TPTP Problem File: ITP279_2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP279_2 : TPTP v9.0.0. Released v8.0.0.
% Domain : Interactive Theorem Proving
% Problem : Sledgehammer problem VEBT_Space 00164_007689
% Version : [Des22] axioms.
% English :
% Refs : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
% : [Des22] Desharnais (2022), Email to Geoff Sutcliffe
% Source : [Des22]
% Names : 0076_VEBT_Space_00164_007689 [Des22]
% Status : Theorem
% Rating : 0.50 v9.0.0, 1.00 v8.1.0
% Syntax : Number of formulae : 11263 (2654 unt;1411 typ; 0 def)
% Number of atoms : 26996 (8250 equ)
% Maximal formula atoms : 73 ( 2 avg)
% Number of connectives : 19083 (1939 ~; 312 |;2148 &)
% (1959 <=>;12725 =>; 0 <=; 0 <~>)
% Maximal formula depth : 35 ( 6 avg)
% Maximal term depth : 31 ( 2 avg)
% Number of types : 14 ( 13 usr)
% Number of type conns : 1151 ( 999 >; 152 *; 0 +; 0 <<)
% Number of predicates : 207 ( 204 usr; 2 prp; 0-7 aty)
% Number of functors : 1194 (1194 usr; 50 con; 0-8 aty)
% Number of variables : 31763 (28899 !; 659 ?;31763 :)
% (2205 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TF1_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% from the van Emde Boas Trees session in the Archive of Formal
% proofs -
% www.isa-afp.org/browser_info/current/AFP/Van_Emde_Boas_Trees
% 2022-02-18 16:54:07.538
%------------------------------------------------------------------------------
% Could-be-implicit typings (21)
tff(ty_t_VEBT__Definitions_OVEBT,type,
vEBT_VEBT: $tType ).
tff(ty_t_Code__Numeral_Ointeger,type,
code_integer: $tType ).
tff(ty_t_Code__Evaluation_Oterm,type,
code_term: $tType ).
tff(ty_t_Product__Type_Ounit,type,
product_unit: $tType ).
tff(ty_t_Product__Type_Oprod,type,
product_prod: ( $tType * $tType ) > $tType ).
tff(ty_t_Extended__Nat_Oenat,type,
extended_enat: $tType ).
tff(ty_t_Complex_Ocomplex,type,
complex: $tType ).
tff(ty_t_Sum__Type_Osum,type,
sum_sum: ( $tType * $tType ) > $tType ).
tff(ty_t_Option_Ooption,type,
option: $tType > $tType ).
tff(ty_t_Filter_Ofilter,type,
filter: $tType > $tType ).
tff(ty_t_String_Ochar,type,
char: $tType ).
tff(ty_t_Real_Oreal,type,
real: $tType ).
tff(ty_t_List_Olist,type,
list: $tType > $tType ).
tff(ty_t_HOL_Obool,type,
bool: $tType ).
tff(ty_t_Set_Oset,type,
set: $tType > $tType ).
tff(ty_t_Rat_Orat,type,
rat: $tType ).
tff(ty_t_Num_Onum,type,
num: $tType ).
tff(ty_t_Nat_Onat,type,
nat: $tType ).
tff(ty_t_Int_Oint,type,
int: $tType ).
tff(ty_t_itself,type,
itself: $tType > $tType ).
tff(ty_t_fun,type,
fun: ( $tType * $tType ) > $tType ).
% Explicit typings (1390)
tff(sy_cl_HOL_Otype,type,
type:
!>[A: $tType] : $o ).
tff(sy_cl_Nat_Osize,type,
size:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Odvd,type,
dvd:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Oone,type,
one:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Oidom,type,
idom:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Oring,type,
ring:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Oplus,type,
plus:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Ozero,type,
zero:
!>[A: $tType] : $o ).
tff(sy_cl_Num_Onumeral,type,
numeral:
!>[A: $tType] : $o ).
tff(sy_cl_Power_Opower,type,
power:
!>[A: $tType] : $o ).
tff(sy_cl_Fields_Ofield,type,
field:
!>[A: $tType] : $o ).
tff(sy_cl_GCD_Oring__gcd,type,
ring_gcd:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Ominus,type,
minus:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Oabs__if,type,
abs_if:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Oring__1,type,
ring_1:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Ouminus,type,
uminus:
!>[A: $tType] : $o ).
tff(sy_cl_Orderings_Oord,type,
ord:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Osemidom,type,
semidom:
!>[A: $tType] : $o ).
tff(sy_cl_Fields_Oinverse,type,
inverse:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Osemiring,type,
semiring:
!>[A: $tType] : $o ).
tff(sy_cl_Nat_Oring__char__0,type,
ring_char_0:
!>[A: $tType] : $o ).
tff(sy_cl_Num_Oneg__numeral,type,
neg_numeral:
!>[A: $tType] : $o ).
tff(sy_cl_Orderings_Oorder,type,
order:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Ocomm__ring,type,
comm_ring:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Omult__zero,type,
mult_zero:
!>[A: $tType] : $o ).
tff(sy_cl_GCD_Osemiring__Gcd,type,
semiring_Gcd:
!>[A: $tType] : $o ).
tff(sy_cl_GCD_Osemiring__gcd,type,
semiring_gcd:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Ogroup__add,type,
group_add:
!>[A: $tType] : $o ).
tff(sy_cl_Lattices_Olattice,type,
lattice:
!>[A: $tType] : $o ).
tff(sy_cl_Orderings_Ono__bot,type,
no_bot:
!>[A: $tType] : $o ).
tff(sy_cl_Orderings_Ono__top,type,
no_top:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Osemiring__0,type,
semiring_0:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Osemiring__1,type,
semiring_1:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Omonoid__add,type,
monoid_add:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Ocomm__ring__1,type,
comm_ring_1:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Oidom__divide,type,
idom_divide:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Oidom__modulo,type,
idom_modulo:
!>[A: $tType] : $o ).
tff(sy_cl_Transcendental_Oln,type,
ln:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Omonoid__mult,type,
monoid_mult:
!>[A: $tType] : $o ).
tff(sy_cl_Orderings_Olinorder,type,
linorder:
!>[A: $tType] : $o ).
tff(sy_cl_Orderings_Opreorder,type,
preorder:
!>[A: $tType] : $o ).
tff(sy_cl_Parity_Oring__parity,type,
ring_parity:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Oidom__abs__sgn,type,
idom_abs_sgn:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Oordered__ring,type,
ordered_ring:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Ozero__neq__one,type,
zero_neq_one:
!>[A: $tType] : $o ).
tff(sy_cl_Fields_Ofield__char__0,type,
field_char_0:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Oab__group__add,type,
ab_group_add:
!>[A: $tType] : $o ).
tff(sy_cl_Nat_Osemiring__char__0,type,
semiring_char_0:
!>[A: $tType] : $o ).
tff(sy_cl_Orderings_Oorder__bot,type,
order_bot:
!>[A: $tType] : $o ).
tff(sy_cl_Orderings_Oorder__top,type,
order_top:
!>[A: $tType] : $o ).
tff(sy_cl_Orderings_Owellorder,type,
wellorder:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Ocomm__semiring,type,
comm_semiring:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Ozero__less__one,type,
zero_less_one:
!>[A: $tType] : $o ).
tff(sy_cl_Fields_Odivision__ring,type,
division_ring:
!>[A: $tType] : $o ).
tff(sy_cl_Fields_Ofield__abs__sgn,type,
field_abs_sgn:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Osemigroup__add,type,
semigroup_add:
!>[A: $tType] : $o ).
tff(sy_cl_Num_Osemiring__numeral,type,
semiring_numeral:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Osemidom__divide,type,
semidom_divide:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Osemidom__modulo,type,
semidom_modulo:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Osemigroup__mult,type,
semigroup_mult:
!>[A: $tType] : $o ).
tff(sy_cl_Orderings_Odense__order,type,
dense_order:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Ocomm__semiring__0,type,
comm_semiring_0:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Ocomm__semiring__1,type,
comm_semiring_1:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Olinordered__idom,type,
linordered_idom:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Olinordered__ring,type,
linordered_ring:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Osemiring__modulo,type,
semiring_modulo:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Ocomm__monoid__add,type,
comm_monoid_add:
!>[A: $tType] : $o ).
tff(sy_cl_Parity_Osemiring__parity,type,
semiring_parity:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Oordered__ring__abs,type,
ordered_ring_abs:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Oordered__semiring,type,
ordered_semiring:
!>[A: $tType] : $o ).
tff(sy_cl_Fields_Olinordered__field,type,
linordered_field:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Oab__semigroup__add,type,
ab_semigroup_add:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Ocomm__monoid__diff,type,
comm_monoid_diff:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Ocomm__monoid__mult,type,
comm_monoid_mult:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Oalgebraic__semidom,type,
algebraic_semidom:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Osemiring__1__cancel,type,
semiring_1_cancel:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Oab__semigroup__mult,type,
ab_semigroup_mult:
!>[A: $tType] : $o ).
tff(sy_cl_Lattices_Obounded__lattice,type,
bounded_lattice:
!>[A: $tType] : $o ).
tff(sy_cl_Lattices_Osemilattice__inf,type,
semilattice_inf:
!>[A: $tType] : $o ).
tff(sy_cl_Lattices_Osemilattice__sup,type,
semilattice_sup:
!>[A: $tType] : $o ).
tff(sy_cl_Orderings_Odense__linorder,type,
dense_linorder:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Olinordered__semidom,type,
linordered_semidom:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Oordered__semiring__0,type,
ordered_semiring_0:
!>[A: $tType] : $o ).
tff(sy_cl_Real__Vector__Spaces_Obanach,type,
real_Vector_banach:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Olinordered__semiring,type,
linordered_semiring:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Ocancel__semigroup__add,type,
cancel_semigroup_add:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Oordered__ab__group__add,type,
ordered_ab_group_add:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Olinordered__semiring__1,type,
linord6961819062388156250ring_1:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Oordered__comm__semiring,type,
ordere2520102378445227354miring:
!>[A: $tType] : $o ).
tff(sy_cl_Topological__Spaces_Ot2__space,type,
topological_t2_space:
!>[A: $tType] : $o ).
tff(sy_cl_Bit__Operations_Osemiring__bits,type,
bit_semiring_bits:
!>[A: $tType] : $o ).
tff(sy_cl_Limits_Otopological__group__add,type,
topolo1633459387980952147up_add:
!>[A: $tType] : $o ).
tff(sy_cl_Real__Vector__Spaces_Odist__norm,type,
real_V6936659425649961206t_norm:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Ocomm__semiring__1__cancel,type,
comm_s4317794764714335236cancel:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Olinordered__ring__strict,type,
linord4710134922213307826strict:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Ocancel__comm__monoid__add,type,
cancel1802427076303600483id_add:
!>[A: $tType] : $o ).
tff(sy_cl_Limits_Otopological__monoid__add,type,
topolo6943815403480290642id_add:
!>[A: $tType] : $o ).
tff(sy_cl_Real__Vector__Spaces_Oreal__field,type,
real_V7773925162809079976_field:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Oring__1__no__zero__divisors,type,
ring_15535105094025558882visors:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Ocancel__ab__semigroup__add,type,
cancel2418104881723323429up_add:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Olinordered__ab__group__add,type,
linord5086331880401160121up_add:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Oordered__comm__monoid__add,type,
ordere6911136660526730532id_add:
!>[A: $tType] : $o ).
tff(sy_cl_Limits_Otopological__monoid__mult,type,
topolo1898628316856586783d_mult:
!>[A: $tType] : $o ).
tff(sy_cl_Real__Vector__Spaces_Oreal__vector,type,
real_V4867850818363320053vector:
!>[A: $tType] : $o ).
tff(sy_cl_Archimedean__Field_Ofloor__ceiling,type,
archim2362893244070406136eiling:
!>[A: $tType] : $o ).
tff(sy_cl_GCD_Osemiring__gcd__mult__normalize,type,
semiri6843258321239162965malize:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Oordered__ab__group__add__abs,type,
ordere166539214618696060dd_abs:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Oordered__ab__semigroup__add,type,
ordere6658533253407199908up_add:
!>[A: $tType] : $o ).
tff(sy_cl_Limits_Otopological__ab__group__add,type,
topolo1287966508704411220up_add:
!>[A: $tType] : $o ).
tff(sy_cl_Real__Vector__Spaces_Ometric__space,type,
real_V7819770556892013058_space:
!>[A: $tType] : $o ).
tff(sy_cl_Real__Vector__Spaces_Oreal__algebra,type,
real_V6157519004096292374lgebra:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Osemiring__no__zero__divisors,type,
semiri3467727345109120633visors:
!>[A: $tType] : $o ).
tff(sy_cl_Boolean__Algebras_Oboolean__algebra,type,
boolea8198339166811842893lgebra:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Olinordered__semiring__strict,type,
linord8928482502909563296strict:
!>[A: $tType] : $o ).
tff(sy_cl_Topological__Spaces_Operfect__space,type,
topolo8386298272705272623_space:
!>[A: $tType] : $o ).
tff(sy_cl_Topological__Spaces_Ouniform__space,type,
topolo7287701948861334536_space:
!>[A: $tType] : $o ).
tff(sy_cl_Euclidean__Division_Oeuclidean__ring,type,
euclid5891614535332579305n_ring:
!>[A: $tType] : $o ).
tff(sy_cl_Limits_Otopological__semigroup__mult,type,
topolo4211221413907600880p_mult:
!>[A: $tType] : $o ).
tff(sy_cl_Real__Vector__Spaces_Ocomplete__space,type,
real_V8037385150606011577_space:
!>[A: $tType] : $o ).
tff(sy_cl_Real__Vector__Spaces_Oreal__algebra__1,type,
real_V2191834092415804123ebra_1:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Olinordered__nonzero__semiring,type,
linord181362715937106298miring:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Osemiring__1__no__zero__divisors,type,
semiri2026040879449505780visors:
!>[A: $tType] : $o ).
tff(sy_cl_Topological__Spaces_Oorder__topology,type,
topolo2564578578187576103pology:
!>[A: $tType] : $o ).
tff(sy_cl_Bit__Operations_Oring__bit__operations,type,
bit_ri3973907225187159222ations:
!>[A: $tType] : $o ).
tff(sy_cl_Complete__Lattices_Ocomplete__lattice,type,
comple6319245703460814977attice:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Olinordered__ab__semigroup__add,type,
linord4140545234300271783up_add:
!>[A: $tType] : $o ).
tff(sy_cl_Limits_Otopological__comm__monoid__add,type,
topolo5987344860129210374id_add:
!>[A: $tType] : $o ).
tff(sy_cl_Orderings_Ounbounded__dense__linorder,type,
unboun7993243217541854897norder:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Olinordered__semiring__1__strict,type,
linord715952674999750819strict:
!>[A: $tType] : $o ).
tff(sy_cl_Archimedean__Field_Oarchimedean__field,type,
archim462609752435547400_field:
!>[A: $tType] : $o ).
tff(sy_cl_Complete__Lattices_Ocomplete__linorder,type,
comple5582772986160207858norder:
!>[A: $tType] : $o ).
tff(sy_cl_Limits_Otopological__comm__monoid__mult,type,
topolo4987421752381908075d_mult:
!>[A: $tType] : $o ).
tff(sy_cl_Real__Vector__Spaces_Oreal__div__algebra,type,
real_V5047593784448816457lgebra:
!>[A: $tType] : $o ).
tff(sy_cl_Lattices_Obounded__semilattice__inf__top,type,
bounde4346867609351753570nf_top:
!>[A: $tType] : $o ).
tff(sy_cl_Lattices_Obounded__semilattice__sup__bot,type,
bounde4967611905675639751up_bot:
!>[A: $tType] : $o ).
tff(sy_cl_Real__Vector__Spaces_Oreal__normed__field,type,
real_V3459762299906320749_field:
!>[A: $tType] : $o ).
tff(sy_cl_Topological__Spaces_Olinorder__topology,type,
topolo1944317154257567458pology:
!>[A: $tType] : $o ).
tff(sy_cl_Topological__Spaces_Otopological__space,type,
topolo4958980785337419405_space:
!>[A: $tType] : $o ).
tff(sy_cl_Euclidean__Division_Oeuclidean__semiring,type,
euclid3725896446679973847miring:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Ocanonically__ordered__monoid__add,type,
canoni5634975068530333245id_add:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Oordered__cancel__comm__monoid__add,type,
ordere8940638589300402666id_add:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Ostrict__ordered__comm__monoid__add,type,
strict7427464778891057005id_add:
!>[A: $tType] : $o ).
tff(sy_cl_Real__Vector__Spaces_Oreal__normed__vector,type,
real_V822414075346904944vector:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Olinordered__comm__semiring__strict,type,
linord2810124833399127020strict:
!>[A: $tType] : $o ).
tff(sy_cl_Bit__Operations_Osemiring__bit__operations,type,
bit_se359711467146920520ations:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Oordered__ab__semigroup__add__imp__le,type,
ordere2412721322843649153imp_le:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Oordered__cancel__ab__semigroup__add,type,
ordere580206878836729694up_add:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Oordered__cancel__comm__monoid__diff,type,
ordere1170586879665033532d_diff:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Ostrict__ordered__ab__semigroup__add,type,
strict9044650504122735259up_add:
!>[A: $tType] : $o ).
tff(sy_cl_Real__Vector__Spaces_Oordered__real__vector,type,
real_V5355595471888546746vector:
!>[A: $tType] : $o ).
tff(sy_cl_Real__Vector__Spaces_Oreal__normed__algebra,type,
real_V4412858255891104859lgebra:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Osemiring__no__zero__divisors__cancel,type,
semiri6575147826004484403cancel:
!>[A: $tType] : $o ).
tff(sy_cl_Euclidean__Division_Oeuclidean__ring__cancel,type,
euclid8851590272496341667cancel:
!>[A: $tType] : $o ).
tff(sy_cl_Real__Vector__Spaces_Oreal__normed__algebra__1,type,
real_V2822296259951069270ebra_1:
!>[A: $tType] : $o ).
tff(sy_cl_Divides_Ounique__euclidean__semiring__numeral,type,
unique1627219031080169319umeral:
!>[A: $tType] : $o ).
tff(sy_cl_Complete__Lattices_Ocomplete__boolean__algebra,type,
comple489889107523837845lgebra:
!>[A: $tType] : $o ).
tff(sy_cl_Real__Vector__Spaces_Oreal__normed__div__algebra,type,
real_V8999393235501362500lgebra:
!>[A: $tType] : $o ).
tff(sy_cl_Topological__Spaces_Ofirst__countable__topology,type,
topolo3112930676232923870pology:
!>[A: $tType] : $o ).
tff(sy_cl_Euclidean__Division_Oeuclidean__semiring__cancel,type,
euclid4440199948858584721cancel:
!>[A: $tType] : $o ).
tff(sy_cl_Euclidean__Division_Ounique__euclidean__semiring,type,
euclid3128863361964157862miring:
!>[A: $tType] : $o ).
tff(sy_cl_Topological__Spaces_Olinear__continuum__topology,type,
topolo8458572112393995274pology:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Oordered__ab__semigroup__monoid__add__imp__le,type,
ordere1937475149494474687imp_le:
!>[A: $tType] : $o ).
tff(sy_cl_Conditionally__Complete__Lattices_Olinear__continuum,type,
condit5016429287641298734tinuum:
!>[A: $tType] : $o ).
tff(sy_cl_Euclidean__Division_Ounique__euclidean__ring__with__nat,type,
euclid8789492081693882211th_nat:
!>[A: $tType] : $o ).
tff(sy_cl_Euclidean__Division_Ounique__euclidean__semiring__with__nat,type,
euclid5411537665997757685th_nat:
!>[A: $tType] : $o ).
tff(sy_cl_Countable__Complete__Lattices_Ocountable__complete__lattice,type,
counta3822494911875563373attice:
!>[A: $tType] : $o ).
tff(sy_cl_Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct,type,
semiri1453513574482234551roduct:
!>[A: $tType] : $o ).
tff(sy_cl_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations,type,
bit_un5681908812861735899ations:
!>[A: $tType] : $o ).
tff(sy_cl_Conditionally__Complete__Lattices_Oconditionally__complete__lattice,type,
condit1219197933456340205attice:
!>[A: $tType] : $o ).
tff(sy_cl_Conditionally__Complete__Lattices_Oconditionally__complete__linorder,type,
condit6923001295902523014norder:
!>[A: $tType] : $o ).
tff(sy_c_ATP_058Lamp__a____,type,
aTP_Lamp_a:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aa____,type,
aTP_Lamp_aa:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aaa____,type,
aTP_Lamp_aaa:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aab____,type,
aTP_Lamp_aab:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aac____,type,
aTP_Lamp_aac:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aad____,type,
aTP_Lamp_aad:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aae____,type,
aTP_Lamp_aae:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aaf____,type,
aTP_Lamp_aaf:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aag____,type,
aTP_Lamp_aag:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aah____,type,
aTP_Lamp_aah:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aai____,type,
aTP_Lamp_aai:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aaj____,type,
aTP_Lamp_aaj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aak____,type,
aTP_Lamp_aak:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aal____,type,
aTP_Lamp_aal:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aam____,type,
aTP_Lamp_aam:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aan____,type,
aTP_Lamp_aan:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aao____,type,
aTP_Lamp_aao:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aap____,type,
aTP_Lamp_aap:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aaq____,type,
aTP_Lamp_aaq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aar____,type,
aTP_Lamp_aar:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aas____,type,
aTP_Lamp_aas:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__aat____,type,
aTP_Lamp_aat:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aau____,type,
aTP_Lamp_aau:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aav____,type,
aTP_Lamp_aav:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aaw____,type,
aTP_Lamp_aaw:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__aax____,type,
aTP_Lamp_aax:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aay____,type,
aTP_Lamp_aay:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aaz____,type,
aTP_Lamp_aaz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ab____,type,
aTP_Lamp_ab:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aba____,type,
aTP_Lamp_aba:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__abb____,type,
aTP_Lamp_abb:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__abc____,type,
aTP_Lamp_abc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__abd____,type,
aTP_Lamp_abd:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__abe____,type,
aTP_Lamp_abe:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__abf____,type,
aTP_Lamp_abf:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__abg____,type,
aTP_Lamp_abg:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__abh____,type,
aTP_Lamp_abh:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__abi____,type,
aTP_Lamp_abi:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__abj____,type,
aTP_Lamp_abj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__abk____,type,
aTP_Lamp_abk:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__abl____,type,
aTP_Lamp_abl:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__abm____,type,
aTP_Lamp_abm:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__abn____,type,
aTP_Lamp_abn:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__abo____,type,
aTP_Lamp_abo:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__abp____,type,
aTP_Lamp_abp:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__abq____,type,
aTP_Lamp_abq:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__abr____,type,
aTP_Lamp_abr:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__abs____,type,
aTP_Lamp_abs:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__abt____,type,
aTP_Lamp_abt:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__abu____,type,
aTP_Lamp_abu:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__abv____,type,
aTP_Lamp_abv:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__abw____,type,
aTP_Lamp_abw:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__abx____,type,
aTP_Lamp_abx:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aby____,type,
aTP_Lamp_aby:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__abz____,type,
aTP_Lamp_abz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ac____,type,
aTP_Lamp_ac:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__aca____,type,
aTP_Lamp_aca:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__acb____,type,
aTP_Lamp_acb:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__acc____,type,
aTP_Lamp_acc:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__acd____,type,
aTP_Lamp_acd:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__ace____,type,
aTP_Lamp_ace:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__acf____,type,
aTP_Lamp_acf:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__acg____,type,
aTP_Lamp_acg:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ach____,type,
aTP_Lamp_ach:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aci____,type,
aTP_Lamp_aci:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__acj____,type,
aTP_Lamp_acj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ack____,type,
aTP_Lamp_ack:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__acl____,type,
aTP_Lamp_acl:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__acm____,type,
aTP_Lamp_acm:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__acn____,type,
aTP_Lamp_acn:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aco____,type,
aTP_Lamp_aco:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__acp____,type,
aTP_Lamp_acp:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__acq____,type,
aTP_Lamp_acq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__acr____,type,
aTP_Lamp_acr:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__acs____,type,
aTP_Lamp_acs:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__act____,type,
aTP_Lamp_act:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__acu____,type,
aTP_Lamp_acu:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__acv____,type,
aTP_Lamp_acv:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__acw____,type,
aTP_Lamp_acw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__acx____,type,
aTP_Lamp_acx:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__acy____,type,
aTP_Lamp_acy:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__acz____,type,
aTP_Lamp_acz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ad____,type,
aTP_Lamp_ad:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ada____,type,
aTP_Lamp_ada:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__adb____,type,
aTP_Lamp_adb:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__adc____,type,
aTP_Lamp_adc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__add____,type,
aTP_Lamp_add:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ade____,type,
aTP_Lamp_ade:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__adf____,type,
aTP_Lamp_adf:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__adg____,type,
aTP_Lamp_adg:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__adh____,type,
aTP_Lamp_adh:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__adi____,type,
aTP_Lamp_adi:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__adj____,type,
aTP_Lamp_adj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__adk____,type,
aTP_Lamp_adk:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__adl____,type,
aTP_Lamp_adl:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__adm____,type,
aTP_Lamp_adm:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__adn____,type,
aTP_Lamp_adn:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ado____,type,
aTP_Lamp_ado:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__adp____,type,
aTP_Lamp_adp:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__adq____,type,
aTP_Lamp_adq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__adr____,type,
aTP_Lamp_adr:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ads____,type,
aTP_Lamp_ads:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__adt____,type,
aTP_Lamp_adt:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__adu____,type,
aTP_Lamp_adu:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__adv____,type,
aTP_Lamp_adv:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__adw____,type,
aTP_Lamp_adw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__adx____,type,
aTP_Lamp_adx:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ady____,type,
aTP_Lamp_ady:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__adz____,type,
aTP_Lamp_adz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ae____,type,
aTP_Lamp_ae:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__aea____,type,
aTP_Lamp_aea:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aeb____,type,
aTP_Lamp_aeb:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aec____,type,
aTP_Lamp_aec:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aed____,type,
aTP_Lamp_aed:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aee____,type,
aTP_Lamp_aee:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aef____,type,
aTP_Lamp_aef:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aeg____,type,
aTP_Lamp_aeg:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aeh____,type,
aTP_Lamp_aeh:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aei____,type,
aTP_Lamp_aei:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aej____,type,
aTP_Lamp_aej:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aek____,type,
aTP_Lamp_aek:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ael____,type,
aTP_Lamp_ael:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aem____,type,
aTP_Lamp_aem:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aen____,type,
aTP_Lamp_aen:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__aeo____,type,
aTP_Lamp_aeo:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aep____,type,
aTP_Lamp_aep:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aeq____,type,
aTP_Lamp_aeq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aer____,type,
aTP_Lamp_aer:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__aes____,type,
aTP_Lamp_aes:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aet____,type,
aTP_Lamp_aet:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__aeu____,type,
aTP_Lamp_aeu:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aev____,type,
aTP_Lamp_aev:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aew____,type,
aTP_Lamp_aew:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aex____,type,
aTP_Lamp_aex:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aey____,type,
aTP_Lamp_aey:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aez____,type,
aTP_Lamp_aez:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__af____,type,
aTP_Lamp_af:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__afa____,type,
aTP_Lamp_afa:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__afb____,type,
aTP_Lamp_afb:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__afc____,type,
aTP_Lamp_afc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__afd____,type,
aTP_Lamp_afd:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__afe____,type,
aTP_Lamp_afe:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aff____,type,
aTP_Lamp_aff:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__afg____,type,
aTP_Lamp_afg:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__afh____,type,
aTP_Lamp_afh:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__afi____,type,
aTP_Lamp_afi:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__afj____,type,
aTP_Lamp_afj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__afk____,type,
aTP_Lamp_afk:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__afl____,type,
aTP_Lamp_afl:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__afm____,type,
aTP_Lamp_afm:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__afn____,type,
aTP_Lamp_afn:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__afo____,type,
aTP_Lamp_afo:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__afp____,type,
aTP_Lamp_afp:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__afq____,type,
aTP_Lamp_afq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__afr____,type,
aTP_Lamp_afr:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__afs____,type,
aTP_Lamp_afs:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aft____,type,
aTP_Lamp_aft:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__afu____,type,
aTP_Lamp_afu:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__afv____,type,
aTP_Lamp_afv:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__afw____,type,
aTP_Lamp_afw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__afx____,type,
aTP_Lamp_afx:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__afy____,type,
aTP_Lamp_afy:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__afz____,type,
aTP_Lamp_afz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ag____,type,
aTP_Lamp_ag:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aga____,type,
aTP_Lamp_aga:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__agb____,type,
aTP_Lamp_agb:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__agc____,type,
aTP_Lamp_agc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__agd____,type,
aTP_Lamp_agd:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__age____,type,
aTP_Lamp_age:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__agf____,type,
aTP_Lamp_agf:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__agg____,type,
aTP_Lamp_agg:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__agh____,type,
aTP_Lamp_agh:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__agi____,type,
aTP_Lamp_agi:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__agj____,type,
aTP_Lamp_agj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__agk____,type,
aTP_Lamp_agk:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__agl____,type,
aTP_Lamp_agl:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__agm____,type,
aTP_Lamp_agm:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__agn____,type,
aTP_Lamp_agn:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ago____,type,
aTP_Lamp_ago:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__agp____,type,
aTP_Lamp_agp:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__agq____,type,
aTP_Lamp_agq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__agr____,type,
aTP_Lamp_agr:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ags____,type,
aTP_Lamp_ags:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__agt____,type,
aTP_Lamp_agt:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__agu____,type,
aTP_Lamp_agu:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__agv____,type,
aTP_Lamp_agv:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__agw____,type,
aTP_Lamp_agw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__agx____,type,
aTP_Lamp_agx:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__agy____,type,
aTP_Lamp_agy:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__agz____,type,
aTP_Lamp_agz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ah____,type,
aTP_Lamp_ah:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aha____,type,
aTP_Lamp_aha:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ahb____,type,
aTP_Lamp_ahb:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ahc____,type,
aTP_Lamp_ahc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ahd____,type,
aTP_Lamp_ahd:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ahe____,type,
aTP_Lamp_ahe:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ahf____,type,
aTP_Lamp_ahf:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ahg____,type,
aTP_Lamp_ahg:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ahh____,type,
aTP_Lamp_ahh:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ahi____,type,
aTP_Lamp_ahi:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ahj____,type,
aTP_Lamp_ahj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ahk____,type,
aTP_Lamp_ahk:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ahl____,type,
aTP_Lamp_ahl:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ahm____,type,
aTP_Lamp_ahm:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ai____,type,
aTP_Lamp_ai:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aj____,type,
aTP_Lamp_aj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ak____,type,
aTP_Lamp_ak:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__al____,type,
aTP_Lamp_al:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__am____,type,
aTP_Lamp_am:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__an____,type,
aTP_Lamp_an:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ao____,type,
aTP_Lamp_ao:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__ap____,type,
aTP_Lamp_ap:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aq____,type,
aTP_Lamp_aq:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__ar____,type,
aTP_Lamp_ar:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__as____,type,
aTP_Lamp_as:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__at____,type,
aTP_Lamp_at:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__au____,type,
aTP_Lamp_au:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__av____,type,
aTP_Lamp_av:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__aw____,type,
aTP_Lamp_aw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ax____,type,
aTP_Lamp_ax:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ay____,type,
aTP_Lamp_ay:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__az____,type,
aTP_Lamp_az:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ba____,type,
aTP_Lamp_ba:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__bb____,type,
aTP_Lamp_bb:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__bc____,type,
aTP_Lamp_bc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__bd____,type,
aTP_Lamp_bd:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__be____,type,
aTP_Lamp_be:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__bf____,type,
aTP_Lamp_bf:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__bg____,type,
aTP_Lamp_bg:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__bh____,type,
aTP_Lamp_bh:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__bi____,type,
aTP_Lamp_bi:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__bj____,type,
aTP_Lamp_bj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__bk____,type,
aTP_Lamp_bk:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__bl____,type,
aTP_Lamp_bl:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__bm____,type,
aTP_Lamp_bm:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__bn____,type,
aTP_Lamp_bn:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__bo____,type,
aTP_Lamp_bo:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__bp____,type,
aTP_Lamp_bp:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__bq____,type,
aTP_Lamp_bq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__br____,type,
aTP_Lamp_br:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__bs____,type,
aTP_Lamp_bs:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__bt____,type,
aTP_Lamp_bt:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__bu____,type,
aTP_Lamp_bu:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__bv____,type,
aTP_Lamp_bv:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__bw____,type,
aTP_Lamp_bw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__bx____,type,
aTP_Lamp_bx:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__by____,type,
aTP_Lamp_by:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__bz____,type,
aTP_Lamp_bz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ca____,type,
aTP_Lamp_ca:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__cb____,type,
aTP_Lamp_cb:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__cc____,type,
aTP_Lamp_cc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__cd____,type,
aTP_Lamp_cd:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ce____,type,
aTP_Lamp_ce:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__cf____,type,
aTP_Lamp_cf:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__cg____,type,
aTP_Lamp_cg:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ch____,type,
aTP_Lamp_ch:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ci____,type,
aTP_Lamp_ci:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__cj____,type,
aTP_Lamp_cj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ck____,type,
aTP_Lamp_ck:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__cl____,type,
aTP_Lamp_cl:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__cm____,type,
aTP_Lamp_cm:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__cn____,type,
aTP_Lamp_cn:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__co____,type,
aTP_Lamp_co:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__cp____,type,
aTP_Lamp_cp:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__cq____,type,
aTP_Lamp_cq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__cr____,type,
aTP_Lamp_cr:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__cs____,type,
aTP_Lamp_cs:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ct____,type,
aTP_Lamp_ct:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__cu____,type,
aTP_Lamp_cu:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__cv____,type,
aTP_Lamp_cv:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__cw____,type,
aTP_Lamp_cw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__cx____,type,
aTP_Lamp_cx:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__cy____,type,
aTP_Lamp_cy:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__cz____,type,
aTP_Lamp_cz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__da____,type,
aTP_Lamp_da:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__db____,type,
aTP_Lamp_db:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__dc____,type,
aTP_Lamp_dc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__dd____,type,
aTP_Lamp_dd:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__de____,type,
aTP_Lamp_de:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__df____,type,
aTP_Lamp_df:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__dg____,type,
aTP_Lamp_dg:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__dh____,type,
aTP_Lamp_dh:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__di____,type,
aTP_Lamp_di:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__dj____,type,
aTP_Lamp_dj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__dk____,type,
aTP_Lamp_dk:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__dl____,type,
aTP_Lamp_dl:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__dm____,type,
aTP_Lamp_dm:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__dn____,type,
aTP_Lamp_dn:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__do____,type,
aTP_Lamp_do:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__dp____,type,
aTP_Lamp_dp:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__dq____,type,
aTP_Lamp_dq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__dr____,type,
aTP_Lamp_dr:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ds____,type,
aTP_Lamp_ds:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__dt____,type,
aTP_Lamp_dt:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__du____,type,
aTP_Lamp_du:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__dv____,type,
aTP_Lamp_dv:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__dw____,type,
aTP_Lamp_dw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__dx____,type,
aTP_Lamp_dx:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__dy____,type,
aTP_Lamp_dy:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__dz____,type,
aTP_Lamp_dz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ea____,type,
aTP_Lamp_ea:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__eb____,type,
aTP_Lamp_eb:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ec____,type,
aTP_Lamp_ec:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ed____,type,
aTP_Lamp_ed:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ee____,type,
aTP_Lamp_ee:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ef____,type,
aTP_Lamp_ef:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__eg____,type,
aTP_Lamp_eg:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__eh____,type,
aTP_Lamp_eh:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ei____,type,
aTP_Lamp_ei:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ej____,type,
aTP_Lamp_ej:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ek____,type,
aTP_Lamp_ek:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__el____,type,
aTP_Lamp_el:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__em____,type,
aTP_Lamp_em:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__en____,type,
aTP_Lamp_en:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__eo____,type,
aTP_Lamp_eo:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ep____,type,
aTP_Lamp_ep:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__eq____,type,
aTP_Lamp_eq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__er____,type,
aTP_Lamp_er:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__es____,type,
aTP_Lamp_es:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__et____,type,
aTP_Lamp_et:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__eu____,type,
aTP_Lamp_eu:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ev____,type,
aTP_Lamp_ev:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ew____,type,
aTP_Lamp_ew:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__ex____,type,
aTP_Lamp_ex:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ey____,type,
aTP_Lamp_ey:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ez____,type,
aTP_Lamp_ez:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__fa____,type,
aTP_Lamp_fa:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__fb____,type,
aTP_Lamp_fb:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__fc____,type,
aTP_Lamp_fc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__fd____,type,
aTP_Lamp_fd:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__fe____,type,
aTP_Lamp_fe:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ff____,type,
aTP_Lamp_ff:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__fg____,type,
aTP_Lamp_fg:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__fh____,type,
aTP_Lamp_fh:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__fi____,type,
aTP_Lamp_fi:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__fj____,type,
aTP_Lamp_fj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__fk____,type,
aTP_Lamp_fk:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__fl____,type,
aTP_Lamp_fl:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__fm____,type,
aTP_Lamp_fm:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__fn____,type,
aTP_Lamp_fn:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__fo____,type,
aTP_Lamp_fo:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__fp____,type,
aTP_Lamp_fp:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__fq____,type,
aTP_Lamp_fq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__fr____,type,
aTP_Lamp_fr:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__fs____,type,
aTP_Lamp_fs:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__ft____,type,
aTP_Lamp_ft:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__fu____,type,
aTP_Lamp_fu:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__fv____,type,
aTP_Lamp_fv:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__fw____,type,
aTP_Lamp_fw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__fx____,type,
aTP_Lamp_fx:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__fy____,type,
aTP_Lamp_fy:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__fz____,type,
aTP_Lamp_fz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ga____,type,
aTP_Lamp_ga:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__gb____,type,
aTP_Lamp_gb:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__gc____,type,
aTP_Lamp_gc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__gd____,type,
aTP_Lamp_gd:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ge____,type,
aTP_Lamp_ge:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__gf____,type,
aTP_Lamp_gf:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__gg____,type,
aTP_Lamp_gg:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__gh____,type,
aTP_Lamp_gh:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__gi____,type,
aTP_Lamp_gi:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__gj____,type,
aTP_Lamp_gj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__gk____,type,
aTP_Lamp_gk:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__gl____,type,
aTP_Lamp_gl:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__gm____,type,
aTP_Lamp_gm:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__gn____,type,
aTP_Lamp_gn:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__go____,type,
aTP_Lamp_go:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__gp____,type,
aTP_Lamp_gp:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__gq____,type,
aTP_Lamp_gq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__gr____,type,
aTP_Lamp_gr:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__gs____,type,
aTP_Lamp_gs:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__gt____,type,
aTP_Lamp_gt:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__gu____,type,
aTP_Lamp_gu:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__gv____,type,
aTP_Lamp_gv:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__gw____,type,
aTP_Lamp_gw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__gx____,type,
aTP_Lamp_gx:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__gy____,type,
aTP_Lamp_gy:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__gz____,type,
aTP_Lamp_gz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ha____,type,
aTP_Lamp_ha:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__hb____,type,
aTP_Lamp_hb:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__hc____,type,
aTP_Lamp_hc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__hd____,type,
aTP_Lamp_hd:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__he____,type,
aTP_Lamp_he:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__hf____,type,
aTP_Lamp_hf:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__hg____,type,
aTP_Lamp_hg:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__hh____,type,
aTP_Lamp_hh:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__hi____,type,
aTP_Lamp_hi:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__hj____,type,
aTP_Lamp_hj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__hk____,type,
aTP_Lamp_hk:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__hl____,type,
aTP_Lamp_hl:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__hm____,type,
aTP_Lamp_hm:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__hn____,type,
aTP_Lamp_hn:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ho____,type,
aTP_Lamp_ho:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__hp____,type,
aTP_Lamp_hp:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__hq____,type,
aTP_Lamp_hq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__hr____,type,
aTP_Lamp_hr:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__hs____,type,
aTP_Lamp_hs:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ht____,type,
aTP_Lamp_ht:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__hu____,type,
aTP_Lamp_hu:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__hv____,type,
aTP_Lamp_hv:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__hw____,type,
aTP_Lamp_hw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__hx____,type,
aTP_Lamp_hx:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__hy____,type,
aTP_Lamp_hy:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__hz____,type,
aTP_Lamp_hz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ia____,type,
aTP_Lamp_ia:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ib____,type,
aTP_Lamp_ib:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ic____,type,
aTP_Lamp_ic:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__id____,type,
aTP_Lamp_id:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ie____,type,
aTP_Lamp_ie:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__if____,type,
aTP_Lamp_if:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ig____,type,
aTP_Lamp_ig:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__ih____,type,
aTP_Lamp_ih:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ii____,type,
aTP_Lamp_ii:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__ij____,type,
aTP_Lamp_ij:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ik____,type,
aTP_Lamp_ik:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__il____,type,
aTP_Lamp_il:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__im____,type,
aTP_Lamp_im:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__in____,type,
aTP_Lamp_in:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__io____,type,
aTP_Lamp_io:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ip____,type,
aTP_Lamp_ip:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__iq____,type,
aTP_Lamp_iq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ir____,type,
aTP_Lamp_ir:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__is____,type,
aTP_Lamp_is:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__it____,type,
aTP_Lamp_it:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__iu____,type,
aTP_Lamp_iu:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__iv____,type,
aTP_Lamp_iv:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__iw____,type,
aTP_Lamp_iw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ix____,type,
aTP_Lamp_ix:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__iy____,type,
aTP_Lamp_iy:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__iz____,type,
aTP_Lamp_iz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ja____,type,
aTP_Lamp_ja:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__jb____,type,
aTP_Lamp_jb:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__jc____,type,
aTP_Lamp_jc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__jd____,type,
aTP_Lamp_jd:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__je____,type,
aTP_Lamp_je:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__jf____,type,
aTP_Lamp_jf:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__jg____,type,
aTP_Lamp_jg:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__jh____,type,
aTP_Lamp_jh:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ji____,type,
aTP_Lamp_ji:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__jj____,type,
aTP_Lamp_jj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__jk____,type,
aTP_Lamp_jk:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__jl____,type,
aTP_Lamp_jl:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__jm____,type,
aTP_Lamp_jm:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__jn____,type,
aTP_Lamp_jn:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__jo____,type,
aTP_Lamp_jo:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__jp____,type,
aTP_Lamp_jp:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__jq____,type,
aTP_Lamp_jq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__jr____,type,
aTP_Lamp_jr:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__js____,type,
aTP_Lamp_js:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__jt____,type,
aTP_Lamp_jt:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ju____,type,
aTP_Lamp_ju:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__jv____,type,
aTP_Lamp_jv:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__jw____,type,
aTP_Lamp_jw:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__jx____,type,
aTP_Lamp_jx:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__jy____,type,
aTP_Lamp_jy:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__jz____,type,
aTP_Lamp_jz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ka____,type,
aTP_Lamp_ka:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__kb____,type,
aTP_Lamp_kb:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__kc____,type,
aTP_Lamp_kc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__kd____,type,
aTP_Lamp_kd:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ke____,type,
aTP_Lamp_ke:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__kf____,type,
aTP_Lamp_kf:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__kg____,type,
aTP_Lamp_kg:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__kh____,type,
aTP_Lamp_kh:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ki____,type,
aTP_Lamp_ki:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__kj____,type,
aTP_Lamp_kj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__kk____,type,
aTP_Lamp_kk:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__kl____,type,
aTP_Lamp_kl:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__km____,type,
aTP_Lamp_km:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__kn____,type,
aTP_Lamp_kn:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ko____,type,
aTP_Lamp_ko:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__kp____,type,
aTP_Lamp_kp:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__kq____,type,
aTP_Lamp_kq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__kr____,type,
aTP_Lamp_kr:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__ks____,type,
aTP_Lamp_ks:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__kt____,type,
aTP_Lamp_kt:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ku____,type,
aTP_Lamp_ku:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__kv____,type,
aTP_Lamp_kv:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__kw____,type,
aTP_Lamp_kw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__kx____,type,
aTP_Lamp_kx:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ky____,type,
aTP_Lamp_ky:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__kz____,type,
aTP_Lamp_kz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__la____,type,
aTP_Lamp_la:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__lb____,type,
aTP_Lamp_lb:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__lc____,type,
aTP_Lamp_lc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ld____,type,
aTP_Lamp_ld:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__le____,type,
aTP_Lamp_le:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__lf____,type,
aTP_Lamp_lf:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__lg____,type,
aTP_Lamp_lg:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__lh____,type,
aTP_Lamp_lh:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__li____,type,
aTP_Lamp_li:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__lj____,type,
aTP_Lamp_lj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__lk____,type,
aTP_Lamp_lk:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ll____,type,
aTP_Lamp_ll:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__lm____,type,
aTP_Lamp_lm:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ln____,type,
aTP_Lamp_ln:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__lo____,type,
aTP_Lamp_lo:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__lp____,type,
aTP_Lamp_lp:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__lq____,type,
aTP_Lamp_lq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__lr____,type,
aTP_Lamp_lr:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ls____,type,
aTP_Lamp_ls:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__lt____,type,
aTP_Lamp_lt:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__lu____,type,
aTP_Lamp_lu:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__lv____,type,
aTP_Lamp_lv:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__lw____,type,
aTP_Lamp_lw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__lx____,type,
aTP_Lamp_lx:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ly____,type,
aTP_Lamp_ly:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__lz____,type,
aTP_Lamp_lz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ma____,type,
aTP_Lamp_ma:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__mb____,type,
aTP_Lamp_mb:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__mc____,type,
aTP_Lamp_mc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__md____,type,
aTP_Lamp_md:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__me____,type,
aTP_Lamp_me:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__mf____,type,
aTP_Lamp_mf:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__mg____,type,
aTP_Lamp_mg:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__mh____,type,
aTP_Lamp_mh:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__mi____,type,
aTP_Lamp_mi:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__mj____,type,
aTP_Lamp_mj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__mk____,type,
aTP_Lamp_mk:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__ml____,type,
aTP_Lamp_ml:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__mm____,type,
aTP_Lamp_mm:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__mn____,type,
aTP_Lamp_mn:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__mo____,type,
aTP_Lamp_mo:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__mp____,type,
aTP_Lamp_mp:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__mq____,type,
aTP_Lamp_mq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__mr____,type,
aTP_Lamp_mr:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ms____,type,
aTP_Lamp_ms:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__mt____,type,
aTP_Lamp_mt:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__mu____,type,
aTP_Lamp_mu:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__mv____,type,
aTP_Lamp_mv:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__mw____,type,
aTP_Lamp_mw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__mx____,type,
aTP_Lamp_mx:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__my____,type,
aTP_Lamp_my:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__mz____,type,
aTP_Lamp_mz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__na____,type,
aTP_Lamp_na:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__nb____,type,
aTP_Lamp_nb:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__nc____,type,
aTP_Lamp_nc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__nd____,type,
aTP_Lamp_nd:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ne____,type,
aTP_Lamp_ne:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__nf____,type,
aTP_Lamp_nf:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ng____,type,
aTP_Lamp_ng:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__nh____,type,
aTP_Lamp_nh:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__ni____,type,
aTP_Lamp_ni:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__nj____,type,
aTP_Lamp_nj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__nk____,type,
aTP_Lamp_nk:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__nl____,type,
aTP_Lamp_nl:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__nm____,type,
aTP_Lamp_nm:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__nn____,type,
aTP_Lamp_nn:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__no____,type,
aTP_Lamp_no:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__np____,type,
aTP_Lamp_np:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__nq____,type,
aTP_Lamp_nq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__nr____,type,
aTP_Lamp_nr:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__ns____,type,
aTP_Lamp_ns:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__nt____,type,
aTP_Lamp_nt:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__nu____,type,
aTP_Lamp_nu:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__nv____,type,
aTP_Lamp_nv:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__nw____,type,
aTP_Lamp_nw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__nx____,type,
aTP_Lamp_nx:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__ny____,type,
aTP_Lamp_ny:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__nz____,type,
aTP_Lamp_nz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__oa____,type,
aTP_Lamp_oa:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ob____,type,
aTP_Lamp_ob:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__oc____,type,
aTP_Lamp_oc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__od____,type,
aTP_Lamp_od:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__oe____,type,
aTP_Lamp_oe:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__of____,type,
aTP_Lamp_of:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__og____,type,
aTP_Lamp_og:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__oh____,type,
aTP_Lamp_oh:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__oi____,type,
aTP_Lamp_oi:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__oj____,type,
aTP_Lamp_oj:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__ok____,type,
aTP_Lamp_ok:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ol____,type,
aTP_Lamp_ol:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__om____,type,
aTP_Lamp_om:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__on____,type,
aTP_Lamp_on:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__oo____,type,
aTP_Lamp_oo:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__op____,type,
aTP_Lamp_op:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__oq____,type,
aTP_Lamp_oq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__or____,type,
aTP_Lamp_or:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__os____,type,
aTP_Lamp_os:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ot____,type,
aTP_Lamp_ot:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ou____,type,
aTP_Lamp_ou:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ov____,type,
aTP_Lamp_ov:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ow____,type,
aTP_Lamp_ow:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ox____,type,
aTP_Lamp_ox:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__oy____,type,
aTP_Lamp_oy:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__oz____,type,
aTP_Lamp_oz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__pa____,type,
aTP_Lamp_pa:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__pb____,type,
aTP_Lamp_pb:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__pc____,type,
aTP_Lamp_pc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__pd____,type,
aTP_Lamp_pd:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__pe____,type,
aTP_Lamp_pe:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__pf____,type,
aTP_Lamp_pf:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__pg____,type,
aTP_Lamp_pg:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__ph____,type,
aTP_Lamp_ph:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__pi____,type,
aTP_Lamp_pi:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__pj____,type,
aTP_Lamp_pj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__pk____,type,
aTP_Lamp_pk:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__pl____,type,
aTP_Lamp_pl:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__pm____,type,
aTP_Lamp_pm:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__pn____,type,
aTP_Lamp_pn:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__po____,type,
aTP_Lamp_po:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__pp____,type,
aTP_Lamp_pp:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__pq____,type,
aTP_Lamp_pq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__pr____,type,
aTP_Lamp_pr:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__ps____,type,
aTP_Lamp_ps:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__pt____,type,
aTP_Lamp_pt:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__pu____,type,
aTP_Lamp_pu:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__pv____,type,
aTP_Lamp_pv:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__pw____,type,
aTP_Lamp_pw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__px____,type,
aTP_Lamp_px:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__py____,type,
aTP_Lamp_py:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__pz____,type,
aTP_Lamp_pz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__qa____,type,
aTP_Lamp_qa:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__qb____,type,
aTP_Lamp_qb:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__qc____,type,
aTP_Lamp_qc:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__qd____,type,
aTP_Lamp_qd:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__qe____,type,
aTP_Lamp_qe:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__qf____,type,
aTP_Lamp_qf:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__qg____,type,
aTP_Lamp_qg:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__qh____,type,
aTP_Lamp_qh:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__qi____,type,
aTP_Lamp_qi:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__qj____,type,
aTP_Lamp_qj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__qk____,type,
aTP_Lamp_qk:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ql____,type,
aTP_Lamp_ql:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__qm____,type,
aTP_Lamp_qm:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__qn____,type,
aTP_Lamp_qn:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__qo____,type,
aTP_Lamp_qo:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__qp____,type,
aTP_Lamp_qp:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__qq____,type,
aTP_Lamp_qq:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__qr____,type,
aTP_Lamp_qr:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__qs____,type,
aTP_Lamp_qs:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__qt____,type,
aTP_Lamp_qt:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__qu____,type,
aTP_Lamp_qu:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__qv____,type,
aTP_Lamp_qv:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__qw____,type,
aTP_Lamp_qw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__qx____,type,
aTP_Lamp_qx:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__qy____,type,
aTP_Lamp_qy:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__qz____,type,
aTP_Lamp_qz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ra____,type,
aTP_Lamp_ra:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__rb____,type,
aTP_Lamp_rb:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__rc____,type,
aTP_Lamp_rc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__rd____,type,
aTP_Lamp_rd:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__re____,type,
aTP_Lamp_re:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__rf____,type,
aTP_Lamp_rf:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__rg____,type,
aTP_Lamp_rg:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__rh____,type,
aTP_Lamp_rh:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ri____,type,
aTP_Lamp_ri:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__rj____,type,
aTP_Lamp_rj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__rk____,type,
aTP_Lamp_rk:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__rl____,type,
aTP_Lamp_rl:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__rm____,type,
aTP_Lamp_rm:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__rn____,type,
aTP_Lamp_rn:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ro____,type,
aTP_Lamp_ro:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__rp____,type,
aTP_Lamp_rp:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__rq____,type,
aTP_Lamp_rq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__rr____,type,
aTP_Lamp_rr:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__rs____,type,
aTP_Lamp_rs:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__rt____,type,
aTP_Lamp_rt:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ru____,type,
aTP_Lamp_ru:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__rv____,type,
aTP_Lamp_rv:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__rw____,type,
aTP_Lamp_rw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__rx____,type,
aTP_Lamp_rx:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ry____,type,
aTP_Lamp_ry:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__rz____,type,
aTP_Lamp_rz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__sa____,type,
aTP_Lamp_sa:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__sb____,type,
aTP_Lamp_sb:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__sc____,type,
aTP_Lamp_sc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__sd____,type,
aTP_Lamp_sd:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__se____,type,
aTP_Lamp_se:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__sf____,type,
aTP_Lamp_sf:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__sg____,type,
aTP_Lamp_sg:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__sh____,type,
aTP_Lamp_sh:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__si____,type,
aTP_Lamp_si:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__sj____,type,
aTP_Lamp_sj:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__sk____,type,
aTP_Lamp_sk:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__sl____,type,
aTP_Lamp_sl:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__sm____,type,
aTP_Lamp_sm:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__sn____,type,
aTP_Lamp_sn:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__so____,type,
aTP_Lamp_so:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__sp____,type,
aTP_Lamp_sp:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__sq____,type,
aTP_Lamp_sq:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__sr____,type,
aTP_Lamp_sr:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__ss____,type,
aTP_Lamp_ss:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__st____,type,
aTP_Lamp_st:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__su____,type,
aTP_Lamp_su:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__sv____,type,
aTP_Lamp_sv:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__sw____,type,
aTP_Lamp_sw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__sx____,type,
aTP_Lamp_sx:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__sy____,type,
aTP_Lamp_sy:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__sz____,type,
aTP_Lamp_sz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ta____,type,
aTP_Lamp_ta:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__tb____,type,
aTP_Lamp_tb:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__tc____,type,
aTP_Lamp_tc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__td____,type,
aTP_Lamp_td:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__te____,type,
aTP_Lamp_te:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__tf____,type,
aTP_Lamp_tf:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__tg____,type,
aTP_Lamp_tg:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__th____,type,
aTP_Lamp_th:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__ti____,type,
aTP_Lamp_ti:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__tj____,type,
aTP_Lamp_tj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__tk____,type,
aTP_Lamp_tk:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__tl____,type,
aTP_Lamp_tl:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__tm____,type,
aTP_Lamp_tm:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__tn____,type,
aTP_Lamp_tn:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__to____,type,
aTP_Lamp_to:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__tp____,type,
aTP_Lamp_tp:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__tq____,type,
aTP_Lamp_tq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__tr____,type,
aTP_Lamp_tr:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ts____,type,
aTP_Lamp_ts:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__tt____,type,
aTP_Lamp_tt:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__tu____,type,
aTP_Lamp_tu:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__tv____,type,
aTP_Lamp_tv:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__tw____,type,
aTP_Lamp_tw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__tx____,type,
aTP_Lamp_tx:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ty____,type,
aTP_Lamp_ty:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__tz____,type,
aTP_Lamp_tz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ua____,type,
aTP_Lamp_ua:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ub____,type,
aTP_Lamp_ub:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__uc____,type,
aTP_Lamp_uc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ud____,type,
aTP_Lamp_ud:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ue____,type,
aTP_Lamp_ue:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__uf____,type,
aTP_Lamp_uf:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ug____,type,
aTP_Lamp_ug:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__uh____,type,
aTP_Lamp_uh:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ui____,type,
aTP_Lamp_ui:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__uj____,type,
aTP_Lamp_uj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__uk____,type,
aTP_Lamp_uk:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ul____,type,
aTP_Lamp_ul:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__um____,type,
aTP_Lamp_um:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__un____,type,
aTP_Lamp_un:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__uo____,type,
aTP_Lamp_uo:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__up____,type,
aTP_Lamp_up:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__uq____,type,
aTP_Lamp_uq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ur____,type,
aTP_Lamp_ur:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__us____,type,
aTP_Lamp_us:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ut____,type,
aTP_Lamp_ut:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__uu____,type,
aTP_Lamp_uu:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__uv____,type,
aTP_Lamp_uv:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__uw____,type,
aTP_Lamp_uw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ux____,type,
aTP_Lamp_ux:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__uy____,type,
aTP_Lamp_uy:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__uz____,type,
aTP_Lamp_uz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__va____,type,
aTP_Lamp_va:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__vb____,type,
aTP_Lamp_vb:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__vc____,type,
aTP_Lamp_vc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__vd____,type,
aTP_Lamp_vd:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ve____,type,
aTP_Lamp_ve:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__vf____,type,
aTP_Lamp_vf:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__vg____,type,
aTP_Lamp_vg:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__vh____,type,
aTP_Lamp_vh:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__vi____,type,
aTP_Lamp_vi:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__vj____,type,
aTP_Lamp_vj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__vk____,type,
aTP_Lamp_vk:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__vl____,type,
aTP_Lamp_vl:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__vm____,type,
aTP_Lamp_vm:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__vn____,type,
aTP_Lamp_vn:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__vo____,type,
aTP_Lamp_vo:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__vp____,type,
aTP_Lamp_vp:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__vq____,type,
aTP_Lamp_vq:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__vr____,type,
aTP_Lamp_vr:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__vs____,type,
aTP_Lamp_vs:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__vt____,type,
aTP_Lamp_vt:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__vu____,type,
aTP_Lamp_vu:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__vv____,type,
aTP_Lamp_vv:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__vw____,type,
aTP_Lamp_vw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__vx____,type,
aTP_Lamp_vx:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__vy____,type,
aTP_Lamp_vy:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__vz____,type,
aTP_Lamp_vz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__wa____,type,
aTP_Lamp_wa:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__wb____,type,
aTP_Lamp_wb:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__wc____,type,
aTP_Lamp_wc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__wd____,type,
aTP_Lamp_wd:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__we____,type,
aTP_Lamp_we:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__wf____,type,
aTP_Lamp_wf:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__wg____,type,
aTP_Lamp_wg:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__wh____,type,
aTP_Lamp_wh:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__wi____,type,
aTP_Lamp_wi:
!>[A: $tType,B: $tType] : fun(A,B) ).
tff(sy_c_ATP_058Lamp__wj____,type,
aTP_Lamp_wj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__wk____,type,
aTP_Lamp_wk:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__wl____,type,
aTP_Lamp_wl:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__wm____,type,
aTP_Lamp_wm:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__wn____,type,
aTP_Lamp_wn:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__wo____,type,
aTP_Lamp_wo:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__wp____,type,
aTP_Lamp_wp:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__wq____,type,
aTP_Lamp_wq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__wr____,type,
aTP_Lamp_wr:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ws____,type,
aTP_Lamp_ws:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__wt____,type,
aTP_Lamp_wt:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__wu____,type,
aTP_Lamp_wu:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__wv____,type,
aTP_Lamp_wv:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ww____,type,
aTP_Lamp_ww:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__wx____,type,
aTP_Lamp_wx:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__wy____,type,
aTP_Lamp_wy:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__wz____,type,
aTP_Lamp_wz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xa____,type,
aTP_Lamp_xa:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xb____,type,
aTP_Lamp_xb:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xc____,type,
aTP_Lamp_xc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xd____,type,
aTP_Lamp_xd:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xe____,type,
aTP_Lamp_xe:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xf____,type,
aTP_Lamp_xf:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xg____,type,
aTP_Lamp_xg:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xh____,type,
aTP_Lamp_xh:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xi____,type,
aTP_Lamp_xi:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xj____,type,
aTP_Lamp_xj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xk____,type,
aTP_Lamp_xk:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xl____,type,
aTP_Lamp_xl:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xm____,type,
aTP_Lamp_xm:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xn____,type,
aTP_Lamp_xn:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xo____,type,
aTP_Lamp_xo:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xp____,type,
aTP_Lamp_xp:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xq____,type,
aTP_Lamp_xq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xr____,type,
aTP_Lamp_xr:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xs____,type,
aTP_Lamp_xs:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xt____,type,
aTP_Lamp_xt:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xu____,type,
aTP_Lamp_xu:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xv____,type,
aTP_Lamp_xv:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xw____,type,
aTP_Lamp_xw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xx____,type,
aTP_Lamp_xx:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xy____,type,
aTP_Lamp_xy:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__xz____,type,
aTP_Lamp_xz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ya____,type,
aTP_Lamp_ya:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__yb____,type,
aTP_Lamp_yb:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__yc____,type,
aTP_Lamp_yc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__yd____,type,
aTP_Lamp_yd:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ye____,type,
aTP_Lamp_ye:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__yf____,type,
aTP_Lamp_yf:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__yg____,type,
aTP_Lamp_yg:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__yh____,type,
aTP_Lamp_yh:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__yi____,type,
aTP_Lamp_yi:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__yj____,type,
aTP_Lamp_yj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__yk____,type,
aTP_Lamp_yk:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__yl____,type,
aTP_Lamp_yl:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ym____,type,
aTP_Lamp_ym:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__yn____,type,
aTP_Lamp_yn:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__yo____,type,
aTP_Lamp_yo:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__yp____,type,
aTP_Lamp_yp:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__yq____,type,
aTP_Lamp_yq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__yr____,type,
aTP_Lamp_yr:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ys____,type,
aTP_Lamp_ys:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__yt____,type,
aTP_Lamp_yt:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__yu____,type,
aTP_Lamp_yu:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__yv____,type,
aTP_Lamp_yv:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__yw____,type,
aTP_Lamp_yw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__yx____,type,
aTP_Lamp_yx:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__yy____,type,
aTP_Lamp_yy:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__yz____,type,
aTP_Lamp_yz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__za____,type,
aTP_Lamp_za:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__zb____,type,
aTP_Lamp_zb:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__zc____,type,
aTP_Lamp_zc:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__zd____,type,
aTP_Lamp_zd:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__ze____,type,
aTP_Lamp_ze:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__zf____,type,
aTP_Lamp_zf:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__zg____,type,
aTP_Lamp_zg:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__zh____,type,
aTP_Lamp_zh:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__zi____,type,
aTP_Lamp_zi:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__zj____,type,
aTP_Lamp_zj:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__zk____,type,
aTP_Lamp_zk:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__zl____,type,
aTP_Lamp_zl:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__zm____,type,
aTP_Lamp_zm:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__zn____,type,
aTP_Lamp_zn:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__zo____,type,
aTP_Lamp_zo:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__zp____,type,
aTP_Lamp_zp:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__zq____,type,
aTP_Lamp_zq:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__zr____,type,
aTP_Lamp_zr:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__zs____,type,
aTP_Lamp_zs:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__zt____,type,
aTP_Lamp_zt:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__zu____,type,
aTP_Lamp_zu:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__zv____,type,
aTP_Lamp_zv:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__zw____,type,
aTP_Lamp_zw:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__zx____,type,
aTP_Lamp_zx:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__zy____,type,
aTP_Lamp_zy:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_ATP_058Lamp__zz____,type,
aTP_Lamp_zz:
!>[A: $tType,B: $tType] : ( A > B ) ).
tff(sy_c_Archimedean__Field_Oceiling,type,
archimedean_ceiling:
!>[A: $tType] : ( A > int ) ).
tff(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor,type,
archim6421214686448440834_floor:
!>[A: $tType] : fun(A,int) ).
tff(sy_c_Archimedean__Field_Ofrac,type,
archimedean_frac:
!>[A: $tType] : fun(A,A) ).
tff(sy_c_Archimedean__Field_Oround,type,
archimedean_round:
!>[A: $tType] : ( A > int ) ).
tff(sy_c_Basic__BNF__LFPs_Oprod_Osize__prod,type,
basic_BNF_size_prod:
!>[A: $tType,B: $tType] : ( ( fun(A,nat) * fun(B,nat) * product_prod(A,B) ) > nat ) ).
tff(sy_c_Binomial_Obinomial,type,
binomial: nat > fun(nat,nat) ).
tff(sy_c_Binomial_Ogbinomial,type,
gbinomial:
!>[A: $tType] : ( A > fun(nat,A) ) ).
tff(sy_c_Bit__Operations_Oand__int__rel,type,
bit_and_int_rel: fun(product_prod(int,int),fun(product_prod(int,int),bool)) ).
tff(sy_c_Bit__Operations_Oand__not__num,type,
bit_and_not_num: ( num * num ) > option(num) ).
tff(sy_c_Bit__Operations_Oconcat__bit,type,
bit_concat_bit: ( nat * int ) > fun(int,int) ).
tff(sy_c_Bit__Operations_Oor__not__num__neg,type,
bit_or_not_num_neg: ( num * num ) > num ).
tff(sy_c_Bit__Operations_Oor__not__num__neg__rel,type,
bit_or3848514188828904588eg_rel: fun(product_prod(num,num),fun(product_prod(num,num),bool)) ).
tff(sy_c_Bit__Operations_Oring__bit__operations__class_Onot,type,
bit_ri4277139882892585799ns_not:
!>[A: $tType] : fun(A,A) ).
tff(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit,type,
bit_ri4674362597316999326ke_bit:
!>[A: $tType] : ( nat > fun(A,A) ) ).
tff(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand,type,
bit_se5824344872417868541ns_and:
!>[A: $tType] : fun(A,fun(A,A)) ).
tff(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit,type,
bit_se4197421643247451524op_bit:
!>[A: $tType] : ( ( nat * A ) > A ) ).
tff(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit,type,
bit_se8732182000553998342ip_bit:
!>[A: $tType] : ( ( nat * A ) > A ) ).
tff(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask,type,
bit_se2239418461657761734s_mask:
!>[A: $tType] : ( nat > A ) ).
tff(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor,type,
bit_se1065995026697491101ons_or:
!>[A: $tType] : fun(A,fun(A,A)) ).
tff(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit,type,
bit_se4730199178511100633sh_bit:
!>[A: $tType] : ( ( nat * A ) > A ) ).
tff(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit,type,
bit_se5668285175392031749et_bit:
!>[A: $tType] : fun(nat,fun(A,A)) ).
tff(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit,type,
bit_se2584673776208193580ke_bit:
!>[A: $tType] : ( nat > fun(A,A) ) ).
tff(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit,type,
bit_se2638667681897837118et_bit:
!>[A: $tType] : fun(nat,fun(A,A)) ).
tff(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor,type,
bit_se5824344971392196577ns_xor:
!>[A: $tType] : fun(A,fun(A,A)) ).
tff(sy_c_Bit__Operations_Osemiring__bits__class_Obit,type,
bit_se5641148757651400278ts_bit:
!>[A: $tType] : ( A > fun(nat,bool) ) ).
tff(sy_c_Bit__Operations_Otake__bit__num,type,
bit_take_bit_num: ( nat * num ) > option(num) ).
tff(sy_c_Boolean__Algebras_Oabstract__boolean__algebra,type,
boolea2506097494486148201lgebra:
!>[A: $tType] : ( ( fun(A,fun(A,A)) * fun(A,fun(A,A)) * fun(A,A) * A * A ) > $o ) ).
tff(sy_c_Boolean__Algebras_Oabstract__boolean__algebra__sym__diff,type,
boolea3799213064322606851m_diff:
!>[A: $tType] : ( ( fun(A,fun(A,A)) * fun(A,fun(A,A)) * fun(A,A) * A * A * fun(A,fun(A,A)) ) > $o ) ).
tff(sy_c_Code__Numeral_Obit__cut__integer,type,
code_bit_cut_integer: code_integer > product_prod(code_integer,bool) ).
tff(sy_c_Code__Numeral_Odivmod__abs,type,
code_divmod_abs: ( code_integer * code_integer ) > product_prod(code_integer,code_integer) ).
tff(sy_c_Code__Numeral_Odivmod__integer,type,
code_divmod_integer: ( code_integer * code_integer ) > product_prod(code_integer,code_integer) ).
tff(sy_c_Code__Numeral_Ointeger_Oint__of__integer,type,
code_int_of_integer: code_integer > int ).
tff(sy_c_Code__Numeral_Ointeger_Ointeger__of__int,type,
code_integer_of_int: int > code_integer ).
tff(sy_c_Code__Numeral_Ointeger__of__num,type,
code_integer_of_num: num > code_integer ).
tff(sy_c_Code__Numeral_Onat__of__integer,type,
code_nat_of_integer: code_integer > nat ).
tff(sy_c_Code__Numeral_Onum__of__integer,type,
code_num_of_integer: fun(code_integer,num) ).
tff(sy_c_Code__Target__Int_Onegative,type,
code_Target_negative: fun(num,int) ).
tff(sy_c_Code__Target__Int_Opositive,type,
code_Target_positive: fun(num,int) ).
tff(sy_c_Code__Target__Nat_Oint__of__nat,type,
code_T6385005292777649522of_nat: fun(nat,int) ).
tff(sy_c_Complete__Lattices_OInf__class_OInf,type,
complete_Inf_Inf:
!>[A: $tType] : ( set(A) > A ) ).
tff(sy_c_Complete__Lattices_OSup__class_OSup,type,
complete_Sup_Sup:
!>[A: $tType] : ( set(A) > A ) ).
tff(sy_c_Complex_OArg,type,
arg: complex > real ).
tff(sy_c_Complex_Ocis,type,
cis: real > complex ).
tff(sy_c_Complex_Ocnj,type,
cnj: complex > complex ).
tff(sy_c_Complex_Ocomplex_OComplex,type,
complex2: ( real * real ) > complex ).
tff(sy_c_Complex_Ocomplex_OIm,type,
im: complex > real ).
tff(sy_c_Complex_Ocomplex_ORe,type,
re: complex > real ).
tff(sy_c_Complex_Ocsqrt,type,
csqrt: complex > complex ).
tff(sy_c_Complex_Oimaginary__unit,type,
imaginary_unit: complex ).
tff(sy_c_Deriv_Ohas__derivative,type,
has_derivative:
!>[A: $tType,B: $tType] : ( ( fun(A,B) * fun(A,B) * filter(A) ) > $o ) ).
tff(sy_c_Deriv_Ohas__field__derivative,type,
has_field_derivative:
!>[A: $tType] : ( ( fun(A,A) * A * filter(A) ) > $o ) ).
tff(sy_c_Divides_Oadjust__div,type,
adjust_div: product_prod(int,int) > int ).
tff(sy_c_Divides_Oadjust__mod,type,
adjust_mod: ( int * int ) > int ).
tff(sy_c_Divides_Odivmod__nat,type,
divmod_nat: ( nat * nat ) > product_prod(nat,nat) ).
tff(sy_c_Divides_Oeucl__rel__int,type,
eucl_rel_int: ( int * int * product_prod(int,int) ) > $o ).
tff(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivides__aux,type,
unique5940410009612947441es_aux:
!>[A: $tType] : ( product_prod(A,A) > $o ) ).
tff(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod,type,
unique8689654367752047608divmod:
!>[A: $tType] : ( ( num * num ) > product_prod(A,A) ) ).
tff(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step,type,
unique1321980374590559556d_step:
!>[A: $tType] : ( ( num * product_prod(A,A) ) > product_prod(A,A) ) ).
tff(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer,type,
comm_s3205402744901411588hammer:
!>[A: $tType] : ( ( A * nat ) > A ) ).
tff(sy_c_Factorial_Osemiring__char__0__class_Ofact,type,
semiring_char_0_fact:
!>[A: $tType] : ( nat > A ) ).
tff(sy_c_Fields_Oinverse__class_Oinverse,type,
inverse_inverse:
!>[A: $tType] : fun(A,A) ).
tff(sy_c_Filter_Oat__bot,type,
at_bot:
!>[A: $tType] : filter(A) ).
tff(sy_c_Filter_Oat__top,type,
at_top:
!>[A: $tType] : filter(A) ).
tff(sy_c_Filter_Oeventually,type,
eventually:
!>[A: $tType] : ( ( fun(A,bool) * filter(A) ) > $o ) ).
tff(sy_c_Filter_Ofilterlim,type,
filterlim:
!>[A: $tType,B: $tType] : ( ( fun(A,B) * filter(B) * filter(A) ) > $o ) ).
tff(sy_c_Filter_Oprincipal,type,
principal:
!>[A: $tType] : ( set(A) > filter(A) ) ).
tff(sy_c_Finite__Set_Ocard,type,
finite_card:
!>[B: $tType] : fun(set(B),nat) ).
tff(sy_c_Finite__Set_Ofinite,type,
finite_finite:
!>[A: $tType] : ( set(A) > $o ) ).
tff(sy_c_Fun_Obij__betw,type,
bij_betw:
!>[A: $tType,B: $tType] : ( ( fun(A,B) * set(A) * set(B) ) > $o ) ).
tff(sy_c_Fun_Ocomp,type,
comp:
!>[B: $tType,C: $tType,A: $tType] : ( fun(B,C) > fun(fun(A,B),fun(A,C)) ) ).
tff(sy_c_Fun_Ofun__upd,type,
fun_upd:
!>[A: $tType,B: $tType] : ( ( fun(A,B) * A * B ) > fun(A,B) ) ).
tff(sy_c_Fun_Omap__fun,type,
map_fun:
!>[C: $tType,A: $tType,B: $tType,D: $tType] : ( ( fun(C,A) * fun(B,D) ) > fun(fun(A,B),fun(C,D)) ) ).
tff(sy_c_Fun_Ostrict__mono__on,type,
strict_mono_on:
!>[A: $tType,B: $tType] : ( ( fun(A,B) * set(A) ) > $o ) ).
tff(sy_c_Fun_Othe__inv__into,type,
the_inv_into:
!>[A: $tType,B: $tType] : ( ( set(A) * fun(A,B) * B ) > A ) ).
tff(sy_c_GCD_OGcd__class_OGcd,type,
gcd_Gcd:
!>[A: $tType] : ( set(A) > A ) ).
tff(sy_c_GCD_Obezw,type,
bezw: ( nat * nat ) > product_prod(int,int) ).
tff(sy_c_GCD_Obezw__rel,type,
bezw_rel: fun(product_prod(nat,nat),fun(product_prod(nat,nat),bool)) ).
tff(sy_c_GCD_Ogcd__class_Ogcd,type,
gcd_gcd:
!>[A: $tType] : fun(A,fun(A,A)) ).
tff(sy_c_GCD_Ogcd__nat__rel,type,
gcd_nat_rel: fun(product_prod(nat,nat),fun(product_prod(nat,nat),bool)) ).
tff(sy_c_GCD_Osemiring__1__class_Osemiring__char,type,
semiri4206861660011772517g_char:
!>[A: $tType] : ( itself(A) > nat ) ).
tff(sy_c_Groups_Oabs__class_Oabs,type,
abs_abs:
!>[A: $tType] : fun(A,A) ).
tff(sy_c_Groups_Ominus__class_Ominus,type,
minus_minus:
!>[A: $tType] : fun(A,fun(A,A)) ).
tff(sy_c_Groups_Oone__class_Oone,type,
one_one:
!>[A: $tType] : A ).
tff(sy_c_Groups_Oplus__class_Oplus,type,
plus_plus:
!>[A: $tType] : fun(A,fun(A,A)) ).
tff(sy_c_Groups_Osgn__class_Osgn,type,
sgn_sgn:
!>[A: $tType] : fun(A,A) ).
tff(sy_c_Groups_Otimes__class_Otimes,type,
times_times:
!>[A: $tType] : fun(A,fun(A,A)) ).
tff(sy_c_Groups_Ouminus__class_Ouminus,type,
uminus_uminus:
!>[A: $tType] : fun(A,A) ).
tff(sy_c_Groups_Ozero__class_Ozero,type,
zero_zero:
!>[A: $tType] : A ).
tff(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum,type,
groups7311177749621191930dd_sum:
!>[B: $tType,A: $tType] : fun(fun(B,A),fun(set(B),A)) ).
tff(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_H,type,
groups1027152243600224163dd_sum:
!>[C: $tType,A: $tType] : ( ( fun(C,A) * set(C) ) > A ) ).
tff(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod,type,
groups7121269368397514597t_prod:
!>[B: $tType,A: $tType] : fun(fun(B,A),fun(set(B),A)) ).
tff(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_H,type,
groups1962203154675924110t_prod:
!>[C: $tType,A: $tType] : ( ( fun(C,A) * set(C) ) > A ) ).
tff(sy_c_Groups__List_Ocomm__semiring__0__class_Ohorner__sum,type,
groups4207007520872428315er_sum:
!>[B: $tType,A: $tType] : ( ( fun(B,A) * A * list(B) ) > A ) ).
tff(sy_c_Groups__List_Omonoid__add__class_Osum__list,type,
groups8242544230860333062m_list:
!>[A: $tType] : ( list(A) > A ) ).
tff(sy_c_HOL_ONO__MATCH,type,
nO_MATCH:
!>[A: $tType,B: $tType] : ( ( A * B ) > $o ) ).
tff(sy_c_HOL_OThe,type,
the:
!>[A: $tType] : ( fun(A,bool) > A ) ).
tff(sy_c_If,type,
if:
!>[A: $tType] : ( ( bool * A * A ) > A ) ).
tff(sy_c_Int_OAbs__Integ,type,
abs_Integ: fun(product_prod(nat,nat),int) ).
tff(sy_c_Int_ORep__Integ,type,
rep_Integ: fun(int,product_prod(nat,nat)) ).
tff(sy_c_Int_Oint__ge__less__than,type,
int_ge_less_than: int > set(product_prod(int,int)) ).
tff(sy_c_Int_Oint__ge__less__than2,type,
int_ge_less_than2: int > set(product_prod(int,int)) ).
tff(sy_c_Int_Onat,type,
nat2: fun(int,nat) ).
tff(sy_c_Int_Oring__1__class_OInts,type,
ring_1_Ints:
!>[A: $tType] : set(A) ).
tff(sy_c_Int_Oring__1__class_Oof__int,type,
ring_1_of_int:
!>[A: $tType] : fun(int,A) ).
tff(sy_c_Lattices_Oinf__class_Oinf,type,
inf_inf:
!>[A: $tType] : fun(A,fun(A,A)) ).
tff(sy_c_Lattices_Osemilattice__neutr__order,type,
semila1105856199041335345_order:
!>[A: $tType] : ( ( fun(A,fun(A,A)) * A * fun(A,fun(A,bool)) * fun(A,fun(A,bool)) ) > $o ) ).
tff(sy_c_Lattices_Osup__class_Osup,type,
sup_sup:
!>[A: $tType] : fun(A,fun(A,A)) ).
tff(sy_c_Lattices__Big_Olinorder__class_OMax,type,
lattic643756798349783984er_Max:
!>[A: $tType] : ( set(A) > A ) ).
tff(sy_c_Lattices__Big_Oord__class_Oarg__min__on,type,
lattic7623131987881927897min_on:
!>[B: $tType,A: $tType] : ( ( fun(B,A) * set(B) ) > B ) ).
tff(sy_c_Limits_OBfun,type,
bfun:
!>[A: $tType,B: $tType] : ( ( fun(A,B) * filter(A) ) > $o ) ).
tff(sy_c_Limits_Oat__infinity,type,
at_infinity:
!>[A: $tType] : filter(A) ).
tff(sy_c_List_Oappend,type,
append:
!>[A: $tType] : fun(list(A),fun(list(A),list(A))) ).
tff(sy_c_List_Oconcat,type,
concat:
!>[A: $tType] : ( list(list(A)) > list(A) ) ).
tff(sy_c_List_Ocount__list,type,
count_list:
!>[A: $tType] : ( list(A) > fun(A,nat) ) ).
tff(sy_c_List_Odistinct,type,
distinct:
!>[A: $tType] : ( list(A) > $o ) ).
tff(sy_c_List_OdropWhile,type,
dropWhile:
!>[A: $tType] : ( ( fun(A,bool) * list(A) ) > list(A) ) ).
tff(sy_c_List_Oenumerate,type,
enumerate:
!>[A: $tType] : ( ( nat * list(A) ) > list(product_prod(nat,A)) ) ).
tff(sy_c_List_Oextract,type,
extract:
!>[A: $tType] : ( ( fun(A,bool) * list(A) ) > option(product_prod(list(A),product_prod(A,list(A)))) ) ).
tff(sy_c_List_Ofilter,type,
filter2:
!>[A: $tType] : ( fun(A,bool) > fun(list(A),list(A)) ) ).
tff(sy_c_List_Ofind,type,
find:
!>[A: $tType] : ( ( fun(A,bool) * list(A) ) > option(A) ) ).
tff(sy_c_List_Ofolding__insort__key,type,
folding_insort_key:
!>[A: $tType,B: $tType] : ( ( fun(A,fun(A,bool)) * fun(A,fun(A,bool)) * set(B) * fun(B,A) ) > $o ) ).
tff(sy_c_List_Ofoldr,type,
foldr:
!>[A: $tType,B: $tType] : ( ( fun(A,fun(B,B)) * list(A) ) > fun(B,B) ) ).
tff(sy_c_List_Olinorder_Oinsort__key,type,
insort_key:
!>[A: $tType,B: $tType] : ( fun(A,fun(A,bool)) > fun(fun(B,A),fun(B,fun(list(B),list(B)))) ) ).
tff(sy_c_List_Olinorder_Osorted__key__list__of__set,type,
sorted8670434370408473282of_set:
!>[A: $tType,B: $tType] : ( fun(A,fun(A,bool)) > fun(fun(B,A),fun(set(B),list(B))) ) ).
tff(sy_c_List_Olinorder__class_Oinsort__key,type,
linorder_insort_key:
!>[B: $tType,A: $tType] : ( ( fun(B,A) * B ) > fun(list(B),list(B)) ) ).
tff(sy_c_List_Olinorder__class_Osorted__key__list__of__set,type,
linord144544945434240204of_set:
!>[B: $tType,A: $tType] : ( fun(B,A) > fun(set(B),list(B)) ) ).
tff(sy_c_List_Olinorder__class_Osorted__list__of__set,type,
linord4507533701916653071of_set:
!>[A: $tType] : fun(set(A),list(A)) ).
tff(sy_c_List_Olist_OCons,type,
cons:
!>[A: $tType] : ( A > fun(list(A),list(A)) ) ).
tff(sy_c_List_Olist_ONil,type,
nil:
!>[A: $tType] : list(A) ).
tff(sy_c_List_Olist_Ocase__list,type,
case_list:
!>[B: $tType,A: $tType] : ( ( B * fun(A,fun(list(A),B)) ) > fun(list(A),B) ) ).
tff(sy_c_List_Olist_Ohd,type,
hd:
!>[A: $tType] : fun(list(A),A) ).
tff(sy_c_List_Olist_Omap,type,
map:
!>[A: $tType,Aa: $tType] : ( fun(A,Aa) > fun(list(A),list(Aa)) ) ).
tff(sy_c_List_Olist_Oset,type,
set2:
!>[A: $tType] : fun(list(A),set(A)) ).
tff(sy_c_List_Olist_Osize__list,type,
size_list:
!>[A: $tType] : ( fun(A,nat) > fun(list(A),nat) ) ).
tff(sy_c_List_Olist_Otl,type,
tl:
!>[A: $tType] : fun(list(A),list(A)) ).
tff(sy_c_List_Olist__update,type,
list_update:
!>[A: $tType] : ( ( list(A) * nat * A ) > list(A) ) ).
tff(sy_c_List_Olistrel1,type,
listrel1:
!>[A: $tType] : ( set(product_prod(A,A)) > set(product_prod(list(A),list(A))) ) ).
tff(sy_c_List_Olistrel1p,type,
listrel1p:
!>[A: $tType] : ( ( fun(A,fun(A,bool)) * list(A) * list(A) ) > $o ) ).
tff(sy_c_List_Olistset,type,
listset:
!>[A: $tType] : ( list(set(A)) > set(list(A)) ) ).
tff(sy_c_List_Omap__filter,type,
map_filter:
!>[A: $tType,B: $tType] : ( ( fun(A,option(B)) * list(A) ) > list(B) ) ).
tff(sy_c_List_On__lists,type,
n_lists:
!>[A: $tType] : ( ( nat * list(A) ) > list(list(A)) ) ).
tff(sy_c_List_Onth,type,
nth:
!>[A: $tType] : ( list(A) > fun(nat,A) ) ).
tff(sy_c_List_Onths,type,
nths:
!>[A: $tType] : ( ( list(A) * set(nat) ) > list(A) ) ).
tff(sy_c_List_Opartition,type,
partition:
!>[A: $tType] : ( ( fun(A,bool) * list(A) ) > product_prod(list(A),list(A)) ) ).
tff(sy_c_List_Oproduct,type,
product:
!>[A: $tType,B: $tType] : ( ( list(A) * list(B) ) > list(product_prod(A,B)) ) ).
tff(sy_c_List_Oproduct__lists,type,
product_lists:
!>[A: $tType] : ( list(list(A)) > list(list(A)) ) ).
tff(sy_c_List_Oremdups,type,
remdups:
!>[A: $tType] : ( list(A) > list(A) ) ).
tff(sy_c_List_Oremove1,type,
remove1:
!>[A: $tType] : ( ( A * list(A) ) > list(A) ) ).
tff(sy_c_List_OremoveAll,type,
removeAll:
!>[A: $tType] : ( A > fun(list(A),list(A)) ) ).
tff(sy_c_List_Oreplicate,type,
replicate:
!>[A: $tType] : ( ( nat * A ) > list(A) ) ).
tff(sy_c_List_Orev,type,
rev:
!>[A: $tType] : fun(list(A),list(A)) ).
tff(sy_c_List_Orotate1,type,
rotate1:
!>[A: $tType] : ( list(A) > list(A) ) ).
tff(sy_c_List_Oset__Cons,type,
set_Cons:
!>[A: $tType] : ( ( set(A) * set(list(A)) ) > set(list(A)) ) ).
tff(sy_c_List_Oshuffles,type,
shuffles:
!>[A: $tType] : ( ( list(A) * list(A) ) > set(list(A)) ) ).
tff(sy_c_List_Oshuffles__rel,type,
shuffles_rel:
!>[A: $tType] : fun(product_prod(list(A),list(A)),fun(product_prod(list(A),list(A)),bool)) ).
tff(sy_c_List_Osorted__wrt,type,
sorted_wrt:
!>[A: $tType] : ( ( fun(A,fun(A,bool)) * list(A) ) > $o ) ).
tff(sy_c_List_Osplice,type,
splice:
!>[A: $tType] : ( ( list(A) * list(A) ) > list(A) ) ).
tff(sy_c_List_Osplice__rel,type,
splice_rel:
!>[A: $tType] : fun(product_prod(list(A),list(A)),fun(product_prod(list(A),list(A)),bool)) ).
tff(sy_c_List_Osubseqs,type,
subseqs:
!>[A: $tType] : ( list(A) > list(list(A)) ) ).
tff(sy_c_List_OtakeWhile,type,
takeWhile:
!>[A: $tType] : ( ( fun(A,bool) * list(A) ) > list(A) ) ).
tff(sy_c_List_Otranspose,type,
transpose:
!>[A: $tType] : ( list(list(A)) > list(list(A)) ) ).
tff(sy_c_List_Otranspose__rel,type,
transpose_rel:
!>[A: $tType] : fun(list(list(A)),fun(list(list(A)),bool)) ).
tff(sy_c_List_Ounion,type,
union:
!>[A: $tType] : ( ( list(A) * list(A) ) > list(A) ) ).
tff(sy_c_List_Oupt,type,
upt: ( nat * nat ) > list(nat) ).
tff(sy_c_List_Oupto,type,
upto: ( int * int ) > list(int) ).
tff(sy_c_List_Oupto__aux,type,
upto_aux: ( int * int * list(int) ) > list(int) ).
tff(sy_c_List_Oupto__rel,type,
upto_rel: fun(product_prod(int,int),fun(product_prod(int,int),bool)) ).
tff(sy_c_List_Ozip,type,
zip:
!>[A: $tType,B: $tType] : ( ( list(A) * list(B) ) > list(product_prod(A,B)) ) ).
tff(sy_c_Map_Ograph,type,
graph:
!>[A: $tType,B: $tType] : ( fun(A,option(B)) > set(product_prod(A,B)) ) ).
tff(sy_c_Map_Omap__of,type,
map_of:
!>[A: $tType,B: $tType] : ( list(product_prod(A,B)) > fun(A,option(B)) ) ).
tff(sy_c_Map_Omap__upds,type,
map_upds:
!>[A: $tType,B: $tType] : ( ( fun(A,option(B)) * list(A) * list(B) ) > fun(A,option(B)) ) ).
tff(sy_c_Map_Oran,type,
ran:
!>[A: $tType,B: $tType] : ( fun(A,option(B)) > set(B) ) ).
tff(sy_c_Map_Orestrict__map,type,
restrict_map:
!>[A: $tType,B: $tType] : ( ( fun(A,option(B)) * set(A) ) > fun(A,option(B)) ) ).
tff(sy_c_Nat_OSuc,type,
suc: fun(nat,nat) ).
tff(sy_c_Nat_Ocompow,type,
compow:
!>[A: $tType] : fun(nat,fun(A,A)) ).
tff(sy_c_Nat_Ofunpow,type,
funpow:
!>[A: $tType] : fun(nat,fun(fun(A,A),fun(A,A))) ).
tff(sy_c_Nat_Onat_Ocase__nat,type,
case_nat:
!>[A: $tType] : ( ( A * fun(nat,A) * nat ) > A ) ).
tff(sy_c_Nat_Onat_Opred,type,
pred: nat > nat ).
