 )
= X2 ) ).
thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
! [X2: real,Y2: real] :
( ( if_real @ $false @ X2 @ Y2 )
= Y2 ) ).
thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
! [X2: real,Y2: real] :
( ( if_real @ $true @ X2 @ Y2 )
= X2 ) ).
thf(help_If_2_1_If_001t__Uint32__Ouint32_T,axiom,
! [X2: uint32,Y2: uint32] :
( ( if_uint32 @ $false @ X2 @ Y2 )
= Y2 ) ).
thf(help_If_1_1_If_001t__Uint32__Ouint32_T,axiom,
! [X2: uint32,Y2: uint32] :
( ( if_uint32 @ $true @ X2 @ Y2 )
= X2 ) ).
thf(help_fChoice_1_1_fChoice_001t__Real__Oreal_T,axiom,
! [P: real > $o] :
( ( P @ ( fChoice_real @ P ) )
= ( ? [X6: real] : ( P @ X6 ) ) ) ).
thf(help_If_2_1_If_001t__Complex__Ocomplex_T,axiom,
! [X2: complex,Y2: complex] :
( ( if_complex @ $false @ X2 @ Y2 )
= Y2 ) ).
thf(help_If_1_1_If_001t__Complex__Ocomplex_T,axiom,
! [X2: complex,Y2: complex] :
( ( if_complex @ $true @ X2 @ Y2 )
= X2 ) ).
thf(help_If_2_1_If_001t__Code____Numeral__Ointeger_T,axiom,
! [X2: code_integer,Y2: code_integer] :
( ( if_Code_integer @ $false @ X2 @ Y2 )
= Y2 ) ).
thf(help_If_1_1_If_001t__Code____Numeral__Ointeger_T,axiom,
! [X2: code_integer,Y2: code_integer] :
( ( if_Code_integer @ $true @ X2 @ Y2 )
= X2 ) ).
thf(help_If_2_1_If_001t__Set__Oset_It__Int__Oint_J_T,axiom,
! [X2: set_int,Y2: set_int] :
( ( if_set_int @ $false @ X2 @ Y2 )
= Y2 ) ).
thf(help_If_1_1_If_001t__Set__Oset_It__Int__Oint_J_T,axiom,
! [X2: set_int,Y2: set_int] :
( ( if_set_int @ $true @ X2 @ Y2 )
= X2 ) ).
thf(help_If_2_1_If_001t__VEBT____Definitions__OVEBT_T,axiom,
! [X2: vEBT_VEBT,Y2: vEBT_VEBT] :
( ( if_VEBT_VEBT @ $false @ X2 @ Y2 )
= Y2 ) ).
thf(help_If_1_1_If_001t__VEBT____Definitions__OVEBT_T,axiom,
! [X2: vEBT_VEBT,Y2: vEBT_VEBT] :
( ( if_VEBT_VEBT @ $true @ X2 @ Y2 )
= X2 ) ).
thf(help_If_2_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
! [X2: list_int,Y2: list_int] :
( ( if_list_int @ $false @ X2 @ Y2 )
= Y2 ) ).
thf(help_If_1_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
! [X2: list_int,Y2: list_int] :
( ( if_list_int @ $true @ X2 @ Y2 )
= X2 ) ).
thf(help_If_2_1_If_001t__List__Olist_It__Nat__Onat_J_T,axiom,
! [X2: list_nat,Y2: list_nat] :
( ( if_list_nat @ $false @ X2 @ Y2 )
= Y2 ) ).
thf(help_If_1_1_If_001t__List__Olist_It__Nat__Onat_J_T,axiom,
! [X2: list_nat,Y2: list_nat] :
( ( if_list_nat @ $true @ X2 @ Y2 )
= X2 ) ).
thf(help_If_2_1_If_001t__Option__Ooption_It__Nat__Onat_J_T,axiom,
! [X2: option_nat,Y2: option_nat] :
( ( if_option_nat @ $false @ X2 @ Y2 )
= Y2 ) ).
thf(help_If_1_1_If_001t__Option__Ooption_It__Nat__Onat_J_T,axiom,
! [X2: option_nat,Y2: option_nat] :
( ( if_option_nat @ $true @ X2 @ Y2 )
= X2 ) ).
thf(help_If_2_1_If_001t__Option__Ooption_It__Num__Onum_J_T,axiom,
! [X2: option_num,Y2: option_num] :
( ( if_option_num @ $false @ X2 @ Y2 )
= Y2 ) ).
thf(help_If_1_1_If_001t__Option__Ooption_It__Num__Onum_J_T,axiom,
! [X2: option_num,Y2: option_num] :
( ( if_option_num @ $true @ X2 @ Y2 )
= X2 ) ).
thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
! [X2: product_prod_int_int,Y2: product_prod_int_int] :
( ( if_Pro3027730157355071871nt_int @ $false @ X2 @ Y2 )
= Y2 ) ).
thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
! [X2: product_prod_int_int,Y2: product_prod_int_int] :
( ( if_Pro3027730157355071871nt_int @ $true @ X2 @ Y2 )
= X2 ) ).
thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
! [X2: product_prod_nat_nat,Y2: product_prod_nat_nat] :
( ( if_Pro6206227464963214023at_nat @ $false @ X2 @ Y2 )
= Y2 ) ).
thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
! [X2: product_prod_nat_nat,Y2: product_prod_nat_nat] :
( ( if_Pro6206227464963214023at_nat @ $true @ X2 @ Y2 )
= X2 ) ).
thf(help_If_3_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
! [X2: produc8923325533196201883nteger,Y2: produc8923325533196201883nteger] :
( ( if_Pro6119634080678213985nteger @ $false @ X2 @ Y2 )
= Y2 ) ).
thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
! [X2: produc8923325533196201883nteger,Y2: produc8923325533196201883nteger] :
( ( if_Pro6119634080678213985nteger @ $true @ X2 @ Y2 )
= X2 ) ).
% Conjectures (1)
thf(conj_0,conjecture,
ord_less_eq_nat @ ( vEBT_VEBT_Tb2 @ ( suc @ ( suc @ na ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ one ) ) ) @ ( vEBT_VEBT_cnt2 @ ( if_VEBT_VEBT @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ na ) ) ) @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ na ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ na ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ na ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ na ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ na ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ na ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ na ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ na ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------