tff(sy_c_Nat_Oold_Onat_Orec__nat,type,
rec_nat:
!>[T: $tType] : ( ( T * fun(nat,fun(T,T)) ) > fun(nat,T) ) ).
tff(sy_c_Nat_Oold_Onat_Orec__set__nat,type,
rec_set_nat:
!>[T: $tType] : ( ( T * fun(nat,fun(T,T)) * nat ) > fun(T,bool) ) ).
tff(sy_c_Nat_Osemiring__1__class_Oof__nat,type,
semiring_1_of_nat:
!>[A: $tType] : fun(nat,A) ).
tff(sy_c_Nat_Osemiring__1__class_Oof__nat__aux,type,
semiri8178284476397505188at_aux:
!>[A: $tType] : ( ( fun(A,A) * nat * A ) > A ) ).
tff(sy_c_Nat_Osize__class_Osize,type,
size_size:
!>[A: $tType] : fun(A,nat) ).
tff(sy_c_Nat__Bijection_Olist__encode,type,
nat_list_encode: fun(list(nat),nat) ).
tff(sy_c_Nat__Bijection_Olist__encode__rel,type,
nat_list_encode_rel: fun(list(nat),fun(list(nat),bool)) ).
tff(sy_c_Nat__Bijection_Oprod__decode__aux,type,
nat_prod_decode_aux: ( nat * nat ) > product_prod(nat,nat) ).
tff(sy_c_Nat__Bijection_Oprod__decode__aux__rel,type,
nat_pr5047031295181774490ux_rel: fun(product_prod(nat,nat),fun(product_prod(nat,nat),bool)) ).
tff(sy_c_Nat__Bijection_Oprod__encode,type,
nat_prod_encode: fun(product_prod(nat,nat),nat) ).
tff(sy_c_Nat__Bijection_Oset__decode,type,
nat_set_decode: nat > set(nat) ).
tff(sy_c_Nat__Bijection_Oset__encode,type,
nat_set_encode: fun(set(nat),nat) ).
tff(sy_c_Nat__Bijection_Otriangle,type,
nat_triangle: nat > nat ).
tff(sy_c_NthRoot_Oroot,type,
root: nat > fun(real,real) ).
tff(sy_c_NthRoot_Osqrt,type,
sqrt: fun(real,real) ).
tff(sy_c_Num_OBitM,type,
bitM: num > num ).
tff(sy_c_Num_Oinc,type,
inc: num > num ).
tff(sy_c_Num_Oneg__numeral__class_Odbl,type,
neg_numeral_dbl:
!>[A: $tType] : ( A > A ) ).
tff(sy_c_Num_Oneg__numeral__class_Odbl__dec,type,
neg_numeral_dbl_dec:
!>[A: $tType] : ( A > A ) ).
tff(sy_c_Num_Oneg__numeral__class_Odbl__inc,type,
neg_numeral_dbl_inc:
!>[A: $tType] : ( A > A ) ).
tff(sy_c_Num_Oneg__numeral__class_Osub,type,
neg_numeral_sub:
!>[A: $tType] : ( ( num * num ) > A ) ).
tff(sy_c_Num_Onum_OBit0,type,
bit0: num > num ).
tff(sy_c_Num_Onum_OBit1,type,
bit1: fun(num,num) ).
tff(sy_c_Num_Onum_OOne,type,
one2: num ).
tff(sy_c_Num_Onum_Ocase__num,type,
case_num:
!>[A: $tType] : ( ( A * fun(num,A) * fun(num,A) * num ) > A ) ).
tff(sy_c_Num_Onum_Osize__num,type,
size_num: num > nat ).
tff(sy_c_Num_Onum__of__nat,type,
num_of_nat: fun(nat,num) ).
tff(sy_c_Num_Onumeral__class_Onumeral,type,
numeral_numeral:
!>[A: $tType] : fun(num,A) ).
tff(sy_c_Num_Opow,type,
pow: ( num * num ) > num ).
tff(sy_c_Num_Opred__numeral,type,
pred_numeral: num > nat ).
tff(sy_c_Num_Oring__1__class_Oiszero,type,
ring_1_iszero:
!>[A: $tType] : ( A > $o ) ).
tff(sy_c_Num_Osqr,type,
sqr: num > num ).
tff(sy_c_Option_Ooption_ONone,type,
none:
!>[A: $tType] : option(A) ).
tff(sy_c_Option_Ooption_OSome,type,
some:
!>[A: $tType] : fun(A,option(A)) ).
tff(sy_c_Option_Ooption_Ocase__option,type,
case_option:
!>[B: $tType,A: $tType] : ( ( B * fun(A,B) * option(A) ) > B ) ).
tff(sy_c_Option_Ooption_Osize__option,type,
size_option:
!>[A: $tType] : ( ( fun(A,nat) * option(A) ) > nat ) ).
tff(sy_c_Option_Othese,type,
these:
!>[A: $tType] : ( set(option(A)) > set(A) ) ).
tff(sy_c_Orderings_Obot__class_Obot,type,
bot_bot:
!>[A: $tType] : A ).
tff(sy_c_Orderings_Oord__class_Oless,type,
ord_less:
!>[A: $tType] : fun(A,fun(A,bool)) ).
tff(sy_c_Orderings_Oord__class_Oless__eq,type,
ord_less_eq:
!>[A: $tType] : fun(A,fun(A,bool)) ).
tff(sy_c_Orderings_Oord__class_Omax,type,
ord_max:
!>[A: $tType] : fun(A,fun(A,A)) ).
tff(sy_c_Orderings_Oorder__class_OGreatest,type,
order_Greatest:
!>[A: $tType] : ( fun(A,bool) > A ) ).
tff(sy_c_Orderings_Otop__class_Otop,type,
top_top:
!>[A: $tType] : A ).
tff(sy_c_Power_Opower__class_Opower,type,
power_power:
!>[A: $tType] : ( A > fun(nat,A) ) ).
tff(sy_c_Product__Type_OPair,type,
product_Pair:
!>[A: $tType,B: $tType] : fun(A,fun(B,product_prod(A,B))) ).
tff(sy_c_Product__Type_Oapfst,type,
product_apfst:
!>[A: $tType,C: $tType,B: $tType] : ( fun(A,C) > fun(product_prod(A,B),product_prod(C,B)) ) ).
tff(sy_c_Product__Type_Oapsnd,type,
product_apsnd:
!>[B: $tType,C: $tType,A: $tType] : fun(fun(B,C),fun(product_prod(A,B),product_prod(A,C))) ).
tff(sy_c_Product__Type_Oold_Oprod_Orec__prod,type,
product_rec_prod:
!>[A: $tType,B: $tType,T: $tType] : ( ( fun(A,fun(B,T)) * product_prod(A,B) ) > T ) ).
tff(sy_c_Product__Type_Oprod_Ocase__prod,type,
product_case_prod:
!>[A: $tType,B: $tType,C: $tType] : fun(fun(A,fun(B,C)),fun(product_prod(A,B),C)) ).
tff(sy_c_Product__Type_Oprod_Ofst,type,
product_fst:
!>[A: $tType,B: $tType] : fun(product_prod(A,B),A) ).
tff(sy_c_Product__Type_Oprod_Osnd,type,
product_snd:
!>[A: $tType,B: $tType] : fun(product_prod(A,B),B) ).
tff(sy_c_Product__Type_Oproduct,type,
product_product:
!>[A: $tType,B: $tType] : ( ( set(A) * set(B) ) > set(product_prod(A,B)) ) ).
tff(sy_c_Rat_OFrct,type,
frct: product_prod(int,int) > rat ).
tff(sy_c_Rat_Onormalize,type,
normalize: product_prod(int,int) > product_prod(int,int) ).
tff(sy_c_Rat_Oof__int,type,
of_int: int > rat ).
tff(sy_c_Rat_Oquotient__of,type,
quotient_of: rat > product_prod(int,int) ).
tff(sy_c_Real__Vector__Spaces_OReals,type,
real_Vector_Reals:
!>[A: $tType] : set(A) ).
tff(sy_c_Real__Vector__Spaces_Obounded__linear,type,
real_V3181309239436604168linear:
!>[A: $tType,B: $tType] : ( fun(A,B) > $o ) ).
tff(sy_c_Real__Vector__Spaces_Obounded__linear__axioms,type,
real_V4916620083959148203axioms:
!>[A: $tType,B: $tType] : ( fun(A,B) > $o ) ).
tff(sy_c_Real__Vector__Spaces_Odist__class_Odist,type,
real_V557655796197034286t_dist:
!>[A: $tType] : ( ( A * A ) > real ) ).
tff(sy_c_Real__Vector__Spaces_Onorm__class_Onorm,type,
real_V7770717601297561774m_norm:
!>[A: $tType] : ( A > real ) ).
tff(sy_c_Real__Vector__Spaces_Oof__real,type,
real_Vector_of_real:
!>[A: $tType] : ( real > A ) ).
tff(sy_c_Real__Vector__Spaces_OscaleR__class_OscaleR,type,
real_V8093663219630862766scaleR:
!>[A: $tType] : ( real > fun(A,A) ) ).
tff(sy_c_Relation_OId__on,type,
id_on:
!>[A: $tType] : ( set(A) > set(product_prod(A,A)) ) ).
tff(sy_c_Relation_Orelcomp,type,
relcomp:
!>[A: $tType,B: $tType,C: $tType] : ( ( set(product_prod(A,B)) * set(product_prod(B,C)) ) > set(product_prod(A,C)) ) ).
tff(sy_c_Rings_Odivide__class_Odivide,type,
divide_divide:
!>[A: $tType] : fun(A,fun(A,A)) ).
tff(sy_c_Rings_Odvd__class_Odvd,type,
dvd_dvd:
!>[A: $tType] : fun(A,fun(A,bool)) ).
tff(sy_c_Rings_Omodulo__class_Omodulo,type,
modulo_modulo:
!>[A: $tType] : ( ( A * A ) > A ) ).
tff(sy_c_Rings_Ozero__neq__one__class_Oof__bool,type,
zero_neq_one_of_bool:
!>[A: $tType] : fun(bool,A) ).
tff(sy_c_Series_Osuminf,type,
suminf:
!>[A: $tType] : ( fun(nat,A) > A ) ).
tff(sy_c_Series_Osummable,type,
summable:
!>[A: $tType] : ( fun(nat,A) > $o ) ).
tff(sy_c_Series_Osums,type,
sums:
!>[A: $tType] : ( ( fun(nat,A) * A ) > $o ) ).
tff(sy_c_Set_OCollect,type,
collect:
!>[A: $tType] : fun(fun(A,bool),set(A)) ).
tff(sy_c_Set_OPow,type,
pow2:
!>[A: $tType] : ( set(A) > set(set(A)) ) ).
tff(sy_c_Set_Oimage,type,
image:
!>[A: $tType,B: $tType] : ( fun(A,B) > fun(set(A),set(B)) ) ).
tff(sy_c_Set_Oinsert,type,
insert:
!>[A: $tType] : ( A > fun(set(A),set(A)) ) ).
tff(sy_c_Set__Interval_Ofold__atLeastAtMost__nat,type,
set_fo6178422350223883121st_nat:
!>[A: $tType] : ( ( fun(nat,fun(A,A)) * nat * nat * A ) > A ) ).
tff(sy_c_Set__Interval_Ofold__atLeastAtMost__nat__rel,type,
set_fo1817059534552279752at_rel:
!>[A: $tType] : fun(product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A))),fun(product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A))),bool)) ).
tff(sy_c_Set__Interval_Oord__class_OatLeast,type,
set_ord_atLeast:
!>[A: $tType] : fun(A,set(A)) ).
tff(sy_c_Set__Interval_Oord__class_OatLeastAtMost,type,
set_or1337092689740270186AtMost:
!>[A: $tType] : ( ( A * A ) > set(A) ) ).
tff(sy_c_Set__Interval_Oord__class_OatLeastLessThan,type,
set_or7035219750837199246ssThan:
!>[A: $tType] : ( ( A * A ) > set(A) ) ).
tff(sy_c_Set__Interval_Oord__class_OatMost,type,
set_ord_atMost:
!>[A: $tType] : fun(A,set(A)) ).
tff(sy_c_Set__Interval_Oord__class_OgreaterThan,type,
set_ord_greaterThan:
!>[A: $tType] : fun(A,set(A)) ).
tff(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost,type,
set_or3652927894154168847AtMost:
!>[A: $tType] : ( ( A * A ) > set(A) ) ).
tff(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan,type,
set_or5935395276787703475ssThan:
!>[A: $tType] : ( ( A * A ) > set(A) ) ).
tff(sy_c_Set__Interval_Oord__class_OlessThan,type,
set_ord_lessThan:
!>[A: $tType] : fun(A,set(A)) ).
tff(sy_c_String_Oascii__of,type,
ascii_of: char > char ).
tff(sy_c_String_Ochar_OChar,type,
char2: ( bool * bool * bool * bool * bool * bool * bool * bool ) > char ).
tff(sy_c_String_Ochar_Osize__char,type,
size_char: char > nat ).
tff(sy_c_String_Ocomm__semiring__1__class_Oof__char,type,
comm_s6883823935334413003f_char:
!>[A: $tType] : fun(char,A) ).
tff(sy_c_String_Ointeger__of__char,type,
integer_of_char: char > code_integer ).
tff(sy_c_String_Ounique__euclidean__semiring__with__bit__operations__class_Ochar__of,type,
unique5772411509450598832har_of:
!>[A: $tType] : fun(A,char) ).
tff(sy_c_Topological__Spaces_Ocontinuous,type,
topolo3448309680560233919inuous:
!>[A: $tType,B: $tType] : ( ( filter(A) * fun(A,B) ) > $o ) ).
tff(sy_c_Topological__Spaces_Omonoseq,type,
topological_monoseq:
!>[A: $tType] : ( fun(nat,A) > $o ) ).
tff(sy_c_Topological__Spaces_Oopen__class_Oopen,type,
topolo1002775350975398744n_open:
!>[A: $tType] : ( set(A) > $o ) ).
tff(sy_c_Topological__Spaces_Ot2__space__class_OLim,type,
topolo3827282254853284352ce_Lim:
!>[F: $tType,A: $tType] : ( ( filter(F) * fun(F,A) ) > A ) ).
tff(sy_c_Topological__Spaces_Otopological__space__class_Oat__within,type,
topolo174197925503356063within:
!>[A: $tType] : ( ( A * set(A) ) > filter(A) ) ).
tff(sy_c_Topological__Spaces_Otopological__space__class_Onhds,type,
topolo7230453075368039082e_nhds:
!>[A: $tType] : ( A > filter(A) ) ).
tff(sy_c_Topological__Spaces_Ouniform__space__class_OCauchy,type,
topolo3814608138187158403Cauchy:
!>[A: $tType] : ( fun(nat,A) > $o ) ).
tff(sy_c_Topological__Spaces_Ouniform__space__class_Ototally__bounded,type,
topolo6688025880775521714ounded:
!>[A: $tType] : ( set(A) > $o ) ).
tff(sy_c_Transcendental_Oarccos,type,
arccos: fun(real,real) ).
tff(sy_c_Transcendental_Oarcosh,type,
arcosh:
!>[A: $tType] : fun(A,A) ).
tff(sy_c_Transcendental_Oarcsin,type,
arcsin: fun(real,real) ).
tff(sy_c_Transcendental_Oarctan,type,
arctan: fun(real,real) ).
tff(sy_c_Transcendental_Oarsinh,type,
arsinh:
!>[A: $tType] : fun(A,A) ).
tff(sy_c_Transcendental_Oartanh,type,
artanh:
!>[A: $tType] : fun(A,A) ).
tff(sy_c_Transcendental_Ocos,type,
cos:
!>[A: $tType] : fun(A,A) ).
tff(sy_c_Transcendental_Ocos__coeff,type,
cos_coeff: fun(nat,real) ).
tff(sy_c_Transcendental_Ocosh,type,
cosh:
!>[A: $tType] : ( A > A ) ).
tff(sy_c_Transcendental_Ocot,type,
cot:
!>[A: $tType] : fun(A,A) ).
tff(sy_c_Transcendental_Odiffs,type,
diffs:
!>[A: $tType] : ( fun(nat,A) > fun(nat,A) ) ).
tff(sy_c_Transcendental_Oexp,type,
exp:
!>[A: $tType] : fun(A,A) ).
tff(sy_c_Transcendental_Oln__class_Oln,type,
ln_ln:
!>[A: $tType] : fun(A,A) ).
tff(sy_c_Transcendental_Olog,type,
log: real > fun(real,real) ).
tff(sy_c_Transcendental_Opi,type,
pi: real ).
tff(sy_c_Transcendental_Opowr,type,
powr:
!>[A: $tType] : ( ( A * A ) > A ) ).
tff(sy_c_Transcendental_Osin,type,
sin:
!>[A: $tType] : ( A > A ) ).
tff(sy_c_Transcendental_Osin__coeff,type,
sin_coeff: nat > real ).
tff(sy_c_Transcendental_Osinh,type,
sinh:
!>[A: $tType] : ( A > A ) ).
tff(sy_c_Transcendental_Otan,type,
tan:
!>[A: $tType] : fun(A,A) ).
tff(sy_c_Transcendental_Otanh,type,
tanh:
!>[A: $tType] : fun(A,A) ).
tff(sy_c_VEBT__Definitions_OVEBT_OLeaf,type,
vEBT_Leaf: ( bool * bool ) > vEBT_VEBT ).
tff(sy_c_VEBT__Definitions_OVEBT_ONode,type,
vEBT_Node: ( option(product_prod(nat,nat)) * nat * list(vEBT_VEBT) * vEBT_VEBT ) > vEBT_VEBT ).
tff(sy_c_VEBT__Definitions_OVEBT_Osize__VEBT,type,
vEBT_size_VEBT: fun(vEBT_VEBT,nat) ).
tff(sy_c_VEBT__Definitions_OVEBT__internal_Oboth__member__options,type,
vEBT_V8194947554948674370ptions: vEBT_VEBT > fun(nat,bool) ).
tff(sy_c_VEBT__Definitions_OVEBT__internal_Ohigh,type,
vEBT_VEBT_high: ( nat * nat ) > nat ).
tff(sy_c_VEBT__Definitions_OVEBT__internal_Oin__children,type,
vEBT_V5917875025757280293ildren: ( nat * list(vEBT_VEBT) * nat ) > $o ).
tff(sy_c_VEBT__Definitions_OVEBT__internal_Olow,type,
vEBT_VEBT_low: ( nat * nat ) > nat ).
tff(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima,type,
vEBT_VEBT_membermima: ( vEBT_VEBT * nat ) > $o ).
tff(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima__rel,type,
vEBT_V4351362008482014158ma_rel: fun(product_prod(vEBT_VEBT,nat),fun(product_prod(vEBT_VEBT,nat),bool)) ).
tff(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member,type,
vEBT_V5719532721284313246member: ( vEBT_VEBT * nat ) > $o ).
tff(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member__rel,type,
vEBT_V5765760719290551771er_rel: fun(product_prod(vEBT_VEBT,nat),fun(product_prod(vEBT_VEBT,nat),bool)) ).
tff(sy_c_VEBT__Definitions_OVEBT__internal_Ovalid_H,type,
vEBT_VEBT_valid: ( vEBT_VEBT * nat ) > $o ).
tff(sy_c_VEBT__Definitions_Oinvar__vebt,type,
vEBT_invar_vebt: ( vEBT_VEBT * nat ) > $o ).
tff(sy_c_VEBT__Definitions_Oset__vebt,type,
vEBT_set_vebt: vEBT_VEBT > set(nat) ).
tff(sy_c_VEBT__Definitions_Ovebt__buildup,type,
vEBT_vebt_buildup: nat > vEBT_VEBT ).
tff(sy_c_VEBT__Definitions_Ovebt__buildup__rel,type,
vEBT_v4011308405150292612up_rel: fun(nat,fun(nat,bool)) ).
tff(sy_c_VEBT__Space_OVEBT__internal_Ocnt,type,
vEBT_VEBT_cnt: fun(vEBT_VEBT,real) ).
tff(sy_c_VEBT__Space_OVEBT__internal_Ocnt__rel,type,
vEBT_VEBT_cnt_rel: fun(vEBT_VEBT,fun(vEBT_VEBT,bool)) ).
tff(sy_c_VEBT__Space_OVEBT__internal_Ospace,type,
vEBT_VEBT_space: fun(vEBT_VEBT,nat) ).
tff(sy_c_VEBT__Space_OVEBT__internal_Ospace_H,type,
vEBT_VEBT_space2: fun(vEBT_VEBT,nat) ).
tff(sy_c_VEBT__Space_OVEBT__internal_Ospace_H__rel,type,
vEBT_VEBT_space_rel: fun(vEBT_VEBT,fun(vEBT_VEBT,bool)) ).
tff(sy_c_VEBT__Space_OVEBT__internal_Ospace__rel,type,
vEBT_VEBT_space_rel2: fun(vEBT_VEBT,fun(vEBT_VEBT,bool)) ).
tff(sy_c_Wellfounded_Oaccp,type,
accp:
!>[A: $tType] : ( fun(A,fun(A,bool)) > fun(A,bool) ) ).
tff(sy_c_Wellfounded_Ofinite__psubset,type,
finite_psubset:
!>[A: $tType] : set(product_prod(set(A),set(A))) ).
tff(sy_c_Wellfounded_Olex__prod,type,
lex_prod:
!>[A: $tType,B: $tType] : ( ( set(product_prod(A,A)) * set(product_prod(B,B)) ) > set(product_prod(product_prod(A,B),product_prod(A,B))) ) ).
tff(sy_c_Wellfounded_Omax__ext,type,
max_ext:
!>[A: $tType] : ( set(product_prod(A,A)) > set(product_prod(set(A),set(A))) ) ).
tff(sy_c_Wellfounded_Omeasure,type,
measure:
!>[A: $tType] : ( fun(A,nat) > set(product_prod(A,A)) ) ).
tff(sy_c_Wellfounded_Omin__ext,type,
min_ext:
!>[A: $tType] : ( set(product_prod(A,A)) > set(product_prod(set(A),set(A))) ) ).
tff(sy_c_Wellfounded_Opred__nat,type,
pred_nat: set(product_prod(nat,nat)) ).
tff(sy_c_Wfrec_Osame__fst,type,
same_fst:
!>[A: $tType,B: $tType] : ( ( fun(A,bool) * fun(A,set(product_prod(B,B))) ) > set(product_prod(product_prod(A,B),product_prod(A,B))) ) ).
tff(sy_c_aa,type,
aa:
!>[A: $tType,B: $tType] : ( ( fun(A,B) * A ) > B ) ).
tff(sy_c_fChoice,type,
fChoice:
!>[A: $tType] : ( fun(A,bool) > A ) ).
tff(sy_c_fEx,type,
fEx:
!>[A: $tType] : fun(fun(A,bool),bool) ).
tff(sy_c_fFalse,type,
fFalse: bool ).
tff(sy_c_fNot,type,
fNot: fun(bool,bool) ).
tff(sy_c_fTrue,type,
fTrue: bool ).
tff(sy_c_fconj,type,
fconj: ( bool * bool ) > bool ).
tff(sy_c_fdisj,type,
fdisj: ( bool * bool ) > bool ).
tff(sy_c_fequal,type,
fequal:
!>[A: $tType] : fun(A,fun(A,bool)) ).
tff(sy_c_member,type,
member:
!>[A: $tType] : ( ( A * set(A) ) > bool ) ).
tff(sy_c_pp,type,
pp: bool > $o ).
tff(sy_v_c,type,
c: real ).
tff(sy_v_deg____,type,
deg: nat ).
tff(sy_v_m____,type,
m: nat ).
tff(sy_v_ma____,type,
ma: nat ).
tff(sy_v_mi____,type,
mi: nat ).
tff(sy_v_na____,type,
na: nat ).
tff(sy_v_summary____,type,
summary: vEBT_VEBT ).
tff(sy_v_treeList____,type,
treeList: list(vEBT_VEBT) ).
% Relevant facts (9052)
tff(fact_0__C4_Ohyps_C_I3_J,axiom,
m = na ).
% "4.hyps"(3)
tff(fact_1_c__def,axiom,
c = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(num,real,numeral_numeral(real),aa(num,num,bit1,aa(num,num,bit1,aa(num,num,bit1,one2))))),aa(num,real,numeral_numeral(real),bit0(aa(num,num,bit1,bit0(one2))))) ).
% c_def
tff(fact_2__C4_Ohyps_C_I7_J,axiom,
pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),mi),ma)) ).
% "4.hyps"(7)
tff(fact_3__C4_OIH_C_I2_J,axiom,
pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(vEBT_VEBT,real,vEBT_VEBT_cnt,summary)),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(nat,real,power_power(real,aa(num,real,numeral_numeral(real),bit0(one2))),m)),c)))) ).
% "4.IH"(2)
tff(fact_4__092_060open_062cnt_A_INode_ANone_Adeg_AtreeList_Asummary_J_A_092_060le_062_A2_A_K_A_I2_A_094_A_In_A_L_An_J_A_N_A15_A_P_A10_J_092_060close_062,axiom,
pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(vEBT_VEBT,real,vEBT_VEBT_cnt,vEBT_Node(none(product_prod(nat,nat)),deg,treeList,summary))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(nat,real,power_power(real,aa(num,real,numeral_numeral(real),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),na),na))),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(num,real,numeral_numeral(real),aa(num,num,bit1,aa(num,num,bit1,aa(num,num,bit1,one2))))),aa(num,real,numeral_numeral(real),bit0(aa(num,num,bit1,bit0(one2))))))))) ).
% \<open>cnt (Node None deg treeList summary) \<le> 2 * (2 ^ (n + n) - 15 / 10)\<close>
tff(fact_5__C4_Ohyps_C_I4_J,axiom,
deg = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),na),m) ).
% "4.hyps"(4)
tff(fact_6_left__diff__distrib__numeral,axiom,
! [A: $tType] :
( ( numeral(A)
& ring(A) )
=> ! [A2: A,B2: A,V: num] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)),aa(num,A,numeral_numeral(A),V)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(num,A,numeral_numeral(A),V))),aa(A,A,aa(A,fun(A,A),times_times(A),B2),aa(num,A,numeral_numeral(A),V))) ) ) ).
% left_diff_distrib_numeral
tff(fact_7_right__diff__distrib__numeral,axiom,
! [A: $tType] :
( ( numeral(A)
& ring(A) )
=> ! [V: num,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),V)),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),V)),B2)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),V)),C2)) ) ) ).
% right_diff_distrib_numeral
tff(fact_8__092_060open_062_092_060forall_062t_092_060in_062set_AtreeList_O_Acnt_At_A_092_060le_062_A2_A_K_A_I2_A_094_An_A_N_Ac_J_092_060close_062,axiom,
! [X: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),treeList)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(vEBT_VEBT,real,vEBT_VEBT_cnt,X)),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(nat,real,power_power(real,aa(num,real,numeral_numeral(real),bit0(one2))),na)),c)))) ) ).
% \<open>\<forall>t\<in>set treeList. cnt t \<le> 2 * (2 ^ n - c)\<close>
tff(fact_9_semiring__norm_I85_J,axiom,
! [M: num] : ( bit0(M) != one2 ) ).
% semiring_norm(85)
tff(fact_10_semiring__norm_I83_J,axiom,
! [N: num] : ( one2 != bit0(N) ) ).
% semiring_norm(83)
tff(fact_11_numeral__times__numeral,axiom,
! [A: $tType] :
( semiring_numeral(A)
=> ! [M: num,N: num] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),M)),aa(num,A,numeral_numeral(A),N)) = aa(num,A,numeral_numeral(A),aa(num,num,aa(num,fun(num,num),times_times(num),M),N)) ) ) ).
% numeral_times_numeral
tff(fact_12_mult__numeral__left__semiring__numeral,axiom,
! [A: $tType] :
( semiring_numeral(A)
=> ! [V: num,W: num,Z: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),V)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),W)),Z)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),aa(num,num,aa(num,fun(num,num),times_times(num),V),W))),Z) ) ) ).
% mult_numeral_left_semiring_numeral
tff(fact_13_numeral__le__iff,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [M: num,N: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(num,A,numeral_numeral(A),M)),aa(num,A,numeral_numeral(A),N)))
<=> pp(aa(num,bool,aa(num,fun(num,bool),ord_less_eq(num),M),N)) ) ) ).
% numeral_le_iff
tff(fact_14__092_060open_062cnt_A_INode_A_ISome_A_Imi_M_Ama_J_J_Adeg_AtreeList_Asummary_J_A_092_060le_062_A2_A_K_A_I2_A_094_An_A_L_A1_J_A_K_A_I2_A_094_An_A_N_Ac_J_A_L_A1_092_060close_062,axiom,
pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(vEBT_VEBT,real,vEBT_VEBT_cnt,vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),mi),ma)),deg,treeList,summary))),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,aa(num,real,numeral_numeral(real),bit0(one2))),na)),one_one(real)))),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(nat,real,power_power(real,aa(num,real,numeral_numeral(real),bit0(one2))),na)),c))),one_one(real)))) ).
% \<open>cnt (Node (Some (mi, ma)) deg treeList summary) \<le> 2 * (2 ^ n + 1) * (2 ^ n - c) + 1\<close>
tff(fact_15__C4_OIH_C_I1_J,axiom,
! [X: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),treeList)))
=> ( vEBT_invar_vebt(X,na)
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(vEBT_VEBT,real,vEBT_VEBT_cnt,X)),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(nat,real,power_power(real,aa(num,real,numeral_numeral(real),bit0(one2))),na)),c)))) ) ) ).
% "4.IH"(1)
tff(fact_16_power2__diff,axiom,
! [A: $tType] :
( comm_ring_1(A)
=> ! [X2: A,Y: A] : ( aa(nat,A,power_power(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y)),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,A,power_power(A,Y),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),X2)),Y)) ) ) ).
% power2_diff
tff(fact_17__C4_Ohyps_C_I1_J,axiom,
vEBT_invar_vebt(summary,m) ).
% "4.hyps"(1)
tff(fact_18_numeral__eq__iff,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [M: num,N: num] :
( ( aa(num,A,numeral_numeral(A),M) = aa(num,A,numeral_numeral(A),N) )
<=> ( M = N ) ) ) ).
% numeral_eq_iff
tff(fact_19_semiring__norm_I6_J,axiom,
! [M: num,N: num] : ( aa(num,num,aa(num,fun(num,num),plus_plus(num),bit0(M)),bit0(N)) = bit0(aa(num,num,aa(num,fun(num,num),plus_plus(num),M),N)) ) ).
% semiring_norm(6)
tff(fact_20_semiring__norm_I87_J,axiom,
! [M: num,N: num] :
( ( bit0(M) = bit0(N) )
<=> ( M = N ) ) ).
% semiring_norm(87)
tff(fact_21_semiring__norm_I90_J,axiom,
! [M: num,N: num] :
( ( aa(num,num,bit1,M) = aa(num,num,bit1,N) )
<=> ( M = N ) ) ).
% semiring_norm(90)
tff(fact_22_add__numeral__left,axiom,
! [A: $tType] :
( numeral(A)
=> ! [V: num,W: num,Z: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(num,A,numeral_numeral(A),V)),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(num,A,numeral_numeral(A),W)),Z)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(num,A,numeral_numeral(A),aa(num,num,aa(num,fun(num,num),plus_plus(num),V),W))),Z) ) ) ).
% add_numeral_left
tff(fact_23_numeral__plus__numeral,axiom,
! [A: $tType] :
( numeral(A)
=> ! [M: num,N: num] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(num,A,numeral_numeral(A),M)),aa(num,A,numeral_numeral(A),N)) = aa(num,A,numeral_numeral(A),aa(num,num,aa(num,fun(num,num),plus_plus(num),M),N)) ) ) ).
% numeral_plus_numeral
tff(fact_24_semiring__norm_I2_J,axiom,
aa(num,num,aa(num,fun(num,num),plus_plus(num),one2),one2) = bit0(one2) ).
% semiring_norm(2)
tff(fact_25_power__one,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [N: nat] : ( aa(nat,A,power_power(A,one_one(A)),N) = one_one(A) ) ) ).
% power_one
tff(fact_26_semiring__norm_I7_J,axiom,
! [M: num,N: num] : ( aa(num,num,aa(num,fun(num,num),plus_plus(num),bit0(M)),aa(num,num,bit1,N)) = aa(num,num,bit1,aa(num,num,aa(num,fun(num,num),plus_plus(num),M),N)) ) ).
% semiring_norm(7)
tff(fact_27_semiring__norm_I9_J,axiom,
! [M: num,N: num] : ( aa(num,num,aa(num,fun(num,num),plus_plus(num),aa(num,num,bit1,M)),bit0(N)) = aa(num,num,bit1,aa(num,num,aa(num,fun(num,num),plus_plus(num),M),N)) ) ).
% semiring_norm(9)
tff(fact_28_semiring__norm_I88_J,axiom,
! [M: num,N: num] : ( bit0(M) != aa(num,num,bit1,N) ) ).
% semiring_norm(88)
tff(fact_29_semiring__norm_I89_J,axiom,
! [M: num,N: num] : ( aa(num,num,bit1,M) != bit0(N) ) ).
% semiring_norm(89)
tff(fact_30_semiring__norm_I84_J,axiom,
! [N: num] : ( one2 != aa(num,num,bit1,N) ) ).
% semiring_norm(84)
tff(fact_31_semiring__norm_I86_J,axiom,
! [M: num] : ( aa(num,num,bit1,M) != one2 ) ).
% semiring_norm(86)
tff(fact_32_semiring__norm_I13_J,axiom,
! [M: num,N: num] : ( aa(num,num,aa(num,fun(num,num),times_times(num),bit0(M)),bit0(N)) = bit0(bit0(aa(num,num,aa(num,fun(num,num),times_times(num),M),N))) ) ).
% semiring_norm(13)
tff(fact_33_semiring__norm_I11_J,axiom,
! [M: num] : ( aa(num,num,aa(num,fun(num,num),times_times(num),M),one2) = M ) ).
% semiring_norm(11)
tff(fact_34_semiring__norm_I12_J,axiom,
! [N: num] : ( aa(num,num,aa(num,fun(num,num),times_times(num),one2),N) = N ) ).
% semiring_norm(12)
tff(fact_35_semiring__norm_I71_J,axiom,
! [M: num,N: num] :
( pp(aa(num,bool,aa(num,fun(num,bool),ord_less_eq(num),bit0(M)),bit0(N)))
<=> pp(aa(num,bool,aa(num,fun(num,bool),ord_less_eq(num),M),N)) ) ).
% semiring_norm(71)
tff(fact_36_semiring__norm_I68_J,axiom,
! [N: num] : pp(aa(num,bool,aa(num,fun(num,bool),ord_less_eq(num),one2),N)) ).
% semiring_norm(68)
tff(fact_37_semiring__norm_I73_J,axiom,
! [M: num,N: num] :
( pp(aa(num,bool,aa(num,fun(num,bool),ord_less_eq(num),aa(num,num,bit1,M)),aa(num,num,bit1,N)))
<=> pp(aa(num,bool,aa(num,fun(num,bool),ord_less_eq(num),M),N)) ) ).
% semiring_norm(73)
tff(fact_38_distrib__right__numeral,axiom,
! [A: $tType] :
( ( numeral(A)
& semiring(A) )
=> ! [A2: A,B2: A,V: num] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),aa(num,A,numeral_numeral(A),V)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(num,A,numeral_numeral(A),V))),aa(A,A,aa(A,fun(A,A),times_times(A),B2),aa(num,A,numeral_numeral(A),V))) ) ) ).
% distrib_right_numeral
tff(fact_39_distrib__left__numeral,axiom,
! [A: $tType] :
( ( numeral(A)
& semiring(A) )
=> ! [V: num,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),V)),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),V)),B2)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),V)),C2)) ) ) ).
% distrib_left_numeral
tff(fact_40_one__eq__numeral__iff,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [N: num] :
( ( one_one(A) = aa(num,A,numeral_numeral(A),N) )
<=> ( one2 = N ) ) ) ).
% one_eq_numeral_iff
tff(fact_41_numeral__eq__one__iff,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [N: num] :
( ( aa(num,A,numeral_numeral(A),N) = one_one(A) )
<=> ( N = one2 ) ) ) ).
% numeral_eq_one_iff
tff(fact_42_power__add__numeral2,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [A2: A,M: num,N: num,B2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),M))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),N))),B2)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),aa(num,num,aa(num,fun(num,num),plus_plus(num),M),N)))),B2) ) ) ).
% power_add_numeral2
tff(fact_43_power__add__numeral,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [A2: A,M: num,N: num] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),M))),aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),N))) = aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),aa(num,num,aa(num,fun(num,num),plus_plus(num),M),N))) ) ) ).
% power_add_numeral
tff(fact_44_mem__Collect__eq,axiom,
! [A: $tType,A2: A,P: fun(A,bool)] :
( pp(member(A,A2,aa(fun(A,bool),set(A),collect(A),P)))
<=> pp(aa(A,bool,P,A2)) ) ).
% mem_Collect_eq
tff(fact_45_Collect__mem__eq,axiom,
! [A: $tType,A3: set(A)] : ( aa(fun(A,bool),set(A),collect(A),aTP_Lamp_a(set(A),fun(A,bool),A3)) = A3 ) ).
% Collect_mem_eq
tff(fact_46_Collect__cong,axiom,
! [A: $tType,P: fun(A,bool),Q: fun(A,bool)] :
( ! [X3: A] :
( pp(aa(A,bool,P,X3))
<=> pp(aa(A,bool,Q,X3)) )
=> ( aa(fun(A,bool),set(A),collect(A),P) = aa(fun(A,bool),set(A),collect(A),Q) ) ) ).
% Collect_cong
tff(fact_47_ext,axiom,
! [B: $tType,A: $tType,F2: fun(A,B),G: fun(A,B)] :
( ! [X3: A] : ( aa(A,B,F2,X3) = aa(A,B,G,X3) )
=> ( F2 = G ) ) ).
% ext
tff(fact_48_semiring__norm_I3_J,axiom,
! [N: num] : ( aa(num,num,aa(num,fun(num,num),plus_plus(num),one2),bit0(N)) = aa(num,num,bit1,N) ) ).
% semiring_norm(3)
tff(fact_49_semiring__norm_I4_J,axiom,
! [N: num] : ( aa(num,num,aa(num,fun(num,num),plus_plus(num),one2),aa(num,num,bit1,N)) = bit0(aa(num,num,aa(num,fun(num,num),plus_plus(num),N),one2)) ) ).
% semiring_norm(4)
tff(fact_50_semiring__norm_I5_J,axiom,
! [M: num] : ( aa(num,num,aa(num,fun(num,num),plus_plus(num),bit0(M)),one2) = aa(num,num,bit1,M) ) ).
% semiring_norm(5)
tff(fact_51_semiring__norm_I8_J,axiom,
! [M: num] : ( aa(num,num,aa(num,fun(num,num),plus_plus(num),aa(num,num,bit1,M)),one2) = bit0(aa(num,num,aa(num,fun(num,num),plus_plus(num),M),one2)) ) ).
% semiring_norm(8)
tff(fact_52_semiring__norm_I10_J,axiom,
! [M: num,N: num] : ( aa(num,num,aa(num,fun(num,num),plus_plus(num),aa(num,num,bit1,M)),aa(num,num,bit1,N)) = bit0(aa(num,num,aa(num,fun(num,num),plus_plus(num),aa(num,num,aa(num,fun(num,num),plus_plus(num),M),N)),one2)) ) ).
% semiring_norm(10)
tff(fact_53_num__double,axiom,
! [N: num] : ( aa(num,num,aa(num,fun(num,num),times_times(num),bit0(one2)),N) = bit0(N) ) ).
% num_double
tff(fact_54_semiring__norm_I16_J,axiom,
! [M: num,N: num] : ( aa(num,num,aa(num,fun(num,num),times_times(num),aa(num,num,bit1,M)),aa(num,num,bit1,N)) = aa(num,num,bit1,aa(num,num,aa(num,fun(num,num),plus_plus(num),aa(num,num,aa(num,fun(num,num),plus_plus(num),M),N)),bit0(aa(num,num,aa(num,fun(num,num),times_times(num),M),N)))) ) ).
% semiring_norm(16)
tff(fact_55_semiring__norm_I14_J,axiom,
! [M: num,N: num] : ( aa(num,num,aa(num,fun(num,num),times_times(num),bit0(M)),aa(num,num,bit1,N)) = bit0(aa(num,num,aa(num,fun(num,num),times_times(num),M),aa(num,num,bit1,N))) ) ).
% semiring_norm(14)
tff(fact_56_semiring__norm_I15_J,axiom,
! [M: num,N: num] : ( aa(num,num,aa(num,fun(num,num),times_times(num),aa(num,num,bit1,M)),bit0(N)) = bit0(aa(num,num,aa(num,fun(num,num),times_times(num),aa(num,num,bit1,M)),N)) ) ).
% semiring_norm(15)
tff(fact_57_power__mult__numeral,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [A2: A,M: num,N: num] : ( aa(nat,A,power_power(A,aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),M))),aa(num,nat,numeral_numeral(nat),N)) = aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),aa(num,num,aa(num,fun(num,num),times_times(num),M),N))) ) ) ).
% power_mult_numeral
tff(fact_58_semiring__norm_I69_J,axiom,
! [M: num] : ~ pp(aa(num,bool,aa(num,fun(num,bool),ord_less_eq(num),bit0(M)),one2)) ).
% semiring_norm(69)
tff(fact_59_semiring__norm_I72_J,axiom,
! [M: num,N: num] :
( pp(aa(num,bool,aa(num,fun(num,bool),ord_less_eq(num),bit0(M)),aa(num,num,bit1,N)))
<=> pp(aa(num,bool,aa(num,fun(num,bool),ord_less_eq(num),M),N)) ) ).
% semiring_norm(72)
tff(fact_60_semiring__norm_I70_J,axiom,
! [M: num] : ~ pp(aa(num,bool,aa(num,fun(num,bool),ord_less_eq(num),aa(num,num,bit1,M)),one2)) ).
% semiring_norm(70)
tff(fact_61_le__divide__eq__numeral1_I1_J,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A,W: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),aa(num,A,numeral_numeral(A),W))))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(num,A,numeral_numeral(A),W))),B2)) ) ) ).
% le_divide_eq_numeral1(1)
tff(fact_62_divide__le__eq__numeral1_I1_J,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [B2: A,W: num,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),aa(num,A,numeral_numeral(A),W))),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(num,A,numeral_numeral(A),W)))) ) ) ).
% divide_le_eq_numeral1(1)
tff(fact_63_one__plus__numeral,axiom,
! [A: $tType] :
( numeral(A)
=> ! [N: num] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),aa(num,A,numeral_numeral(A),N)) = aa(num,A,numeral_numeral(A),aa(num,num,aa(num,fun(num,num),plus_plus(num),one2),N)) ) ) ).
% one_plus_numeral
tff(fact_64_numeral__plus__one,axiom,
! [A: $tType] :
( numeral(A)
=> ! [N: num] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(num,A,numeral_numeral(A),N)),one_one(A)) = aa(num,A,numeral_numeral(A),aa(num,num,aa(num,fun(num,num),plus_plus(num),N),one2)) ) ) ).
% numeral_plus_one
tff(fact_65__092_060open_0622_A_K_A_I2_A_094_A_In_A_L_An_J_A_L_A_I1_A_N_Ac_J_A_K_A2_A_094_An_A_N_Ac_A_L_A1_A_P_A2_J_A_092_060le_062_A2_A_K_A_I2_A_094_A_In_A_L_An_J_A_N_A15_A_P_A10_J_092_060close_062,axiom,
pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,aa(num,real,numeral_numeral(real),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),na),na))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),one_one(real)),c)),aa(nat,real,power_power(real,aa(num,real,numeral_numeral(real),bit0(one2))),na)))),c)),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2)))))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(nat,real,power_power(real,aa(num,real,numeral_numeral(real),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),na),na))),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(num,real,numeral_numeral(real),aa(num,num,bit1,aa(num,num,bit1,aa(num,num,bit1,one2))))),aa(num,real,numeral_numeral(real),bit0(aa(num,num,bit1,bit0(one2))))))))) ).
% \<open>2 * (2 ^ (n + n) + (1 - c) * 2 ^ n - c + 1 / 2) \<le> 2 * (2 ^ (n + n) - 15 / 10)\<close>
tff(fact_66_one__add__one,axiom,
! [A: $tType] :
( numeral(A)
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),one_one(A)) = aa(num,A,numeral_numeral(A),bit0(one2)) ) ) ).
% one_add_one
tff(fact_67_numeral__le__one__iff,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [N: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(num,A,numeral_numeral(A),N)),one_one(A)))
<=> pp(aa(num,bool,aa(num,fun(num,bool),ord_less_eq(num),N),one2)) ) ) ).
% numeral_le_one_iff
tff(fact_68__C4_Ohyps_C_I8_J,axiom,
pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),ma),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),deg))) ).
% "4.hyps"(8)
tff(fact_69__092_060open_062cnt_A_INode_ANone_Adeg_AtreeList_Asummary_J_A_092_060le_062_A2_A_K_A_I2_A_094_A_In_A_L_An_J_A_L_A_I1_A_N_Ac_J_A_K_A2_A_094_An_A_N_Ac_A_L_A1_A_P_A2_J_092_060close_062,axiom,
pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(vEBT_VEBT,real,vEBT_VEBT_cnt,vEBT_Node(none(product_prod(nat,nat)),deg,treeList,summary))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,aa(num,real,numeral_numeral(real),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),na),na))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),one_one(real)),c)),aa(nat,real,power_power(real,aa(num,real,numeral_numeral(real),bit0(one2))),na)))),c)),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2))))))) ).
% \<open>cnt (Node None deg treeList summary) \<le> 2 * (2 ^ (n + n) + (1 - c) * 2 ^ n - c + 1 / 2)\<close>
tff(fact_70__C4_Ohyps_C_I2_J,axiom,
aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),treeList) = aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),m) ).
% "4.hyps"(2)
tff(fact_71__C4_Ohyps_C_I6_J,axiom,
( ( mi = ma )
=> ! [X: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),treeList)))
=> ~ ? [X_1: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(X),X_1)) ) ) ).
% "4.hyps"(6)
tff(fact_72_is__num__normalize_I1_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),C2)) ) ) ).
% is_num_normalize(1)
tff(fact_73_numeral__Bit1,axiom,
! [A: $tType] :
( numeral(A)
=> ! [N: num] : ( aa(num,A,numeral_numeral(A),aa(num,num,bit1,N)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(num,A,numeral_numeral(A),N)),aa(num,A,numeral_numeral(A),N))),one_one(A)) ) ) ).
% numeral_Bit1
tff(fact_74_diff__le__diff__pow,axiom,
! [K: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),K))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,power_power(nat,K),M)),aa(nat,nat,power_power(nat,K),N)))) ) ).
% diff_le_diff_pow
tff(fact_75_nat__eq__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),J),I))
=> ( ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),I),U)),M) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),J),U)),N) )
<=> ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),I),J)),U)),M) = N ) ) ) ).
% nat_eq_add_iff1
tff(fact_76_nat__eq__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),J))
=> ( ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),I),U)),M) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),J),U)),N) )
<=> ( M = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),J),I)),U)),N) ) ) ) ).
% nat_eq_add_iff2
tff(fact_77_nat__le__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),J),I))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),I),U)),M)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),J),U)),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),I),J)),U)),M)),N)) ) ) ).
% nat_le_add_iff1
tff(fact_78_nat__le__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),J))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),I),U)),M)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),J),U)),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),J),I)),U)),N))) ) ) ).
% nat_le_add_iff2
tff(fact_79_nat__diff__add__eq1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),J),I))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),I),U)),M)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),J),U)),N)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),I),J)),U)),M)),N) ) ) ).
% nat_diff_add_eq1
tff(fact_80_nat__diff__add__eq2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),J))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),I),U)),M)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),J),U)),N)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),J),I)),U)),N)) ) ) ).
% nat_diff_add_eq2
tff(fact_81_left__add__mult__distrib,axiom,
! [I: nat,U: nat,J: nat,K: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),I),U)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),J),U)),K)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),J)),U)),K) ) ).
% left_add_mult_distrib
tff(fact_82_power2__nat__le__imp__le,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,power_power(nat,M),aa(num,nat,numeral_numeral(nat),bit0(one2)))),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ).
% power2_nat_le_imp_le
tff(fact_83_power2__nat__le__eq__le,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,power_power(nat,M),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,nat,power_power(nat,N),aa(num,nat,numeral_numeral(nat),bit0(one2)))))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ).
% power2_nat_le_eq_le
tff(fact_84_self__le__ge2__pow,axiom,
! [K: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),K))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),aa(nat,nat,power_power(nat,K),M))) ) ).
% self_le_ge2_pow
tff(fact_85_one__plus__numeral__commute,axiom,
! [A: $tType] :
( numeral(A)
=> ! [X2: num] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),aa(num,A,numeral_numeral(A),X2)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(num,A,numeral_numeral(A),X2)),one_one(A)) ) ) ).
% one_plus_numeral_commute
tff(fact_86_power__one__over,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A,N: nat] : ( aa(nat,A,power_power(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),A2)),N) = aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(nat,A,power_power(A,A2),N)) ) ) ).
% power_one_over
tff(fact_87_add__One__commute,axiom,
! [N: num] : ( aa(num,num,aa(num,fun(num,num),plus_plus(num),one2),N) = aa(num,num,aa(num,fun(num,num),plus_plus(num),N),one2) ) ).
% add_One_commute
tff(fact_88_le__num__One__iff,axiom,
! [X2: num] :
( pp(aa(num,bool,aa(num,fun(num,bool),ord_less_eq(num),X2),one2))
<=> ( X2 = one2 ) ) ).
% le_num_One_iff
tff(fact_89_le__numeral__extra_I4_J,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),one_one(A))) ) ).
% le_numeral_extra(4)
tff(fact_90_power__mult,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [A2: A,M: nat,N: nat] : ( aa(nat,A,power_power(A,A2),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),N)) = aa(nat,A,power_power(A,aa(nat,A,power_power(A,A2),M)),N) ) ) ).
% power_mult
tff(fact_91_power__even__eq,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [A2: A,N: nat] : ( aa(nat,A,power_power(A,A2),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)) = aa(nat,A,power_power(A,aa(nat,A,power_power(A,A2),N)),aa(num,nat,numeral_numeral(nat),bit0(one2))) ) ) ).
% power_even_eq
tff(fact_92_one__power2,axiom,
! [A: $tType] :
( semiring_1(A)
=> ( aa(nat,A,power_power(A,one_one(A)),aa(num,nat,numeral_numeral(nat),bit0(one2))) = one_one(A) ) ) ).
% one_power2
tff(fact_93_one__le__numeral,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [N: num] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),aa(num,A,numeral_numeral(A),N))) ) ).
% one_le_numeral
tff(fact_94_numeral__One,axiom,
! [A: $tType] :
( numeral(A)
=> ( aa(num,A,numeral_numeral(A),one2) = one_one(A) ) ) ).
% numeral_One
tff(fact_95_power__increasing,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [N: nat,N2: nat,A2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),N2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,A2),N)),aa(nat,A,power_power(A,A2),N2))) ) ) ) ).
% power_increasing
tff(fact_96_one__le__power,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),aa(nat,A,power_power(A,A2),N))) ) ) ).
% one_le_power
tff(fact_97_left__right__inverse__power,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [X2: A,Y: A,N: nat] :
( ( aa(A,A,aa(A,fun(A,A),times_times(A),X2),Y) = one_one(A) )
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,X2),N)),aa(nat,A,power_power(A,Y),N)) = one_one(A) ) ) ) ).
% left_right_inverse_power
tff(fact_98_power__divide,axiom,
! [A: $tType] :
( field(A)
=> ! [A2: A,B2: A,N: nat] : ( aa(nat,A,power_power(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),N) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(nat,A,power_power(A,A2),N)),aa(nat,A,power_power(A,B2),N)) ) ) ).
% power_divide
tff(fact_99_power3__eq__cube,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [A2: A] : ( aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,one2))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),A2)),A2) ) ) ).
% power3_eq_cube
tff(fact_100_power2__eq__square,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [A2: A] : ( aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(A,A,aa(A,fun(A,A),times_times(A),A2),A2) ) ) ).
% power2_eq_square
tff(fact_101_power4__eq__xxxx,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [X2: A] : ( aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(bit0(one2)))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),X2),X2)),X2)),X2) ) ) ).
% power4_eq_xxxx
tff(fact_102_power2__commute,axiom,
! [A: $tType] :
( comm_ring_1(A)
=> ! [X2: A,Y: A] : ( aa(nat,A,power_power(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y)),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(nat,A,power_power(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),Y),X2)),aa(num,nat,numeral_numeral(nat),bit0(one2))) ) ) ).
% power2_commute
tff(fact_103_divide__numeral__1,axiom,
! [A: $tType] :
( field(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),one2)) = A2 ) ) ).
% divide_numeral_1
tff(fact_104_num_Oexhaust,axiom,
! [Y: num] :
( ( Y != one2 )
=> ( ! [X22: num] : ( Y != bit0(X22) )
=> ~ ! [X32: num] : ( Y != aa(num,num,bit1,X32) ) ) ) ).
% num.exhaust
tff(fact_105_numeral__Bit0,axiom,
! [A: $tType] :
( numeral(A)
=> ! [N: num] : ( aa(num,A,numeral_numeral(A),bit0(N)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(num,A,numeral_numeral(A),N)),aa(num,A,numeral_numeral(A),N)) ) ) ).
% numeral_Bit0
tff(fact_106_power__add,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [A2: A,M: nat,N: nat] : ( aa(nat,A,power_power(A,A2),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,A2),M)),aa(nat,A,power_power(A,A2),N)) ) ) ).
% power_add
tff(fact_107_power__commuting__commutes,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [X2: A,Y: A,N: nat] :
( ( aa(A,A,aa(A,fun(A,A),times_times(A),X2),Y) = aa(A,A,aa(A,fun(A,A),times_times(A),Y),X2) )
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,X2),N)),Y) = aa(A,A,aa(A,fun(A,A),times_times(A),Y),aa(nat,A,power_power(A,X2),N)) ) ) ) ).
% power_commuting_commutes
tff(fact_108_power__mult__distrib,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [A2: A,B2: A,N: nat] : ( aa(nat,A,power_power(A,aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),N) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,A2),N)),aa(nat,A,power_power(A,B2),N)) ) ) ).
% power_mult_distrib
tff(fact_109_power__commutes,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [A2: A,N: nat] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,A2),N)),A2) = aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(nat,A,power_power(A,A2),N)) ) ) ).
% power_commutes
tff(fact_110_left__add__twice,axiom,
! [A: $tType] :
( semiring_numeral(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2)),B2) ) ) ).
% left_add_twice
tff(fact_111_mult__2__right,axiom,
! [A: $tType] :
( semiring_numeral(A)
=> ! [Z: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),Z),aa(num,A,numeral_numeral(A),bit0(one2))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),Z),Z) ) ) ).
% mult_2_right
tff(fact_112_mult__2,axiom,
! [A: $tType] :
( semiring_numeral(A)
=> ! [Z: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),Z) = aa(A,A,aa(A,fun(A,A),plus_plus(A),Z),Z) ) ) ).
% mult_2
tff(fact_113_power2__sum,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [X2: A,Y: A] : ( aa(nat,A,power_power(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,A,power_power(A,Y),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),X2)),Y)) ) ) ).
% power2_sum
tff(fact_114_mult__numeral__1__right,axiom,
! [A: $tType] :
( semiring_numeral(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(num,A,numeral_numeral(A),one2)) = A2 ) ) ).
% mult_numeral_1_right
tff(fact_115_mult__numeral__1,axiom,
! [A: $tType] :
( semiring_numeral(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),one2)),A2) = A2 ) ) ).
% mult_numeral_1
tff(fact_116_real__average__minus__second,axiom,
! [B2: real,A2: real] : ( aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),B2),A2)),aa(num,real,numeral_numeral(real),bit0(one2)))),A2) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),B2),A2)),aa(num,real,numeral_numeral(real),bit0(one2))) ) ).
% real_average_minus_second
tff(fact_117_real__average__minus__first,axiom,
! [A2: real,B2: real] : ( aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),A2),B2)),aa(num,real,numeral_numeral(real),bit0(one2)))),A2) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),B2),A2)),aa(num,real,numeral_numeral(real),bit0(one2))) ) ).
% real_average_minus_first
tff(fact_118__092_060open_0622_A_K_A_I2_A_094_A_In_A_L_An_J_A_L_A_I1_A_N_Ac_J_A_K_A2_A_094_An_A_N_Ac_A_L_A1_A_P_A2_J_A_092_060le_062_A2_A_K_A_I2_A_094_A_In_A_L_An_J_A_L_A_N_A_I5_A_P_A10_J_A_K_A1_A_N_A15_A_P_A10_A_L_A1_A_P_A2_J_092_060close_062,axiom,
pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,aa(num,real,numeral_numeral(real),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),na),na))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),one_one(real)),c)),aa(nat,real,power_power(real,aa(num,real,numeral_numeral(real),bit0(one2))),na)))),c)),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2)))))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,aa(num,real,numeral_numeral(real),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),na),na))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(num,real,numeral_numeral(real),aa(num,num,bit1,bit0(one2)))),aa(num,real,numeral_numeral(real),bit0(aa(num,num,bit1,bit0(one2))))))),one_one(real)))),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(num,real,numeral_numeral(real),aa(num,num,bit1,aa(num,num,bit1,aa(num,num,bit1,one2))))),aa(num,real,numeral_numeral(real),bit0(aa(num,num,bit1,bit0(one2))))))),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2))))))) ).
% \<open>2 * (2 ^ (n + n) + (1 - c) * 2 ^ n - c + 1 / 2) \<le> 2 * (2 ^ (n + n) + - (5 / 10) * 1 - 15 / 10 + 1 / 2)\<close>
tff(fact_119_L2__set__mult__ineq__lemma,axiom,
! [A2: real,C2: real,B2: real,D2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),aa(real,real,aa(real,fun(real,real),times_times(real),A2),C2))),aa(real,real,aa(real,fun(real,real),times_times(real),B2),D2))),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,power_power(real,A2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,D2),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,power_power(real,B2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,C2),aa(num,nat,numeral_numeral(nat),bit0(one2))))))) ).
% L2_set_mult_ineq_lemma
tff(fact_120_sum__squares__bound,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X2: A,Y: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),X2)),Y)),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,A,power_power(A,Y),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ).
% sum_squares_bound
tff(fact_121_le__add__diff__inverse2,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)),B2) = A2 ) ) ) ).
% le_add_diff_inverse2
tff(fact_122_le__add__diff__inverse,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)) = A2 ) ) ) ).
% le_add_diff_inverse
tff(fact_123_mi__ma__2__deg,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList: list(vEBT_VEBT),Summary: vEBT_VEBT,N: nat] :
( vEBT_invar_vebt(vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi),Ma)),Deg,TreeList,Summary),N)
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Mi),Ma))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Ma),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),Deg))) ) ) ).
% mi_ma_2_deg
tff(fact_124_four__x__squared,axiom,
! [X2: real] : ( aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(bit0(one2)))),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))) = aa(nat,real,power_power(real,aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),X2)),aa(num,nat,numeral_numeral(nat),bit0(one2))) ) ).
% four_x_squared
tff(fact_125_two__realpow__ge__one,axiom,
! [N: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),aa(nat,real,power_power(real,aa(num,real,numeral_numeral(real),bit0(one2))),N))) ).
% two_realpow_ge_one
tff(fact_126_div__exp__eq,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [A2: A,M: nat,N: nat] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),M))),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N))) ) ) ).
% div_exp_eq
tff(fact_127_not__Some__eq,axiom,
! [A: $tType,X2: option(A)] :
( ! [Y2: A] : ( X2 != aa(A,option(A),some(A),Y2) )
<=> ( X2 = none(A) ) ) ).
% not_Some_eq
tff(fact_128_power__one__right,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [A2: A] : ( aa(nat,A,power_power(A,A2),one_one(nat)) = A2 ) ) ).
% power_one_right
tff(fact_129_option_Oinject,axiom,
! [A: $tType,X23: A,Y22: A] :
( ( aa(A,option(A),some(A),X23) = aa(A,option(A),some(A),Y22) )
<=> ( X23 = Y22 ) ) ).
% option.inject
tff(fact_130_pow__sum,axiom,
! [A2: nat,B2: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),A2),B2))),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),A2)) = aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),B2) ) ).
% pow_sum
tff(fact_131_numeral__less__iff,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [M: num,N: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(num,A,numeral_numeral(A),M)),aa(num,A,numeral_numeral(A),N)))
<=> pp(aa(num,bool,aa(num,fun(num,bool),ord_less(num),M),N)) ) ) ).
% numeral_less_iff
tff(fact_132_neg__numeral__eq__iff,axiom,
! [A: $tType] :
( ring_char_0(A)
=> ! [M: num,N: num] :
( ( aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M)) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N)) )
<=> ( M = N ) ) ) ).
% neg_numeral_eq_iff
tff(fact_133_mult__minus__left,axiom,
! [A: $tType] :
( ring(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),A2)),B2) = aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)) ) ) ).
% mult_minus_left
tff(fact_134_minus__mult__minus,axiom,
! [A: $tType] :
( ring(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),A2)),aa(A,A,uminus_uminus(A),B2)) = aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2) ) ) ).
% minus_mult_minus
tff(fact_135_mult__minus__right,axiom,
! [A: $tType] :
( ring(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,uminus_uminus(A),B2)) = aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)) ) ) ).
% mult_minus_right
tff(fact_136_bits__div__by__1,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),one_one(A)) = A2 ) ) ).
% bits_div_by_1
tff(fact_137_div__by__1,axiom,
! [A: $tType] :
( semidom_divide(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),one_one(A)) = A2 ) ) ).
% div_by_1
tff(fact_138_set__n__deg__not__0,axiom,
! [TreeList: list(vEBT_VEBT),N: nat,M: nat] :
( ! [X3: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X3,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList)))
=> vEBT_invar_vebt(X3,N) )
=> ( ( aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList) = aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),M) )
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),one_one(nat)),N)) ) ) ).
% set_n_deg_not_0
tff(fact_139_real__divide__square__eq,axiom,
! [R: real,A2: real] : ( aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),times_times(real),R),A2)),aa(real,real,aa(real,fun(real,real),times_times(real),R),R)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),A2),R) ) ).
% real_divide_square_eq
tff(fact_140_not__None__eq,axiom,
! [A: $tType,X2: option(A)] :
( ( X2 != none(A) )
<=> ? [Y2: A] : ( X2 = aa(A,option(A),some(A),Y2) ) ) ).
% not_None_eq
tff(fact_141_neg__numeral__less__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [M: num,N: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M))),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N))))
<=> pp(aa(num,bool,aa(num,fun(num,bool),ord_less(num),N),M)) ) ) ).
% neg_numeral_less_iff
tff(fact_142_power__inject__exp,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [A2: A,M: nat,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),A2))
=> ( ( aa(nat,A,power_power(A,A2),M) = aa(nat,A,power_power(A,A2),N) )
<=> ( M = N ) ) ) ) ).
% power_inject_exp
tff(fact_143_add__neg__numeral__simps_I3_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [M: num,N: num] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M))),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N))) = aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(num,A,numeral_numeral(A),M)),aa(num,A,numeral_numeral(A),N))) ) ) ).
% add_neg_numeral_simps(3)
tff(fact_144_mult__minus1__right,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [Z: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),Z),aa(A,A,uminus_uminus(A),one_one(A))) = aa(A,A,uminus_uminus(A),Z) ) ) ).
% mult_minus1_right
tff(fact_145_mult__minus1,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [Z: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),one_one(A))),Z) = aa(A,A,uminus_uminus(A),Z) ) ) ).
% mult_minus1
tff(fact_146_one__less__numeral__iff,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [N: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),aa(num,A,numeral_numeral(A),N)))
<=> pp(aa(num,bool,aa(num,fun(num,bool),ord_less(num),one2),N)) ) ) ).
% one_less_numeral_iff
tff(fact_147_divide__less__eq__numeral1_I1_J,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [B2: A,W: num,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),aa(num,A,numeral_numeral(A),W))),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(num,A,numeral_numeral(A),W)))) ) ) ).
% divide_less_eq_numeral1(1)
tff(fact_148_less__divide__eq__numeral1_I1_J,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A,W: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),aa(num,A,numeral_numeral(A),W))))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(num,A,numeral_numeral(A),W))),B2)) ) ) ).
% less_divide_eq_numeral1(1)
tff(fact_149_neg__one__eq__numeral__iff,axiom,
! [A: $tType] :
( ring_char_0(A)
=> ! [N: num] :
( ( aa(A,A,uminus_uminus(A),one_one(A)) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N)) )
<=> ( N = one2 ) ) ) ).
% neg_one_eq_numeral_iff
tff(fact_150_numeral__eq__neg__one__iff,axiom,
! [A: $tType] :
( ring_char_0(A)
=> ! [N: num] :
( ( aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N)) = aa(A,A,uminus_uminus(A),one_one(A)) )
<=> ( N = one2 ) ) ) ).
% numeral_eq_neg_one_iff
tff(fact_151_minus__one__mult__self,axiom,
! [A: $tType] :
( comm_ring_1(A)
=> ! [N: nat] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),N)),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),N)) = one_one(A) ) ) ).
% minus_one_mult_self
tff(fact_152_left__minus__one__mult__self,axiom,
! [A: $tType] :
( comm_ring_1(A)
=> ! [N: nat,A2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),N)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),N)),A2)) = A2 ) ) ).
% left_minus_one_mult_self
tff(fact_153_power__strict__increasing__iff,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [B2: A,X2: nat,Y: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,power_power(A,B2),X2)),aa(nat,A,power_power(A,B2),Y)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),X2),Y)) ) ) ) ).
% power_strict_increasing_iff
tff(fact_154_semiring__norm_I168_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [V: num,W: num,Y: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),V))),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))),Y)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),aa(num,num,aa(num,fun(num,num),plus_plus(num),V),W)))),Y) ) ) ).
% semiring_norm(168)
tff(fact_155_diff__numeral__simps_I3_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [M: num,N: num] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M))),aa(num,A,numeral_numeral(A),N)) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),aa(num,num,aa(num,fun(num,num),plus_plus(num),M),N))) ) ) ).
% diff_numeral_simps(3)
tff(fact_156_diff__numeral__simps_I2_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [M: num,N: num] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(num,A,numeral_numeral(A),M)),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N))) = aa(num,A,numeral_numeral(A),aa(num,num,aa(num,fun(num,num),plus_plus(num),M),N)) ) ) ).
% diff_numeral_simps(2)
tff(fact_157_semiring__norm_I172_J,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [V: num,W: num,Y: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),V))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))),Y)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),aa(num,num,aa(num,fun(num,num),times_times(num),V),W))),Y) ) ) ).
% semiring_norm(172)
tff(fact_158_semiring__norm_I171_J,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [V: num,W: num,Y: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),V)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))),Y)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),aa(num,num,aa(num,fun(num,num),times_times(num),V),W)))),Y) ) ) ).
% semiring_norm(171)
tff(fact_159_semiring__norm_I170_J,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [V: num,W: num,Y: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),V))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),W)),Y)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),aa(num,num,aa(num,fun(num,num),times_times(num),V),W)))),Y) ) ) ).
% semiring_norm(170)
tff(fact_160_mult__neg__numeral__simps_I3_J,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [M: num,N: num] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),M)),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N))) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),aa(num,num,aa(num,fun(num,num),times_times(num),M),N))) ) ) ).
% mult_neg_numeral_simps(3)
tff(fact_161_mult__neg__numeral__simps_I2_J,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [M: num,N: num] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M))),aa(num,A,numeral_numeral(A),N)) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),aa(num,num,aa(num,fun(num,num),times_times(num),M),N))) ) ) ).
% mult_neg_numeral_simps(2)
tff(fact_162_mult__neg__numeral__simps_I1_J,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [M: num,N: num] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M))),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N))) = aa(num,A,numeral_numeral(A),aa(num,num,aa(num,fun(num,num),times_times(num),M),N)) ) ) ).
% mult_neg_numeral_simps(1)
tff(fact_163_neg__numeral__le__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [M: num,N: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M))),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N))))
<=> pp(aa(num,bool,aa(num,fun(num,bool),ord_less_eq(num),N),M)) ) ) ).
% neg_numeral_le_iff
tff(fact_164_not__neg__one__le__neg__numeral__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [M: num] :
( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),one_one(A))),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M))))
<=> ( M != one2 ) ) ) ).
% not_neg_one_le_neg_numeral_iff
tff(fact_165_divide__le__eq__numeral1_I2_J,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [B2: A,W: num,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W)))),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W)))),B2)) ) ) ).
% divide_le_eq_numeral1(2)
tff(fact_166_le__divide__eq__numeral1_I2_J,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A,W: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W)))))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))))) ) ) ).
% le_divide_eq_numeral1(2)
tff(fact_167_neg__numeral__less__neg__one__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [M: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M))),aa(A,A,uminus_uminus(A),one_one(A))))
<=> ( M != one2 ) ) ) ).
% neg_numeral_less_neg_one_iff
tff(fact_168_divide__less__eq__numeral1_I2_J,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [B2: A,W: num,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W)))),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W)))),B2)) ) ) ).
% divide_less_eq_numeral1(2)
tff(fact_169_less__divide__eq__numeral1_I2_J,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A,W: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W)))))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))))) ) ) ).
% less_divide_eq_numeral1(2)
tff(fact_170_power__increasing__iff,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [B2: A,X2: nat,Y: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,B2),X2)),aa(nat,A,power_power(A,B2),Y)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),X2),Y)) ) ) ) ).
% power_increasing_iff
tff(fact_171_power2__minus,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [A2: A] : ( aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),A2)),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),bit0(one2))) ) ) ).
% power2_minus
tff(fact_172_add__neg__numeral__special_I9_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),one_one(A))),aa(A,A,uminus_uminus(A),one_one(A))) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ).
% add_neg_numeral_special(9)
tff(fact_173_diff__numeral__special_I11_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),aa(A,A,uminus_uminus(A),one_one(A))) = aa(num,A,numeral_numeral(A),bit0(one2)) ) ) ).
% diff_numeral_special(11)
tff(fact_174_diff__numeral__special_I10_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,uminus_uminus(A),one_one(A))),one_one(A)) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ).
% diff_numeral_special(10)
tff(fact_175_Power_Oring__1__class_Opower__minus__even,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [A2: A,N: nat] : ( aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),A2)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)) = aa(nat,A,power_power(A,A2),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)) ) ) ).
% Power.ring_1_class.power_minus_even
tff(fact_176_diff__numeral__special_I4_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [M: num] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M))),one_one(A)) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),aa(num,num,aa(num,fun(num,num),plus_plus(num),M),one2))) ) ) ).
% diff_numeral_special(4)
tff(fact_177_diff__numeral__special_I3_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [N: num] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N))) = aa(num,A,numeral_numeral(A),aa(num,num,aa(num,fun(num,num),plus_plus(num),one2),N)) ) ) ).
% diff_numeral_special(3)
tff(fact_178_power__minus1__even,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [N: nat] : ( aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)) = one_one(A) ) ) ).
% power_minus1_even
tff(fact_179__C4_Ohyps_C_I5_J,axiom,
! [I2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I2),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),m)))
=> ( ? [X_12: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,treeList),I2)),X_12))
<=> pp(aa(nat,bool,vEBT_V8194947554948674370ptions(summary),I2)) ) ) ).
% "4.hyps"(5)
tff(fact_180_linorder__neqE__linordered__idom,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: A,Y: A] :
( ( X2 != Y )
=> ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X2)) ) ) ) ).
% linorder_neqE_linordered_idom
tff(fact_181_not__numeral__less__neg__numeral,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [M: num,N: num] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(num,A,numeral_numeral(A),M)),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N)))) ) ).
% not_numeral_less_neg_numeral
tff(fact_182_neg__numeral__less__numeral,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [M: num,N: num] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M))),aa(num,A,numeral_numeral(A),N))) ) ).
% neg_numeral_less_numeral
tff(fact_183_less__minus__one__simps_I2_J,axiom,
! [A: $tType] :
( linordered_idom(A)
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),one_one(A))),one_one(A))) ) ).
% less_minus_one_simps(2)
tff(fact_184_less__minus__one__simps_I4_J,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),aa(A,A,uminus_uminus(A),one_one(A)))) ) ).
% less_minus_one_simps(4)
tff(fact_185_square__eq__iff,axiom,
! [A: $tType] :
( idom(A)
=> ! [A2: A,B2: A] :
( ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),A2) = aa(A,A,aa(A,fun(A,A),times_times(A),B2),B2) )
<=> ( ( A2 = B2 )
| ( A2 = aa(A,A,uminus_uminus(A),B2) ) ) ) ) ).
% square_eq_iff
tff(fact_186_minus__mult__commute,axiom,
! [A: $tType] :
( ring(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),A2)),B2) = aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,uminus_uminus(A),B2)) ) ) ).
% minus_mult_commute
tff(fact_187_minus__diff__minus,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,uminus_uminus(A),A2)),aa(A,A,uminus_uminus(A),B2)) = aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)) ) ) ).
% minus_diff_minus
tff(fact_188_not__neg__one__less__neg__numeral,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [M: num] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),one_one(A))),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M)))) ) ).
% not_neg_one_less_neg_numeral
tff(fact_189_not__one__less__neg__numeral,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [M: num] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M)))) ) ).
% not_one_less_neg_numeral
tff(fact_190_not__numeral__less__neg__one,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [M: num] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(num,A,numeral_numeral(A),M)),aa(A,A,uminus_uminus(A),one_one(A)))) ) ).
% not_numeral_less_neg_one
tff(fact_191_neg__one__less__numeral,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [M: num] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),one_one(A))),aa(num,A,numeral_numeral(A),M))) ) ).
% neg_one_less_numeral
tff(fact_192_neg__numeral__less__one,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [M: num] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M))),one_one(A))) ) ).
% neg_numeral_less_one
tff(fact_193_power__strict__increasing,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [N: nat,N2: nat,A2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),N2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,power_power(A,A2),N)),aa(nat,A,power_power(A,A2),N2))) ) ) ) ).
% power_strict_increasing
tff(fact_194_power__less__imp__less__exp,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [A2: A,M: nat,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,power_power(A,A2),M)),aa(nat,A,power_power(A,A2),N)))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N)) ) ) ) ).
% power_less_imp_less_exp
tff(fact_195_neg__numeral__neq__numeral,axiom,
! [A: $tType] :
( ring_char_0(A)
=> ! [M: num,N: num] : ( aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M)) != aa(num,A,numeral_numeral(A),N) ) ) ).
% neg_numeral_neq_numeral
tff(fact_196_numeral__neq__neg__numeral,axiom,
! [A: $tType] :
( ring_char_0(A)
=> ! [M: num,N: num] : ( aa(num,A,numeral_numeral(A),M) != aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N)) ) ) ).
% numeral_neq_neg_numeral
tff(fact_197_is__num__normalize_I8_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [A2: A,B2: A] : ( aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),B2)),aa(A,A,uminus_uminus(A),A2)) ) ) ).
% is_num_normalize(8)
tff(fact_198_one__neq__neg__one,axiom,
! [A: $tType] :
( ring_char_0(A)
=> ( one_one(A) != aa(A,A,uminus_uminus(A),one_one(A)) ) ) ).
% one_neq_neg_one
tff(fact_199_less__numeral__extra_I4_J,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),one_one(A))) ) ).
% less_numeral_extra(4)
tff(fact_200_square__eq__1__iff,axiom,
! [A: $tType] :
( ring_15535105094025558882visors(A)
=> ! [X2: A] :
( ( aa(A,A,aa(A,fun(A,A),times_times(A),X2),X2) = one_one(A) )
<=> ( ( X2 = one_one(A) )
| ( X2 = aa(A,A,uminus_uminus(A),one_one(A)) ) ) ) ) ).
% square_eq_1_iff
tff(fact_201_less__1__mult,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [M: A,N: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),M))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),N))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),aa(A,A,aa(A,fun(A,A),times_times(A),M),N))) ) ) ) ).
% less_1_mult
tff(fact_202_add__mono1,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),one_one(A))),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),one_one(A)))) ) ) ).
% add_mono1
tff(fact_203_less__add__one,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [A2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),one_one(A)))) ) ).
% less_add_one
tff(fact_204_linordered__semidom__class_Oadd__diff__inverse,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [A2: A,B2: A] :
( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)) = A2 ) ) ) ).
% linordered_semidom_class.add_diff_inverse
tff(fact_205_real__minus__mult__self__le,axiom,
! [U: real,X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),times_times(real),U),U))),aa(real,real,aa(real,fun(real,real),times_times(real),X2),X2))) ).
% real_minus_mult_self_le
tff(fact_206_minus__real__def,axiom,
! [X2: real,Y: real] : ( aa(real,real,aa(real,fun(real,real),minus_minus(real),X2),Y) = aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),aa(real,real,uminus_uminus(real),Y)) ) ).
% minus_real_def
tff(fact_207_neg__numeral__le__numeral,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [M: num,N: num] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M))),aa(num,A,numeral_numeral(A),N))) ) ).
% neg_numeral_le_numeral
tff(fact_208_not__numeral__le__neg__numeral,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [M: num,N: num] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(num,A,numeral_numeral(A),M)),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N)))) ) ).
% not_numeral_le_neg_numeral
tff(fact_209_le__minus__one__simps_I2_J,axiom,
! [A: $tType] :
( linordered_idom(A)
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),one_one(A))),one_one(A))) ) ).
% le_minus_one_simps(2)
tff(fact_210_le__minus__one__simps_I4_J,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),aa(A,A,uminus_uminus(A),one_one(A)))) ) ).
% le_minus_one_simps(4)
tff(fact_211_less__add__iff1,axiom,
! [A: $tType] :
( ordered_ring(A)
=> ! [A2: A,E: A,C2: A,B2: A,D2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),E)),C2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),B2),E)),D2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)),E)),C2)),D2)) ) ) ).
% less_add_iff1
tff(fact_212_less__add__iff2,axiom,
! [A: $tType] :
( ordered_ring(A)
=> ! [A2: A,E: A,C2: A,B2: A,D2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),E)),C2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),B2),E)),D2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),A2)),E)),D2))) ) ) ).
% less_add_iff2
tff(fact_213_numeral__times__minus__swap,axiom,
! [A: $tType] :
( comm_ring_1(A)
=> ! [W: num,X2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),W)),aa(A,A,uminus_uminus(A),X2)) = aa(A,A,aa(A,fun(A,A),times_times(A),X2),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))) ) ) ).
% numeral_times_minus_swap
tff(fact_214_one__neq__neg__numeral,axiom,
! [A: $tType] :
( ring_char_0(A)
=> ! [N: num] : ( one_one(A) != aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N)) ) ) ).
% one_neq_neg_numeral
tff(fact_215_numeral__neq__neg__one,axiom,
! [A: $tType] :
( ring_char_0(A)
=> ! [N: num] : ( aa(num,A,numeral_numeral(A),N) != aa(A,A,uminus_uminus(A),one_one(A)) ) ) ).
% numeral_neq_neg_one
tff(fact_216_not__numeral__less__one,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [N: num] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(num,A,numeral_numeral(A),N)),one_one(A))) ) ).
% not_numeral_less_one
tff(fact_217_nat__less__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),J))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),I),U)),M)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),J),U)),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),J),I)),U)),N))) ) ) ).
% nat_less_add_iff2
tff(fact_218_nat__less__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),J),I))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),I),U)),M)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),J),U)),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),I),J)),U)),M)),N)) ) ) ).
% nat_less_add_iff1
tff(fact_219_numerals_I1_J,axiom,
aa(num,nat,numeral_numeral(nat),one2) = one_one(nat) ).
% numerals(1)
tff(fact_220_ex__power__ivl2,axiom,
! [B2: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),B2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),K))
=> ? [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,power_power(nat,B2),N3)),K))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),aa(nat,nat,power_power(nat,B2),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N3),one_one(nat))))) ) ) ) ).
% ex_power_ivl2
tff(fact_221_ex__power__ivl1,axiom,
! [B2: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),B2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),one_one(nat)),K))
=> ? [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,power_power(nat,B2),N3)),K))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),K),aa(nat,nat,power_power(nat,B2),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N3),one_one(nat))))) ) ) ) ).
% ex_power_ivl1
tff(fact_222_neg__numeral__le__one,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [M: num] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M))),one_one(A))) ) ).
% neg_numeral_le_one
tff(fact_223_neg__one__le__numeral,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [M: num] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),one_one(A))),aa(num,A,numeral_numeral(A),M))) ) ).
% neg_one_le_numeral
tff(fact_224_neg__numeral__le__neg__one,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [M: num] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M))),aa(A,A,uminus_uminus(A),one_one(A)))) ) ).
% neg_numeral_le_neg_one
tff(fact_225_not__numeral__le__neg__one,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [M: num] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(num,A,numeral_numeral(A),M)),aa(A,A,uminus_uminus(A),one_one(A)))) ) ).
% not_numeral_le_neg_one
tff(fact_226_not__one__le__neg__numeral,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [M: num] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M)))) ) ).
% not_one_le_neg_numeral
tff(fact_227_mult__1s__ring__1_I2_J,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [B2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),B2),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),one2))) = aa(A,A,uminus_uminus(A),B2) ) ) ).
% mult_1s_ring_1(2)
tff(fact_228_mult__1s__ring__1_I1_J,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [B2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),one2))),B2) = aa(A,A,uminus_uminus(A),B2) ) ) ).
% mult_1s_ring_1(1)
tff(fact_229_uminus__numeral__One,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ( aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),one2)) = aa(A,A,uminus_uminus(A),one_one(A)) ) ) ).
% uminus_numeral_One
tff(fact_230_power__minus,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [A2: A,N: nat] : ( aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),A2)),N) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),N)),aa(nat,A,power_power(A,A2),N)) ) ) ).
% power_minus
tff(fact_231_power__minus__Bit0,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [X2: A,K: num] : ( aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),X2)),aa(num,nat,numeral_numeral(nat),bit0(K))) = aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(K))) ) ) ).
% power_minus_Bit0
tff(fact_232_power__gt1__lemma,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(nat,A,power_power(A,A2),N)))) ) ) ).
% power_gt1_lemma
tff(fact_233_power__less__power__Suc,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,power_power(A,A2),N)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(nat,A,power_power(A,A2),N)))) ) ) ).
% power_less_power_Suc
tff(fact_234_power__minus__Bit1,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [X2: A,K: num] : ( aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),X2)),aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,K))) = aa(A,A,uminus_uminus(A),aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,K)))) ) ) ).
% power_minus_Bit1
tff(fact_235_less__exp,axiom,
! [N: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N))) ).
% less_exp
tff(fact_236_complete__real,axiom,
! [S: set(real)] :
( ? [X: real] : pp(member(real,X,S))
=> ( ? [Z2: real] :
! [X3: real] :
( pp(member(real,X3,S))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X3),Z2)) )
=> ? [Y3: real] :
( ! [X: real] :
( pp(member(real,X,S))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X),Y3)) )
& ! [Z2: real] :
( ! [X3: real] :
( pp(member(real,X3,S))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X3),Z2)) )
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y3),Z2)) ) ) ) ) ).
% complete_real
tff(fact_237_field__less__half__sum,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)),aa(num,A,numeral_numeral(A),bit0(one2))))) ) ) ).
% field_less_half_sum
tff(fact_238_realpow__square__minus__le,axiom,
! [U: real,X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),aa(nat,real,power_power(real,U),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ).
% realpow_square_minus_le
tff(fact_239_power2__eq__iff,axiom,
! [A: $tType] :
( idom(A)
=> ! [X2: A,Y: A] :
( ( aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(nat,A,power_power(A,Y),aa(num,nat,numeral_numeral(nat),bit0(one2))) )
<=> ( ( X2 = Y )
| ( X2 = aa(A,A,uminus_uminus(A),Y) ) ) ) ) ).
% power2_eq_iff
tff(fact_240_power__le__imp__le__exp,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [A2: A,M: nat,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,A2),M)),aa(nat,A,power_power(A,A2),N)))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ) ) ).
% power_le_imp_le_exp
tff(fact_241_nat__1__add__1,axiom,
aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),one_one(nat)),one_one(nat)) = aa(num,nat,numeral_numeral(nat),bit0(one2)) ).
% nat_1_add_1
tff(fact_242_minus__power__mult__self,axiom,
! [A: $tType] :
( comm_ring_1(A)
=> ! [A2: A,N: nat] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),A2)),N)),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),A2)),N)) = aa(nat,A,power_power(A,A2),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)) ) ) ).
% minus_power_mult_self
tff(fact_243_power2__eq__1__iff,axiom,
! [A: $tType] :
( ring_15535105094025558882visors(A)
=> ! [A2: A] :
( ( aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),bit0(one2))) = one_one(A) )
<=> ( ( A2 = one_one(A) )
| ( A2 = aa(A,A,uminus_uminus(A),one_one(A)) ) ) ) ) ).
% power2_eq_1_iff
tff(fact_244_square__le__1,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),one_one(A))),X2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),one_one(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),one_one(A))) ) ) ) ).
% square_le_1
tff(fact_245_ring__class_Oring__distribs_I2_J,axiom,
! [A: $tType] :
( ring(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)) ) ) ).
% ring_class.ring_distribs(2)
tff(fact_246_ring__class_Oring__distribs_I1_J,axiom,
! [A: $tType] :
( ring(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)) ) ) ).
% ring_class.ring_distribs(1)
tff(fact_247_comm__semiring__class_Odistrib,axiom,
! [A: $tType] :
( comm_semiring(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)) ) ) ).
% comm_semiring_class.distrib
tff(fact_248_distrib__left,axiom,
! [A: $tType] :
( semiring(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)) ) ) ).
% distrib_left
tff(fact_249_distrib__right,axiom,
! [A: $tType] :
( semiring(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)) ) ) ).
% distrib_right
tff(fact_250_combine__common__factor,axiom,
! [A: $tType] :
( semiring(A)
=> ! [A2: A,E: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),E)),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),B2),E)),C2)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),E)),C2) ) ) ).
% combine_common_factor
tff(fact_251_left__diff__distrib,axiom,
! [A: $tType] :
( ring(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)) ) ) ).
% left_diff_distrib
tff(fact_252_right__diff__distrib,axiom,
! [A: $tType] :
( ring(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)) ) ) ).
% right_diff_distrib
tff(fact_253_left__diff__distrib_H,axiom,
! [A: $tType] :
( comm_s4317794764714335236cancel(A)
=> ! [B2: A,C2: A,A2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),C2)),A2) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),B2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)) ) ) ).
% left_diff_distrib'
tff(fact_254_right__diff__distrib_H,axiom,
! [A: $tType] :
( comm_s4317794764714335236cancel(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)) ) ) ).
% right_diff_distrib'
tff(fact_255_add__diff__add,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [A2: A,C2: A,B2: A,D2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),D2)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)),aa(A,A,aa(A,fun(A,A),minus_minus(A),C2),D2)) ) ) ).
% add_diff_add
tff(fact_256_option_Odistinct_I1_J,axiom,
! [A: $tType,X23: A] : ( none(A) != aa(A,option(A),some(A),X23) ) ).
% option.distinct(1)
tff(fact_257_option_OdiscI,axiom,
! [A: $tType,Option: option(A),X23: A] :
( ( Option = aa(A,option(A),some(A),X23) )
=> ( Option != none(A) ) ) ).
% option.discI
tff(fact_258_option_Oexhaust,axiom,
! [A: $tType,Y: option(A)] :
( ( Y != none(A) )
=> ~ ! [X22: A] : ( Y != aa(A,option(A),some(A),X22) ) ) ).
% option.exhaust
tff(fact_259_split__option__ex,axiom,
! [A: $tType,P: fun(option(A),bool)] :
( ? [X_12: option(A)] : pp(aa(option(A),bool,P,X_12))
<=> ( pp(aa(option(A),bool,P,none(A)))
| ? [X4: A] : pp(aa(option(A),bool,P,aa(A,option(A),some(A),X4))) ) ) ).
% split_option_ex
tff(fact_260_split__option__all,axiom,
! [A: $tType,P: fun(option(A),bool)] :
( ! [X_12: option(A)] : pp(aa(option(A),bool,P,X_12))
<=> ( pp(aa(option(A),bool,P,none(A)))
& ! [X4: A] : pp(aa(option(A),bool,P,aa(A,option(A),some(A),X4))) ) ) ).
% split_option_all
tff(fact_261_combine__options__cases,axiom,
! [A: $tType,B: $tType,X2: option(A),P: fun(option(A),fun(option(B),bool)),Y: option(B)] :
( ( ( X2 = none(A) )
=> pp(aa(option(B),bool,aa(option(A),fun(option(B),bool),P,X2),Y)) )
=> ( ( ( Y = none(B) )
=> pp(aa(option(B),bool,aa(option(A),fun(option(B),bool),P,X2),Y)) )
=> ( ! [A4: A,B3: B] :
( ( X2 = aa(A,option(A),some(A),A4) )
=> ( ( Y = aa(B,option(B),some(B),B3) )
=> pp(aa(option(B),bool,aa(option(A),fun(option(B),bool),P,X2),Y)) ) )
=> pp(aa(option(B),bool,aa(option(A),fun(option(B),bool),P,X2),Y)) ) ) ) ).
% combine_options_cases
tff(fact_262_add__le__imp__le__diff,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [I: A,K: A,N: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),I),K)),N))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),I),aa(A,A,aa(A,fun(A,A),minus_minus(A),N),K))) ) ) ).
% add_le_imp_le_diff
tff(fact_263_add__le__add__imp__diff__le,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [I: A,K: A,N: A,J: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),I),K)),N))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),N),aa(A,A,aa(A,fun(A,A),plus_plus(A),J),K)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),I),K)),N))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),N),aa(A,A,aa(A,fun(A,A),plus_plus(A),J),K)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),N),K)),J)) ) ) ) ) ) ).
% add_le_add_imp_diff_le
tff(fact_264_eq__add__iff1,axiom,
! [A: $tType] :
( ring(A)
=> ! [A2: A,E: A,C2: A,B2: A,D2: A] :
( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),E)),C2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),B2),E)),D2) )
<=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)),E)),C2) = D2 ) ) ) ).
% eq_add_iff1
tff(fact_265_eq__add__iff2,axiom,
! [A: $tType] :
( ring(A)
=> ! [A2: A,E: A,C2: A,B2: A,D2: A] :
( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),E)),C2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),B2),E)),D2) )
<=> ( C2 = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),A2)),E)),D2) ) ) ) ).
% eq_add_iff2
tff(fact_266_square__diff__square__factored,axiom,
! [A: $tType] :
( comm_ring(A)
=> ! [X2: A,Y: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),X2),X2)),aa(A,A,aa(A,fun(A,A),times_times(A),Y),Y)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y)) ) ) ).
% square_diff_square_factored
tff(fact_267_mult__diff__mult,axiom,
! [A: $tType] :
( ring(A)
=> ! [X2: A,Y: A,A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),X2),Y)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),X2),aa(A,A,aa(A,fun(A,A),minus_minus(A),Y),B2))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),A2)),B2)) ) ) ).
% mult_diff_mult
tff(fact_268_ordered__ring__class_Ole__add__iff1,axiom,
! [A: $tType] :
( ordered_ring(A)
=> ! [A2: A,E: A,C2: A,B2: A,D2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),E)),C2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),B2),E)),D2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)),E)),C2)),D2)) ) ) ).
% ordered_ring_class.le_add_iff1
tff(fact_269_ordered__ring__class_Ole__add__iff2,axiom,
! [A: $tType] :
( ordered_ring(A)
=> ! [A2: A,E: A,C2: A,B2: A,D2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),E)),C2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),B2),E)),D2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),A2)),E)),D2))) ) ) ).
% ordered_ring_class.le_add_iff2
tff(fact_270_square__diff__one__factored,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),X2),X2)),one_one(A)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),one_one(A))),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),one_one(A))) ) ) ).
% square_diff_one_factored
tff(fact_271_field__sum__of__halves,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),aa(num,A,numeral_numeral(A),bit0(one2)))),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),aa(num,A,numeral_numeral(A),bit0(one2)))) = X2 ) ) ).
% field_sum_of_halves
tff(fact_272_minus__1__div__2__eq,axiom,
! [A: $tType] :
( euclid8789492081693882211th_nat(A)
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,uminus_uminus(A),one_one(A))),aa(num,A,numeral_numeral(A),bit0(one2))) = aa(A,A,uminus_uminus(A),one_one(A)) ) ) ).
% minus_1_div_2_eq
tff(fact_273_invar__vebt_Ointros_I2_J,axiom,
! [TreeList: list(vEBT_VEBT),N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat] :
( ! [X3: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X3,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList)))
=> vEBT_invar_vebt(X3,N) )
=> ( vEBT_invar_vebt(Summary,M)
=> ( ( aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList) = aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),M) )
=> ( ( M = N )
=> ( ( Deg = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),M) )
=> ( ~ ? [X_13: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(Summary),X_13))
=> ( ! [X3: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X3,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList)))
=> ~ ? [X_13: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(X3),X_13)) )
=> vEBT_invar_vebt(vEBT_Node(none(product_prod(nat,nat)),Deg,TreeList,Summary),Deg) ) ) ) ) ) ) ) ).
% invar_vebt.intros(2)
tff(fact_274_add__self__div__2,axiom,
! [M: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),M)),aa(num,nat,numeral_numeral(nat),bit0(one2))) = M ) ).
% add_self_div_2
tff(fact_275_Nat_Odiff__diff__right,axiom,
! [K: nat,J: nat,I: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),J))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),I),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),J),K)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),K)),J) ) ) ).
% Nat.diff_diff_right
tff(fact_276_Nat_Oadd__diff__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),J))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),J),K)),I) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),J),I)),K) ) ) ).
% Nat.add_diff_assoc2
tff(fact_277_Nat_Oadd__diff__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),J))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),J),K)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),J)),K) ) ) ).
% Nat.add_diff_assoc
tff(fact_278_div__minus1__right,axiom,
! [A: $tType] :
( euclid8851590272496341667cancel(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(A,A,uminus_uminus(A),one_one(A))) = aa(A,A,uminus_uminus(A),A2) ) ) ).
% div_minus1_right
tff(fact_279_divide__minus1,axiom,
! [A: $tType] :
( field(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),aa(A,A,uminus_uminus(A),one_one(A))) = aa(A,A,uminus_uminus(A),X2) ) ) ).
% divide_minus1
tff(fact_280_diff__minus__eq__add,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),aa(A,A,uminus_uminus(A),B2)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2) ) ) ).
% diff_minus_eq_add
tff(fact_281_uminus__add__conv__diff,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),A2)),B2) = aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),A2) ) ) ).
% uminus_add_conv_diff
tff(fact_282_low__inv,axiom,
! [X2: nat,N: nat,Y: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),X2),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N)))
=> ( vEBT_VEBT_low(aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Y),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N))),X2),N) = X2 ) ) ).
% low_inv
tff(fact_283_high__inv,axiom,
! [X2: nat,N: nat,Y: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),X2),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N)))
=> ( vEBT_VEBT_high(aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Y),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N))),X2),N) = Y ) ) ).
% high_inv
tff(fact_284_inthall,axiom,
! [A: $tType,Xs: list(A),P: fun(A,bool),N: nat] :
( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),Xs)))
=> pp(aa(A,bool,P,X3)) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(list(A),nat,size_size(list(A)),Xs)))
=> pp(aa(A,bool,P,aa(nat,A,nth(A,Xs),N))) ) ) ).
% inthall
tff(fact_285_add__left__cancel,axiom,
! [A: $tType] :
( cancel_semigroup_add(A)
=> ! [A2: A,B2: A,C2: A] :
( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2) )
<=> ( B2 = C2 ) ) ) ).
% add_left_cancel
tff(fact_286_add__right__cancel,axiom,
! [A: $tType] :
( cancel_semigroup_add(A)
=> ! [B2: A,A2: A,C2: A] :
( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),A2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),A2) )
<=> ( B2 = C2 ) ) ) ).
% add_right_cancel
tff(fact_287_add_Oinverse__inverse,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A] : ( aa(A,A,uminus_uminus(A),aa(A,A,uminus_uminus(A),A2)) = A2 ) ) ).
% add.inverse_inverse
tff(fact_288_neg__equal__iff__equal,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A,B2: A] :
( ( aa(A,A,uminus_uminus(A),A2) = aa(A,A,uminus_uminus(A),B2) )
<=> ( A2 = B2 ) ) ) ).
% neg_equal_iff_equal
tff(fact_289_VEBT_Oinject_I1_J,axiom,
! [X11: option(product_prod(nat,nat)),X12: nat,X13: list(vEBT_VEBT),X14: vEBT_VEBT,Y11: option(product_prod(nat,nat)),Y12: nat,Y13: list(vEBT_VEBT),Y14: vEBT_VEBT] :
( ( vEBT_Node(X11,X12,X13,X14) = vEBT_Node(Y11,Y12,Y13,Y14) )
<=> ( ( X11 = Y11 )
& ( X12 = Y12 )
& ( X13 = Y13 )
& ( X14 = Y14 ) ) ) ).
% VEBT.inject(1)
tff(fact_290_high__def,axiom,
! [X2: nat,N: nat] : ( vEBT_VEBT_high(X2,N) = aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),X2),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N)) ) ).
% high_def
tff(fact_291_high__bound__aux,axiom,
! [Ma: nat,N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Ma),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),M))))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Ma,N)),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),M))) ) ).
% high_bound_aux
tff(fact_292_add__le__cancel__right,axiom,
! [A: $tType] :
( ordere2412721322843649153imp_le(A)
=> ! [A2: A,C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),C2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) ) ) ).
% add_le_cancel_right
tff(fact_293_add__le__cancel__left,axiom,
! [A: $tType] :
( ordere2412721322843649153imp_le(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),A2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) ) ) ).
% add_le_cancel_left
tff(fact_294_add__less__cancel__left,axiom,
! [A: $tType] :
( ordere2412721322843649153imp_le(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),A2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) ) ) ).
% add_less_cancel_left
tff(fact_295_add__less__cancel__right,axiom,
! [A: $tType] :
( ordere2412721322843649153imp_le(A)
=> ! [A2: A,C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),C2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) ) ) ).
% add_less_cancel_right
tff(fact_296_neg__le__iff__le,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),B2)),aa(A,A,uminus_uminus(A),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) ) ) ).
% neg_le_iff_le
tff(fact_297_mult__1,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),one_one(A)),A2) = A2 ) ) ).
% mult_1
tff(fact_298_mult_Oright__neutral,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),one_one(A)) = A2 ) ) ).
% mult.right_neutral
tff(fact_299_neg__less__iff__less,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),B2)),aa(A,A,uminus_uminus(A),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) ) ) ).
% neg_less_iff_less
tff(fact_300_add__diff__cancel__right_H,axiom,
! [A: $tType] :
( cancel2418104881723323429up_add(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),B2) = A2 ) ) ).
% add_diff_cancel_right'
tff(fact_301_add__diff__cancel__right,axiom,
! [A: $tType] :
( cancel2418104881723323429up_add(A)
=> ! [A2: A,C2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2) ) ) ).
% add_diff_cancel_right
tff(fact_302_add__diff__cancel__left_H,axiom,
! [A: $tType] :
( cancel2418104881723323429up_add(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),A2) = B2 ) ) ).
% add_diff_cancel_left'
tff(fact_303_add__diff__cancel__left,axiom,
! [A: $tType] :
( cancel2418104881723323429up_add(A)
=> ! [C2: A,A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),A2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),B2)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2) ) ) ).
% add_diff_cancel_left
tff(fact_304_diff__add__cancel,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)),B2) = A2 ) ) ).
% diff_add_cancel
tff(fact_305_add__diff__cancel,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),B2) = A2 ) ) ).
% add_diff_cancel
tff(fact_306_times__divide__eq__right,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),C2) ) ) ).
% times_divide_eq_right
tff(fact_307_divide__divide__eq__right,axiom,
! [A: $tType] :
( field(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),B2) ) ) ).
% divide_divide_eq_right
tff(fact_308_divide__divide__eq__left,axiom,
! [A: $tType] :
( field(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)) ) ) ).
% divide_divide_eq_left
tff(fact_309_times__divide__eq__left,axiom,
! [A: $tType] :
( field(A)
=> ! [B2: A,C2: A,A2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)),A2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),B2),A2)),C2) ) ) ).
% times_divide_eq_left
tff(fact_310_add__minus__cancel,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),A2)),B2)) = B2 ) ) ).
% add_minus_cancel
tff(fact_311_minus__add__cancel,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),A2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)) = B2 ) ) ).
% minus_add_cancel
tff(fact_312_minus__add__distrib,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [A2: A,B2: A] : ( aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),A2)),aa(A,A,uminus_uminus(A),B2)) ) ) ).
% minus_add_distrib
tff(fact_313_minus__diff__eq,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A,B2: A] : ( aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),A2) ) ) ).
% minus_diff_eq
tff(fact_314_div__minus__minus,axiom,
! [A: $tType] :
( euclid8851590272496341667cancel(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,uminus_uminus(A),A2)),aa(A,A,uminus_uminus(A),B2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) ) ) ).
% div_minus_minus
tff(fact_315_nat__add__left__cancel__less,axiom,
! [K: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),K),M)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),K),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N)) ) ).
% nat_add_left_cancel_less
tff(fact_316_nat__add__left__cancel__le,axiom,
! [K: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),K),M)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),K),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ).
% nat_add_left_cancel_le
tff(fact_317_diff__diff__cancel,axiom,
! [I: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),N))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),I)) = I ) ) ).
% diff_diff_cancel
tff(fact_318_diff__diff__left,axiom,
! [I: nat,J: nat,K: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),I),J)),K) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),I),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),J),K)) ) ).
% diff_diff_left
tff(fact_319_nat__mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),N) = one_one(nat) )
<=> ( ( M = one_one(nat) )
& ( N = one_one(nat) ) ) ) ).
% nat_mult_eq_1_iff
tff(fact_320_nat__1__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( one_one(nat) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),N) )
<=> ( ( M = one_one(nat) )
& ( N = one_one(nat) ) ) ) ).
% nat_1_eq_mult_iff
tff(fact_321_semiring__norm_I78_J,axiom,
! [M: num,N: num] :
( pp(aa(num,bool,aa(num,fun(num,bool),ord_less(num),bit0(M)),bit0(N)))
<=> pp(aa(num,bool,aa(num,fun(num,bool),ord_less(num),M),N)) ) ).
% semiring_norm(78)
tff(fact_322_semiring__norm_I75_J,axiom,
! [M: num] : ~ pp(aa(num,bool,aa(num,fun(num,bool),ord_less(num),M),one2)) ).
% semiring_norm(75)
tff(fact_323_semiring__norm_I80_J,axiom,
! [M: num,N: num] :
( pp(aa(num,bool,aa(num,fun(num,bool),ord_less(num),aa(num,num,bit1,M)),aa(num,num,bit1,N)))
<=> pp(aa(num,bool,aa(num,fun(num,bool),ord_less(num),M),N)) ) ).
% semiring_norm(80)
tff(fact_324__C4_Ohyps_C_I9_J,axiom,
( ( mi != ma )
=> ! [I2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I2),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),m)))
=> ( ( ( vEBT_VEBT_high(ma,na) = I2 )
=> pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,treeList),I2)),vEBT_VEBT_low(ma,na))) )
& ! [X: nat] :
( ( ( vEBT_VEBT_high(X,na) = I2 )
& pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,treeList),I2)),vEBT_VEBT_low(X,na))) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),mi),X))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),X),ma)) ) ) ) ) ) ).
% "4.hyps"(9)
tff(fact_325_semiring__norm_I76_J,axiom,
! [N: num] : pp(aa(num,bool,aa(num,fun(num,bool),ord_less(num),one2),bit0(N))) ).
% semiring_norm(76)
tff(fact_326_both__member__options__ding,axiom,
! [Info: option(product_prod(nat,nat)),Deg: nat,TreeList: list(vEBT_VEBT),Summary: vEBT_VEBT,N: nat,X2: nat] :
( vEBT_invar_vebt(vEBT_Node(Info,Deg,TreeList,Summary),N)
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),X2),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),Deg)))
=> ( pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList),vEBT_VEBT_high(X2,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),Deg),aa(num,nat,numeral_numeral(nat),bit0(one2)))))),vEBT_VEBT_low(X2,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),Deg),aa(num,nat,numeral_numeral(nat),bit0(one2))))))
=> pp(aa(nat,bool,vEBT_V8194947554948674370ptions(vEBT_Node(Info,Deg,TreeList,Summary)),X2)) ) ) ) ).
% both_member_options_ding
tff(fact_327_semiring__norm_I81_J,axiom,
! [M: num,N: num] :
( pp(aa(num,bool,aa(num,fun(num,bool),ord_less(num),aa(num,num,bit1,M)),bit0(N)))
<=> pp(aa(num,bool,aa(num,fun(num,bool),ord_less(num),M),N)) ) ).
% semiring_norm(81)
tff(fact_328_semiring__norm_I77_J,axiom,
! [N: num] : pp(aa(num,bool,aa(num,fun(num,bool),ord_less(num),one2),aa(num,num,bit1,N))) ).
% semiring_norm(77)
tff(fact_329_both__member__options__from__complete__tree__to__child,axiom,
! [Deg: nat,Mi: nat,Ma: nat,TreeList: list(vEBT_VEBT),Summary: vEBT_VEBT,X2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),one_one(nat)),Deg))
=> ( pp(aa(nat,bool,vEBT_V8194947554948674370ptions(vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi),Ma)),Deg,TreeList,Summary)),X2))
=> ( pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList),vEBT_VEBT_high(X2,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),Deg),aa(num,nat,numeral_numeral(nat),bit0(one2)))))),vEBT_VEBT_low(X2,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),Deg),aa(num,nat,numeral_numeral(nat),bit0(one2))))))
| ( X2 = Mi )
| ( X2 = Ma ) ) ) ) ).
% both_member_options_from_complete_tree_to_child
tff(fact_330_both__member__options__from__chilf__to__complete__tree,axiom,
! [X2: nat,Deg: nat,TreeList: list(vEBT_VEBT),Mi: nat,Ma: nat,Summary: vEBT_VEBT] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(X2,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),Deg),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList)))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),one_one(nat)),Deg))
=> ( pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList),vEBT_VEBT_high(X2,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),Deg),aa(num,nat,numeral_numeral(nat),bit0(one2)))))),vEBT_VEBT_low(X2,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),Deg),aa(num,nat,numeral_numeral(nat),bit0(one2))))))
=> pp(aa(nat,bool,vEBT_V8194947554948674370ptions(vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi),Ma)),Deg,TreeList,Summary)),X2)) ) ) ) ).
% both_member_options_from_chilf_to_complete_tree
tff(fact_331_semiring__norm_I79_J,axiom,
! [M: num,N: num] :
( pp(aa(num,bool,aa(num,fun(num,bool),ord_less(num),bit0(M)),aa(num,num,bit1,N)))
<=> pp(aa(num,bool,aa(num,fun(num,bool),ord_less_eq(num),M),N)) ) ).
% semiring_norm(79)
tff(fact_332_semiring__norm_I74_J,axiom,
! [M: num,N: num] :
( pp(aa(num,bool,aa(num,fun(num,bool),ord_less_eq(num),aa(num,num,bit1,M)),bit0(N)))
<=> pp(aa(num,bool,aa(num,fun(num,bool),ord_less(num),M),N)) ) ).
% semiring_norm(74)
tff(fact_333_less__eq__real__def,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),Y))
<=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),Y))
| ( X2 = Y ) ) ) ).
% less_eq_real_def
tff(fact_334_minus__1__div__exp__eq__int,axiom,
! [N: nat] : ( aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,uminus_uminus(int),one_one(int))),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)) = aa(int,int,uminus_uminus(int),one_one(int)) ) ).
% minus_1_div_exp_eq_int
tff(fact_335_real__arch__pow,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),X2))
=> ? [N3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y),aa(nat,real,power_power(real,X2),N3))) ) ).
% real_arch_pow
tff(fact_336_linordered__field__no__lb,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X: A] :
? [Y3: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y3),X)) ) ).
% linordered_field_no_lb
tff(fact_337_linordered__field__no__ub,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X: A] :
? [X_13: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X),X_13)) ) ).
% linordered_field_no_ub
tff(fact_338_measure__induct,axiom,
! [B: $tType,A: $tType] :
( wellorder(B)
=> ! [F2: fun(A,B),P: fun(A,bool),A2: A] :
( ! [X3: A] :
( ! [Y4: A] :
( pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),aa(A,B,F2,Y4)),aa(A,B,F2,X3)))
=> pp(aa(A,bool,P,Y4)) )
=> pp(aa(A,bool,P,X3)) )
=> pp(aa(A,bool,P,A2)) ) ) ).
% measure_induct
tff(fact_339_measure__induct__rule,axiom,
! [B: $tType,A: $tType] :
( wellorder(B)
=> ! [F2: fun(A,B),P: fun(A,bool),A2: A] :
( ! [X3: A] :
( ! [Y4: A] :
( pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),aa(A,B,F2,Y4)),aa(A,B,F2,X3)))
=> pp(aa(A,bool,P,Y4)) )
=> pp(aa(A,bool,P,X3)) )
=> pp(aa(A,bool,P,A2)) ) ) ).
% measure_induct_rule
tff(fact_340_mult_Oleft__commute,axiom,
! [A: $tType] :
( ab_semigroup_mult(A)
=> ! [B2: A,A2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)) = aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)) ) ) ).
% mult.left_commute
tff(fact_341_mult_Ocommute,axiom,
! [A: $tType] :
( ab_semigroup_mult(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2) = aa(A,A,aa(A,fun(A,A),times_times(A),B2),A2) ) ) ).
% mult.commute
tff(fact_342_mult_Oassoc,axiom,
! [A: $tType] :
( semigroup_mult(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)) ) ) ).
% mult.assoc
tff(fact_343_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: $tType] :
( ab_semigroup_mult(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
tff(fact_344_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: $tType] :
( ab_semigroup_add(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),C2)) ) ) ).
% ab_semigroup_add_class.add_ac(1)
tff(fact_345_add__mono__thms__linordered__semiring_I4_J,axiom,
! [A: $tType] :
( ordere6658533253407199908up_add(A)
=> ! [I: A,J: A,K: A,L: A] :
( ( ( I = J )
& ( K = L ) )
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),I),K) = aa(A,A,aa(A,fun(A,A),plus_plus(A),J),L) ) ) ) ).
% add_mono_thms_linordered_semiring(4)
tff(fact_346_group__cancel_Oadd1,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [A3: A,K: A,A2: A,B2: A] :
( ( A3 = aa(A,A,aa(A,fun(A,A),plus_plus(A),K),A2) )
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A3),B2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),K),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)) ) ) ) ).
% group_cancel.add1
tff(fact_347_group__cancel_Oadd2,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [B4: A,K: A,B2: A,A2: A] :
( ( B4 = aa(A,A,aa(A,fun(A,A),plus_plus(A),K),B2) )
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B4) = aa(A,A,aa(A,fun(A,A),plus_plus(A),K),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)) ) ) ) ).
% group_cancel.add2
tff(fact_348_add_Oassoc,axiom,
! [A: $tType] :
( semigroup_add(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),C2)) ) ) ).
% add.assoc
tff(fact_349_add_Oleft__cancel,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A,B2: A,C2: A] :
( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2) )
<=> ( B2 = C2 ) ) ) ).
% add.left_cancel
tff(fact_350_add_Oright__cancel,axiom,
! [A: $tType] :
( group_add(A)
=> ! [B2: A,A2: A,C2: A] :
( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),A2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),A2) )
<=> ( B2 = C2 ) ) ) ).
% add.right_cancel
tff(fact_351_add_Ocommute,axiom,
! [A: $tType] :
( ab_semigroup_add(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),A2) ) ) ).
% add.commute
tff(fact_352_add_Oleft__commute,axiom,
! [A: $tType] :
( ab_semigroup_add(A)
=> ! [B2: A,A2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),C2)) ) ) ).
% add.left_commute
tff(fact_353_add__left__imp__eq,axiom,
! [A: $tType] :
( cancel_semigroup_add(A)
=> ! [A2: A,B2: A,C2: A] :
( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2) )
=> ( B2 = C2 ) ) ) ).
% add_left_imp_eq
tff(fact_354_add__right__imp__eq,axiom,
! [A: $tType] :
( cancel_semigroup_add(A)
=> ! [B2: A,A2: A,C2: A] :
( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),A2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),A2) )
=> ( B2 = C2 ) ) ) ).
% add_right_imp_eq
tff(fact_355_one__reorient,axiom,
! [A: $tType] :
( one(A)
=> ! [X2: A] :
( ( one_one(A) = X2 )
<=> ( X2 = one_one(A) ) ) ) ).
% one_reorient
tff(fact_356_diff__right__commute,axiom,
! [A: $tType] :
( cancel2418104881723323429up_add(A)
=> ! [A2: A,C2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),C2)),B2) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)),C2) ) ) ).
% diff_right_commute
tff(fact_357_diff__eq__diff__eq,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2) = aa(A,A,aa(A,fun(A,A),minus_minus(A),C2),D2) )
=> ( ( A2 = B2 )
<=> ( C2 = D2 ) ) ) ) ).
% diff_eq_diff_eq
tff(fact_358_equation__minus__iff,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A,B2: A] :
( ( A2 = aa(A,A,uminus_uminus(A),B2) )
<=> ( B2 = aa(A,A,uminus_uminus(A),A2) ) ) ) ).
% equation_minus_iff
tff(fact_359_minus__equation__iff,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A,B2: A] :
( ( aa(A,A,uminus_uminus(A),A2) = B2 )
<=> ( aa(A,A,uminus_uminus(A),B2) = A2 ) ) ) ).
% minus_equation_iff
tff(fact_360_nat__neq__iff,axiom,
! [M: nat,N: nat] :
( ( M != N )
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
| pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M)) ) ) ).
% nat_neq_iff
tff(fact_361_less__not__refl,axiom,
! [N: nat] : ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),N)) ).
% less_not_refl
tff(fact_362_less__not__refl2,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M))
=> ( M != N ) ) ).
% less_not_refl2
tff(fact_363_less__not__refl3,axiom,
! [S2: nat,T2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),S2),T2))
=> ( S2 != T2 ) ) ).
% less_not_refl3
tff(fact_364_less__irrefl__nat,axiom,
! [N: nat] : ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),N)) ).
% less_irrefl_nat
tff(fact_365_nat__less__induct,axiom,
! [P: fun(nat,bool),N: nat] :
( ! [N3: nat] :
( ! [M2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M2),N3))
=> pp(aa(nat,bool,P,M2)) )
=> pp(aa(nat,bool,P,N3)) )
=> pp(aa(nat,bool,P,N)) ) ).
% nat_less_induct
tff(fact_366_infinite__descent,axiom,
! [P: fun(nat,bool),N: nat] :
( ! [N3: nat] :
( ~ pp(aa(nat,bool,P,N3))
=> ? [M2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M2),N3))
& ~ pp(aa(nat,bool,P,M2)) ) )
=> pp(aa(nat,bool,P,N)) ) ).
% infinite_descent
tff(fact_367_linorder__neqE__nat,axiom,
! [X2: nat,Y: nat] :
( ( X2 != Y )
=> ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),X2),Y))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Y),X2)) ) ) ).
% linorder_neqE_nat
tff(fact_368_infinite__descent__measure,axiom,
! [A: $tType,P: fun(A,bool),V2: fun(A,nat),X2: A] :
( ! [X3: A] :
( ~ pp(aa(A,bool,P,X3))
=> ? [Y4: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(A,nat,V2,Y4)),aa(A,nat,V2,X3)))
& ~ pp(aa(A,bool,P,Y4)) ) )
=> pp(aa(A,bool,P,X2)) ) ).
% infinite_descent_measure
tff(fact_369_le__refl,axiom,
! [N: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),N)) ).
% le_refl
tff(fact_370_le__trans,axiom,
! [I: nat,J: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),J))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),J),K))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),K)) ) ) ).
% le_trans
tff(fact_371_eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( M = N )
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ).
% eq_imp_le
tff(fact_372_le__antisym,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> ( M = N ) ) ) ).
% le_antisym
tff(fact_373_nat__le__linear,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
| pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M)) ) ).
% nat_le_linear
tff(fact_374_Nat_Oex__has__greatest__nat,axiom,
! [P: fun(nat,bool),K: nat,B2: nat] :
( pp(aa(nat,bool,P,K))
=> ( ! [Y3: nat] :
( pp(aa(nat,bool,P,Y3))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Y3),B2)) )
=> ? [X3: nat] :
( pp(aa(nat,bool,P,X3))
& ! [Y4: nat] :
( pp(aa(nat,bool,P,Y4))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Y4),X3)) ) ) ) ) ).
% Nat.ex_has_greatest_nat
tff(fact_375_div__le__mono,axiom,
! [M: nat,N: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),K)),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),K))) ) ).
% div_le_mono
tff(fact_376_div__le__dividend,axiom,
! [M: nat,N: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N)),M)) ).
% div_le_dividend
tff(fact_377_size__neq__size__imp__neq,axiom,
! [A: $tType] :
( size(A)
=> ! [X2: A,Y: A] :
( ( aa(A,nat,size_size(A),X2) != aa(A,nat,size_size(A),Y) )
=> ( X2 != Y ) ) ) ).
% size_neq_size_imp_neq
tff(fact_378_diff__commute,axiom,
! [I: nat,J: nat,K: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),I),J)),K) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),I),K)),J) ) ).
% diff_commute
tff(fact_379_div__mult2__eq,axiom,
! [M: nat,N: nat,Q2: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),Q2)) = aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N)),Q2) ) ).
% div_mult2_eq
tff(fact_380_nat__mult__1__right,axiom,
! [N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),one_one(nat)) = N ) ).
% nat_mult_1_right
tff(fact_381_nat__mult__1,axiom,
! [N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),one_one(nat)),N) = N ) ).
% nat_mult_1
tff(fact_382_invar__vebt_Ointros_I4_J,axiom,
! [TreeList: list(vEBT_VEBT),N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat,Mi: nat,Ma: nat] :
( ! [X3: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X3,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList)))
=> vEBT_invar_vebt(X3,N) )
=> ( vEBT_invar_vebt(Summary,M)
=> ( ( aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList) = aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),M) )
=> ( ( M = N )
=> ( ( Deg = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),M) )
=> ( ! [I3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I3),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),M)))
=> ( ? [X_12: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList),I3)),X_12))
<=> pp(aa(nat,bool,vEBT_V8194947554948674370ptions(Summary),I3)) ) )
=> ( ( ( Mi = Ma )
=> ! [X3: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X3,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList)))
=> ~ ? [X_13: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(X3),X_13)) ) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Mi),Ma))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Ma),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),Deg)))
=> ( ( ( Mi != Ma )
=> ! [I3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I3),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),M)))
=> ( ( ( vEBT_VEBT_high(Ma,N) = I3 )
=> pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList),I3)),vEBT_VEBT_low(Ma,N))) )
& ! [X3: nat] :
( ( ( vEBT_VEBT_high(X3,N) = I3 )
& pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList),I3)),vEBT_VEBT_low(X3,N))) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Mi),X3))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),X3),Ma)) ) ) ) ) )
=> vEBT_invar_vebt(vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi),Ma)),Deg,TreeList,Summary),Deg) ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(4)
tff(fact_383_add__le__imp__le__right,axiom,
! [A: $tType] :
( ordere2412721322843649153imp_le(A)
=> ! [A2: A,C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),C2)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) ) ) ).
% add_le_imp_le_right
tff(fact_384_add__le__imp__le__left,axiom,
! [A: $tType] :
( ordere2412721322843649153imp_le(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),A2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),B2)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) ) ) ).
% add_le_imp_le_left
tff(fact_385_le__iff__add,axiom,
! [A: $tType] :
( canoni5634975068530333245id_add(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
<=> ? [C3: A] : ( B2 = aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C3) ) ) ) ).
% le_iff_add
tff(fact_386_add__right__mono,axiom,
! [A: $tType] :
( ordere6658533253407199908up_add(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),C2))) ) ) ).
% add_right_mono
tff(fact_387_less__eqE,axiom,
! [A: $tType] :
( canoni5634975068530333245id_add(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ~ ! [C4: A] : ( B2 != aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C4) ) ) ) ).
% less_eqE
tff(fact_388_add__left__mono,axiom,
! [A: $tType] :
( ordere6658533253407199908up_add(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),A2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),B2))) ) ) ).
% add_left_mono
tff(fact_389_add__mono,axiom,
! [A: $tType] :
( ordere6658533253407199908up_add(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),D2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),D2))) ) ) ) ).
% add_mono
tff(fact_390_add__mono__thms__linordered__semiring_I1_J,axiom,
! [A: $tType] :
( ordere6658533253407199908up_add(A)
=> ! [I: A,J: A,K: A,L: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),I),J))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),K),L)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),I),K)),aa(A,A,aa(A,fun(A,A),plus_plus(A),J),L))) ) ) ).
% add_mono_thms_linordered_semiring(1)
tff(fact_391_add__mono__thms__linordered__semiring_I2_J,axiom,
! [A: $tType] :
( ordere6658533253407199908up_add(A)
=> ! [I: A,J: A,K: A,L: A] :
( ( ( I = J )
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),K),L)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),I),K)),aa(A,A,aa(A,fun(A,A),plus_plus(A),J),L))) ) ) ).
% add_mono_thms_linordered_semiring(2)
tff(fact_392_add__mono__thms__linordered__semiring_I3_J,axiom,
! [A: $tType] :
( ordere6658533253407199908up_add(A)
=> ! [I: A,J: A,K: A,L: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),I),J))
& ( K = L ) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),I),K)),aa(A,A,aa(A,fun(A,A),plus_plus(A),J),L))) ) ) ).
% add_mono_thms_linordered_semiring(3)
tff(fact_393_diff__eq__diff__less__eq,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2) = aa(A,A,aa(A,fun(A,A),minus_minus(A),C2),D2) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),D2)) ) ) ) ).
% diff_eq_diff_less_eq
tff(fact_394_diff__right__mono,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),C2)),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),C2))) ) ) ).
% diff_right_mono
tff(fact_395_diff__left__mono,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [B2: A,A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),C2),A2)),aa(A,A,aa(A,fun(A,A),minus_minus(A),C2),B2))) ) ) ).
% diff_left_mono
tff(fact_396_diff__mono,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A,B2: A,D2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),D2),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),C2)),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),D2))) ) ) ) ).
% diff_mono
tff(fact_397_add__mono__thms__linordered__field_I5_J,axiom,
! [A: $tType] :
( ordere580206878836729694up_add(A)
=> ! [I: A,J: A,K: A,L: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),I),J))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),K),L)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),I),K)),aa(A,A,aa(A,fun(A,A),plus_plus(A),J),L))) ) ) ).
% add_mono_thms_linordered_field(5)
tff(fact_398_add__mono__thms__linordered__field_I2_J,axiom,
! [A: $tType] :
( ordere580206878836729694up_add(A)
=> ! [I: A,J: A,K: A,L: A] :
( ( ( I = J )
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),K),L)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),I),K)),aa(A,A,aa(A,fun(A,A),plus_plus(A),J),L))) ) ) ).
% add_mono_thms_linordered_field(2)
tff(fact_399_add__mono__thms__linordered__field_I1_J,axiom,
! [A: $tType] :
( ordere580206878836729694up_add(A)
=> ! [I: A,J: A,K: A,L: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),I),J))
& ( K = L ) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),I),K)),aa(A,A,aa(A,fun(A,A),plus_plus(A),J),L))) ) ) ).
% add_mono_thms_linordered_field(1)
tff(fact_400_add__strict__mono,axiom,
! [A: $tType] :
( strict9044650504122735259up_add(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),D2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),D2))) ) ) ) ).
% add_strict_mono
tff(fact_401_add__strict__left__mono,axiom,
! [A: $tType] :
( ordere580206878836729694up_add(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),A2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),B2))) ) ) ).
% add_strict_left_mono
tff(fact_402_add__strict__right__mono,axiom,
! [A: $tType] :
( ordere580206878836729694up_add(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),C2))) ) ) ).
% add_strict_right_mono
tff(fact_403_add__less__imp__less__left,axiom,
! [A: $tType] :
( ordere2412721322843649153imp_le(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),A2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),B2)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) ) ) ).
% add_less_imp_less_left
tff(fact_404_add__less__imp__less__right,axiom,
! [A: $tType] :
( ordere2412721322843649153imp_le(A)
=> ! [A2: A,C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),C2)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) ) ) ).
% add_less_imp_less_right
tff(fact_405_le__imp__neg__le,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),B2)),aa(A,A,uminus_uminus(A),A2))) ) ) ).
% le_imp_neg_le
tff(fact_406_minus__le__iff,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),A2)),B2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),B2)),A2)) ) ) ).
% minus_le_iff
tff(fact_407_le__minus__iff,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(A,A,uminus_uminus(A),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),aa(A,A,uminus_uminus(A),A2))) ) ) ).
% le_minus_iff
tff(fact_408_diff__strict__right__mono,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),C2)),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),C2))) ) ) ).
% diff_strict_right_mono
tff(fact_409_diff__strict__left__mono,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [B2: A,A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),C2),A2)),aa(A,A,aa(A,fun(A,A),minus_minus(A),C2),B2))) ) ) ).
% diff_strict_left_mono
tff(fact_410_diff__eq__diff__less,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2) = aa(A,A,aa(A,fun(A,A),minus_minus(A),C2),D2) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),D2)) ) ) ) ).
% diff_eq_diff_less
tff(fact_411_diff__strict__mono,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A,B2: A,D2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),D2),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),C2)),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),D2))) ) ) ) ).
% diff_strict_mono
tff(fact_412_mult_Ocomm__neutral,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),one_one(A)) = A2 ) ) ).
% mult.comm_neutral
tff(fact_413_comm__monoid__mult__class_Omult__1,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),one_one(A)),A2) = A2 ) ) ).
% comm_monoid_mult_class.mult_1
tff(fact_414_less__minus__iff,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(A,A,uminus_uminus(A),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),aa(A,A,uminus_uminus(A),A2))) ) ) ).
% less_minus_iff
tff(fact_415_minus__less__iff,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),A2)),B2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),B2)),A2)) ) ) ).
% minus_less_iff
tff(fact_416_diff__diff__eq,axiom,
! [A: $tType] :
( cancel2418104881723323429up_add(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),C2)) ) ) ).
% diff_diff_eq
tff(fact_417_add__implies__diff,axiom,
! [A: $tType] :
( cancel1802427076303600483id_add(A)
=> ! [C2: A,B2: A,A2: A] :
( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),B2) = A2 )
=> ( C2 = aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2) ) ) ) ).
% add_implies_diff
tff(fact_418_diff__add__eq__diff__diff__swap,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),C2)),B2) ) ) ).
% diff_add_eq_diff_diff_swap
tff(fact_419_diff__add__eq,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2)),B2) ) ) ).
% diff_add_eq
tff(fact_420_diff__diff__eq2,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2)),B2) ) ) ).
% diff_diff_eq2
tff(fact_421_add__diff__eq,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),C2) ) ) ).
% add_diff_eq
tff(fact_422_eq__diff__eq,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A,C2: A,B2: A] :
( ( A2 = aa(A,A,aa(A,fun(A,A),minus_minus(A),C2),B2) )
<=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2) = C2 ) ) ) ).
% eq_diff_eq
tff(fact_423_diff__eq__eq,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A,B2: A,C2: A] :
( ( aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2) = C2 )
<=> ( A2 = aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),B2) ) ) ) ).
% diff_eq_eq
tff(fact_424_group__cancel_Osub1,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [A3: A,K: A,A2: A,B2: A] :
( ( A3 = aa(A,A,aa(A,fun(A,A),plus_plus(A),K),A2) )
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),A3),B2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),K),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)) ) ) ) ).
% group_cancel.sub1
tff(fact_425_divide__divide__eq__left_H,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)) ) ) ).
% divide_divide_eq_left'
tff(fact_426_divide__divide__times__eq,axiom,
! [A: $tType] :
( field(A)
=> ! [X2: A,Y: A,Z: A,W: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y)),aa(A,A,aa(A,fun(A,A),divide_divide(A),Z),W)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),X2),W)),aa(A,A,aa(A,fun(A,A),times_times(A),Y),Z)) ) ) ).
% divide_divide_times_eq
tff(fact_427_times__divide__times__eq,axiom,
! [A: $tType] :
( field(A)
=> ! [X2: A,Y: A,Z: A,W: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y)),aa(A,A,aa(A,fun(A,A),divide_divide(A),Z),W)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),X2),Z)),aa(A,A,aa(A,fun(A,A),times_times(A),Y),W)) ) ) ).
% times_divide_times_eq
tff(fact_428_add__divide__distrib,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),C2)),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)) ) ) ).
% add_divide_distrib
tff(fact_429_group__cancel_Oneg1,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [A3: A,K: A,A2: A] :
( ( A3 = aa(A,A,aa(A,fun(A,A),plus_plus(A),K),A2) )
=> ( aa(A,A,uminus_uminus(A),A3) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),K)),aa(A,A,uminus_uminus(A),A2)) ) ) ) ).
% group_cancel.neg1
tff(fact_430_add_Oinverse__distrib__swap,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A,B2: A] : ( aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),B2)),aa(A,A,uminus_uminus(A),A2)) ) ) ).
% add.inverse_distrib_swap
tff(fact_431_diff__divide__distrib,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),C2)),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)) ) ) ).
% diff_divide_distrib
tff(fact_432_minus__diff__commute,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [B2: A,A2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,uminus_uminus(A),B2)),A2) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,uminus_uminus(A),A2)),B2) ) ) ).
% minus_diff_commute
tff(fact_433_minus__divide__right,axiom,
! [A: $tType] :
( field(A)
=> ! [A2: A,B2: A] : ( aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(A,A,uminus_uminus(A),B2)) ) ) ).
% minus_divide_right
tff(fact_434_minus__divide__divide,axiom,
! [A: $tType] :
( field(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,uminus_uminus(A),A2)),aa(A,A,uminus_uminus(A),B2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) ) ) ).
% minus_divide_divide
tff(fact_435_minus__divide__left,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A,B2: A] : ( aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,uminus_uminus(A),A2)),B2) ) ) ).
% minus_divide_left
tff(fact_436_div__minus__right,axiom,
! [A: $tType] :
( euclid8851590272496341667cancel(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(A,A,uminus_uminus(A),B2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,uminus_uminus(A),A2)),B2) ) ) ).
% div_minus_right
tff(fact_437_nat__less__le,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
& ( M != N ) ) ) ).
% nat_less_le
tff(fact_438_less__imp__le__nat,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ).
% less_imp_le_nat
tff(fact_439_le__eq__less__or__eq,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
| ( M = N ) ) ) ).
% le_eq_less_or_eq
tff(fact_440_less__or__eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
| ( M = N ) )
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ).
% less_or_eq_imp_le
tff(fact_441_le__neq__implies__less,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( ( M != N )
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N)) ) ) ).
% le_neq_implies_less
tff(fact_442_less__mono__imp__le__mono,axiom,
! [F2: fun(nat,nat),I: nat,J: nat] :
( ! [I3: nat,J2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I3),J2))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,F2,I3)),aa(nat,nat,F2,J2))) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),J))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,F2,I)),aa(nat,nat,F2,J))) ) ) ).
% less_mono_imp_le_mono
tff(fact_443_add__lessD1,axiom,
! [I: nat,J: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),J)),K))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),K)) ) ).
% add_lessD1
tff(fact_444_add__less__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),J))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),K),L))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),K)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),J),L))) ) ) ).
% add_less_mono
tff(fact_445_not__add__less1,axiom,
! [I: nat,J: nat] : ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),J)),I)) ).
% not_add_less1
tff(fact_446_not__add__less2,axiom,
! [J: nat,I: nat] : ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),J),I)),I)) ).
% not_add_less2
tff(fact_447_add__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),J))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),K)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),J),K))) ) ).
% add_less_mono1
tff(fact_448_trans__less__add1,axiom,
! [I: nat,J: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),J))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),J),M))) ) ).
% trans_less_add1
tff(fact_449_trans__less__add2,axiom,
! [I: nat,J: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),J))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),J))) ) ).
% trans_less_add2
tff(fact_450_less__add__eq__less,axiom,
! [K: nat,L: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),K),L))
=> ( ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),L) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),K),N) )
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N)) ) ) ).
% less_add_eq_less
tff(fact_451_add__leE,axiom,
! [M: nat,K: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),K)),N))
=> ~ ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N)) ) ) ).
% add_leE
tff(fact_452_le__add1,axiom,
! [N: nat,M: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),M))) ).
% le_add1
tff(fact_453_le__add2,axiom,
! [N: nat,M: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N))) ).
% le_add2
tff(fact_454_add__leD1,axiom,
! [M: nat,K: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),K)),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ).
% add_leD1
tff(fact_455_add__leD2,axiom,
! [M: nat,K: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),K)),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N)) ) ).
% add_leD2
tff(fact_456_le__Suc__ex,axiom,
! [K: nat,L: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),L))
=> ? [N3: nat] : ( L = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),K),N3) ) ) ).
% le_Suc_ex
tff(fact_457_add__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),J))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),L))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),K)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),J),L))) ) ) ).
% add_le_mono
tff(fact_458_add__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),J))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),K)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),J),K))) ) ).
% add_le_mono1
tff(fact_459_trans__le__add1,axiom,
! [I: nat,J: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),J))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),J),M))) ) ).
% trans_le_add1
tff(fact_460_trans__le__add2,axiom,
! [I: nat,J: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),J))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),J))) ) ).
% trans_le_add2
tff(fact_461_nat__le__iff__add,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
<=> ? [K2: nat] : ( N = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),K2) ) ) ).
% nat_le_iff_add
tff(fact_462_less__imp__diff__less,axiom,
! [J: nat,K: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J),K))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),J),N)),K)) ) ).
% less_imp_diff_less
tff(fact_463_diff__less__mono2,axiom,
! [M: nat,N: nat,L: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),L))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),L),N)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),L),M))) ) ) ).
% diff_less_mono2
tff(fact_464_less__mult__imp__div__less,axiom,
! [M: nat,I: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),I),N)))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N)),I)) ) ).
% less_mult_imp_div_less
tff(fact_465_eq__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),M))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N))
=> ( ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),K) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),K) )
<=> ( M = N ) ) ) ) ).
% eq_diff_iff
tff(fact_466_le__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),M))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),K)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),K)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ) ) ).
% le_diff_iff
tff(fact_467_Nat_Odiff__diff__eq,axiom,
! [K: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),M))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),K)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),K)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N) ) ) ) ).
% Nat.diff_diff_eq
tff(fact_468_diff__le__mono,axiom,
! [M: nat,N: nat,L: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),L)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),L))) ) ).
% diff_le_mono
tff(fact_469_diff__le__self,axiom,
! [M: nat,N: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N)),M)) ).
% diff_le_self
tff(fact_470_le__diff__iff_H,axiom,
! [A2: nat,C2: nat,B2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),A2),C2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),B2),C2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),C2),A2)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),C2),B2)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),B2),A2)) ) ) ) ).
% le_diff_iff'
tff(fact_471_diff__le__mono2,axiom,
! [M: nat,N: nat,L: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),L),N)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),L),M))) ) ).
% diff_le_mono2
tff(fact_472_le__cube,axiom,
! [M: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),M)))) ).
% le_cube
tff(fact_473_le__square,axiom,
! [M: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),M))) ).
% le_square
tff(fact_474_mult__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),J))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),L))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),I),K)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),J),L))) ) ) ).
% mult_le_mono
tff(fact_475_mult__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),J))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),I),K)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),J),K))) ) ).
% mult_le_mono1
tff(fact_476_mult__le__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),J))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),I)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),J))) ) ).
% mult_le_mono2
tff(fact_477_div__times__less__eq__dividend,axiom,
! [M: nat,N: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N)),N)),M)) ).
% div_times_less_eq_dividend
tff(fact_478_times__div__less__eq__dividend,axiom,
! [N: nat,M: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N))),M)) ).
% times_div_less_eq_dividend
tff(fact_479_Nat_Odiff__cancel,axiom,
! [K: nat,M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),K),M)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),K),N)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N) ) ).
% Nat.diff_cancel
tff(fact_480_diff__cancel2,axiom,
! [M: nat,K: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),K)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),K)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N) ) ).
% diff_cancel2
tff(fact_481_diff__add__inverse,axiom,
! [N: nat,M: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),M)),N) = M ) ).
% diff_add_inverse
tff(fact_482_diff__add__inverse2,axiom,
! [M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N)),N) = M ) ).
% diff_add_inverse2
tff(fact_483_add__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N)),K) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),K)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),K)) ) ).
% add_mult_distrib
tff(fact_484_add__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),M)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),N)) ) ).
% add_mult_distrib2
tff(fact_485_diff__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),M)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),N)) ) ).
% diff_mult_distrib2
tff(fact_486_diff__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N)),K) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),K)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),K)) ) ).
% diff_mult_distrib
tff(fact_487_add__less__le__mono,axiom,
! [A: $tType] :
( ordere580206878836729694up_add(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),D2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),D2))) ) ) ) ).
% add_less_le_mono
tff(fact_488_add__le__less__mono,axiom,
! [A: $tType] :
( ordere580206878836729694up_add(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),D2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),D2))) ) ) ) ).
% add_le_less_mono
tff(fact_489_add__mono__thms__linordered__field_I3_J,axiom,
! [A: $tType] :
( ordere580206878836729694up_add(A)
=> ! [I: A,J: A,K: A,L: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),I),J))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),K),L)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),I),K)),aa(A,A,aa(A,fun(A,A),plus_plus(A),J),L))) ) ) ).
% add_mono_thms_linordered_field(3)
tff(fact_490_add__mono__thms__linordered__field_I4_J,axiom,
! [A: $tType] :
( ordere580206878836729694up_add(A)
=> ! [I: A,J: A,K: A,L: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),I),J))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),K),L)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),I),K)),aa(A,A,aa(A,fun(A,A),plus_plus(A),J),L))) ) ) ).
% add_mono_thms_linordered_field(4)
tff(fact_491_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
! [A: $tType] :
( ordere1170586879665033532d_diff(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( ( aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),A2) = C2 )
<=> ( B2 = aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),A2) ) ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
tff(fact_492_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
! [A: $tType] :
( ordere1170586879665033532d_diff(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),A2)) = B2 ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
tff(fact_493_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
! [A: $tType] :
( ordere1170586879665033532d_diff(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),C2),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),A2)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),A2)),B2) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_diff_right
tff(fact_494_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
! [A: $tType] :
( ordere1170586879665033532d_diff(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),C2)),A2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),A2)),C2) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
tff(fact_495_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
! [A: $tType] :
( ordere1170586879665033532d_diff(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),A2)),C2) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),C2)),A2) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
tff(fact_496_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
! [A: $tType] :
( ordere1170586879665033532d_diff(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),B2)),A2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),A2)) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
tff(fact_497_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
! [A: $tType] :
( ordere1170586879665033532d_diff(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),A2)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),B2)),A2) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
tff(fact_498_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
! [A: $tType] :
( ordere1170586879665033532d_diff(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),A2)),B2)) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
tff(fact_499_le__add__diff,axiom,
! [A: $tType] :
( ordere1170586879665033532d_diff(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),C2)),A2))) ) ) ).
% le_add_diff
tff(fact_500_diff__add,axiom,
! [A: $tType] :
( ordere1170586879665033532d_diff(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),A2)),A2) = B2 ) ) ) ).
% diff_add
tff(fact_501_le__diff__eq,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A,C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(A,A,aa(A,fun(A,A),minus_minus(A),C2),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),C2)) ) ) ).
% le_diff_eq
tff(fact_502_diff__le__eq,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)),C2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),B2))) ) ) ).
% diff_le_eq
tff(fact_503_less__diff__eq,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A,C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(A,A,aa(A,fun(A,A),minus_minus(A),C2),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),C2)) ) ) ).
% less_diff_eq
tff(fact_504_diff__less__eq,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)),C2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),B2))) ) ) ).
% diff_less_eq
tff(fact_505_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(A,A,uminus_uminus(A),B2)) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
tff(fact_506_diff__conv__add__uminus,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(A,A,uminus_uminus(A),B2)) ) ) ).
% diff_conv_add_uminus
tff(fact_507_group__cancel_Osub2,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [B4: A,K: A,B2: A,A2: A] :
( ( B4 = aa(A,A,aa(A,fun(A,A),plus_plus(A),K),B2) )
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B4) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),K)),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)) ) ) ) ).
% group_cancel.sub2
tff(fact_508_mono__nat__linear__lb,axiom,
! [F2: fun(nat,nat),M: nat,K: nat] :
( ! [M3: nat,N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M3),N3))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,F2,M3)),aa(nat,nat,F2,N3))) )
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,F2,M)),K)),aa(nat,nat,F2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),K)))) ) ).
% mono_nat_linear_lb
tff(fact_509_less__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),M))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),K)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),K)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N)) ) ) ) ).
% less_diff_iff
tff(fact_510_diff__less__mono,axiom,
! [A2: nat,B2: nat,C2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),A2),B2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),C2),A2))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),A2),C2)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),B2),C2))) ) ) ).
% diff_less_mono
tff(fact_511_less__diff__conv,axiom,
! [I: nat,J: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),J),K)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),K)),J)) ) ).
% less_diff_conv
tff(fact_512_add__diff__inverse__nat,axiom,
! [M: nat,N: nat] :
( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N)) = M ) ) ).
% add_diff_inverse_nat
tff(fact_513_le__diff__conv,axiom,
! [J: nat,K: nat,I: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),J),K)),I))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),J),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),K))) ) ).
% le_diff_conv
tff(fact_514_Nat_Ole__diff__conv2,axiom,
! [K: nat,J: nat,I: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),J))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),J),K)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),K)),J)) ) ) ).
% Nat.le_diff_conv2
tff(fact_515_Nat_Odiff__add__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),J))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),J)),K) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),J),K)) ) ) ).
% Nat.diff_add_assoc
tff(fact_516_Nat_Odiff__add__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),J))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),J),I)),K) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),J),K)),I) ) ) ).
% Nat.diff_add_assoc2
tff(fact_517_Nat_Ole__imp__diff__is__add,axiom,
! [I: nat,J: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),J))
=> ( ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),J),I) = K )
<=> ( J = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),K),I) ) ) ) ).
% Nat.le_imp_diff_is_add
tff(fact_518_div__mult2__numeral__eq,axiom,
! [A: $tType] :
( euclid5411537665997757685th_nat(A)
=> ! [A2: A,K: num,L: num] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),K))),aa(num,A,numeral_numeral(A),L)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),aa(num,num,aa(num,fun(num,num),times_times(num),K),L))) ) ) ).
% div_mult2_numeral_eq
tff(fact_519_gt__half__sum,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),one_one(A)))),B2)) ) ) ).
% gt_half_sum
tff(fact_520_less__half__sum,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),one_one(A))))) ) ) ).
% less_half_sum
tff(fact_521_numeral__Bit0__div__2,axiom,
! [A: $tType] :
( euclid5411537665997757685th_nat(A)
=> ! [N: num] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(num,A,numeral_numeral(A),bit0(N))),aa(num,A,numeral_numeral(A),bit0(one2))) = aa(num,A,numeral_numeral(A),N) ) ) ).
% numeral_Bit0_div_2
tff(fact_522_less__diff__conv2,axiom,
! [K: nat,J: nat,I: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),J))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),J),K)),I))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),K))) ) ) ).
% less_diff_conv2
tff(fact_523_numeral__Bit1__div__2,axiom,
! [A: $tType] :
( euclid5411537665997757685th_nat(A)
=> ! [N: num] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(num,A,numeral_numeral(A),aa(num,num,bit1,N))),aa(num,A,numeral_numeral(A),bit0(one2))) = aa(num,A,numeral_numeral(A),N) ) ) ).
% numeral_Bit1_div_2
tff(fact_524_neg__one__power__add__eq__neg__one__power__diff,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [K: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N))
=> ( aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),K)) = aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),K)) ) ) ) ).
% neg_one_power_add_eq_neg_one_power_diff
tff(fact_525_in__children__def,axiom,
! [N: nat,TreeList: list(vEBT_VEBT),X2: nat] :
( vEBT_V5917875025757280293ildren(N,TreeList,X2)
<=> pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList),vEBT_VEBT_high(X2,N))),vEBT_VEBT_low(X2,N))) ) ).
% in_children_def
tff(fact_526_invar__vebt_Ointros_I5_J,axiom,
! [TreeList: list(vEBT_VEBT),N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat,Mi: nat,Ma: nat] :
( ! [X3: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X3,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList)))
=> vEBT_invar_vebt(X3,N) )
=> ( vEBT_invar_vebt(Summary,M)
=> ( ( aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList) = aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),M) )
=> ( ( M = aa(nat,nat,suc,N) )
=> ( ( Deg = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),M) )
=> ( ! [I3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I3),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),M)))
=> ( ? [X_12: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList),I3)),X_12))
<=> pp(aa(nat,bool,vEBT_V8194947554948674370ptions(Summary),I3)) ) )
=> ( ( ( Mi = Ma )
=> ! [X3: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X3,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList)))
=> ~ ? [X_13: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(X3),X_13)) ) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Mi),Ma))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Ma),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),Deg)))
=> ( ( ( Mi != Ma )
=> ! [I3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I3),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),M)))
=> ( ( ( vEBT_VEBT_high(Ma,N) = I3 )
=> pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList),I3)),vEBT_VEBT_low(Ma,N))) )
& ! [X3: nat] :
( ( ( vEBT_VEBT_high(X3,N) = I3 )
& pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList),I3)),vEBT_VEBT_low(X3,N))) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Mi),X3))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),X3),Ma)) ) ) ) ) )
=> vEBT_invar_vebt(vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi),Ma)),Deg,TreeList,Summary),Deg) ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(5)
tff(fact_527_enat__ord__number_I1_J,axiom,
! [M: num,N: num] :
( pp(aa(extended_enat,bool,aa(extended_enat,fun(extended_enat,bool),ord_less_eq(extended_enat),aa(num,extended_enat,numeral_numeral(extended_enat),M)),aa(num,extended_enat,numeral_numeral(extended_enat),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(num,nat,numeral_numeral(nat),M)),aa(num,nat,numeral_numeral(nat),N))) ) ).
% enat_ord_number(1)
tff(fact_528_enat__ord__number_I2_J,axiom,
! [M: num,N: num] :
( pp(aa(extended_enat,bool,aa(extended_enat,fun(extended_enat,bool),ord_less(extended_enat),aa(num,extended_enat,numeral_numeral(extended_enat),M)),aa(num,extended_enat,numeral_numeral(extended_enat),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(num,nat,numeral_numeral(nat),M)),aa(num,nat,numeral_numeral(nat),N))) ) ).
% enat_ord_number(2)
tff(fact_529_zdiv__numeral__Bit1,axiom,
! [V: num,W: num] : ( aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,V))),aa(num,int,numeral_numeral(int),bit0(W))) = aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(num,int,numeral_numeral(int),V)),aa(num,int,numeral_numeral(int),W)) ) ).
% zdiv_numeral_Bit1
tff(fact_530_compl__less__compl__iff,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),X2)),aa(A,A,uminus_uminus(A),Y)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X2)) ) ) ).
% compl_less_compl_iff
tff(fact_531_compl__le__compl__iff,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),X2)),aa(A,A,uminus_uminus(A),Y)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),X2)) ) ) ).
% compl_le_compl_iff
tff(fact_532_divmod__step__eq,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [L: num,R: A,Q2: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(num,A,numeral_numeral(A),L)),R))
=> ( unique1321980374590559556d_step(A,L,aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),Q2),R)) = aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),Q2)),one_one(A))),aa(A,A,aa(A,fun(A,A),minus_minus(A),R),aa(num,A,numeral_numeral(A),L))) ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(num,A,numeral_numeral(A),L)),R))
=> ( unique1321980374590559556d_step(A,L,aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),Q2),R)) = aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),Q2)),R) ) ) ) ) ).
% divmod_step_eq
tff(fact_533_two__realpow__ge__two,axiom,
! [N: nat] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),aa(nat,real,semiring_1_of_nat(real),N)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(num,real,numeral_numeral(real),bit0(one2))),aa(nat,real,power_power(real,aa(num,real,numeral_numeral(real),bit0(one2))),N))) ) ).
% two_realpow_ge_two
tff(fact_534_all__set__conv__all__nth,axiom,
! [A: $tType,Xs: list(A),P: fun(A,bool)] :
( ! [X4: A] :
( pp(member(A,X4,aa(list(A),set(A),set2(A),Xs)))
=> pp(aa(A,bool,P,X4)) )
<=> ! [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I4),aa(list(A),nat,size_size(list(A)),Xs)))
=> pp(aa(A,bool,P,aa(nat,A,nth(A,Xs),I4))) ) ) ).
% all_set_conv_all_nth
tff(fact_535_all__nth__imp__all__set,axiom,
! [A: $tType,Xs: list(A),P: fun(A,bool),X2: A] :
( ! [I3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I3),aa(list(A),nat,size_size(list(A)),Xs)))
=> pp(aa(A,bool,P,aa(nat,A,nth(A,Xs),I3))) )
=> ( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> pp(aa(A,bool,P,X2)) ) ) ).
% all_nth_imp_all_set
tff(fact_536_even__odd__cases,axiom,
! [X2: nat] :
( ! [N3: nat] : ( X2 != aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N3),N3) )
=> ~ ! [N3: nat] : ( X2 != aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N3),aa(nat,nat,suc,N3)) ) ) ).
% even_odd_cases
tff(fact_537_boolean__algebra__class_Oboolean__algebra_Ocompl__eq__compl__iff,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A,Y: A] :
( ( aa(A,A,uminus_uminus(A),X2) = aa(A,A,uminus_uminus(A),Y) )
<=> ( X2 = Y ) ) ) ).
% boolean_algebra_class.boolean_algebra.compl_eq_compl_iff
tff(fact_538_boolean__algebra__class_Oboolean__algebra_Odouble__compl,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A] : ( aa(A,A,uminus_uminus(A),aa(A,A,uminus_uminus(A),X2)) = X2 ) ) ).
% boolean_algebra_class.boolean_algebra.double_compl
tff(fact_539_nat_Oinject,axiom,
! [X23: nat,Y22: nat] :
( ( aa(nat,nat,suc,X23) = aa(nat,nat,suc,Y22) )
<=> ( X23 = Y22 ) ) ).
% nat.inject
tff(fact_540_old_Onat_Oinject,axiom,
! [Nat: nat,Nat2: nat] :
( ( aa(nat,nat,suc,Nat) = aa(nat,nat,suc,Nat2) )
<=> ( Nat = Nat2 ) ) ).
% old.nat.inject
tff(fact_541_of__nat__eq__iff,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [M: nat,N: nat] :
( ( aa(nat,A,semiring_1_of_nat(A),M) = aa(nat,A,semiring_1_of_nat(A),N) )
<=> ( M = N ) ) ) ).
% of_nat_eq_iff
tff(fact_542_Suc__less__eq,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,M)),aa(nat,nat,suc,N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N)) ) ).
% Suc_less_eq
tff(fact_543_Suc__mono,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,M)),aa(nat,nat,suc,N))) ) ).
% Suc_mono
tff(fact_544_lessI,axiom,
! [N: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(nat,nat,suc,N))) ).
% lessI
tff(fact_545_Suc__le__mono,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,suc,N)),aa(nat,nat,suc,M)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M)) ) ).
% Suc_le_mono
tff(fact_546_add__Suc__right,axiom,
! [M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),aa(nat,nat,suc,N)) = aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N)) ) ).
% add_Suc_right
tff(fact_547_diff__Suc__Suc,axiom,
! [M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,suc,M)),aa(nat,nat,suc,N)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N) ) ).
% diff_Suc_Suc
tff(fact_548_Suc__diff__diff,axiom,
! [M: nat,N: nat,K: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,suc,M)),N)),aa(nat,nat,suc,K)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N)),K) ) ).
% Suc_diff_diff
tff(fact_549_of__nat__less__iff,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [M: nat,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,semiring_1_of_nat(A),M)),aa(nat,A,semiring_1_of_nat(A),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N)) ) ) ).
% of_nat_less_iff
tff(fact_550_of__nat__le__iff,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [M: nat,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,semiring_1_of_nat(A),M)),aa(nat,A,semiring_1_of_nat(A),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ) ).
% of_nat_le_iff
tff(fact_551_of__nat__numeral,axiom,
! [A: $tType] :
( semiring_1(A)
=> ! [N: num] : ( aa(nat,A,semiring_1_of_nat(A),aa(num,nat,numeral_numeral(nat),N)) = aa(num,A,numeral_numeral(A),N) ) ) ).
% of_nat_numeral
tff(fact_552_of__nat__add,axiom,
! [A: $tType] :
( semiring_1(A)
=> ! [M: nat,N: nat] : ( aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,semiring_1_of_nat(A),M)),aa(nat,A,semiring_1_of_nat(A),N)) ) ) ).
% of_nat_add
tff(fact_553_of__nat__mult,axiom,
! [A: $tType] :
( semiring_1(A)
=> ! [M: nat,N: nat] : ( aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),N)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),M)),aa(nat,A,semiring_1_of_nat(A),N)) ) ) ).
% of_nat_mult
tff(fact_554_of__nat__eq__1__iff,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [N: nat] :
( ( aa(nat,A,semiring_1_of_nat(A),N) = one_one(A) )
<=> ( N = one_one(nat) ) ) ) ).
% of_nat_eq_1_iff
tff(fact_555_of__nat__1__eq__iff,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [N: nat] :
( ( one_one(A) = aa(nat,A,semiring_1_of_nat(A),N) )
<=> ( N = one_one(nat) ) ) ) ).
% of_nat_1_eq_iff
tff(fact_556_of__nat__1,axiom,
! [A: $tType] :
( semiring_1(A)
=> ( aa(nat,A,semiring_1_of_nat(A),one_one(nat)) = one_one(A) ) ) ).
% of_nat_1
tff(fact_557_mult__Suc__right,axiom,
! [M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),aa(nat,nat,suc,N)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),N)) ) ).
% mult_Suc_right
tff(fact_558_of__nat__power,axiom,
! [A: $tType] :
( semiring_1(A)
=> ! [M: nat,N: nat] : ( aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,power_power(nat,M),N)) = aa(nat,A,power_power(A,aa(nat,A,semiring_1_of_nat(A),M)),N) ) ) ).
% of_nat_power
tff(fact_559_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [B2: nat,W: nat,X2: nat] :
( ( aa(nat,A,power_power(A,aa(nat,A,semiring_1_of_nat(A),B2)),W) = aa(nat,A,semiring_1_of_nat(A),X2) )
<=> ( aa(nat,nat,power_power(nat,B2),W) = X2 ) ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
tff(fact_560_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [X2: nat,B2: nat,W: nat] :
( ( aa(nat,A,semiring_1_of_nat(A),X2) = aa(nat,A,power_power(A,aa(nat,A,semiring_1_of_nat(A),B2)),W) )
<=> ( X2 = aa(nat,nat,power_power(nat,B2),W) ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
tff(fact_561_diff__Suc__1,axiom,
! [N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,suc,N)),one_one(nat)) = N ) ).
% diff_Suc_1
tff(fact_562_zdiv__numeral__Bit0,axiom,
! [V: num,W: num] : ( aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(num,int,numeral_numeral(int),bit0(V))),aa(num,int,numeral_numeral(int),bit0(W))) = aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(num,int,numeral_numeral(int),V)),aa(num,int,numeral_numeral(int),W)) ) ).
% zdiv_numeral_Bit0
tff(fact_563_of__nat__Suc,axiom,
! [A: $tType] :
( semiring_1(A)
=> ! [M: nat] : ( aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,suc,M)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),aa(nat,A,semiring_1_of_nat(A),M)) ) ) ).
% of_nat_Suc
tff(fact_564_diff__Suc__diff__eq2,axiom,
! [K: nat,J: nat,I: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),J))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),J),K))),I) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,suc,J)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),K),I)) ) ) ).
% diff_Suc_diff_eq2
tff(fact_565_diff__Suc__diff__eq1,axiom,
! [K: nat,J: nat,I: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),J))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),I),aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),J),K))) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),K)),aa(nat,nat,suc,J)) ) ) ).
% diff_Suc_diff_eq1
tff(fact_566_Suc__numeral,axiom,
! [N: num] : ( aa(nat,nat,suc,aa(num,nat,numeral_numeral(nat),N)) = aa(num,nat,numeral_numeral(nat),aa(num,num,aa(num,fun(num,num),plus_plus(num),N),one2)) ) ).
% Suc_numeral
tff(fact_567_add__2__eq__Suc,axiom,
! [N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N) = aa(nat,nat,suc,aa(nat,nat,suc,N)) ) ).
% add_2_eq_Suc
tff(fact_568_add__2__eq__Suc_H,axiom,
! [N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(nat,nat,suc,aa(nat,nat,suc,N)) ) ).
% add_2_eq_Suc'
tff(fact_569_Suc__1,axiom,
aa(nat,nat,suc,one_one(nat)) = aa(num,nat,numeral_numeral(nat),bit0(one2)) ).
% Suc_1
tff(fact_570_div2__Suc__Suc,axiom,
! [M: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,aa(nat,nat,suc,M))),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),aa(num,nat,numeral_numeral(nat),bit0(one2)))) ) ).
% div2_Suc_Suc
tff(fact_571_of__nat__less__of__nat__power__cancel__iff,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [B2: nat,W: nat,X2: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,power_power(A,aa(nat,A,semiring_1_of_nat(A),B2)),W)),aa(nat,A,semiring_1_of_nat(A),X2)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,power_power(nat,B2),W)),X2)) ) ) ).
% of_nat_less_of_nat_power_cancel_iff
tff(fact_572_of__nat__power__less__of__nat__cancel__iff,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [X2: nat,B2: nat,W: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,semiring_1_of_nat(A),X2)),aa(nat,A,power_power(A,aa(nat,A,semiring_1_of_nat(A),B2)),W)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),X2),aa(nat,nat,power_power(nat,B2),W))) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
tff(fact_573_of__nat__le__of__nat__power__cancel__iff,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [B2: nat,W: nat,X2: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,aa(nat,A,semiring_1_of_nat(A),B2)),W)),aa(nat,A,semiring_1_of_nat(A),X2)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,power_power(nat,B2),W)),X2)) ) ) ).
% of_nat_le_of_nat_power_cancel_iff
tff(fact_574_of__nat__power__le__of__nat__cancel__iff,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [X2: nat,B2: nat,W: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,semiring_1_of_nat(A),X2)),aa(nat,A,power_power(A,aa(nat,A,semiring_1_of_nat(A),B2)),W)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),X2),aa(nat,nat,power_power(nat,B2),W))) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
tff(fact_575_numeral__power__eq__of__nat__cancel__iff,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [X2: num,N: nat,Y: nat] :
( ( aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),X2)),N) = aa(nat,A,semiring_1_of_nat(A),Y) )
<=> ( aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),X2)),N) = Y ) ) ) ).
% numeral_power_eq_of_nat_cancel_iff
tff(fact_576_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [Y: nat,X2: num,N: nat] :
( ( aa(nat,A,semiring_1_of_nat(A),Y) = aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),X2)),N) )
<=> ( Y = aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),X2)),N) ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
tff(fact_577_real__of__nat__less__numeral__iff,axiom,
! [N: nat,W: num] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(nat,real,semiring_1_of_nat(real),N)),aa(num,real,numeral_numeral(real),W)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(num,nat,numeral_numeral(nat),W))) ) ).
% real_of_nat_less_numeral_iff
tff(fact_578_numeral__less__real__of__nat__iff,axiom,
! [W: num,N: nat] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(num,real,numeral_numeral(real),W)),aa(nat,real,semiring_1_of_nat(real),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(num,nat,numeral_numeral(nat),W)),N)) ) ).
% numeral_less_real_of_nat_iff
tff(fact_579_numeral__le__real__of__nat__iff,axiom,
! [N: num,M: nat] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(num,real,numeral_numeral(real),N)),aa(nat,real,semiring_1_of_nat(real),M)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(num,nat,numeral_numeral(nat),N)),M)) ) ).
% numeral_le_real_of_nat_iff
tff(fact_580_Suc__div__eq__add3__div__numeral,axiom,
! [M: nat,V: num] : ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,aa(nat,nat,suc,aa(nat,nat,suc,M)))),aa(num,nat,numeral_numeral(nat),V)) = aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,one2))),M)),aa(num,nat,numeral_numeral(nat),V)) ) ).
% Suc_div_eq_add3_div_numeral
tff(fact_581_div__Suc__eq__div__add3,axiom,
! [M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),aa(nat,nat,suc,aa(nat,nat,suc,aa(nat,nat,suc,N)))) = aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,one2))),N)) ) ).
% div_Suc_eq_div_add3
tff(fact_582_numeral__power__less__of__nat__cancel__iff,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [I: num,N: nat,X2: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),I)),N)),aa(nat,A,semiring_1_of_nat(A),X2)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),I)),N)),X2)) ) ) ).
% numeral_power_less_of_nat_cancel_iff
tff(fact_583_of__nat__less__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [X2: nat,I: num,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,semiring_1_of_nat(A),X2)),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),I)),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),X2),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),I)),N))) ) ) ).
% of_nat_less_numeral_power_cancel_iff
tff(fact_584_numeral__power__le__of__nat__cancel__iff,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [I: num,N: nat,X2: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),I)),N)),aa(nat,A,semiring_1_of_nat(A),X2)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),I)),N)),X2)) ) ) ).
% numeral_power_le_of_nat_cancel_iff
tff(fact_585_of__nat__le__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [X2: nat,I: num,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,semiring_1_of_nat(A),X2)),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),I)),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),X2),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),I)),N))) ) ) ).
% of_nat_le_numeral_power_cancel_iff
tff(fact_586_enat__less__induct,axiom,
! [P: fun(extended_enat,bool),N: extended_enat] :
( ! [N3: extended_enat] :
( ! [M2: extended_enat] :
( pp(aa(extended_enat,bool,aa(extended_enat,fun(extended_enat,bool),ord_less(extended_enat),M2),N3))
=> pp(aa(extended_enat,bool,P,M2)) )
=> pp(aa(extended_enat,bool,P,N3)) )
=> pp(aa(extended_enat,bool,P,N)) ) ).
% enat_less_induct
tff(fact_587_Suc__inject,axiom,
! [X2: nat,Y: nat] :
( ( aa(nat,nat,suc,X2) = aa(nat,nat,suc,Y) )
=> ( X2 = Y ) ) ).
% Suc_inject
tff(fact_588_n__not__Suc__n,axiom,
! [N: nat] : ( N != aa(nat,nat,suc,N) ) ).
% n_not_Suc_n
tff(fact_589_add__diff__assoc__enat,axiom,
! [Z: extended_enat,Y: extended_enat,X2: extended_enat] :
( pp(aa(extended_enat,bool,aa(extended_enat,fun(extended_enat,bool),ord_less_eq(extended_enat),Z),Y))
=> ( aa(extended_enat,extended_enat,aa(extended_enat,fun(extended_enat,extended_enat),plus_plus(extended_enat),X2),aa(extended_enat,extended_enat,aa(extended_enat,fun(extended_enat,extended_enat),minus_minus(extended_enat),Y),Z)) = aa(extended_enat,extended_enat,aa(extended_enat,fun(extended_enat,extended_enat),minus_minus(extended_enat),aa(extended_enat,extended_enat,aa(extended_enat,fun(extended_enat,extended_enat),plus_plus(extended_enat),X2),Y)),Z) ) ) ).
% add_diff_assoc_enat
tff(fact_590_mult__of__nat__commute,axiom,
! [A: $tType] :
( semiring_1(A)
=> ! [X2: nat,Y: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),X2)),Y) = aa(A,A,aa(A,fun(A,A),times_times(A),Y),aa(nat,A,semiring_1_of_nat(A),X2)) ) ) ).
% mult_of_nat_commute
tff(fact_591_not__less__less__Suc__eq,axiom,
! [N: nat,M: nat] :
( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(nat,nat,suc,M)))
<=> ( N = M ) ) ) ).
% not_less_less_Suc_eq
tff(fact_592_strict__inc__induct,axiom,
! [I: nat,J: nat,P: fun(nat,bool)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),J))
=> ( ! [I3: nat] :
( ( J = aa(nat,nat,suc,I3) )
=> pp(aa(nat,bool,P,I3)) )
=> ( ! [I3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I3),J))
=> ( pp(aa(nat,bool,P,aa(nat,nat,suc,I3)))
=> pp(aa(nat,bool,P,I3)) ) )
=> pp(aa(nat,bool,P,I)) ) ) ) ).
% strict_inc_induct
tff(fact_593_less__Suc__induct,axiom,
! [I: nat,J: nat,P: fun(nat,fun(nat,bool))] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),J))
=> ( ! [I3: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),P,I3),aa(nat,nat,suc,I3)))
=> ( ! [I3: nat,J2: nat,K3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I3),J2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J2),K3))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),P,I3),J2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),P,J2),K3))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),P,I3),K3)) ) ) ) )
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),P,I),J)) ) ) ) ).
% less_Suc_induct
tff(fact_594_less__trans__Suc,axiom,
! [I: nat,J: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),J))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J),K))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,I)),K)) ) ) ).
% less_trans_Suc
tff(fact_595_Suc__less__SucD,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,M)),aa(nat,nat,suc,N)))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N)) ) ).
% Suc_less_SucD
tff(fact_596_less__antisym,axiom,
! [N: nat,M: nat] :
( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(nat,nat,suc,M)))
=> ( M = N ) ) ) ).
% less_antisym
tff(fact_597_Suc__less__eq2,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,N)),M))
<=> ? [M4: nat] :
( ( M = aa(nat,nat,suc,M4) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M4)) ) ) ).
% Suc_less_eq2
tff(fact_598_All__less__Suc,axiom,
! [N: nat,P: fun(nat,bool)] :
( ! [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I4),aa(nat,nat,suc,N)))
=> pp(aa(nat,bool,P,I4)) )
<=> ( pp(aa(nat,bool,P,N))
& ! [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I4),N))
=> pp(aa(nat,bool,P,I4)) ) ) ) ).
% All_less_Suc
tff(fact_599_not__less__eq,axiom,
! [M: nat,N: nat] :
( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(nat,nat,suc,M))) ) ).
% not_less_eq
tff(fact_600_less__Suc__eq,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),aa(nat,nat,suc,N)))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
| ( M = N ) ) ) ).
% less_Suc_eq
tff(fact_601_Ex__less__Suc,axiom,
! [N: nat,P: fun(nat,bool)] :
( ? [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I4),aa(nat,nat,suc,N)))
& pp(aa(nat,bool,P,I4)) )
<=> ( pp(aa(nat,bool,P,N))
| ? [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I4),N))
& pp(aa(nat,bool,P,I4)) ) ) ) ).
% Ex_less_Suc
tff(fact_602_less__SucI,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),aa(nat,nat,suc,N))) ) ).
% less_SucI
tff(fact_603_less__SucE,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),aa(nat,nat,suc,N)))
=> ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
=> ( M = N ) ) ) ).
% less_SucE
tff(fact_604_Suc__lessI,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
=> ( ( aa(nat,nat,suc,M) != N )
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,M)),N)) ) ) ).
% Suc_lessI
tff(fact_605_Suc__lessE,axiom,
! [I: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,I)),K))
=> ~ ! [J2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),J2))
=> ( K != aa(nat,nat,suc,J2) ) ) ) ).
% Suc_lessE
tff(fact_606_Suc__lessD,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,M)),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N)) ) ).
% Suc_lessD
tff(fact_607_Nat_OlessE,axiom,
! [I: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),K))
=> ( ( K != aa(nat,nat,suc,I) )
=> ~ ! [J2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),J2))
=> ( K != aa(nat,nat,suc,J2) ) ) ) ) ).
% Nat.lessE
tff(fact_608_transitive__stepwise__le,axiom,
! [M: nat,N: nat,R2: fun(nat,fun(nat,bool))] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( ! [X3: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),R2,X3),X3))
=> ( ! [X3: nat,Y3: nat,Z3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),R2,X3),Y3))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),R2,Y3),Z3))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),R2,X3),Z3)) ) )
=> ( ! [N3: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),R2,N3),aa(nat,nat,suc,N3)))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),R2,M),N)) ) ) ) ) ).
% transitive_stepwise_le
tff(fact_609_nat__induct__at__least,axiom,
! [M: nat,N: nat,P: fun(nat,bool)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( pp(aa(nat,bool,P,M))
=> ( ! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N3))
=> ( pp(aa(nat,bool,P,N3))
=> pp(aa(nat,bool,P,aa(nat,nat,suc,N3))) ) )
=> pp(aa(nat,bool,P,N)) ) ) ) ).
% nat_induct_at_least
tff(fact_610_full__nat__induct,axiom,
! [P: fun(nat,bool),N: nat] :
( ! [N3: nat] :
( ! [M2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,suc,M2)),N3))
=> pp(aa(nat,bool,P,M2)) )
=> pp(aa(nat,bool,P,N3)) )
=> pp(aa(nat,bool,P,N)) ) ).
% full_nat_induct
tff(fact_611_not__less__eq__eq,axiom,
! [M: nat,N: nat] :
( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,suc,N)),M)) ) ).
% not_less_eq_eq
tff(fact_612_Suc__n__not__le__n,axiom,
! [N: nat] : ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,suc,N)),N)) ).
% Suc_n_not_le_n
tff(fact_613_le__Suc__eq,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),aa(nat,nat,suc,N)))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
| ( M = aa(nat,nat,suc,N) ) ) ) ).
% le_Suc_eq
tff(fact_614_Suc__le__D,axiom,
! [N: nat,M5: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,suc,N)),M5))
=> ? [M3: nat] : ( M5 = aa(nat,nat,suc,M3) ) ) ).
% Suc_le_D
tff(fact_615_le__SucI,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),aa(nat,nat,suc,N))) ) ).
% le_SucI
tff(fact_616_le__SucE,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),aa(nat,nat,suc,N)))
=> ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( M = aa(nat,nat,suc,N) ) ) ) ).
% le_SucE
tff(fact_617_Suc__leD,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,suc,M)),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ).
% Suc_leD
tff(fact_618_add__Suc__shift,axiom,
! [M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,suc,M)),N) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),aa(nat,nat,suc,N)) ) ).
% add_Suc_shift
tff(fact_619_add__Suc,axiom,
! [M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,suc,M)),N) = aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N)) ) ).
% add_Suc
tff(fact_620_nat__arith_Osuc1,axiom,
! [A3: nat,K: nat,A2: nat] :
( ( A3 = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),K),A2) )
=> ( aa(nat,nat,suc,A3) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),K),aa(nat,nat,suc,A2)) ) ) ).
% nat_arith.suc1
tff(fact_621_zero__induct__lemma,axiom,
! [P: fun(nat,bool),K: nat,I: nat] :
( pp(aa(nat,bool,P,K))
=> ( ! [N3: nat] :
( pp(aa(nat,bool,P,aa(nat,nat,suc,N3)))
=> pp(aa(nat,bool,P,N3)) )
=> pp(aa(nat,bool,P,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),K),I))) ) ) ).
% zero_induct_lemma
tff(fact_622_Suc__mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,suc,K)),M) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,suc,K)),N) )
<=> ( M = N ) ) ).
% Suc_mult_cancel1
tff(fact_623_div__mult2__eq_H,axiom,
! [A: $tType] :
( euclid5411537665997757685th_nat(A)
=> ! [A2: A,M: nat,N: nat] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),M)),aa(nat,A,semiring_1_of_nat(A),N))) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(nat,A,semiring_1_of_nat(A),M))),aa(nat,A,semiring_1_of_nat(A),N)) ) ) ).
% div_mult2_eq'
tff(fact_624_of__nat__less__imp__less,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [M: nat,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,semiring_1_of_nat(A),M)),aa(nat,A,semiring_1_of_nat(A),N)))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N)) ) ) ).
% of_nat_less_imp_less
tff(fact_625_less__imp__of__nat__less,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,semiring_1_of_nat(A),M)),aa(nat,A,semiring_1_of_nat(A),N))) ) ) ).
% less_imp_of_nat_less
tff(fact_626_of__nat__mono,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [I: nat,J: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),J))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,semiring_1_of_nat(A),I)),aa(nat,A,semiring_1_of_nat(A),J))) ) ) ).
% of_nat_mono
tff(fact_627_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
! [A: $tType] :
( euclid5411537665997757685th_nat(A)
=> ! [M: nat,N: nat] : ( aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(nat,A,semiring_1_of_nat(A),M)),aa(nat,A,semiring_1_of_nat(A),N)) ) ) ).
% unique_euclidean_semiring_with_nat_class.of_nat_div
tff(fact_628_power__Suc,axiom,
! [A: $tType] :
( power(A)
=> ! [A2: A,N: nat] : ( aa(nat,A,power_power(A,A2),aa(nat,nat,suc,N)) = aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(nat,A,power_power(A,A2),N)) ) ) ).
% power_Suc
tff(fact_629_power__Suc2,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [A2: A,N: nat] : ( aa(nat,A,power_power(A,A2),aa(nat,nat,suc,N)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,A2),N)),A2) ) ) ).
% power_Suc2
tff(fact_630_lift__Suc__mono__less__iff,axiom,
! [A: $tType] :
( order(A)
=> ! [F2: fun(nat,A),N: nat,M: nat] :
( ! [N3: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,F2,N3)),aa(nat,A,F2,aa(nat,nat,suc,N3))))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,F2,N)),aa(nat,A,F2,M)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M)) ) ) ) ).
% lift_Suc_mono_less_iff
tff(fact_631_lift__Suc__mono__less,axiom,
! [A: $tType] :
( order(A)
=> ! [F2: fun(nat,A),N: nat,N4: nat] :
( ! [N3: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,F2,N3)),aa(nat,A,F2,aa(nat,nat,suc,N3))))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),N4))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,F2,N)),aa(nat,A,F2,N4))) ) ) ) ).
% lift_Suc_mono_less
tff(fact_632_lift__Suc__mono__le,axiom,
! [A: $tType] :
( order(A)
=> ! [F2: fun(nat,A),N: nat,N4: nat] :
( ! [N3: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,F2,N3)),aa(nat,A,F2,aa(nat,nat,suc,N3))))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),N4))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,F2,N)),aa(nat,A,F2,N4))) ) ) ) ).
% lift_Suc_mono_le
tff(fact_633_lift__Suc__antimono__le,axiom,
! [A: $tType] :
( order(A)
=> ! [F2: fun(nat,A),N: nat,N4: nat] :
( ! [N3: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,F2,aa(nat,nat,suc,N3))),aa(nat,A,F2,N3)))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),N4))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,F2,N4)),aa(nat,A,F2,N))) ) ) ) ).
% lift_Suc_antimono_le
tff(fact_634_Suc__leI,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,suc,M)),N)) ) ).
% Suc_leI
tff(fact_635_Suc__le__eq,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,suc,M)),N))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N)) ) ).
% Suc_le_eq
tff(fact_636_dec__induct,axiom,
! [I: nat,J: nat,P: fun(nat,bool)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),J))
=> ( pp(aa(nat,bool,P,I))
=> ( ! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),N3))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N3),J))
=> ( pp(aa(nat,bool,P,N3))
=> pp(aa(nat,bool,P,aa(nat,nat,suc,N3))) ) ) )
=> pp(aa(nat,bool,P,J)) ) ) ) ).
% dec_induct
tff(fact_637_inc__induct,axiom,
! [I: nat,J: nat,P: fun(nat,bool)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),J))
=> ( pp(aa(nat,bool,P,J))
=> ( ! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),N3))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N3),J))
=> ( pp(aa(nat,bool,P,aa(nat,nat,suc,N3)))
=> pp(aa(nat,bool,P,N3)) ) ) )
=> pp(aa(nat,bool,P,I)) ) ) ) ).
% inc_induct
tff(fact_638_Suc__le__lessD,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,suc,M)),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N)) ) ).
% Suc_le_lessD
tff(fact_639_le__less__Suc__eq,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(nat,nat,suc,M)))
<=> ( N = M ) ) ) ).
% le_less_Suc_eq
tff(fact_640_less__Suc__eq__le,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),aa(nat,nat,suc,N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ).
% less_Suc_eq_le
tff(fact_641_less__eq__Suc__le,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,suc,N)),M)) ) ).
% less_eq_Suc_le
tff(fact_642_le__imp__less__Suc,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),aa(nat,nat,suc,N))) ) ).
% le_imp_less_Suc
tff(fact_643_less__natE,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
=> ~ ! [Q3: nat] : ( N != aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),Q3)) ) ) ).
% less_natE
tff(fact_644_less__add__Suc1,axiom,
! [I: nat,M: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),M)))) ).
% less_add_Suc1
tff(fact_645_less__add__Suc2,axiom,
! [I: nat,M: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),I)))) ).
% less_add_Suc2
tff(fact_646_less__iff__Suc__add,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
<=> ? [K2: nat] : ( N = aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),K2)) ) ) ).
% less_iff_Suc_add
tff(fact_647_less__imp__Suc__add,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
=> ? [K3: nat] : ( N = aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),K3)) ) ) ).
% less_imp_Suc_add
tff(fact_648_Suc__diff__Suc,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M))
=> ( aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),aa(nat,nat,suc,N))) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N) ) ) ).
% Suc_diff_Suc
tff(fact_649_diff__less__Suc,axiom,
! [M: nat,N: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N)),aa(nat,nat,suc,M))) ).
% diff_less_Suc
tff(fact_650_Suc__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,suc,K)),M)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,suc,K)),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N)) ) ).
% Suc_mult_less_cancel1
tff(fact_651_Suc__diff__le,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,suc,M)),N) = aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N)) ) ) ).
% Suc_diff_le
tff(fact_652_Suc__mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,suc,K)),M)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,suc,K)),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ).
% Suc_mult_le_cancel1
tff(fact_653_mult__Suc,axiom,
! [M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,suc,M)),N) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),N)) ) ).
% mult_Suc
tff(fact_654_Suc__eq__plus1,axiom,
! [N: nat] : ( aa(nat,nat,suc,N) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),one_one(nat)) ) ).
% Suc_eq_plus1
tff(fact_655_plus__1__eq__Suc,axiom,
aa(nat,fun(nat,nat),plus_plus(nat),one_one(nat)) = suc ).
% plus_1_eq_Suc
tff(fact_656_Suc__eq__plus1__left,axiom,
! [N: nat] : ( aa(nat,nat,suc,N) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),one_one(nat)),N) ) ).
% Suc_eq_plus1_left
tff(fact_657_Suc__div__le__mono,axiom,
! [M: nat,N: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N)),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,M)),N))) ).
% Suc_div_le_mono
tff(fact_658_diff__Suc__eq__diff__pred,axiom,
! [M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),aa(nat,nat,suc,N)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),one_one(nat))),N) ) ).
% diff_Suc_eq_diff_pred
tff(fact_659_of__nat__diff,axiom,
! [A: $tType] :
( semiring_1_cancel(A)
=> ! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> ( aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,semiring_1_of_nat(A),M)),aa(nat,A,semiring_1_of_nat(A),N)) ) ) ) ).
% of_nat_diff
tff(fact_660_power__gt1,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),aa(nat,A,power_power(A,A2),aa(nat,nat,suc,N)))) ) ) ).
% power_gt1
tff(fact_661_xor__num_Ocases,axiom,
! [X2: product_prod(num,num)] :
( ( X2 != aa(num,product_prod(num,num),aa(num,fun(num,product_prod(num,num)),product_Pair(num,num),one2),one2) )
=> ( ! [N3: num] : ( X2 != aa(num,product_prod(num,num),aa(num,fun(num,product_prod(num,num)),product_Pair(num,num),one2),bit0(N3)) )
=> ( ! [N3: num] : ( X2 != aa(num,product_prod(num,num),aa(num,fun(num,product_prod(num,num)),product_Pair(num,num),one2),aa(num,num,bit1,N3)) )
=> ( ! [M3: num] : ( X2 != aa(num,product_prod(num,num),aa(num,fun(num,product_prod(num,num)),product_Pair(num,num),bit0(M3)),one2) )
=> ( ! [M3: num,N3: num] : ( X2 != aa(num,product_prod(num,num),aa(num,fun(num,product_prod(num,num)),product_Pair(num,num),bit0(M3)),bit0(N3)) )
=> ( ! [M3: num,N3: num] : ( X2 != aa(num,product_prod(num,num),aa(num,fun(num,product_prod(num,num)),product_Pair(num,num),bit0(M3)),aa(num,num,bit1,N3)) )
=> ( ! [M3: num] : ( X2 != aa(num,product_prod(num,num),aa(num,fun(num,product_prod(num,num)),product_Pair(num,num),aa(num,num,bit1,M3)),one2) )
=> ( ! [M3: num,N3: num] : ( X2 != aa(num,product_prod(num,num),aa(num,fun(num,product_prod(num,num)),product_Pair(num,num),aa(num,num,bit1,M3)),bit0(N3)) )
=> ~ ! [M3: num,N3: num] : ( X2 != aa(num,product_prod(num,num),aa(num,fun(num,product_prod(num,num)),product_Pair(num,num),aa(num,num,bit1,M3)),aa(num,num,bit1,N3)) ) ) ) ) ) ) ) ) ) ).
% xor_num.cases
tff(fact_662_nat__le__real__less,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(nat,real,semiring_1_of_nat(real),N)),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,semiring_1_of_nat(real),M)),one_one(real)))) ) ).
% nat_le_real_less
tff(fact_663_real__of__nat__div4,axiom,
! [N: nat,X2: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),X2))),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(nat,real,semiring_1_of_nat(real),N)),aa(nat,real,semiring_1_of_nat(real),X2)))) ).
% real_of_nat_div4
tff(fact_664_eval__nat__numeral_I3_J,axiom,
! [N: num] : ( aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,N)) = aa(nat,nat,suc,aa(num,nat,numeral_numeral(nat),bit0(N))) ) ).
% eval_nat_numeral(3)
tff(fact_665_subset__code_I1_J,axiom,
! [A: $tType,Xs: list(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(list(A),set(A),set2(A),Xs)),B4))
<=> ! [X4: A] :
( pp(member(A,X4,aa(list(A),set(A),set2(A),Xs)))
=> pp(member(A,X4,B4)) ) ) ).
% subset_code(1)
tff(fact_666_neq__if__length__neq,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] :
( ( aa(list(A),nat,size_size(list(A)),Xs) != aa(list(A),nat,size_size(list(A)),Ys) )
=> ( Xs != Ys ) ) ).
% neq_if_length_neq
tff(fact_667_Ex__list__of__length,axiom,
! [A: $tType,N: nat] :
? [Xs2: list(A)] : ( aa(list(A),nat,size_size(list(A)),Xs2) = N ) ).
% Ex_list_of_length
tff(fact_668_nat__less__real__le,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,semiring_1_of_nat(real),N)),one_one(real))),aa(nat,real,semiring_1_of_nat(real),M))) ) ).
% nat_less_real_le
tff(fact_669_Suc__double__not__eq__double,axiom,
! [M: nat,N: nat] : ( aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),M)) != aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N) ) ).
% Suc_double_not_eq_double
tff(fact_670_double__not__eq__Suc__double,axiom,
! [M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),M) != aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)) ) ).
% double_not_eq_Suc_double
tff(fact_671_Suc3__eq__add__3,axiom,
! [N: nat] : ( aa(nat,nat,suc,aa(nat,nat,suc,aa(nat,nat,suc,N))) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,one2))),N) ) ).
% Suc3_eq_add_3
tff(fact_672_div__nat__eqI,axiom,
! [N: nat,Q2: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),Q2)),M))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),aa(nat,nat,suc,Q2))))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N) = Q2 ) ) ) ).
% div_nat_eqI
tff(fact_673_Suc__nat__number__of__add,axiom,
! [V: num,N: nat] : ( aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(num,nat,numeral_numeral(nat),V)),N)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(num,nat,numeral_numeral(nat),aa(num,num,aa(num,fun(num,num),plus_plus(num),V),one2))),N) ) ).
% Suc_nat_number_of_add
tff(fact_674_of__nat__less__two__power,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [N: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,semiring_1_of_nat(A),N)),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N))) ) ).
% of_nat_less_two_power
tff(fact_675_real__of__nat__div3,axiom,
! [N: nat,X2: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(nat,real,semiring_1_of_nat(real),N)),aa(nat,real,semiring_1_of_nat(real),X2))),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),X2)))),one_one(real))) ).
% real_of_nat_div3
tff(fact_676_Suc__div__eq__add3__div,axiom,
! [M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,aa(nat,nat,suc,aa(nat,nat,suc,M)))),N) = aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,one2))),M)),N) ) ).
% Suc_div_eq_add3_div
tff(fact_677_power__odd__eq,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [A2: A,N: nat] : ( aa(nat,A,power_power(A,A2),aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))) = aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(nat,A,power_power(A,aa(nat,A,power_power(A,A2),N)),aa(num,nat,numeral_numeral(nat),bit0(one2)))) ) ) ).
% power_odd_eq
tff(fact_678_Bernoulli__inequality,axiom,
! [X2: real,N: nat] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N)),X2))),aa(nat,real,power_power(real,aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),X2)),N))) ) ).
% Bernoulli_inequality
tff(fact_679_compl__mono,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),Y)),aa(A,A,uminus_uminus(A),X2))) ) ) ).
% compl_mono
tff(fact_680_compl__le__swap1,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [Y: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),aa(A,A,uminus_uminus(A),X2)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(A,A,uminus_uminus(A),Y))) ) ) ).
% compl_le_swap1
tff(fact_681_compl__le__swap2,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [Y: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),Y)),X2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),X2)),Y)) ) ) ).
% compl_le_swap2
tff(fact_682_compl__less__swap2,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [Y: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),Y)),X2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),X2)),Y)) ) ) ).
% compl_less_swap2
tff(fact_683_compl__less__swap1,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [Y: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),aa(A,A,uminus_uminus(A),X2)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),aa(A,A,uminus_uminus(A),Y))) ) ) ).
% compl_less_swap1
tff(fact_684_length__induct,axiom,
! [A: $tType,P: fun(list(A),bool),Xs: list(A)] :
( ! [Xs2: list(A)] :
( ! [Ys2: list(A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(list(A),nat,size_size(list(A)),Ys2)),aa(list(A),nat,size_size(list(A)),Xs2)))
=> pp(aa(list(A),bool,P,Ys2)) )
=> pp(aa(list(A),bool,P,Xs2)) )
=> pp(aa(list(A),bool,P,Xs)) ) ).
% length_induct
tff(fact_685_power__minus1__odd,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [N: nat] : ( aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))) = aa(A,A,uminus_uminus(A),one_one(A)) ) ) ).
% power_minus1_odd
tff(fact_686_list__eq__iff__nth__eq,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] :
( ( Xs = Ys )
<=> ( ( aa(list(A),nat,size_size(list(A)),Xs) = aa(list(A),nat,size_size(list(A)),Ys) )
& ! [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I4),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( aa(nat,A,nth(A,Xs),I4) = aa(nat,A,nth(A,Ys),I4) ) ) ) ) ).
% list_eq_iff_nth_eq
tff(fact_687_Skolem__list__nth,axiom,
! [A: $tType,K: nat,P: fun(nat,fun(A,bool))] :
( ! [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I4),K))
=> ? [X_12: A] : pp(aa(A,bool,aa(nat,fun(A,bool),P,I4),X_12)) )
<=> ? [Xs3: list(A)] :
( ( aa(list(A),nat,size_size(list(A)),Xs3) = K )
& ! [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I4),K))
=> pp(aa(A,bool,aa(nat,fun(A,bool),P,I4),aa(nat,A,nth(A,Xs3),I4))) ) ) ) ).
% Skolem_list_nth
tff(fact_688_nth__equalityI,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] :
( ( aa(list(A),nat,size_size(list(A)),Xs) = aa(list(A),nat,size_size(list(A)),Ys) )
=> ( ! [I3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I3),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( aa(nat,A,nth(A,Xs),I3) = aa(nat,A,nth(A,Ys),I3) ) )
=> ( Xs = Ys ) ) ) ).
% nth_equalityI
tff(fact_689_invar__vebt_Ointros_I3_J,axiom,
! [TreeList: list(vEBT_VEBT),N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat] :
( ! [X3: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X3,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList)))
=> vEBT_invar_vebt(X3,N) )
=> ( vEBT_invar_vebt(Summary,M)
=> ( ( aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList) = aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),M) )
=> ( ( M = aa(nat,nat,suc,N) )
=> ( ( Deg = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),M) )
=> ( ~ ? [X_13: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(Summary),X_13))
=> ( ! [X3: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X3,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList)))
=> ~ ? [X_13: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(X3),X_13)) )
=> vEBT_invar_vebt(vEBT_Node(none(product_prod(nat,nat)),Deg,TreeList,Summary),Deg) ) ) ) ) ) ) ) ).
% invar_vebt.intros(3)
tff(fact_690_discrete,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),one_one(A))),B2)) ) ) ).
% discrete
tff(fact_691_nth__mem,axiom,
! [A: $tType,N: nat,Xs: list(A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(list(A),nat,size_size(list(A)),Xs)))
=> pp(member(A,aa(nat,A,nth(A,Xs),N),aa(list(A),set(A),set2(A),Xs))) ) ).
% nth_mem
tff(fact_692_list__ball__nth,axiom,
! [A: $tType,N: nat,Xs: list(A),P: fun(A,bool)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),Xs)))
=> pp(aa(A,bool,P,X3)) )
=> pp(aa(A,bool,P,aa(nat,A,nth(A,Xs),N))) ) ) ).
% list_ball_nth
tff(fact_693_in__set__conv__nth,axiom,
! [A: $tType,X2: A,Xs: list(A)] :
( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
<=> ? [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I4),aa(list(A),nat,size_size(list(A)),Xs)))
& ( aa(nat,A,nth(A,Xs),I4) = X2 ) ) ) ).
% in_set_conv_nth
tff(fact_694_dbl__dec__simps_I4_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ( neg_numeral_dbl_dec(A,aa(A,A,uminus_uminus(A),one_one(A))) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),aa(num,num,bit1,one2))) ) ) ).
% dbl_dec_simps(4)
tff(fact_695_dbl__simps_I4_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ( neg_numeral_dbl(A,aa(A,A,uminus_uminus(A),one_one(A))) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ).
% dbl_simps(4)
tff(fact_696_low__def,axiom,
! [X2: nat,N: nat] : ( vEBT_VEBT_low(X2,N) = modulo_modulo(nat,X2,aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N)) ) ).
% low_def
tff(fact_697_dbl__inc__simps_I3_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ( neg_numeral_dbl_inc(A,one_one(A)) = aa(num,A,numeral_numeral(A),aa(num,num,bit1,one2)) ) ) ).
% dbl_inc_simps(3)
tff(fact_698_dbl__simps_I3_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ( neg_numeral_dbl(A,one_one(A)) = aa(num,A,numeral_numeral(A),bit0(one2)) ) ) ).
% dbl_simps(3)
tff(fact_699_ex__has__greatest__nat__lemma,axiom,
! [A: $tType,P: fun(A,bool),K: A,F2: fun(A,nat),N: nat] :
( pp(aa(A,bool,P,K))
=> ( ! [X3: A] :
( pp(aa(A,bool,P,X3))
=> ? [Y4: A] :
( pp(aa(A,bool,P,Y4))
& ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(A,nat,F2,Y4)),aa(A,nat,F2,X3))) ) )
=> ? [Y3: A] :
( pp(aa(A,bool,P,Y3))
& ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(A,nat,F2,Y3)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(A,nat,F2,K)),N))) ) ) ) ).
% ex_has_greatest_nat_lemma
tff(fact_700_invar__vebt_Osimps,axiom,
! [A1: vEBT_VEBT,A22: nat] :
( vEBT_invar_vebt(A1,A22)
<=> ( ( ? [A5: bool,B5: bool] : ( A1 = vEBT_Leaf(A5,B5) )
& ( A22 = aa(nat,nat,suc,zero_zero(nat)) ) )
| ? [TreeList2: list(vEBT_VEBT),N5: nat,Summary2: vEBT_VEBT] :
( ( A1 = vEBT_Node(none(product_prod(nat,nat)),A22,TreeList2,Summary2) )
& ! [X4: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X4,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList2)))
=> vEBT_invar_vebt(X4,N5) )
& vEBT_invar_vebt(Summary2,N5)
& ( aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList2) = aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N5) )
& ( A22 = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N5),N5) )
& ~ ? [X_12: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(Summary2),X_12))
& ! [X4: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X4,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList2)))
=> ~ ? [X_12: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(X4),X_12)) ) )
| ? [TreeList2: list(vEBT_VEBT),N5: nat,Summary2: vEBT_VEBT] :
( ( A1 = vEBT_Node(none(product_prod(nat,nat)),A22,TreeList2,Summary2) )
& ! [X4: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X4,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList2)))
=> vEBT_invar_vebt(X4,N5) )
& vEBT_invar_vebt(Summary2,aa(nat,nat,suc,N5))
& ( aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList2) = aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,suc,N5)) )
& ( A22 = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N5),aa(nat,nat,suc,N5)) )
& ~ ? [X_12: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(Summary2),X_12))
& ! [X4: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X4,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList2)))
=> ~ ? [X_12: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(X4),X_12)) ) )
| ? [TreeList2: list(vEBT_VEBT),N5: nat,Summary2: vEBT_VEBT,Mi2: nat,Ma2: nat] :
( ( A1 = vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi2),Ma2)),A22,TreeList2,Summary2) )
& ! [X4: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X4,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList2)))
=> vEBT_invar_vebt(X4,N5) )
& vEBT_invar_vebt(Summary2,N5)
& ( aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList2) = aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N5) )
& ( A22 = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N5),N5) )
& ! [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I4),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N5)))
=> ( ? [X_12: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList2),I4)),X_12))
<=> pp(aa(nat,bool,vEBT_V8194947554948674370ptions(Summary2),I4)) ) )
& ( ( Mi2 = Ma2 )
=> ! [X4: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X4,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList2)))
=> ~ ? [X_12: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(X4),X_12)) ) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Mi2),Ma2))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Ma2),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),A22)))
& ( ( Mi2 != Ma2 )
=> ! [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I4),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N5)))
=> ( ( ( vEBT_VEBT_high(Ma2,N5) = I4 )
=> pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList2),I4)),vEBT_VEBT_low(Ma2,N5))) )
& ! [X4: nat] :
( ( ( vEBT_VEBT_high(X4,N5) = I4 )
& pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList2),I4)),vEBT_VEBT_low(X4,N5))) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Mi2),X4))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),X4),Ma2)) ) ) ) ) ) )
| ? [TreeList2: list(vEBT_VEBT),N5: nat,Summary2: vEBT_VEBT,Mi2: nat,Ma2: nat] :
( ( A1 = vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi2),Ma2)),A22,TreeList2,Summary2) )
& ! [X4: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X4,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList2)))
=> vEBT_invar_vebt(X4,N5) )
& vEBT_invar_vebt(Summary2,aa(nat,nat,suc,N5))
& ( aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList2) = aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,suc,N5)) )
& ( A22 = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N5),aa(nat,nat,suc,N5)) )
& ! [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I4),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,suc,N5))))
=> ( ? [X_12: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList2),I4)),X_12))
<=> pp(aa(nat,bool,vEBT_V8194947554948674370ptions(Summary2),I4)) ) )
& ( ( Mi2 = Ma2 )
=> ! [X4: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X4,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList2)))
=> ~ ? [X_12: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(X4),X_12)) ) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Mi2),Ma2))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Ma2),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),A22)))
& ( ( Mi2 != Ma2 )
=> ! [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I4),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,suc,N5))))
=> ( ( ( vEBT_VEBT_high(Ma2,N5) = I4 )
=> pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList2),I4)),vEBT_VEBT_low(Ma2,N5))) )
& ! [X4: nat] :
( ( ( vEBT_VEBT_high(X4,N5) = I4 )
& pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList2),I4)),vEBT_VEBT_low(X4,N5))) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Mi2),X4))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),X4),Ma2)) ) ) ) ) ) ) ) ) ).
% invar_vebt.simps
tff(fact_701_deg__not__0,axiom,
! [T2: vEBT_VEBT,N: nat] :
( vEBT_invar_vebt(T2,N)
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N)) ) ).
% deg_not_0
tff(fact_702_mod__mod__trivial,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [A2: A,B2: A] : ( modulo_modulo(A,modulo_modulo(A,A2,B2),B2) = modulo_modulo(A,A2,B2) ) ) ).
% mod_mod_trivial
tff(fact_703_VEBT_Oinject_I2_J,axiom,
! [X21: bool,X222: bool,Y21: bool,Y222: bool] :
( ( vEBT_Leaf(X21,X222) = vEBT_Leaf(Y21,Y222) )
<=> ( ( pp(X21)
<=> pp(Y21) )
& ( pp(X222)
<=> pp(Y222) ) ) ) ).
% VEBT.inject(2)
tff(fact_704_le__zero__eq,axiom,
! [A: $tType] :
( canoni5634975068530333245id_add(A)
=> ! [N: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),N),zero_zero(A)))
<=> ( N = zero_zero(A) ) ) ) ).
% le_zero_eq
tff(fact_705_not__gr__zero,axiom,
! [A: $tType] :
( canoni5634975068530333245id_add(A)
=> ! [N: A] :
( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),N))
<=> ( N = zero_zero(A) ) ) ) ).
% not_gr_zero
tff(fact_706_mult__cancel__right,axiom,
! [A: $tType] :
( semiri6575147826004484403cancel(A)
=> ! [A2: A,C2: A,B2: A] :
( ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2) = aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2) )
<=> ( ( C2 = zero_zero(A) )
| ( A2 = B2 ) ) ) ) ).
% mult_cancel_right
tff(fact_707_mult__cancel__left,axiom,
! [A: $tType] :
( semiri6575147826004484403cancel(A)
=> ! [C2: A,A2: A,B2: A] :
( ( aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2) = aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2) )
<=> ( ( C2 = zero_zero(A) )
| ( A2 = B2 ) ) ) ) ).
% mult_cancel_left
tff(fact_708_mult__eq__0__iff,axiom,
! [A: $tType] :
( semiri3467727345109120633visors(A)
=> ! [A2: A,B2: A] :
( ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2) = zero_zero(A) )
<=> ( ( A2 = zero_zero(A) )
| ( B2 = zero_zero(A) ) ) ) ) ).
% mult_eq_0_iff
tff(fact_709_mult__zero__right,axiom,
! [A: $tType] :
( mult_zero(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),zero_zero(A)) = zero_zero(A) ) ) ).
% mult_zero_right
tff(fact_710_mult__zero__left,axiom,
! [A: $tType] :
( mult_zero(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),zero_zero(A)),A2) = zero_zero(A) ) ) ).
% mult_zero_left
tff(fact_711_add_Oright__neutral,axiom,
! [A: $tType] :
( monoid_add(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),zero_zero(A)) = A2 ) ) ).
% add.right_neutral
tff(fact_712_double__zero__sym,axiom,
! [A: $tType] :
( linord5086331880401160121up_add(A)
=> ! [A2: A] :
( ( zero_zero(A) = aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),A2) )
<=> ( A2 = zero_zero(A) ) ) ) ).
% double_zero_sym
tff(fact_713_add__cancel__left__left,axiom,
! [A: $tType] :
( cancel1802427076303600483id_add(A)
=> ! [B2: A,A2: A] :
( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),A2) = A2 )
<=> ( B2 = zero_zero(A) ) ) ) ).
% add_cancel_left_left
tff(fact_714_add__cancel__left__right,axiom,
! [A: $tType] :
( cancel1802427076303600483id_add(A)
=> ! [A2: A,B2: A] :
( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2) = A2 )
<=> ( B2 = zero_zero(A) ) ) ) ).
% add_cancel_left_right
tff(fact_715_add__cancel__right__left,axiom,
! [A: $tType] :
( cancel1802427076303600483id_add(A)
=> ! [A2: A,B2: A] :
( ( A2 = aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),A2) )
<=> ( B2 = zero_zero(A) ) ) ) ).
% add_cancel_right_left
tff(fact_716_add__cancel__right__right,axiom,
! [A: $tType] :
( cancel1802427076303600483id_add(A)
=> ! [A2: A,B2: A] :
( ( A2 = aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2) )
<=> ( B2 = zero_zero(A) ) ) ) ).
% add_cancel_right_right
tff(fact_717_add__eq__0__iff__both__eq__0,axiom,
! [A: $tType] :
( canoni5634975068530333245id_add(A)
=> ! [X2: A,Y: A] :
( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y) = zero_zero(A) )
<=> ( ( X2 = zero_zero(A) )
& ( Y = zero_zero(A) ) ) ) ) ).
% add_eq_0_iff_both_eq_0
tff(fact_718_zero__eq__add__iff__both__eq__0,axiom,
! [A: $tType] :
( canoni5634975068530333245id_add(A)
=> ! [X2: A,Y: A] :
( ( zero_zero(A) = aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y) )
<=> ( ( X2 = zero_zero(A) )
& ( Y = zero_zero(A) ) ) ) ) ).
% zero_eq_add_iff_both_eq_0
tff(fact_719_add__0,axiom,
! [A: $tType] :
( monoid_add(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),zero_zero(A)),A2) = A2 ) ) ).
% add_0
tff(fact_720_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: $tType] :
( cancel1802427076303600483id_add(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),A2) = zero_zero(A) ) ) ).
% cancel_comm_monoid_add_class.diff_cancel
tff(fact_721_diff__zero,axiom,
! [A: $tType] :
( cancel1802427076303600483id_add(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),zero_zero(A)) = A2 ) ) ).
% diff_zero
tff(fact_722_zero__diff,axiom,
! [A: $tType] :
( comm_monoid_diff(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),zero_zero(A)),A2) = zero_zero(A) ) ) ).
% zero_diff
tff(fact_723_diff__0__right,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),zero_zero(A)) = A2 ) ) ).
% diff_0_right
tff(fact_724_diff__self,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),A2) = zero_zero(A) ) ) ).
% diff_self
tff(fact_725_divide__eq__0__iff,axiom,
! [A: $tType] :
( field(A)
=> ! [A2: A,B2: A] :
( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) = zero_zero(A) )
<=> ( ( A2 = zero_zero(A) )
| ( B2 = zero_zero(A) ) ) ) ) ).
% divide_eq_0_iff
tff(fact_726_divide__cancel__left,axiom,
! [A: $tType] :
( field(A)
=> ! [C2: A,A2: A,B2: A] :
( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),C2),A2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),C2),B2) )
<=> ( ( C2 = zero_zero(A) )
| ( A2 = B2 ) ) ) ) ).
% divide_cancel_left
tff(fact_727_divide__cancel__right,axiom,
! [A: $tType] :
( field(A)
=> ! [A2: A,C2: A,B2: A] :
( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),C2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2) )
<=> ( ( C2 = zero_zero(A) )
| ( A2 = B2 ) ) ) ) ).
% divide_cancel_right
tff(fact_728_division__ring__divide__zero,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),zero_zero(A)) = zero_zero(A) ) ) ).
% division_ring_divide_zero
tff(fact_729_div__0,axiom,
! [A: $tType] :
( semidom_divide(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),zero_zero(A)),A2) = zero_zero(A) ) ) ).
% div_0
tff(fact_730_div__by__0,axiom,
! [A: $tType] :
( semidom_divide(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),zero_zero(A)) = zero_zero(A) ) ) ).
% div_by_0
tff(fact_731_bits__div__0,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),zero_zero(A)),A2) = zero_zero(A) ) ) ).
% bits_div_0
tff(fact_732_bits__div__by__0,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),zero_zero(A)) = zero_zero(A) ) ) ).
% bits_div_by_0
tff(fact_733_add_Oinverse__neutral,axiom,
! [A: $tType] :
( group_add(A)
=> ( aa(A,A,uminus_uminus(A),zero_zero(A)) = zero_zero(A) ) ) ).
% add.inverse_neutral
tff(fact_734_neg__0__equal__iff__equal,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A] :
( ( zero_zero(A) = aa(A,A,uminus_uminus(A),A2) )
<=> ( zero_zero(A) = A2 ) ) ) ).
% neg_0_equal_iff_equal
tff(fact_735_neg__equal__0__iff__equal,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A] :
( ( aa(A,A,uminus_uminus(A),A2) = zero_zero(A) )
<=> ( A2 = zero_zero(A) ) ) ) ).
% neg_equal_0_iff_equal
tff(fact_736_equal__neg__zero,axiom,
! [A: $tType] :
( linord5086331880401160121up_add(A)
=> ! [A2: A] :
( ( A2 = aa(A,A,uminus_uminus(A),A2) )
<=> ( A2 = zero_zero(A) ) ) ) ).
% equal_neg_zero
tff(fact_737_neg__equal__zero,axiom,
! [A: $tType] :
( linord5086331880401160121up_add(A)
=> ! [A2: A] :
( ( aa(A,A,uminus_uminus(A),A2) = A2 )
<=> ( A2 = zero_zero(A) ) ) ) ).
% neg_equal_zero
tff(fact_738_bits__mod__0,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [A2: A] : ( modulo_modulo(A,zero_zero(A),A2) = zero_zero(A) ) ) ).
% bits_mod_0
tff(fact_739_mod__self,axiom,
! [A: $tType] :
( semidom_modulo(A)
=> ! [A2: A] : ( modulo_modulo(A,A2,A2) = zero_zero(A) ) ) ).
% mod_self
tff(fact_740_mod__by__0,axiom,
! [A: $tType] :
( semidom_modulo(A)
=> ! [A2: A] : ( modulo_modulo(A,A2,zero_zero(A)) = A2 ) ) ).
% mod_by_0
tff(fact_741_mod__0,axiom,
! [A: $tType] :
( semidom_modulo(A)
=> ! [A2: A] : ( modulo_modulo(A,zero_zero(A),A2) = zero_zero(A) ) ) ).
% mod_0
tff(fact_742_bot__nat__0_Onot__eq__extremum,axiom,
! [A2: nat] :
( ( A2 != zero_zero(nat) )
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),A2)) ) ).
% bot_nat_0.not_eq_extremum
tff(fact_743_neq0__conv,axiom,
! [N: nat] :
( ( N != zero_zero(nat) )
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N)) ) ).
% neq0_conv
tff(fact_744_less__nat__zero__code,axiom,
! [N: nat] : ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),zero_zero(nat))) ).
% less_nat_zero_code
tff(fact_745_mod__add__self1,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [B2: A,A2: A] : ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),A2),B2) = modulo_modulo(A,A2,B2) ) ) ).
% mod_add_self1
tff(fact_746_mod__add__self2,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [A2: A,B2: A] : ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2),B2) = modulo_modulo(A,A2,B2) ) ) ).
% mod_add_self2
tff(fact_747_bot__nat__0_Oextremum,axiom,
! [A2: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),zero_zero(nat)),A2)) ).
% bot_nat_0.extremum
tff(fact_748_le0,axiom,
! [N: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),zero_zero(nat)),N)) ).
% le0
tff(fact_749_minus__mod__self2,axiom,
! [A: $tType] :
( euclid8851590272496341667cancel(A)
=> ! [A2: A,B2: A] : ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2),B2) = modulo_modulo(A,A2,B2) ) ) ).
% minus_mod_self2
tff(fact_750_add__is__0,axiom,
! [M: nat,N: nat] :
( ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N) = zero_zero(nat) )
<=> ( ( M = zero_zero(nat) )
& ( N = zero_zero(nat) ) ) ) ).
% add_is_0
tff(fact_751_Nat_Oadd__0__right,axiom,
! [M: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),zero_zero(nat)) = M ) ).
% Nat.add_0_right
tff(fact_752_mod__minus__minus,axiom,
! [A: $tType] :
( euclid8851590272496341667cancel(A)
=> ! [A2: A,B2: A] : ( modulo_modulo(A,aa(A,A,uminus_uminus(A),A2),aa(A,A,uminus_uminus(A),B2)) = aa(A,A,uminus_uminus(A),modulo_modulo(A,A2,B2)) ) ) ).
% mod_minus_minus
tff(fact_753_diff__self__eq__0,axiom,
! [M: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),M) = zero_zero(nat) ) ).
% diff_self_eq_0
tff(fact_754_diff__0__eq__0,axiom,
! [N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),zero_zero(nat)),N) = zero_zero(nat) ) ).
% diff_0_eq_0
tff(fact_755_mult__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),K) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),K) )
<=> ( ( M = N )
| ( K = zero_zero(nat) ) ) ) ).
% mult_cancel2
tff(fact_756_mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),M) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),N) )
<=> ( ( M = N )
| ( K = zero_zero(nat) ) ) ) ).
% mult_cancel1
tff(fact_757_mult__0__right,axiom,
! [M: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),zero_zero(nat)) = zero_zero(nat) ) ).
% mult_0_right
tff(fact_758_mult__is__0,axiom,
! [M: nat,N: nat] :
( ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),N) = zero_zero(nat) )
<=> ( ( M = zero_zero(nat) )
| ( N = zero_zero(nat) ) ) ) ).
% mult_is_0
tff(fact_759_mod__less,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
=> ( modulo_modulo(nat,M,N) = M ) ) ).
% mod_less
tff(fact_760_dbl__simps_I2_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ( neg_numeral_dbl(A,zero_zero(A)) = zero_zero(A) ) ) ).
% dbl_simps(2)
tff(fact_761_dbl__dec__simps_I3_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ( neg_numeral_dbl_dec(A,one_one(A)) = one_one(A) ) ) ).
% dbl_dec_simps(3)
tff(fact_762_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: $tType] :
( linord5086331880401160121up_add(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2)) ) ) ).
% zero_le_double_add_iff_zero_le_single_add
tff(fact_763_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: $tType] :
( linord5086331880401160121up_add(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),A2)),zero_zero(A)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A))) ) ) ).
% double_add_le_zero_iff_single_add_le_zero
tff(fact_764_le__add__same__cancel2,axiom,
! [A: $tType] :
( ordere1937475149494474687imp_le(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2)) ) ) ).
% le_add_same_cancel2
tff(fact_765_le__add__same__cancel1,axiom,
! [A: $tType] :
( ordere1937475149494474687imp_le(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2)) ) ) ).
% le_add_same_cancel1
tff(fact_766_add__le__same__cancel2,axiom,
! [A: $tType] :
( ordere1937475149494474687imp_le(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),B2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A))) ) ) ).
% add_le_same_cancel2
tff(fact_767_add__le__same__cancel1,axiom,
! [A: $tType] :
( ordere1937475149494474687imp_le(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),A2)),B2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A))) ) ) ).
% add_le_same_cancel1
tff(fact_768_diff__ge__0__iff__ge,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2)) ) ) ).
% diff_ge_0_iff_ge
tff(fact_769_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: $tType] :
( linord5086331880401160121up_add(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2)) ) ) ).
% zero_less_double_add_iff_zero_less_single_add
tff(fact_770_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: $tType] :
( linord5086331880401160121up_add(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),A2)),zero_zero(A)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A))) ) ) ).
% double_add_less_zero_iff_single_add_less_zero
tff(fact_771_less__add__same__cancel2,axiom,
! [A: $tType] :
( ordere1937475149494474687imp_le(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),B2)) ) ) ).
% less_add_same_cancel2
tff(fact_772_less__add__same__cancel1,axiom,
! [A: $tType] :
( ordere1937475149494474687imp_le(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),B2)) ) ) ).
% less_add_same_cancel1
tff(fact_773_add__less__same__cancel2,axiom,
! [A: $tType] :
( ordere1937475149494474687imp_le(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),B2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A))) ) ) ).
% add_less_same_cancel2
tff(fact_774_add__less__same__cancel1,axiom,
! [A: $tType] :
( ordere1937475149494474687imp_le(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),A2)),B2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A))) ) ) ).
% add_less_same_cancel1
tff(fact_775_neg__less__eq__nonneg,axiom,
! [A: $tType] :
( linord5086331880401160121up_add(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),A2)),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2)) ) ) ).
% neg_less_eq_nonneg
tff(fact_776_less__eq__neg__nonpos,axiom,
! [A: $tType] :
( linord5086331880401160121up_add(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(A,A,uminus_uminus(A),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A))) ) ) ).
% less_eq_neg_nonpos
tff(fact_777_neg__le__0__iff__le,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),A2)),zero_zero(A)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2)) ) ) ).
% neg_le_0_iff_le
tff(fact_778_neg__0__le__iff__le,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,uminus_uminus(A),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A))) ) ) ).
% neg_0_le_iff_le
tff(fact_779_diff__gt__0__iff__gt,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2)) ) ) ).
% diff_gt_0_iff_gt
tff(fact_780_sum__squares__eq__zero__iff,axiom,
! [A: $tType] :
( linord4710134922213307826strict(A)
=> ! [X2: A,Y: A] :
( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),X2),X2)),aa(A,A,aa(A,fun(A,A),times_times(A),Y),Y)) = zero_zero(A) )
<=> ( ( X2 = zero_zero(A) )
& ( Y = zero_zero(A) ) ) ) ) ).
% sum_squares_eq_zero_iff
tff(fact_781_mult__cancel__left1,axiom,
! [A: $tType] :
( ring_15535105094025558882visors(A)
=> ! [C2: A,B2: A] :
( ( C2 = aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2) )
<=> ( ( C2 = zero_zero(A) )
| ( B2 = one_one(A) ) ) ) ) ).
% mult_cancel_left1
tff(fact_782_mult__cancel__left2,axiom,
! [A: $tType] :
( ring_15535105094025558882visors(A)
=> ! [C2: A,A2: A] :
( ( aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2) = C2 )
<=> ( ( C2 = zero_zero(A) )
| ( A2 = one_one(A) ) ) ) ) ).
% mult_cancel_left2
tff(fact_783_mult__cancel__right1,axiom,
! [A: $tType] :
( ring_15535105094025558882visors(A)
=> ! [C2: A,B2: A] :
( ( C2 = aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2) )
<=> ( ( C2 = zero_zero(A) )
| ( B2 = one_one(A) ) ) ) ) ).
% mult_cancel_right1
tff(fact_784_mult__cancel__right2,axiom,
! [A: $tType] :
( ring_15535105094025558882visors(A)
=> ! [A2: A,C2: A] :
( ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2) = C2 )
<=> ( ( C2 = zero_zero(A) )
| ( A2 = one_one(A) ) ) ) ) ).
% mult_cancel_right2
tff(fact_785_less__neg__neg,axiom,
! [A: $tType] :
( linord5086331880401160121up_add(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(A,A,uminus_uminus(A),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A))) ) ) ).
% less_neg_neg
tff(fact_786_neg__less__pos,axiom,
! [A: $tType] :
( linord5086331880401160121up_add(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),A2)),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2)) ) ) ).
% neg_less_pos
tff(fact_787_neg__0__less__iff__less,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,uminus_uminus(A),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A))) ) ) ).
% neg_0_less_iff_less
tff(fact_788_neg__less__0__iff__less,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),A2)),zero_zero(A)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2)) ) ) ).
% neg_less_0_iff_less
tff(fact_789_diff__add__zero,axiom,
! [A: $tType] :
( comm_monoid_diff(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)) = zero_zero(A) ) ) ).
% diff_add_zero
tff(fact_790_diff__numeral__special_I9_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),one_one(A)) = zero_zero(A) ) ) ).
% diff_numeral_special(9)
tff(fact_791_div__mult__mult1__if,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [C2: A,A2: A,B2: A] :
( ( ( C2 = zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)) = zero_zero(A) ) )
& ( ( C2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) ) ) ) ) ).
% div_mult_mult1_if
tff(fact_792_div__mult__mult2,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [C2: A,A2: A,B2: A] :
( ( C2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) ) ) ) ).
% div_mult_mult2
tff(fact_793_div__mult__mult1,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [C2: A,A2: A,B2: A] :
( ( C2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) ) ) ) ).
% div_mult_mult1
tff(fact_794_nonzero__mult__divide__mult__cancel__right2,axiom,
! [A: $tType] :
( field(A)
=> ! [C2: A,A2: A,B2: A] :
( ( C2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) ) ) ) ).
% nonzero_mult_divide_mult_cancel_right2
tff(fact_795_nonzero__mult__divide__mult__cancel__right,axiom,
! [A: $tType] :
( field(A)
=> ! [C2: A,A2: A,B2: A] :
( ( C2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) ) ) ) ).
% nonzero_mult_divide_mult_cancel_right
tff(fact_796_nonzero__mult__divide__mult__cancel__left2,axiom,
! [A: $tType] :
( field(A)
=> ! [C2: A,A2: A,B2: A] :
( ( C2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) ) ) ) ).
% nonzero_mult_divide_mult_cancel_left2
tff(fact_797_nonzero__mult__divide__mult__cancel__left,axiom,
! [A: $tType] :
( field(A)
=> ! [C2: A,A2: A,B2: A] :
( ( C2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) ) ) ) ).
% nonzero_mult_divide_mult_cancel_left
tff(fact_798_mult__divide__mult__cancel__left__if,axiom,
! [A: $tType] :
( field(A)
=> ! [C2: A,A2: A,B2: A] :
( ( ( C2 = zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)) = zero_zero(A) ) )
& ( ( C2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) ) ) ) ) ).
% mult_divide_mult_cancel_left_if
tff(fact_799_nonzero__mult__div__cancel__right,axiom,
! [A: $tType] :
( semidom_divide(A)
=> ! [B2: A,A2: A] :
( ( B2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),B2) = A2 ) ) ) ).
% nonzero_mult_div_cancel_right
tff(fact_800_nonzero__mult__div__cancel__left,axiom,
! [A: $tType] :
( semidom_divide(A)
=> ! [A2: A,B2: A] :
( ( A2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),A2) = B2 ) ) ) ).
% nonzero_mult_div_cancel_left
tff(fact_801_divide__eq__1__iff,axiom,
! [A: $tType] :
( field(A)
=> ! [A2: A,B2: A] :
( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) = one_one(A) )
<=> ( ( B2 != zero_zero(A) )
& ( A2 = B2 ) ) ) ) ).
% divide_eq_1_iff
tff(fact_802_one__eq__divide__iff,axiom,
! [A: $tType] :
( field(A)
=> ! [A2: A,B2: A] :
( ( one_one(A) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) )
<=> ( ( B2 != zero_zero(A) )
& ( A2 = B2 ) ) ) ) ).
% one_eq_divide_iff
tff(fact_803_divide__self,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A] :
( ( A2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),A2) = one_one(A) ) ) ) ).
% divide_self
tff(fact_804_divide__self__if,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A] :
( ( ( A2 = zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),A2) = zero_zero(A) ) )
& ( ( A2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),A2) = one_one(A) ) ) ) ) ).
% divide_self_if
tff(fact_805_divide__eq__eq__1,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [B2: A,A2: A] :
( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),A2) = one_one(A) )
<=> ( ( A2 != zero_zero(A) )
& ( A2 = B2 ) ) ) ) ).
% divide_eq_eq_1
tff(fact_806_eq__divide__eq__1,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [B2: A,A2: A] :
( ( one_one(A) = aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),A2) )
<=> ( ( A2 != zero_zero(A) )
& ( A2 = B2 ) ) ) ) ).
% eq_divide_eq_1
tff(fact_807_one__divide__eq__0__iff,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A] :
( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),A2) = zero_zero(A) )
<=> ( A2 = zero_zero(A) ) ) ) ).
% one_divide_eq_0_iff
tff(fact_808_zero__eq__1__divide__iff,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A] :
( ( zero_zero(A) = aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),A2) )
<=> ( A2 = zero_zero(A) ) ) ) ).
% zero_eq_1_divide_iff
tff(fact_809_div__self,axiom,
! [A: $tType] :
( semidom_divide(A)
=> ! [A2: A] :
( ( A2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),A2) = one_one(A) ) ) ) ).
% div_self
tff(fact_810_ab__left__minus,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),A2)),A2) = zero_zero(A) ) ) ).
% ab_left_minus
tff(fact_811_add_Oright__inverse,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(A,A,uminus_uminus(A),A2)) = zero_zero(A) ) ) ).
% add.right_inverse
tff(fact_812_diff__0,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),zero_zero(A)),A2) = aa(A,A,uminus_uminus(A),A2) ) ) ).
% diff_0
tff(fact_813_power__0__Suc,axiom,
! [A: $tType] :
( semiring_1(A)
=> ! [N: nat] : ( aa(nat,A,power_power(A,zero_zero(A)),aa(nat,nat,suc,N)) = zero_zero(A) ) ) ).
% power_0_Suc
tff(fact_814_power__zero__numeral,axiom,
! [A: $tType] :
( semiring_1(A)
=> ! [K: num] : ( aa(nat,A,power_power(A,zero_zero(A)),aa(num,nat,numeral_numeral(nat),K)) = zero_zero(A) ) ) ).
% power_zero_numeral
tff(fact_815_mod__mult__self1__is__0,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [B2: A,A2: A] : ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),times_times(A),B2),A2),B2) = zero_zero(A) ) ) ).
% mod_mult_self1_is_0
tff(fact_816_mod__mult__self2__is__0,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [A2: A,B2: A] : ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2),B2) = zero_zero(A) ) ) ).
% mod_mult_self2_is_0
tff(fact_817_bits__mod__by__1,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [A2: A] : ( modulo_modulo(A,A2,one_one(A)) = zero_zero(A) ) ) ).
% bits_mod_by_1
tff(fact_818_mod__by__1,axiom,
! [A: $tType] :
( semidom_modulo(A)
=> ! [A2: A] : ( modulo_modulo(A,A2,one_one(A)) = zero_zero(A) ) ) ).
% mod_by_1
tff(fact_819_of__nat__eq__0__iff,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [M: nat] :
( ( aa(nat,A,semiring_1_of_nat(A),M) = zero_zero(A) )
<=> ( M = zero_zero(nat) ) ) ) ).
% of_nat_eq_0_iff
tff(fact_820_of__nat__0__eq__iff,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [N: nat] :
( ( zero_zero(A) = aa(nat,A,semiring_1_of_nat(A),N) )
<=> ( zero_zero(nat) = N ) ) ) ).
% of_nat_0_eq_iff
tff(fact_821_of__nat__0,axiom,
! [A: $tType] :
( semiring_1(A)
=> ( aa(nat,A,semiring_1_of_nat(A),zero_zero(nat)) = zero_zero(A) ) ) ).
% of_nat_0
tff(fact_822_mod__div__trivial,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),modulo_modulo(A,A2,B2)),B2) = zero_zero(A) ) ) ).
% mod_div_trivial
tff(fact_823_bits__mod__div__trivial,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),modulo_modulo(A,A2,B2)),B2) = zero_zero(A) ) ) ).
% bits_mod_div_trivial
tff(fact_824_mod__mult__self4,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [B2: A,C2: A,A2: A] : ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)),A2),B2) = modulo_modulo(A,A2,B2) ) ) ).
% mod_mult_self4
tff(fact_825_mod__mult__self3,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [C2: A,B2: A,A2: A] : ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)),A2),B2) = modulo_modulo(A,A2,B2) ) ) ).
% mod_mult_self3
tff(fact_826_mod__mult__self2,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [A2: A,B2: A,C2: A] : ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)),B2) = modulo_modulo(A,A2,B2) ) ) ).
% mod_mult_self2
tff(fact_827_mod__mult__self1,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [A2: A,C2: A,B2: A] : ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)),B2) = modulo_modulo(A,A2,B2) ) ) ).
% mod_mult_self1
tff(fact_828_power__Suc0__right,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [A2: A] : ( aa(nat,A,power_power(A,A2),aa(nat,nat,suc,zero_zero(nat))) = A2 ) ) ).
% power_Suc0_right
tff(fact_829_zero__less__Suc,axiom,
! [N: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(nat,nat,suc,N))) ).
% zero_less_Suc
tff(fact_830_less__Suc0,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(nat,nat,suc,zero_zero(nat))))
<=> ( N = zero_zero(nat) ) ) ).
% less_Suc0
tff(fact_831_minus__mod__self1,axiom,
! [A: $tType] :
( euclid8851590272496341667cancel(A)
=> ! [B2: A,A2: A] : ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),A2),B2) = modulo_modulo(A,aa(A,A,uminus_uminus(A),A2),B2) ) ) ).
% minus_mod_self1
tff(fact_832_add__gr__0,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N)))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),M))
| pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N)) ) ) ).
% add_gr_0
tff(fact_833_mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),N) = aa(nat,nat,suc,zero_zero(nat)) )
<=> ( ( M = aa(nat,nat,suc,zero_zero(nat)) )
& ( N = aa(nat,nat,suc,zero_zero(nat)) ) ) ) ).
% mult_eq_1_iff
tff(fact_834_one__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( aa(nat,nat,suc,zero_zero(nat)) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),N) )
<=> ( ( M = aa(nat,nat,suc,zero_zero(nat)) )
& ( N = aa(nat,nat,suc,zero_zero(nat)) ) ) ) ).
% one_eq_mult_iff
tff(fact_835_zero__less__diff,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N)) ) ).
% zero_less_diff
tff(fact_836_nat__0__less__mult__iff,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),N)))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),M))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N)) ) ) ).
% nat_0_less_mult_iff
tff(fact_837_mult__less__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),K)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),K)))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),K))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N)) ) ) ).
% mult_less_cancel2
tff(fact_838_nat__mult__less__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),M)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),N)))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),K))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N)) ) ) ).
% nat_mult_less_cancel_disj
tff(fact_839_diff__is__0__eq,axiom,
! [M: nat,N: nat] :
( ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N) = zero_zero(nat) )
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ).
% diff_is_0_eq
tff(fact_840_diff__is__0__eq_H,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N) = zero_zero(nat) ) ) ).
% diff_is_0_eq'
tff(fact_841_less__one,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),one_one(nat)))
<=> ( N = zero_zero(nat) ) ) ).
% less_one
tff(fact_842_div__by__Suc__0,axiom,
! [M: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),aa(nat,nat,suc,zero_zero(nat))) = M ) ).
% div_by_Suc_0
tff(fact_843_nat__power__eq__Suc__0__iff,axiom,
! [X2: nat,M: nat] :
( ( aa(nat,nat,power_power(nat,X2),M) = aa(nat,nat,suc,zero_zero(nat)) )
<=> ( ( M = zero_zero(nat) )
| ( X2 = aa(nat,nat,suc,zero_zero(nat)) ) ) ) ).
% nat_power_eq_Suc_0_iff
tff(fact_844_power__Suc__0,axiom,
! [N: nat] : ( aa(nat,nat,power_power(nat,aa(nat,nat,suc,zero_zero(nat))),N) = aa(nat,nat,suc,zero_zero(nat)) ) ).
% power_Suc_0
tff(fact_845_div__less,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N) = zero_zero(nat) ) ) ).
% div_less
tff(fact_846_nat__zero__less__power__iff,axiom,
! [X2: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(nat,nat,power_power(nat,X2),N)))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),X2))
| ( N = zero_zero(nat) ) ) ) ).
% nat_zero_less_power_iff
tff(fact_847_mod__by__Suc__0,axiom,
! [M: nat] : ( modulo_modulo(nat,M,aa(nat,nat,suc,zero_zero(nat))) = zero_zero(nat) ) ).
% mod_by_Suc_0
tff(fact_848_nat__mult__div__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( K = zero_zero(nat) )
=> ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),M)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),N)) = zero_zero(nat) ) )
& ( ( K != zero_zero(nat) )
=> ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),M)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),N)) = aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N) ) ) ) ).
% nat_mult_div_cancel_disj
tff(fact_849_dbl__simps_I5_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [K: num] : ( neg_numeral_dbl(A,aa(num,A,numeral_numeral(A),K)) = aa(num,A,numeral_numeral(A),bit0(K)) ) ) ).
% dbl_simps(5)
tff(fact_850_dbl__simps_I1_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [K: num] : ( neg_numeral_dbl(A,aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),K))) = aa(A,A,uminus_uminus(A),neg_numeral_dbl(A,aa(num,A,numeral_numeral(A),K))) ) ) ).
% dbl_simps(1)
tff(fact_851_dbl__inc__simps_I2_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ( neg_numeral_dbl_inc(A,zero_zero(A)) = one_one(A) ) ) ).
% dbl_inc_simps(2)
tff(fact_852_dbl__inc__simps_I4_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ( neg_numeral_dbl_inc(A,aa(A,A,uminus_uminus(A),one_one(A))) = aa(A,A,uminus_uminus(A),one_one(A)) ) ) ).
% dbl_inc_simps(4)
tff(fact_853_dbl__inc__simps_I5_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [K: num] : ( neg_numeral_dbl_inc(A,aa(num,A,numeral_numeral(A),K)) = aa(num,A,numeral_numeral(A),aa(num,num,bit1,K)) ) ) ).
% dbl_inc_simps(5)
tff(fact_854_divide__le__0__1__iff,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),A2)),zero_zero(A)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A))) ) ) ).
% divide_le_0_1_iff
tff(fact_855_zero__le__divide__1__iff,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2)) ) ) ).
% zero_le_divide_1_iff
tff(fact_856_divide__less__0__1__iff,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),A2)),zero_zero(A)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A))) ) ) ).
% divide_less_0_1_iff
tff(fact_857_divide__less__eq__1__neg,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),A2)),one_one(A)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) ) ) ) ).
% divide_less_eq_1_neg
tff(fact_858_divide__less__eq__1__pos,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),A2)),one_one(A)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2)) ) ) ) ).
% divide_less_eq_1_pos
tff(fact_859_less__divide__eq__1__neg,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2)) ) ) ) ).
% less_divide_eq_1_neg
tff(fact_860_less__divide__eq__1__pos,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) ) ) ) ).
% less_divide_eq_1_pos
tff(fact_861_zero__less__divide__1__iff,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2)) ) ) ).
% zero_less_divide_1_iff
tff(fact_862_eq__divide__eq__numeral1_I1_J,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A,B2: A,W: num] :
( ( A2 = aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),aa(num,A,numeral_numeral(A),W)) )
<=> ( ( ( aa(num,A,numeral_numeral(A),W) != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(num,A,numeral_numeral(A),W)) = B2 ) )
& ( ( aa(num,A,numeral_numeral(A),W) = zero_zero(A) )
=> ( A2 = zero_zero(A) ) ) ) ) ) ).
% eq_divide_eq_numeral1(1)
tff(fact_863_divide__eq__eq__numeral1_I1_J,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [B2: A,W: num,A2: A] :
( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),aa(num,A,numeral_numeral(A),W)) = A2 )
<=> ( ( ( aa(num,A,numeral_numeral(A),W) != zero_zero(A) )
=> ( B2 = aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(num,A,numeral_numeral(A),W)) ) )
& ( ( aa(num,A,numeral_numeral(A),W) = zero_zero(A) )
=> ( A2 = zero_zero(A) ) ) ) ) ) ).
% divide_eq_eq_numeral1(1)
tff(fact_864_div__mult__self4,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [B2: A,C2: A,A2: A] :
( ( B2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)),A2)),B2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)) ) ) ) ).
% div_mult_self4
tff(fact_865_div__mult__self3,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [B2: A,C2: A,A2: A] :
( ( B2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)),A2)),B2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)) ) ) ) ).
% div_mult_self3
tff(fact_866_div__mult__self2,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [B2: A,A2: A,C2: A] :
( ( B2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2))),B2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)) ) ) ) ).
% div_mult_self2
tff(fact_867_div__mult__self1,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [B2: A,A2: A,C2: A] :
( ( B2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2))),B2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)) ) ) ) ).
% div_mult_self1
tff(fact_868_nonzero__divide__mult__cancel__left,axiom,
! [A: $tType] :
( field(A)
=> ! [A2: A,B2: A] :
( ( A2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),B2) ) ) ) ).
% nonzero_divide_mult_cancel_left
tff(fact_869_nonzero__divide__mult__cancel__right,axiom,
! [A: $tType] :
( field(A)
=> ! [B2: A,A2: A] :
( ( B2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),A2) ) ) ) ).
% nonzero_divide_mult_cancel_right
tff(fact_870_add__neg__numeral__special_I8_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),one_one(A))),one_one(A)) = zero_zero(A) ) ) ).
% add_neg_numeral_special(8)
tff(fact_871_add__neg__numeral__special_I7_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),aa(A,A,uminus_uminus(A),one_one(A))) = zero_zero(A) ) ) ).
% add_neg_numeral_special(7)
tff(fact_872_diff__numeral__special_I12_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,uminus_uminus(A),one_one(A))),aa(A,A,uminus_uminus(A),one_one(A))) = zero_zero(A) ) ) ).
% diff_numeral_special(12)
tff(fact_873_of__nat__le__0__iff,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [M: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,semiring_1_of_nat(A),M)),zero_zero(A)))
<=> ( M = zero_zero(nat) ) ) ) ).
% of_nat_le_0_iff
tff(fact_874_power__eq__0__iff,axiom,
! [A: $tType] :
( semiri2026040879449505780visors(A)
=> ! [A2: A,N: nat] :
( ( aa(nat,A,power_power(A,A2),N) = zero_zero(A) )
<=> ( ( A2 = zero_zero(A) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N)) ) ) ) ).
% power_eq_0_iff
tff(fact_875_mod__minus1__right,axiom,
! [A: $tType] :
( euclid8851590272496341667cancel(A)
=> ! [A2: A] : ( modulo_modulo(A,A2,aa(A,A,uminus_uminus(A),one_one(A))) = zero_zero(A) ) ) ).
% mod_minus1_right
tff(fact_876_Suc__pred,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(nat,nat,suc,zero_zero(nat)))) = N ) ) ).
% Suc_pred
tff(fact_877_one__le__mult__iff,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,suc,zero_zero(nat))),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),N)))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,suc,zero_zero(nat))),M))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,suc,zero_zero(nat))),N)) ) ) ).
% one_le_mult_iff
tff(fact_878_mult__le__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),K)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),K)))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),K))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ) ).
% mult_le_cancel2
tff(fact_879_nat__mult__le__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),M)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),N)))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),K))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ) ).
% nat_mult_le_cancel_disj
tff(fact_880_div__mult__self1__is__m,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),M)),N) = M ) ) ).
% div_mult_self1_is_m
tff(fact_881_div__mult__self__is__m,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),N)),N) = M ) ) ).
% div_mult_self_is_m
tff(fact_882_Suc__mod__mult__self4,axiom,
! [N: nat,K: nat,M: nat] : ( modulo_modulo(nat,aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),K)),M)),N) = modulo_modulo(nat,aa(nat,nat,suc,M),N) ) ).
% Suc_mod_mult_self4
tff(fact_883_Suc__mod__mult__self3,axiom,
! [K: nat,N: nat,M: nat] : ( modulo_modulo(nat,aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),N)),M)),N) = modulo_modulo(nat,aa(nat,nat,suc,M),N) ) ).
% Suc_mod_mult_self3
tff(fact_884_Suc__mod__mult__self2,axiom,
! [M: nat,N: nat,K: nat] : ( modulo_modulo(nat,aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),K))),N) = modulo_modulo(nat,aa(nat,nat,suc,M),N) ) ).
% Suc_mod_mult_self2
tff(fact_885_Suc__mod__mult__self1,axiom,
! [M: nat,K: nat,N: nat] : ( modulo_modulo(nat,aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),N))),N) = modulo_modulo(nat,aa(nat,nat,suc,M),N) ) ).
% Suc_mod_mult_self1
tff(fact_886_dbl__dec__simps_I2_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ( neg_numeral_dbl_dec(A,zero_zero(A)) = aa(A,A,uminus_uminus(A),one_one(A)) ) ) ).
% dbl_dec_simps(2)
tff(fact_887_divide__le__eq__1__neg,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),A2)),one_one(A)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) ) ) ) ).
% divide_le_eq_1_neg
tff(fact_888_divide__le__eq__1__pos,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),A2)),one_one(A)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2)) ) ) ) ).
% divide_le_eq_1_pos
tff(fact_889_le__divide__eq__1__neg,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2)) ) ) ) ).
% le_divide_eq_1_neg
tff(fact_890_le__divide__eq__1__pos,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) ) ) ) ).
% le_divide_eq_1_pos
tff(fact_891_eq__divide__eq__numeral1_I2_J,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A,B2: A,W: num] :
( ( A2 = aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))) )
<=> ( ( ( aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W)) != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))) = B2 ) )
& ( ( aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W)) = zero_zero(A) )
=> ( A2 = zero_zero(A) ) ) ) ) ) ).
% eq_divide_eq_numeral1(2)
tff(fact_892_divide__eq__eq__numeral1_I2_J,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [B2: A,W: num,A2: A] :
( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))) = A2 )
<=> ( ( ( aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W)) != zero_zero(A) )
=> ( B2 = aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))) ) )
& ( ( aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W)) = zero_zero(A) )
=> ( A2 = zero_zero(A) ) ) ) ) ) ).
% divide_eq_eq_numeral1(2)
tff(fact_893_power__strict__decreasing__iff,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [B2: A,M: nat,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),one_one(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,power_power(A,B2),M)),aa(nat,A,power_power(A,B2),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M)) ) ) ) ) ).
% power_strict_decreasing_iff
tff(fact_894_power__mono__iff,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [A2: A,B2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,A2),N)),aa(nat,A,power_power(A,B2),N)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) ) ) ) ) ) ).
% power_mono_iff
tff(fact_895_zero__eq__power2,axiom,
! [A: $tType] :
( semiri2026040879449505780visors(A)
=> ! [A2: A] :
( ( aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),bit0(one2))) = zero_zero(A) )
<=> ( A2 = zero_zero(A) ) ) ) ).
% zero_eq_power2
tff(fact_896_dbl__dec__simps_I1_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [K: num] : ( neg_numeral_dbl_dec(A,aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),K))) = aa(A,A,uminus_uminus(A),neg_numeral_dbl_inc(A,aa(num,A,numeral_numeral(A),K))) ) ) ).
% dbl_dec_simps(1)
tff(fact_897_dbl__inc__simps_I1_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [K: num] : ( neg_numeral_dbl_inc(A,aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),K))) = aa(A,A,uminus_uminus(A),neg_numeral_dbl_dec(A,aa(num,A,numeral_numeral(A),K))) ) ) ).
% dbl_inc_simps(1)
tff(fact_898_one__mod__two__eq__one,axiom,
! [A: $tType] :
( euclid5411537665997757685th_nat(A)
=> ( modulo_modulo(A,one_one(A),aa(num,A,numeral_numeral(A),bit0(one2))) = one_one(A) ) ) ).
% one_mod_two_eq_one
tff(fact_899_bits__one__mod__two__eq__one,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ( modulo_modulo(A,one_one(A),aa(num,A,numeral_numeral(A),bit0(one2))) = one_one(A) ) ) ).
% bits_one_mod_two_eq_one
tff(fact_900_of__nat__0__less__iff,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(nat,A,semiring_1_of_nat(A),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N)) ) ) ).
% of_nat_0_less_iff
tff(fact_901_mod2__Suc__Suc,axiom,
! [M: nat] : ( modulo_modulo(nat,aa(nat,nat,suc,aa(nat,nat,suc,M)),aa(num,nat,numeral_numeral(nat),bit0(one2))) = modulo_modulo(nat,M,aa(num,nat,numeral_numeral(nat),bit0(one2))) ) ).
% mod2_Suc_Suc
tff(fact_902_Suc__diff__1,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat))) = N ) ) ).
% Suc_diff_1
tff(fact_903_Suc__times__numeral__mod__eq,axiom,
! [K: num,N: nat] :
( ( aa(num,nat,numeral_numeral(nat),K) != one_one(nat) )
=> ( modulo_modulo(nat,aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),K)),N)),aa(num,nat,numeral_numeral(nat),K)) = one_one(nat) ) ) ).
% Suc_times_numeral_mod_eq
tff(fact_904_one__div__two__eq__zero,axiom,
! [A: $tType] :
( euclid5411537665997757685th_nat(A)
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(num,A,numeral_numeral(A),bit0(one2))) = zero_zero(A) ) ) ).
% one_div_two_eq_zero
tff(fact_905_bits__1__div__2,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(num,A,numeral_numeral(A),bit0(one2))) = zero_zero(A) ) ) ).
% bits_1_div_2
tff(fact_906_power__decreasing__iff,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [B2: A,M: nat,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),one_one(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,B2),M)),aa(nat,A,power_power(A,B2),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M)) ) ) ) ) ).
% power_decreasing_iff
tff(fact_907_power2__eq__iff__nonneg,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),Y))
=> ( ( aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(nat,A,power_power(A,Y),aa(num,nat,numeral_numeral(nat),bit0(one2))) )
<=> ( X2 = Y ) ) ) ) ) ).
% power2_eq_iff_nonneg
tff(fact_908_power2__less__eq__zero__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),zero_zero(A)))
<=> ( A2 = zero_zero(A) ) ) ) ).
% power2_less_eq_zero_iff
tff(fact_909_zero__less__power2,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),bit0(one2)))))
<=> ( A2 != zero_zero(A) ) ) ) ).
% zero_less_power2
tff(fact_910_sum__power2__eq__zero__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: A,Y: A] :
( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,A,power_power(A,Y),aa(num,nat,numeral_numeral(nat),bit0(one2)))) = zero_zero(A) )
<=> ( ( X2 = zero_zero(A) )
& ( Y = zero_zero(A) ) ) ) ) ).
% sum_power2_eq_zero_iff
tff(fact_911_not__mod__2__eq__1__eq__0,axiom,
! [A: $tType] :
( semiring_parity(A)
=> ! [A2: A] :
( ( modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2))) != one_one(A) )
<=> ( modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2))) = zero_zero(A) ) ) ) ).
% not_mod_2_eq_1_eq_0
tff(fact_912_not__mod__2__eq__0__eq__1,axiom,
! [A: $tType] :
( semiring_parity(A)
=> ! [A2: A] :
( ( modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2))) != zero_zero(A) )
<=> ( modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2))) = one_one(A) ) ) ) ).
% not_mod_2_eq_0_eq_1
tff(fact_913_minus__1__mod__2__eq,axiom,
! [A: $tType] :
( euclid8789492081693882211th_nat(A)
=> ( modulo_modulo(A,aa(A,A,uminus_uminus(A),one_one(A)),aa(num,A,numeral_numeral(A),bit0(one2))) = one_one(A) ) ) ).
% minus_1_mod_2_eq
tff(fact_914_bits__minus__1__mod__2__eq,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ( modulo_modulo(A,aa(A,A,uminus_uminus(A),one_one(A)),aa(num,A,numeral_numeral(A),bit0(one2))) = one_one(A) ) ) ).
% bits_minus_1_mod_2_eq
tff(fact_915_of__nat__zero__less__power__iff,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [X2: nat,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(nat,A,power_power(A,aa(nat,A,semiring_1_of_nat(A),X2)),N)))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),X2))
| ( N = zero_zero(nat) ) ) ) ) ).
% of_nat_zero_less_power_iff
tff(fact_916_not__mod2__eq__Suc__0__eq__0,axiom,
! [N: nat] :
( ( modulo_modulo(nat,N,aa(num,nat,numeral_numeral(nat),bit0(one2))) != aa(nat,nat,suc,zero_zero(nat)) )
<=> ( modulo_modulo(nat,N,aa(num,nat,numeral_numeral(nat),bit0(one2))) = zero_zero(nat) ) ) ).
% not_mod2_eq_Suc_0_eq_0
tff(fact_917_add__self__mod__2,axiom,
! [M: nat] : ( modulo_modulo(nat,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),M),aa(num,nat,numeral_numeral(nat),bit0(one2))) = zero_zero(nat) ) ).
% add_self_mod_2
tff(fact_918_mod__Suc__eq__mod__add3,axiom,
! [M: nat,N: nat] : ( modulo_modulo(nat,M,aa(nat,nat,suc,aa(nat,nat,suc,aa(nat,nat,suc,N)))) = modulo_modulo(nat,M,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,one2))),N)) ) ).
% mod_Suc_eq_mod_add3
tff(fact_919_Suc__mod__eq__add3__mod__numeral,axiom,
! [M: nat,V: num] : ( modulo_modulo(nat,aa(nat,nat,suc,aa(nat,nat,suc,aa(nat,nat,suc,M))),aa(num,nat,numeral_numeral(nat),V)) = modulo_modulo(nat,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,one2))),M),aa(num,nat,numeral_numeral(nat),V)) ) ).
% Suc_mod_eq_add3_mod_numeral
tff(fact_920_mod2__gr__0,axiom,
! [M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),modulo_modulo(nat,M,aa(num,nat,numeral_numeral(nat),bit0(one2)))))
<=> ( modulo_modulo(nat,M,aa(num,nat,numeral_numeral(nat),bit0(one2))) = one_one(nat) ) ) ).
% mod2_gr_0
tff(fact_921_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),modulo_modulo(A,A2,B2)),B2)) ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_bound
tff(fact_922_VEBT_Osize_I4_J,axiom,
! [X21: bool,X222: bool] : ( aa(vEBT_VEBT,nat,size_size(vEBT_VEBT),vEBT_Leaf(X21,X222)) = zero_zero(nat) ) ).
% VEBT.size(4)
tff(fact_923_of__nat__mod,axiom,
! [A: $tType] :
( euclid5411537665997757685th_nat(A)
=> ! [M: nat,N: nat] : ( aa(nat,A,semiring_1_of_nat(A),modulo_modulo(nat,M,N)) = modulo_modulo(A,aa(nat,A,semiring_1_of_nat(A),M),aa(nat,A,semiring_1_of_nat(A),N)) ) ) ).
% of_nat_mod
tff(fact_924_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),modulo_modulo(A,A2,B2)),A2)) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
tff(fact_925_option_Osize__neq,axiom,
! [A: $tType,X2: option(A)] : ( aa(option(A),nat,size_size(option(A)),X2) != zero_zero(nat) ) ).
% option.size_neq
tff(fact_926_zero__reorient,axiom,
! [A: $tType] :
( zero(A)
=> ! [X2: A] :
( ( zero_zero(A) = X2 )
<=> ( X2 = zero_zero(A) ) ) ) ).
% zero_reorient
tff(fact_927_mod__eq__self__iff__div__eq__0,axiom,
! [A: $tType] :
( euclid3725896446679973847miring(A)
=> ! [A2: A,B2: A] :
( ( modulo_modulo(A,A2,B2) = A2 )
<=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) = zero_zero(A) ) ) ) ).
% mod_eq_self_iff_div_eq_0
tff(fact_928_mod__Suc,axiom,
! [M: nat,N: nat] :
( ( ( aa(nat,nat,suc,modulo_modulo(nat,M,N)) = N )
=> ( modulo_modulo(nat,aa(nat,nat,suc,M),N) = zero_zero(nat) ) )
& ( ( aa(nat,nat,suc,modulo_modulo(nat,M,N)) != N )
=> ( modulo_modulo(nat,aa(nat,nat,suc,M),N) = aa(nat,nat,suc,modulo_modulo(nat,M,N)) ) ) ) ).
% mod_Suc
tff(fact_929_mod__less__divisor,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),modulo_modulo(nat,M,N)),N)) ) ).
% mod_less_divisor
tff(fact_930_mod__eq__0D,axiom,
! [M: nat,D2: nat] :
( ( modulo_modulo(nat,M,D2) = zero_zero(nat) )
=> ? [Q3: nat] : ( M = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),D2),Q3) ) ) ).
% mod_eq_0D
tff(fact_931_list__decode_Ocases,axiom,
! [X2: nat] :
( ( X2 != zero_zero(nat) )
=> ~ ! [N3: nat] : ( X2 != aa(nat,nat,suc,N3) ) ) ).
% list_decode.cases
tff(fact_932_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),modulo_modulo(A,A2,B2))) ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_sign
tff(fact_933_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( modulo_modulo(A,A2,B2) = A2 ) ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less
tff(fact_934_cong__exp__iff__simps_I2_J,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [N: num,Q2: num] :
( ( modulo_modulo(A,aa(num,A,numeral_numeral(A),bit0(N)),aa(num,A,numeral_numeral(A),bit0(Q2))) = zero_zero(A) )
<=> ( modulo_modulo(A,aa(num,A,numeral_numeral(A),N),aa(num,A,numeral_numeral(A),Q2)) = zero_zero(A) ) ) ) ).
% cong_exp_iff_simps(2)
tff(fact_935_cong__exp__iff__simps_I1_J,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [N: num] : ( modulo_modulo(A,aa(num,A,numeral_numeral(A),N),aa(num,A,numeral_numeral(A),one2)) = zero_zero(A) ) ) ).
% cong_exp_iff_simps(1)
tff(fact_936_mod__le__divisor,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),modulo_modulo(nat,M,N)),N)) ) ).
% mod_le_divisor
tff(fact_937_VEBT__internal_Onaive__member_Ocases,axiom,
! [X2: product_prod(vEBT_VEBT,nat)] :
( ! [A4: bool,B3: bool,X3: nat] : ( X2 != aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Leaf(A4,B3)),X3) )
=> ( ! [Uu: option(product_prod(nat,nat)),Uv: list(vEBT_VEBT),Uw: vEBT_VEBT,Ux: nat] : ( X2 != aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Node(Uu,zero_zero(nat),Uv,Uw)),Ux) )
=> ~ ! [Uy: option(product_prod(nat,nat)),V3: nat,TreeList3: list(vEBT_VEBT),S3: vEBT_VEBT,X3: nat] : ( X2 != aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Node(Uy,aa(nat,nat,suc,V3),TreeList3,S3)),X3) ) ) ) ).
% VEBT_internal.naive_member.cases
tff(fact_938_power__0__left,axiom,
! [A: $tType] :
( semiring_1(A)
=> ! [N: nat] :
( ( ( N = zero_zero(nat) )
=> ( aa(nat,A,power_power(A,zero_zero(A)),N) = one_one(A) ) )
& ( ( N != zero_zero(nat) )
=> ( aa(nat,A,power_power(A,zero_zero(A)),N) = zero_zero(A) ) ) ) ) ).
% power_0_left
tff(fact_939_invar__vebt_Ointros_I1_J,axiom,
! [A2: bool,B2: bool] : vEBT_invar_vebt(vEBT_Leaf(A2,B2),aa(nat,nat,suc,zero_zero(nat))) ).
% invar_vebt.intros(1)
tff(fact_940_zero__power,axiom,
! [A: $tType] :
( semiring_1(A)
=> ! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(nat,A,power_power(A,zero_zero(A)),N) = zero_zero(A) ) ) ) ).
% zero_power
tff(fact_941_mod__mult__right__eq,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [A2: A,B2: A,C2: A] : ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),times_times(A),A2),modulo_modulo(A,B2,C2)),C2) = modulo_modulo(A,aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2),C2) ) ) ).
% mod_mult_right_eq
tff(fact_942_mod__mult__left__eq,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [A2: A,C2: A,B2: A] : ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),times_times(A),modulo_modulo(A,A2,C2)),B2),C2) = modulo_modulo(A,aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2),C2) ) ) ).
% mod_mult_left_eq
tff(fact_943_mult__mod__right,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [C2: A,A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),C2),modulo_modulo(A,A2,B2)) = modulo_modulo(A,aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)) ) ) ).
% mult_mod_right
tff(fact_944_mod__mult__mult2,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [A2: A,C2: A,B2: A] : ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),times_times(A),modulo_modulo(A,A2,B2)),C2) ) ) ).
% mod_mult_mult2
tff(fact_945_mod__mult__cong,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [A2: A,C2: A,A6: A,B2: A,B6: A] :
( ( modulo_modulo(A,A2,C2) = modulo_modulo(A,A6,C2) )
=> ( ( modulo_modulo(A,B2,C2) = modulo_modulo(A,B6,C2) )
=> ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2),C2) = modulo_modulo(A,aa(A,A,aa(A,fun(A,A),times_times(A),A6),B6),C2) ) ) ) ) ).
% mod_mult_cong
tff(fact_946_mod__mult__eq,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [A2: A,C2: A,B2: A] : ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),times_times(A),modulo_modulo(A,A2,C2)),modulo_modulo(A,B2,C2)),C2) = modulo_modulo(A,aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2),C2) ) ) ).
% mod_mult_eq
tff(fact_947_mod__add__eq,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [A2: A,C2: A,B2: A] : ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),modulo_modulo(A,A2,C2)),modulo_modulo(A,B2,C2)),C2) = modulo_modulo(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2),C2) ) ) ).
% mod_add_eq
tff(fact_948_mod__add__cong,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [A2: A,C2: A,A6: A,B2: A,B6: A] :
( ( modulo_modulo(A,A2,C2) = modulo_modulo(A,A6,C2) )
=> ( ( modulo_modulo(A,B2,C2) = modulo_modulo(A,B6,C2) )
=> ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2),C2) = modulo_modulo(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A6),B6),C2) ) ) ) ) ).
% mod_add_cong
tff(fact_949_mod__add__left__eq,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [A2: A,C2: A,B2: A] : ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),modulo_modulo(A,A2,C2)),B2),C2) = modulo_modulo(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2),C2) ) ) ).
% mod_add_left_eq
tff(fact_950_mod__add__right__eq,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [A2: A,B2: A,C2: A] : ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),modulo_modulo(A,B2,C2)),C2) = modulo_modulo(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2),C2) ) ) ).
% mod_add_right_eq
tff(fact_951_mod__diff__right__eq,axiom,
! [A: $tType] :
( euclid8851590272496341667cancel(A)
=> ! [A2: A,B2: A,C2: A] : ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),modulo_modulo(A,B2,C2)),C2) = modulo_modulo(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2),C2) ) ) ).
% mod_diff_right_eq
tff(fact_952_mod__diff__left__eq,axiom,
! [A: $tType] :
( euclid8851590272496341667cancel(A)
=> ! [A2: A,C2: A,B2: A] : ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),modulo_modulo(A,A2,C2)),B2),C2) = modulo_modulo(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2),C2) ) ) ).
% mod_diff_left_eq
tff(fact_953_mod__diff__cong,axiom,
! [A: $tType] :
( euclid8851590272496341667cancel(A)
=> ! [A2: A,C2: A,A6: A,B2: A,B6: A] :
( ( modulo_modulo(A,A2,C2) = modulo_modulo(A,A6,C2) )
=> ( ( modulo_modulo(A,B2,C2) = modulo_modulo(A,B6,C2) )
=> ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2),C2) = modulo_modulo(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A6),B6),C2) ) ) ) ) ).
% mod_diff_cong
tff(fact_954_mod__diff__eq,axiom,
! [A: $tType] :
( euclid8851590272496341667cancel(A)
=> ! [A2: A,C2: A,B2: A] : ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),modulo_modulo(A,A2,C2)),modulo_modulo(A,B2,C2)),C2) = modulo_modulo(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2),C2) ) ) ).
% mod_diff_eq
tff(fact_955_mod__minus__eq,axiom,
! [A: $tType] :
( euclid8851590272496341667cancel(A)
=> ! [A2: A,B2: A] : ( modulo_modulo(A,aa(A,A,uminus_uminus(A),modulo_modulo(A,A2,B2)),B2) = modulo_modulo(A,aa(A,A,uminus_uminus(A),A2),B2) ) ) ).
% mod_minus_eq
tff(fact_956_mod__minus__cong,axiom,
! [A: $tType] :
( euclid8851590272496341667cancel(A)
=> ! [A2: A,B2: A,A6: A] :
( ( modulo_modulo(A,A2,B2) = modulo_modulo(A,A6,B2) )
=> ( modulo_modulo(A,aa(A,A,uminus_uminus(A),A2),B2) = modulo_modulo(A,aa(A,A,uminus_uminus(A),A6),B2) ) ) ) ).
% mod_minus_cong
tff(fact_957_mod__minus__right,axiom,
! [A: $tType] :
( euclid8851590272496341667cancel(A)
=> ! [A2: A,B2: A] : ( modulo_modulo(A,A2,aa(A,A,uminus_uminus(A),B2)) = aa(A,A,uminus_uminus(A),modulo_modulo(A,aa(A,A,uminus_uminus(A),A2),B2)) ) ) ).
% mod_minus_right
tff(fact_958_power__mod,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [A2: A,B2: A,N: nat] : ( modulo_modulo(A,aa(nat,A,power_power(A,modulo_modulo(A,A2,B2)),N),B2) = modulo_modulo(A,aa(nat,A,power_power(A,A2),N),B2) ) ) ).
% power_mod
tff(fact_959_mod__Suc__Suc__eq,axiom,
! [M: nat,N: nat] : ( modulo_modulo(nat,aa(nat,nat,suc,aa(nat,nat,suc,modulo_modulo(nat,M,N))),N) = modulo_modulo(nat,aa(nat,nat,suc,aa(nat,nat,suc,M)),N) ) ).
% mod_Suc_Suc_eq
tff(fact_960_mod__Suc__eq,axiom,
! [M: nat,N: nat] : ( modulo_modulo(nat,aa(nat,nat,suc,modulo_modulo(nat,M,N)),N) = modulo_modulo(nat,aa(nat,nat,suc,M),N) ) ).
% mod_Suc_eq
tff(fact_961_mod__less__eq__dividend,axiom,
! [M: nat,N: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),modulo_modulo(nat,M,N)),M)) ).
% mod_less_eq_dividend
tff(fact_962_VEBT_Oexhaust,axiom,
! [Y: vEBT_VEBT] :
( ! [X112: option(product_prod(nat,nat)),X122: nat,X132: list(vEBT_VEBT),X142: vEBT_VEBT] : ( Y != vEBT_Node(X112,X122,X132,X142) )
=> ~ ! [X212: bool,X223: bool] : ( Y != vEBT_Leaf(X212,X223) ) ) ).
% VEBT.exhaust
tff(fact_963_VEBT_Odistinct_I1_J,axiom,
! [X11: option(product_prod(nat,nat)),X12: nat,X13: list(vEBT_VEBT),X14: vEBT_VEBT,X21: bool,X222: bool] : ( vEBT_Node(X11,X12,X13,X14) != vEBT_Leaf(X21,X222) ) ).
% VEBT.distinct(1)
tff(fact_964_VEBT__internal_Ospace_H_Ocases,axiom,
! [X2: vEBT_VEBT] :
( ! [A4: bool,B3: bool] : ( X2 != vEBT_Leaf(A4,B3) )
=> ~ ! [Info2: option(product_prod(nat,nat)),Deg2: nat,TreeList3: list(vEBT_VEBT),Summary3: vEBT_VEBT] : ( X2 != vEBT_Node(Info2,Deg2,TreeList3,Summary3) ) ) ).
% VEBT_internal.space'.cases
tff(fact_965_VEBT__internal_Ovalid_H_Ocases,axiom,
! [X2: product_prod(vEBT_VEBT,nat)] :
( ! [Uu: bool,Uv: bool,D3: nat] : ( X2 != aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Leaf(Uu,Uv)),D3) )
=> ~ ! [Mima: option(product_prod(nat,nat)),Deg2: nat,TreeList3: list(vEBT_VEBT),Summary3: vEBT_VEBT,Deg3: nat] : ( X2 != aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Node(Mima,Deg2,TreeList3,Summary3)),Deg3) ) ) ).
% VEBT_internal.valid'.cases
tff(fact_966_zero__le,axiom,
! [A: $tType] :
( canoni5634975068530333245id_add(A)
=> ! [X2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X2)) ) ).
% zero_le
tff(fact_967_le__numeral__extra_I3_J,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),zero_zero(A))) ) ).
% le_numeral_extra(3)
tff(fact_968_gr__zeroI,axiom,
! [A: $tType] :
( canoni5634975068530333245id_add(A)
=> ! [N: A] :
( ( N != zero_zero(A) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),N)) ) ) ).
% gr_zeroI
tff(fact_969_not__less__zero,axiom,
! [A: $tType] :
( canoni5634975068530333245id_add(A)
=> ! [N: A] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),N),zero_zero(A))) ) ).
% not_less_zero
tff(fact_970_gr__implies__not__zero,axiom,
! [A: $tType] :
( canoni5634975068530333245id_add(A)
=> ! [M: A,N: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),M),N))
=> ( N != zero_zero(A) ) ) ) ).
% gr_implies_not_zero
tff(fact_971_zero__less__iff__neq__zero,axiom,
! [A: $tType] :
( canoni5634975068530333245id_add(A)
=> ! [N: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),N))
<=> ( N != zero_zero(A) ) ) ) ).
% zero_less_iff_neq_zero
tff(fact_972_field__lbound__gt__zero,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [D1: A,D22: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),D1))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),D22))
=> ? [E2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),E2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),E2),D1))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),E2),D22)) ) ) ) ) ).
% field_lbound_gt_zero
tff(fact_973_less__numeral__extra_I3_J,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),zero_zero(A))) ) ).
% less_numeral_extra(3)
tff(fact_974_zero__neq__numeral,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [N: num] : ( zero_zero(A) != aa(num,A,numeral_numeral(A),N) ) ) ).
% zero_neq_numeral
tff(fact_975_mult__right__cancel,axiom,
! [A: $tType] :
( semiri6575147826004484403cancel(A)
=> ! [C2: A,A2: A,B2: A] :
( ( C2 != zero_zero(A) )
=> ( ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2) = aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2) )
<=> ( A2 = B2 ) ) ) ) ).
% mult_right_cancel
tff(fact_976_mult__left__cancel,axiom,
! [A: $tType] :
( semiri6575147826004484403cancel(A)
=> ! [C2: A,A2: A,B2: A] :
( ( C2 != zero_zero(A) )
=> ( ( aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2) = aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2) )
<=> ( A2 = B2 ) ) ) ) ).
% mult_left_cancel
tff(fact_977_no__zero__divisors,axiom,
! [A: $tType] :
( semiri3467727345109120633visors(A)
=> ! [A2: A,B2: A] :
( ( A2 != zero_zero(A) )
=> ( ( B2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2) != zero_zero(A) ) ) ) ) ).
% no_zero_divisors
tff(fact_978_divisors__zero,axiom,
! [A: $tType] :
( semiri3467727345109120633visors(A)
=> ! [A2: A,B2: A] :
( ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2) = zero_zero(A) )
=> ( ( A2 = zero_zero(A) )
| ( B2 = zero_zero(A) ) ) ) ) ).
% divisors_zero
tff(fact_979_mult__not__zero,axiom,
! [A: $tType] :
( mult_zero(A)
=> ! [A2: A,B2: A] :
( ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2) != zero_zero(A) )
=> ( ( A2 != zero_zero(A) )
& ( B2 != zero_zero(A) ) ) ) ) ).
% mult_not_zero
tff(fact_980_comm__monoid__add__class_Oadd__0,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),zero_zero(A)),A2) = A2 ) ) ).
% comm_monoid_add_class.add_0
tff(fact_981_add_Ocomm__neutral,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),zero_zero(A)) = A2 ) ) ).
% add.comm_neutral
tff(fact_982_add_Ogroup__left__neutral,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),zero_zero(A)),A2) = A2 ) ) ).
% add.group_left_neutral
tff(fact_983_zero__neq__one,axiom,
! [A: $tType] :
( zero_neq_one(A)
=> ( zero_zero(A) != one_one(A) ) ) ).
% zero_neq_one
tff(fact_984_eq__iff__diff__eq__0,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A,B2: A] :
( ( A2 = B2 )
<=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2) = zero_zero(A) ) ) ) ).
% eq_iff_diff_eq_0
tff(fact_985_power__not__zero,axiom,
! [A: $tType] :
( semiri2026040879449505780visors(A)
=> ! [A2: A,N: nat] :
( ( A2 != zero_zero(A) )
=> ( aa(nat,A,power_power(A,A2),N) != zero_zero(A) ) ) ) ).
% power_not_zero
tff(fact_986_num_Osize_I4_J,axiom,
aa(num,nat,size_size(num),one2) = zero_zero(nat) ).
% num.size(4)
tff(fact_987_not0__implies__Suc,axiom,
! [N: nat] :
( ( N != zero_zero(nat) )
=> ? [M3: nat] : ( N = aa(nat,nat,suc,M3) ) ) ).
% not0_implies_Suc
tff(fact_988_Zero__not__Suc,axiom,
! [M: nat] : ( zero_zero(nat) != aa(nat,nat,suc,M) ) ).
% Zero_not_Suc
tff(fact_989_Zero__neq__Suc,axiom,
! [M: nat] : ( zero_zero(nat) != aa(nat,nat,suc,M) ) ).
% Zero_neq_Suc
tff(fact_990_Suc__neq__Zero,axiom,
! [M: nat] : ( aa(nat,nat,suc,M) != zero_zero(nat) ) ).
% Suc_neq_Zero
tff(fact_991_zero__induct,axiom,
! [P: fun(nat,bool),K: nat] :
( pp(aa(nat,bool,P,K))
=> ( ! [N3: nat] :
( pp(aa(nat,bool,P,aa(nat,nat,suc,N3)))
=> pp(aa(nat,bool,P,N3)) )
=> pp(aa(nat,bool,P,zero_zero(nat))) ) ) ).
% zero_induct
tff(fact_992_diff__induct,axiom,
! [P: fun(nat,fun(nat,bool)),M: nat,N: nat] :
( ! [X3: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),P,X3),zero_zero(nat)))
=> ( ! [Y3: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),P,zero_zero(nat)),aa(nat,nat,suc,Y3)))
=> ( ! [X3: nat,Y3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),P,X3),Y3))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),P,aa(nat,nat,suc,X3)),aa(nat,nat,suc,Y3))) )
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),P,M),N)) ) ) ) ).
% diff_induct
tff(fact_993_nat__induct,axiom,
! [P: fun(nat,bool),N: nat] :
( pp(aa(nat,bool,P,zero_zero(nat)))
=> ( ! [N3: nat] :
( pp(aa(nat,bool,P,N3))
=> pp(aa(nat,bool,P,aa(nat,nat,suc,N3))) )
=> pp(aa(nat,bool,P,N)) ) ) ).
% nat_induct
tff(fact_994_vebt__buildup_Ocases,axiom,
! [X2: nat] :
( ( X2 != zero_zero(nat) )
=> ( ( X2 != aa(nat,nat,suc,zero_zero(nat)) )
=> ~ ! [Va: nat] : ( X2 != aa(nat,nat,suc,aa(nat,nat,suc,Va)) ) ) ) ).
% vebt_buildup.cases
tff(fact_995_old_Onat_Oexhaust,axiom,
! [Y: nat] :
( ( Y != zero_zero(nat) )
=> ~ ! [Nat3: nat] : ( Y != aa(nat,nat,suc,Nat3) ) ) ).
% old.nat.exhaust
tff(fact_996_nat_OdiscI,axiom,
! [Nat: nat,X23: nat] :
( ( Nat = aa(nat,nat,suc,X23) )
=> ( Nat != zero_zero(nat) ) ) ).
% nat.discI
tff(fact_997_old_Onat_Odistinct_I1_J,axiom,
! [Nat2: nat] : ( zero_zero(nat) != aa(nat,nat,suc,Nat2) ) ).
% old.nat.distinct(1)
tff(fact_998_old_Onat_Odistinct_I2_J,axiom,
! [Nat2: nat] : ( aa(nat,nat,suc,Nat2) != zero_zero(nat) ) ).
% old.nat.distinct(2)
tff(fact_999_nat_Odistinct_I1_J,axiom,
! [X23: nat] : ( zero_zero(nat) != aa(nat,nat,suc,X23) ) ).
% nat.distinct(1)
tff(fact_1000_bot__nat__0_Oextremum__strict,axiom,
! [A2: nat] : ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),A2),zero_zero(nat))) ).
% bot_nat_0.extremum_strict
tff(fact_1001_gr0I,axiom,
! [N: nat] :
( ( N != zero_zero(nat) )
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N)) ) ).
% gr0I
tff(fact_1002_not__gr0,axiom,
! [N: nat] :
( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
<=> ( N = zero_zero(nat) ) ) ).
% not_gr0
tff(fact_1003_not__less0,axiom,
! [N: nat] : ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),zero_zero(nat))) ).
% not_less0
tff(fact_1004_less__zeroE,axiom,
! [N: nat] : ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),zero_zero(nat))) ).
% less_zeroE
tff(fact_1005_gr__implies__not0,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
=> ( N != zero_zero(nat) ) ) ).
% gr_implies_not0
tff(fact_1006_infinite__descent0,axiom,
! [P: fun(nat,bool),N: nat] :
( pp(aa(nat,bool,P,zero_zero(nat)))
=> ( ! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N3))
=> ( ~ pp(aa(nat,bool,P,N3))
=> ? [M2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M2),N3))
& ~ pp(aa(nat,bool,P,M2)) ) ) )
=> pp(aa(nat,bool,P,N)) ) ) ).
% infinite_descent0
tff(fact_1007_infinite__descent0__measure,axiom,
! [A: $tType,V2: fun(A,nat),P: fun(A,bool),X2: A] :
( ! [X3: A] :
( ( aa(A,nat,V2,X3) = zero_zero(nat) )
=> pp(aa(A,bool,P,X3)) )
=> ( ! [X3: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(A,nat,V2,X3)))
=> ( ~ pp(aa(A,bool,P,X3))
=> ? [Y4: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(A,nat,V2,Y4)),aa(A,nat,V2,X3)))
& ~ pp(aa(A,bool,P,Y4)) ) ) )
=> pp(aa(A,bool,P,X2)) ) ) ).
% infinite_descent0_measure
tff(fact_1008_less__eq__nat_Osimps_I1_J,axiom,
! [N: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),zero_zero(nat)),N)) ).
% less_eq_nat.simps(1)
tff(fact_1009_bot__nat__0_Oextremum__unique,axiom,
! [A2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),A2),zero_zero(nat)))
<=> ( A2 = zero_zero(nat) ) ) ).
% bot_nat_0.extremum_unique
tff(fact_1010_bot__nat__0_Oextremum__uniqueI,axiom,
! [A2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),A2),zero_zero(nat)))
=> ( A2 = zero_zero(nat) ) ) ).
% bot_nat_0.extremum_uniqueI
tff(fact_1011_le__0__eq,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),zero_zero(nat)))
<=> ( N = zero_zero(nat) ) ) ).
% le_0_eq
tff(fact_1012_plus__nat_Oadd__0,axiom,
! [N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),zero_zero(nat)),N) = N ) ).
% plus_nat.add_0
tff(fact_1013_add__eq__self__zero,axiom,
! [M: nat,N: nat] :
( ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N) = M )
=> ( N = zero_zero(nat) ) ) ).
% add_eq_self_zero
tff(fact_1014_diffs0__imp__equal,axiom,
! [M: nat,N: nat] :
( ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N) = zero_zero(nat) )
=> ( ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M) = zero_zero(nat) )
=> ( M = N ) ) ) ).
% diffs0_imp_equal
tff(fact_1015_minus__nat_Odiff__0,axiom,
! [M: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),zero_zero(nat)) = M ) ).
% minus_nat.diff_0
tff(fact_1016_mult__0,axiom,
! [N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),zero_zero(nat)),N) = zero_zero(nat) ) ).
% mult_0
tff(fact_1017_nat__mult__eq__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),M) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),N) )
<=> ( ( K = zero_zero(nat) )
| ( M = N ) ) ) ).
% nat_mult_eq_cancel_disj
tff(fact_1018_cong__exp__iff__simps_I3_J,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [N: num,Q2: num] : ( modulo_modulo(A,aa(num,A,numeral_numeral(A),aa(num,num,bit1,N)),aa(num,A,numeral_numeral(A),bit0(Q2))) != zero_zero(A) ) ) ).
% cong_exp_iff_simps(3)
tff(fact_1019_split__mod,axiom,
! [P: fun(nat,bool),M: nat,N: nat] :
( pp(aa(nat,bool,P,modulo_modulo(nat,M,N)))
<=> ( ( ( N = zero_zero(nat) )
=> pp(aa(nat,bool,P,M)) )
& ( ( N != zero_zero(nat) )
=> ! [I4: nat,J3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J3),N))
=> ( ( M = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),I4)),J3) )
=> pp(aa(nat,bool,P,J3)) ) ) ) ) ) ).
% split_mod
tff(fact_1020_power__eq__imp__eq__base,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [A2: A,N: nat,B2: A] :
( ( aa(nat,A,power_power(A,A2),N) = aa(nat,A,power_power(A,B2),N) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( A2 = B2 ) ) ) ) ) ) ).
% power_eq_imp_eq_base
tff(fact_1021_power__eq__iff__eq__base,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [N: nat,A2: A,B2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2))
=> ( ( aa(nat,A,power_power(A,A2),N) = aa(nat,A,power_power(A,B2),N) )
<=> ( A2 = B2 ) ) ) ) ) ) ).
% power_eq_iff_eq_base
tff(fact_1022_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),C2))
=> ( modulo_modulo(A,A2,aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),B2),modulo_modulo(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2),C2))),modulo_modulo(A,A2,B2)) ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_mult2_eq
tff(fact_1023_cong__exp__iff__simps_I7_J,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [Q2: num,N: num] :
( ( modulo_modulo(A,aa(num,A,numeral_numeral(A),one2),aa(num,A,numeral_numeral(A),bit0(Q2))) = modulo_modulo(A,aa(num,A,numeral_numeral(A),aa(num,num,bit1,N)),aa(num,A,numeral_numeral(A),bit0(Q2))) )
<=> ( modulo_modulo(A,aa(num,A,numeral_numeral(A),N),aa(num,A,numeral_numeral(A),Q2)) = zero_zero(A) ) ) ) ).
% cong_exp_iff_simps(7)
tff(fact_1024_cong__exp__iff__simps_I11_J,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [M: num,Q2: num] :
( ( modulo_modulo(A,aa(num,A,numeral_numeral(A),aa(num,num,bit1,M)),aa(num,A,numeral_numeral(A),bit0(Q2))) = modulo_modulo(A,aa(num,A,numeral_numeral(A),one2),aa(num,A,numeral_numeral(A),bit0(Q2))) )
<=> ( modulo_modulo(A,aa(num,A,numeral_numeral(A),M),aa(num,A,numeral_numeral(A),Q2)) = zero_zero(A) ) ) ) ).
% cong_exp_iff_simps(11)
tff(fact_1025_cong__exp__iff__simps_I9_J,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [M: num,Q2: num,N: num] :
( ( modulo_modulo(A,aa(num,A,numeral_numeral(A),bit0(M)),aa(num,A,numeral_numeral(A),bit0(Q2))) = modulo_modulo(A,aa(num,A,numeral_numeral(A),bit0(N)),aa(num,A,numeral_numeral(A),bit0(Q2))) )
<=> ( modulo_modulo(A,aa(num,A,numeral_numeral(A),M),aa(num,A,numeral_numeral(A),Q2)) = modulo_modulo(A,aa(num,A,numeral_numeral(A),N),aa(num,A,numeral_numeral(A),Q2)) ) ) ) ).
% cong_exp_iff_simps(9)
tff(fact_1026_cong__exp__iff__simps_I4_J,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [M: num,N: num] : ( modulo_modulo(A,aa(num,A,numeral_numeral(A),M),aa(num,A,numeral_numeral(A),one2)) = modulo_modulo(A,aa(num,A,numeral_numeral(A),N),aa(num,A,numeral_numeral(A),one2)) ) ) ).
% cong_exp_iff_simps(4)
tff(fact_1027_mod__eqE,axiom,
! [A: $tType] :
( euclid8851590272496341667cancel(A)
=> ! [A2: A,C2: A,B2: A] :
( ( modulo_modulo(A,A2,C2) = modulo_modulo(A,B2,C2) )
=> ~ ! [D3: A] : ( B2 != aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),C2),D3)) ) ) ) ).
% mod_eqE
tff(fact_1028_div__add1__eq,axiom,
! [A: $tType] :
( euclid3128863361964157862miring(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),C2)),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2))),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),modulo_modulo(A,A2,C2)),modulo_modulo(A,B2,C2))),C2)) ) ) ).
% div_add1_eq
tff(fact_1029_Suc__times__mod__eq,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,zero_zero(nat))),M))
=> ( modulo_modulo(nat,aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),N)),M) = one_one(nat) ) ) ).
% Suc_times_mod_eq
tff(fact_1030_mod__induct,axiom,
! [P: fun(nat,bool),N: nat,P2: nat,M: nat] :
( pp(aa(nat,bool,P,N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),P2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),P2))
=> ( ! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N3),P2))
=> ( pp(aa(nat,bool,P,N3))
=> pp(aa(nat,bool,P,modulo_modulo(nat,aa(nat,nat,suc,N3),P2))) ) )
=> pp(aa(nat,bool,P,M)) ) ) ) ) ).
% mod_induct
tff(fact_1031_mod__Suc__le__divisor,axiom,
! [M: nat,N: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),modulo_modulo(nat,M,aa(nat,nat,suc,N))),N)) ).
% mod_Suc_le_divisor
tff(fact_1032_power__strict__mono,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [A2: A,B2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,power_power(A,A2),N)),aa(nat,A,power_power(A,B2),N))) ) ) ) ) ).
% power_strict_mono
tff(fact_1033_mod__if,axiom,
! [M: nat,N: nat] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
=> ( modulo_modulo(nat,M,N) = M ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
=> ( modulo_modulo(nat,M,N) = modulo_modulo(nat,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N),N) ) ) ) ).
% mod_if
tff(fact_1034_mod__geq,axiom,
! [M: nat,N: nat] :
( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
=> ( modulo_modulo(nat,M,N) = modulo_modulo(nat,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N),N) ) ) ).
% mod_geq
tff(fact_1035_le__mod__geq,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> ( modulo_modulo(nat,M,N) = modulo_modulo(nat,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N),N) ) ) ).
% le_mod_geq
tff(fact_1036_nat__mod__eq__iff,axiom,
! [X2: nat,N: nat,Y: nat] :
( ( modulo_modulo(nat,X2,N) = modulo_modulo(nat,Y,N) )
<=> ? [Q1: nat,Q22: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),X2),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),Q1)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Y),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),Q22)) ) ) ).
% nat_mod_eq_iff
tff(fact_1037_dbl__def,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [X2: A] : ( neg_numeral_dbl(A,X2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),X2) ) ) ).
% dbl_def
tff(fact_1038_not__numeral__le__zero,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [N: num] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(num,A,numeral_numeral(A),N)),zero_zero(A))) ) ).
% not_numeral_le_zero
tff(fact_1039_zero__le__numeral,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [N: num] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(num,A,numeral_numeral(A),N))) ) ).
% zero_le_numeral
tff(fact_1040_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: $tType] :
( ordere2520102378445227354miring(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2))) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
tff(fact_1041_zero__le__mult__iff,axiom,
! [A: $tType] :
( linord4710134922213307826strict(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2)) )
| ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),zero_zero(A))) ) ) ) ) ).
% zero_le_mult_iff
tff(fact_1042_mult__nonneg__nonpos2,axiom,
! [A: $tType] :
( ordered_semiring_0(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),B2),A2)),zero_zero(A))) ) ) ) ).
% mult_nonneg_nonpos2
tff(fact_1043_mult__nonpos__nonneg,axiom,
! [A: $tType] :
( ordered_semiring_0(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),zero_zero(A))) ) ) ) ).
% mult_nonpos_nonneg
tff(fact_1044_mult__nonneg__nonpos,axiom,
! [A: $tType] :
( ordered_semiring_0(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),zero_zero(A))) ) ) ) ).
% mult_nonneg_nonpos
tff(fact_1045_mult__nonneg__nonneg,axiom,
! [A: $tType] :
( ordered_semiring_0(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2))) ) ) ) ).
% mult_nonneg_nonneg
tff(fact_1046_split__mult__neg__le,axiom,
! [A: $tType] :
( ordered_semiring_0(A)
=> ! [A2: A,B2: A] :
( ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),zero_zero(A))) )
| ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2)) ) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),zero_zero(A))) ) ) ).
% split_mult_neg_le
tff(fact_1047_mult__le__0__iff,axiom,
! [A: $tType] :
( linord4710134922213307826strict(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),zero_zero(A)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),zero_zero(A))) )
| ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2)) ) ) ) ) ).
% mult_le_0_iff
tff(fact_1048_mult__right__mono,axiom,
! [A: $tType] :
( ordered_semiring(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2))) ) ) ) ).
% mult_right_mono
tff(fact_1049_mult__right__mono__neg,axiom,
! [A: $tType] :
( ordered_ring(A)
=> ! [B2: A,A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2))) ) ) ) ).
% mult_right_mono_neg
tff(fact_1050_mult__left__mono,axiom,
! [A: $tType] :
( ordered_semiring(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2))) ) ) ) ).
% mult_left_mono
tff(fact_1051_mult__nonpos__nonpos,axiom,
! [A: $tType] :
( ordered_ring(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2))) ) ) ) ).
% mult_nonpos_nonpos
tff(fact_1052_mult__left__mono__neg,axiom,
! [A: $tType] :
( ordered_ring(A)
=> ! [B2: A,A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2))) ) ) ) ).
% mult_left_mono_neg
tff(fact_1053_split__mult__pos__le,axiom,
! [A: $tType] :
( ordered_ring(A)
=> ! [A2: A,B2: A] :
( ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2)) )
| ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),zero_zero(A))) ) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2))) ) ) ).
% split_mult_pos_le
tff(fact_1054_zero__le__square,axiom,
! [A: $tType] :
( linordered_ring(A)
=> ! [A2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),A2))) ) ).
% zero_le_square
tff(fact_1055_mult__mono_H,axiom,
! [A: $tType] :
( ordered_semiring(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),D2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),D2))) ) ) ) ) ) ).
% mult_mono'
tff(fact_1056_mult__mono,axiom,
! [A: $tType] :
( ordered_semiring(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),D2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),D2))) ) ) ) ) ) ).
% mult_mono
tff(fact_1057_zdiv__int,axiom,
! [A2: nat,B2: nat] : ( aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),A2),B2)) = aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(nat,int,semiring_1_of_nat(int),A2)),aa(nat,int,semiring_1_of_nat(int),B2)) ) ).
% zdiv_int
tff(fact_1058_zero__less__numeral,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [N: num] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(num,A,numeral_numeral(A),N))) ) ).
% zero_less_numeral
tff(fact_1059_not__numeral__less__zero,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [N: num] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(num,A,numeral_numeral(A),N)),zero_zero(A))) ) ).
% not_numeral_less_zero
tff(fact_1060_add__nonpos__eq__0__iff,axiom,
! [A: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),zero_zero(A)))
=> ( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y) = zero_zero(A) )
<=> ( ( X2 = zero_zero(A) )
& ( Y = zero_zero(A) ) ) ) ) ) ) ).
% add_nonpos_eq_0_iff
tff(fact_1061_add__nonneg__eq__0__iff,axiom,
! [A: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),Y))
=> ( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y) = zero_zero(A) )
<=> ( ( X2 = zero_zero(A) )
& ( Y = zero_zero(A) ) ) ) ) ) ) ).
% add_nonneg_eq_0_iff
tff(fact_1062_add__nonpos__nonpos,axiom,
! [A: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),zero_zero(A))) ) ) ) ).
% add_nonpos_nonpos
tff(fact_1063_add__nonneg__nonneg,axiom,
! [A: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2))) ) ) ) ).
% add_nonneg_nonneg
tff(fact_1064_add__increasing2,axiom,
! [A: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [C2: A,B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2))) ) ) ) ).
% add_increasing2
tff(fact_1065_add__decreasing2,axiom,
! [A: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2)),B2)) ) ) ) ).
% add_decreasing2
tff(fact_1066_add__increasing,axiom,
! [A: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2))) ) ) ) ).
% add_increasing
tff(fact_1067_add__decreasing,axiom,
! [A: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [A2: A,C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2)),B2)) ) ) ) ).
% add_decreasing
tff(fact_1068_zero__less__one__class_Ozero__le__one,axiom,
! [A: $tType] :
( zero_less_one(A)
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),one_one(A))) ) ).
% zero_less_one_class.zero_le_one
tff(fact_1069_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),one_one(A))) ) ).
% linordered_nonzero_semiring_class.zero_le_one
tff(fact_1070_not__one__le__zero,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),zero_zero(A))) ) ).
% not_one_le_zero
tff(fact_1071_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: $tType] :
( linord2810124833399127020strict(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2))) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
tff(fact_1072_mult__less__cancel__right__disj,axiom,
! [A: $tType] :
( linord4710134922213307826strict(A)
=> ! [A2: A,C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) )
| ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2)) ) ) ) ) ).
% mult_less_cancel_right_disj
tff(fact_1073_mult__strict__right__mono,axiom,
! [A: $tType] :
( linord8928482502909563296strict(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2))) ) ) ) ).
% mult_strict_right_mono
tff(fact_1074_mult__strict__right__mono__neg,axiom,
! [A: $tType] :
( linord4710134922213307826strict(A)
=> ! [B2: A,A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2))) ) ) ) ).
% mult_strict_right_mono_neg
tff(fact_1075_mult__less__cancel__left__disj,axiom,
! [A: $tType] :
( linord4710134922213307826strict(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) )
| ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2)) ) ) ) ) ).
% mult_less_cancel_left_disj
tff(fact_1076_mult__strict__left__mono,axiom,
! [A: $tType] :
( linord8928482502909563296strict(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2))) ) ) ) ).
% mult_strict_left_mono
tff(fact_1077_mult__strict__left__mono__neg,axiom,
! [A: $tType] :
( linord4710134922213307826strict(A)
=> ! [B2: A,A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2))) ) ) ) ).
% mult_strict_left_mono_neg
tff(fact_1078_mult__less__cancel__left__pos,axiom,
! [A: $tType] :
( linord4710134922213307826strict(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) ) ) ) ).
% mult_less_cancel_left_pos
tff(fact_1079_mult__less__cancel__left__neg,axiom,
! [A: $tType] :
( linord4710134922213307826strict(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2)) ) ) ) ).
% mult_less_cancel_left_neg
tff(fact_1080_zero__less__mult__pos2,axiom,
! [A: $tType] :
( linord8928482502909563296strict(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),A2)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),B2)) ) ) ) ).
% zero_less_mult_pos2
tff(fact_1081_zero__less__mult__pos,axiom,
! [A: $tType] :
( linord8928482502909563296strict(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),B2)) ) ) ) ).
% zero_less_mult_pos
tff(fact_1082_zero__less__mult__iff,axiom,
! [A: $tType] :
( linord4710134922213307826strict(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),B2)) )
| ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),zero_zero(A))) ) ) ) ) ).
% zero_less_mult_iff
tff(fact_1083_mult__pos__neg2,axiom,
! [A: $tType] :
( linord8928482502909563296strict(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),B2),A2)),zero_zero(A))) ) ) ) ).
% mult_pos_neg2
tff(fact_1084_mult__pos__pos,axiom,
! [A: $tType] :
( linord8928482502909563296strict(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2))) ) ) ) ).
% mult_pos_pos
tff(fact_1085_mult__pos__neg,axiom,
! [A: $tType] :
( linord8928482502909563296strict(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),zero_zero(A))) ) ) ) ).
% mult_pos_neg
tff(fact_1086_mult__neg__pos,axiom,
! [A: $tType] :
( linord8928482502909563296strict(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),zero_zero(A))) ) ) ) ).
% mult_neg_pos
tff(fact_1087_mult__less__0__iff,axiom,
! [A: $tType] :
( linord4710134922213307826strict(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),zero_zero(A)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),zero_zero(A))) )
| ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),B2)) ) ) ) ) ).
% mult_less_0_iff
tff(fact_1088_not__square__less__zero,axiom,
! [A: $tType] :
( linordered_ring(A)
=> ! [A2: A] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),A2)),zero_zero(A))) ) ).
% not_square_less_zero
tff(fact_1089_mult__neg__neg,axiom,
! [A: $tType] :
( linord4710134922213307826strict(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2))) ) ) ) ).
% mult_neg_neg
tff(fact_1090_le__iff__diff__le__0,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)),zero_zero(A))) ) ) ).
% le_iff_diff_le_0
tff(fact_1091_pos__add__strict,axiom,
! [A: $tType] :
( strict7427464778891057005id_add(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2))) ) ) ) ).
% pos_add_strict
tff(fact_1092_canonically__ordered__monoid__add__class_OlessE,axiom,
! [A: $tType] :
( canoni5634975068530333245id_add(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ~ ! [C4: A] :
( ( B2 = aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C4) )
=> ( C4 = zero_zero(A) ) ) ) ) ).
% canonically_ordered_monoid_add_class.lessE
tff(fact_1093_add__pos__pos,axiom,
! [A: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2))) ) ) ) ).
% add_pos_pos
tff(fact_1094_add__neg__neg,axiom,
! [A: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),zero_zero(A))) ) ) ) ).
% add_neg_neg
tff(fact_1095_add__less__zeroD,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),zero_zero(A)))
| pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),zero_zero(A))) ) ) ) ).
% add_less_zeroD
tff(fact_1096_less__numeral__extra_I1_J,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),one_one(A))) ) ).
% less_numeral_extra(1)
tff(fact_1097_not__one__less__zero,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),zero_zero(A))) ) ).
% not_one_less_zero
tff(fact_1098_zero__less__one,axiom,
! [A: $tType] :
( zero_less_one(A)
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),one_one(A))) ) ).
% zero_less_one
tff(fact_1099_divide__right__mono__neg,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),C2))) ) ) ) ).
% divide_right_mono_neg
tff(fact_1100_divide__nonpos__nonpos,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y))) ) ) ) ).
% divide_nonpos_nonpos
tff(fact_1101_divide__nonpos__nonneg,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),Y))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y)),zero_zero(A))) ) ) ) ).
% divide_nonpos_nonneg
tff(fact_1102_divide__nonneg__nonpos,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y)),zero_zero(A))) ) ) ) ).
% divide_nonneg_nonpos
tff(fact_1103_divide__nonneg__nonneg,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),Y))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y))) ) ) ) ).
% divide_nonneg_nonneg
tff(fact_1104_zero__le__divide__iff,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2)) )
| ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),zero_zero(A))) ) ) ) ) ).
% zero_le_divide_iff
tff(fact_1105_divide__right__mono,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),C2)),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2))) ) ) ) ).
% divide_right_mono
tff(fact_1106_divide__le__0__iff,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),zero_zero(A)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),zero_zero(A))) )
| ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2)) ) ) ) ) ).
% divide_le_0_iff
tff(fact_1107_less__iff__diff__less__0,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)),zero_zero(A))) ) ) ).
% less_iff_diff_less_0
tff(fact_1108_zero__le__power,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(nat,A,power_power(A,A2),N))) ) ) ).
% zero_le_power
tff(fact_1109_power__mono,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [A2: A,B2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,A2),N)),aa(nat,A,power_power(A,B2),N))) ) ) ) ).
% power_mono
tff(fact_1110_divide__strict__right__mono__neg,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [B2: A,A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),C2)),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2))) ) ) ) ).
% divide_strict_right_mono_neg
tff(fact_1111_divide__strict__right__mono,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),C2)),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2))) ) ) ) ).
% divide_strict_right_mono
tff(fact_1112_zero__less__divide__iff,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),B2)) )
| ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),zero_zero(A))) ) ) ) ) ).
% zero_less_divide_iff
tff(fact_1113_divide__less__cancel,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),C2)),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) )
& ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2)) )
& ( C2 != zero_zero(A) ) ) ) ) ).
% divide_less_cancel
tff(fact_1114_divide__less__0__iff,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),zero_zero(A)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),zero_zero(A))) )
| ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),B2)) ) ) ) ) ).
% divide_less_0_iff
tff(fact_1115_divide__pos__pos,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),X2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),Y))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y))) ) ) ) ).
% divide_pos_pos
tff(fact_1116_divide__pos__neg,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),X2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y)),zero_zero(A))) ) ) ) ).
% divide_pos_neg
tff(fact_1117_divide__neg__pos,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),Y))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y)),zero_zero(A))) ) ) ) ).
% divide_neg_pos
tff(fact_1118_divide__neg__neg,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y))) ) ) ) ).
% divide_neg_neg
tff(fact_1119_zero__less__power,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(nat,A,power_power(A,A2),N))) ) ) ).
% zero_less_power
tff(fact_1120_zero__neq__neg__numeral,axiom,
! [A: $tType] :
( ring_char_0(A)
=> ! [N: num] : ( zero_zero(A) != aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N)) ) ) ).
% zero_neq_neg_numeral
tff(fact_1121_nonzero__eq__divide__eq,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [C2: A,A2: A,B2: A] :
( ( C2 != zero_zero(A) )
=> ( ( A2 = aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2) )
<=> ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2) = B2 ) ) ) ) ).
% nonzero_eq_divide_eq
tff(fact_1122_nonzero__divide__eq__eq,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [C2: A,B2: A,A2: A] :
( ( C2 != zero_zero(A) )
=> ( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2) = A2 )
<=> ( B2 = aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2) ) ) ) ) ).
% nonzero_divide_eq_eq
tff(fact_1123_eq__divide__imp,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [C2: A,A2: A,B2: A] :
( ( C2 != zero_zero(A) )
=> ( ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2) = B2 )
=> ( A2 = aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2) ) ) ) ) ).
% eq_divide_imp
tff(fact_1124_divide__eq__imp,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [C2: A,B2: A,A2: A] :
( ( C2 != zero_zero(A) )
=> ( ( B2 = aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2) = A2 ) ) ) ) ).
% divide_eq_imp
tff(fact_1125_eq__divide__eq,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A,B2: A,C2: A] :
( ( A2 = aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2) )
<=> ( ( ( C2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2) = B2 ) )
& ( ( C2 = zero_zero(A) )
=> ( A2 = zero_zero(A) ) ) ) ) ) ).
% eq_divide_eq
tff(fact_1126_divide__eq__eq,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [B2: A,C2: A,A2: A] :
( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2) = A2 )
<=> ( ( ( C2 != zero_zero(A) )
=> ( B2 = aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2) ) )
& ( ( C2 = zero_zero(A) )
=> ( A2 = zero_zero(A) ) ) ) ) ) ).
% divide_eq_eq
tff(fact_1127_frac__eq__eq,axiom,
! [A: $tType] :
( field(A)
=> ! [Y: A,Z: A,X2: A,W: A] :
( ( Y != zero_zero(A) )
=> ( ( Z != zero_zero(A) )
=> ( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y) = aa(A,A,aa(A,fun(A,A),divide_divide(A),W),Z) )
<=> ( aa(A,A,aa(A,fun(A,A),times_times(A),X2),Z) = aa(A,A,aa(A,fun(A,A),times_times(A),W),Y) ) ) ) ) ) ).
% frac_eq_eq
tff(fact_1128_right__inverse__eq,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [B2: A,A2: A] :
( ( B2 != zero_zero(A) )
=> ( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) = one_one(A) )
<=> ( A2 = B2 ) ) ) ) ).
% right_inverse_eq
tff(fact_1129_neg__eq__iff__add__eq__0,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A,B2: A] :
( ( aa(A,A,uminus_uminus(A),A2) = B2 )
<=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2) = zero_zero(A) ) ) ) ).
% neg_eq_iff_add_eq_0
tff(fact_1130_eq__neg__iff__add__eq__0,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A,B2: A] :
( ( A2 = aa(A,A,uminus_uminus(A),B2) )
<=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2) = zero_zero(A) ) ) ) ).
% eq_neg_iff_add_eq_0
tff(fact_1131_add_Oinverse__unique,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A,B2: A] :
( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2) = zero_zero(A) )
=> ( aa(A,A,uminus_uminus(A),A2) = B2 ) ) ) ).
% add.inverse_unique
tff(fact_1132_ab__group__add__class_Oab__left__minus,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),A2)),A2) = zero_zero(A) ) ) ).
% ab_group_add_class.ab_left_minus
tff(fact_1133_add__eq__0__iff,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A,B2: A] :
( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2) = zero_zero(A) )
<=> ( B2 = aa(A,A,uminus_uminus(A),A2) ) ) ) ).
% add_eq_0_iff
tff(fact_1134_zero__neq__neg__one,axiom,
! [A: $tType] :
( ring_char_0(A)
=> ( zero_zero(A) != aa(A,A,uminus_uminus(A),one_one(A)) ) ) ).
% zero_neq_neg_one
tff(fact_1135_of__nat__0__le__iff,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [N: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(nat,A,semiring_1_of_nat(A),N))) ) ).
% of_nat_0_le_iff
tff(fact_1136_of__nat__less__0__iff,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [M: nat] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,semiring_1_of_nat(A),M)),zero_zero(A))) ) ).
% of_nat_less_0_iff
tff(fact_1137_nonzero__minus__divide__divide,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [B2: A,A2: A] :
( ( B2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,uminus_uminus(A),A2)),aa(A,A,uminus_uminus(A),B2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) ) ) ) ).
% nonzero_minus_divide_divide
tff(fact_1138_nonzero__minus__divide__right,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [B2: A,A2: A] :
( ( B2 != zero_zero(A) )
=> ( aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(A,A,uminus_uminus(A),B2)) ) ) ) ).
% nonzero_minus_divide_right
tff(fact_1139_VEBT__internal_Ocnt_Osimps_I1_J,axiom,
! [A2: bool,B2: bool] : ( aa(vEBT_VEBT,real,vEBT_VEBT_cnt,vEBT_Leaf(A2,B2)) = one_one(real) ) ).
% VEBT_internal.cnt.simps(1)
tff(fact_1140_power__0,axiom,
! [A: $tType] :
( power(A)
=> ! [A2: A] : ( aa(nat,A,power_power(A,A2),zero_zero(nat)) = one_one(A) ) ) ).
% power_0
tff(fact_1141_of__nat__neq__0,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [N: nat] : ( aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,suc,N)) != zero_zero(A) ) ) ).
% of_nat_neq_0
tff(fact_1142_less__Suc__eq__0__disj,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),aa(nat,nat,suc,N)))
<=> ( ( M = zero_zero(nat) )
| ? [J3: nat] :
( ( M = aa(nat,nat,suc,J3) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J3),N)) ) ) ) ).
% less_Suc_eq_0_disj
tff(fact_1143_gr0__implies__Suc,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ? [M3: nat] : ( N = aa(nat,nat,suc,M3) ) ) ).
% gr0_implies_Suc
tff(fact_1144_All__less__Suc2,axiom,
! [N: nat,P: fun(nat,bool)] :
( ! [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I4),aa(nat,nat,suc,N)))
=> pp(aa(nat,bool,P,I4)) )
<=> ( pp(aa(nat,bool,P,zero_zero(nat)))
& ! [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I4),N))
=> pp(aa(nat,bool,P,aa(nat,nat,suc,I4))) ) ) ) ).
% All_less_Suc2
tff(fact_1145_gr0__conv__Suc,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
<=> ? [M6: nat] : ( N = aa(nat,nat,suc,M6) ) ) ).
% gr0_conv_Suc
tff(fact_1146_Ex__less__Suc2,axiom,
! [N: nat,P: fun(nat,bool)] :
( ? [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I4),aa(nat,nat,suc,N)))
& pp(aa(nat,bool,P,I4)) )
<=> ( pp(aa(nat,bool,P,zero_zero(nat)))
| ? [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I4),N))
& pp(aa(nat,bool,P,aa(nat,nat,suc,I4))) ) ) ) ).
% Ex_less_Suc2
tff(fact_1147_add__is__1,axiom,
! [M: nat,N: nat] :
( ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N) = aa(nat,nat,suc,zero_zero(nat)) )
<=> ( ( ( M = aa(nat,nat,suc,zero_zero(nat)) )
& ( N = zero_zero(nat) ) )
| ( ( M = zero_zero(nat) )
& ( N = aa(nat,nat,suc,zero_zero(nat)) ) ) ) ) ).
% add_is_1
tff(fact_1148_one__is__add,axiom,
! [M: nat,N: nat] :
( ( aa(nat,nat,suc,zero_zero(nat)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N) )
<=> ( ( ( M = aa(nat,nat,suc,zero_zero(nat)) )
& ( N = zero_zero(nat) ) )
| ( ( M = zero_zero(nat) )
& ( N = aa(nat,nat,suc,zero_zero(nat)) ) ) ) ) ).
% one_is_add
tff(fact_1149_ex__least__nat__le,axiom,
! [P: fun(nat,bool),N: nat] :
( pp(aa(nat,bool,P,N))
=> ( ~ pp(aa(nat,bool,P,zero_zero(nat)))
=> ? [K3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K3),N))
& ! [I2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I2),K3))
=> ~ pp(aa(nat,bool,P,I2)) )
& pp(aa(nat,bool,P,K3)) ) ) ) ).
% ex_least_nat_le
tff(fact_1150_less__imp__add__positive,axiom,
! [I: nat,J: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),J))
=> ? [K3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),K3))
& ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),K3) = J ) ) ) ).
% less_imp_add_positive
tff(fact_1151_diff__less,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),M))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N)),M)) ) ) ).
% diff_less
tff(fact_1152_mult__less__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),J))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),K))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),I)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),J))) ) ) ).
% mult_less_mono2
tff(fact_1153_mult__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),J))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),K))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),I),K)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),J),K))) ) ) ).
% mult_less_mono1
tff(fact_1154_nat__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),K))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),M)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N)) ) ) ).
% nat_mult_less_cancel1
tff(fact_1155_nat__mult__eq__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),K))
=> ( ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),M) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),N) )
<=> ( M = N ) ) ) ).
% nat_mult_eq_cancel1
tff(fact_1156_One__nat__def,axiom,
one_one(nat) = aa(nat,nat,suc,zero_zero(nat)) ).
% One_nat_def
tff(fact_1157_divmod__digit__0_I2_J,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),modulo_modulo(A,A2,aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),B2))),B2))
=> ( modulo_modulo(A,A2,aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),B2)) = modulo_modulo(A,A2,B2) ) ) ) ) ).
% divmod_digit_0(2)
tff(fact_1158_option_Osize_I3_J,axiom,
! [A: $tType] : ( aa(option(A),nat,size_size(option(A)),none(A)) = aa(nat,nat,suc,zero_zero(nat)) ) ).
% option.size(3)
tff(fact_1159_option_Osize_I4_J,axiom,
! [A: $tType,X23: A] : ( aa(option(A),nat,size_size(option(A)),aa(A,option(A),some(A),X23)) = aa(nat,nat,suc,zero_zero(nat)) ) ).
% option.size(4)
tff(fact_1160_diff__add__0,axiom,
! [N: nat,M: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),M)) = zero_zero(nat) ) ).
% diff_add_0
tff(fact_1161_bits__stable__imp__add__self,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [A2: A] :
( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2))) = A2 )
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2)))) = zero_zero(A) ) ) ) ).
% bits_stable_imp_add_self
tff(fact_1162_Euclidean__Division_Odiv__eq__0__iff,axiom,
! [M: nat,N: nat] :
( ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N) = zero_zero(nat) )
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
| ( N = zero_zero(nat) ) ) ) ).
% Euclidean_Division.div_eq_0_iff
tff(fact_1163_nat__power__less__imp__less,axiom,
! [I: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),I))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,power_power(nat,I),M)),aa(nat,nat,power_power(nat,I),N)))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N)) ) ) ).
% nat_power_less_imp_less
tff(fact_1164_mult__eq__self__implies__10,axiom,
! [M: nat,N: nat] :
( ( M = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),N) )
=> ( ( N = one_one(nat) )
| ( M = zero_zero(nat) ) ) ) ).
% mult_eq_self_implies_10
tff(fact_1165_VEBT__internal_Omembermima_Ocases,axiom,
! [X2: product_prod(vEBT_VEBT,nat)] :
( ! [Uu: bool,Uv: bool,Uw: nat] : ( X2 != aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Leaf(Uu,Uv)),Uw) )
=> ( ! [Ux: list(vEBT_VEBT),Uy: vEBT_VEBT,Uz: nat] : ( X2 != aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Node(none(product_prod(nat,nat)),zero_zero(nat),Ux,Uy)),Uz) )
=> ( ! [Mi3: nat,Ma3: nat,Va2: list(vEBT_VEBT),Vb: vEBT_VEBT,X3: nat] : ( X2 != aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi3),Ma3)),zero_zero(nat),Va2,Vb)),X3) )
=> ( ! [Mi3: nat,Ma3: nat,V3: nat,TreeList3: list(vEBT_VEBT),Vc: vEBT_VEBT,X3: nat] : ( X2 != aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi3),Ma3)),aa(nat,nat,suc,V3),TreeList3,Vc)),X3) )
=> ~ ! [V3: nat,TreeList3: list(vEBT_VEBT),Vd: vEBT_VEBT,X3: nat] : ( X2 != aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Node(none(product_prod(nat,nat)),aa(nat,nat,suc,V3),TreeList3,Vd)),X3) ) ) ) ) ) ).
% VEBT_internal.membermima.cases
tff(fact_1166_divmod__digit__0_I1_J,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),modulo_modulo(A,A2,aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),B2))),B2))
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),B2))) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) ) ) ) ) ).
% divmod_digit_0(1)
tff(fact_1167_cong__exp__iff__simps_I6_J,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [Q2: num,N: num] : ( modulo_modulo(A,aa(num,A,numeral_numeral(A),one2),aa(num,A,numeral_numeral(A),bit0(Q2))) != modulo_modulo(A,aa(num,A,numeral_numeral(A),bit0(N)),aa(num,A,numeral_numeral(A),bit0(Q2))) ) ) ).
% cong_exp_iff_simps(6)
tff(fact_1168_cong__exp__iff__simps_I8_J,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [M: num,Q2: num] : ( modulo_modulo(A,aa(num,A,numeral_numeral(A),bit0(M)),aa(num,A,numeral_numeral(A),bit0(Q2))) != modulo_modulo(A,aa(num,A,numeral_numeral(A),one2),aa(num,A,numeral_numeral(A),bit0(Q2))) ) ) ).
% cong_exp_iff_simps(8)
tff(fact_1169_div__mult1__eq,axiom,
! [A: $tType] :
( euclid3128863361964157862miring(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2))),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),modulo_modulo(A,B2,C2))),C2)) ) ) ).
% div_mult1_eq
tff(fact_1170_cancel__div__mod__rules_I2_J,axiom,
! [A: $tType] :
( semidom_modulo(A)
=> ! [B2: A,A2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),B2),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2))),modulo_modulo(A,A2,B2))),C2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2) ) ) ).
% cancel_div_mod_rules(2)
tff(fact_1171_cancel__div__mod__rules_I1_J,axiom,
! [A: $tType] :
( semidom_modulo(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),B2)),modulo_modulo(A,A2,B2))),C2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2) ) ) ).
% cancel_div_mod_rules(1)
tff(fact_1172_mod__div__decomp,axiom,
! [A: $tType] :
( semiring_modulo(A)
=> ! [A2: A,B2: A] : ( A2 = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),B2)),modulo_modulo(A,A2,B2)) ) ) ).
% mod_div_decomp
tff(fact_1173_div__mult__mod__eq,axiom,
! [A: $tType] :
( semiring_modulo(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),B2)),modulo_modulo(A,A2,B2)) = A2 ) ) ).
% div_mult_mod_eq
tff(fact_1174_mod__div__mult__eq,axiom,
! [A: $tType] :
( semiring_modulo(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),modulo_modulo(A,A2,B2)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),B2)) = A2 ) ) ).
% mod_div_mult_eq
tff(fact_1175_mod__mult__div__eq,axiom,
! [A: $tType] :
( semiring_modulo(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),modulo_modulo(A,A2,B2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2))) = A2 ) ) ).
% mod_mult_div_eq
tff(fact_1176_mult__div__mod__eq,axiom,
! [A: $tType] :
( semiring_modulo(A)
=> ! [B2: A,A2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),B2),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2))),modulo_modulo(A,A2,B2)) = A2 ) ) ).
% mult_div_mod_eq
tff(fact_1177_minus__mult__div__eq__mod,axiom,
! [A: $tType] :
( semiring_modulo(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),B2),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2))) = modulo_modulo(A,A2,B2) ) ) ).
% minus_mult_div_eq_mod
tff(fact_1178_minus__mod__eq__mult__div,axiom,
! [A: $tType] :
( semiring_modulo(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),modulo_modulo(A,A2,B2)) = aa(A,A,aa(A,fun(A,A),times_times(A),B2),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)) ) ) ).
% minus_mod_eq_mult_div
tff(fact_1179_minus__mod__eq__div__mult,axiom,
! [A: $tType] :
( semiring_modulo(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),modulo_modulo(A,A2,B2)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),B2) ) ) ).
% minus_mod_eq_div_mult
tff(fact_1180_minus__div__mult__eq__mod,axiom,
! [A: $tType] :
( semiring_modulo(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),B2)) = modulo_modulo(A,A2,B2) ) ) ).
% minus_div_mult_eq_mod
tff(fact_1181_cong__exp__iff__simps_I10_J,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [M: num,Q2: num,N: num] : ( modulo_modulo(A,aa(num,A,numeral_numeral(A),bit0(M)),aa(num,A,numeral_numeral(A),bit0(Q2))) != modulo_modulo(A,aa(num,A,numeral_numeral(A),aa(num,num,bit1,N)),aa(num,A,numeral_numeral(A),bit0(Q2))) ) ) ).
% cong_exp_iff_simps(10)
tff(fact_1182_cong__exp__iff__simps_I12_J,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [M: num,Q2: num,N: num] : ( modulo_modulo(A,aa(num,A,numeral_numeral(A),aa(num,num,bit1,M)),aa(num,A,numeral_numeral(A),bit0(Q2))) != modulo_modulo(A,aa(num,A,numeral_numeral(A),bit0(N)),aa(num,A,numeral_numeral(A),bit0(Q2))) ) ) ).
% cong_exp_iff_simps(12)
tff(fact_1183_cong__exp__iff__simps_I13_J,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [M: num,Q2: num,N: num] :
( ( modulo_modulo(A,aa(num,A,numeral_numeral(A),aa(num,num,bit1,M)),aa(num,A,numeral_numeral(A),bit0(Q2))) = modulo_modulo(A,aa(num,A,numeral_numeral(A),aa(num,num,bit1,N)),aa(num,A,numeral_numeral(A),bit0(Q2))) )
<=> ( modulo_modulo(A,aa(num,A,numeral_numeral(A),M),aa(num,A,numeral_numeral(A),Q2)) = modulo_modulo(A,aa(num,A,numeral_numeral(A),N),aa(num,A,numeral_numeral(A),Q2)) ) ) ) ).
% cong_exp_iff_simps(13)
tff(fact_1184_mod__eq__nat1E,axiom,
! [M: nat,Q2: nat,N: nat] :
( ( modulo_modulo(nat,M,Q2) = modulo_modulo(nat,N,Q2) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> ~ ! [S3: nat] : ( M != aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Q2),S3)) ) ) ) ).
% mod_eq_nat1E
tff(fact_1185_mod__eq__nat2E,axiom,
! [M: nat,Q2: nat,N: nat] :
( ( modulo_modulo(nat,M,Q2) = modulo_modulo(nat,N,Q2) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ~ ! [S3: nat] : ( N != aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Q2),S3)) ) ) ) ).
% mod_eq_nat2E
tff(fact_1186_nat__mod__eq__lemma,axiom,
! [X2: nat,N: nat,Y: nat] :
( ( modulo_modulo(nat,X2,N) = modulo_modulo(nat,Y,N) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Y),X2))
=> ? [Q3: nat] : ( X2 = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Y),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),Q3)) ) ) ) ).
% nat_mod_eq_lemma
tff(fact_1187_mod__mult2__eq,axiom,
! [M: nat,N: nat,Q2: nat] : ( modulo_modulo(nat,M,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),Q2)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),modulo_modulo(nat,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N),Q2))),modulo_modulo(nat,M,N)) ) ).
% mod_mult2_eq
tff(fact_1188_modulo__nat__def,axiom,
! [M: nat,N: nat] : ( modulo_modulo(nat,M,N) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N)),N)) ) ).
% modulo_nat_def
tff(fact_1189_mult__less__le__imp__less,axiom,
! [A: $tType] :
( linord8928482502909563296strict(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),D2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),D2))) ) ) ) ) ) ).
% mult_less_le_imp_less
tff(fact_1190_mult__le__less__imp__less,axiom,
! [A: $tType] :
( linord8928482502909563296strict(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),D2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),D2))) ) ) ) ) ) ).
% mult_le_less_imp_less
tff(fact_1191_mult__right__le__imp__le,axiom,
! [A: $tType] :
( linord8928482502909563296strict(A)
=> ! [A2: A,C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) ) ) ) ).
% mult_right_le_imp_le
tff(fact_1192_mult__left__le__imp__le,axiom,
! [A: $tType] :
( linord8928482502909563296strict(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) ) ) ) ).
% mult_left_le_imp_le
tff(fact_1193_mult__le__cancel__left__pos,axiom,
! [A: $tType] :
( linord4710134922213307826strict(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) ) ) ) ).
% mult_le_cancel_left_pos
tff(fact_1194_mult__le__cancel__left__neg,axiom,
! [A: $tType] :
( linord4710134922213307826strict(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2)) ) ) ) ).
% mult_le_cancel_left_neg
tff(fact_1195_mult__less__cancel__right,axiom,
! [A: $tType] :
( linord4710134922213307826strict(A)
=> ! [A2: A,C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) )
& ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2)) ) ) ) ) ).
% mult_less_cancel_right
tff(fact_1196_mult__strict__mono_H,axiom,
! [A: $tType] :
( linord8928482502909563296strict(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),D2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),D2))) ) ) ) ) ) ).
% mult_strict_mono'
tff(fact_1197_mult__right__less__imp__less,axiom,
! [A: $tType] :
( linordered_semiring(A)
=> ! [A2: A,C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) ) ) ) ).
% mult_right_less_imp_less
tff(fact_1198_mult__less__cancel__left,axiom,
! [A: $tType] :
( linord4710134922213307826strict(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) )
& ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2)) ) ) ) ) ).
% mult_less_cancel_left
tff(fact_1199_mult__strict__mono,axiom,
! [A: $tType] :
( linord8928482502909563296strict(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),D2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),D2))) ) ) ) ) ) ).
% mult_strict_mono
tff(fact_1200_mult__left__less__imp__less,axiom,
! [A: $tType] :
( linordered_semiring(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) ) ) ) ).
% mult_left_less_imp_less
tff(fact_1201_mult__le__cancel__right,axiom,
! [A: $tType] :
( linord4710134922213307826strict(A)
=> ! [A2: A,C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) )
& ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2)) ) ) ) ) ).
% mult_le_cancel_right
tff(fact_1202_mult__le__cancel__left,axiom,
! [A: $tType] :
( linord4710134922213307826strict(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) )
& ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2)) ) ) ) ) ).
% mult_le_cancel_left
tff(fact_1203_field__le__epsilon,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X2: A,Y: A] :
( ! [E2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),E2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(A,A,aa(A,fun(A,A),plus_plus(A),Y),E2))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y)) ) ) ).
% field_le_epsilon
tff(fact_1204_add__neg__nonpos,axiom,
! [A: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),zero_zero(A))) ) ) ) ).
% add_neg_nonpos
tff(fact_1205_add__nonneg__pos,axiom,
! [A: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2))) ) ) ) ).
% add_nonneg_pos
tff(fact_1206_add__nonpos__neg,axiom,
! [A: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),zero_zero(A))) ) ) ) ).
% add_nonpos_neg
tff(fact_1207_add__pos__nonneg,axiom,
! [A: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2))) ) ) ) ).
% add_pos_nonneg
tff(fact_1208_add__strict__increasing,axiom,
! [A: $tType] :
( ordere8940638589300402666id_add(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2))) ) ) ) ).
% add_strict_increasing
tff(fact_1209_add__strict__increasing2,axiom,
! [A: $tType] :
( ordere8940638589300402666id_add(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2))) ) ) ) ).
% add_strict_increasing2
tff(fact_1210_sum__squares__le__zero__iff,axiom,
! [A: $tType] :
( linord4710134922213307826strict(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),X2),X2)),aa(A,A,aa(A,fun(A,A),times_times(A),Y),Y))),zero_zero(A)))
<=> ( ( X2 = zero_zero(A) )
& ( Y = zero_zero(A) ) ) ) ) ).
% sum_squares_le_zero_iff
tff(fact_1211_sum__squares__ge__zero,axiom,
! [A: $tType] :
( linordered_ring(A)
=> ! [X2: A,Y: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),X2),X2)),aa(A,A,aa(A,fun(A,A),times_times(A),Y),Y)))) ) ).
% sum_squares_ge_zero
tff(fact_1212_mult__left__le,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [C2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),one_one(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),A2)) ) ) ) ).
% mult_left_le
tff(fact_1213_mult__le__one,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),one_one(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),one_one(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),one_one(A))) ) ) ) ) ).
% mult_le_one
tff(fact_1214_mult__right__le__one__le,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),Y))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),one_one(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),X2),Y)),X2)) ) ) ) ) ).
% mult_right_le_one_le
tff(fact_1215_mult__left__le__one__le,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),Y))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),one_one(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),Y),X2)),X2)) ) ) ) ) ).
% mult_left_le_one_le
tff(fact_1216_frac__le,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [Y: A,X2: A,W: A,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),Y))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),W))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),W),Z))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Z)),aa(A,A,aa(A,fun(A,A),divide_divide(A),Y),W))) ) ) ) ) ) ).
% frac_le
tff(fact_1217_frac__less,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X2: A,Y: A,W: A,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),W))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),W),Z))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Z)),aa(A,A,aa(A,fun(A,A),divide_divide(A),Y),W))) ) ) ) ) ) ).
% frac_less
tff(fact_1218_frac__less2,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X2: A,Y: A,W: A,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),X2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),W))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),W),Z))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Z)),aa(A,A,aa(A,fun(A,A),divide_divide(A),Y),W))) ) ) ) ) ) ).
% frac_less2
tff(fact_1219_divide__le__cancel,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),C2)),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) )
& ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2)) ) ) ) ) ).
% divide_le_cancel
tff(fact_1220_divide__nonneg__neg,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y)),zero_zero(A))) ) ) ) ).
% divide_nonneg_neg
tff(fact_1221_divide__nonneg__pos,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),Y))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y))) ) ) ) ).
% divide_nonneg_pos
tff(fact_1222_divide__nonpos__neg,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y))) ) ) ) ).
% divide_nonpos_neg
tff(fact_1223_divide__nonpos__pos,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),Y))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y)),zero_zero(A))) ) ) ) ).
% divide_nonpos_pos
tff(fact_1224_unique__euclidean__semiring__numeral__class_Odiv__less,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) = zero_zero(A) ) ) ) ) ).
% unique_euclidean_semiring_numeral_class.div_less
tff(fact_1225_div__positive,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2))) ) ) ) ).
% div_positive
tff(fact_1226_sum__squares__gt__zero__iff,axiom,
! [A: $tType] :
( linord4710134922213307826strict(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),X2),X2)),aa(A,A,aa(A,fun(A,A),times_times(A),Y),Y))))
<=> ( ( X2 != zero_zero(A) )
| ( Y != zero_zero(A) ) ) ) ) ).
% sum_squares_gt_zero_iff
tff(fact_1227_not__sum__squares__lt__zero,axiom,
! [A: $tType] :
( linordered_ring(A)
=> ! [X2: A,Y: A] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),X2),X2)),aa(A,A,aa(A,fun(A,A),times_times(A),Y),Y))),zero_zero(A))) ) ).
% not_sum_squares_lt_zero
tff(fact_1228_power__less__imp__less__base,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [A2: A,N: nat,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,power_power(A,A2),N)),aa(nat,A,power_power(A,B2),N)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) ) ) ) ).
% power_less_imp_less_base
tff(fact_1229_not__zero__le__neg__numeral,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [N: num] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N)))) ) ).
% not_zero_le_neg_numeral
tff(fact_1230_neg__numeral__le__zero,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [N: num] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N))),zero_zero(A))) ) ).
% neg_numeral_le_zero
tff(fact_1231_zero__less__two,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),one_one(A)))) ) ).
% zero_less_two
tff(fact_1232_unique__euclidean__semiring__numeral__class_Odiv__mult2__eq,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),C2))
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),C2) ) ) ) ).
% unique_euclidean_semiring_numeral_class.div_mult2_eq
tff(fact_1233_not__zero__less__neg__numeral,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [N: num] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N)))) ) ).
% not_zero_less_neg_numeral
tff(fact_1234_neg__numeral__less__zero,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [N: num] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N))),zero_zero(A))) ) ).
% neg_numeral_less_zero
tff(fact_1235_le__minus__one__simps_I3_J,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,uminus_uminus(A),one_one(A)))) ) ).
% le_minus_one_simps(3)
tff(fact_1236_le__minus__one__simps_I1_J,axiom,
! [A: $tType] :
( linordered_idom(A)
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),one_one(A))),zero_zero(A))) ) ).
% le_minus_one_simps(1)
tff(fact_1237_divide__less__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [B2: A,C2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)),A2))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2))) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),B2)) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2)) ) ) ) ) ) ) ).
% divide_less_eq
tff(fact_1238_less__divide__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),B2)) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2))) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A))) ) ) ) ) ) ) ).
% less_divide_eq
tff(fact_1239_neg__divide__less__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [C2: A,B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),B2)) ) ) ) ).
% neg_divide_less_eq
tff(fact_1240_neg__less__divide__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2))) ) ) ) ).
% neg_less_divide_eq
tff(fact_1241_pos__divide__less__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [C2: A,B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2))) ) ) ) ).
% pos_divide_less_eq
tff(fact_1242_pos__less__divide__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),B2)) ) ) ) ).
% pos_less_divide_eq
tff(fact_1243_mult__imp__div__pos__less,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [Y: A,X2: A,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),Y))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),aa(A,A,aa(A,fun(A,A),times_times(A),Z),Y)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y)),Z)) ) ) ) ).
% mult_imp_div_pos_less
tff(fact_1244_mult__imp__less__div__pos,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [Y: A,Z: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),Y))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),Z),Y)),X2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Z),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y))) ) ) ) ).
% mult_imp_less_div_pos
tff(fact_1245_divide__strict__left__mono,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [B2: A,A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),C2),A2)),aa(A,A,aa(A,fun(A,A),divide_divide(A),C2),B2))) ) ) ) ) ).
% divide_strict_left_mono
tff(fact_1246_divide__strict__left__mono__neg,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),C2),A2)),aa(A,A,aa(A,fun(A,A),divide_divide(A),C2),B2))) ) ) ) ) ).
% divide_strict_left_mono_neg
tff(fact_1247_power__le__one,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),one_one(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,A2),N)),one_one(A))) ) ) ) ).
% power_le_one
tff(fact_1248_divide__less__eq__1,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),A2)),one_one(A)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2)) )
| ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) )
| ( A2 = zero_zero(A) ) ) ) ) ).
% divide_less_eq_1
tff(fact_1249_less__divide__eq__1,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),A2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) )
| ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2)) ) ) ) ) ).
% less_divide_eq_1
tff(fact_1250_less__minus__one__simps_I1_J,axiom,
! [A: $tType] :
( linordered_idom(A)
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),one_one(A))),zero_zero(A))) ) ).
% less_minus_one_simps(1)
tff(fact_1251_less__minus__one__simps_I3_J,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,uminus_uminus(A),one_one(A)))) ) ).
% less_minus_one_simps(3)
tff(fact_1252_eq__divide__eq__numeral_I1_J,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [W: num,B2: A,C2: A] :
( ( aa(num,A,numeral_numeral(A),W) = aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2) )
<=> ( ( ( C2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),W)),C2) = B2 ) )
& ( ( C2 = zero_zero(A) )
=> ( aa(num,A,numeral_numeral(A),W) = zero_zero(A) ) ) ) ) ) ).
% eq_divide_eq_numeral(1)
tff(fact_1253_divide__eq__eq__numeral_I1_J,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [B2: A,C2: A,W: num] :
( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2) = aa(num,A,numeral_numeral(A),W) )
<=> ( ( ( C2 != zero_zero(A) )
=> ( B2 = aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),W)),C2) ) )
& ( ( C2 = zero_zero(A) )
=> ( aa(num,A,numeral_numeral(A),W) = zero_zero(A) ) ) ) ) ) ).
% divide_eq_eq_numeral(1)
tff(fact_1254_add__divide__eq__if__simps_I2_J,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [Z: A,A2: A,B2: A] :
( ( ( Z = zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),Z)),B2) = B2 ) )
& ( ( Z != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),Z)),B2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),B2),Z))),Z) ) ) ) ) ).
% add_divide_eq_if_simps(2)
tff(fact_1255_add__divide__eq__if__simps_I1_J,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [Z: A,A2: A,B2: A] :
( ( ( Z = zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),Z)) = A2 ) )
& ( ( Z != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),Z)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),Z)),B2)),Z) ) ) ) ) ).
% add_divide_eq_if_simps(1)
tff(fact_1256_add__frac__eq,axiom,
! [A: $tType] :
( field(A)
=> ! [Y: A,Z: A,X2: A,W: A] :
( ( Y != zero_zero(A) )
=> ( ( Z != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y)),aa(A,A,aa(A,fun(A,A),divide_divide(A),W),Z)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),X2),Z)),aa(A,A,aa(A,fun(A,A),times_times(A),W),Y))),aa(A,A,aa(A,fun(A,A),times_times(A),Y),Z)) ) ) ) ) ).
% add_frac_eq
tff(fact_1257_add__frac__num,axiom,
! [A: $tType] :
( field(A)
=> ! [Y: A,X2: A,Z: A] :
( ( Y != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y)),Z) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),aa(A,A,aa(A,fun(A,A),times_times(A),Z),Y))),Y) ) ) ) ).
% add_frac_num
tff(fact_1258_add__num__frac,axiom,
! [A: $tType] :
( field(A)
=> ! [Y: A,Z: A,X2: A] :
( ( Y != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),Z),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),aa(A,A,aa(A,fun(A,A),times_times(A),Z),Y))),Y) ) ) ) ).
% add_num_frac
tff(fact_1259_add__divide__eq__iff,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [Z: A,X2: A,Y: A] :
( ( Z != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),aa(A,A,aa(A,fun(A,A),divide_divide(A),Y),Z)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),X2),Z)),Y)),Z) ) ) ) ).
% add_divide_eq_iff
tff(fact_1260_divide__add__eq__iff,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [Z: A,X2: A,Y: A] :
( ( Z != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Z)),Y) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),aa(A,A,aa(A,fun(A,A),times_times(A),Y),Z))),Z) ) ) ) ).
% divide_add_eq_iff
tff(fact_1261_div__add__self1,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [B2: A,A2: A] :
( ( B2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),A2)),B2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),one_one(A)) ) ) ) ).
% div_add_self1
tff(fact_1262_div__add__self2,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [B2: A,A2: A] :
( ( B2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),B2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),one_one(A)) ) ) ) ).
% div_add_self2
tff(fact_1263_divide__diff__eq__iff,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [Z: A,X2: A,Y: A] :
( ( Z != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Z)),Y) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),aa(A,A,aa(A,fun(A,A),times_times(A),Y),Z))),Z) ) ) ) ).
% divide_diff_eq_iff
tff(fact_1264_diff__divide__eq__iff,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [Z: A,X2: A,Y: A] :
( ( Z != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),aa(A,A,aa(A,fun(A,A),divide_divide(A),Y),Z)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),X2),Z)),Y)),Z) ) ) ) ).
% diff_divide_eq_iff
tff(fact_1265_diff__frac__eq,axiom,
! [A: $tType] :
( field(A)
=> ! [Y: A,Z: A,X2: A,W: A] :
( ( Y != zero_zero(A) )
=> ( ( Z != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y)),aa(A,A,aa(A,fun(A,A),divide_divide(A),W),Z)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),X2),Z)),aa(A,A,aa(A,fun(A,A),times_times(A),W),Y))),aa(A,A,aa(A,fun(A,A),times_times(A),Y),Z)) ) ) ) ) ).
% diff_frac_eq
tff(fact_1266_add__divide__eq__if__simps_I4_J,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [Z: A,A2: A,B2: A] :
( ( ( Z = zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),Z)) = A2 ) )
& ( ( Z != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),Z)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),Z)),B2)),Z) ) ) ) ) ).
% add_divide_eq_if_simps(4)
tff(fact_1267_power__le__imp__le__base,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [A2: A,N: nat,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,A2),aa(nat,nat,suc,N))),aa(nat,A,power_power(A,B2),aa(nat,nat,suc,N))))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) ) ) ) ).
% power_le_imp_le_base
tff(fact_1268_power__inject__base,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [A2: A,N: nat,B2: A] :
( ( aa(nat,A,power_power(A,A2),aa(nat,nat,suc,N)) = aa(nat,A,power_power(A,B2),aa(nat,nat,suc,N)) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2))
=> ( A2 = B2 ) ) ) ) ) ).
% power_inject_base
tff(fact_1269_eq__minus__divide__eq,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A,B2: A,C2: A] :
( ( A2 = aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)) )
<=> ( ( ( C2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2) = aa(A,A,uminus_uminus(A),B2) ) )
& ( ( C2 = zero_zero(A) )
=> ( A2 = zero_zero(A) ) ) ) ) ) ).
% eq_minus_divide_eq
tff(fact_1270_minus__divide__eq__eq,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [B2: A,C2: A,A2: A] :
( ( aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)) = A2 )
<=> ( ( ( C2 != zero_zero(A) )
=> ( aa(A,A,uminus_uminus(A),B2) = aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2) ) )
& ( ( C2 = zero_zero(A) )
=> ( A2 = zero_zero(A) ) ) ) ) ) ).
% minus_divide_eq_eq
tff(fact_1271_nonzero__neg__divide__eq__eq,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [B2: A,A2: A,C2: A] :
( ( B2 != zero_zero(A) )
=> ( ( aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)) = C2 )
<=> ( aa(A,A,uminus_uminus(A),A2) = aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2) ) ) ) ) ).
% nonzero_neg_divide_eq_eq
tff(fact_1272_nonzero__neg__divide__eq__eq2,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [B2: A,C2: A,A2: A] :
( ( B2 != zero_zero(A) )
=> ( ( C2 = aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)) )
<=> ( aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2) = aa(A,A,uminus_uminus(A),A2) ) ) ) ) ).
% nonzero_neg_divide_eq_eq2
tff(fact_1273_divide__eq__minus__1__iff,axiom,
! [A: $tType] :
( field(A)
=> ! [A2: A,B2: A] :
( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) = aa(A,A,uminus_uminus(A),one_one(A)) )
<=> ( ( B2 != zero_zero(A) )
& ( A2 = aa(A,A,uminus_uminus(A),B2) ) ) ) ) ).
% divide_eq_minus_1_iff
tff(fact_1274_mod__double__modulus,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [M: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),M))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X2))
=> ( ( modulo_modulo(A,X2,aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),M)) = modulo_modulo(A,X2,M) )
| ( modulo_modulo(A,X2,aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),M)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),modulo_modulo(A,X2,M)),M) ) ) ) ) ) ).
% mod_double_modulus
tff(fact_1275_divmod__digit__1_I2_J,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),modulo_modulo(A,A2,aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),B2))))
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),modulo_modulo(A,A2,aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),B2))),B2) = modulo_modulo(A,A2,B2) ) ) ) ) ) ).
% divmod_digit_1(2)
tff(fact_1276_bounded__Max__nat,axiom,
! [P: fun(nat,bool),X2: nat,M7: nat] :
( pp(aa(nat,bool,P,X2))
=> ( ! [X3: nat] :
( pp(aa(nat,bool,P,X3))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),X3),M7)) )
=> ~ ! [M3: nat] :
( pp(aa(nat,bool,P,M3))
=> ~ ! [X: nat] :
( pp(aa(nat,bool,P,X))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),X),M3)) ) ) ) ) ).
% bounded_Max_nat
tff(fact_1277_ex__has__least__nat,axiom,
! [A: $tType,P: fun(A,bool),K: A,M: fun(A,nat)] :
( pp(aa(A,bool,P,K))
=> ? [X3: A] :
( pp(aa(A,bool,P,X3))
& ! [Y4: A] :
( pp(aa(A,bool,P,Y4))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(A,nat,M,X3)),aa(A,nat,M,Y4))) ) ) ) ).
% ex_has_least_nat
tff(fact_1278_numeral__1__eq__Suc__0,axiom,
aa(num,nat,numeral_numeral(nat),one2) = aa(nat,nat,suc,zero_zero(nat)) ).
% numeral_1_eq_Suc_0
tff(fact_1279_num_Osize_I5_J,axiom,
! [X23: num] : ( aa(num,nat,size_size(num),bit0(X23)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(num,nat,size_size(num),X23)),aa(nat,nat,suc,zero_zero(nat))) ) ).
% num.size(5)
tff(fact_1280_ex__least__nat__less,axiom,
! [P: fun(nat,bool),N: nat] :
( pp(aa(nat,bool,P,N))
=> ( ~ pp(aa(nat,bool,P,zero_zero(nat)))
=> ? [K3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),K3),N))
& ! [I2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I2),K3))
=> ~ pp(aa(nat,bool,P,I2)) )
& pp(aa(nat,bool,P,aa(nat,nat,suc,K3))) ) ) ) ).
% ex_least_nat_less
tff(fact_1281_num_Osize_I6_J,axiom,
! [X33: num] : ( aa(num,nat,size_size(num),aa(num,num,bit1,X33)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(num,nat,size_size(num),X33)),aa(nat,nat,suc,zero_zero(nat))) ) ).
% num.size(6)
tff(fact_1282_diff__Suc__less,axiom,
! [N: nat,I: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(nat,nat,suc,I))),N)) ) ).
% diff_Suc_less
tff(fact_1283_n__less__n__mult__m,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,zero_zero(nat))),M))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),M))) ) ) ).
% n_less_n_mult_m
tff(fact_1284_n__less__m__mult__n,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,zero_zero(nat))),M))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),N))) ) ) ).
% n_less_m_mult_n
tff(fact_1285_one__less__mult,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,zero_zero(nat))),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,zero_zero(nat))),M))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,zero_zero(nat))),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),N))) ) ) ).
% one_less_mult
tff(fact_1286_length__pos__if__in__set,axiom,
! [A: $tType,X2: A,Xs: list(A)] :
( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(list(A),nat,size_size(list(A)),Xs))) ) ).
% length_pos_if_in_set
tff(fact_1287_nat__induct__non__zero,axiom,
! [N: nat,P: fun(nat,bool)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(nat,bool,P,one_one(nat)))
=> ( ! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N3))
=> ( pp(aa(nat,bool,P,N3))
=> pp(aa(nat,bool,P,aa(nat,nat,suc,N3))) ) )
=> pp(aa(nat,bool,P,N)) ) ) ) ).
% nat_induct_non_zero
tff(fact_1288_nat__mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),K))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),M)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ) ).
% nat_mult_le_cancel1
tff(fact_1289_nat__diff__split__asm,axiom,
! [P: fun(nat,bool),A2: nat,B2: nat] :
( pp(aa(nat,bool,P,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),A2),B2)))
<=> ~ ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),A2),B2))
& ~ pp(aa(nat,bool,P,zero_zero(nat))) )
| ? [D4: nat] :
( ( A2 = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),B2),D4) )
& ~ pp(aa(nat,bool,P,D4)) ) ) ) ).
% nat_diff_split_asm
tff(fact_1290_nat__diff__split,axiom,
! [P: fun(nat,bool),A2: nat,B2: nat] :
( pp(aa(nat,bool,P,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),A2),B2)))
<=> ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),A2),B2))
=> pp(aa(nat,bool,P,zero_zero(nat))) )
& ! [D4: nat] :
( ( A2 = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),B2),D4) )
=> pp(aa(nat,bool,P,D4)) ) ) ) ).
% nat_diff_split
tff(fact_1291_power__gt__expt,axiom,
! [N: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,zero_zero(nat))),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),K),aa(nat,nat,power_power(nat,N),K))) ) ).
% power_gt_expt
tff(fact_1292_nat__one__le__power,axiom,
! [I: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,suc,zero_zero(nat))),I))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,suc,zero_zero(nat))),aa(nat,nat,power_power(nat,I),N))) ) ).
% nat_one_le_power
tff(fact_1293_div__greater__zero__iff,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N)))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N)) ) ) ).
% div_greater_zero_iff
tff(fact_1294_div__le__mono2,axiom,
! [M: nat,N: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),M))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),K),N)),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),K),M))) ) ) ).
% div_le_mono2
tff(fact_1295_div__less__iff__less__mult,axiom,
! [Q2: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),Q2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),Q2)),N))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),Q2))) ) ) ).
% div_less_iff_less_mult
tff(fact_1296_nat__mult__div__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),K))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),M)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),N)) = aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N) ) ) ).
% nat_mult_div_cancel1
tff(fact_1297_div__eq__dividend__iff,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),M))
=> ( ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N) = M )
<=> ( N = one_one(nat) ) ) ) ).
% div_eq_dividend_iff
tff(fact_1298_div__less__dividend,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),one_one(nat)),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),M))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N)),M)) ) ) ).
% div_less_dividend
tff(fact_1299_fold__atLeastAtMost__nat_Ocases,axiom,
! [A: $tType,X2: product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A)))] :
~ ! [F3: fun(nat,fun(A,A)),A4: nat,B3: nat,Acc: A] : ( X2 != aa(product_prod(nat,product_prod(nat,A)),product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A))),aa(fun(nat,fun(A,A)),fun(product_prod(nat,product_prod(nat,A)),product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A)))),product_Pair(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A))),F3),aa(product_prod(nat,A),product_prod(nat,product_prod(nat,A)),aa(nat,fun(product_prod(nat,A),product_prod(nat,product_prod(nat,A))),product_Pair(nat,product_prod(nat,A)),A4),aa(A,product_prod(nat,A),aa(nat,fun(A,product_prod(nat,A)),product_Pair(nat,A),B3),Acc))) ) ).
% fold_atLeastAtMost_nat.cases
tff(fact_1300_prod__decode__aux_Ocases,axiom,
! [X2: product_prod(nat,nat)] :
~ ! [K3: nat,M3: nat] : ( X2 != aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),K3),M3) ) ).
% prod_decode_aux.cases
tff(fact_1301_mod__mult2__eq_H,axiom,
! [A: $tType] :
( euclid5411537665997757685th_nat(A)
=> ! [A2: A,M: nat,N: nat] : ( modulo_modulo(A,A2,aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),M)),aa(nat,A,semiring_1_of_nat(A),N))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),M)),modulo_modulo(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(nat,A,semiring_1_of_nat(A),M)),aa(nat,A,semiring_1_of_nat(A),N)))),modulo_modulo(A,A2,aa(nat,A,semiring_1_of_nat(A),M))) ) ) ).
% mod_mult2_eq'
tff(fact_1302_field__char__0__class_Oof__nat__div,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [M: nat,N: nat] : ( aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,semiring_1_of_nat(A),M)),aa(nat,A,semiring_1_of_nat(A),modulo_modulo(nat,M,N)))),aa(nat,A,semiring_1_of_nat(A),N)) ) ) ).
% field_char_0_class.of_nat_div
tff(fact_1303_dbl__inc__def,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [X2: A] : ( neg_numeral_dbl_inc(A,X2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),X2)),one_one(A)) ) ) ).
% dbl_inc_def
tff(fact_1304_real__of__nat__div__aux,axiom,
! [X2: nat,D2: nat] : ( aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(nat,real,semiring_1_of_nat(real),X2)),aa(nat,real,semiring_1_of_nat(real),D2)) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),X2),D2))),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(nat,real,semiring_1_of_nat(real),modulo_modulo(nat,X2,D2))),aa(nat,real,semiring_1_of_nat(real),D2))) ) ).
% real_of_nat_div_aux
tff(fact_1305_field__le__mult__one__interval,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X2: A,Y: A] :
( ! [Z3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),Z3))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Z3),one_one(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),Z3),X2)),Y)) ) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y)) ) ) ).
% field_le_mult_one_interval
tff(fact_1306_mult__less__cancel__right2,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),C2))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),one_one(A))) )
& ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),A2)) ) ) ) ) ).
% mult_less_cancel_right2
tff(fact_1307_mult__less__cancel__right1,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),B2)) )
& ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),one_one(A))) ) ) ) ) ).
% mult_less_cancel_right1
tff(fact_1308_mult__less__cancel__left2,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [C2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),C2))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),one_one(A))) )
& ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),A2)) ) ) ) ) ).
% mult_less_cancel_left2
tff(fact_1309_mult__less__cancel__left1,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),B2)) )
& ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),one_one(A))) ) ) ) ) ).
% mult_less_cancel_left1
tff(fact_1310_mult__le__cancel__right2,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),C2))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),one_one(A))) )
& ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),A2)) ) ) ) ) ).
% mult_le_cancel_right2
tff(fact_1311_mult__le__cancel__right1,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),B2)) )
& ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),one_one(A))) ) ) ) ) ).
% mult_le_cancel_right1
tff(fact_1312_mult__le__cancel__left2,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [C2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),C2))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),one_one(A))) )
& ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),A2)) ) ) ) ) ).
% mult_le_cancel_left2
tff(fact_1313_mult__le__cancel__left1,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),B2)) )
& ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),one_one(A))) ) ) ) ) ).
% mult_le_cancel_left1
tff(fact_1314_divide__left__mono__neg,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),C2),A2)),aa(A,A,aa(A,fun(A,A),divide_divide(A),C2),B2))) ) ) ) ) ).
% divide_left_mono_neg
tff(fact_1315_mult__imp__le__div__pos,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [Y: A,Z: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),Y))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),Z),Y)),X2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Z),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y))) ) ) ) ).
% mult_imp_le_div_pos
tff(fact_1316_mult__imp__div__pos__le,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [Y: A,X2: A,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),Y))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(A,A,aa(A,fun(A,A),times_times(A),Z),Y)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y)),Z)) ) ) ) ).
% mult_imp_div_pos_le
tff(fact_1317_pos__le__divide__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),B2)) ) ) ) ).
% pos_le_divide_eq
tff(fact_1318_pos__divide__le__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [C2: A,B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2))) ) ) ) ).
% pos_divide_le_eq
tff(fact_1319_neg__le__divide__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2))) ) ) ) ).
% neg_le_divide_eq
tff(fact_1320_neg__divide__le__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [C2: A,B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),B2)) ) ) ) ).
% neg_divide_le_eq
tff(fact_1321_divide__left__mono,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [B2: A,A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),C2),A2)),aa(A,A,aa(A,fun(A,A),divide_divide(A),C2),B2))) ) ) ) ) ).
% divide_left_mono
tff(fact_1322_le__divide__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),B2)) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2))) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A))) ) ) ) ) ) ) ).
% le_divide_eq
tff(fact_1323_divide__le__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [B2: A,C2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)),A2))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2))) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),B2)) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2)) ) ) ) ) ) ) ).
% divide_le_eq
tff(fact_1324_convex__bound__le,axiom,
! [A: $tType] :
( linord6961819062388156250ring_1(A)
=> ! [X2: A,A2: A,Y: A,U: A,V: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),U))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),V))
=> ( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),U),V) = one_one(A) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),U),X2)),aa(A,A,aa(A,fun(A,A),times_times(A),V),Y))),A2)) ) ) ) ) ) ) ).
% convex_bound_le
tff(fact_1325_divide__le__eq__1,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),A2)),one_one(A)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2)) )
| ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) )
| ( A2 = zero_zero(A) ) ) ) ) ).
% divide_le_eq_1
tff(fact_1326_le__divide__eq__1,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),A2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) )
| ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2)) ) ) ) ) ).
% le_divide_eq_1
tff(fact_1327_less__divide__eq__numeral_I1_J,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [W: num,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(num,A,numeral_numeral(A),W)),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),W)),C2)),B2)) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),W)),C2))) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(num,A,numeral_numeral(A),W)),zero_zero(A))) ) ) ) ) ) ) ).
% less_divide_eq_numeral(1)
tff(fact_1328_divide__less__eq__numeral_I1_J,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [B2: A,C2: A,W: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)),aa(num,A,numeral_numeral(A),W)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),W)),C2))) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),W)),C2)),B2)) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(num,A,numeral_numeral(A),W))) ) ) ) ) ) ) ).
% divide_less_eq_numeral(1)
tff(fact_1329_frac__le__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [Y: A,Z: A,X2: A,W: A] :
( ( Y != zero_zero(A) )
=> ( ( Z != zero_zero(A) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y)),aa(A,A,aa(A,fun(A,A),divide_divide(A),W),Z)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),X2),Z)),aa(A,A,aa(A,fun(A,A),times_times(A),W),Y))),aa(A,A,aa(A,fun(A,A),times_times(A),Y),Z))),zero_zero(A))) ) ) ) ) ).
% frac_le_eq
tff(fact_1330_divmod__digit__1_I1_J,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),modulo_modulo(A,A2,aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),B2))))
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),B2)))),one_one(A)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) ) ) ) ) ) ).
% divmod_digit_1(1)
tff(fact_1331_frac__less__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [Y: A,Z: A,X2: A,W: A] :
( ( Y != zero_zero(A) )
=> ( ( Z != zero_zero(A) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y)),aa(A,A,aa(A,fun(A,A),divide_divide(A),W),Z)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),X2),Z)),aa(A,A,aa(A,fun(A,A),times_times(A),W),Y))),aa(A,A,aa(A,fun(A,A),times_times(A),Y),Z))),zero_zero(A))) ) ) ) ) ).
% frac_less_eq
tff(fact_1332_power__Suc__less,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),one_one(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(nat,A,power_power(A,A2),N))),aa(nat,A,power_power(A,A2),N))) ) ) ) ).
% power_Suc_less
tff(fact_1333_less__minus__divide__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2))))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,uminus_uminus(A),B2))) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),B2)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2))) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A))) ) ) ) ) ) ) ).
% less_minus_divide_eq
tff(fact_1334_minus__divide__less__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [B2: A,C2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2))),A2))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),B2)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2))) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,uminus_uminus(A),B2))) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2)) ) ) ) ) ) ) ).
% minus_divide_less_eq
tff(fact_1335_neg__less__minus__divide__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2))))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),B2)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2))) ) ) ) ).
% neg_less_minus_divide_eq
tff(fact_1336_neg__minus__divide__less__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [C2: A,B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2))),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,uminus_uminus(A),B2))) ) ) ) ).
% neg_minus_divide_less_eq
tff(fact_1337_pos__less__minus__divide__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2))))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,uminus_uminus(A),B2))) ) ) ) ).
% pos_less_minus_divide_eq
tff(fact_1338_pos__minus__divide__less__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [C2: A,B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2))),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),B2)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2))) ) ) ) ).
% pos_minus_divide_less_eq
tff(fact_1339_eq__divide__eq__numeral_I2_J,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [W: num,B2: A,C2: A] :
( ( aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2) )
<=> ( ( ( C2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))),C2) = B2 ) )
& ( ( C2 = zero_zero(A) )
=> ( aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W)) = zero_zero(A) ) ) ) ) ) ).
% eq_divide_eq_numeral(2)
tff(fact_1340_divide__eq__eq__numeral_I2_J,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [B2: A,C2: A,W: num] :
( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W)) )
<=> ( ( ( C2 != zero_zero(A) )
=> ( B2 = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))),C2) ) )
& ( ( C2 = zero_zero(A) )
=> ( aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W)) = zero_zero(A) ) ) ) ) ) ).
% divide_eq_eq_numeral(2)
tff(fact_1341_power__Suc__le__self,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),one_one(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,A2),aa(nat,nat,suc,N))),A2)) ) ) ) ).
% power_Suc_le_self
tff(fact_1342_add__divide__eq__if__simps_I3_J,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [Z: A,A2: A,B2: A] :
( ( ( Z = zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),Z))),B2) = B2 ) )
& ( ( Z != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),Z))),B2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),Z))),Z) ) ) ) ) ).
% add_divide_eq_if_simps(3)
tff(fact_1343_minus__divide__add__eq__iff,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [Z: A,X2: A,Y: A] :
( ( Z != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Z))),Y) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),X2)),aa(A,A,aa(A,fun(A,A),times_times(A),Y),Z))),Z) ) ) ) ).
% minus_divide_add_eq_iff
tff(fact_1344_power__Suc__less__one,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),one_one(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,power_power(A,A2),aa(nat,nat,suc,N))),one_one(A))) ) ) ) ).
% power_Suc_less_one
tff(fact_1345_minus__divide__diff__eq__iff,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [Z: A,X2: A,Y: A] :
( ( Z != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Z))),Y) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,uminus_uminus(A),X2)),aa(A,A,aa(A,fun(A,A),times_times(A),Y),Z))),Z) ) ) ) ).
% minus_divide_diff_eq_iff
tff(fact_1346_add__divide__eq__if__simps_I5_J,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [Z: A,A2: A,B2: A] :
( ( ( Z = zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),Z)),B2) = aa(A,A,uminus_uminus(A),B2) ) )
& ( ( Z != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),Z)),B2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),B2),Z))),Z) ) ) ) ) ).
% add_divide_eq_if_simps(5)
tff(fact_1347_add__divide__eq__if__simps_I6_J,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [Z: A,A2: A,B2: A] :
( ( ( Z = zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),Z))),B2) = aa(A,A,uminus_uminus(A),B2) ) )
& ( ( Z != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),Z))),B2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,uminus_uminus(A),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),Z))),Z) ) ) ) ) ).
% add_divide_eq_if_simps(6)
tff(fact_1348_power__strict__decreasing,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [N: nat,N2: nat,A2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),N2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),one_one(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,power_power(A,A2),N2)),aa(nat,A,power_power(A,A2),N))) ) ) ) ) ).
% power_strict_decreasing
tff(fact_1349_power__decreasing,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [N: nat,N2: nat,A2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),N2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),one_one(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,A2),N2)),aa(nat,A,power_power(A,A2),N))) ) ) ) ) ).
% power_decreasing
tff(fact_1350_zero__power2,axiom,
! [A: $tType] :
( semiring_1(A)
=> ( aa(nat,A,power_power(A,zero_zero(A)),aa(num,nat,numeral_numeral(nat),bit0(one2))) = zero_zero(A) ) ) ).
% zero_power2
tff(fact_1351_self__le__power,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),A2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(nat,A,power_power(A,A2),N))) ) ) ) ).
% self_le_power
tff(fact_1352_one__less__power,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),A2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),aa(nat,A,power_power(A,A2),N))) ) ) ) ).
% one_less_power
tff(fact_1353_numeral__2__eq__2,axiom,
aa(num,nat,numeral_numeral(nat),bit0(one2)) = aa(nat,nat,suc,aa(nat,nat,suc,zero_zero(nat))) ).
% numeral_2_eq_2
tff(fact_1354_pos2,axiom,
pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(num,nat,numeral_numeral(nat),bit0(one2)))) ).
% pos2
tff(fact_1355_power__diff,axiom,
! [A: $tType] :
( semidom_divide(A)
=> ! [A2: A,N: nat,M: nat] :
( ( A2 != zero_zero(A) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> ( aa(nat,A,power_power(A,A2),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(nat,A,power_power(A,A2),M)),aa(nat,A,power_power(A,A2),N)) ) ) ) ) ).
% power_diff
tff(fact_1356_numeral__3__eq__3,axiom,
aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,one2)) = aa(nat,nat,suc,aa(nat,nat,suc,aa(nat,nat,suc,zero_zero(nat)))) ).
% numeral_3_eq_3
tff(fact_1357_Suc__diff__eq__diff__pred,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,suc,M)),N) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat))) ) ) ).
% Suc_diff_eq_diff_pred
tff(fact_1358_Suc__pred_H,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( N = aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat))) ) ) ).
% Suc_pred'
tff(fact_1359_div__if,axiom,
! [M: nat,N: nat] :
( ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
| ( N = zero_zero(nat) ) )
=> ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N) = zero_zero(nat) ) )
& ( ~ ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
| ( N = zero_zero(nat) ) )
=> ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N) = aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N)),N)) ) ) ) ).
% div_if
tff(fact_1360_div__geq,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N) = aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N)),N)) ) ) ) ).
% div_geq
tff(fact_1361_add__eq__if,axiom,
! [M: nat,N: nat] :
( ( ( M = zero_zero(nat) )
=> ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N) = N ) )
& ( ( M != zero_zero(nat) )
=> ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N) = aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),one_one(nat))),N)) ) ) ) ).
% add_eq_if
tff(fact_1362_less__eq__div__iff__mult__less__eq,axiom,
! [Q2: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),Q2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),Q2)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),Q2)),N)) ) ) ).
% less_eq_div_iff_mult_less_eq
tff(fact_1363_dividend__less__times__div,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N))))) ) ).
% dividend_less_times_div
tff(fact_1364_dividend__less__div__times,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N)),N)))) ) ).
% dividend_less_div_times
tff(fact_1365_split__div,axiom,
! [P: fun(nat,bool),M: nat,N: nat] :
( pp(aa(nat,bool,P,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N)))
<=> ( ( ( N = zero_zero(nat) )
=> pp(aa(nat,bool,P,zero_zero(nat))) )
& ( ( N != zero_zero(nat) )
=> ! [I4: nat,J3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J3),N))
=> ( ( M = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),I4)),J3) )
=> pp(aa(nat,bool,P,I4)) ) ) ) ) ) ).
% split_div
tff(fact_1366_mult__eq__if,axiom,
! [M: nat,N: nat] :
( ( ( M = zero_zero(nat) )
=> ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),N) = zero_zero(nat) ) )
& ( ( M != zero_zero(nat) )
=> ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),N) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),one_one(nat))),N)) ) ) ) ).
% mult_eq_if
tff(fact_1367_Suc__mod__eq__add3__mod,axiom,
! [M: nat,N: nat] : ( modulo_modulo(nat,aa(nat,nat,suc,aa(nat,nat,suc,aa(nat,nat,suc,M))),N) = modulo_modulo(nat,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,one2))),M),N) ) ).
% Suc_mod_eq_add3_mod
tff(fact_1368_convex__bound__lt,axiom,
! [A: $tType] :
( linord715952674999750819strict(A)
=> ! [X2: A,A2: A,Y: A,U: A,V: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),U))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),V))
=> ( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),U),V) = one_one(A) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),U),X2)),aa(A,A,aa(A,fun(A,A),times_times(A),V),Y))),A2)) ) ) ) ) ) ) ).
% convex_bound_lt
tff(fact_1369_le__divide__eq__numeral_I1_J,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [W: num,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(num,A,numeral_numeral(A),W)),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),W)),C2)),B2)) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),W)),C2))) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(num,A,numeral_numeral(A),W)),zero_zero(A))) ) ) ) ) ) ) ).
% le_divide_eq_numeral(1)
tff(fact_1370_divide__le__eq__numeral_I1_J,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [B2: A,C2: A,W: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)),aa(num,A,numeral_numeral(A),W)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),W)),C2))) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),W)),C2)),B2)) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(num,A,numeral_numeral(A),W))) ) ) ) ) ) ) ).
% divide_le_eq_numeral(1)
tff(fact_1371_le__minus__divide__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2))))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,uminus_uminus(A),B2))) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),B2)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2))) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A))) ) ) ) ) ) ) ).
% le_minus_divide_eq
tff(fact_1372_minus__divide__le__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [B2: A,C2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2))),A2))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),B2)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2))) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,uminus_uminus(A),B2))) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2)) ) ) ) ) ) ) ).
% minus_divide_le_eq
tff(fact_1373_neg__le__minus__divide__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2))))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),B2)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2))) ) ) ) ).
% neg_le_minus_divide_eq
tff(fact_1374_neg__minus__divide__le__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [C2: A,B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2))),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,uminus_uminus(A),B2))) ) ) ) ).
% neg_minus_divide_le_eq
tff(fact_1375_pos__le__minus__divide__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2))))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,uminus_uminus(A),B2))) ) ) ) ).
% pos_le_minus_divide_eq
tff(fact_1376_pos__minus__divide__le__eq,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [C2: A,B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2))),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),B2)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2))) ) ) ) ).
% pos_minus_divide_le_eq
tff(fact_1377_scaling__mono,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [U: A,V: A,R: A,S2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),U),V))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),R))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),R),S2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),U),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),R),aa(A,A,aa(A,fun(A,A),minus_minus(A),V),U))),S2))),V)) ) ) ) ) ).
% scaling_mono
tff(fact_1378_half__gt__zero__iff,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2)))))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2)) ) ) ).
% half_gt_zero_iff
tff(fact_1379_half__gt__zero,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2))))) ) ) ).
% half_gt_zero
tff(fact_1380_divide__less__eq__numeral_I2_J,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [B2: A,C2: A,W: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))),C2))) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))),C2)),B2)) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W)))) ) ) ) ) ) ) ).
% divide_less_eq_numeral(2)
tff(fact_1381_less__divide__eq__numeral_I2_J,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [W: num,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))),C2)),B2)) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))),C2))) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))),zero_zero(A))) ) ) ) ) ) ) ).
% less_divide_eq_numeral(2)
tff(fact_1382_power2__le__imp__le,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,A,power_power(A,Y),aa(num,nat,numeral_numeral(nat),bit0(one2)))))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),Y))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y)) ) ) ) ).
% power2_le_imp_le
tff(fact_1383_power2__eq__imp__eq,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [X2: A,Y: A] :
( ( aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(nat,A,power_power(A,Y),aa(num,nat,numeral_numeral(nat),bit0(one2))) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),Y))
=> ( X2 = Y ) ) ) ) ) ).
% power2_eq_imp_eq
tff(fact_1384_zero__le__power2,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ).
% zero_le_power2
tff(fact_1385_power2__less__0,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),zero_zero(A))) ) ).
% power2_less_0
tff(fact_1386_exp__add__not__zero__imp__right,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [M: nat,N: nat] :
( ( aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N)) != zero_zero(A) )
=> ( aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N) != zero_zero(A) ) ) ) ).
% exp_add_not_zero_imp_right
tff(fact_1387_exp__add__not__zero__imp__left,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [M: nat,N: nat] :
( ( aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N)) != zero_zero(A) )
=> ( aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),M) != zero_zero(A) ) ) ) ).
% exp_add_not_zero_imp_left
tff(fact_1388_exp__not__zero__imp__exp__diff__not__zero,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [N: nat,M: nat] :
( ( aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N) != zero_zero(A) )
=> ( aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M)) != zero_zero(A) ) ) ) ).
% exp_not_zero_imp_exp_diff_not_zero
tff(fact_1389_power__diff__power__eq,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [A2: A,N: nat,M: nat] :
( ( A2 != zero_zero(A) )
=> ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(nat,A,power_power(A,A2),M)),aa(nat,A,power_power(A,A2),N)) = aa(nat,A,power_power(A,A2),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N)) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(nat,A,power_power(A,A2),M)),aa(nat,A,power_power(A,A2),N)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(nat,A,power_power(A,A2),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M))) ) ) ) ) ) ).
% power_diff_power_eq
tff(fact_1390_inverse__of__nat__le,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> ( ( N != zero_zero(nat) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(nat,A,semiring_1_of_nat(A),M))),aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(nat,A,semiring_1_of_nat(A),N)))) ) ) ) ).
% inverse_of_nat_le
tff(fact_1391_less__2__cases,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(num,nat,numeral_numeral(nat),bit0(one2))))
=> ( ( N = zero_zero(nat) )
| ( N = aa(nat,nat,suc,zero_zero(nat)) ) ) ) ).
% less_2_cases
tff(fact_1392_less__2__cases__iff,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(num,nat,numeral_numeral(nat),bit0(one2))))
<=> ( ( N = zero_zero(nat) )
| ( N = aa(nat,nat,suc,zero_zero(nat)) ) ) ) ).
% less_2_cases_iff
tff(fact_1393_power__eq__if,axiom,
! [A: $tType] :
( power(A)
=> ! [M: nat,P2: A] :
( ( ( M = zero_zero(nat) )
=> ( aa(nat,A,power_power(A,P2),M) = one_one(A) ) )
& ( ( M != zero_zero(nat) )
=> ( aa(nat,A,power_power(A,P2),M) = aa(A,A,aa(A,fun(A,A),times_times(A),P2),aa(nat,A,power_power(A,P2),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),one_one(nat)))) ) ) ) ) ).
% power_eq_if
tff(fact_1394_nat__induct2,axiom,
! [P: fun(nat,bool),N: nat] :
( pp(aa(nat,bool,P,zero_zero(nat)))
=> ( pp(aa(nat,bool,P,one_one(nat)))
=> ( ! [N3: nat] :
( pp(aa(nat,bool,P,N3))
=> pp(aa(nat,bool,P,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N3),aa(num,nat,numeral_numeral(nat),bit0(one2))))) )
=> pp(aa(nat,bool,P,N)) ) ) ) ).
% nat_induct2
tff(fact_1395_power__minus__mult,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [N: nat,A2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,A2),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat)))),A2) = aa(nat,A,power_power(A,A2),N) ) ) ) ).
% power_minus_mult
tff(fact_1396_le__div__geq,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N) = aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N)),N)) ) ) ) ).
% le_div_geq
tff(fact_1397_split__div_H,axiom,
! [P: fun(nat,bool),M: nat,N: nat] :
( pp(aa(nat,bool,P,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N)))
<=> ( ( ( N = zero_zero(nat) )
& pp(aa(nat,bool,P,zero_zero(nat))) )
| ? [Q4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),Q4)),M))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),aa(nat,nat,suc,Q4))))
& pp(aa(nat,bool,P,Q4)) ) ) ) ).
% split_div'
tff(fact_1398_div__exp__mod__exp__eq,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [A2: A,N: nat,M: nat] : ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),M)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),modulo_modulo(A,A2,aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),M)))),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)) ) ) ).
% div_exp_mod_exp_eq
tff(fact_1399_dbl__dec__def,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [X2: A] : ( neg_numeral_dbl_dec(A,X2) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),X2)),one_one(A)) ) ) ).
% dbl_dec_def
tff(fact_1400_le__divide__eq__numeral_I2_J,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [W: num,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))),C2)),B2)) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))),C2))) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))),zero_zero(A))) ) ) ) ) ) ) ).
% le_divide_eq_numeral(2)
tff(fact_1401_divide__le__eq__numeral_I2_J,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [B2: A,C2: A,W: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))),C2))) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))),C2)),B2)) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W)))) ) ) ) ) ) ) ).
% divide_le_eq_numeral(2)
tff(fact_1402_power2__less__imp__less,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,A,power_power(A,Y),aa(num,nat,numeral_numeral(nat),bit0(one2)))))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),Y))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y)) ) ) ) ).
% power2_less_imp_less
tff(fact_1403_sum__power2__le__zero__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,A,power_power(A,Y),aa(num,nat,numeral_numeral(nat),bit0(one2))))),zero_zero(A)))
<=> ( ( X2 = zero_zero(A) )
& ( Y = zero_zero(A) ) ) ) ) ).
% sum_power2_le_zero_iff
tff(fact_1404_sum__power2__ge__zero,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: A,Y: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,A,power_power(A,Y),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ).
% sum_power2_ge_zero
tff(fact_1405_sum__power2__gt__zero__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,A,power_power(A,Y),aa(num,nat,numeral_numeral(nat),bit0(one2))))))
<=> ( ( X2 != zero_zero(A) )
| ( Y != zero_zero(A) ) ) ) ) ).
% sum_power2_gt_zero_iff
tff(fact_1406_not__sum__power2__lt__zero,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: A,Y: A] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,A,power_power(A,Y),aa(num,nat,numeral_numeral(nat),bit0(one2))))),zero_zero(A))) ) ).
% not_sum_power2_lt_zero
tff(fact_1407_zero__le__even__power_H,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A,N: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(nat,A,power_power(A,A2),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)))) ) ).
% zero_le_even_power'
tff(fact_1408_nat__bit__induct,axiom,
! [P: fun(nat,bool),N: nat] :
( pp(aa(nat,bool,P,zero_zero(nat)))
=> ( ! [N3: nat] :
( pp(aa(nat,bool,P,N3))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N3))
=> pp(aa(nat,bool,P,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N3))) ) )
=> ( ! [N3: nat] :
( pp(aa(nat,bool,P,N3))
=> pp(aa(nat,bool,P,aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N3)))) )
=> pp(aa(nat,bool,P,N)) ) ) ) ).
% nat_bit_induct
tff(fact_1409_mult__exp__mod__exp__eq,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [M: nat,N: nat,A2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),M)),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)) = aa(A,A,aa(A,fun(A,A),times_times(A),modulo_modulo(A,A2,aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M)))),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),M)) ) ) ) ).
% mult_exp_mod_exp_eq
tff(fact_1410_div__2__gt__zero,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,zero_zero(nat))),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ).
% div_2_gt_zero
tff(fact_1411_Suc__n__div__2__gt__zero,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,N)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ).
% Suc_n_div_2_gt_zero
tff(fact_1412_Lattices__Big_Oex__has__greatest__nat,axiom,
! [A: $tType,P: fun(A,bool),K: A,F2: fun(A,nat),B2: nat] :
( pp(aa(A,bool,P,K))
=> ( ! [Y3: A] :
( pp(aa(A,bool,P,Y3))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(A,nat,F2,Y3)),B2)) )
=> ? [X3: A] :
( pp(aa(A,bool,P,X3))
& ! [Y4: A] :
( pp(aa(A,bool,P,Y4))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(A,nat,F2,Y4)),aa(A,nat,F2,X3))) ) ) ) ) ).
% Lattices_Big.ex_has_greatest_nat
tff(fact_1413_odd__0__le__power__imp__0__le,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(nat,A,power_power(A,A2),aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)))))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2)) ) ) ).
% odd_0_le_power_imp_0_le
tff(fact_1414_odd__power__less__zero,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,power_power(A,A2),aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)))),zero_zero(A))) ) ) ).
% odd_power_less_zero
tff(fact_1415_VEBT__internal_Oexp__split__high__low_I1_J,axiom,
! [X2: nat,N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),X2),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),M))))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),M))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(X2,N)),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),M))) ) ) ) ).
% VEBT_internal.exp_split_high_low(1)
tff(fact_1416_VEBT__internal_Oexp__split__high__low_I2_J,axiom,
! [X2: nat,N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),X2),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),M))))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),M))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_low(X2,N)),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N))) ) ) ) ).
% VEBT_internal.exp_split_high_low(2)
tff(fact_1417_arith__geo__mean,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [U: A,X2: A,Y: A] :
( ( aa(nat,A,power_power(A,U),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(A,A,aa(A,fun(A,A),times_times(A),X2),Y) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),Y))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),U),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)),aa(num,A,numeral_numeral(A),bit0(one2))))) ) ) ) ) ).
% arith_geo_mean
tff(fact_1418_invar__vebt_Ocases,axiom,
! [A1: vEBT_VEBT,A22: nat] :
( vEBT_invar_vebt(A1,A22)
=> ( ( ? [A4: bool,B3: bool] : ( A1 = vEBT_Leaf(A4,B3) )
=> ( A22 != aa(nat,nat,suc,zero_zero(nat)) ) )
=> ( ! [TreeList3: list(vEBT_VEBT),N3: nat,Summary3: vEBT_VEBT,M3: nat,Deg2: nat] :
( ( A1 = vEBT_Node(none(product_prod(nat,nat)),Deg2,TreeList3,Summary3) )
=> ( ( A22 = Deg2 )
=> ( ! [X: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList3)))
=> vEBT_invar_vebt(X,N3) )
=> ( vEBT_invar_vebt(Summary3,M3)
=> ( ( aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3) = aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),M3) )
=> ( ( M3 = N3 )
=> ( ( Deg2 = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N3),M3) )
=> ( ~ ? [X_1: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(Summary3),X_1))
=> ~ ! [X: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList3)))
=> ~ ? [X_1: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(X),X_1)) ) ) ) ) ) ) ) ) )
=> ( ! [TreeList3: list(vEBT_VEBT),N3: nat,Summary3: vEBT_VEBT,M3: nat,Deg2: nat] :
( ( A1 = vEBT_Node(none(product_prod(nat,nat)),Deg2,TreeList3,Summary3) )
=> ( ( A22 = Deg2 )
=> ( ! [X: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList3)))
=> vEBT_invar_vebt(X,N3) )
=> ( vEBT_invar_vebt(Summary3,M3)
=> ( ( aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3) = aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),M3) )
=> ( ( M3 = aa(nat,nat,suc,N3) )
=> ( ( Deg2 = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N3),M3) )
=> ( ~ ? [X_1: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(Summary3),X_1))
=> ~ ! [X: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList3)))
=> ~ ? [X_1: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(X),X_1)) ) ) ) ) ) ) ) ) )
=> ( ! [TreeList3: list(vEBT_VEBT),N3: nat,Summary3: vEBT_VEBT,M3: nat,Deg2: nat,Mi3: nat,Ma3: nat] :
( ( A1 = vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi3),Ma3)),Deg2,TreeList3,Summary3) )
=> ( ( A22 = Deg2 )
=> ( ! [X: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList3)))
=> vEBT_invar_vebt(X,N3) )
=> ( vEBT_invar_vebt(Summary3,M3)
=> ( ( aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3) = aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),M3) )
=> ( ( M3 = N3 )
=> ( ( Deg2 = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N3),M3) )
=> ( ! [I2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I2),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),M3)))
=> ( ? [X_12: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList3),I2)),X_12))
<=> pp(aa(nat,bool,vEBT_V8194947554948674370ptions(Summary3),I2)) ) )
=> ( ( ( Mi3 = Ma3 )
=> ! [X: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList3)))
=> ~ ? [X_1: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(X),X_1)) ) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Mi3),Ma3))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Ma3),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),Deg2)))
=> ~ ( ( Mi3 != Ma3 )
=> ! [I2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I2),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),M3)))
=> ( ( ( vEBT_VEBT_high(Ma3,N3) = I2 )
=> pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList3),I2)),vEBT_VEBT_low(Ma3,N3))) )
& ! [X: nat] :
( ( ( vEBT_VEBT_high(X,N3) = I2 )
& pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList3),I2)),vEBT_VEBT_low(X,N3))) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Mi3),X))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),X),Ma3)) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
=> ~ ! [TreeList3: list(vEBT_VEBT),N3: nat,Summary3: vEBT_VEBT,M3: nat,Deg2: nat,Mi3: nat,Ma3: nat] :
( ( A1 = vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi3),Ma3)),Deg2,TreeList3,Summary3) )
=> ( ( A22 = Deg2 )
=> ( ! [X: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList3)))
=> vEBT_invar_vebt(X,N3) )
=> ( vEBT_invar_vebt(Summary3,M3)
=> ( ( aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3) = aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),M3) )
=> ( ( M3 = aa(nat,nat,suc,N3) )
=> ( ( Deg2 = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N3),M3) )
=> ( ! [I2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I2),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),M3)))
=> ( ? [X_12: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList3),I2)),X_12))
<=> pp(aa(nat,bool,vEBT_V8194947554948674370ptions(Summary3),I2)) ) )
=> ( ( ( Mi3 = Ma3 )
=> ! [X: vEBT_VEBT] :
( pp(member(vEBT_VEBT,X,aa(list(vEBT_VEBT),set(vEBT_VEBT),set2(vEBT_VEBT),TreeList3)))
=> ~ ? [X_1: nat] : pp(aa(nat,bool,vEBT_V8194947554948674370ptions(X),X_1)) ) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Mi3),Ma3))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Ma3),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),Deg2)))
=> ~ ( ( Mi3 != Ma3 )
=> ! [I2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I2),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),M3)))
=> ( ( ( vEBT_VEBT_high(Ma3,N3) = I2 )
=> pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList3),I2)),vEBT_VEBT_low(Ma3,N3))) )
& ! [X: nat] :
( ( ( vEBT_VEBT_high(X,N3) = I2 )
& pp(aa(nat,bool,vEBT_V8194947554948674370ptions(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList3),I2)),vEBT_VEBT_low(X,N3))) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Mi3),X))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),X),Ma3)) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.cases
tff(fact_1419_buildup__gives__valid,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> vEBT_invar_vebt(vEBT_vebt_buildup(N),N) ) ).
% buildup_gives_valid
tff(fact_1420_zle__add1__eq__le,axiom,
! [W: int,Z: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),W),aa(int,int,aa(int,fun(int,int),plus_plus(int),Z),one_one(int))))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),W),Z)) ) ).
% zle_add1_eq_le
tff(fact_1421_verit__minus__simplify_I3_J,axiom,
! [B: $tType] :
( group_add(B)
=> ! [B2: B] : ( aa(B,B,aa(B,fun(B,B),minus_minus(B),zero_zero(B)),B2) = aa(B,B,uminus_uminus(B),B2) ) ) ).
% verit_minus_simplify(3)
tff(fact_1422_verit__le__mono__div,axiom,
! [A3: nat,B4: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),A3),B4))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),A3),N)),if(nat,aa(nat,bool,aa(nat,fun(nat,bool),fequal(nat),modulo_modulo(nat,B4,N)),zero_zero(nat)),one_one(nat),zero_zero(nat)))),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),B4),N))) ) ) ).
% verit_le_mono_div
tff(fact_1423_mod__exhaust__less__4,axiom,
! [M: nat] :
( ( modulo_modulo(nat,M,aa(num,nat,numeral_numeral(nat),bit0(bit0(one2)))) = zero_zero(nat) )
| ( modulo_modulo(nat,M,aa(num,nat,numeral_numeral(nat),bit0(bit0(one2)))) = one_one(nat) )
| ( modulo_modulo(nat,M,aa(num,nat,numeral_numeral(nat),bit0(bit0(one2)))) = aa(num,nat,numeral_numeral(nat),bit0(one2)) )
| ( modulo_modulo(nat,M,aa(num,nat,numeral_numeral(nat),bit0(bit0(one2)))) = aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,one2)) ) ) ).
% mod_exhaust_less_4
tff(fact_1424_nat__approx__posE,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [E: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),E))
=> ~ ! [N3: nat] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,suc,N3)))),E)) ) ) ).
% nat_approx_posE
tff(fact_1425_set__bit__0,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A] : ( aa(A,A,aa(nat,fun(A,A),bit_se5668285175392031749et_bit(A),zero_zero(nat)),A2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2))))) ) ) ).
% set_bit_0
tff(fact_1426_negative__zle,axiom,
! [N: nat,M: nat] : pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,uminus_uminus(int),aa(nat,int,semiring_1_of_nat(int),N))),aa(nat,int,semiring_1_of_nat(int),M))) ).
% negative_zle
tff(fact_1427_zle__diff1__eq,axiom,
! [W: int,Z: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),W),aa(int,int,aa(int,fun(int,int),minus_minus(int),Z),one_one(int))))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),W),Z)) ) ).
% zle_diff1_eq
tff(fact_1428_negative__eq__positive,axiom,
! [N: nat,M: nat] :
( ( aa(int,int,uminus_uminus(int),aa(nat,int,semiring_1_of_nat(int),N)) = aa(nat,int,semiring_1_of_nat(int),M) )
<=> ( ( N = zero_zero(nat) )
& ( M = zero_zero(nat) ) ) ) ).
% negative_eq_positive
tff(fact_1429_verit__eq__simplify_I8_J,axiom,
! [X23: num,Y22: num] :
( ( bit0(X23) = bit0(Y22) )
<=> ( X23 = Y22 ) ) ).
% verit_eq_simplify(8)
tff(fact_1430_verit__minus__simplify_I4_J,axiom,
! [B: $tType] :
( group_add(B)
=> ! [B2: B] : ( aa(B,B,uminus_uminus(B),aa(B,B,uminus_uminus(B),B2)) = B2 ) ) ).
% verit_minus_simplify(4)
tff(fact_1431_verit__eq__simplify_I9_J,axiom,
! [X33: num,Y32: num] :
( ( aa(num,num,bit1,X33) = aa(num,num,bit1,Y32) )
<=> ( X33 = Y32 ) ) ).
% verit_eq_simplify(9)
tff(fact_1432_set__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),aa(int,int,aa(nat,fun(int,int),bit_se5668285175392031749et_bit(int),N),K)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K)) ) ).
% set_bit_nonnegative_int_iff
tff(fact_1433_set__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,aa(nat,fun(int,int),bit_se5668285175392031749et_bit(int),N),K)),zero_zero(int)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),zero_zero(int))) ) ).
% set_bit_negative_int_iff
tff(fact_1434_i0__less,axiom,
! [N: extended_enat] :
( pp(aa(extended_enat,bool,aa(extended_enat,fun(extended_enat,bool),ord_less(extended_enat),zero_zero(extended_enat)),N))
<=> ( N != zero_zero(extended_enat) ) ) ).
% i0_less
tff(fact_1435_idiff__0,axiom,
! [N: extended_enat] : ( aa(extended_enat,extended_enat,aa(extended_enat,fun(extended_enat,extended_enat),minus_minus(extended_enat),zero_zero(extended_enat)),N) = zero_zero(extended_enat) ) ).
% idiff_0
tff(fact_1436_idiff__0__right,axiom,
! [N: extended_enat] : ( aa(extended_enat,extended_enat,aa(extended_enat,fun(extended_enat,extended_enat),minus_minus(extended_enat),N),zero_zero(extended_enat)) = N ) ).
% idiff_0_right
tff(fact_1437_double__eq__0__iff,axiom,
! [A: $tType] :
( linord5086331880401160121up_add(A)
=> ! [A2: A] :
( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),A2) = zero_zero(A) )
<=> ( A2 = zero_zero(A) ) ) ) ).
% double_eq_0_iff
tff(fact_1438_not__real__square__gt__zero,axiom,
! [X2: real] :
( ~ pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,aa(real,fun(real,real),times_times(real),X2),X2)))
<=> ( X2 = zero_zero(real) ) ) ).
% not_real_square_gt_zero
tff(fact_1439_mod__pos__pos__trivial,axiom,
! [K: int,L: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),L))
=> ( modulo_modulo(int,K,L) = K ) ) ) ).
% mod_pos_pos_trivial
tff(fact_1440_mod__neg__neg__trivial,axiom,
! [K: int,L: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),K),zero_zero(int)))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),L),K))
=> ( modulo_modulo(int,K,L) = K ) ) ) ).
% mod_neg_neg_trivial
tff(fact_1441_real__add__minus__iff,axiom,
! [X2: real,A2: real] :
( ( aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),aa(real,real,uminus_uminus(real),A2)) = zero_zero(real) )
<=> ( X2 = A2 ) ) ).
% real_add_minus_iff
tff(fact_1442_zmod__numeral__Bit0,axiom,
! [V: num,W: num] : ( modulo_modulo(int,aa(num,int,numeral_numeral(int),bit0(V)),aa(num,int,numeral_numeral(int),bit0(W))) = aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),modulo_modulo(int,aa(num,int,numeral_numeral(int),V),aa(num,int,numeral_numeral(int),W))) ) ).
% zmod_numeral_Bit0
tff(fact_1443_int__eq__iff__numeral,axiom,
! [M: nat,V: num] :
( ( aa(nat,int,semiring_1_of_nat(int),M) = aa(num,int,numeral_numeral(int),V) )
<=> ( M = aa(num,nat,numeral_numeral(nat),V) ) ) ).
% int_eq_iff_numeral
tff(fact_1444_div__neg__neg__trivial,axiom,
! [K: int,L: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),K),zero_zero(int)))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),L),K))
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),K),L) = zero_zero(int) ) ) ) ).
% div_neg_neg_trivial
tff(fact_1445_div__pos__pos__trivial,axiom,
! [K: int,L: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),L))
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),K),L) = zero_zero(int) ) ) ) ).
% div_pos_pos_trivial
tff(fact_1446_negative__zless,axiom,
! [N: nat,M: nat] : pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,uminus_uminus(int),aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,suc,N)))),aa(nat,int,semiring_1_of_nat(int),M))) ).
% negative_zless
tff(fact_1447_half__nonnegative__int__iff,axiom,
! [K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),aa(int,int,aa(int,fun(int,int),divide_divide(int),K),aa(num,int,numeral_numeral(int),bit0(one2)))))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K)) ) ).
% half_nonnegative_int_iff
tff(fact_1448_half__negative__int__iff,axiom,
! [K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),K),aa(num,int,numeral_numeral(int),bit0(one2)))),zero_zero(int)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),zero_zero(int))) ) ).
% half_negative_int_iff
tff(fact_1449_zmod__numeral__Bit1,axiom,
! [V: num,W: num] : ( modulo_modulo(int,aa(num,int,numeral_numeral(int),aa(num,num,bit1,V)),aa(num,int,numeral_numeral(int),bit0(W))) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),modulo_modulo(int,aa(num,int,numeral_numeral(int),V),aa(num,int,numeral_numeral(int),W)))),one_one(int)) ) ).
% zmod_numeral_Bit1
tff(fact_1450_zdiv__mono__strict,axiom,
! [A3: int,B4: int,N: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),A3),B4))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),N))
=> ( ( modulo_modulo(int,A3,N) = zero_zero(int) )
=> ( ( modulo_modulo(int,B4,N) = zero_zero(int) )
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),A3),N)),aa(int,int,aa(int,fun(int,int),divide_divide(int),B4),N))) ) ) ) ) ).
% zdiv_mono_strict
tff(fact_1451_zmult__zless__mono2,axiom,
! [I: int,J: int,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),I),J))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),K))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,aa(int,fun(int,int),times_times(int),K),I)),aa(int,int,aa(int,fun(int,int),times_times(int),K),J))) ) ) ).
% zmult_zless_mono2
tff(fact_1452_Euclidean__Division_Opos__mod__bound,axiom,
! [L: int,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),L))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),modulo_modulo(int,K,L)),L)) ) ).
% Euclidean_Division.pos_mod_bound
tff(fact_1453_neg__mod__bound,axiom,
! [L: int,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),L),zero_zero(int)))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),L),modulo_modulo(int,K,L))) ) ).
% neg_mod_bound
tff(fact_1454_less__int__code_I1_J,axiom,
~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),zero_zero(int))) ).
% less_int_code(1)
tff(fact_1455_int__int__eq,axiom,
! [M: nat,N: nat] :
( ( aa(nat,int,semiring_1_of_nat(int),M) = aa(nat,int,semiring_1_of_nat(int),N) )
<=> ( M = N ) ) ).
% int_int_eq
tff(fact_1456_int__if,axiom,
! [P: bool,A2: nat,B2: nat] :
( ( pp(P)
=> ( aa(nat,int,semiring_1_of_nat(int),if(nat,P,A2,B2)) = aa(nat,int,semiring_1_of_nat(int),A2) ) )
& ( ~ pp(P)
=> ( aa(nat,int,semiring_1_of_nat(int),if(nat,P,A2,B2)) = aa(nat,int,semiring_1_of_nat(int),B2) ) ) ) ).
% int_if
tff(fact_1457_nat__int__comparison_I1_J,axiom,
! [A2: nat,B2: nat] :
( ( A2 = B2 )
<=> ( aa(nat,int,semiring_1_of_nat(int),A2) = aa(nat,int,semiring_1_of_nat(int),B2) ) ) ).
% nat_int_comparison(1)
tff(fact_1458_int__diff__cases,axiom,
! [Z: int] :
~ ! [M3: nat,N3: nat] : ( Z != aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(nat,int,semiring_1_of_nat(int),M3)),aa(nat,int,semiring_1_of_nat(int),N3)) ) ).
% int_diff_cases
tff(fact_1459_int__distrib_I4_J,axiom,
! [W: int,Z1: int,Z22: int] : ( aa(int,int,aa(int,fun(int,int),times_times(int),W),aa(int,int,aa(int,fun(int,int),minus_minus(int),Z1),Z22)) = aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(int,int,aa(int,fun(int,int),times_times(int),W),Z1)),aa(int,int,aa(int,fun(int,int),times_times(int),W),Z22)) ) ).
% int_distrib(4)
tff(fact_1460_int__distrib_I3_J,axiom,
! [Z1: int,Z22: int,W: int] : ( aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),Z1),Z22)),W) = aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(int,int,aa(int,fun(int,int),times_times(int),Z1),W)),aa(int,int,aa(int,fun(int,int),times_times(int),Z22),W)) ) ).
% int_distrib(3)
tff(fact_1461_minus__int__code_I1_J,axiom,
! [K: int] : ( aa(int,int,aa(int,fun(int,int),minus_minus(int),K),zero_zero(int)) = K ) ).
% minus_int_code(1)
tff(fact_1462_zmod__le__nonneg__dividend,axiom,
! [M: int,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),M))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),modulo_modulo(int,M,K)),M)) ) ).
% zmod_le_nonneg_dividend
tff(fact_1463_Euclidean__Division_Opos__mod__sign,axiom,
! [L: int,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),L))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),modulo_modulo(int,K,L))) ) ).
% Euclidean_Division.pos_mod_sign
tff(fact_1464_neg__mod__sign,axiom,
! [L: int,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),L),zero_zero(int)))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),modulo_modulo(int,K,L)),zero_zero(int))) ) ).
% neg_mod_sign
tff(fact_1465_zmod__trivial__iff,axiom,
! [I: int,K: int] :
( ( modulo_modulo(int,I,K) = I )
<=> ( ( K = zero_zero(int) )
| ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),I))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),I),K)) )
| ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),I),zero_zero(int)))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),I)) ) ) ) ).
% zmod_trivial_iff
tff(fact_1466_pos__mod__conj,axiom,
! [B2: int,A2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),B2))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),modulo_modulo(int,A2,B2)))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),modulo_modulo(int,A2,B2)),B2)) ) ) ).
% pos_mod_conj
tff(fact_1467_neg__mod__conj,axiom,
! [B2: int,A2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),B2),zero_zero(int)))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),modulo_modulo(int,A2,B2)),zero_zero(int)))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),B2),modulo_modulo(int,A2,B2))) ) ) ).
% neg_mod_conj
tff(fact_1468_mod__pos__geq,axiom,
! [L: int,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),L))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),L),K))
=> ( modulo_modulo(int,K,L) = modulo_modulo(int,aa(int,int,aa(int,fun(int,int),minus_minus(int),K),L),L) ) ) ) ).
% mod_pos_geq
tff(fact_1469_zmod__zminus1__eq__if,axiom,
! [A2: int,B2: int] :
( ( ( modulo_modulo(int,A2,B2) = zero_zero(int) )
=> ( modulo_modulo(int,aa(int,int,uminus_uminus(int),A2),B2) = zero_zero(int) ) )
& ( ( modulo_modulo(int,A2,B2) != zero_zero(int) )
=> ( modulo_modulo(int,aa(int,int,uminus_uminus(int),A2),B2) = aa(int,int,aa(int,fun(int,int),minus_minus(int),B2),modulo_modulo(int,A2,B2)) ) ) ) ).
% zmod_zminus1_eq_if
tff(fact_1470_zmod__zminus2__eq__if,axiom,
! [A2: int,B2: int] :
( ( ( modulo_modulo(int,A2,B2) = zero_zero(int) )
=> ( modulo_modulo(int,A2,aa(int,int,uminus_uminus(int),B2)) = zero_zero(int) ) )
& ( ( modulo_modulo(int,A2,B2) != zero_zero(int) )
=> ( modulo_modulo(int,A2,aa(int,int,uminus_uminus(int),B2)) = aa(int,int,aa(int,fun(int,int),minus_minus(int),modulo_modulo(int,A2,B2)),B2) ) ) ) ).
% zmod_zminus2_eq_if
tff(fact_1471_zmod__zminus2__not__zero,axiom,
! [K: int,L: int] :
( ( modulo_modulo(int,K,aa(int,int,uminus_uminus(int),L)) != zero_zero(int) )
=> ( modulo_modulo(int,K,L) != zero_zero(int) ) ) ).
% zmod_zminus2_not_zero
tff(fact_1472_zmod__zminus1__not__zero,axiom,
! [K: int,L: int] :
( ( modulo_modulo(int,aa(int,int,uminus_uminus(int),K),L) != zero_zero(int) )
=> ( modulo_modulo(int,K,L) != zero_zero(int) ) ) ).
% zmod_zminus1_not_zero
tff(fact_1473_int__ops_I1_J,axiom,
aa(nat,int,semiring_1_of_nat(int),zero_zero(nat)) = zero_zero(int) ).
% int_ops(1)
tff(fact_1474_int__ops_I6_J,axiom,
! [A2: nat,B2: nat] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(nat,int,semiring_1_of_nat(int),A2)),aa(nat,int,semiring_1_of_nat(int),B2)))
=> ( aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),A2),B2)) = zero_zero(int) ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(nat,int,semiring_1_of_nat(int),A2)),aa(nat,int,semiring_1_of_nat(int),B2)))
=> ( aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),A2),B2)) = aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(nat,int,semiring_1_of_nat(int),A2)),aa(nat,int,semiring_1_of_nat(int),B2)) ) ) ) ).
% int_ops(6)
tff(fact_1475_zero__le__imp__eq__int,axiom,
! [K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K))
=> ? [N3: nat] : ( K = aa(nat,int,semiring_1_of_nat(int),N3) ) ) ).
% zero_le_imp_eq_int
tff(fact_1476_nonneg__int__cases,axiom,
! [K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K))
=> ~ ! [N3: nat] : ( K != aa(nat,int,semiring_1_of_nat(int),N3) ) ) ).
% nonneg_int_cases
tff(fact_1477_less__eq__int__code_I1_J,axiom,
pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),zero_zero(int))) ).
% less_eq_int_code(1)
tff(fact_1478_pos__zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),M))
=> ( ( aa(int,int,aa(int,fun(int,int),times_times(int),M),N) = one_one(int) )
<=> ( ( M = one_one(int) )
& ( N = one_one(int) ) ) ) ) ).
% pos_zmult_eq_1_iff
tff(fact_1479_minus__int__code_I2_J,axiom,
! [L: int] : ( aa(int,int,aa(int,fun(int,int),minus_minus(int),zero_zero(int)),L) = aa(int,int,uminus_uminus(int),L) ) ).
% minus_int_code(2)
tff(fact_1480_uminus__int__code_I1_J,axiom,
aa(int,int,uminus_uminus(int),zero_zero(int)) = zero_zero(int) ).
% uminus_int_code(1)
tff(fact_1481_plus__int__code_I1_J,axiom,
! [K: int] : ( aa(int,int,aa(int,fun(int,int),plus_plus(int),K),zero_zero(int)) = K ) ).
% plus_int_code(1)
tff(fact_1482_plus__int__code_I2_J,axiom,
! [L: int] : ( aa(int,int,aa(int,fun(int,int),plus_plus(int),zero_zero(int)),L) = L ) ).
% plus_int_code(2)
tff(fact_1483_zmod__minus1,axiom,
! [B2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),B2))
=> ( modulo_modulo(int,aa(int,int,uminus_uminus(int),one_one(int)),B2) = aa(int,int,aa(int,fun(int,int),minus_minus(int),B2),one_one(int)) ) ) ).
% zmod_minus1
tff(fact_1484_mod__pos__neg__trivial,axiom,
! [K: int,L: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),K))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),K),L)),zero_zero(int)))
=> ( modulo_modulo(int,K,L) = aa(int,int,aa(int,fun(int,int),plus_plus(int),K),L) ) ) ) ).
% mod_pos_neg_trivial
tff(fact_1485_int__mod__pos__eq,axiom,
! [A2: int,B2: int,Q2: int,R: int] :
( ( A2 = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),B2),Q2)),R) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),R))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),R),B2))
=> ( modulo_modulo(int,A2,B2) = R ) ) ) ) ).
% int_mod_pos_eq
tff(fact_1486_int__mod__neg__eq,axiom,
! [A2: int,B2: int,Q2: int,R: int] :
( ( A2 = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),B2),Q2)),R) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),R),zero_zero(int)))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),B2),R))
=> ( modulo_modulo(int,A2,B2) = R ) ) ) ) ).
% int_mod_neg_eq
tff(fact_1487_split__zmod,axiom,
! [P: fun(int,bool),N: int,K: int] :
( pp(aa(int,bool,P,modulo_modulo(int,N,K)))
<=> ( ( ( K = zero_zero(int) )
=> pp(aa(int,bool,P,N)) )
& ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),K))
=> ! [I4: int,J3: int] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),J3))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),J3),K))
& ( N = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),K),I4)),J3) ) )
=> pp(aa(int,bool,P,J3)) ) )
& ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),zero_zero(int)))
=> ! [I4: int,J3: int] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),J3))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),J3),zero_zero(int)))
& ( N = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),K),I4)),J3) ) )
=> pp(aa(int,bool,P,J3)) ) ) ) ) ).
% split_zmod
tff(fact_1488_zmod__int,axiom,
! [A2: nat,B2: nat] : ( aa(nat,int,semiring_1_of_nat(int),modulo_modulo(nat,A2,B2)) = modulo_modulo(int,aa(nat,int,semiring_1_of_nat(int),A2),aa(nat,int,semiring_1_of_nat(int),B2)) ) ).
% zmod_int
tff(fact_1489_div__neg__pos__less0,axiom,
! [A2: int,B2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),A2),zero_zero(int)))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),B2))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),B2)),zero_zero(int))) ) ) ).
% div_neg_pos_less0
tff(fact_1490_neg__imp__zdiv__neg__iff,axiom,
! [B2: int,A2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),B2),zero_zero(int)))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),B2)),zero_zero(int)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),A2)) ) ) ).
% neg_imp_zdiv_neg_iff
tff(fact_1491_pos__imp__zdiv__neg__iff,axiom,
! [B2: int,A2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),B2))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),B2)),zero_zero(int)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),A2),zero_zero(int))) ) ) ).
% pos_imp_zdiv_neg_iff
tff(fact_1492_div__mod__decomp__int,axiom,
! [A3: int,N: int] : ( A3 = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),A3),N)),N)),modulo_modulo(int,A3,N)) ) ).
% div_mod_decomp_int
tff(fact_1493_pos__int__cases,axiom,
! [K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),K))
=> ~ ! [N3: nat] :
( ( K = aa(nat,int,semiring_1_of_nat(int),N3) )
=> ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N3)) ) ) ).
% pos_int_cases
tff(fact_1494_zero__less__imp__eq__int,axiom,
! [K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),K))
=> ? [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N3))
& ( K = aa(nat,int,semiring_1_of_nat(int),N3) ) ) ) ).
% zero_less_imp_eq_int
tff(fact_1495_negative__zless__0,axiom,
! [N: nat] : pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,uminus_uminus(int),aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,suc,N)))),zero_zero(int))) ).
% negative_zless_0
tff(fact_1496_negD,axiom,
! [X2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),X2),zero_zero(int)))
=> ? [N3: nat] : ( X2 = aa(int,int,uminus_uminus(int),aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,suc,N3))) ) ) ).
% negD
tff(fact_1497_int__one__le__iff__zero__less,axiom,
! [Z: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),one_one(int)),Z))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),Z)) ) ).
% int_one_le_iff_zero_less
tff(fact_1498_nonpos__int__cases,axiom,
! [K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),K),zero_zero(int)))
=> ~ ! [N3: nat] : ( K != aa(int,int,uminus_uminus(int),aa(nat,int,semiring_1_of_nat(int),N3)) ) ) ).
% nonpos_int_cases
tff(fact_1499_negative__zle__0,axiom,
! [N: nat] : pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,uminus_uminus(int),aa(nat,int,semiring_1_of_nat(int),N))),zero_zero(int))) ).
% negative_zle_0
tff(fact_1500_enat__0__less__mult__iff,axiom,
! [M: extended_enat,N: extended_enat] :
( pp(aa(extended_enat,bool,aa(extended_enat,fun(extended_enat,bool),ord_less(extended_enat),zero_zero(extended_enat)),aa(extended_enat,extended_enat,aa(extended_enat,fun(extended_enat,extended_enat),times_times(extended_enat),M),N)))
<=> ( pp(aa(extended_enat,bool,aa(extended_enat,fun(extended_enat,bool),ord_less(extended_enat),zero_zero(extended_enat)),M))
& pp(aa(extended_enat,bool,aa(extended_enat,fun(extended_enat,bool),ord_less(extended_enat),zero_zero(extended_enat)),N)) ) ) ).
% enat_0_less_mult_iff
tff(fact_1501_not__iless0,axiom,
! [N: extended_enat] : ~ pp(aa(extended_enat,bool,aa(extended_enat,fun(extended_enat,bool),ord_less(extended_enat),N),zero_zero(extended_enat))) ).
% not_iless0
tff(fact_1502_odd__nonzero,axiom,
! [Z: int] : ( aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),one_one(int)),Z)),Z) != zero_zero(int) ) ).
% odd_nonzero
tff(fact_1503_odd__less__0__iff,axiom,
! [Z: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),one_one(int)),Z)),Z)),zero_zero(int)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),Z),zero_zero(int))) ) ).
% odd_less_0_iff
tff(fact_1504_iadd__is__0,axiom,
! [M: extended_enat,N: extended_enat] :
( ( aa(extended_enat,extended_enat,aa(extended_enat,fun(extended_enat,extended_enat),plus_plus(extended_enat),M),N) = zero_zero(extended_enat) )
<=> ( ( M = zero_zero(extended_enat) )
& ( N = zero_zero(extended_enat) ) ) ) ).
% iadd_is_0
tff(fact_1505_i0__lb,axiom,
! [N: extended_enat] : pp(aa(extended_enat,bool,aa(extended_enat,fun(extended_enat,bool),ord_less_eq(extended_enat),zero_zero(extended_enat)),N)) ).
% i0_lb
tff(fact_1506_ile0__eq,axiom,
! [N: extended_enat] :
( pp(aa(extended_enat,bool,aa(extended_enat,fun(extended_enat,bool),ord_less_eq(extended_enat),N),zero_zero(extended_enat)))
<=> ( N = zero_zero(extended_enat) ) ) ).
% ile0_eq
tff(fact_1507_minus__mod__int__eq,axiom,
! [L: int,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),L))
=> ( modulo_modulo(int,aa(int,int,uminus_uminus(int),K),L) = aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),L),one_one(int))),modulo_modulo(int,aa(int,int,aa(int,fun(int,int),minus_minus(int),K),one_one(int)),L)) ) ) ).
% minus_mod_int_eq
tff(fact_1508_zdiv__zminus1__eq__if,axiom,
! [B2: int,A2: int] :
( ( B2 != zero_zero(int) )
=> ( ( ( modulo_modulo(int,A2,B2) = zero_zero(int) )
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,uminus_uminus(int),A2)),B2) = aa(int,int,uminus_uminus(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),B2)) ) )
& ( ( modulo_modulo(int,A2,B2) != zero_zero(int) )
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,uminus_uminus(int),A2)),B2) = aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(int,int,uminus_uminus(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),B2))),one_one(int)) ) ) ) ) ).
% zdiv_zminus1_eq_if
tff(fact_1509_zdiv__zminus2__eq__if,axiom,
! [B2: int,A2: int] :
( ( B2 != zero_zero(int) )
=> ( ( ( modulo_modulo(int,A2,B2) = zero_zero(int) )
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),aa(int,int,uminus_uminus(int),B2)) = aa(int,int,uminus_uminus(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),B2)) ) )
& ( ( modulo_modulo(int,A2,B2) != zero_zero(int) )
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),aa(int,int,uminus_uminus(int),B2)) = aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(int,int,uminus_uminus(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),B2))),one_one(int)) ) ) ) ) ).
% zdiv_zminus2_eq_if
tff(fact_1510_split__neg__lemma,axiom,
! [K: int,P: fun(int,fun(int,bool)),N: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),zero_zero(int)))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),P,aa(int,int,aa(int,fun(int,int),divide_divide(int),N),K)),modulo_modulo(int,N,K)))
<=> ! [I4: int,J3: int] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),J3))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),J3),zero_zero(int)))
& ( N = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),K),I4)),J3) ) )
=> pp(aa(int,bool,aa(int,fun(int,bool),P,I4),J3)) ) ) ) ).
% split_neg_lemma
tff(fact_1511_split__pos__lemma,axiom,
! [K: int,P: fun(int,fun(int,bool)),N: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),K))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),P,aa(int,int,aa(int,fun(int,int),divide_divide(int),N),K)),modulo_modulo(int,N,K)))
<=> ! [I4: int,J3: int] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),J3))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),J3),K))
& ( N = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),K),I4)),J3) ) )
=> pp(aa(int,bool,aa(int,fun(int,bool),P,I4),J3)) ) ) ) ).
% split_pos_lemma
tff(fact_1512_zmod__zmult2__eq,axiom,
! [C2: int,A2: int,B2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),C2))
=> ( modulo_modulo(int,A2,aa(int,int,aa(int,fun(int,int),times_times(int),B2),C2)) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),B2),modulo_modulo(int,aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),B2),C2))),modulo_modulo(int,A2,B2)) ) ) ).
% zmod_zmult2_eq
tff(fact_1513_verit__le__mono__div__int,axiom,
! [A3: int,B4: int,N: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),A3),B4))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),N))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),A3),N)),if(int,aa(int,bool,aa(int,fun(int,bool),fequal(int),modulo_modulo(int,B4,N)),zero_zero(int)),one_one(int),zero_zero(int)))),aa(int,int,aa(int,fun(int,int),divide_divide(int),B4),N))) ) ) ).
% verit_le_mono_div_int
tff(fact_1514_set__bit__greater__eq,axiom,
! [K: int,N: nat] : pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),K),aa(int,int,aa(nat,fun(int,int),bit_se5668285175392031749et_bit(int),N),K))) ).
% set_bit_greater_eq
tff(fact_1515_int__cases3,axiom,
! [K: int] :
( ( K != zero_zero(int) )
=> ( ! [N3: nat] :
( ( K = aa(nat,int,semiring_1_of_nat(int),N3) )
=> ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N3)) )
=> ~ ! [N3: nat] :
( ( K = aa(int,int,uminus_uminus(int),aa(nat,int,semiring_1_of_nat(int),N3)) )
=> ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N3)) ) ) ) ).
% int_cases3
tff(fact_1516_neg__int__cases,axiom,
! [K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),zero_zero(int)))
=> ~ ! [N3: nat] :
( ( K = aa(int,int,uminus_uminus(int),aa(nat,int,semiring_1_of_nat(int),N3)) )
=> ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N3)) ) ) ).
% neg_int_cases
tff(fact_1517_not__zle__0__negative,axiom,
! [N: nat] : ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),aa(int,int,uminus_uminus(int),aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,suc,N))))) ).
% not_zle_0_negative
tff(fact_1518_le__imp__0__less,axiom,
! [Z: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Z))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),aa(int,int,aa(int,fun(int,int),plus_plus(int),one_one(int)),Z))) ) ).
% le_imp_0_less
tff(fact_1519_verit__less__mono__div__int2,axiom,
! [A3: int,B4: int,N: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),A3),B4))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),aa(int,int,uminus_uminus(int),N)))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),B4),N)),aa(int,int,aa(int,fun(int,int),divide_divide(int),A3),N))) ) ) ).
% verit_less_mono_div_int2
tff(fact_1520_unique__quotient__lemma__neg,axiom,
! [B2: int,Q5: int,R3: int,Q2: int,R: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),B2),Q5)),R3)),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),B2),Q2)),R)))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),R),zero_zero(int)))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),B2),R))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),B2),R3))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),Q2),Q5)) ) ) ) ) ).
% unique_quotient_lemma_neg
tff(fact_1521_unique__quotient__lemma,axiom,
! [B2: int,Q5: int,R3: int,Q2: int,R: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),B2),Q5)),R3)),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),B2),Q2)),R)))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),R3))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),R3),B2))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),R),B2))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),Q5),Q2)) ) ) ) ) ).
% unique_quotient_lemma
tff(fact_1522_zdiv__mono2__neg__lemma,axiom,
! [B2: int,Q2: int,R: int,B6: int,Q5: int,R3: int] :
( ( aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),B2),Q2)),R) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),B6),Q5)),R3) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),B6),Q5)),R3)),zero_zero(int)))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),R),B2))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),R3))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),B6))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),B6),B2))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),Q5),Q2)) ) ) ) ) ) ) ).
% zdiv_mono2_neg_lemma
tff(fact_1523_zdiv__mono2__lemma,axiom,
! [B2: int,Q2: int,R: int,B6: int,Q5: int,R3: int] :
( ( aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),B2),Q2)),R) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),B6),Q5)),R3) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),B6),Q5)),R3)))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),R3),B6))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),R))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),B6))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),B6),B2))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),Q2),Q5)) ) ) ) ) ) ) ).
% zdiv_mono2_lemma
tff(fact_1524_q__pos__lemma,axiom,
! [B6: int,Q5: int,R3: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),B6),Q5)),R3)))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),R3),B6))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),B6))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Q5)) ) ) ) ).
% q_pos_lemma
tff(fact_1525_zdiv__mono1,axiom,
! [A2: int,A6: int,B2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),A2),A6))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),B2))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),B2)),aa(int,int,aa(int,fun(int,int),divide_divide(int),A6),B2))) ) ) ).
% zdiv_mono1
tff(fact_1526_zdiv__mono2,axiom,
! [A2: int,B6: int,B2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),A2))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),B6))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),B6),B2))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),B2)),aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),B6))) ) ) ) ).
% zdiv_mono2
tff(fact_1527_zdiv__eq__0__iff,axiom,
! [I: int,K: int] :
( ( aa(int,int,aa(int,fun(int,int),divide_divide(int),I),K) = zero_zero(int) )
<=> ( ( K = zero_zero(int) )
| ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),I))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),I),K)) )
| ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),I),zero_zero(int)))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),I)) ) ) ) ).
% zdiv_eq_0_iff
tff(fact_1528_zdiv__mono1__neg,axiom,
! [A2: int,A6: int,B2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),A2),A6))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),B2),zero_zero(int)))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),A6),B2)),aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),B2))) ) ) ).
% zdiv_mono1_neg
tff(fact_1529_zdiv__mono2__neg,axiom,
! [A2: int,B6: int,B2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),A2),zero_zero(int)))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),B6))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),B6),B2))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),B6)),aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),B2))) ) ) ) ).
% zdiv_mono2_neg
tff(fact_1530_div__int__pos__iff,axiom,
! [K: int,L: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),aa(int,int,aa(int,fun(int,int),divide_divide(int),K),L)))
<=> ( ( K = zero_zero(int) )
| ( L = zero_zero(int) )
| ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),L)) )
| ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),zero_zero(int)))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),L),zero_zero(int))) ) ) ) ).
% div_int_pos_iff
tff(fact_1531_div__positive__int,axiom,
! [L: int,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),L),K))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),L))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),aa(int,int,aa(int,fun(int,int),divide_divide(int),K),L))) ) ) ).
% div_positive_int
tff(fact_1532_div__nonneg__neg__le0,axiom,
! [A2: int,B2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),A2))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),B2),zero_zero(int)))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),B2)),zero_zero(int))) ) ) ).
% div_nonneg_neg_le0
tff(fact_1533_div__nonpos__pos__le0,axiom,
! [A2: int,B2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),A2),zero_zero(int)))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),B2))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),B2)),zero_zero(int))) ) ) ).
% div_nonpos_pos_le0
tff(fact_1534_pos__imp__zdiv__pos__iff,axiom,
! [K: int,I: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),K))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),aa(int,int,aa(int,fun(int,int),divide_divide(int),I),K)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),K),I)) ) ) ).
% pos_imp_zdiv_pos_iff
tff(fact_1535_neg__imp__zdiv__nonneg__iff,axiom,
! [B2: int,A2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),B2),zero_zero(int)))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),B2)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),A2),zero_zero(int))) ) ) ).
% neg_imp_zdiv_nonneg_iff
tff(fact_1536_pos__imp__zdiv__nonneg__iff,axiom,
! [B2: int,A2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),B2))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),B2)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),A2)) ) ) ).
% pos_imp_zdiv_nonneg_iff
tff(fact_1537_nonneg1__imp__zdiv__pos__iff,axiom,
! [A2: int,B2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),A2))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),B2)))
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),B2),A2))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),B2)) ) ) ) ).
% nonneg1_imp_zdiv_pos_iff
tff(fact_1538_zdiv__zmult2__eq,axiom,
! [C2: int,A2: int,B2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),C2))
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),aa(int,int,aa(int,fun(int,int),times_times(int),B2),C2)) = aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),B2)),C2) ) ) ).
% zdiv_zmult2_eq
tff(fact_1539_int__div__less__self,axiom,
! [X2: int,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),X2))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),one_one(int)),K))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),X2),K)),X2)) ) ) ).
% int_div_less_self
tff(fact_1540_pos__zmod__mult__2,axiom,
! [A2: int,B2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),A2))
=> ( modulo_modulo(int,aa(int,int,aa(int,fun(int,int),plus_plus(int),one_one(int)),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),B2)),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),A2)) = aa(int,int,aa(int,fun(int,int),plus_plus(int),one_one(int)),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),modulo_modulo(int,B2,A2))) ) ) ).
% pos_zmod_mult_2
tff(fact_1541_neg__zmod__mult__2,axiom,
! [A2: int,B2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),A2),zero_zero(int)))
=> ( modulo_modulo(int,aa(int,int,aa(int,fun(int,int),plus_plus(int),one_one(int)),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),B2)),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),A2)) = aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),modulo_modulo(int,aa(int,int,aa(int,fun(int,int),plus_plus(int),B2),one_one(int)),A2))),one_one(int)) ) ) ).
% neg_zmod_mult_2
tff(fact_1542_vebt__buildup_Osimps_I1_J,axiom,
vEBT_vebt_buildup(zero_zero(nat)) = vEBT_Leaf(fFalse,fFalse) ).
% vebt_buildup.simps(1)
tff(fact_1543_verit__comp__simplify1_I2_J,axiom,
! [A: $tType] :
( order(A)
=> ! [A2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),A2)) ) ).
% verit_comp_simplify1(2)
tff(fact_1544_verit__la__disequality,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A2: A,B2: A] :
( ( A2 = B2 )
| ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
| ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2)) ) ) ).
% verit_la_disequality
tff(fact_1545_verit__comp__simplify1_I1_J,axiom,
! [A: $tType] :
( order(A)
=> ! [A2: A] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),A2)) ) ).
% verit_comp_simplify1(1)
tff(fact_1546_verit__negate__coefficient_I3_J,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A,B2: A] :
( ( A2 = B2 )
=> ( aa(A,A,uminus_uminus(A),A2) = aa(A,A,uminus_uminus(A),B2) ) ) ) ).
% verit_negate_coefficient(3)
tff(fact_1547_nat__int__comparison_I2_J,axiom,
! [A2: nat,B2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),A2),B2))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(nat,int,semiring_1_of_nat(int),A2)),aa(nat,int,semiring_1_of_nat(int),B2))) ) ).
% nat_int_comparison(2)
tff(fact_1548_realpow__pos__nth2,axiom,
! [A2: real,N: nat] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),A2))
=> ? [R4: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),R4))
& ( aa(nat,real,power_power(real,R4),aa(nat,nat,suc,N)) = A2 ) ) ) ).
% realpow_pos_nth2
tff(fact_1549_int__ops_I7_J,axiom,
! [A2: nat,B2: nat] : ( aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),A2),B2)) = aa(int,int,aa(int,fun(int,int),times_times(int),aa(nat,int,semiring_1_of_nat(int),A2)),aa(nat,int,semiring_1_of_nat(int),B2)) ) ).
% int_ops(7)
tff(fact_1550_verit__la__generic,axiom,
! [A2: int,X2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),A2),X2))
| ( A2 = X2 )
| pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),X2),A2)) ) ).
% verit_la_generic
tff(fact_1551_int__less__induct,axiom,
! [I: int,K: int,P: fun(int,bool)] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),I),K))
=> ( pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),minus_minus(int),K),one_one(int))))
=> ( ! [I3: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),I3),K))
=> ( pp(aa(int,bool,P,I3))
=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),minus_minus(int),I3),one_one(int)))) ) )
=> pp(aa(int,bool,P,I)) ) ) ) ).
% int_less_induct
tff(fact_1552_real__arch__pow__inv,axiom,
! [Y: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),one_one(real)))
=> ? [N3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(nat,real,power_power(real,X2),N3)),Y)) ) ) ).
% real_arch_pow_inv
tff(fact_1553_not__int__zless__negative,axiom,
! [N: nat,M: nat] : ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(nat,int,semiring_1_of_nat(int),N)),aa(int,int,uminus_uminus(int),aa(nat,int,semiring_1_of_nat(int),M)))) ).
% not_int_zless_negative
tff(fact_1554_int__cases2,axiom,
! [Z: int] :
( ! [N3: nat] : ( Z != aa(nat,int,semiring_1_of_nat(int),N3) )
=> ~ ! [N3: nat] : ( Z != aa(int,int,uminus_uminus(int),aa(nat,int,semiring_1_of_nat(int),N3)) ) ) ).
% int_cases2
tff(fact_1555_real__0__less__add__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),X2)),Y)) ) ).
% real_0_less_add_iff
tff(fact_1556_real__add__less__0__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),Y)),zero_zero(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y),aa(real,real,uminus_uminus(real),X2))) ) ).
% real_add_less_0_iff
tff(fact_1557_reals__Archimedean3,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ! [Y4: real] :
? [N3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y4),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N3)),X2))) ) ).
% reals_Archimedean3
tff(fact_1558_int__distrib_I1_J,axiom,
! [Z1: int,Z22: int,W: int] : ( aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),Z1),Z22)),W) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),Z1),W)),aa(int,int,aa(int,fun(int,int),times_times(int),Z22),W)) ) ).
% int_distrib(1)
tff(fact_1559_int__distrib_I2_J,axiom,
! [W: int,Z1: int,Z22: int] : ( aa(int,int,aa(int,fun(int,int),times_times(int),W),aa(int,int,aa(int,fun(int,int),plus_plus(int),Z1),Z22)) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),W),Z1)),aa(int,int,aa(int,fun(int,int),times_times(int),W),Z22)) ) ).
% int_distrib(2)
tff(fact_1560_real__add__le__0__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),Y)),zero_zero(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),aa(real,real,uminus_uminus(real),X2))) ) ).
% real_add_le_0_iff
tff(fact_1561_real__0__le__add__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),X2)),Y)) ) ).
% real_0_le_add_iff
tff(fact_1562_div__eq__minus1,axiom,
! [B2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),B2))
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,uminus_uminus(int),one_one(int))),B2) = aa(int,int,uminus_uminus(int),one_one(int)) ) ) ).
% div_eq_minus1
tff(fact_1563_split__zdiv,axiom,
! [P: fun(int,bool),N: int,K: int] :
( pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),divide_divide(int),N),K)))
<=> ( ( ( K = zero_zero(int) )
=> pp(aa(int,bool,P,zero_zero(int))) )
& ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),K))
=> ! [I4: int,J3: int] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),J3))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),J3),K))
& ( N = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),K),I4)),J3) ) )
=> pp(aa(int,bool,P,I4)) ) )
& ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),zero_zero(int)))
=> ! [I4: int,J3: int] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),J3))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),J3),zero_zero(int)))
& ( N = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),K),I4)),J3) ) )
=> pp(aa(int,bool,P,I4)) ) ) ) ) ).
% split_zdiv
tff(fact_1564_int__div__neg__eq,axiom,
! [A2: int,B2: int,Q2: int,R: int] :
( ( A2 = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),B2),Q2)),R) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),R),zero_zero(int)))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),B2),R))
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),B2) = Q2 ) ) ) ) ).
% int_div_neg_eq
tff(fact_1565_int__div__pos__eq,axiom,
! [A2: int,B2: int,Q2: int,R: int] :
( ( A2 = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),B2),Q2)),R) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),R))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),R),B2))
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),A2),B2) = Q2 ) ) ) ) ).
% int_div_pos_eq
tff(fact_1566_vebt__buildup_Osimps_I2_J,axiom,
vEBT_vebt_buildup(aa(nat,nat,suc,zero_zero(nat))) = vEBT_Leaf(fFalse,fFalse) ).
% vebt_buildup.simps(2)
tff(fact_1567_realpow__pos__nth,axiom,
! [N: nat,A2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),A2))
=> ? [R4: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),R4))
& ( aa(nat,real,power_power(real,R4),N) = A2 ) ) ) ) ).
% realpow_pos_nth
tff(fact_1568_realpow__pos__nth__unique,axiom,
! [N: nat,A2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),A2))
=> ? [X3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X3))
& ( aa(nat,real,power_power(real,X3),N) = A2 )
& ! [Y4: real] :
( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),Y4))
& ( aa(nat,real,power_power(real,Y4),N) = A2 ) )
=> ( Y4 = X3 ) ) ) ) ) ).
% realpow_pos_nth_unique
tff(fact_1569_div__pos__geq,axiom,
! [L: int,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),L))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),L),K))
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),K),L) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),K),L)),L)),one_one(int)) ) ) ) ).
% div_pos_geq
tff(fact_1570_real__archimedian__rdiv__eq__0,axiom,
! [X2: real,C2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),C2))
=> ( ! [M3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),M3))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),M3)),X2)),C2)) )
=> ( X2 = zero_zero(real) ) ) ) ) ).
% real_archimedian_rdiv_eq_0
tff(fact_1571_not__exp__less__eq__0__int,axiom,
! [N: nat] : ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)),zero_zero(int))) ).
% not_exp_less_eq_0_int
tff(fact_1572_div__pos__neg__trivial,axiom,
! [K: int,L: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),K))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),K),L)),zero_zero(int)))
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),K),L) = aa(int,int,uminus_uminus(int),one_one(int)) ) ) ) ).
% div_pos_neg_trivial
tff(fact_1573_real__of__nat__div2,axiom,
! [N: nat,X2: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(nat,real,semiring_1_of_nat(real),N)),aa(nat,real,semiring_1_of_nat(real),X2))),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),X2))))) ).
% real_of_nat_div2
tff(fact_1574_verit__comp__simplify1_I3_J,axiom,
! [B: $tType] :
( linorder(B)
=> ! [B6: B,A6: B] :
( ~ pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),B6),A6))
<=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),A6),B6)) ) ) ).
% verit_comp_simplify1(3)
tff(fact_1575_verit__sum__simplify,axiom,
! [A: $tType] :
( cancel1802427076303600483id_add(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),zero_zero(A)) = A2 ) ) ).
% verit_sum_simplify
tff(fact_1576_verit__negate__coefficient_I2_J,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),B2)),aa(A,A,uminus_uminus(A),A2))) ) ) ).
% verit_negate_coefficient(2)
tff(fact_1577_int__bit__induct,axiom,
! [P: fun(int,bool),K: int] :
( pp(aa(int,bool,P,zero_zero(int)))
=> ( pp(aa(int,bool,P,aa(int,int,uminus_uminus(int),one_one(int))))
=> ( ! [K3: int] :
( pp(aa(int,bool,P,K3))
=> ( ( K3 != zero_zero(int) )
=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),times_times(int),K3),aa(num,int,numeral_numeral(int),bit0(one2))))) ) )
=> ( ! [K3: int] :
( pp(aa(int,bool,P,K3))
=> ( ( K3 != aa(int,int,uminus_uminus(int),one_one(int)) )
=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),plus_plus(int),one_one(int)),aa(int,int,aa(int,fun(int,int),times_times(int),K3),aa(num,int,numeral_numeral(int),bit0(one2)))))) ) )
=> pp(aa(int,bool,P,K)) ) ) ) ) ).
% int_bit_induct
tff(fact_1578_verit__eq__simplify_I10_J,axiom,
! [X23: num] : ( one2 != bit0(X23) ) ).
% verit_eq_simplify(10)
tff(fact_1579_real__arch__simple,axiom,
! [A: $tType] :
( archim462609752435547400_field(A)
=> ! [X2: A] :
? [N3: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(nat,A,semiring_1_of_nat(A),N3))) ) ).
% real_arch_simple
tff(fact_1580_reals__Archimedean2,axiom,
! [A: $tType] :
( archim462609752435547400_field(A)
=> ! [X2: A] :
? [N3: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),aa(nat,A,semiring_1_of_nat(A),N3))) ) ).
% reals_Archimedean2
tff(fact_1581_int__power__div__base,axiom,
! [M: nat,K: int] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),M))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),K))
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(nat,int,power_power(int,K),M)),K) = aa(nat,int,power_power(int,K),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),aa(nat,nat,suc,zero_zero(nat)))) ) ) ) ).
% int_power_div_base
tff(fact_1582_exists__least__lemma,axiom,
! [P: fun(nat,bool)] :
( ~ pp(aa(nat,bool,P,zero_zero(nat)))
=> ( ? [X_1: nat] : pp(aa(nat,bool,P,X_1))
=> ? [N3: nat] :
( ~ pp(aa(nat,bool,P,N3))
& pp(aa(nat,bool,P,aa(nat,nat,suc,N3))) ) ) ) ).
% exists_least_lemma
tff(fact_1583_verit__eq__simplify_I14_J,axiom,
! [X23: num,X33: num] : ( bit0(X23) != aa(num,num,bit1,X33) ) ).
% verit_eq_simplify(14)
tff(fact_1584_verit__eq__simplify_I12_J,axiom,
! [X33: num] : ( one2 != aa(num,num,bit1,X33) ) ).
% verit_eq_simplify(12)
tff(fact_1585_zmult__zless__mono2__lemma,axiom,
! [I: int,J: int,K: nat] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),I),J))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),K))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(nat,int,semiring_1_of_nat(int),K)),I)),aa(int,int,aa(int,fun(int,int),times_times(int),aa(nat,int,semiring_1_of_nat(int),K)),J))) ) ) ).
% zmult_zless_mono2_lemma
tff(fact_1586_int__ops_I3_J,axiom,
! [N: num] : ( aa(nat,int,semiring_1_of_nat(int),aa(num,nat,numeral_numeral(nat),N)) = aa(num,int,numeral_numeral(int),N) ) ).
% int_ops(3)
tff(fact_1587_int__of__nat__induct,axiom,
! [P: fun(int,bool),Z: int] :
( ! [N3: nat] : pp(aa(int,bool,P,aa(nat,int,semiring_1_of_nat(int),N3)))
=> ( ! [N3: nat] : pp(aa(int,bool,P,aa(int,int,uminus_uminus(int),aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,suc,N3)))))
=> pp(aa(int,bool,P,Z)) ) ) ).
% int_of_nat_induct
tff(fact_1588_int__cases,axiom,
! [Z: int] :
( ! [N3: nat] : ( Z != aa(nat,int,semiring_1_of_nat(int),N3) )
=> ~ ! [N3: nat] : ( Z != aa(int,int,uminus_uminus(int),aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,suc,N3))) ) ) ).
% int_cases
tff(fact_1589_zle__int,axiom,
! [M: nat,N: nat] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(nat,int,semiring_1_of_nat(int),M)),aa(nat,int,semiring_1_of_nat(int),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ).
% zle_int
tff(fact_1590_nat__int__comparison_I3_J,axiom,
! [A2: nat,B2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),A2),B2))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(nat,int,semiring_1_of_nat(int),A2)),aa(nat,int,semiring_1_of_nat(int),B2))) ) ).
% nat_int_comparison(3)
tff(fact_1591_zless__iff__Suc__zadd,axiom,
! [W: int,Z: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),W),Z))
<=> ? [N5: nat] : ( Z = aa(int,int,aa(int,fun(int,int),plus_plus(int),W),aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,suc,N5))) ) ) ).
% zless_iff_Suc_zadd
tff(fact_1592_zadd__int__left,axiom,
! [M: nat,N: nat,Z: int] : ( aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(nat,int,semiring_1_of_nat(int),M)),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(nat,int,semiring_1_of_nat(int),N)),Z)) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N))),Z) ) ).
% zadd_int_left
tff(fact_1593_int__plus,axiom,
! [N: nat,M: nat] : ( aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),M)) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(nat,int,semiring_1_of_nat(int),N)),aa(nat,int,semiring_1_of_nat(int),M)) ) ).
% int_plus
tff(fact_1594_int__ops_I5_J,axiom,
! [A2: nat,B2: nat] : ( aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),A2),B2)) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(nat,int,semiring_1_of_nat(int),A2)),aa(nat,int,semiring_1_of_nat(int),B2)) ) ).
% int_ops(5)
tff(fact_1595_int__le__induct,axiom,
! [I: int,K: int,P: fun(int,bool)] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),I),K))
=> ( pp(aa(int,bool,P,K))
=> ( ! [I3: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),I3),K))
=> ( pp(aa(int,bool,P,I3))
=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),minus_minus(int),I3),one_one(int)))) ) )
=> pp(aa(int,bool,P,I)) ) ) ) ).
% int_le_induct
tff(fact_1596_int__ops_I2_J,axiom,
aa(nat,int,semiring_1_of_nat(int),one_one(nat)) = one_one(int) ).
% int_ops(2)
tff(fact_1597_zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( ( aa(int,int,aa(int,fun(int,int),times_times(int),M),N) = one_one(int) )
<=> ( ( ( M = one_one(int) )
& ( N = one_one(int) ) )
| ( ( M = aa(int,int,uminus_uminus(int),one_one(int)) )
& ( N = aa(int,int,uminus_uminus(int),one_one(int)) ) ) ) ) ).
% zmult_eq_1_iff
tff(fact_1598_pos__zmult__eq__1__iff__lemma,axiom,
! [M: int,N: int] :
( ( aa(int,int,aa(int,fun(int,int),times_times(int),M),N) = one_one(int) )
=> ( ( M = one_one(int) )
| ( M = aa(int,int,uminus_uminus(int),one_one(int)) ) ) ) ).
% pos_zmult_eq_1_iff_lemma
tff(fact_1599_zle__iff__zadd,axiom,
! [W: int,Z: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),W),Z))
<=> ? [N5: nat] : ( Z = aa(int,int,aa(int,fun(int,int),plus_plus(int),W),aa(nat,int,semiring_1_of_nat(int),N5)) ) ) ).
% zle_iff_zadd
tff(fact_1600_int__gr__induct,axiom,
! [K: int,I: int,P: fun(int,bool)] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),I))
=> ( pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),plus_plus(int),K),one_one(int))))
=> ( ! [I3: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),I3))
=> ( pp(aa(int,bool,P,I3))
=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),plus_plus(int),I3),one_one(int)))) ) )
=> pp(aa(int,bool,P,I)) ) ) ) ).
% int_gr_induct
tff(fact_1601_zless__add1__eq,axiom,
! [W: int,Z: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),W),aa(int,int,aa(int,fun(int,int),plus_plus(int),Z),one_one(int))))
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),W),Z))
| ( W = Z ) ) ) ).
% zless_add1_eq
tff(fact_1602_eq__diff__eq_H,axiom,
! [X2: real,Y: real,Z: real] :
( ( X2 = aa(real,real,aa(real,fun(real,real),minus_minus(real),Y),Z) )
<=> ( Y = aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),Z) ) ) ).
% eq_diff_eq'
tff(fact_1603_pos__zdiv__mult__2,axiom,
! [A2: int,B2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),A2))
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),one_one(int)),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),B2))),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),A2)) = aa(int,int,aa(int,fun(int,int),divide_divide(int),B2),A2) ) ) ).
% pos_zdiv_mult_2
tff(fact_1604_neg__zdiv__mult__2,axiom,
! [A2: int,B2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),A2),zero_zero(int)))
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),one_one(int)),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),B2))),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),A2)) = aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),B2),one_one(int))),A2) ) ) ).
% neg_zdiv_mult_2
tff(fact_1605_int__cases4,axiom,
! [M: int] :
( ! [N3: nat] : ( M != aa(nat,int,semiring_1_of_nat(int),N3) )
=> ~ ! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N3))
=> ( M != aa(int,int,uminus_uminus(int),aa(nat,int,semiring_1_of_nat(int),N3)) ) ) ) ).
% int_cases4
tff(fact_1606_int__zle__neg,axiom,
! [N: nat,M: nat] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(nat,int,semiring_1_of_nat(int),N)),aa(int,int,uminus_uminus(int),aa(nat,int,semiring_1_of_nat(int),M))))
<=> ( ( N = zero_zero(nat) )
& ( M = zero_zero(nat) ) ) ) ).
% int_zle_neg
tff(fact_1607_int__ops_I4_J,axiom,
! [A2: nat] : ( aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,suc,A2)) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(nat,int,semiring_1_of_nat(int),A2)),one_one(int)) ) ).
% int_ops(4)
tff(fact_1608_int__Suc,axiom,
! [N: nat] : ( aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,suc,N)) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(nat,int,semiring_1_of_nat(int),N)),one_one(int)) ) ).
% int_Suc
tff(fact_1609_int__induct,axiom,
! [P: fun(int,bool),K: int,I: int] :
( pp(aa(int,bool,P,K))
=> ( ! [I3: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),K),I3))
=> ( pp(aa(int,bool,P,I3))
=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),plus_plus(int),I3),one_one(int)))) ) )
=> ( ! [I3: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),I3),K))
=> ( pp(aa(int,bool,P,I3))
=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),minus_minus(int),I3),one_one(int)))) ) )
=> pp(aa(int,bool,P,I)) ) ) ) ).
% int_induct
tff(fact_1610_add1__zle__eq,axiom,
! [W: int,Z: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),W),one_one(int))),Z))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),W),Z)) ) ).
% add1_zle_eq
tff(fact_1611_int__ge__induct,axiom,
! [K: int,I: int,P: fun(int,bool)] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),K),I))
=> ( pp(aa(int,bool,P,K))
=> ( ! [I3: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),K),I3))
=> ( pp(aa(int,bool,P,I3))
=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),plus_plus(int),I3),one_one(int)))) ) )
=> pp(aa(int,bool,P,I)) ) ) ) ).
% int_ge_induct
tff(fact_1612_zless__imp__add1__zle,axiom,
! [W: int,Z: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),W),Z))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),W),one_one(int))),Z)) ) ).
% zless_imp_add1_zle
tff(fact_1613_ex__less__of__nat__mult,axiom,
! [A: $tType] :
( archim462609752435547400_field(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),X2))
=> ? [N3: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),N3)),X2))) ) ) ).
% ex_less_of_nat_mult
tff(fact_1614_set__bit__Suc,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] : ( aa(A,A,aa(nat,fun(A,A),bit_se5668285175392031749et_bit(A),aa(nat,nat,suc,N)),A2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2)))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(nat,fun(A,A),bit_se5668285175392031749et_bit(A),N),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2)))))) ) ) ).
% set_bit_Suc
tff(fact_1615_div__less__mono,axiom,
! [A3: nat,B4: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),A3),B4))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( ( modulo_modulo(nat,A3,N) = zero_zero(nat) )
=> ( ( modulo_modulo(nat,B4,N) = zero_zero(nat) )
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),A3),N)),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),B4),N))) ) ) ) ) ).
% div_less_mono
tff(fact_1616_div__mod__decomp,axiom,
! [A3: nat,N: nat] : ( A3 = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),A3),N)),N)),modulo_modulo(nat,A3,N)) ) ).
% div_mod_decomp
tff(fact_1617_linear__plus__1__le__power,axiom,
! [X2: real,N: nat] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N)),X2)),one_one(real))),aa(nat,real,power_power(real,aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),one_one(real))),N))) ) ).
% linear_plus_1_le_power
tff(fact_1618_zdiff__int__split,axiom,
! [P: fun(int,bool),X2: nat,Y: nat] :
( pp(aa(int,bool,P,aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),X2),Y))))
<=> ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Y),X2))
=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(nat,int,semiring_1_of_nat(int),X2)),aa(nat,int,semiring_1_of_nat(int),Y)))) )
& ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),X2),Y))
=> pp(aa(int,bool,P,zero_zero(int))) ) ) ) ).
% zdiff_int_split
tff(fact_1619_buildup__nothing__in__leaf,axiom,
! [N: nat,X2: nat] : ~ vEBT_V5719532721284313246member(vEBT_vebt_buildup(N),X2) ).
% buildup_nothing_in_leaf
tff(fact_1620_unset__bit__0,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A] : ( aa(A,A,aa(nat,fun(A,A),bit_se2638667681897837118et_bit(A),zero_zero(nat)),A2) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2)))) ) ) ).
% unset_bit_0
tff(fact_1621_flip__bit__Suc,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] : ( bit_se8732182000553998342ip_bit(A,aa(nat,nat,suc,N),A2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2)))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),bit_se8732182000553998342ip_bit(A,N,aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2)))))) ) ) ).
% flip_bit_Suc
tff(fact_1622_unset__bit__Suc,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] : ( aa(A,A,aa(nat,fun(A,A),bit_se2638667681897837118et_bit(A),aa(nat,nat,suc,N)),A2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2)))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(nat,fun(A,A),bit_se2638667681897837118et_bit(A),N),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2)))))) ) ) ).
% unset_bit_Suc
tff(fact_1623_signed__take__bit__rec,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: nat,A2: A] :
( ( ( N = zero_zero(nat) )
=> ( aa(A,A,bit_ri4674362597316999326ke_bit(A,N),A2) = aa(A,A,uminus_uminus(A),modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2)))) ) )
& ( ( N != zero_zero(nat) )
=> ( aa(A,A,bit_ri4674362597316999326ke_bit(A,N),A2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2)))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,bit_ri4674362597316999326ke_bit(A,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat))),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2)))))) ) ) ) ) ).
% signed_take_bit_rec
tff(fact_1624_Suc__if__eq,axiom,
! [A: $tType,F2: fun(nat,A),H: fun(nat,A),G: A,N: nat] :
( ! [N3: nat] : ( aa(nat,A,F2,aa(nat,nat,suc,N3)) = aa(nat,A,H,N3) )
=> ( ( aa(nat,A,F2,zero_zero(nat)) = G )
=> ( ( ( N = zero_zero(nat) )
=> ( aa(nat,A,F2,N) = G ) )
& ( ( N != zero_zero(nat) )
=> ( aa(nat,A,F2,N) = aa(nat,A,H,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat))) ) ) ) ) ) ).
% Suc_if_eq
tff(fact_1625_unset__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),aa(int,int,aa(nat,fun(int,int),bit_se2638667681897837118et_bit(int),N),K)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K)) ) ).
% unset_bit_nonnegative_int_iff
tff(fact_1626_flip__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),bit_se8732182000553998342ip_bit(int,N,K)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K)) ) ).
% flip_bit_nonnegative_int_iff
tff(fact_1627_unset__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,aa(nat,fun(int,int),bit_se2638667681897837118et_bit(int),N),K)),zero_zero(int)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),zero_zero(int))) ) ).
% unset_bit_negative_int_iff
tff(fact_1628_flip__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),bit_se8732182000553998342ip_bit(int,N,K)),zero_zero(int)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),zero_zero(int))) ) ).
% flip_bit_negative_int_iff
tff(fact_1629_signed__take__bit__of__0,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: nat] : ( aa(A,A,bit_ri4674362597316999326ke_bit(A,N),zero_zero(A)) = zero_zero(A) ) ) ).
% signed_take_bit_of_0
tff(fact_1630_signed__take__bit__of__minus__1,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: nat] : ( aa(A,A,bit_ri4674362597316999326ke_bit(A,N),aa(A,A,uminus_uminus(A),one_one(A))) = aa(A,A,uminus_uminus(A),one_one(A)) ) ) ).
% signed_take_bit_of_minus_1
tff(fact_1631_signed__take__bit__Suc__1,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: nat] : ( aa(A,A,bit_ri4674362597316999326ke_bit(A,aa(nat,nat,suc,N)),one_one(A)) = one_one(A) ) ) ).
% signed_take_bit_Suc_1
tff(fact_1632_signed__take__bit__numeral__of__1,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [K: num] : ( aa(A,A,bit_ri4674362597316999326ke_bit(A,aa(num,nat,numeral_numeral(nat),K)),one_one(A)) = one_one(A) ) ) ).
% signed_take_bit_numeral_of_1
tff(fact_1633_signed__take__bit__Suc__bit0,axiom,
! [N: nat,K: num] : ( aa(int,int,bit_ri4674362597316999326ke_bit(int,aa(nat,nat,suc,N)),aa(num,int,numeral_numeral(int),bit0(K))) = aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,bit_ri4674362597316999326ke_bit(int,N),aa(num,int,numeral_numeral(int),K))),aa(num,int,numeral_numeral(int),bit0(one2))) ) ).
% signed_take_bit_Suc_bit0
tff(fact_1634_signed__take__bit__Suc__minus__bit0,axiom,
! [N: nat,K: num] : ( aa(int,int,bit_ri4674362597316999326ke_bit(int,aa(nat,nat,suc,N)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),bit0(K)))) = aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,bit_ri4674362597316999326ke_bit(int,N),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),K)))),aa(num,int,numeral_numeral(int),bit0(one2))) ) ).
% signed_take_bit_Suc_minus_bit0
tff(fact_1635_signed__take__bit__0,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [A2: A] : ( aa(A,A,bit_ri4674362597316999326ke_bit(A,zero_zero(nat)),A2) = aa(A,A,uminus_uminus(A),modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2)))) ) ) ).
% signed_take_bit_0
tff(fact_1636_signed__take__bit__Suc__bit1,axiom,
! [N: nat,K: num] : ( aa(int,int,bit_ri4674362597316999326ke_bit(int,aa(nat,nat,suc,N)),aa(num,int,numeral_numeral(int),aa(num,num,bit1,K))) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,bit_ri4674362597316999326ke_bit(int,N),aa(num,int,numeral_numeral(int),K))),aa(num,int,numeral_numeral(int),bit0(one2)))),one_one(int)) ) ).
% signed_take_bit_Suc_bit1
tff(fact_1637_signed__take__bit__Suc__minus__bit1,axiom,
! [N: nat,K: num] : ( aa(int,int,bit_ri4674362597316999326ke_bit(int,aa(nat,nat,suc,N)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,K)))) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,bit_ri4674362597316999326ke_bit(int,N),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),K))),one_one(int)))),aa(num,int,numeral_numeral(int),bit0(one2)))),one_one(int)) ) ).
% signed_take_bit_Suc_minus_bit1
tff(fact_1638_zero__one__enat__neq_I1_J,axiom,
zero_zero(extended_enat) != one_one(extended_enat) ).
% zero_one_enat_neq(1)
tff(fact_1639_imult__is__0,axiom,
! [M: extended_enat,N: extended_enat] :
( ( aa(extended_enat,extended_enat,aa(extended_enat,fun(extended_enat,extended_enat),times_times(extended_enat),M),N) = zero_zero(extended_enat) )
<=> ( ( M = zero_zero(extended_enat) )
| ( N = zero_zero(extended_enat) ) ) ) ).
% imult_is_0
tff(fact_1640_zmod__eq__0__iff,axiom,
! [M: int,D2: int] :
( ( modulo_modulo(int,M,D2) = zero_zero(int) )
<=> ? [Q4: int] : ( M = aa(int,int,aa(int,fun(int,int),times_times(int),D2),Q4) ) ) ).
% zmod_eq_0_iff
tff(fact_1641_zmod__eq__0D,axiom,
! [M: int,D2: int] :
( ( modulo_modulo(int,M,D2) = zero_zero(int) )
=> ? [Q3: int] : ( M = aa(int,int,aa(int,fun(int,int),times_times(int),D2),Q3) ) ) ).
% zmod_eq_0D
tff(fact_1642_times__int__code_I2_J,axiom,
! [L: int] : ( aa(int,int,aa(int,fun(int,int),times_times(int),zero_zero(int)),L) = zero_zero(int) ) ).
% times_int_code(2)
tff(fact_1643_times__int__code_I1_J,axiom,
! [K: int] : ( aa(int,int,aa(int,fun(int,int),times_times(int),K),zero_zero(int)) = zero_zero(int) ) ).
% times_int_code(1)
tff(fact_1644_signed__take__bit__mult,axiom,
! [N: nat,K: int,L: int] : ( aa(int,int,bit_ri4674362597316999326ke_bit(int,N),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,bit_ri4674362597316999326ke_bit(int,N),K)),aa(int,int,bit_ri4674362597316999326ke_bit(int,N),L))) = aa(int,int,bit_ri4674362597316999326ke_bit(int,N),aa(int,int,aa(int,fun(int,int),times_times(int),K),L)) ) ).
% signed_take_bit_mult
tff(fact_1645_signed__take__bit__minus,axiom,
! [N: nat,K: int] : ( aa(int,int,bit_ri4674362597316999326ke_bit(int,N),aa(int,int,uminus_uminus(int),aa(int,int,bit_ri4674362597316999326ke_bit(int,N),K))) = aa(int,int,bit_ri4674362597316999326ke_bit(int,N),aa(int,int,uminus_uminus(int),K)) ) ).
% signed_take_bit_minus
tff(fact_1646_signed__take__bit__add,axiom,
! [N: nat,K: int,L: int] : ( aa(int,int,bit_ri4674362597316999326ke_bit(int,N),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,bit_ri4674362597316999326ke_bit(int,N),K)),aa(int,int,bit_ri4674362597316999326ke_bit(int,N),L))) = aa(int,int,bit_ri4674362597316999326ke_bit(int,N),aa(int,int,aa(int,fun(int,int),plus_plus(int),K),L)) ) ).
% signed_take_bit_add
tff(fact_1647_signed__take__bit__diff,axiom,
! [N: nat,K: int,L: int] : ( aa(int,int,bit_ri4674362597316999326ke_bit(int,N),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(int,int,bit_ri4674362597316999326ke_bit(int,N),K)),aa(int,int,bit_ri4674362597316999326ke_bit(int,N),L))) = aa(int,int,bit_ri4674362597316999326ke_bit(int,N),aa(int,int,aa(int,fun(int,int),minus_minus(int),K),L)) ) ).
% signed_take_bit_diff
tff(fact_1648_unset__bit__less__eq,axiom,
! [N: nat,K: int] : pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(nat,fun(int,int),bit_se2638667681897837118et_bit(int),N),K)),K)) ).
% unset_bit_less_eq
tff(fact_1649_minf_I11_J,axiom,
! [C: $tType,D: $tType] :
( ord(C)
=> ! [F4: D] :
? [Z3: C] :
! [X: C] :
( pp(aa(C,bool,aa(C,fun(C,bool),ord_less(C),X),Z3))
=> ( F4 = F4 ) ) ) ).
% minf(11)
tff(fact_1650_minf_I7_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [T2: A] :
? [Z3: A] :
! [X: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X),Z3))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),T2),X)) ) ) ).
% minf(7)
tff(fact_1651_minf_I5_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [T2: A] :
? [Z3: A] :
! [X: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X),Z3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X),T2)) ) ) ).
% minf(5)
tff(fact_1652_minf_I4_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [T2: A] :
? [Z3: A] :
! [X: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X),Z3))
=> ( X != T2 ) ) ) ).
% minf(4)
tff(fact_1653_minf_I3_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [T2: A] :
? [Z3: A] :
! [X: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X),Z3))
=> ( X != T2 ) ) ) ).
% minf(3)
tff(fact_1654_minf_I2_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [P: fun(A,bool),P3: fun(A,bool),Q: fun(A,bool),Q6: fun(A,bool)] :
( ? [Z2: A] :
! [X3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X3),Z2))
=> ( pp(aa(A,bool,P,X3))
<=> pp(aa(A,bool,P3,X3)) ) )
=> ( ? [Z2: A] :
! [X3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X3),Z2))
=> ( pp(aa(A,bool,Q,X3))
<=> pp(aa(A,bool,Q6,X3)) ) )
=> ? [Z3: A] :
! [X: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X),Z3))
=> ( ( pp(aa(A,bool,P,X))
| pp(aa(A,bool,Q,X)) )
<=> ( pp(aa(A,bool,P3,X))
| pp(aa(A,bool,Q6,X)) ) ) ) ) ) ) ).
% minf(2)
tff(fact_1655_minf_I1_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [P: fun(A,bool),P3: fun(A,bool),Q: fun(A,bool),Q6: fun(A,bool)] :
( ? [Z2: A] :
! [X3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X3),Z2))
=> ( pp(aa(A,bool,P,X3))
<=> pp(aa(A,bool,P3,X3)) ) )
=> ( ? [Z2: A] :
! [X3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X3),Z2))
=> ( pp(aa(A,bool,Q,X3))
<=> pp(aa(A,bool,Q6,X3)) ) )
=> ? [Z3: A] :
! [X: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X),Z3))
=> ( ( pp(aa(A,bool,P,X))
& pp(aa(A,bool,Q,X)) )
<=> ( pp(aa(A,bool,P3,X))
& pp(aa(A,bool,Q6,X)) ) ) ) ) ) ) ).
% minf(1)
tff(fact_1656_pinf_I11_J,axiom,
! [C: $tType,D: $tType] :
( ord(C)
=> ! [F4: D] :
? [Z3: C] :
! [X: C] :
( pp(aa(C,bool,aa(C,fun(C,bool),ord_less(C),Z3),X))
=> ( F4 = F4 ) ) ) ).
% pinf(11)
tff(fact_1657_pinf_I7_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [T2: A] :
? [Z3: A] :
! [X: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Z3),X))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),T2),X)) ) ) ).
% pinf(7)
tff(fact_1658_pinf_I5_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [T2: A] :
? [Z3: A] :
! [X: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Z3),X))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X),T2)) ) ) ).
% pinf(5)
tff(fact_1659_pinf_I4_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [T2: A] :
? [Z3: A] :
! [X: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Z3),X))
=> ( X != T2 ) ) ) ).
% pinf(4)
tff(fact_1660_pinf_I3_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [T2: A] :
? [Z3: A] :
! [X: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Z3),X))
=> ( X != T2 ) ) ) ).
% pinf(3)
tff(fact_1661_pinf_I2_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [P: fun(A,bool),P3: fun(A,bool),Q: fun(A,bool),Q6: fun(A,bool)] :
( ? [Z2: A] :
! [X3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Z2),X3))
=> ( pp(aa(A,bool,P,X3))
<=> pp(aa(A,bool,P3,X3)) ) )
=> ( ? [Z2: A] :
! [X3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Z2),X3))
=> ( pp(aa(A,bool,Q,X3))
<=> pp(aa(A,bool,Q6,X3)) ) )
=> ? [Z3: A] :
! [X: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Z3),X))
=> ( ( pp(aa(A,bool,P,X))
| pp(aa(A,bool,Q,X)) )
<=> ( pp(aa(A,bool,P3,X))
| pp(aa(A,bool,Q6,X)) ) ) ) ) ) ) ).
% pinf(2)
tff(fact_1662_pinf_I1_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [P: fun(A,bool),P3: fun(A,bool),Q: fun(A,bool),Q6: fun(A,bool)] :
( ? [Z2: A] :
! [X3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Z2),X3))
=> ( pp(aa(A,bool,P,X3))
<=> pp(aa(A,bool,P3,X3)) ) )
=> ( ? [Z2: A] :
! [X3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Z2),X3))
=> ( pp(aa(A,bool,Q,X3))
<=> pp(aa(A,bool,Q6,X3)) ) )
=> ? [Z3: A] :
! [X: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Z3),X))
=> ( ( pp(aa(A,bool,P,X))
& pp(aa(A,bool,Q,X)) )
<=> ( pp(aa(A,bool,P3,X))
& pp(aa(A,bool,Q6,X)) ) ) ) ) ) ) ).
% pinf(1)
tff(fact_1663_VEBT__internal_Onaive__member_Osimps_I2_J,axiom,
! [Uu2: option(product_prod(nat,nat)),Uv2: list(vEBT_VEBT),Uw2: vEBT_VEBT,Ux2: nat] : ~ vEBT_V5719532721284313246member(vEBT_Node(Uu2,zero_zero(nat),Uv2,Uw2),Ux2) ).
% VEBT_internal.naive_member.simps(2)
tff(fact_1664_imp__le__cong,axiom,
! [X2: int,X5: int,P: bool,P3: bool] :
( ( X2 = X5 )
=> ( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),X5))
=> ( pp(P)
<=> pp(P3) ) )
=> ( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),X2))
=> pp(P) )
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),X5))
=> pp(P3) ) ) ) ) ).
% imp_le_cong
tff(fact_1665_conj__le__cong,axiom,
! [X2: int,X5: int,P: bool,P3: bool] :
( ( X2 = X5 )
=> ( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),X5))
=> ( pp(P)
<=> pp(P3) ) )
=> ( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),X2))
& pp(P) )
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),X5))
& pp(P3) ) ) ) ) ).
% conj_le_cong
tff(fact_1666_VEBT__internal_Onaive__member_Osimps_I1_J,axiom,
! [A2: bool,B2: bool,X2: nat] :
( vEBT_V5719532721284313246member(vEBT_Leaf(A2,B2),X2)
<=> ( ( ( X2 = zero_zero(nat) )
=> pp(A2) )
& ( ( X2 != zero_zero(nat) )
=> ( ( ( X2 = one_one(nat) )
=> pp(B2) )
& ( X2 = one_one(nat) ) ) ) ) ) ).
% VEBT_internal.naive_member.simps(1)
tff(fact_1667_signed__take__bit__int__less__exp,axiom,
! [N: nat,K: int] : pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,bit_ri4674362597316999326ke_bit(int,N),K)),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N))) ).
% signed_take_bit_int_less_exp
tff(fact_1668_signed__take__bit__int__less__self__iff,axiom,
! [N: nat,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,bit_ri4674362597316999326ke_bit(int,N),K)),K))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)),K)) ) ).
% signed_take_bit_int_less_self_iff
tff(fact_1669_signed__take__bit__int__greater__eq__self__iff,axiom,
! [K: int,N: nat] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),K),aa(int,int,bit_ri4674362597316999326ke_bit(int,N),K)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N))) ) ).
% signed_take_bit_int_greater_eq_self_iff
tff(fact_1670_signed__take__bit__int__less__eq__self__iff,axiom,
! [N: nat,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,bit_ri4674362597316999326ke_bit(int,N),K)),K))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,uminus_uminus(int),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N))),K)) ) ).
% signed_take_bit_int_less_eq_self_iff
tff(fact_1671_signed__take__bit__int__greater__eq__minus__exp,axiom,
! [N: nat,K: int] : pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,uminus_uminus(int),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N))),aa(int,int,bit_ri4674362597316999326ke_bit(int,N),K))) ).
% signed_take_bit_int_greater_eq_minus_exp
tff(fact_1672_signed__take__bit__int__greater__self__iff,axiom,
! [K: int,N: nat] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),aa(int,int,bit_ri4674362597316999326ke_bit(int,N),K)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),aa(int,int,uminus_uminus(int),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)))) ) ).
% signed_take_bit_int_greater_self_iff
tff(fact_1673_pinf_I6_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [T2: A] :
? [Z3: A] :
! [X: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Z3),X))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X),T2)) ) ) ).
% pinf(6)
tff(fact_1674_pinf_I8_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [T2: A] :
? [Z3: A] :
! [X: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Z3),X))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),T2),X)) ) ) ).
% pinf(8)
tff(fact_1675_minf_I6_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [T2: A] :
? [Z3: A] :
! [X: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X),Z3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X),T2)) ) ) ).
% minf(6)
tff(fact_1676_minf_I8_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [T2: A] :
? [Z3: A] :
! [X: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X),Z3))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),T2),X)) ) ) ).
% minf(8)
tff(fact_1677_inf__period_I1_J,axiom,
! [A: $tType] :
( ( comm_ring(A)
& dvd(A) )
=> ! [P: fun(A,bool),D5: A,Q: fun(A,bool)] :
( ! [X3: A,K3: A] :
( pp(aa(A,bool,P,X3))
<=> pp(aa(A,bool,P,aa(A,A,aa(A,fun(A,A),minus_minus(A),X3),aa(A,A,aa(A,fun(A,A),times_times(A),K3),D5)))) )
=> ( ! [X3: A,K3: A] :
( pp(aa(A,bool,Q,X3))
<=> pp(aa(A,bool,Q,aa(A,A,aa(A,fun(A,A),minus_minus(A),X3),aa(A,A,aa(A,fun(A,A),times_times(A),K3),D5)))) )
=> ! [X: A,K4: A] :
( ( pp(aa(A,bool,P,X))
& pp(aa(A,bool,Q,X)) )
<=> ( pp(aa(A,bool,P,aa(A,A,aa(A,fun(A,A),minus_minus(A),X),aa(A,A,aa(A,fun(A,A),times_times(A),K4),D5))))
& pp(aa(A,bool,Q,aa(A,A,aa(A,fun(A,A),minus_minus(A),X),aa(A,A,aa(A,fun(A,A),times_times(A),K4),D5)))) ) ) ) ) ) ).
% inf_period(1)
tff(fact_1678_inf__period_I2_J,axiom,
! [A: $tType] :
( ( comm_ring(A)
& dvd(A) )
=> ! [P: fun(A,bool),D5: A,Q: fun(A,bool)] :
( ! [X3: A,K3: A] :
( pp(aa(A,bool,P,X3))
<=> pp(aa(A,bool,P,aa(A,A,aa(A,fun(A,A),minus_minus(A),X3),aa(A,A,aa(A,fun(A,A),times_times(A),K3),D5)))) )
=> ( ! [X3: A,K3: A] :
( pp(aa(A,bool,Q,X3))
<=> pp(aa(A,bool,Q,aa(A,A,aa(A,fun(A,A),minus_minus(A),X3),aa(A,A,aa(A,fun(A,A),times_times(A),K3),D5)))) )
=> ! [X: A,K4: A] :
( ( pp(aa(A,bool,P,X))
| pp(aa(A,bool,Q,X)) )
<=> ( pp(aa(A,bool,P,aa(A,A,aa(A,fun(A,A),minus_minus(A),X),aa(A,A,aa(A,fun(A,A),times_times(A),K4),D5))))
| pp(aa(A,bool,Q,aa(A,A,aa(A,fun(A,A),minus_minus(A),X),aa(A,A,aa(A,fun(A,A),times_times(A),K4),D5)))) ) ) ) ) ) ).
% inf_period(2)
tff(fact_1679_signed__take__bit__int__less__eq,axiom,
! [N: nat,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)),K))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,bit_ri4674362597316999326ke_bit(int,N),K)),aa(int,int,aa(int,fun(int,int),minus_minus(int),K),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),aa(nat,nat,suc,N))))) ) ).
% signed_take_bit_int_less_eq
tff(fact_1680_signed__take__bit__int__eq__self,axiom,
! [N: nat,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,uminus_uminus(int),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N))),K))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)))
=> ( aa(int,int,bit_ri4674362597316999326ke_bit(int,N),K) = K ) ) ) ).
% signed_take_bit_int_eq_self
tff(fact_1681_signed__take__bit__int__eq__self__iff,axiom,
! [N: nat,K: int] :
( ( aa(int,int,bit_ri4674362597316999326ke_bit(int,N),K) = K )
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,uminus_uminus(int),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N))),K))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N))) ) ) ).
% signed_take_bit_int_eq_self_iff
tff(fact_1682_minusinfinity,axiom,
! [D2: int,P1: fun(int,bool),P: fun(int,bool)] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),D2))
=> ( ! [X3: int,K3: int] :
( pp(aa(int,bool,P1,X3))
<=> pp(aa(int,bool,P1,aa(int,int,aa(int,fun(int,int),minus_minus(int),X3),aa(int,int,aa(int,fun(int,int),times_times(int),K3),D2)))) )
=> ( ? [Z2: int] :
! [X3: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),X3),Z2))
=> ( pp(aa(int,bool,P,X3))
<=> pp(aa(int,bool,P1,X3)) ) )
=> ( ? [X_1: int] : pp(aa(int,bool,P1,X_1))
=> ? [X_13: int] : pp(aa(int,bool,P,X_13)) ) ) ) ) ).
% minusinfinity
tff(fact_1683_plusinfinity,axiom,
! [D2: int,P3: fun(int,bool),P: fun(int,bool)] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),D2))
=> ( ! [X3: int,K3: int] :
( pp(aa(int,bool,P3,X3))
<=> pp(aa(int,bool,P3,aa(int,int,aa(int,fun(int,int),minus_minus(int),X3),aa(int,int,aa(int,fun(int,int),times_times(int),K3),D2)))) )
=> ( ? [Z2: int] :
! [X3: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),Z2),X3))
=> ( pp(aa(int,bool,P,X3))
<=> pp(aa(int,bool,P3,X3)) ) )
=> ( ? [X_1: int] : pp(aa(int,bool,P3,X_1))
=> ? [X_13: int] : pp(aa(int,bool,P,X_13)) ) ) ) ) ).
% plusinfinity
tff(fact_1684_signed__take__bit__int__greater__eq,axiom,
! [K: int,N: nat] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),aa(int,int,uminus_uminus(int),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N))))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),K),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),aa(nat,nat,suc,N)))),aa(int,int,bit_ri4674362597316999326ke_bit(int,N),K))) ) ).
% signed_take_bit_int_greater_eq
tff(fact_1685_signed__take__bit__Suc,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: nat,A2: A] : ( aa(A,A,bit_ri4674362597316999326ke_bit(A,aa(nat,nat,suc,N)),A2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2)))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,bit_ri4674362597316999326ke_bit(A,N),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2)))))) ) ) ).
% signed_take_bit_Suc
tff(fact_1686_Bolzano,axiom,
! [A2: real,B2: real,P: fun(real,fun(real,bool))] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),B2))
=> ( ! [A4: real,B3: real,C4: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),P,A4),B3))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),P,B3),C4))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A4),B3))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),B3),C4))
=> pp(aa(real,bool,aa(real,fun(real,bool),P,A4),C4)) ) ) ) )
=> ( ! [X3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),X3))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X3),B2))
=> ? [D6: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D6))
& ! [A4: real,B3: real] :
( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A4),X3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X3),B3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),B3),A4)),D6)) )
=> pp(aa(real,bool,aa(real,fun(real,bool),P,A4),B3)) ) ) ) )
=> pp(aa(real,bool,aa(real,fun(real,bool),P,A2),B2)) ) ) ) ).
% Bolzano
tff(fact_1687_incr__mult__lemma,axiom,
! [D2: int,P: fun(int,bool),K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),D2))
=> ( ! [X3: int] :
( pp(aa(int,bool,P,X3))
=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),plus_plus(int),X3),D2))) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K))
=> ! [X: int] :
( pp(aa(int,bool,P,X))
=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),plus_plus(int),X),aa(int,int,aa(int,fun(int,int),times_times(int),K),D2)))) ) ) ) ) ).
% incr_mult_lemma
tff(fact_1688_decr__mult__lemma,axiom,
! [D2: int,P: fun(int,bool),K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),D2))
=> ( ! [X3: int] :
( pp(aa(int,bool,P,X3))
=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),minus_minus(int),X3),D2))) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K))
=> ! [X: int] :
( pp(aa(int,bool,P,X))
=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),minus_minus(int),X),aa(int,int,aa(int,fun(int,int),times_times(int),K),D2)))) ) ) ) ) ).
% decr_mult_lemma
tff(fact_1689_both__member__options__def,axiom,
! [T2: vEBT_VEBT,X2: nat] :
( pp(aa(nat,bool,vEBT_V8194947554948674370ptions(T2),X2))
<=> ( vEBT_V5719532721284313246member(T2,X2)
| vEBT_VEBT_membermima(T2,X2) ) ) ).
% both_member_options_def
tff(fact_1690_divmod__algorithm__code_I8_J,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [M: num,N: num] :
( ( pp(aa(num,bool,aa(num,fun(num,bool),ord_less(num),M),N))
=> ( unique8689654367752047608divmod(A,aa(num,num,bit1,M),aa(num,num,bit1,N)) = aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),zero_zero(A)),aa(num,A,numeral_numeral(A),aa(num,num,bit1,M))) ) )
& ( ~ pp(aa(num,bool,aa(num,fun(num,bool),ord_less(num),M),N))
=> ( unique8689654367752047608divmod(A,aa(num,num,bit1,M),aa(num,num,bit1,N)) = unique1321980374590559556d_step(A,aa(num,num,bit1,N),unique8689654367752047608divmod(A,aa(num,num,bit1,M),bit0(aa(num,num,bit1,N)))) ) ) ) ) ).
% divmod_algorithm_code(8)
tff(fact_1691_divmod__algorithm__code_I7_J,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [M: num,N: num] :
( ( pp(aa(num,bool,aa(num,fun(num,bool),ord_less_eq(num),M),N))
=> ( unique8689654367752047608divmod(A,bit0(M),aa(num,num,bit1,N)) = aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),zero_zero(A)),aa(num,A,numeral_numeral(A),bit0(M))) ) )
& ( ~ pp(aa(num,bool,aa(num,fun(num,bool),ord_less_eq(num),M),N))
=> ( unique8689654367752047608divmod(A,bit0(M),aa(num,num,bit1,N)) = unique1321980374590559556d_step(A,aa(num,num,bit1,N),unique8689654367752047608divmod(A,bit0(M),bit0(aa(num,num,bit1,N)))) ) ) ) ) ).
% divmod_algorithm_code(7)
tff(fact_1692_mult__le__cancel__iff2,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [Z: A,X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),Z))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),Z),X2)),aa(A,A,aa(A,fun(A,A),times_times(A),Z),Y)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y)) ) ) ) ).
% mult_le_cancel_iff2
tff(fact_1693_mult__le__cancel__iff1,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [Z: A,X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),Z))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),X2),Z)),aa(A,A,aa(A,fun(A,A),times_times(A),Y),Z)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y)) ) ) ) ).
% mult_le_cancel_iff1
tff(fact_1694_divides__aux__eq,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [Q2: A,R: A] :
( unique5940410009612947441es_aux(A,aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),Q2),R))
<=> ( R = zero_zero(A) ) ) ) ).
% divides_aux_eq
tff(fact_1695_signed__take__bit__numeral__minus__bit1,axiom,
! [L: num,K: num] : ( aa(int,int,bit_ri4674362597316999326ke_bit(int,aa(num,nat,numeral_numeral(nat),L)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,K)))) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,bit_ri4674362597316999326ke_bit(int,pred_numeral(L)),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),K))),one_one(int)))),aa(num,int,numeral_numeral(int),bit0(one2)))),one_one(int)) ) ).
% signed_take_bit_numeral_minus_bit1
tff(fact_1696_buildup__nothing__in__min__max,axiom,
! [N: nat,X2: nat] : ~ vEBT_VEBT_membermima(vEBT_vebt_buildup(N),X2) ).
% buildup_nothing_in_min_max
tff(fact_1697_pred__numeral__simps_I1_J,axiom,
pred_numeral(one2) = zero_zero(nat) ).
% pred_numeral_simps(1)
tff(fact_1698_eq__numeral__Suc,axiom,
! [K: num,N: nat] :
( ( aa(num,nat,numeral_numeral(nat),K) = aa(nat,nat,suc,N) )
<=> ( pred_numeral(K) = N ) ) ).
% eq_numeral_Suc
tff(fact_1699_Suc__eq__numeral,axiom,
! [N: nat,K: num] :
( ( aa(nat,nat,suc,N) = aa(num,nat,numeral_numeral(nat),K) )
<=> ( N = pred_numeral(K) ) ) ).
% Suc_eq_numeral
tff(fact_1700_pred__numeral__simps_I3_J,axiom,
! [K: num] : ( pred_numeral(aa(num,num,bit1,K)) = aa(num,nat,numeral_numeral(nat),bit0(K)) ) ).
% pred_numeral_simps(3)
tff(fact_1701_less__Suc__numeral,axiom,
! [N: nat,K: num] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,N)),aa(num,nat,numeral_numeral(nat),K)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),pred_numeral(K))) ) ).
% less_Suc_numeral
tff(fact_1702_less__numeral__Suc,axiom,
! [K: num,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(num,nat,numeral_numeral(nat),K)),aa(nat,nat,suc,N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),pred_numeral(K)),N)) ) ).
% less_numeral_Suc
tff(fact_1703_le__numeral__Suc,axiom,
! [K: num,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(num,nat,numeral_numeral(nat),K)),aa(nat,nat,suc,N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),pred_numeral(K)),N)) ) ).
% le_numeral_Suc
tff(fact_1704_le__Suc__numeral,axiom,
! [N: nat,K: num] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,suc,N)),aa(num,nat,numeral_numeral(nat),K)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),pred_numeral(K))) ) ).
% le_Suc_numeral
tff(fact_1705_diff__numeral__Suc,axiom,
! [K: num,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(num,nat,numeral_numeral(nat),K)),aa(nat,nat,suc,N)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),pred_numeral(K)),N) ) ).
% diff_numeral_Suc
tff(fact_1706_diff__Suc__numeral,axiom,
! [N: nat,K: num] : ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,suc,N)),aa(num,nat,numeral_numeral(nat),K)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),pred_numeral(K)) ) ).
% diff_Suc_numeral
tff(fact_1707_divmod__algorithm__code_I2_J,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [M: num] : ( unique8689654367752047608divmod(A,M,one2) = aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),aa(num,A,numeral_numeral(A),M)),zero_zero(A)) ) ) ).
% divmod_algorithm_code(2)
tff(fact_1708_divmod__algorithm__code_I3_J,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [N: num] : ( unique8689654367752047608divmod(A,one2,bit0(N)) = aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),zero_zero(A)),aa(num,A,numeral_numeral(A),one2)) ) ) ).
% divmod_algorithm_code(3)
tff(fact_1709_divmod__algorithm__code_I4_J,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [N: num] : ( unique8689654367752047608divmod(A,one2,aa(num,num,bit1,N)) = aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),zero_zero(A)),aa(num,A,numeral_numeral(A),one2)) ) ) ).
% divmod_algorithm_code(4)
tff(fact_1710_signed__take__bit__numeral__bit0,axiom,
! [L: num,K: num] : ( aa(int,int,bit_ri4674362597316999326ke_bit(int,aa(num,nat,numeral_numeral(nat),L)),aa(num,int,numeral_numeral(int),bit0(K))) = aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,bit_ri4674362597316999326ke_bit(int,pred_numeral(L)),aa(num,int,numeral_numeral(int),K))),aa(num,int,numeral_numeral(int),bit0(one2))) ) ).
% signed_take_bit_numeral_bit0
tff(fact_1711_signed__take__bit__numeral__minus__bit0,axiom,
! [L: num,K: num] : ( aa(int,int,bit_ri4674362597316999326ke_bit(int,aa(num,nat,numeral_numeral(nat),L)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),bit0(K)))) = aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,bit_ri4674362597316999326ke_bit(int,pred_numeral(L)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),K)))),aa(num,int,numeral_numeral(int),bit0(one2))) ) ).
% signed_take_bit_numeral_minus_bit0
tff(fact_1712_signed__take__bit__numeral__bit1,axiom,
! [L: num,K: num] : ( aa(int,int,bit_ri4674362597316999326ke_bit(int,aa(num,nat,numeral_numeral(nat),L)),aa(num,int,numeral_numeral(int),aa(num,num,bit1,K))) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,bit_ri4674362597316999326ke_bit(int,pred_numeral(L)),aa(num,int,numeral_numeral(int),K))),aa(num,int,numeral_numeral(int),bit0(one2)))),one_one(int)) ) ).
% signed_take_bit_numeral_bit1
tff(fact_1713_VEBT__internal_Omembermima_Osimps_I1_J,axiom,
! [Uu2: bool,Uv2: bool,Uw2: nat] : ~ vEBT_VEBT_membermima(vEBT_Leaf(Uu2,Uv2),Uw2) ).
% VEBT_internal.membermima.simps(1)
tff(fact_1714_numeral__eq__Suc,axiom,
! [K: num] : ( aa(num,nat,numeral_numeral(nat),K) = aa(nat,nat,suc,pred_numeral(K)) ) ).
% numeral_eq_Suc
tff(fact_1715_pred__numeral__def,axiom,
! [K: num] : ( pred_numeral(K) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(num,nat,numeral_numeral(nat),K)),one_one(nat)) ) ).
% pred_numeral_def
tff(fact_1716_divmod__int__def,axiom,
! [M: num,N: num] : ( unique8689654367752047608divmod(int,M,N) = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(num,int,numeral_numeral(int),M)),aa(num,int,numeral_numeral(int),N))),modulo_modulo(int,aa(num,int,numeral_numeral(int),M),aa(num,int,numeral_numeral(int),N))) ) ).
% divmod_int_def
tff(fact_1717_VEBT__internal_Omembermima_Osimps_I2_J,axiom,
! [Ux2: list(vEBT_VEBT),Uy2: vEBT_VEBT,Uz2: nat] : ~ vEBT_VEBT_membermima(vEBT_Node(none(product_prod(nat,nat)),zero_zero(nat),Ux2,Uy2),Uz2) ).
% VEBT_internal.membermima.simps(2)
tff(fact_1718_divmod__def,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [M: num,N: num] : ( unique8689654367752047608divmod(A,M,N) = aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(num,A,numeral_numeral(A),M)),aa(num,A,numeral_numeral(A),N))),modulo_modulo(A,aa(num,A,numeral_numeral(A),M),aa(num,A,numeral_numeral(A),N))) ) ) ).
% divmod_def
tff(fact_1719_VEBT__internal_Omembermima_Osimps_I3_J,axiom,
! [Mi: nat,Ma: nat,Va3: list(vEBT_VEBT),Vb2: vEBT_VEBT,X2: nat] :
( vEBT_VEBT_membermima(vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi),Ma)),zero_zero(nat),Va3,Vb2),X2)
<=> ( ( X2 = Mi )
| ( X2 = Ma ) ) ) ).
% VEBT_internal.membermima.simps(3)
tff(fact_1720_divmod_H__nat__def,axiom,
! [M: num,N: num] : ( unique8689654367752047608divmod(nat,M,N) = aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(num,nat,numeral_numeral(nat),M)),aa(num,nat,numeral_numeral(nat),N))),modulo_modulo(nat,aa(num,nat,numeral_numeral(nat),M),aa(num,nat,numeral_numeral(nat),N))) ) ).
% divmod'_nat_def
tff(fact_1721_divmod__divmod__step,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [M: num,N: num] :
( ( pp(aa(num,bool,aa(num,fun(num,bool),ord_less(num),M),N))
=> ( unique8689654367752047608divmod(A,M,N) = aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),zero_zero(A)),aa(num,A,numeral_numeral(A),M)) ) )
& ( ~ pp(aa(num,bool,aa(num,fun(num,bool),ord_less(num),M),N))
=> ( unique8689654367752047608divmod(A,M,N) = unique1321980374590559556d_step(A,N,unique8689654367752047608divmod(A,M,bit0(N))) ) ) ) ) ).
% divmod_divmod_step
tff(fact_1722_mult__less__iff1,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [Z: A,X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),Z))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),X2),Z)),aa(A,A,aa(A,fun(A,A),times_times(A),Y),Z)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y)) ) ) ) ).
% mult_less_iff1
tff(fact_1723_one__div__minus__numeral,axiom,
! [N: num] : ( aa(int,int,aa(int,fun(int,int),divide_divide(int),one_one(int)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),N))) = aa(int,int,uminus_uminus(int),adjust_div(unique8689654367752047608divmod(int,one2,N))) ) ).
% one_div_minus_numeral
tff(fact_1724_minus__one__div__numeral,axiom,
! [N: num] : ( aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,uminus_uminus(int),one_one(int))),aa(num,int,numeral_numeral(int),N)) = aa(int,int,uminus_uminus(int),adjust_div(unique8689654367752047608divmod(int,one2,N))) ) ).
% minus_one_div_numeral
tff(fact_1725_product__nth,axiom,
! [A: $tType,B: $tType,N: nat,Xs: list(A),Ys: list(B)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(list(A),nat,size_size(list(A)),Xs)),aa(list(B),nat,size_size(list(B)),Ys))))
=> ( aa(nat,product_prod(A,B),nth(product_prod(A,B),product(A,B,Xs,Ys)),N) = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),aa(nat,A,nth(A,Xs),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),aa(list(B),nat,size_size(list(B)),Ys)))),aa(nat,B,nth(B,Ys),modulo_modulo(nat,N,aa(list(B),nat,size_size(list(B)),Ys)))) ) ) ).
% product_nth
tff(fact_1726_neg__eucl__rel__int__mult__2,axiom,
! [B2: int,A2: int,Q2: int,R: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),B2),zero_zero(int)))
=> ( eucl_rel_int(aa(int,int,aa(int,fun(int,int),plus_plus(int),A2),one_one(int)),B2,aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),Q2),R))
=> eucl_rel_int(aa(int,int,aa(int,fun(int,int),plus_plus(int),one_one(int)),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),A2)),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),B2),aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),Q2),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),R)),one_one(int)))) ) ) ).
% neg_eucl_rel_int_mult_2
tff(fact_1727_lemma__termdiff3,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [H: A,Z: A,K5: real,N: nat] :
( ( H != zero_zero(A) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,Z)),K5))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),Z),H))),K5))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,power_power(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),Z),H)),N)),aa(nat,A,power_power(A,Z),N))),H)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),N)),aa(nat,A,power_power(A,Z),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(nat,nat,suc,zero_zero(nat)))))))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N)),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(nat,nat,suc,zero_zero(nat)))))),aa(nat,real,power_power(real,K5),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(num,nat,numeral_numeral(nat),bit0(one2)))))),real_V7770717601297561774m_norm(A,H)))) ) ) ) ) ).
% lemma_termdiff3
tff(fact_1728_triangle__def,axiom,
! [N: nat] : ( nat_triangle(N) = aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),aa(nat,nat,suc,N))),aa(num,nat,numeral_numeral(nat),bit0(one2))) ) ).
% triangle_def
tff(fact_1729_prod__cases4,axiom,
! [A: $tType,B: $tType,C: $tType,D: $tType,Y: product_prod(A,product_prod(B,product_prod(C,D)))] :
~ ! [A4: A,B3: B,C4: C,D3: D] : ( Y != aa(product_prod(B,product_prod(C,D)),product_prod(A,product_prod(B,product_prod(C,D))),aa(A,fun(product_prod(B,product_prod(C,D)),product_prod(A,product_prod(B,product_prod(C,D)))),product_Pair(A,product_prod(B,product_prod(C,D))),A4),aa(product_prod(C,D),product_prod(B,product_prod(C,D)),aa(B,fun(product_prod(C,D),product_prod(B,product_prod(C,D))),product_Pair(B,product_prod(C,D)),B3),aa(D,product_prod(C,D),aa(C,fun(D,product_prod(C,D)),product_Pair(C,D),C4),D3))) ) ).
% prod_cases4
tff(fact_1730_old_Oprod_Oinject,axiom,
! [A: $tType,B: $tType,A2: A,B2: B,A6: A,B6: B] :
( ( aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),A2),B2) = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),A6),B6) )
<=> ( ( A2 = A6 )
& ( B2 = B6 ) ) ) ).
% old.prod.inject
tff(fact_1731_prod_Oinject,axiom,
! [A: $tType,B: $tType,X1: A,X23: B,Y1: A,Y22: B] :
( ( aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X1),X23) = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),Y1),Y22) )
<=> ( ( X1 = Y1 )
& ( X23 = Y22 ) ) ) ).
% prod.inject
tff(fact_1732_triangle__0,axiom,
nat_triangle(zero_zero(nat)) = zero_zero(nat) ).
% triangle_0
tff(fact_1733_length__product,axiom,
! [A: $tType,B: $tType,Xs: list(A),Ys: list(B)] : ( aa(list(product_prod(A,B)),nat,size_size(list(product_prod(A,B))),product(A,B,Xs,Ys)) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(list(A),nat,size_size(list(A)),Xs)),aa(list(B),nat,size_size(list(B)),Ys)) ) ).
% length_product
tff(fact_1734_triangle__Suc,axiom,
! [N: nat] : ( nat_triangle(aa(nat,nat,suc,N)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),nat_triangle(N)),aa(nat,nat,suc,N)) ) ).
% triangle_Suc
tff(fact_1735_numeral__div__minus__numeral,axiom,
! [M: num,N: num] : ( aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(num,int,numeral_numeral(int),M)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),N))) = aa(int,int,uminus_uminus(int),adjust_div(unique8689654367752047608divmod(int,M,N))) ) ).
% numeral_div_minus_numeral
tff(fact_1736_minus__numeral__div__numeral,axiom,
! [M: num,N: num] : ( aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),M))),aa(num,int,numeral_numeral(int),N)) = aa(int,int,uminus_uminus(int),adjust_div(unique8689654367752047608divmod(int,M,N))) ) ).
% minus_numeral_div_numeral
tff(fact_1737_unique__remainder,axiom,
! [A2: int,B2: int,Q2: int,R: int,Q5: int,R3: int] :
( eucl_rel_int(A2,B2,aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),Q2),R))
=> ( eucl_rel_int(A2,B2,aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),Q5),R3))
=> ( R = R3 ) ) ) ).
% unique_remainder
tff(fact_1738_unique__quotient,axiom,
! [A2: int,B2: int,Q2: int,R: int,Q5: int,R3: int] :
( eucl_rel_int(A2,B2,aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),Q2),R))
=> ( eucl_rel_int(A2,B2,aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),Q5),R3))
=> ( Q2 = Q5 ) ) ) ).
% unique_quotient
tff(fact_1739_eucl__rel__int__by0,axiom,
! [K: int] : eucl_rel_int(K,zero_zero(int),aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),zero_zero(int)),K)) ).
% eucl_rel_int_by0
tff(fact_1740_div__int__unique,axiom,
! [K: int,L: int,Q2: int,R: int] :
( eucl_rel_int(K,L,aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),Q2),R))
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),K),L) = Q2 ) ) ).
% div_int_unique
tff(fact_1741_mod__int__unique,axiom,
! [K: int,L: int,Q2: int,R: int] :
( eucl_rel_int(K,L,aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),Q2),R))
=> ( modulo_modulo(int,K,L) = R ) ) ).
% mod_int_unique
tff(fact_1742_eucl__rel__int__dividesI,axiom,
! [L: int,K: int,Q2: int] :
( ( L != zero_zero(int) )
=> ( ( K = aa(int,int,aa(int,fun(int,int),times_times(int),Q2),L) )
=> eucl_rel_int(K,L,aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),Q2),zero_zero(int))) ) ) ).
% eucl_rel_int_dividesI
tff(fact_1743_Pair__inject,axiom,
! [A: $tType,B: $tType,A2: A,B2: B,A6: A,B6: B] :
( ( aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),A2),B2) = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),A6),B6) )
=> ~ ( ( A2 = A6 )
=> ( B2 != B6 ) ) ) ).
% Pair_inject
tff(fact_1744_prod__cases,axiom,
! [B: $tType,A: $tType,P: fun(product_prod(A,B),bool),P2: product_prod(A,B)] :
( ! [A4: A,B3: B] : pp(aa(product_prod(A,B),bool,P,aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),A4),B3)))
=> pp(aa(product_prod(A,B),bool,P,P2)) ) ).
% prod_cases
tff(fact_1745_surj__pair,axiom,
! [A: $tType,B: $tType,P2: product_prod(A,B)] :
? [X3: A,Y3: B] : ( P2 = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X3),Y3) ) ).
% surj_pair
tff(fact_1746_old_Oprod_Oexhaust,axiom,
! [A: $tType,B: $tType,Y: product_prod(A,B)] :
~ ! [A4: A,B3: B] : ( Y != aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),A4),B3) ) ).
% old.prod.exhaust
tff(fact_1747_eucl__rel__int,axiom,
! [K: int,L: int] : eucl_rel_int(K,L,aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(int,int,aa(int,fun(int,int),divide_divide(int),K),L)),modulo_modulo(int,K,L))) ).
% eucl_rel_int
tff(fact_1748_lemma__NBseq__def2,axiom,
! [A: $tType,B: $tType] :
( real_V822414075346904944vector(B)
=> ! [X6: fun(A,B)] :
( ? [K6: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),K6))
& ! [N5: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(B,aa(A,B,X6,N5))),K6)) )
<=> ? [N6: nat] :
! [N5: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(B,aa(A,B,X6,N5))),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,suc,N6)))) ) ) ).
% lemma_NBseq_def2
tff(fact_1749_lemma__NBseq__def,axiom,
! [A: $tType,B: $tType] :
( real_V822414075346904944vector(B)
=> ! [X6: fun(A,B)] :
( ? [K6: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),K6))
& ! [N5: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(B,aa(A,B,X6,N5))),K6)) )
<=> ? [N6: nat] :
! [N5: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(B,aa(A,B,X6,N5))),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,suc,N6)))) ) ) ).
% lemma_NBseq_def
tff(fact_1750_zminus1__lemma,axiom,
! [A2: int,B2: int,Q2: int,R: int] :
( eucl_rel_int(A2,B2,aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),Q2),R))
=> ( ( B2 != zero_zero(int) )
=> eucl_rel_int(aa(int,int,uminus_uminus(int),A2),B2,aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),if(int,aa(int,bool,aa(int,fun(int,bool),fequal(int),R),zero_zero(int)),aa(int,int,uminus_uminus(int),Q2),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(int,int,uminus_uminus(int),Q2)),one_one(int)))),if(int,aa(int,bool,aa(int,fun(int,bool),fequal(int),R),zero_zero(int)),zero_zero(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),B2),R)))) ) ) ).
% zminus1_lemma
tff(fact_1751_prod__induct3,axiom,
! [C: $tType,B: $tType,A: $tType,P: fun(product_prod(A,product_prod(B,C)),bool),X2: product_prod(A,product_prod(B,C))] :
( ! [A4: A,B3: B,C4: C] : pp(aa(product_prod(A,product_prod(B,C)),bool,P,aa(product_prod(B,C),product_prod(A,product_prod(B,C)),aa(A,fun(product_prod(B,C),product_prod(A,product_prod(B,C))),product_Pair(A,product_prod(B,C)),A4),aa(C,product_prod(B,C),aa(B,fun(C,product_prod(B,C)),product_Pair(B,C),B3),C4))))
=> pp(aa(product_prod(A,product_prod(B,C)),bool,P,X2)) ) ).
% prod_induct3
tff(fact_1752_prod__cases3,axiom,
! [A: $tType,B: $tType,C: $tType,Y: product_prod(A,product_prod(B,C))] :
~ ! [A4: A,B3: B,C4: C] : ( Y != aa(product_prod(B,C),product_prod(A,product_prod(B,C)),aa(A,fun(product_prod(B,C),product_prod(A,product_prod(B,C))),product_Pair(A,product_prod(B,C)),A4),aa(C,product_prod(B,C),aa(B,fun(C,product_prod(B,C)),product_Pair(B,C),B3),C4)) ) ).
% prod_cases3
tff(fact_1753_eucl__rel__int__iff,axiom,
! [K: int,L: int,Q2: int,R: int] :
( eucl_rel_int(K,L,aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),Q2),R))
<=> ( ( K = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),L),Q2)),R) )
& ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),L))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),R))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),R),L)) ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),L))
=> ( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),L),zero_zero(int)))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),L),R))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),R),zero_zero(int))) ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),L),zero_zero(int)))
=> ( Q2 = zero_zero(int) ) ) ) ) ) ) ).
% eucl_rel_int_iff
tff(fact_1754_pos__eucl__rel__int__mult__2,axiom,
! [B2: int,A2: int,Q2: int,R: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),B2))
=> ( eucl_rel_int(A2,B2,aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),Q2),R))
=> eucl_rel_int(aa(int,int,aa(int,fun(int,int),plus_plus(int),one_one(int)),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),A2)),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),B2),aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),Q2),aa(int,int,aa(int,fun(int,int),plus_plus(int),one_one(int)),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),R)))) ) ) ).
% pos_eucl_rel_int_mult_2
tff(fact_1755_prod__induct7,axiom,
! [G2: $tType,F: $tType,E3: $tType,D: $tType,C: $tType,B: $tType,A: $tType,P: fun(product_prod(A,product_prod(B,product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2)))))),bool),X2: product_prod(A,product_prod(B,product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2))))))] :
( ! [A4: A,B3: B,C4: C,D3: D,E2: E3,F3: F,G3: G2] : pp(aa(product_prod(A,product_prod(B,product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2)))))),bool,P,aa(product_prod(B,product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2))))),product_prod(A,product_prod(B,product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2)))))),aa(A,fun(product_prod(B,product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2))))),product_prod(A,product_prod(B,product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2))))))),product_Pair(A,product_prod(B,product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2)))))),A4),aa(product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2)))),product_prod(B,product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2))))),aa(B,fun(product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2)))),product_prod(B,product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2)))))),product_Pair(B,product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2))))),B3),aa(product_prod(D,product_prod(E3,product_prod(F,G2))),product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2)))),aa(C,fun(product_prod(D,product_prod(E3,product_prod(F,G2))),product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2))))),product_Pair(C,product_prod(D,product_prod(E3,product_prod(F,G2)))),C4),aa(product_prod(E3,product_prod(F,G2)),product_prod(D,product_prod(E3,product_prod(F,G2))),aa(D,fun(product_prod(E3,product_prod(F,G2)),product_prod(D,product_prod(E3,product_prod(F,G2)))),product_Pair(D,product_prod(E3,product_prod(F,G2))),D3),aa(product_prod(F,G2),product_prod(E3,product_prod(F,G2)),aa(E3,fun(product_prod(F,G2),product_prod(E3,product_prod(F,G2))),product_Pair(E3,product_prod(F,G2)),E2),aa(G2,product_prod(F,G2),aa(F,fun(G2,product_prod(F,G2)),product_Pair(F,G2),F3),G3))))))))
=> pp(aa(product_prod(A,product_prod(B,product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2)))))),bool,P,X2)) ) ).
% prod_induct7
tff(fact_1756_prod__induct6,axiom,
! [F: $tType,E3: $tType,D: $tType,C: $tType,B: $tType,A: $tType,P: fun(product_prod(A,product_prod(B,product_prod(C,product_prod(D,product_prod(E3,F))))),bool),X2: product_prod(A,product_prod(B,product_prod(C,product_prod(D,product_prod(E3,F)))))] :
( ! [A4: A,B3: B,C4: C,D3: D,E2: E3,F3: F] : pp(aa(product_prod(A,product_prod(B,product_prod(C,product_prod(D,product_prod(E3,F))))),bool,P,aa(product_prod(B,product_prod(C,product_prod(D,product_prod(E3,F)))),product_prod(A,product_prod(B,product_prod(C,product_prod(D,product_prod(E3,F))))),aa(A,fun(product_prod(B,product_prod(C,product_prod(D,product_prod(E3,F)))),product_prod(A,product_prod(B,product_prod(C,product_prod(D,product_prod(E3,F)))))),product_Pair(A,product_prod(B,product_prod(C,product_prod(D,product_prod(E3,F))))),A4),aa(product_prod(C,product_prod(D,product_prod(E3,F))),product_prod(B,product_prod(C,product_prod(D,product_prod(E3,F)))),aa(B,fun(product_prod(C,product_prod(D,product_prod(E3,F))),product_prod(B,product_prod(C,product_prod(D,product_prod(E3,F))))),product_Pair(B,product_prod(C,product_prod(D,product_prod(E3,F)))),B3),aa(product_prod(D,product_prod(E3,F)),product_prod(C,product_prod(D,product_prod(E3,F))),aa(C,fun(product_prod(D,product_prod(E3,F)),product_prod(C,product_prod(D,product_prod(E3,F)))),product_Pair(C,product_prod(D,product_prod(E3,F))),C4),aa(product_prod(E3,F),product_prod(D,product_prod(E3,F)),aa(D,fun(product_prod(E3,F),product_prod(D,product_prod(E3,F))),product_Pair(D,product_prod(E3,F)),D3),aa(F,product_prod(E3,F),aa(E3,fun(F,product_prod(E3,F)),product_Pair(E3,F),E2),F3)))))))
=> pp(aa(product_prod(A,product_prod(B,product_prod(C,product_prod(D,product_prod(E3,F))))),bool,P,X2)) ) ).
% prod_induct6
tff(fact_1757_prod__induct5,axiom,
! [E3: $tType,D: $tType,C: $tType,B: $tType,A: $tType,P: fun(product_prod(A,product_prod(B,product_prod(C,product_prod(D,E3)))),bool),X2: product_prod(A,product_prod(B,product_prod(C,product_prod(D,E3))))] :
( ! [A4: A,B3: B,C4: C,D3: D,E2: E3] : pp(aa(product_prod(A,product_prod(B,product_prod(C,product_prod(D,E3)))),bool,P,aa(product_prod(B,product_prod(C,product_prod(D,E3))),product_prod(A,product_prod(B,product_prod(C,product_prod(D,E3)))),aa(A,fun(product_prod(B,product_prod(C,product_prod(D,E3))),product_prod(A,product_prod(B,product_prod(C,product_prod(D,E3))))),product_Pair(A,product_prod(B,product_prod(C,product_prod(D,E3)))),A4),aa(product_prod(C,product_prod(D,E3)),product_prod(B,product_prod(C,product_prod(D,E3))),aa(B,fun(product_prod(C,product_prod(D,E3)),product_prod(B,product_prod(C,product_prod(D,E3)))),product_Pair(B,product_prod(C,product_prod(D,E3))),B3),aa(product_prod(D,E3),product_prod(C,product_prod(D,E3)),aa(C,fun(product_prod(D,E3),product_prod(C,product_prod(D,E3))),product_Pair(C,product_prod(D,E3)),C4),aa(E3,product_prod(D,E3),aa(D,fun(E3,product_prod(D,E3)),product_Pair(D,E3),D3),E2))))))
=> pp(aa(product_prod(A,product_prod(B,product_prod(C,product_prod(D,E3)))),bool,P,X2)) ) ).
% prod_induct5
tff(fact_1758_prod__induct4,axiom,
! [D: $tType,C: $tType,B: $tType,A: $tType,P: fun(product_prod(A,product_prod(B,product_prod(C,D))),bool),X2: product_prod(A,product_prod(B,product_prod(C,D)))] :
( ! [A4: A,B3: B,C4: C,D3: D] : pp(aa(product_prod(A,product_prod(B,product_prod(C,D))),bool,P,aa(product_prod(B,product_prod(C,D)),product_prod(A,product_prod(B,product_prod(C,D))),aa(A,fun(product_prod(B,product_prod(C,D)),product_prod(A,product_prod(B,product_prod(C,D)))),product_Pair(A,product_prod(B,product_prod(C,D))),A4),aa(product_prod(C,D),product_prod(B,product_prod(C,D)),aa(B,fun(product_prod(C,D),product_prod(B,product_prod(C,D))),product_Pair(B,product_prod(C,D)),B3),aa(D,product_prod(C,D),aa(C,fun(D,product_prod(C,D)),product_Pair(C,D),C4),D3)))))
=> pp(aa(product_prod(A,product_prod(B,product_prod(C,D))),bool,P,X2)) ) ).
% prod_induct4
tff(fact_1759_prod__cases7,axiom,
! [A: $tType,B: $tType,C: $tType,D: $tType,E3: $tType,F: $tType,G2: $tType,Y: product_prod(A,product_prod(B,product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2))))))] :
~ ! [A4: A,B3: B,C4: C,D3: D,E2: E3,F3: F,G3: G2] : ( Y != aa(product_prod(B,product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2))))),product_prod(A,product_prod(B,product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2)))))),aa(A,fun(product_prod(B,product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2))))),product_prod(A,product_prod(B,product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2))))))),product_Pair(A,product_prod(B,product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2)))))),A4),aa(product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2)))),product_prod(B,product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2))))),aa(B,fun(product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2)))),product_prod(B,product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2)))))),product_Pair(B,product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2))))),B3),aa(product_prod(D,product_prod(E3,product_prod(F,G2))),product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2)))),aa(C,fun(product_prod(D,product_prod(E3,product_prod(F,G2))),product_prod(C,product_prod(D,product_prod(E3,product_prod(F,G2))))),product_Pair(C,product_prod(D,product_prod(E3,product_prod(F,G2)))),C4),aa(product_prod(E3,product_prod(F,G2)),product_prod(D,product_prod(E3,product_prod(F,G2))),aa(D,fun(product_prod(E3,product_prod(F,G2)),product_prod(D,product_prod(E3,product_prod(F,G2)))),product_Pair(D,product_prod(E3,product_prod(F,G2))),D3),aa(product_prod(F,G2),product_prod(E3,product_prod(F,G2)),aa(E3,fun(product_prod(F,G2),product_prod(E3,product_prod(F,G2))),product_Pair(E3,product_prod(F,G2)),E2),aa(G2,product_prod(F,G2),aa(F,fun(G2,product_prod(F,G2)),product_Pair(F,G2),F3),G3)))))) ) ).
% prod_cases7
tff(fact_1760_prod__cases6,axiom,
! [A: $tType,B: $tType,C: $tType,D: $tType,E3: $tType,F: $tType,Y: product_prod(A,product_prod(B,product_prod(C,product_prod(D,product_prod(E3,F)))))] :
~ ! [A4: A,B3: B,C4: C,D3: D,E2: E3,F3: F] : ( Y != aa(product_prod(B,product_prod(C,product_prod(D,product_prod(E3,F)))),product_prod(A,product_prod(B,product_prod(C,product_prod(D,product_prod(E3,F))))),aa(A,fun(product_prod(B,product_prod(C,product_prod(D,product_prod(E3,F)))),product_prod(A,product_prod(B,product_prod(C,product_prod(D,product_prod(E3,F)))))),product_Pair(A,product_prod(B,product_prod(C,product_prod(D,product_prod(E3,F))))),A4),aa(product_prod(C,product_prod(D,product_prod(E3,F))),product_prod(B,product_prod(C,product_prod(D,product_prod(E3,F)))),aa(B,fun(product_prod(C,product_prod(D,product_prod(E3,F))),product_prod(B,product_prod(C,product_prod(D,product_prod(E3,F))))),product_Pair(B,product_prod(C,product_prod(D,product_prod(E3,F)))),B3),aa(product_prod(D,product_prod(E3,F)),product_prod(C,product_prod(D,product_prod(E3,F))),aa(C,fun(product_prod(D,product_prod(E3,F)),product_prod(C,product_prod(D,product_prod(E3,F)))),product_Pair(C,product_prod(D,product_prod(E3,F))),C4),aa(product_prod(E3,F),product_prod(D,product_prod(E3,F)),aa(D,fun(product_prod(E3,F),product_prod(D,product_prod(E3,F))),product_Pair(D,product_prod(E3,F)),D3),aa(F,product_prod(E3,F),aa(E3,fun(F,product_prod(E3,F)),product_Pair(E3,F),E2),F3))))) ) ).
% prod_cases6
tff(fact_1761_prod__cases5,axiom,
! [A: $tType,B: $tType,C: $tType,D: $tType,E3: $tType,Y: product_prod(A,product_prod(B,product_prod(C,product_prod(D,E3))))] :
~ ! [A4: A,B3: B,C4: C,D3: D,E2: E3] : ( Y != aa(product_prod(B,product_prod(C,product_prod(D,E3))),product_prod(A,product_prod(B,product_prod(C,product_prod(D,E3)))),aa(A,fun(product_prod(B,product_prod(C,product_prod(D,E3))),product_prod(A,product_prod(B,product_prod(C,product_prod(D,E3))))),product_Pair(A,product_prod(B,product_prod(C,product_prod(D,E3)))),A4),aa(product_prod(C,product_prod(D,E3)),product_prod(B,product_prod(C,product_prod(D,E3))),aa(B,fun(product_prod(C,product_prod(D,E3)),product_prod(B,product_prod(C,product_prod(D,E3)))),product_Pair(B,product_prod(C,product_prod(D,E3))),B3),aa(product_prod(D,E3),product_prod(C,product_prod(D,E3)),aa(C,fun(product_prod(D,E3),product_prod(C,product_prod(D,E3))),product_Pair(C,product_prod(D,E3)),C4),aa(E3,product_prod(D,E3),aa(D,fun(E3,product_prod(D,E3)),product_Pair(D,E3),D3),E2)))) ) ).
% prod_cases5
tff(fact_1762_norm__divide__numeral,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [A2: A,W: num] : ( real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),W))) = aa(real,real,aa(real,fun(real,real),divide_divide(real),real_V7770717601297561774m_norm(A,A2)),aa(num,real,numeral_numeral(real),W)) ) ) ).
% norm_divide_numeral
tff(fact_1763_norm__mult__numeral2,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [A2: A,W: num] : ( real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(num,A,numeral_numeral(A),W))) = aa(real,real,aa(real,fun(real,real),times_times(real),real_V7770717601297561774m_norm(A,A2)),aa(num,real,numeral_numeral(real),W)) ) ) ).
% norm_mult_numeral2
tff(fact_1764_norm__mult__numeral1,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [W: num,A2: A] : ( real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),W)),A2)) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),W)),real_V7770717601297561774m_norm(A,A2)) ) ) ).
% norm_mult_numeral1
tff(fact_1765_norm__neg__numeral,axiom,
! [A: $tType] :
( real_V2822296259951069270ebra_1(A)
=> ! [W: num] : ( real_V7770717601297561774m_norm(A,aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))) = aa(num,real,numeral_numeral(real),W) ) ) ).
% norm_neg_numeral
tff(fact_1766_norm__le__zero__iff,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,X2)),zero_zero(real)))
<=> ( X2 = zero_zero(A) ) ) ) ).
% norm_le_zero_iff
tff(fact_1767_zero__less__norm__iff,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),real_V7770717601297561774m_norm(A,X2)))
<=> ( X2 != zero_zero(A) ) ) ) ).
% zero_less_norm_iff
tff(fact_1768_norm__of__nat,axiom,
! [A: $tType] :
( real_V2822296259951069270ebra_1(A)
=> ! [N: nat] : ( real_V7770717601297561774m_norm(A,aa(nat,A,semiring_1_of_nat(A),N)) = aa(nat,real,semiring_1_of_nat(real),N) ) ) ).
% norm_of_nat
tff(fact_1769_norm__minus__cancel,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X2: A] : ( real_V7770717601297561774m_norm(A,aa(A,A,uminus_uminus(A),X2)) = real_V7770717601297561774m_norm(A,X2) ) ) ).
% norm_minus_cancel
tff(fact_1770_norm__zero,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ( real_V7770717601297561774m_norm(A,zero_zero(A)) = zero_zero(real) ) ) ).
% norm_zero
tff(fact_1771_norm__eq__zero,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X2: A] :
( ( real_V7770717601297561774m_norm(A,X2) = zero_zero(real) )
<=> ( X2 = zero_zero(A) ) ) ) ).
% norm_eq_zero
tff(fact_1772_norm__one,axiom,
! [A: $tType] :
( real_V2822296259951069270ebra_1(A)
=> ( real_V7770717601297561774m_norm(A,one_one(A)) = one_one(real) ) ) ).
% norm_one
tff(fact_1773_norm__numeral,axiom,
! [A: $tType] :
( real_V2822296259951069270ebra_1(A)
=> ! [W: num] : ( real_V7770717601297561774m_norm(A,aa(num,A,numeral_numeral(A),W)) = aa(num,real,numeral_numeral(real),W) ) ) ).
% norm_numeral
tff(fact_1774_norm__minus__commute,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [A2: A,B2: A] : ( real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)) = real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),A2)) ) ) ).
% norm_minus_commute
tff(fact_1775_norm__not__less__zero,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X2: A] : ~ pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,X2)),zero_zero(real))) ) ).
% norm_not_less_zero
tff(fact_1776_norm__ge__zero,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X2: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),real_V7770717601297561774m_norm(A,X2))) ) ).
% norm_ge_zero
tff(fact_1777_norm__mult,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [X2: A,Y: A] : ( real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),times_times(A),X2),Y)) = aa(real,real,aa(real,fun(real,real),times_times(real),real_V7770717601297561774m_norm(A,X2)),real_V7770717601297561774m_norm(A,Y)) ) ) ).
% norm_mult
tff(fact_1778_norm__divide,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [A2: A,B2: A] : ( real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),real_V7770717601297561774m_norm(A,A2)),real_V7770717601297561774m_norm(A,B2)) ) ) ).
% norm_divide
tff(fact_1779_norm__power,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [X2: A,N: nat] : ( real_V7770717601297561774m_norm(A,aa(nat,A,power_power(A,X2),N)) = aa(nat,real,power_power(real,real_V7770717601297561774m_norm(A,X2)),N) ) ) ).
% norm_power
tff(fact_1780_norm__uminus__minus,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X2: A,Y: A] : ( real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,uminus_uminus(A),X2)),Y)) = real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)) ) ) ).
% norm_uminus_minus
tff(fact_1781_nonzero__norm__divide,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [B2: A,A2: A] :
( ( B2 != zero_zero(A) )
=> ( real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),real_V7770717601297561774m_norm(A,A2)),real_V7770717601297561774m_norm(A,B2)) ) ) ) ).
% nonzero_norm_divide
tff(fact_1782_power__eq__imp__eq__norm,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [W: A,N: nat,Z: A] :
( ( aa(nat,A,power_power(A,W),N) = aa(nat,A,power_power(A,Z),N) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( real_V7770717601297561774m_norm(A,W) = real_V7770717601297561774m_norm(A,Z) ) ) ) ) ).
% power_eq_imp_eq_norm
tff(fact_1783_norm__mult__less,axiom,
! [A: $tType] :
( real_V4412858255891104859lgebra(A)
=> ! [X2: A,R: real,Y: A,S2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,X2)),R))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,Y)),S2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),times_times(A),X2),Y))),aa(real,real,aa(real,fun(real,real),times_times(real),R),S2))) ) ) ) ).
% norm_mult_less
tff(fact_1784_norm__mult__ineq,axiom,
! [A: $tType] :
( real_V4412858255891104859lgebra(A)
=> ! [X2: A,Y: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),times_times(A),X2),Y))),aa(real,real,aa(real,fun(real,real),times_times(real),real_V7770717601297561774m_norm(A,X2)),real_V7770717601297561774m_norm(A,Y)))) ) ).
% norm_mult_ineq
tff(fact_1785_norm__triangle__lt,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X2: A,Y: A,E: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),real_V7770717601297561774m_norm(A,X2)),real_V7770717601297561774m_norm(A,Y))),E))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y))),E)) ) ) ).
% norm_triangle_lt
tff(fact_1786_norm__add__less,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X2: A,R: real,Y: A,S2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,X2)),R))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,Y)),S2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y))),aa(real,real,aa(real,fun(real,real),plus_plus(real),R),S2))) ) ) ) ).
% norm_add_less
tff(fact_1787_norm__triangle__mono,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [A2: A,R: real,B2: A,S2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,A2)),R))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,B2)),S2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2))),aa(real,real,aa(real,fun(real,real),plus_plus(real),R),S2))) ) ) ) ).
% norm_triangle_mono
tff(fact_1788_norm__triangle__ineq,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X2: A,Y: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y))),aa(real,real,aa(real,fun(real,real),plus_plus(real),real_V7770717601297561774m_norm(A,X2)),real_V7770717601297561774m_norm(A,Y)))) ) ).
% norm_triangle_ineq
tff(fact_1789_norm__triangle__le,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X2: A,Y: A,E: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),real_V7770717601297561774m_norm(A,X2)),real_V7770717601297561774m_norm(A,Y))),E))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y))),E)) ) ) ).
% norm_triangle_le
tff(fact_1790_norm__add__leD,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [A2: A,B2: A,C2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2))),C2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,B2)),aa(real,real,aa(real,fun(real,real),plus_plus(real),real_V7770717601297561774m_norm(A,A2)),C2))) ) ) ).
% norm_add_leD
tff(fact_1791_norm__diff__triangle__less,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X2: A,Y: A,E1: real,Z: A,E22: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y))),E1))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),Y),Z))),E22))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Z))),aa(real,real,aa(real,fun(real,real),plus_plus(real),E1),E22))) ) ) ) ).
% norm_diff_triangle_less
tff(fact_1792_norm__power__ineq,axiom,
! [A: $tType] :
( real_V2822296259951069270ebra_1(A)
=> ! [X2: A,N: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(nat,A,power_power(A,X2),N))),aa(nat,real,power_power(real,real_V7770717601297561774m_norm(A,X2)),N))) ) ).
% norm_power_ineq
tff(fact_1793_norm__triangle__sub,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X2: A,Y: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,X2)),aa(real,real,aa(real,fun(real,real),plus_plus(real),real_V7770717601297561774m_norm(A,Y)),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y))))) ) ).
% norm_triangle_sub
tff(fact_1794_norm__triangle__ineq4,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [A2: A,B2: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2))),aa(real,real,aa(real,fun(real,real),plus_plus(real),real_V7770717601297561774m_norm(A,A2)),real_V7770717601297561774m_norm(A,B2)))) ) ).
% norm_triangle_ineq4
tff(fact_1795_norm__diff__triangle__le,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X2: A,Y: A,E1: real,Z: A,E22: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y))),E1))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),Y),Z))),E22))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Z))),aa(real,real,aa(real,fun(real,real),plus_plus(real),E1),E22))) ) ) ) ).
% norm_diff_triangle_le
tff(fact_1796_norm__triangle__le__diff,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X2: A,Y: A,E: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),real_V7770717601297561774m_norm(A,X2)),real_V7770717601297561774m_norm(A,Y))),E))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y))),E)) ) ) ).
% norm_triangle_le_diff
tff(fact_1797_norm__diff__ineq,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [A2: A,B2: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),real_V7770717601297561774m_norm(A,A2)),real_V7770717601297561774m_norm(A,B2))),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)))) ) ).
% norm_diff_ineq
tff(fact_1798_norm__triangle__ineq2,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [A2: A,B2: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),real_V7770717601297561774m_norm(A,A2)),real_V7770717601297561774m_norm(A,B2))),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)))) ) ).
% norm_triangle_ineq2
tff(fact_1799_power__eq__1__iff,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [W: A,N: nat] :
( ( aa(nat,A,power_power(A,W),N) = one_one(A) )
=> ( ( real_V7770717601297561774m_norm(A,W) = one_one(real) )
| ( N = zero_zero(nat) ) ) ) ) ).
% power_eq_1_iff
tff(fact_1800_norm__diff__triangle__ineq,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [A2: A,B2: A,C2: A,D2: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),D2)))),aa(real,real,aa(real,fun(real,real),plus_plus(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),C2))),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),D2))))) ) ).
% norm_diff_triangle_ineq
tff(fact_1801_square__norm__one,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [X2: A] :
( ( aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(one2))) = one_one(A) )
=> ( real_V7770717601297561774m_norm(A,X2) = one_one(real) ) ) ) ).
% square_norm_one
tff(fact_1802_norm__power__diff,axiom,
! [A: $tType] :
( ( comm_monoid_mult(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [Z: A,W: A,M: nat] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,Z)),one_one(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,W)),one_one(real)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,power_power(A,Z),M)),aa(nat,A,power_power(A,W),M)))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),M)),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),Z),W))))) ) ) ) ).
% norm_power_diff
tff(fact_1803_arcosh__1,axiom,
! [A: $tType] :
( ln(A)
=> ( aa(A,A,arcosh(A),one_one(A)) = zero_zero(A) ) ) ).
% arcosh_1
tff(fact_1804_artanh__0,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field(A)
& ln(A) )
=> ( aa(A,A,artanh(A),zero_zero(A)) = zero_zero(A) ) ) ).
% artanh_0
tff(fact_1805_arsinh__0,axiom,
! [A: $tType] :
( ln(A)
=> ( aa(A,A,arsinh(A),zero_zero(A)) = zero_zero(A) ) ) ).
% arsinh_0
tff(fact_1806_old_Oprod_Orec,axiom,
! [A: $tType,T: $tType,B: $tType,F1: fun(A,fun(B,T)),A2: A,B2: B] : ( product_rec_prod(A,B,T,F1,aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),A2),B2)) = aa(B,T,aa(A,fun(B,T),F1,A2),B2) ) ).
% old.prod.rec
tff(fact_1807_pochhammer__double,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [Z: A,N: nat] : ( comm_s3205402744901411588hammer(A,aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),Z),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)))),comm_s3205402744901411588hammer(A,Z,N))),comm_s3205402744901411588hammer(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),Z),aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(num,A,numeral_numeral(A),bit0(one2)))),N)) ) ) ).
% pochhammer_double
tff(fact_1808_ln__one__minus__pos__lower__bound,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,uminus_uminus(real),X2)),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))))),aa(real,real,ln_ln(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),one_one(real)),X2)))) ) ) ).
% ln_one_minus_pos_lower_bound
tff(fact_1809_central__binomial__lower__bound,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(nat,real,power_power(real,aa(num,real,numeral_numeral(real),bit0(bit0(one2)))),N)),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),aa(nat,real,semiring_1_of_nat(real),N)))),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,binomial(aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)),N)))) ) ).
% central_binomial_lower_bound
tff(fact_1810_arsinh__minus__real,axiom,
! [X2: real] : ( aa(real,real,arsinh(real),aa(real,real,uminus_uminus(real),X2)) = aa(real,real,uminus_uminus(real),aa(real,real,arsinh(real),X2)) ) ).
% arsinh_minus_real
tff(fact_1811_pochhammer__1,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [A2: A] : ( comm_s3205402744901411588hammer(A,A2,one_one(nat)) = A2 ) ) ).
% pochhammer_1
tff(fact_1812_ln__one,axiom,
! [A: $tType] :
( ln(A)
=> ( aa(A,A,ln_ln(A),one_one(A)) = zero_zero(A) ) ) ).
% ln_one
tff(fact_1813_ln__less__cancel__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,ln_ln(real),X2)),aa(real,real,ln_ln(real),Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),Y)) ) ) ) ).
% ln_less_cancel_iff
tff(fact_1814_ln__inj__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),Y))
=> ( ( aa(real,real,ln_ln(real),X2) = aa(real,real,ln_ln(real),Y) )
<=> ( X2 = Y ) ) ) ) ).
% ln_inj_iff
tff(fact_1815_pochhammer__0,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [A2: A] : ( comm_s3205402744901411588hammer(A,A2,zero_zero(nat)) = one_one(A) ) ) ).
% pochhammer_0
tff(fact_1816_pochhammer__Suc0,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [A2: A] : ( comm_s3205402744901411588hammer(A,A2,aa(nat,nat,suc,zero_zero(nat))) = A2 ) ) ).
% pochhammer_Suc0
tff(fact_1817_ln__le__cancel__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,ln_ln(real),X2)),aa(real,real,ln_ln(real),Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),Y)) ) ) ) ).
% ln_le_cancel_iff
tff(fact_1818_ln__less__zero__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,ln_ln(real),X2)),zero_zero(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),one_one(real))) ) ) ).
% ln_less_zero_iff
tff(fact_1819_ln__gt__zero__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,ln_ln(real),X2)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),X2)) ) ) ).
% ln_gt_zero_iff
tff(fact_1820_ln__eq__zero__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( ( aa(real,real,ln_ln(real),X2) = zero_zero(real) )
<=> ( X2 = one_one(real) ) ) ) ).
% ln_eq_zero_iff
tff(fact_1821_ln__ge__zero__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,ln_ln(real),X2)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),X2)) ) ) ).
% ln_ge_zero_iff
tff(fact_1822_ln__le__zero__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,ln_ln(real),X2)),zero_zero(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),one_one(real))) ) ) ).
% ln_le_zero_iff
tff(fact_1823_pochhammer__of__nat,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [X2: nat,N: nat] : ( comm_s3205402744901411588hammer(A,aa(nat,A,semiring_1_of_nat(A),X2),N) = aa(nat,A,semiring_1_of_nat(A),comm_s3205402744901411588hammer(nat,X2,N)) ) ) ).
% pochhammer_of_nat
tff(fact_1824_ln__less__self,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,ln_ln(real),X2)),X2)) ) ).
% ln_less_self
tff(fact_1825_pochhammer__pos,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [X2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),X2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),comm_s3205402744901411588hammer(A,X2,N))) ) ) ).
% pochhammer_pos
tff(fact_1826_pochhammer__eq__0__mono,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [A2: A,N: nat,M: nat] :
( ( comm_s3205402744901411588hammer(A,A2,N) = zero_zero(A) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> ( comm_s3205402744901411588hammer(A,A2,M) = zero_zero(A) ) ) ) ) ).
% pochhammer_eq_0_mono
tff(fact_1827_pochhammer__neq__0__mono,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [A2: A,M: nat,N: nat] :
( ( comm_s3205402744901411588hammer(A,A2,M) != zero_zero(A) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> ( comm_s3205402744901411588hammer(A,A2,N) != zero_zero(A) ) ) ) ) ).
% pochhammer_neq_0_mono
tff(fact_1828_ln__bound,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,ln_ln(real),X2)),X2)) ) ).
% ln_bound
tff(fact_1829_ln__gt__zero__imp__gt__one,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,ln_ln(real),X2)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),X2)) ) ) ).
% ln_gt_zero_imp_gt_one
tff(fact_1830_ln__less__zero,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),one_one(real)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,ln_ln(real),X2)),zero_zero(real))) ) ) ).
% ln_less_zero
tff(fact_1831_ln__gt__zero,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,ln_ln(real),X2))) ) ).
% ln_gt_zero
tff(fact_1832_ln__ge__zero,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,ln_ln(real),X2))) ) ).
% ln_ge_zero
tff(fact_1833_pochhammer__nonneg,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [X2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),X2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),comm_s3205402744901411588hammer(A,X2,N))) ) ) ).
% pochhammer_nonneg
tff(fact_1834_pochhammer__0__left,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [N: nat] :
( ( ( N = zero_zero(nat) )
=> ( comm_s3205402744901411588hammer(A,zero_zero(A),N) = one_one(A) ) )
& ( ( N != zero_zero(nat) )
=> ( comm_s3205402744901411588hammer(A,zero_zero(A),N) = zero_zero(A) ) ) ) ) ).
% pochhammer_0_left
tff(fact_1835_ln__ge__zero__imp__ge__one,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,ln_ln(real),X2)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),X2)) ) ) ).
% ln_ge_zero_imp_ge_one
tff(fact_1836_ln__add__one__self__le__self,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,ln_ln(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),X2))),X2)) ) ).
% ln_add_one_self_le_self
tff(fact_1837_ln__mult,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),Y))
=> ( aa(real,real,ln_ln(real),aa(real,real,aa(real,fun(real,real),times_times(real),X2),Y)) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,ln_ln(real),X2)),aa(real,real,ln_ln(real),Y)) ) ) ) ).
% ln_mult
tff(fact_1838_ln__eq__minus__one,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( ( aa(real,real,ln_ln(real),X2) = aa(real,real,aa(real,fun(real,real),minus_minus(real),X2),one_one(real)) )
=> ( X2 = one_one(real) ) ) ) ).
% ln_eq_minus_one
tff(fact_1839_ln__div,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),Y))
=> ( aa(real,real,ln_ln(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),X2),Y)) = aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,ln_ln(real),X2)),aa(real,real,ln_ln(real),Y)) ) ) ) ).
% ln_div
tff(fact_1840_pochhammer__rec,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [A2: A,N: nat] : ( comm_s3205402744901411588hammer(A,A2,aa(nat,nat,suc,N)) = aa(A,A,aa(A,fun(A,A),times_times(A),A2),comm_s3205402744901411588hammer(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),one_one(A)),N)) ) ) ).
% pochhammer_rec
tff(fact_1841_pochhammer__rec_H,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [Z: A,N: nat] : ( comm_s3205402744901411588hammer(A,Z,aa(nat,nat,suc,N)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),Z),aa(nat,A,semiring_1_of_nat(A),N))),comm_s3205402744901411588hammer(A,Z,N)) ) ) ).
% pochhammer_rec'
tff(fact_1842_pochhammer__Suc,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [A2: A,N: nat] : ( comm_s3205402744901411588hammer(A,A2,aa(nat,nat,suc,N)) = aa(A,A,aa(A,fun(A,A),times_times(A),comm_s3205402744901411588hammer(A,A2,N)),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(nat,A,semiring_1_of_nat(A),N))) ) ) ).
% pochhammer_Suc
tff(fact_1843_pochhammer__of__nat__eq__0__lemma,axiom,
! [A: $tType] :
( idom(A)
=> ! [N: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),K))
=> ( comm_s3205402744901411588hammer(A,aa(A,A,uminus_uminus(A),aa(nat,A,semiring_1_of_nat(A),N)),K) = zero_zero(A) ) ) ) ).
% pochhammer_of_nat_eq_0_lemma
tff(fact_1844_pochhammer__of__nat__eq__0__iff,axiom,
! [A: $tType] :
( ( ring_char_0(A)
& idom(A) )
=> ! [N: nat,K: nat] :
( ( comm_s3205402744901411588hammer(A,aa(A,A,uminus_uminus(A),aa(nat,A,semiring_1_of_nat(A),N)),K) = zero_zero(A) )
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),K)) ) ) ).
% pochhammer_of_nat_eq_0_iff
tff(fact_1845_pochhammer__eq__0__iff,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [A2: A,N: nat] :
( ( comm_s3205402744901411588hammer(A,A2,N) = zero_zero(A) )
<=> ? [K2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),K2),N))
& ( A2 = aa(A,A,uminus_uminus(A),aa(nat,A,semiring_1_of_nat(A),K2)) ) ) ) ) ).
% pochhammer_eq_0_iff
tff(fact_1846_pochhammer__of__nat__eq__0__lemma_H,axiom,
! [A: $tType] :
( ( ring_char_0(A)
& idom(A) )
=> ! [K: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N))
=> ( comm_s3205402744901411588hammer(A,aa(A,A,uminus_uminus(A),aa(nat,A,semiring_1_of_nat(A),N)),K) != zero_zero(A) ) ) ) ).
% pochhammer_of_nat_eq_0_lemma'
tff(fact_1847_pochhammer__product_H,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [Z: A,N: nat,M: nat] : ( comm_s3205402744901411588hammer(A,Z,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),M)) = aa(A,A,aa(A,fun(A,A),times_times(A),comm_s3205402744901411588hammer(A,Z,N)),comm_s3205402744901411588hammer(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),Z),aa(nat,A,semiring_1_of_nat(A),N)),M)) ) ) ).
% pochhammer_product'
tff(fact_1848_binomial__mono,axiom,
! [K: nat,K7: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),K7))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),K7)),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,binomial(N),K)),aa(nat,nat,binomial(N),K7))) ) ) ).
% binomial_mono
tff(fact_1849_binomial__maximum_H,axiom,
! [N: nat,K: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,binomial(aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)),K)),aa(nat,nat,binomial(aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)),N))) ).
% binomial_maximum'
tff(fact_1850_ln__2__less__1,axiom,
pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,ln_ln(real),aa(num,real,numeral_numeral(real),bit0(one2)))),one_one(real))) ).
% ln_2_less_1
tff(fact_1851_binomial__maximum,axiom,
! [N: nat,K: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,binomial(N),K)),aa(nat,nat,binomial(N),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ).
% binomial_maximum
tff(fact_1852_binomial__antimono,axiom,
! [K: nat,K7: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),K7))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),aa(num,nat,numeral_numeral(nat),bit0(one2)))),K))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K7),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,binomial(N),K7)),aa(nat,nat,binomial(N),K))) ) ) ) ).
% binomial_antimono
tff(fact_1853_ln__le__minus__one,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,ln_ln(real),X2)),aa(real,real,aa(real,fun(real,real),minus_minus(real),X2),one_one(real)))) ) ).
% ln_le_minus_one
tff(fact_1854_ln__diff__le,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),Y))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,ln_ln(real),X2)),aa(real,real,ln_ln(real),Y))),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),X2),Y)),Y))) ) ) ).
% ln_diff_le
tff(fact_1855_ln__add__one__self__le__self2,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),one_one(real))),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,ln_ln(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),X2))),X2)) ) ).
% ln_add_one_self_le_self2
tff(fact_1856_ln__realpow,axiom,
! [X2: real,N: nat] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( aa(real,real,ln_ln(real),aa(nat,real,power_power(real,X2),N)) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N)),aa(real,real,ln_ln(real),X2)) ) ) ).
% ln_realpow
tff(fact_1857_pochhammer__product,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [M: nat,N: nat,Z: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( comm_s3205402744901411588hammer(A,Z,N) = aa(A,A,aa(A,fun(A,A),times_times(A),comm_s3205402744901411588hammer(A,Z,M)),comm_s3205402744901411588hammer(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),Z),aa(nat,A,semiring_1_of_nat(A),M)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M))) ) ) ) ).
% pochhammer_product
tff(fact_1858_binomial__strict__mono,axiom,
! [K: nat,K7: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),K),K7))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),K7)),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,binomial(N),K)),aa(nat,nat,binomial(N),K7))) ) ) ).
% binomial_strict_mono
tff(fact_1859_binomial__strict__antimono,axiom,
! [K: nat,K7: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),K),K7))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),K)))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K7),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,binomial(N),K7)),aa(nat,nat,binomial(N),K))) ) ) ) ).
% binomial_strict_antimono
tff(fact_1860_binomial__less__binomial__Suc,axiom,
! [K: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),K),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),aa(num,nat,numeral_numeral(nat),bit0(one2)))))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,binomial(N),K)),aa(nat,nat,binomial(N),aa(nat,nat,suc,K)))) ) ).
% binomial_less_binomial_Suc
tff(fact_1861_ln__one__minus__pos__upper__bound,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),one_one(real)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,ln_ln(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),one_one(real)),X2))),aa(real,real,uminus_uminus(real),X2))) ) ) ).
% ln_one_minus_pos_upper_bound
tff(fact_1862_pochhammer__absorb__comp,axiom,
! [A: $tType] :
( comm_ring_1(A)
=> ! [R: A,K: nat] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),R),aa(nat,A,semiring_1_of_nat(A),K))),comm_s3205402744901411588hammer(A,aa(A,A,uminus_uminus(A),R),K)) = aa(A,A,aa(A,fun(A,A),times_times(A),R),comm_s3205402744901411588hammer(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),R)),one_one(A)),K)) ) ) ).
% pochhammer_absorb_comp
tff(fact_1863_pochhammer__minus_H,axiom,
! [A: $tType] :
( comm_ring_1(A)
=> ! [B2: A,K: nat] : ( comm_s3205402744901411588hammer(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),aa(nat,A,semiring_1_of_nat(A),K))),one_one(A)),K) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),K)),comm_s3205402744901411588hammer(A,aa(A,A,uminus_uminus(A),B2),K)) ) ) ).
% pochhammer_minus'
tff(fact_1864_pochhammer__minus,axiom,
! [A: $tType] :
( comm_ring_1(A)
=> ! [B2: A,K: nat] : ( comm_s3205402744901411588hammer(A,aa(A,A,uminus_uminus(A),B2),K) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),K)),comm_s3205402744901411588hammer(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),aa(nat,A,semiring_1_of_nat(A),K))),one_one(A)),K)) ) ) ).
% pochhammer_minus
tff(fact_1865_ln__one__plus__pos__lower__bound,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),one_one(real)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),X2),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(real,real,ln_ln(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),X2)))) ) ) ).
% ln_one_plus_pos_lower_bound
tff(fact_1866_artanh__def,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field(A)
& ln(A) )
=> ! [X2: A] : ( aa(A,A,artanh(A),X2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,ln_ln(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),X2)),aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),X2)))),aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ).
% artanh_def
tff(fact_1867_zero__less__binomial__iff,axiom,
! [N: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(nat,nat,binomial(N),K)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N)) ) ).
% zero_less_binomial_iff
tff(fact_1868_choose__two,axiom,
! [N: nat] : ( aa(nat,nat,binomial(N),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat)))),aa(num,nat,numeral_numeral(nat),bit0(one2))) ) ).
% choose_two
tff(fact_1869_binomial__n__0,axiom,
! [N: nat] : ( aa(nat,nat,binomial(N),zero_zero(nat)) = one_one(nat) ) ).
% binomial_n_0
tff(fact_1870_binomial__Suc__Suc,axiom,
! [N: nat,K: nat] : ( aa(nat,nat,binomial(aa(nat,nat,suc,N)),aa(nat,nat,suc,K)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,binomial(N),K)),aa(nat,nat,binomial(N),aa(nat,nat,suc,K))) ) ).
% binomial_Suc_Suc
tff(fact_1871_binomial__eq__0__iff,axiom,
! [N: nat,K: nat] :
( ( aa(nat,nat,binomial(N),K) = zero_zero(nat) )
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),K)) ) ).
% binomial_eq_0_iff
tff(fact_1872_binomial__0__Suc,axiom,
! [K: nat] : ( aa(nat,nat,binomial(zero_zero(nat)),aa(nat,nat,suc,K)) = zero_zero(nat) ) ).
% binomial_0_Suc
tff(fact_1873_binomial__1,axiom,
! [N: nat] : ( aa(nat,nat,binomial(N),aa(nat,nat,suc,zero_zero(nat))) = N ) ).
% binomial_1
tff(fact_1874_binomial__Suc__n,axiom,
! [N: nat] : ( aa(nat,nat,binomial(aa(nat,nat,suc,N)),N) = aa(nat,nat,suc,N) ) ).
% binomial_Suc_n
tff(fact_1875_binomial__n__n,axiom,
! [N: nat] : ( aa(nat,nat,binomial(N),N) = one_one(nat) ) ).
% binomial_n_n
tff(fact_1876_choose__one,axiom,
! [N: nat] : ( aa(nat,nat,binomial(N),one_one(nat)) = N ) ).
% choose_one
tff(fact_1877_binomial__eq__0,axiom,
! [N: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),K))
=> ( aa(nat,nat,binomial(N),K) = zero_zero(nat) ) ) ).
% binomial_eq_0
tff(fact_1878_Suc__times__binomial__eq,axiom,
! [N: nat,K: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,suc,N)),aa(nat,nat,binomial(N),K)) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,binomial(aa(nat,nat,suc,N)),aa(nat,nat,suc,K))),aa(nat,nat,suc,K)) ) ).
% Suc_times_binomial_eq
tff(fact_1879_Suc__times__binomial,axiom,
! [K: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,suc,K)),aa(nat,nat,binomial(aa(nat,nat,suc,N)),aa(nat,nat,suc,K))) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,suc,N)),aa(nat,nat,binomial(N),K)) ) ).
% Suc_times_binomial
tff(fact_1880_binomial__symmetric,axiom,
! [K: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N))
=> ( aa(nat,nat,binomial(N),K) = aa(nat,nat,binomial(N),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),K)) ) ) ).
% binomial_symmetric
tff(fact_1881_choose__mult__lemma,axiom,
! [M: nat,R: nat,K: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,binomial(aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),R)),K)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),K))),aa(nat,nat,binomial(aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),K)),K)) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,binomial(aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),R)),K)),K)),aa(nat,nat,binomial(aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),R)),M)) ) ).
% choose_mult_lemma
tff(fact_1882_binomial__le__pow,axiom,
! [R: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),R),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,binomial(N),R)),aa(nat,nat,power_power(nat,N),R))) ) ).
% binomial_le_pow
tff(fact_1883_zero__less__binomial,axiom,
! [K: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(nat,nat,binomial(N),K))) ) ).
% zero_less_binomial
tff(fact_1884_Suc__times__binomial__add,axiom,
! [A2: nat,B2: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,suc,A2)),aa(nat,nat,binomial(aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),A2),B2))),aa(nat,nat,suc,A2))) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,suc,B2)),aa(nat,nat,binomial(aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),A2),B2))),A2)) ) ).
% Suc_times_binomial_add
tff(fact_1885_choose__mult,axiom,
! [K: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),M))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,binomial(N),M)),aa(nat,nat,binomial(M),K)) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,binomial(N),K)),aa(nat,nat,binomial(aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),K)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),K))) ) ) ) ).
% choose_mult
tff(fact_1886_binomial__Suc__Suc__eq__times,axiom,
! [N: nat,K: nat] : ( aa(nat,nat,binomial(aa(nat,nat,suc,N)),aa(nat,nat,suc,K)) = aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,suc,N)),aa(nat,nat,binomial(N),K))),aa(nat,nat,suc,K)) ) ).
% binomial_Suc_Suc_eq_times
tff(fact_1887_binomial__absorb__comp,axiom,
! [N: nat,K: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),K)),aa(nat,nat,binomial(N),K)) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),aa(nat,nat,binomial(aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat))),K)) ) ).
% binomial_absorb_comp
tff(fact_1888_binomial__absorption,axiom,
! [K: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,suc,K)),aa(nat,nat,binomial(N),aa(nat,nat,suc,K))) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),aa(nat,nat,binomial(aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat))),K)) ) ).
% binomial_absorption
tff(fact_1889_binomial__ge__n__over__k__pow__k,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [K: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(nat,A,semiring_1_of_nat(A),N)),aa(nat,A,semiring_1_of_nat(A),K))),K)),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,binomial(N),K)))) ) ) ).
% binomial_ge_n_over_k_pow_k
tff(fact_1890_binomial__le__pow2,axiom,
! [N: nat,K: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,binomial(N),K)),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N))) ).
% binomial_le_pow2
tff(fact_1891_choose__reduce__nat,axiom,
! [N: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),K))
=> ( aa(nat,nat,binomial(N),K) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,binomial(aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat))),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),K),one_one(nat)))),aa(nat,nat,binomial(aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat))),K)) ) ) ) ).
% choose_reduce_nat
tff(fact_1892_times__binomial__minus1__eq,axiom,
! [K: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),K))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),aa(nat,nat,binomial(N),K)) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),aa(nat,nat,binomial(aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat))),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),K),one_one(nat)))) ) ) ).
% times_binomial_minus1_eq
tff(fact_1893_binomial__addition__formula,axiom,
! [N: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(nat,nat,binomial(N),aa(nat,nat,suc,K)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,binomial(aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat))),aa(nat,nat,suc,K))),aa(nat,nat,binomial(aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat))),K)) ) ) ).
% binomial_addition_formula
tff(fact_1894_abs__ln__one__plus__x__minus__x__bound__nonpos,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2))))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),zero_zero(real)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,ln_ln(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),X2))),X2))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ) ).
% abs_ln_one_plus_x_minus_x_bound_nonpos
tff(fact_1895_tanh__ln__real,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( aa(real,real,tanh(real),aa(real,real,ln_ln(real),X2)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),one_one(real))),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),one_one(real))) ) ) ).
% tanh_ln_real
tff(fact_1896_abs__ln__one__plus__x__minus__x__bound,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),X2)),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,ln_ln(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),X2))),X2))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ).
% abs_ln_one_plus_x_minus_x_bound
tff(fact_1897_divmod__BitM__2__eq,axiom,
! [M: num] : ( unique8689654367752047608divmod(int,bitM(M),bit0(one2)) = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(num,int,numeral_numeral(int),M)),one_one(int))),one_one(int)) ) ).
% divmod_BitM_2_eq
tff(fact_1898_abs__abs,axiom,
! [A: $tType] :
( idom_abs_sgn(A)
=> ! [A2: A] : ( aa(A,A,abs_abs(A),aa(A,A,abs_abs(A),A2)) = aa(A,A,abs_abs(A),A2) ) ) ).
% abs_abs
tff(fact_1899_abs__idempotent,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A] : ( aa(A,A,abs_abs(A),aa(A,A,abs_abs(A),A2)) = aa(A,A,abs_abs(A),A2) ) ) ).
% abs_idempotent
tff(fact_1900_abs__0,axiom,
! [A: $tType] :
( idom_abs_sgn(A)
=> ( aa(A,A,abs_abs(A),zero_zero(A)) = zero_zero(A) ) ) ).
% abs_0
tff(fact_1901_abs__zero,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ( aa(A,A,abs_abs(A),zero_zero(A)) = zero_zero(A) ) ) ).
% abs_zero
tff(fact_1902_abs__eq__0,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A] :
( ( aa(A,A,abs_abs(A),A2) = zero_zero(A) )
<=> ( A2 = zero_zero(A) ) ) ) ).
% abs_eq_0
tff(fact_1903_abs__0__eq,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A] :
( ( zero_zero(A) = aa(A,A,abs_abs(A),A2) )
<=> ( A2 = zero_zero(A) ) ) ) ).
% abs_0_eq
tff(fact_1904_abs__numeral,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [N: num] : ( aa(A,A,abs_abs(A),aa(num,A,numeral_numeral(A),N)) = aa(num,A,numeral_numeral(A),N) ) ) ).
% abs_numeral
tff(fact_1905_abs__mult__self__eq,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,abs_abs(A),A2)),aa(A,A,abs_abs(A),A2)) = aa(A,A,aa(A,fun(A,A),times_times(A),A2),A2) ) ) ).
% abs_mult_self_eq
tff(fact_1906_abs__add__abs,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A,B2: A] : ( aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,abs_abs(A),A2)),aa(A,A,abs_abs(A),B2))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,abs_abs(A),A2)),aa(A,A,abs_abs(A),B2)) ) ) ).
% abs_add_abs
tff(fact_1907_abs__1,axiom,
! [A: $tType] :
( idom_abs_sgn(A)
=> ( aa(A,A,abs_abs(A),one_one(A)) = one_one(A) ) ) ).
% abs_1
tff(fact_1908_abs__divide,axiom,
! [A: $tType] :
( field_abs_sgn(A)
=> ! [A2: A,B2: A] : ( aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,abs_abs(A),A2)),aa(A,A,abs_abs(A),B2)) ) ) ).
% abs_divide
tff(fact_1909_abs__minus__cancel,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A] : ( aa(A,A,abs_abs(A),aa(A,A,uminus_uminus(A),A2)) = aa(A,A,abs_abs(A),A2) ) ) ).
% abs_minus_cancel
tff(fact_1910_abs__minus,axiom,
! [A: $tType] :
( idom_abs_sgn(A)
=> ! [A2: A] : ( aa(A,A,abs_abs(A),aa(A,A,uminus_uminus(A),A2)) = aa(A,A,abs_abs(A),A2) ) ) ).
% abs_minus
tff(fact_1911_abs__of__nat,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [N: nat] : ( aa(A,A,abs_abs(A),aa(nat,A,semiring_1_of_nat(A),N)) = aa(nat,A,semiring_1_of_nat(A),N) ) ) ).
% abs_of_nat
tff(fact_1912_tanh__0,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ( aa(A,A,tanh(A),zero_zero(A)) = zero_zero(A) ) ) ).
% tanh_0
tff(fact_1913_tanh__minus,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : ( aa(A,A,tanh(A),aa(A,A,uminus_uminus(A),X2)) = aa(A,A,uminus_uminus(A),aa(A,A,tanh(A),X2)) ) ) ).
% tanh_minus
tff(fact_1914_tanh__real__zero__iff,axiom,
! [X2: real] :
( ( aa(real,real,tanh(real),X2) = zero_zero(real) )
<=> ( X2 = zero_zero(real) ) ) ).
% tanh_real_zero_iff
tff(fact_1915_tanh__real__less__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,tanh(real),X2)),aa(real,real,tanh(real),Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),Y)) ) ).
% tanh_real_less_iff
tff(fact_1916_tanh__real__le__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,tanh(real),X2)),aa(real,real,tanh(real),Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),Y)) ) ).
% tanh_real_le_iff
tff(fact_1917_abs__le__zero__iff,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),A2)),zero_zero(A)))
<=> ( A2 = zero_zero(A) ) ) ) ).
% abs_le_zero_iff
tff(fact_1918_abs__le__self__iff,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),A2)),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2)) ) ) ).
% abs_le_self_iff
tff(fact_1919_abs__of__nonneg,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( aa(A,A,abs_abs(A),A2) = A2 ) ) ) ).
% abs_of_nonneg
tff(fact_1920_zero__less__abs__iff,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,abs_abs(A),A2)))
<=> ( A2 != zero_zero(A) ) ) ) ).
% zero_less_abs_iff
tff(fact_1921_abs__neg__numeral,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [N: num] : ( aa(A,A,abs_abs(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N))) = aa(num,A,numeral_numeral(A),N) ) ) ).
% abs_neg_numeral
tff(fact_1922_abs__neg__one,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ( aa(A,A,abs_abs(A),aa(A,A,uminus_uminus(A),one_one(A))) = one_one(A) ) ) ).
% abs_neg_one
tff(fact_1923_abs__power__minus,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A,N: nat] : ( aa(A,A,abs_abs(A),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),A2)),N)) = aa(A,A,abs_abs(A),aa(nat,A,power_power(A,A2),N)) ) ) ).
% abs_power_minus
tff(fact_1924_tanh__real__neg__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,tanh(real),X2)),zero_zero(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),zero_zero(real))) ) ).
% tanh_real_neg_iff
tff(fact_1925_tanh__real__pos__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,tanh(real),X2)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2)) ) ).
% tanh_real_pos_iff
tff(fact_1926_tanh__real__nonpos__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,tanh(real),X2)),zero_zero(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),zero_zero(real))) ) ).
% tanh_real_nonpos_iff
tff(fact_1927_tanh__real__nonneg__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,tanh(real),X2)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2)) ) ).
% tanh_real_nonneg_iff
tff(fact_1928_dbl__dec__simps_I5_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [K: num] : ( neg_numeral_dbl_dec(A,aa(num,A,numeral_numeral(A),K)) = aa(num,A,numeral_numeral(A),bitM(K)) ) ) ).
% dbl_dec_simps(5)
tff(fact_1929_divide__le__0__abs__iff,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(A,A,abs_abs(A),B2))),zero_zero(A)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A)))
| ( B2 = zero_zero(A) ) ) ) ) ).
% divide_le_0_abs_iff
tff(fact_1930_zero__le__divide__abs__iff,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(A,A,abs_abs(A),B2))))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
| ( B2 = zero_zero(A) ) ) ) ) ).
% zero_le_divide_abs_iff
tff(fact_1931_abs__of__nonpos,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A)))
=> ( aa(A,A,abs_abs(A),A2) = aa(A,A,uminus_uminus(A),A2) ) ) ) ).
% abs_of_nonpos
tff(fact_1932_artanh__minus__real,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),X2)),one_one(real)))
=> ( aa(real,real,artanh(real),aa(real,real,uminus_uminus(real),X2)) = aa(real,real,uminus_uminus(real),aa(real,real,artanh(real),X2)) ) ) ).
% artanh_minus_real
tff(fact_1933_pred__numeral__simps_I2_J,axiom,
! [K: num] : ( pred_numeral(bit0(K)) = aa(num,nat,numeral_numeral(nat),bitM(K)) ) ).
% pred_numeral_simps(2)
tff(fact_1934_zero__less__power__abs__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(nat,A,power_power(A,aa(A,A,abs_abs(A),A2)),N)))
<=> ( ( A2 != zero_zero(A) )
| ( N = zero_zero(nat) ) ) ) ) ).
% zero_less_power_abs_iff
tff(fact_1935_power2__abs,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A] : ( aa(nat,A,power_power(A,aa(A,A,abs_abs(A),A2)),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),bit0(one2))) ) ) ).
% power2_abs
tff(fact_1936_abs__power2,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A] : ( aa(A,A,abs_abs(A),aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),bit0(one2)))) = aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),bit0(one2))) ) ) ).
% abs_power2
tff(fact_1937_abs__ge__self,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(A,A,abs_abs(A),A2))) ) ).
% abs_ge_self
tff(fact_1938_abs__le__D1,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),A2)),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) ) ) ).
% abs_le_D1
tff(fact_1939_abs__eq__0__iff,axiom,
! [A: $tType] :
( idom_abs_sgn(A)
=> ! [A2: A] :
( ( aa(A,A,abs_abs(A),A2) = zero_zero(A) )
<=> ( A2 = zero_zero(A) ) ) ) ).
% abs_eq_0_iff
tff(fact_1940_abs__mult,axiom,
! [A: $tType] :
( idom_abs_sgn(A)
=> ! [A2: A,B2: A] : ( aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,abs_abs(A),A2)),aa(A,A,abs_abs(A),B2)) ) ) ).
% abs_mult
tff(fact_1941_abs__one,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ( aa(A,A,abs_abs(A),one_one(A)) = one_one(A) ) ) ).
% abs_one
tff(fact_1942_abs__minus__commute,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A,B2: A] : ( aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)) = aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),A2)) ) ) ).
% abs_minus_commute
tff(fact_1943_abs__eq__iff,axiom,
! [A: $tType] :
( linordered_ring(A)
=> ! [X2: A,Y: A] :
( ( aa(A,A,abs_abs(A),X2) = aa(A,A,abs_abs(A),Y) )
<=> ( ( X2 = Y )
| ( X2 = aa(A,A,uminus_uminus(A),Y) ) ) ) ) ).
% abs_eq_iff
tff(fact_1944_power__abs,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A,N: nat] : ( aa(A,A,abs_abs(A),aa(nat,A,power_power(A,A2),N)) = aa(nat,A,power_power(A,aa(A,A,abs_abs(A),A2)),N) ) ) ).
% power_abs
tff(fact_1945_semiring__norm_I26_J,axiom,
bitM(one2) = one2 ).
% semiring_norm(26)
tff(fact_1946_abs__ge__zero,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,abs_abs(A),A2))) ) ).
% abs_ge_zero
tff(fact_1947_abs__of__pos,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> ( aa(A,A,abs_abs(A),A2) = A2 ) ) ) ).
% abs_of_pos
tff(fact_1948_abs__not__less__zero,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,abs_abs(A),A2)),zero_zero(A))) ) ).
% abs_not_less_zero
tff(fact_1949_abs__triangle__ineq,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A,B2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2))),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,abs_abs(A),A2)),aa(A,A,abs_abs(A),B2)))) ) ).
% abs_triangle_ineq
tff(fact_1950_abs__mult__less,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A,C2: A,B2: A,D2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,abs_abs(A),A2)),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,abs_abs(A),B2)),D2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,abs_abs(A),A2)),aa(A,A,abs_abs(A),B2))),aa(A,A,aa(A,fun(A,A),times_times(A),C2),D2))) ) ) ) ).
% abs_mult_less
tff(fact_1951_abs__triangle__ineq2__sym,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A,B2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,abs_abs(A),A2)),aa(A,A,abs_abs(A),B2))),aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),A2)))) ) ).
% abs_triangle_ineq2_sym
tff(fact_1952_abs__triangle__ineq3,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A,B2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,abs_abs(A),A2)),aa(A,A,abs_abs(A),B2)))),aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)))) ) ).
% abs_triangle_ineq3
tff(fact_1953_abs__triangle__ineq2,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A,B2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,abs_abs(A),A2)),aa(A,A,abs_abs(A),B2))),aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)))) ) ).
% abs_triangle_ineq2
tff(fact_1954_abs__ge__minus__self,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),A2)),aa(A,A,abs_abs(A),A2))) ) ).
% abs_ge_minus_self
tff(fact_1955_abs__le__iff,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),A2)),B2))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),A2)),B2)) ) ) ) ).
% abs_le_iff
tff(fact_1956_abs__le__D2,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),A2)),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),A2)),B2)) ) ) ).
% abs_le_D2
tff(fact_1957_abs__leI,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),A2)),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),A2)),B2)) ) ) ) ).
% abs_leI
tff(fact_1958_nonzero__abs__divide,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [B2: A,A2: A] :
( ( B2 != zero_zero(A) )
=> ( aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,abs_abs(A),A2)),aa(A,A,abs_abs(A),B2)) ) ) ) ).
% nonzero_abs_divide
tff(fact_1959_abs__less__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,abs_abs(A),A2)),B2))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),A2)),B2)) ) ) ) ).
% abs_less_iff
tff(fact_1960_tanh__real__lt__1,axiom,
! [X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,tanh(real),X2)),one_one(real))) ).
% tanh_real_lt_1
tff(fact_1961_semiring__norm_I27_J,axiom,
! [N: num] : ( bitM(bit0(N)) = aa(num,num,bit1,bitM(N)) ) ).
% semiring_norm(27)
tff(fact_1962_semiring__norm_I28_J,axiom,
! [N: num] : ( bitM(aa(num,num,bit1,N)) = aa(num,num,bit1,bit0(N)) ) ).
% semiring_norm(28)
tff(fact_1963_dense__eq0__I,axiom,
! [A: $tType] :
( ( ordere166539214618696060dd_abs(A)
& dense_linorder(A) )
=> ! [X2: A] :
( ! [E2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),E2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),X2)),E2)) )
=> ( X2 = zero_zero(A) ) ) ) ).
% dense_eq0_I
tff(fact_1964_abs__eq__mult,axiom,
! [A: $tType] :
( ordered_ring_abs(A)
=> ! [A2: A,B2: A] :
( ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
| pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A))) )
& ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2))
| pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),zero_zero(A))) ) )
=> ( aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,abs_abs(A),A2)),aa(A,A,abs_abs(A),B2)) ) ) ) ).
% abs_eq_mult
tff(fact_1965_abs__mult__pos,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X2))
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,abs_abs(A),Y)),X2) = aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),times_times(A),Y),X2)) ) ) ) ).
% abs_mult_pos
tff(fact_1966_abs__minus__le__zero,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),aa(A,A,abs_abs(A),A2))),zero_zero(A))) ) ).
% abs_minus_le_zero
tff(fact_1967_eq__abs__iff_H,axiom,
! [A: $tType] :
( linordered_ring(A)
=> ! [A2: A,B2: A] :
( ( A2 = aa(A,A,abs_abs(A),B2) )
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
& ( ( B2 = A2 )
| ( B2 = aa(A,A,uminus_uminus(A),A2) ) ) ) ) ) ).
% eq_abs_iff'
tff(fact_1968_abs__eq__iff_H,axiom,
! [A: $tType] :
( linordered_ring(A)
=> ! [A2: A,B2: A] :
( ( aa(A,A,abs_abs(A),A2) = B2 )
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2))
& ( ( A2 = B2 )
| ( A2 = aa(A,A,uminus_uminus(A),B2) ) ) ) ) ) ).
% abs_eq_iff'
tff(fact_1969_zero__le__power__abs,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A,N: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(nat,A,power_power(A,aa(A,A,abs_abs(A),A2)),N))) ) ).
% zero_le_power_abs
tff(fact_1970_abs__div__pos,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [Y: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),Y))
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,abs_abs(A),X2)),Y) = aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y)) ) ) ) ).
% abs_div_pos
tff(fact_1971_abs__of__neg,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A)))
=> ( aa(A,A,abs_abs(A),A2) = aa(A,A,uminus_uminus(A),A2) ) ) ) ).
% abs_of_neg
tff(fact_1972_abs__if,axiom,
! [A: $tType] :
( abs_if(A)
=> ! [A2: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A)))
=> ( aa(A,A,abs_abs(A),A2) = aa(A,A,uminus_uminus(A),A2) ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A)))
=> ( aa(A,A,abs_abs(A),A2) = A2 ) ) ) ) ).
% abs_if
tff(fact_1973_abs__if__raw,axiom,
! [A: $tType] :
( abs_if(A)
=> ! [X: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X),zero_zero(A)))
=> ( aa(A,A,abs_abs(A),X) = aa(A,A,uminus_uminus(A),X) ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X),zero_zero(A)))
=> ( aa(A,A,abs_abs(A),X) = X ) ) ) ) ).
% abs_if_raw
tff(fact_1974_abs__diff__triangle__ineq,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A,B2: A,C2: A,D2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),D2)))),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),C2))),aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),D2))))) ) ).
% abs_diff_triangle_ineq
tff(fact_1975_abs__triangle__ineq4,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [A2: A,B2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2))),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,abs_abs(A),A2)),aa(A,A,abs_abs(A),B2)))) ) ).
% abs_triangle_ineq4
tff(fact_1976_abs__diff__le__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: A,A2: A,R: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),A2))),R))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),R)),X2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),R))) ) ) ) ).
% abs_diff_le_iff
tff(fact_1977_abs__diff__less__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: A,A2: A,R: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),A2))),R))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),R)),X2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),R))) ) ) ) ).
% abs_diff_less_iff
tff(fact_1978_abs__real__def,axiom,
! [A2: real] :
( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),zero_zero(real)))
=> ( aa(real,real,abs_abs(real),A2) = aa(real,real,uminus_uminus(real),A2) ) )
& ( ~ pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),zero_zero(real)))
=> ( aa(real,real,abs_abs(real),A2) = A2 ) ) ) ).
% abs_real_def
tff(fact_1979_lemma__interval__lt,axiom,
! [A2: real,X2: real,B2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),B2))
=> ? [D3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D3))
& ! [Y4: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),X2),Y4))),D3))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),Y4))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y4),B2)) ) ) ) ) ) ).
% lemma_interval_lt
tff(fact_1980_sin__bound__lemma,axiom,
! [X2: real,Y: real,U: real,V: real] :
( ( X2 = Y )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),U)),V))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),U)),Y))),V)) ) ) ).
% sin_bound_lemma
tff(fact_1981_eval__nat__numeral_I2_J,axiom,
! [N: num] : ( aa(num,nat,numeral_numeral(nat),bit0(N)) = aa(nat,nat,suc,aa(num,nat,numeral_numeral(nat),bitM(N))) ) ).
% eval_nat_numeral(2)
tff(fact_1982_tanh__real__gt__neg1,axiom,
! [X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),one_one(real))),aa(real,real,tanh(real),X2))) ).
% tanh_real_gt_neg1
tff(fact_1983_full__exhaustive__int_H_Ocases,axiom,
! [X2: product_prod(fun(product_prod(int,fun(product_unit,code_term)),option(product_prod(bool,list(code_term)))),product_prod(int,int))] :
~ ! [F3: fun(product_prod(int,fun(product_unit,code_term)),option(product_prod(bool,list(code_term)))),D3: int,I3: int] : ( X2 != aa(product_prod(int,int),product_prod(fun(product_prod(int,fun(product_unit,code_term)),option(product_prod(bool,list(code_term)))),product_prod(int,int)),aa(fun(product_prod(int,fun(product_unit,code_term)),option(product_prod(bool,list(code_term)))),fun(product_prod(int,int),product_prod(fun(product_prod(int,fun(product_unit,code_term)),option(product_prod(bool,list(code_term)))),product_prod(int,int))),product_Pair(fun(product_prod(int,fun(product_unit,code_term)),option(product_prod(bool,list(code_term)))),product_prod(int,int)),F3),aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),D3),I3)) ) ).
% full_exhaustive_int'.cases
tff(fact_1984_exhaustive__int_H_Ocases,axiom,
! [X2: product_prod(fun(int,option(product_prod(bool,list(code_term)))),product_prod(int,int))] :
~ ! [F3: fun(int,option(product_prod(bool,list(code_term)))),D3: int,I3: int] : ( X2 != aa(product_prod(int,int),product_prod(fun(int,option(product_prod(bool,list(code_term)))),product_prod(int,int)),aa(fun(int,option(product_prod(bool,list(code_term)))),fun(product_prod(int,int),product_prod(fun(int,option(product_prod(bool,list(code_term)))),product_prod(int,int))),product_Pair(fun(int,option(product_prod(bool,list(code_term)))),product_prod(int,int)),F3),aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),D3),I3)) ) ).
% exhaustive_int'.cases
tff(fact_1985_small__lazy_H_Ocases,axiom,
! [X2: product_prod(int,int)] :
~ ! [D3: int,I3: int] : ( X2 != aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),D3),I3) ) ).
% small_lazy'.cases
tff(fact_1986_abs__add__one__gt__zero,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),aa(A,A,abs_abs(A),X2)))) ) ).
% abs_add_one_gt_zero
tff(fact_1987_one__plus__BitM,axiom,
! [N: num] : ( aa(num,num,aa(num,fun(num,num),plus_plus(num),one2),bitM(N)) = bit0(N) ) ).
% one_plus_BitM
tff(fact_1988_BitM__plus__one,axiom,
! [N: num] : ( aa(num,num,aa(num,fun(num,num),plus_plus(num),bitM(N)),one2) = bit0(N) ) ).
% BitM_plus_one
tff(fact_1989_lemma__interval,axiom,
! [A2: real,X2: real,B2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),B2))
=> ? [D3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D3))
& ! [Y4: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),X2),Y4))),D3))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),Y4))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y4),B2)) ) ) ) ) ) ).
% lemma_interval
tff(fact_1990_norm__triangle__ineq3,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [A2: A,B2: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),real_V7770717601297561774m_norm(A,A2)),real_V7770717601297561774m_norm(A,B2)))),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)))) ) ).
% norm_triangle_ineq3
tff(fact_1991_numeral__BitM,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [N: num] : ( aa(num,A,numeral_numeral(A),bitM(N)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(num,A,numeral_numeral(A),bit0(N))),one_one(A)) ) ) ).
% numeral_BitM
tff(fact_1992_abs__le__square__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),X2)),aa(A,A,abs_abs(A),Y)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,A,power_power(A,Y),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ) ).
% abs_le_square_iff
tff(fact_1993_abs__square__eq__1,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: A] :
( ( aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(one2))) = one_one(A) )
<=> ( aa(A,A,abs_abs(A),X2) = one_one(A) ) ) ) ).
% abs_square_eq_1
tff(fact_1994_power2__le__iff__abs__le,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [Y: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),Y))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,A,power_power(A,Y),aa(num,nat,numeral_numeral(nat),bit0(one2)))))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),X2)),Y)) ) ) ) ).
% power2_le_iff_abs_le
tff(fact_1995_abs__square__le__1,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),one_one(A)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),X2)),one_one(A))) ) ) ).
% abs_square_le_1
tff(fact_1996_abs__square__less__1,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),one_one(A)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,abs_abs(A),X2)),one_one(A))) ) ) ).
% abs_square_less_1
tff(fact_1997_abs__ln__one__plus__x__minus__x__bound__nonneg,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),one_one(real)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,ln_ln(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),X2))),X2))),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ) ).
% abs_ln_one_plus_x_minus_x_bound_nonneg
tff(fact_1998_abs__sqrt__wlog,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [P: fun(A,fun(A,bool)),X2: A] :
( ! [X3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X3))
=> pp(aa(A,bool,aa(A,fun(A,bool),P,X3),aa(nat,A,power_power(A,X3),aa(num,nat,numeral_numeral(nat),bit0(one2))))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),P,aa(A,A,abs_abs(A),X2)),aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ) ).
% abs_sqrt_wlog
tff(fact_1999_arctan__double,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),X2)),one_one(real)))
=> ( aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),aa(real,real,arctan,X2)) = aa(real,real,arctan,aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),X2)),aa(real,real,aa(real,fun(real,real),minus_minus(real),one_one(real)),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ) ).
% arctan_double
tff(fact_2000_gcd__nat__induct,axiom,
! [P: fun(nat,fun(nat,bool)),M: nat,N: nat] :
( ! [M3: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),P,M3),zero_zero(nat)))
=> ( ! [M3: nat,N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N3))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),P,N3),modulo_modulo(nat,M3,N3)))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),P,M3),N3)) ) )
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),P,M),N)) ) ) ).
% gcd_nat_induct
tff(fact_2001_concat__bit__Suc,axiom,
! [N: nat,K: int,L: int] : ( aa(int,int,bit_concat_bit(aa(nat,nat,suc,N),K),L) = aa(int,int,aa(int,fun(int,int),plus_plus(int),modulo_modulo(int,K,aa(num,int,numeral_numeral(int),bit0(one2)))),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,bit_concat_bit(N,aa(int,int,aa(int,fun(int,int),divide_divide(int),K),aa(num,int,numeral_numeral(int),bit0(one2)))),L))) ) ).
% concat_bit_Suc
tff(fact_2002_option_Osize__gen_I2_J,axiom,
! [A: $tType,X2: fun(A,nat),X23: A] : ( size_option(A,X2,aa(A,option(A),some(A),X23)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(A,nat,X2,X23)),aa(nat,nat,suc,zero_zero(nat))) ) ).
% option.size_gen(2)
tff(fact_2003_even__succ__mod__exp,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( modulo_modulo(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),A2),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),modulo_modulo(A,A2,aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N))) ) ) ) ) ).
% even_succ_mod_exp
tff(fact_2004_even__succ__div__exp,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),A2)),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)) ) ) ) ) ).
% even_succ_div_exp
tff(fact_2005_zdvd1__eq,axiom,
! [X2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),X2),one_one(int)))
<=> ( aa(int,int,abs_abs(int),X2) = one_one(int) ) ) ).
% zdvd1_eq
tff(fact_2006_nat__dvd__1__iff__1,axiom,
! [M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),M),one_one(nat)))
<=> ( M = one_one(nat) ) ) ).
% nat_dvd_1_iff_1
tff(fact_2007_int__dvd__int__iff,axiom,
! [M: nat,N: nat] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(nat,int,semiring_1_of_nat(int),M)),aa(nat,int,semiring_1_of_nat(int),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),M),N)) ) ).
% int_dvd_int_iff
tff(fact_2008_dvd__0__right,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [A2: A] : pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),zero_zero(A))) ) ).
% dvd_0_right
tff(fact_2009_dvd__0__left__iff,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),zero_zero(A)),A2))
<=> ( A2 = zero_zero(A) ) ) ) ).
% dvd_0_left_iff
tff(fact_2010_dvd__add__triv__right__iff,axiom,
! [A: $tType] :
( comm_s4317794764714335236cancel(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),B2)) ) ) ).
% dvd_add_triv_right_iff
tff(fact_2011_dvd__add__triv__left__iff,axiom,
! [A: $tType] :
( comm_s4317794764714335236cancel(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),B2)) ) ) ).
% dvd_add_triv_left_iff
tff(fact_2012_dvd__1__left,axiom,
! [K: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(nat,nat,suc,zero_zero(nat))),K)) ).
% dvd_1_left
tff(fact_2013_dvd__1__iff__1,axiom,
! [M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),M),aa(nat,nat,suc,zero_zero(nat))))
<=> ( M = aa(nat,nat,suc,zero_zero(nat)) ) ) ).
% dvd_1_iff_1
tff(fact_2014_div__dvd__div,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),A2)),aa(A,A,aa(A,fun(A,A),divide_divide(A),C2),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),C2)) ) ) ) ) ).
% div_dvd_div
tff(fact_2015_minus__dvd__iff,axiom,
! [A: $tType] :
( comm_ring_1(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,uminus_uminus(A),X2)),Y))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),X2),Y)) ) ) ).
% minus_dvd_iff
tff(fact_2016_dvd__minus__iff,axiom,
! [A: $tType] :
( comm_ring_1(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),X2),aa(A,A,uminus_uminus(A),Y)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),X2),Y)) ) ) ).
% dvd_minus_iff
tff(fact_2017_abs__dvd__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [M: A,K: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,abs_abs(A),M)),K))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),M),K)) ) ) ).
% abs_dvd_iff
tff(fact_2018_dvd__abs__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [M: A,K: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),M),aa(A,A,abs_abs(A),K)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),M),K)) ) ) ).
% dvd_abs_iff
tff(fact_2019_nat__mult__dvd__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),M)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),N)))
<=> ( ( K = zero_zero(nat) )
| pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),M),N)) ) ) ).
% nat_mult_dvd_cancel_disj
tff(fact_2020_arctan__zero__zero,axiom,
aa(real,real,arctan,zero_zero(real)) = zero_zero(real) ).
% arctan_zero_zero
tff(fact_2021_arctan__eq__zero__iff,axiom,
! [X2: real] :
( ( aa(real,real,arctan,X2) = zero_zero(real) )
<=> ( X2 = zero_zero(real) ) ) ).
% arctan_eq_zero_iff
tff(fact_2022_concat__bit__0,axiom,
! [K: int,L: int] : ( aa(int,int,bit_concat_bit(zero_zero(nat),K),L) = L ) ).
% concat_bit_0
tff(fact_2023_dvd__mult__cancel__left,axiom,
! [A: $tType] :
( idom(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)))
<=> ( ( C2 = zero_zero(A) )
| pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),B2)) ) ) ) ).
% dvd_mult_cancel_left
tff(fact_2024_dvd__mult__cancel__right,axiom,
! [A: $tType] :
( idom(A)
=> ! [A2: A,C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)))
<=> ( ( C2 = zero_zero(A) )
| pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),B2)) ) ) ) ).
% dvd_mult_cancel_right
tff(fact_2025_dvd__times__left__cancel__iff,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A,B2: A,C2: A] :
( ( A2 != zero_zero(A) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),C2)) ) ) ) ).
% dvd_times_left_cancel_iff
tff(fact_2026_dvd__times__right__cancel__iff,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A,B2: A,C2: A] :
( ( A2 != zero_zero(A) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,aa(A,fun(A,A),times_times(A),B2),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),C2)) ) ) ) ).
% dvd_times_right_cancel_iff
tff(fact_2027_dvd__add__times__triv__left__iff,axiom,
! [A: $tType] :
( comm_s4317794764714335236cancel(A)
=> ! [A2: A,C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),B2)) ) ) ).
% dvd_add_times_triv_left_iff
tff(fact_2028_dvd__add__times__triv__right__iff,axiom,
! [A: $tType] :
( comm_s4317794764714335236cancel(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2))))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),B2)) ) ) ).
% dvd_add_times_triv_right_iff
tff(fact_2029_unit__prod,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),one_one(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),one_one(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),one_one(A))) ) ) ) ).
% unit_prod
tff(fact_2030_dvd__div__mult__self,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),B2))
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),A2)),A2) = B2 ) ) ) ).
% dvd_div_mult_self
tff(fact_2031_dvd__mult__div__cancel,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),B2))
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),A2)) = B2 ) ) ) ).
% dvd_mult_div_cancel
tff(fact_2032_div__add,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),B2))
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),C2)),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)) ) ) ) ) ).
% div_add
tff(fact_2033_unit__div__1__div__1,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),one_one(A)))
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),A2)) = A2 ) ) ) ).
% unit_div_1_div_1
tff(fact_2034_unit__div__1__unit,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),one_one(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),A2)),one_one(A))) ) ) ).
% unit_div_1_unit
tff(fact_2035_unit__div,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),one_one(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),one_one(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),one_one(A))) ) ) ) ).
% unit_div
tff(fact_2036_div__diff,axiom,
! [A: $tType] :
( idom_modulo(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),B2))
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),C2)),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)) ) ) ) ) ).
% div_diff
tff(fact_2037_dvd__imp__mod__0,axiom,
! [A: $tType] :
( semidom_modulo(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),B2))
=> ( modulo_modulo(A,B2,A2) = zero_zero(A) ) ) ) ).
% dvd_imp_mod_0
tff(fact_2038_zabs__less__one__iff,axiom,
! [Z: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,abs_abs(int),Z)),one_one(int)))
<=> ( Z = zero_zero(int) ) ) ).
% zabs_less_one_iff
tff(fact_2039_zero__less__arctan__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,arctan,X2)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2)) ) ).
% zero_less_arctan_iff
tff(fact_2040_arctan__less__zero__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,arctan,X2)),zero_zero(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),zero_zero(real))) ) ).
% arctan_less_zero_iff
tff(fact_2041_arctan__le__zero__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,arctan,X2)),zero_zero(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),zero_zero(real))) ) ).
% arctan_le_zero_iff
tff(fact_2042_zero__le__arctan__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,arctan,X2)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2)) ) ).
% zero_le_arctan_iff
tff(fact_2043_concat__bit__nonnegative__iff,axiom,
! [N: nat,K: int,L: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),aa(int,int,bit_concat_bit(N,K),L)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),L)) ) ).
% concat_bit_nonnegative_iff
tff(fact_2044_concat__bit__negative__iff,axiom,
! [N: nat,K: int,L: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,bit_concat_bit(N,K),L)),zero_zero(int)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),L),zero_zero(int))) ) ).
% concat_bit_negative_iff
tff(fact_2045_unit__div__mult__self,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),one_one(A)))
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),A2)),A2) = B2 ) ) ) ).
% unit_div_mult_self
tff(fact_2046_unit__mult__div__div,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),one_one(A)))
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),B2),aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),A2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),A2) ) ) ) ).
% unit_mult_div_div
tff(fact_2047_even__Suc,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,suc,N)))
<=> ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)) ) ).
% even_Suc
tff(fact_2048_even__Suc__Suc__iff,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,suc,aa(nat,nat,suc,N))))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)) ) ).
% even_Suc_Suc_iff
tff(fact_2049_pow__divides__pow__iff,axiom,
! [A: $tType] :
( semiring_gcd(A)
=> ! [N: nat,A2: A,B2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(nat,A,power_power(A,A2),N)),aa(nat,A,power_power(A,B2),N)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),B2)) ) ) ) ).
% pow_divides_pow_iff
tff(fact_2050_even__mult__iff,axiom,
! [A: $tType] :
( semiring_parity(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
| pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),B2)) ) ) ) ).
% even_mult_iff
tff(fact_2051_odd__add,axiom,
! [A: $tType] :
( semiring_parity(A)
=> ! [A2: A,B2: A] :
( ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)))
<=> ~ ( ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
<=> ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),B2)) ) ) ) ).
% odd_add
tff(fact_2052_even__add,axiom,
! [A: $tType] :
( semiring_parity(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),B2)) ) ) ) ).
% even_add
tff(fact_2053_power__minus__odd,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [N: nat,A2: A] :
( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),A2)),N) = aa(A,A,uminus_uminus(A),aa(nat,A,power_power(A,A2),N)) ) ) ) ).
% power_minus_odd
tff(fact_2054_Parity_Oring__1__class_Opower__minus__even,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [N: nat,A2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),A2)),N) = aa(nat,A,power_power(A,A2),N) ) ) ) ).
% Parity.ring_1_class.power_minus_even
tff(fact_2055_even__mod__2__iff,axiom,
! [A: $tType] :
( semiring_parity(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2)))))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2)) ) ) ).
% even_mod_2_iff
tff(fact_2056_power__even__abs__numeral,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [W: num,A2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(num,nat,numeral_numeral(nat),W)))
=> ( aa(nat,A,power_power(A,aa(A,A,abs_abs(A),A2)),aa(num,nat,numeral_numeral(nat),W)) = aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),W)) ) ) ) ).
% power_even_abs_numeral
tff(fact_2057_even__Suc__div__two,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,N)),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),aa(num,nat,numeral_numeral(nat),bit0(one2))) ) ) ).
% even_Suc_div_two
tff(fact_2058_odd__Suc__div__two,axiom,
! [N: nat] :
( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,N)),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),aa(num,nat,numeral_numeral(nat),bit0(one2)))) ) ) ).
% odd_Suc_div_two
tff(fact_2059_dvd__numeral__simp,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [M: num,N: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),M)),aa(num,A,numeral_numeral(A),N)))
<=> unique5940410009612947441es_aux(A,unique8689654367752047608divmod(A,N,M)) ) ) ).
% dvd_numeral_simp
tff(fact_2060_zero__le__power__eq__numeral,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A,W: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),W))))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(num,nat,numeral_numeral(nat),W)))
| ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(num,nat,numeral_numeral(nat),W)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2)) ) ) ) ) ).
% zero_le_power_eq_numeral
tff(fact_2061_power__less__zero__eq,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,power_power(A,A2),N)),zero_zero(A)))
<=> ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A))) ) ) ) ).
% power_less_zero_eq
tff(fact_2062_power__less__zero__eq__numeral,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A,W: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),W))),zero_zero(A)))
<=> ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(num,nat,numeral_numeral(nat),W)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A))) ) ) ) ).
% power_less_zero_eq_numeral
tff(fact_2063_even__plus__one__iff,axiom,
! [A: $tType] :
( semiring_parity(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),one_one(A))))
<=> ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2)) ) ) ).
% even_plus_one_iff
tff(fact_2064_even__diff,axiom,
! [A: $tType] :
( ring_parity(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2))) ) ) ).
% even_diff
tff(fact_2065_neg__one__odd__power,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [N: nat] :
( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),N) = aa(A,A,uminus_uminus(A),one_one(A)) ) ) ) ).
% neg_one_odd_power
tff(fact_2066_neg__one__even__power,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),N) = one_one(A) ) ) ) ).
% neg_one_even_power
tff(fact_2067_even__of__nat,axiom,
! [A: $tType] :
( semiring_parity(A)
=> ! [N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(nat,A,semiring_1_of_nat(A),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)) ) ) ).
% even_of_nat
tff(fact_2068_odd__Suc__minus__one,axiom,
! [N: nat] :
( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(nat,nat,suc,zero_zero(nat)))) = N ) ) ).
% odd_Suc_minus_one
tff(fact_2069_even__diff__nat,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N)))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
| pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N))) ) ) ).
% even_diff_nat
tff(fact_2070_zero__less__power__eq__numeral,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A,W: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),W))))
<=> ( ( aa(num,nat,numeral_numeral(nat),W) = zero_zero(nat) )
| ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(num,nat,numeral_numeral(nat),W)))
& ( A2 != zero_zero(A) ) )
| ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(num,nat,numeral_numeral(nat),W)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2)) ) ) ) ) ).
% zero_less_power_eq_numeral
tff(fact_2071_even__succ__div__2,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),A2)),aa(num,A,numeral_numeral(A),bit0(one2))) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ) ).
% even_succ_div_2
tff(fact_2072_odd__succ__div__two,axiom,
! [A: $tType] :
( euclid5411537665997757685th_nat(A)
=> ! [A2: A] :
( ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),one_one(A))),aa(num,A,numeral_numeral(A),bit0(one2))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2)))),one_one(A)) ) ) ) ).
% odd_succ_div_two
tff(fact_2073_even__succ__div__two,axiom,
! [A: $tType] :
( euclid5411537665997757685th_nat(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),one_one(A))),aa(num,A,numeral_numeral(A),bit0(one2))) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ) ).
% even_succ_div_two
tff(fact_2074_even__power,axiom,
! [A: $tType] :
( semiring_parity(A)
=> ! [A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(nat,A,power_power(A,A2),N)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N)) ) ) ) ).
% even_power
tff(fact_2075_odd__two__times__div__two__nat,axiom,
! [N: nat] :
( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),aa(num,nat,numeral_numeral(nat),bit0(one2)))) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat)) ) ) ).
% odd_two_times_div_two_nat
tff(fact_2076_odd__two__times__div__two__succ,axiom,
! [A: $tType] :
( euclid5411537665997757685th_nat(A)
=> ! [A2: A] :
( ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2))))),one_one(A)) = A2 ) ) ) ).
% odd_two_times_div_two_succ
tff(fact_2077_power__le__zero__eq__numeral,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A,W: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,A2),aa(num,nat,numeral_numeral(nat),W))),zero_zero(A)))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(num,nat,numeral_numeral(nat),W)))
& ( ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(num,nat,numeral_numeral(nat),W)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A))) )
| ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(num,nat,numeral_numeral(nat),W)))
& ( A2 = zero_zero(A) ) ) ) ) ) ) ).
% power_le_zero_eq_numeral
tff(fact_2078_semiring__parity__class_Oeven__mask__iff,axiom,
! [A: $tType] :
( semiring_parity(A)
=> ! [N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)),one_one(A))))
<=> ( N = zero_zero(nat) ) ) ) ).
% semiring_parity_class.even_mask_iff
tff(fact_2079_abs__div,axiom,
! [Y: int,X2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),Y),X2))
=> ( aa(int,int,abs_abs(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),X2),Y)) = aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,abs_abs(int),X2)),aa(int,int,abs_abs(int),Y)) ) ) ).
% abs_div
tff(fact_2080_dvd__productE,axiom,
! [A: $tType] :
( semiring_gcd(A)
=> ! [P2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),P2),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)))
=> ~ ! [X3: A,Y3: A] :
( ( P2 = aa(A,A,aa(A,fun(A,A),times_times(A),X3),Y3) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),X3),A2))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),Y3),B2)) ) ) ) ) ).
% dvd_productE
tff(fact_2081_division__decomp,axiom,
! [A: $tType] :
( semiring_gcd(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)))
=> ? [B7: A,C5: A] :
( ( A2 = aa(A,A,aa(A,fun(A,A),times_times(A),B7),C5) )
& pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B7),B2))
& pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C5),C2)) ) ) ) ).
% division_decomp
tff(fact_2082_gcd__nat_Oextremum__uniqueI,axiom,
! [A2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),zero_zero(nat)),A2))
=> ( A2 = zero_zero(nat) ) ) ).
% gcd_nat.extremum_uniqueI
tff(fact_2083_gcd__nat_Onot__eq__extremum,axiom,
! [A2: nat] :
( ( A2 != zero_zero(nat) )
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),A2),zero_zero(nat)))
& ( A2 != zero_zero(nat) ) ) ) ).
% gcd_nat.not_eq_extremum
tff(fact_2084_gcd__nat_Oextremum__unique,axiom,
! [A2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),zero_zero(nat)),A2))
<=> ( A2 = zero_zero(nat) ) ) ).
% gcd_nat.extremum_unique
tff(fact_2085_gcd__nat_Oextremum__strict,axiom,
! [A2: nat] :
~ ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),zero_zero(nat)),A2))
& ( zero_zero(nat) != A2 ) ) ).
% gcd_nat.extremum_strict
tff(fact_2086_gcd__nat_Oextremum,axiom,
! [A2: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),A2),zero_zero(nat))) ).
% gcd_nat.extremum
tff(fact_2087_dvd__refl,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [A2: A] : pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),A2)) ) ).
% dvd_refl
tff(fact_2088_dvd__trans,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),C2)) ) ) ) ).
% dvd_trans
tff(fact_2089_of__nat__dvd__iff,axiom,
! [A: $tType] :
( euclid5411537665997757685th_nat(A)
=> ! [M: nat,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(nat,A,semiring_1_of_nat(A),M)),aa(nat,A,semiring_1_of_nat(A),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),M),N)) ) ) ).
% of_nat_dvd_iff
tff(fact_2090_dvd__imp__le__int,axiom,
! [I: int,D2: int] :
( ( I != zero_zero(int) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),D2),I))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,abs_abs(int),D2)),aa(int,int,abs_abs(int),I))) ) ) ).
% dvd_imp_le_int
tff(fact_2091_dvd__field__iff,axiom,
! [A: $tType] :
( field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),B2))
<=> ( ( A2 = zero_zero(A) )
=> ( B2 = zero_zero(A) ) ) ) ) ).
% dvd_field_iff
tff(fact_2092_dvd__0__left,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),zero_zero(A)),A2))
=> ( A2 = zero_zero(A) ) ) ) ).
% dvd_0_left
tff(fact_2093_dvdE,axiom,
! [A: $tType] :
( dvd(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),A2))
=> ~ ! [K3: A] : ( A2 != aa(A,A,aa(A,fun(A,A),times_times(A),B2),K3) ) ) ) ).
% dvdE
tff(fact_2094_dvdI,axiom,
! [A: $tType] :
( dvd(A)
=> ! [A2: A,B2: A,K: A] :
( ( A2 = aa(A,A,aa(A,fun(A,A),times_times(A),B2),K) )
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),A2)) ) ) ).
% dvdI
tff(fact_2095_dvd__def,axiom,
! [A: $tType] :
( dvd(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),A2))
<=> ? [K2: A] : ( A2 = aa(A,A,aa(A,fun(A,A),times_times(A),B2),K2) ) ) ) ).
% dvd_def
tff(fact_2096_dvd__mult,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [A2: A,C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2))) ) ) ).
% dvd_mult
tff(fact_2097_dvd__mult2,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2))) ) ) ).
% dvd_mult2
tff(fact_2098_dvd__mult__left,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),C2)) ) ) ).
% dvd_mult_left
tff(fact_2099_dvd__triv__left,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [A2: A,B2: A] : pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2))) ) ).
% dvd_triv_left
tff(fact_2100_mult__dvd__mono,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),D2))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),D2))) ) ) ) ).
% mult_dvd_mono
tff(fact_2101_dvd__mult__right,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),C2)) ) ) ).
% dvd_mult_right
tff(fact_2102_dvd__triv__right,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [A2: A,B2: A] : pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),B2),A2))) ) ).
% dvd_triv_right
tff(fact_2103_dvd__add__right__iff,axiom,
! [A: $tType] :
( comm_s4317794764714335236cancel(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),C2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),C2)) ) ) ) ).
% dvd_add_right_iff
tff(fact_2104_dvd__add__left__iff,axiom,
! [A: $tType] :
( comm_s4317794764714335236cancel(A)
=> ! [A2: A,C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),C2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),B2)) ) ) ) ).
% dvd_add_left_iff
tff(fact_2105_dvd__add,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),C2))) ) ) ) ).
% dvd_add
tff(fact_2106_dvd__unit__imp__unit,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),one_one(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),one_one(A))) ) ) ) ).
% dvd_unit_imp_unit
tff(fact_2107_unit__imp__dvd,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),one_one(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),A2)) ) ) ).
% unit_imp_dvd
tff(fact_2108_one__dvd,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [A2: A] : pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),one_one(A)),A2)) ) ).
% one_dvd
tff(fact_2109_dvd__diff,axiom,
! [A: $tType] :
( comm_ring_1(A)
=> ! [X2: A,Y: A,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),X2),Y))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),X2),Z))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),X2),aa(A,A,aa(A,fun(A,A),minus_minus(A),Y),Z))) ) ) ) ).
% dvd_diff
tff(fact_2110_dvd__diff__commute,axiom,
! [A: $tType] :
( euclid5891614535332579305n_ring(A)
=> ! [A2: A,C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),aa(A,A,aa(A,fun(A,A),minus_minus(A),C2),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),C2))) ) ) ).
% dvd_diff_commute
tff(fact_2111_div__div__div__same,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [D2: A,B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),D2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),A2))
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),D2)),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),D2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) ) ) ) ) ).
% div_div_div_same
tff(fact_2112_dvd__div__eq__cancel,axiom,
! [A: $tType] :
( semidom_divide(A)
=> ! [A2: A,C2: A,B2: A] :
( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),C2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),B2))
=> ( A2 = B2 ) ) ) ) ) ).
% dvd_div_eq_cancel
tff(fact_2113_dvd__div__eq__iff,axiom,
! [A: $tType] :
( semidom_divide(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),B2))
=> ( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),C2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2) )
<=> ( A2 = B2 ) ) ) ) ) ).
% dvd_div_eq_iff
tff(fact_2114_dvd__power__same,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [X2: A,Y: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),X2),Y))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(nat,A,power_power(A,X2),N)),aa(nat,A,power_power(A,Y),N))) ) ) ).
% dvd_power_same
tff(fact_2115_dvd__if__abs__eq,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [L: A,K: A] :
( ( aa(A,A,abs_abs(A),L) = aa(A,A,abs_abs(A),K) )
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),L),K)) ) ) ).
% dvd_if_abs_eq
tff(fact_2116_dvd__mod,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [K: A,M: A,N: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),K),M))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),K),N))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),K),modulo_modulo(A,M,N))) ) ) ) ).
% dvd_mod
tff(fact_2117_mod__mod__cancel,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [C2: A,B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),B2))
=> ( modulo_modulo(A,modulo_modulo(A,A2,B2),C2) = modulo_modulo(A,A2,C2) ) ) ) ).
% mod_mod_cancel
tff(fact_2118_dvd__mod__iff,axiom,
! [A: $tType] :
( semidom_modulo(A)
=> ! [C2: A,B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),modulo_modulo(A,A2,B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),A2)) ) ) ) ).
% dvd_mod_iff
tff(fact_2119_dvd__mod__imp__dvd,axiom,
! [A: $tType] :
( semidom_modulo(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),modulo_modulo(A,A2,B2)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),A2)) ) ) ) ).
% dvd_mod_imp_dvd
tff(fact_2120_dvd__diff__nat,axiom,
! [K: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),K),M))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),K),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),K),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N))) ) ) ).
% dvd_diff_nat
tff(fact_2121_uminus__dvd__conv_I2_J,axiom,
! [D2: int,T2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),D2),T2))
<=> pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),D2),aa(int,int,uminus_uminus(int),T2))) ) ).
% uminus_dvd_conv(2)
tff(fact_2122_uminus__dvd__conv_I1_J,axiom,
! [D2: int,T2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),D2),T2))
<=> pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(int,int,uminus_uminus(int),D2)),T2)) ) ).
% uminus_dvd_conv(1)
tff(fact_2123_arctan__less__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,arctan,X2)),aa(real,real,arctan,Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),Y)) ) ).
% arctan_less_iff
tff(fact_2124_arctan__monotone,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),Y))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,arctan,X2)),aa(real,real,arctan,Y))) ) ).
% arctan_monotone
tff(fact_2125_arctan__monotone_H,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),Y))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,arctan,X2)),aa(real,real,arctan,Y))) ) ).
% arctan_monotone'
tff(fact_2126_arctan__le__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,arctan,X2)),aa(real,real,arctan,Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),Y)) ) ).
% arctan_le_iff
tff(fact_2127_zdvd__zdiffD,axiom,
! [K: int,M: int,N: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),K),aa(int,int,aa(int,fun(int,int),minus_minus(int),M),N)))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),K),N))
=> pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),K),M)) ) ) ).
% zdvd_zdiffD
tff(fact_2128_arctan__minus,axiom,
! [X2: real] : ( aa(real,real,arctan,aa(real,real,uminus_uminus(real),X2)) = aa(real,real,uminus_uminus(real),aa(real,real,arctan,X2)) ) ).
% arctan_minus
tff(fact_2129_dvd__pos__nat,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),M),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),M)) ) ) ).
% dvd_pos_nat
tff(fact_2130_bezout__lemma__nat,axiom,
! [D2: nat,A2: nat,B2: nat,X2: nat,Y: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),D2),A2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),D2),B2))
=> ( ( ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),A2),X2) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),B2),Y)),D2) )
| ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),B2),X2) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),A2),Y)),D2) ) )
=> ? [X3: nat,Y3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),D2),A2))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),D2),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),A2),B2)))
& ( ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),A2),X3) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),A2),B2)),Y3)),D2) )
| ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),A2),B2)),X3) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),A2),Y3)),D2) ) ) ) ) ) ) ).
% bezout_lemma_nat
tff(fact_2131_bezout__add__nat,axiom,
! [A2: nat,B2: nat] :
? [D3: nat,X3: nat,Y3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),D3),A2))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),D3),B2))
& ( ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),A2),X3) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),B2),Y3)),D3) )
| ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),B2),X3) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),A2),Y3)),D3) ) ) ) ).
% bezout_add_nat
tff(fact_2132_bezout1__nat,axiom,
! [A2: nat,B2: nat] :
? [D3: nat,X3: nat,Y3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),D3),A2))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),D3),B2))
& ( ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),A2),X3)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),B2),Y3)) = D3 )
| ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),B2),X3)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),A2),Y3)) = D3 ) ) ) ).
% bezout1_nat
tff(fact_2133_zdvd__mult__cancel1,axiom,
! [M: int,N: int] :
( ( M != zero_zero(int) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(int,int,aa(int,fun(int,int),times_times(int),M),N)),M))
<=> ( aa(int,int,abs_abs(int),N) = one_one(int) ) ) ) ).
% zdvd_mult_cancel1
tff(fact_2134_concat__bit__assoc,axiom,
! [N: nat,K: int,M: nat,L: int,R: int] : ( aa(int,int,bit_concat_bit(N,K),aa(int,int,bit_concat_bit(M,L),R)) = aa(int,int,bit_concat_bit(aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N),aa(int,int,bit_concat_bit(N,K),L)),R) ) ).
% concat_bit_assoc
tff(fact_2135_even__add__abs__iff,axiom,
! [K: int,L: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),plus_plus(int),K),aa(int,int,abs_abs(int),L))))
<=> pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),plus_plus(int),K),L))) ) ).
% even_add_abs_iff
tff(fact_2136_even__abs__add__iff,axiom,
! [K: int,L: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,abs_abs(int),K)),L)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),plus_plus(int),K),L))) ) ).
% even_abs_add_iff
tff(fact_2137_not__is__unit__0,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),zero_zero(A)),one_one(A))) ) ).
% not_is_unit_0
tff(fact_2138_minf_I10_J,axiom,
! [B: $tType] :
( ( plus(B)
& linorder(B)
& dvd(B) )
=> ! [D2: B,S2: B] :
? [Z3: B] :
! [X: B] :
( pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),X),Z3))
=> ( ~ pp(aa(B,bool,aa(B,fun(B,bool),dvd_dvd(B),D2),aa(B,B,aa(B,fun(B,B),plus_plus(B),X),S2)))
<=> ~ pp(aa(B,bool,aa(B,fun(B,bool),dvd_dvd(B),D2),aa(B,B,aa(B,fun(B,B),plus_plus(B),X),S2))) ) ) ) ).
% minf(10)
tff(fact_2139_minf_I9_J,axiom,
! [B: $tType] :
( ( plus(B)
& linorder(B)
& dvd(B) )
=> ! [D2: B,S2: B] :
? [Z3: B] :
! [X: B] :
( pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),X),Z3))
=> ( pp(aa(B,bool,aa(B,fun(B,bool),dvd_dvd(B),D2),aa(B,B,aa(B,fun(B,B),plus_plus(B),X),S2)))
<=> pp(aa(B,bool,aa(B,fun(B,bool),dvd_dvd(B),D2),aa(B,B,aa(B,fun(B,B),plus_plus(B),X),S2))) ) ) ) ).
% minf(9)
tff(fact_2140_pinf_I10_J,axiom,
! [B: $tType] :
( ( plus(B)
& linorder(B)
& dvd(B) )
=> ! [D2: B,S2: B] :
? [Z3: B] :
! [X: B] :
( pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),Z3),X))
=> ( ~ pp(aa(B,bool,aa(B,fun(B,bool),dvd_dvd(B),D2),aa(B,B,aa(B,fun(B,B),plus_plus(B),X),S2)))
<=> ~ pp(aa(B,bool,aa(B,fun(B,bool),dvd_dvd(B),D2),aa(B,B,aa(B,fun(B,B),plus_plus(B),X),S2))) ) ) ) ).
% pinf(10)
tff(fact_2141_pinf_I9_J,axiom,
! [B: $tType] :
( ( plus(B)
& linorder(B)
& dvd(B) )
=> ! [D2: B,S2: B] :
? [Z3: B] :
! [X: B] :
( pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),Z3),X))
=> ( pp(aa(B,bool,aa(B,fun(B,bool),dvd_dvd(B),D2),aa(B,B,aa(B,fun(B,B),plus_plus(B),X),S2)))
<=> pp(aa(B,bool,aa(B,fun(B,bool),dvd_dvd(B),D2),aa(B,B,aa(B,fun(B,B),plus_plus(B),X),S2))) ) ) ) ).
% pinf(9)
tff(fact_2142_dvd__div__eq__0__iff,axiom,
! [A: $tType] :
( semidom_divide(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),A2))
=> ( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) = zero_zero(A) )
<=> ( A2 = zero_zero(A) ) ) ) ) ).
% dvd_div_eq_0_iff
tff(fact_2143_unit__mult__right__cancel,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),one_one(A)))
=> ( ( aa(A,A,aa(A,fun(A,A),times_times(A),B2),A2) = aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2) )
<=> ( B2 = C2 ) ) ) ) ).
% unit_mult_right_cancel
tff(fact_2144_unit__mult__left__cancel,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),one_one(A)))
=> ( ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2) = aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2) )
<=> ( B2 = C2 ) ) ) ) ).
% unit_mult_left_cancel
tff(fact_2145_mult__unit__dvd__iff_H,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),one_one(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),C2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),C2)) ) ) ) ).
% mult_unit_dvd_iff'
tff(fact_2146_dvd__mult__unit__iff_H,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [B2: A,A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),one_one(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),C2)) ) ) ) ).
% dvd_mult_unit_iff'
tff(fact_2147_mult__unit__dvd__iff,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [B2: A,A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),one_one(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),C2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),C2)) ) ) ) ).
% mult_unit_dvd_iff
tff(fact_2148_dvd__mult__unit__iff,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [B2: A,A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),one_one(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),C2)) ) ) ) ).
% dvd_mult_unit_iff
tff(fact_2149_is__unit__mult__iff,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),one_one(A)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),one_one(A)))
& pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),one_one(A))) ) ) ) ).
% is_unit_mult_iff
tff(fact_2150_dvd__div__mult,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [C2: A,B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),B2))
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)),A2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),B2),A2)),C2) ) ) ) ).
% dvd_div_mult
tff(fact_2151_div__mult__swap,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [C2: A,B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),B2))
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),C2) ) ) ) ).
% div_mult_swap
tff(fact_2152_div__div__eq__right,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [C2: A,B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),A2))
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),C2) ) ) ) ) ).
% div_div_eq_right
tff(fact_2153_dvd__div__mult2__eq,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [B2: A,C2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)),A2))
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),C2) ) ) ) ).
% dvd_div_mult2_eq
tff(fact_2154_dvd__mult__imp__div,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A,C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2))) ) ) ).
% dvd_mult_imp_div
tff(fact_2155_div__mult__div__if__dvd,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [B2: A,A2: A,D2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),D2),C2))
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),aa(A,A,aa(A,fun(A,A),divide_divide(A),C2),D2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),D2)) ) ) ) ) ).
% div_mult_div_if_dvd
tff(fact_2156_div__plus__div__distrib__dvd__right,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [C2: A,B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),B2))
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),C2)),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)) ) ) ) ).
% div_plus_div_distrib_dvd_right
tff(fact_2157_div__plus__div__distrib__dvd__left,axiom,
! [A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),A2))
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),C2)),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)) ) ) ) ).
% div_plus_div_distrib_dvd_left
tff(fact_2158_dvd__div__unit__iff,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [B2: A,A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),one_one(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),C2),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),C2)) ) ) ) ).
% dvd_div_unit_iff
tff(fact_2159_div__unit__dvd__iff,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [B2: A,A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),one_one(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),C2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),C2)) ) ) ) ).
% div_unit_dvd_iff
tff(fact_2160_unit__div__cancel,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),one_one(A)))
=> ( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),A2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),C2),A2) )
<=> ( B2 = C2 ) ) ) ) ).
% unit_div_cancel
tff(fact_2161_dvd__div__neg,axiom,
! [A: $tType] :
( idom_divide(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),A2))
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(A,A,uminus_uminus(A),B2)) = aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)) ) ) ) ).
% dvd_div_neg
tff(fact_2162_dvd__neg__div,axiom,
! [A: $tType] :
( idom_divide(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),A2))
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,uminus_uminus(A),A2)),B2) = aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)) ) ) ) ).
% dvd_neg_div
tff(fact_2163_div__power,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [B2: A,A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),A2))
=> ( aa(nat,A,power_power(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),N) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(nat,A,power_power(A,A2),N)),aa(nat,A,power_power(A,B2),N)) ) ) ) ).
% div_power
tff(fact_2164_mod__0__imp__dvd,axiom,
! [A: $tType] :
( semiring_modulo(A)
=> ! [A2: A,B2: A] :
( ( modulo_modulo(A,A2,B2) = zero_zero(A) )
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),A2)) ) ) ).
% mod_0_imp_dvd
tff(fact_2165_dvd__eq__mod__eq__0,axiom,
! [A: $tType] :
( semidom_modulo(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),B2))
<=> ( modulo_modulo(A,B2,A2) = zero_zero(A) ) ) ) ).
% dvd_eq_mod_eq_0
tff(fact_2166_mod__eq__0__iff__dvd,axiom,
! [A: $tType] :
( semidom_modulo(A)
=> ! [A2: A,B2: A] :
( ( modulo_modulo(A,A2,B2) = zero_zero(A) )
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),A2)) ) ) ).
% mod_eq_0_iff_dvd
tff(fact_2167_le__imp__power__dvd,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [M: nat,N: nat,A2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(nat,A,power_power(A,A2),M)),aa(nat,A,power_power(A,A2),N))) ) ) ).
% le_imp_power_dvd
tff(fact_2168_power__le__dvd,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [A2: A,N: nat,B2: A,M: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(nat,A,power_power(A,A2),N)),B2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(nat,A,power_power(A,A2),M)),B2)) ) ) ) ).
% power_le_dvd
tff(fact_2169_dvd__power__le,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [X2: A,Y: A,N: nat,M: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),X2),Y))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(nat,A,power_power(A,X2),N)),aa(nat,A,power_power(A,Y),M))) ) ) ) ).
% dvd_power_le
tff(fact_2170_mod__eq__dvd__iff,axiom,
! [A: $tType] :
( euclid8851590272496341667cancel(A)
=> ! [A2: A,C2: A,B2: A] :
( ( modulo_modulo(A,A2,C2) = modulo_modulo(A,B2,C2) )
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2))) ) ) ).
% mod_eq_dvd_iff
tff(fact_2171_dvd__minus__mod,axiom,
! [A: $tType] :
( semidom_modulo(A)
=> ! [B2: A,A2: A] : pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),modulo_modulo(A,A2,B2)))) ) ).
% dvd_minus_mod
tff(fact_2172_nat__dvd__not__less,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),M))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
=> ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),N),M)) ) ) ).
% nat_dvd_not_less
tff(fact_2173_bezout__add__strong__nat,axiom,
! [A2: nat,B2: nat] :
( ( A2 != zero_zero(nat) )
=> ? [D3: nat,X3: nat,Y3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),D3),A2))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),D3),B2))
& ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),A2),X3) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),B2),Y3)),D3) ) ) ) ).
% bezout_add_strong_nat
tff(fact_2174_abs__zmult__eq__1,axiom,
! [M: int,N: int] :
( ( aa(int,int,abs_abs(int),aa(int,int,aa(int,fun(int,int),times_times(int),M),N)) = one_one(int) )
=> ( aa(int,int,abs_abs(int),M) = one_one(int) ) ) ).
% abs_zmult_eq_1
tff(fact_2175_dvd__minus__self,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M)))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M))
| pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),M),N)) ) ) ).
% dvd_minus_self
tff(fact_2176_zdvd__antisym__nonneg,axiom,
! [M: int,N: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),M))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),N))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),M),N))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),N),M))
=> ( M = N ) ) ) ) ) ).
% zdvd_antisym_nonneg
tff(fact_2177_less__eq__dvd__minus,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),M),N))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M))) ) ) ).
% less_eq_dvd_minus
tff(fact_2178_dvd__diffD1,axiom,
! [K: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),K),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N)))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),K),M))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),K),N)) ) ) ) ).
% dvd_diffD1
tff(fact_2179_dvd__diffD,axiom,
! [K: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),K),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N)))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),K),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),K),M)) ) ) ) ).
% dvd_diffD
tff(fact_2180_zdvd__not__zless,axiom,
! [M: int,N: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),M))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),M),N))
=> ~ pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),N),M)) ) ) ).
% zdvd_not_zless
tff(fact_2181_zdvd__mono,axiom,
! [K: int,M: int,T2: int] :
( ( K != zero_zero(int) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),M),T2))
<=> pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(int,int,aa(int,fun(int,int),times_times(int),K),M)),aa(int,int,aa(int,fun(int,int),times_times(int),K),T2))) ) ) ).
% zdvd_mono
tff(fact_2182_zdvd__mult__cancel,axiom,
! [K: int,M: int,N: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(int,int,aa(int,fun(int,int),times_times(int),K),M)),aa(int,int,aa(int,fun(int,int),times_times(int),K),N)))
=> ( ( K != zero_zero(int) )
=> pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),M),N)) ) ) ).
% zdvd_mult_cancel
tff(fact_2183_zdvd__reduce,axiom,
! [K: int,N: int,M: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),K),aa(int,int,aa(int,fun(int,int),plus_plus(int),N),aa(int,int,aa(int,fun(int,int),times_times(int),K),M))))
<=> pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),K),N)) ) ).
% zdvd_reduce
tff(fact_2184_zdvd__period,axiom,
! [A2: int,D2: int,X2: int,T2: int,C2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),A2),D2))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),A2),aa(int,int,aa(int,fun(int,int),plus_plus(int),X2),T2)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),A2),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),X2),aa(int,int,aa(int,fun(int,int),times_times(int),C2),D2))),T2))) ) ) ).
% zdvd_period
tff(fact_2185_unity__coeff__ex,axiom,
! [A: $tType] :
( ( dvd(A)
& semiring_0(A) )
=> ! [P: fun(A,bool),L: A] :
( ? [X4: A] : pp(aa(A,bool,P,aa(A,A,aa(A,fun(A,A),times_times(A),L),X4)))
<=> ? [X4: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),L),aa(A,A,aa(A,fun(A,A),plus_plus(A),X4),zero_zero(A))))
& pp(aa(A,bool,P,X4)) ) ) ) ).
% unity_coeff_ex
tff(fact_2186_unit__dvdE,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),one_one(A)))
=> ~ ( ( A2 != zero_zero(A) )
=> ! [C4: A] : ( B2 != aa(A,A,aa(A,fun(A,A),times_times(A),A2),C4) ) ) ) ) ).
% unit_dvdE
tff(fact_2187_dvd__div__div__eq__mult,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A,C2: A,B2: A,D2: A] :
( ( A2 != zero_zero(A) )
=> ( ( C2 != zero_zero(A) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),D2))
=> ( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),A2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),D2),C2) )
<=> ( aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2) = aa(A,A,aa(A,fun(A,A),times_times(A),A2),D2) ) ) ) ) ) ) ) ).
% dvd_div_div_eq_mult
tff(fact_2188_dvd__div__iff__mult,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [C2: A,B2: A,A2: A] :
( ( C2 != zero_zero(A) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),B2)) ) ) ) ) ).
% dvd_div_iff_mult
tff(fact_2189_div__dvd__iff__mult,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [B2: A,A2: A,C2: A] :
( ( B2 != zero_zero(A) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),C2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2))) ) ) ) ) ).
% div_dvd_iff_mult
tff(fact_2190_dvd__div__eq__mult,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A,B2: A,C2: A] :
( ( A2 != zero_zero(A) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),B2))
=> ( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),A2) = C2 )
<=> ( B2 = aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2) ) ) ) ) ) ).
% dvd_div_eq_mult
tff(fact_2191_unit__div__eq__0__iff,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),one_one(A)))
=> ( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) = zero_zero(A) )
<=> ( A2 = zero_zero(A) ) ) ) ) ).
% unit_div_eq_0_iff
tff(fact_2192_even__numeral,axiom,
! [A: $tType] :
( semiring_parity(A)
=> ! [N: num] : pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(num,A,numeral_numeral(A),bit0(N)))) ) ).
% even_numeral
tff(fact_2193_inf__period_I4_J,axiom,
! [A: $tType] :
( ( comm_ring(A)
& dvd(A) )
=> ! [D2: A,D5: A,T2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),D2),D5))
=> ! [X: A,K4: A] :
( ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),D2),aa(A,A,aa(A,fun(A,A),plus_plus(A),X),T2)))
<=> ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),D2),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X),aa(A,A,aa(A,fun(A,A),times_times(A),K4),D5))),T2))) ) ) ) ).
% inf_period(4)
tff(fact_2194_inf__period_I3_J,axiom,
! [A: $tType] :
( ( comm_ring(A)
& dvd(A) )
=> ! [D2: A,D5: A,T2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),D2),D5))
=> ! [X: A,K4: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),D2),aa(A,A,aa(A,fun(A,A),plus_plus(A),X),T2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),D2),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X),aa(A,A,aa(A,fun(A,A),times_times(A),K4),D5))),T2))) ) ) ) ).
% inf_period(3)
tff(fact_2195_is__unit__div__mult2__eq,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [B2: A,C2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),one_one(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),one_one(A)))
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),C2) ) ) ) ) ).
% is_unit_div_mult2_eq
tff(fact_2196_unit__div__mult__swap,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),one_one(A)))
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),C2) ) ) ) ).
% unit_div_mult_swap
tff(fact_2197_unit__div__commute,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [B2: A,A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),one_one(A)))
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),B2) ) ) ) ).
% unit_div_commute
tff(fact_2198_div__mult__unit2,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [C2: A,B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),C2),one_one(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),A2))
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),C2) ) ) ) ) ).
% div_mult_unit2
tff(fact_2199_unit__eq__div2,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [B2: A,A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),one_one(A)))
=> ( ( A2 = aa(A,A,aa(A,fun(A,A),divide_divide(A),C2),B2) )
<=> ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2) = C2 ) ) ) ) ).
% unit_eq_div2
tff(fact_2200_unit__eq__div1,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [B2: A,A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),one_one(A)))
=> ( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) = C2 )
<=> ( A2 = aa(A,A,aa(A,fun(A,A),times_times(A),C2),B2) ) ) ) ) ).
% unit_eq_div1
tff(fact_2201_unit__imp__mod__eq__0,axiom,
! [A: $tType] :
( euclid3725896446679973847miring(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),one_one(A)))
=> ( modulo_modulo(A,A2,B2) = zero_zero(A) ) ) ) ).
% unit_imp_mod_eq_0
tff(fact_2202_is__unit__power__iff,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(nat,A,power_power(A,A2),N)),one_one(A)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),one_one(A)))
| ( N = zero_zero(nat) ) ) ) ) ).
% is_unit_power_iff
tff(fact_2203_zabs__def,axiom,
! [I: int] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),I),zero_zero(int)))
=> ( aa(int,int,abs_abs(int),I) = aa(int,int,uminus_uminus(int),I) ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),I),zero_zero(int)))
=> ( aa(int,int,abs_abs(int),I) = I ) ) ) ).
% zabs_def
tff(fact_2204_dvd__imp__le,axiom,
! [K: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),K),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N)) ) ) ).
% dvd_imp_le
tff(fact_2205_nat__mult__dvd__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),K))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),M)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),M),N)) ) ) ).
% nat_mult_dvd_cancel1
tff(fact_2206_dvd__mult__cancel,axiom,
! [K: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),M)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),N)))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),K))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),M),N)) ) ) ).
% dvd_mult_cancel
tff(fact_2207_abs__mod__less,axiom,
! [L: int,K: int] :
( ( L != zero_zero(int) )
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,abs_abs(int),modulo_modulo(int,K,L))),aa(int,int,abs_abs(int),L))) ) ).
% abs_mod_less
tff(fact_2208_zdvd__imp__le,axiom,
! [Z: int,N: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),Z),N))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),N))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),Z),N)) ) ) ).
% zdvd_imp_le
tff(fact_2209_mod__greater__zero__iff__not__dvd,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),modulo_modulo(nat,M,N)))
<=> ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),N),M)) ) ).
% mod_greater_zero_iff_not_dvd
tff(fact_2210_mod__eq__dvd__iff__nat,axiom,
! [N: nat,M: nat,Q2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> ( ( modulo_modulo(nat,M,Q2) = modulo_modulo(nat,N,Q2) )
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),Q2),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N))) ) ) ).
% mod_eq_dvd_iff_nat
tff(fact_2211_real__of__nat__div,axiom,
! [D2: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),D2),N))
=> ( aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),D2)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(nat,real,semiring_1_of_nat(real),N)),aa(nat,real,semiring_1_of_nat(real),D2)) ) ) ).
% real_of_nat_div
tff(fact_2212_even__zero,axiom,
! [A: $tType] :
( semiring_parity(A)
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),zero_zero(A))) ) ).
% even_zero
tff(fact_2213_is__unit__div__mult__cancel__right,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A,B2: A] :
( ( A2 != zero_zero(A) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),one_one(A)))
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),B2),A2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),B2) ) ) ) ) ).
% is_unit_div_mult_cancel_right
tff(fact_2214_is__unit__div__mult__cancel__left,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A,B2: A] :
( ( A2 != zero_zero(A) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),one_one(A)))
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),B2) ) ) ) ) ).
% is_unit_div_mult_cancel_left
tff(fact_2215_is__unitE,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),one_one(A)))
=> ~ ( ( A2 != zero_zero(A) )
=> ! [B3: A] :
( ( B3 != zero_zero(A) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B3),one_one(A)))
=> ( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),A2) = B3 )
=> ( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),B3) = A2 )
=> ( ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),B3) = one_one(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),C2),A2) != aa(A,A,aa(A,fun(A,A),times_times(A),C2),B3) ) ) ) ) ) ) ) ) ) ).
% is_unitE
tff(fact_2216_evenE,axiom,
! [A: $tType] :
( semiring_parity(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
=> ~ ! [B3: A] : ( A2 != aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),B3) ) ) ) ).
% evenE
tff(fact_2217_odd__even__add,axiom,
! [A: $tType] :
( semiring_parity(A)
=> ! [A2: A,B2: A] :
( ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
=> ( ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2))) ) ) ) ).
% odd_even_add
tff(fact_2218_odd__one,axiom,
! [A: $tType] :
( semiring_parity(A)
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),one_one(A))) ) ).
% odd_one
tff(fact_2219_bit__eq__rec,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [A2: A,B2: A] :
( ( A2 = B2 )
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),B2)) )
& ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2))) = aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ) ) ).
% bit_eq_rec
tff(fact_2220_even__minus,axiom,
! [A: $tType] :
( ring_parity(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,uminus_uminus(A),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2)) ) ) ).
% even_minus
tff(fact_2221_dvd__power__iff,axiom,
! [A: $tType] :
( algebraic_semidom(A)
=> ! [X2: A,M: nat,N: nat] :
( ( X2 != zero_zero(A) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(nat,A,power_power(A,X2),M)),aa(nat,A,power_power(A,X2),N)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),X2),one_one(A)))
| pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ) ) ) ).
% dvd_power_iff
tff(fact_2222_odd__numeral,axiom,
! [A: $tType] :
( semiring_parity(A)
=> ! [N: num] : ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(num,A,numeral_numeral(A),aa(num,num,bit1,N)))) ) ).
% odd_numeral
tff(fact_2223_dvd__power,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [N: nat,X2: A] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
| ( X2 = one_one(A) ) )
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),X2),aa(nat,A,power_power(A,X2),N))) ) ) ).
% dvd_power
tff(fact_2224_even__signed__take__bit__iff,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [M: nat,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,bit_ri4674362597316999326ke_bit(A,M),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2)) ) ) ).
% even_signed_take_bit_iff
tff(fact_2225_div2__even__ext__nat,axiom,
! [X2: nat,Y: nat] :
( ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),X2),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),Y),aa(num,nat,numeral_numeral(nat),bit0(one2))) )
=> ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),X2))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Y)) )
=> ( X2 = Y ) ) ) ).
% div2_even_ext_nat
tff(fact_2226_even__even__mod__4__iff,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),modulo_modulo(nat,N,aa(num,nat,numeral_numeral(nat),bit0(bit0(one2)))))) ) ).
% even_even_mod_4_iff
tff(fact_2227_odd__numeral__BitM,axiom,
! [A: $tType] :
( semiring_parity(A)
=> ! [W: num] : ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(num,A,numeral_numeral(A),bitM(W)))) ) ).
% odd_numeral_BitM
tff(fact_2228_dvd__mult__cancel1,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),M))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),N)),M))
<=> ( N = one_one(nat) ) ) ) ).
% dvd_mult_cancel1
tff(fact_2229_dvd__mult__cancel2,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),M))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),M)),M))
<=> ( N = one_one(nat) ) ) ) ).
% dvd_mult_cancel2
tff(fact_2230_dvd__minus__add,axiom,
! [Q2: nat,N: nat,R: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Q2),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Q2),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),R),M)))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),Q2)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),R),M)),Q2)))) ) ) ) ).
% dvd_minus_add
tff(fact_2231_power__dvd__imp__le,axiom,
! [I: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(nat,nat,power_power(nat,I),M)),aa(nat,nat,power_power(nat,I),N)))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),one_one(nat)),I))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ) ).
% power_dvd_imp_le
tff(fact_2232_mod__nat__eqI,axiom,
! [R: nat,N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),R),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),R),M))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),R)))
=> ( modulo_modulo(nat,M,N) = R ) ) ) ) ).
% mod_nat_eqI
tff(fact_2233_mod__int__pos__iff,axiom,
! [K: int,L: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),modulo_modulo(int,K,L)))
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),L),K))
| ( ( L = zero_zero(int) )
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K)) )
| pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),L)) ) ) ).
% mod_int_pos_iff
tff(fact_2234_even__two__times__div__two,axiom,
! [A: $tType] :
( euclid5411537665997757685th_nat(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2)))) = A2 ) ) ) ).
% even_two_times_div_two
tff(fact_2235_even__iff__mod__2__eq__zero,axiom,
! [A: $tType] :
( semiring_parity(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
<=> ( modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2))) = zero_zero(A) ) ) ) ).
% even_iff_mod_2_eq_zero
tff(fact_2236_odd__iff__mod__2__eq__one,axiom,
! [A: $tType] :
( semiring_parity(A)
=> ! [A2: A] :
( ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
<=> ( modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2))) = one_one(A) ) ) ) ).
% odd_iff_mod_2_eq_one
tff(fact_2237_power__mono__odd,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [N: nat,A2: A,B2: A] :
( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,A2),N)),aa(nat,A,power_power(A,B2),N))) ) ) ) ).
% power_mono_odd
tff(fact_2238_uminus__power__if,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [N: nat,A2: A] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),A2)),N) = aa(nat,A,power_power(A,A2),N) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),A2)),N) = aa(A,A,uminus_uminus(A),aa(nat,A,power_power(A,A2),N)) ) ) ) ) ).
% uminus_power_if
tff(fact_2239_odd__pos,axiom,
! [N: nat] :
( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N)) ) ).
% odd_pos
tff(fact_2240_power__even__abs,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [N: nat,A2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( aa(nat,A,power_power(A,aa(A,A,abs_abs(A),A2)),N) = aa(nat,A,power_power(A,A2),N) ) ) ) ).
% power_even_abs
tff(fact_2241_dvd__power__iff__le,axiom,
! [K: nat,M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),K))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(nat,nat,power_power(nat,K),M)),aa(nat,nat,power_power(nat,K),N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ) ).
% dvd_power_iff_le
tff(fact_2242_even__unset__bit__iff,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [M: nat,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(nat,fun(A,A),bit_se2638667681897837118et_bit(A),M),A2)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
| ( M = zero_zero(nat) ) ) ) ) ).
% even_unset_bit_iff
tff(fact_2243_even__set__bit__iff,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [M: nat,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(nat,fun(A,A),bit_se5668285175392031749et_bit(A),M),A2)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
& ( M != zero_zero(nat) ) ) ) ) ).
% even_set_bit_iff
tff(fact_2244_even__flip__bit__iff,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [M: nat,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),bit_se8732182000553998342ip_bit(A,M,A2)))
<=> ~ ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
<=> ( M = zero_zero(nat) ) ) ) ) ).
% even_flip_bit_iff
tff(fact_2245_even__diff__iff,axiom,
! [K: int,L: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),minus_minus(int),K),L)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),plus_plus(int),K),L))) ) ).
% even_diff_iff
tff(fact_2246_oddE,axiom,
! [A: $tType] :
( semiring_parity(A)
=> ! [A2: A] :
( ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
=> ~ ! [B3: A] : ( A2 != aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),B3)),one_one(A)) ) ) ) ).
% oddE
tff(fact_2247_mod2__eq__if,axiom,
! [A: $tType] :
( semiring_parity(A)
=> ! [A2: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
=> ( modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2))) = zero_zero(A) ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
=> ( modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2))) = one_one(A) ) ) ) ) ).
% mod2_eq_if
tff(fact_2248_parity__cases,axiom,
! [A: $tType] :
( semiring_parity(A)
=> ! [A2: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
=> ( modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2))) != zero_zero(A) ) )
=> ~ ( ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
=> ( modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2))) != one_one(A) ) ) ) ) ).
% parity_cases
tff(fact_2249_zero__le__power__eq,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(nat,A,power_power(A,A2),N)))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
| ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2)) ) ) ) ) ).
% zero_le_power_eq
tff(fact_2250_zero__le__odd__power,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [N: nat,A2: A] :
( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(nat,A,power_power(A,A2),N)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2)) ) ) ) ).
% zero_le_odd_power
tff(fact_2251_zero__le__even__power,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [N: nat,A2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(nat,A,power_power(A,A2),N))) ) ) ).
% zero_le_even_power
tff(fact_2252_minus__one__power__iff,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [N: nat] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),N) = one_one(A) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),N) = aa(A,A,uminus_uminus(A),one_one(A)) ) ) ) ) ).
% minus_one_power_iff
tff(fact_2253_nat__intermed__int__val,axiom,
! [M: nat,N: nat,F2: fun(nat,int),K: int] :
( ! [I3: nat] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),I3))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I3),N)) )
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,abs_abs(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(nat,int,F2,aa(nat,nat,suc,I3))),aa(nat,int,F2,I3)))),one_one(int))) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(nat,int,F2,M)),K))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),K),aa(nat,int,F2,N)))
=> ? [I3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),I3))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I3),N))
& ( aa(nat,int,F2,I3) = K ) ) ) ) ) ) ).
% nat_intermed_int_val
tff(fact_2254_power__mono__even,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [N: nat,A2: A,B2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),A2)),aa(A,A,abs_abs(A),B2)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,A2),N)),aa(nat,A,power_power(A,B2),N))) ) ) ) ).
% power_mono_even
tff(fact_2255_incr__lemma,axiom,
! [D2: int,Z: int,X2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),D2))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),Z),aa(int,int,aa(int,fun(int,int),plus_plus(int),X2),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,abs_abs(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),X2),Z))),one_one(int))),D2)))) ) ).
% incr_lemma
tff(fact_2256_decr__lemma,axiom,
! [D2: int,X2: int,Z: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),D2))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),X2),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,abs_abs(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),X2),Z))),one_one(int))),D2))),Z)) ) ).
% decr_lemma
tff(fact_2257_central__binomial__odd,axiom,
! [N: nat] :
( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( aa(nat,nat,binomial(N),aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),aa(num,nat,numeral_numeral(nat),bit0(one2))))) = aa(nat,nat,binomial(N),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),aa(num,nat,numeral_numeral(nat),bit0(one2)))) ) ) ).
% central_binomial_odd
tff(fact_2258_zero__less__power__eq,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(nat,A,power_power(A,A2),N)))
<=> ( ( N = zero_zero(nat) )
| ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
& ( A2 != zero_zero(A) ) )
| ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2)) ) ) ) ) ).
% zero_less_power_eq
tff(fact_2259_nat__ivt__aux,axiom,
! [N: nat,F2: fun(nat,int),K: int] :
( ! [I3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I3),N))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,abs_abs(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(nat,int,F2,aa(nat,nat,suc,I3))),aa(nat,int,F2,I3)))),one_one(int))) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(nat,int,F2,zero_zero(nat))),K))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),K),aa(nat,int,F2,N)))
=> ? [I3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I3),N))
& ( aa(nat,int,F2,I3) = K ) ) ) ) ) ).
% nat_ivt_aux
tff(fact_2260_Euclid__induct,axiom,
! [P: fun(nat,fun(nat,bool)),A2: nat,B2: nat] :
( ! [A4: nat,B3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),P,A4),B3))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),P,B3),A4)) )
=> ( ! [A4: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),P,A4),zero_zero(nat)))
=> ( ! [A4: nat,B3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),P,A4),B3))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),P,A4),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),A4),B3))) )
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),P,A2),B2)) ) ) ) ).
% Euclid_induct
tff(fact_2261_complex__mod__minus__le__complex__mod,axiom,
! [X2: complex] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),real_V7770717601297561774m_norm(complex,X2))),real_V7770717601297561774m_norm(complex,X2))) ).
% complex_mod_minus_le_complex_mod
tff(fact_2262_complex__mod__triangle__ineq2,axiom,
! [B2: complex,A2: complex] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),real_V7770717601297561774m_norm(complex,aa(complex,complex,aa(complex,fun(complex,complex),plus_plus(complex),B2),A2))),real_V7770717601297561774m_norm(complex,B2))),real_V7770717601297561774m_norm(complex,A2))) ).
% complex_mod_triangle_ineq2
tff(fact_2263_even__mask__div__iff_H,axiom,
! [A: $tType] :
( euclid5411537665997757685th_nat(A)
=> ! [M: nat,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),M)),one_one(A))),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N))))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ) ).
% even_mask_div_iff'
tff(fact_2264_power__le__zero__eq,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,A2),N)),zero_zero(A)))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
& ( ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A))) )
| ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
& ( A2 = zero_zero(A) ) ) ) ) ) ) ).
% power_le_zero_eq
tff(fact_2265_nat0__intermed__int__val,axiom,
! [N: nat,F2: fun(nat,int),K: int] :
( ! [I3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I3),N))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,abs_abs(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(nat,int,F2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I3),one_one(nat)))),aa(nat,int,F2,I3)))),one_one(int))) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(nat,int,F2,zero_zero(nat))),K))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),K),aa(nat,int,F2,N)))
=> ? [I3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I3),N))
& ( aa(nat,int,F2,I3) = K ) ) ) ) ) ).
% nat0_intermed_int_val
tff(fact_2266_option_Osize__gen_I1_J,axiom,
! [A: $tType,X2: fun(A,nat)] : ( size_option(A,X2,none(A)) = aa(nat,nat,suc,zero_zero(nat)) ) ).
% option.size_gen(1)
tff(fact_2267_even__mod__4__div__2,axiom,
! [N: nat] :
( ( modulo_modulo(nat,N,aa(num,nat,numeral_numeral(nat),bit0(bit0(one2)))) = aa(nat,nat,suc,zero_zero(nat)) )
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(nat,nat,suc,zero_zero(nat)))),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ).
% even_mod_4_div_2
tff(fact_2268_arctan__add,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),X2)),one_one(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),Y)),one_one(real)))
=> ( aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,arctan,X2)),aa(real,real,arctan,Y)) = aa(real,real,arctan,aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),Y)),aa(real,real,aa(real,fun(real,real),minus_minus(real),one_one(real)),aa(real,real,aa(real,fun(real,real),times_times(real),X2),Y)))) ) ) ) ).
% arctan_add
tff(fact_2269_even__mask__div__iff,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [M: nat,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),M)),one_one(A))),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N))))
<=> ( ( aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N) = zero_zero(A) )
| pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ) ) ).
% even_mask_div_iff
tff(fact_2270_odd__mod__4__div__2,axiom,
! [N: nat] :
( ( modulo_modulo(nat,N,aa(num,nat,numeral_numeral(nat),bit0(bit0(one2)))) = aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,one2)) )
=> ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(nat,nat,suc,zero_zero(nat)))),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ).
% odd_mod_4_div_2
tff(fact_2271_Bernoulli__inequality__even,axiom,
! [N: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N)),X2))),aa(nat,real,power_power(real,aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),X2)),N))) ) ).
% Bernoulli_inequality_even
tff(fact_2272_even__mult__exp__div__exp__iff,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [A2: A,M: nat,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),M))),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N))))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M))
| ( aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N) = zero_zero(A) )
| ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
& pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M))))) ) ) ) ) ).
% even_mult_exp_div_exp_iff
tff(fact_2273_flip__bit__0,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A] : ( bit_se8732182000553998342ip_bit(A,zero_zero(nat),A2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(bool,A,zero_neq_one_of_bool(A),aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2))))) ) ) ).
% flip_bit_0
tff(fact_2274_set__decode__Suc,axiom,
! [N: nat,X2: nat] :
( pp(member(nat,aa(nat,nat,suc,N),nat_set_decode(X2)))
<=> pp(member(nat,N,nat_set_decode(aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ).
% set_decode_Suc
tff(fact_2275_add__scale__eq__noteq,axiom,
! [A: $tType] :
( semiri1453513574482234551roduct(A)
=> ! [R: A,A2: A,B2: A,C2: A,D2: A] :
( ( R != zero_zero(A) )
=> ( ( ( A2 = B2 )
& ( C2 != D2 ) )
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),R),C2)) != aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),R),D2)) ) ) ) ) ).
% add_scale_eq_noteq
tff(fact_2276_fact__double,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [N: nat] : ( semiring_char_0_fact(A,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))),comm_s3205402744901411588hammer(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(num,A,numeral_numeral(A),bit0(one2))),N))),semiring_char_0_fact(A,N)) ) ) ).
% fact_double
tff(fact_2277_mask__numeral,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: num] : ( bit_se2239418461657761734s_mask(A,aa(num,nat,numeral_numeral(nat),N)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),bit_se2239418461657761734s_mask(A,pred_numeral(N)))) ) ) ).
% mask_numeral
tff(fact_2278_num_Osize__gen_I3_J,axiom,
! [X33: num] : ( size_num(aa(num,num,bit1,X33)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),size_num(X33)),aa(nat,nat,suc,zero_zero(nat))) ) ).
% num.size_gen(3)
tff(fact_2279_take__bit__rec,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] :
( ( ( N = zero_zero(nat) )
=> ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2) = zero_zero(A) ) )
& ( ( N != zero_zero(nat) )
=> ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,bit_se2584673776208193580ke_bit(A,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat))),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2))))),aa(num,A,numeral_numeral(A),bit0(one2)))),modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2)))) ) ) ) ) ).
% take_bit_rec
tff(fact_2280_mask__nat__positive__iff,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),bit_se2239418461657761734s_mask(nat,N)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N)) ) ).
% mask_nat_positive_iff
tff(fact_2281_take__bit__of__0,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),zero_zero(A)) = zero_zero(A) ) ) ).
% take_bit_of_0
tff(fact_2282_of__bool__less__eq__iff,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [P: bool,Q: bool] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(bool,A,zero_neq_one_of_bool(A),P)),aa(bool,A,zero_neq_one_of_bool(A),Q)))
<=> ( pp(P)
=> pp(Q) ) ) ) ).
% of_bool_less_eq_iff
tff(fact_2283_of__bool__eq__0__iff,axiom,
! [A: $tType] :
( zero_neq_one(A)
=> ! [P: bool] :
( ( aa(bool,A,zero_neq_one_of_bool(A),P) = zero_zero(A) )
<=> ~ pp(P) ) ) ).
% of_bool_eq_0_iff
tff(fact_2284_of__bool__eq_I1_J,axiom,
! [A: $tType] :
( zero_neq_one(A)
=> ( aa(bool,A,zero_neq_one_of_bool(A),fFalse) = zero_zero(A) ) ) ).
% of_bool_eq(1)
tff(fact_2285_of__bool__less__iff,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [P: bool,Q: bool] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(bool,A,zero_neq_one_of_bool(A),P)),aa(bool,A,zero_neq_one_of_bool(A),Q)))
<=> ( ~ pp(P)
& pp(Q) ) ) ) ).
% of_bool_less_iff
tff(fact_2286_of__bool__eq_I2_J,axiom,
! [A: $tType] :
( zero_neq_one(A)
=> ( aa(bool,A,zero_neq_one_of_bool(A),fTrue) = one_one(A) ) ) ).
% of_bool_eq(2)
tff(fact_2287_of__bool__eq__1__iff,axiom,
! [A: $tType] :
( zero_neq_one(A)
=> ! [P: bool] :
( ( aa(bool,A,zero_neq_one_of_bool(A),P) = one_one(A) )
<=> pp(P) ) ) ).
% of_bool_eq_1_iff
tff(fact_2288_of__nat__fact,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [N: nat] : ( aa(nat,A,semiring_1_of_nat(A),semiring_char_0_fact(nat,N)) = semiring_char_0_fact(A,N) ) ) ).
% of_nat_fact
tff(fact_2289_of__nat__of__bool,axiom,
! [A: $tType] :
( semiring_1(A)
=> ! [P: bool] : ( aa(nat,A,semiring_1_of_nat(A),aa(bool,nat,zero_neq_one_of_bool(nat),P)) = aa(bool,A,zero_neq_one_of_bool(A),P) ) ) ).
% of_nat_of_bool
tff(fact_2290_abs__bool__eq,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [P: bool] : ( aa(A,A,abs_abs(A),aa(bool,A,zero_neq_one_of_bool(A),P)) = aa(bool,A,zero_neq_one_of_bool(A),P) ) ) ).
% abs_bool_eq
tff(fact_2291_concat__bit__of__zero__2,axiom,
! [N: nat,K: int] : ( aa(int,int,bit_concat_bit(N,K),zero_zero(int)) = aa(int,int,bit_se2584673776208193580ke_bit(int,N),K) ) ).
% concat_bit_of_zero_2
tff(fact_2292_take__bit__of__Suc__0,axiom,
! [N: nat] : ( aa(nat,nat,bit_se2584673776208193580ke_bit(nat,N),aa(nat,nat,suc,zero_zero(nat))) = aa(bool,nat,zero_neq_one_of_bool(nat),aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N)) ) ).
% take_bit_of_Suc_0
tff(fact_2293_zero__less__of__bool__iff,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [P: bool] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(bool,A,zero_neq_one_of_bool(A),P)))
<=> pp(P) ) ) ).
% zero_less_of_bool_iff
tff(fact_2294_take__bit__0,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,zero_zero(nat)),A2) = zero_zero(A) ) ) ).
% take_bit_0
tff(fact_2295_of__bool__less__one__iff,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [P: bool] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(bool,A,zero_neq_one_of_bool(A),P)),one_one(A)))
<=> ~ pp(P) ) ) ).
% of_bool_less_one_iff
tff(fact_2296_take__bit__Suc__1,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [N: nat] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,aa(nat,nat,suc,N)),one_one(A)) = one_one(A) ) ) ).
% take_bit_Suc_1
tff(fact_2297_take__bit__numeral__1,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [L: num] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,aa(num,nat,numeral_numeral(nat),L)),one_one(A)) = one_one(A) ) ) ).
% take_bit_numeral_1
tff(fact_2298_fact__0,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ( semiring_char_0_fact(A,zero_zero(nat)) = one_one(A) ) ) ).
% fact_0
tff(fact_2299_of__bool__not__iff,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [P: bool] : ( aa(bool,A,zero_neq_one_of_bool(A),aa(bool,bool,fNot,P)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),aa(bool,A,zero_neq_one_of_bool(A),P)) ) ) ).
% of_bool_not_iff
tff(fact_2300_Suc__0__mod__eq,axiom,
! [N: nat] : ( modulo_modulo(nat,aa(nat,nat,suc,zero_zero(nat)),N) = aa(bool,nat,zero_neq_one_of_bool(nat),aa(bool,bool,fNot,aa(nat,bool,aa(nat,fun(nat,bool),fequal(nat),N),aa(nat,nat,suc,zero_zero(nat))))) ) ).
% Suc_0_mod_eq
tff(fact_2301_mask__eq__0__iff,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat] :
( ( bit_se2239418461657761734s_mask(A,N) = zero_zero(A) )
<=> ( N = zero_zero(nat) ) ) ) ).
% mask_eq_0_iff
tff(fact_2302_mask__0,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ( bit_se2239418461657761734s_mask(A,zero_zero(nat)) = zero_zero(A) ) ) ).
% mask_0
tff(fact_2303_fact__1,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ( semiring_char_0_fact(A,one_one(nat)) = one_one(A) ) ) ).
% fact_1
tff(fact_2304_take__bit__of__1__eq__0__iff,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [N: nat] :
( ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),one_one(A)) = zero_zero(A) )
<=> ( N = zero_zero(nat) ) ) ) ).
% take_bit_of_1_eq_0_iff
tff(fact_2305_fact__Suc__0,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ( semiring_char_0_fact(A,aa(nat,nat,suc,zero_zero(nat))) = one_one(A) ) ) ).
% fact_Suc_0
tff(fact_2306_fact__Suc,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [N: nat] : ( semiring_char_0_fact(A,aa(nat,nat,suc,N)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,suc,N))),semiring_char_0_fact(A,N)) ) ) ).
% fact_Suc
tff(fact_2307_mask__Suc__0,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ( bit_se2239418461657761734s_mask(A,aa(nat,nat,suc,zero_zero(nat))) = one_one(A) ) ) ).
% mask_Suc_0
tff(fact_2308_take__bit__minus__one__eq__mask,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: nat] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),aa(A,A,uminus_uminus(A),one_one(A))) = bit_se2239418461657761734s_mask(A,N) ) ) ).
% take_bit_minus_one_eq_mask
tff(fact_2309_Divides_Oadjust__div__eq,axiom,
! [Q2: int,R: int] : ( adjust_div(aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),Q2),R)) = aa(int,int,aa(int,fun(int,int),plus_plus(int),Q2),aa(bool,int,zero_neq_one_of_bool(int),aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),fequal(int),R),zero_zero(int))))) ) ).
% Divides.adjust_div_eq
tff(fact_2310_fact__2,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ( semiring_char_0_fact(A,aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(num,A,numeral_numeral(A),bit0(one2)) ) ) ).
% fact_2
tff(fact_2311_odd__of__bool__self,axiom,
! [A: $tType] :
( semiring_parity(A)
=> ! [P2: bool] :
( ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(bool,A,zero_neq_one_of_bool(A),P2)))
<=> pp(P2) ) ) ).
% odd_of_bool_self
tff(fact_2312_take__bit__of__1,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),one_one(A)) = aa(bool,A,zero_neq_one_of_bool(A),aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N)) ) ) ).
% take_bit_of_1
tff(fact_2313_of__bool__half__eq__0,axiom,
! [A: $tType] :
( euclid5411537665997757685th_nat(A)
=> ! [B2: bool] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(bool,A,zero_neq_one_of_bool(A),B2)),aa(num,A,numeral_numeral(A),bit0(one2))) = zero_zero(A) ) ) ).
% of_bool_half_eq_0
tff(fact_2314_even__take__bit__eq,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2)))
<=> ( ( N = zero_zero(nat) )
| pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2)) ) ) ) ).
% even_take_bit_eq
tff(fact_2315_set__decode__0,axiom,
! [X2: nat] :
( pp(member(nat,zero_zero(nat),nat_set_decode(X2)))
<=> ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),X2)) ) ).
% set_decode_0
tff(fact_2316_take__bit__Suc__0,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,aa(nat,nat,suc,zero_zero(nat))),A2) = modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ).
% take_bit_Suc_0
tff(fact_2317_one__div__2__pow__eq,axiom,
! [A: $tType] :
( euclid5411537665997757685th_nat(A)
=> ! [N: nat] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)) = aa(bool,A,zero_neq_one_of_bool(A),aa(nat,bool,aa(nat,fun(nat,bool),fequal(nat),N),zero_zero(nat))) ) ) ).
% one_div_2_pow_eq
tff(fact_2318_bits__1__div__exp,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [N: nat] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)) = aa(bool,A,zero_neq_one_of_bool(A),aa(nat,bool,aa(nat,fun(nat,bool),fequal(nat),N),zero_zero(nat))) ) ) ).
% bits_1_div_exp
tff(fact_2319_take__bit__of__exp,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [M: nat,N: nat] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,M),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(bool,A,zero_neq_one_of_bool(A),aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M))),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)) ) ) ).
% take_bit_of_exp
tff(fact_2320_take__bit__of__2,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [N: nat] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),aa(num,A,numeral_numeral(A),bit0(one2))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(bool,A,zero_neq_one_of_bool(A),aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))),aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ).
% take_bit_of_2
tff(fact_2321_one__mod__2__pow__eq,axiom,
! [A: $tType] :
( euclid5411537665997757685th_nat(A)
=> ! [N: nat] : ( modulo_modulo(A,one_one(A),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)) = aa(bool,A,zero_neq_one_of_bool(A),aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N)) ) ) ).
% one_mod_2_pow_eq
tff(fact_2322_dvd__antisym,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),M),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),N),M))
=> ( M = N ) ) ) ).
% dvd_antisym
tff(fact_2323_take__bit__of__nat,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,M: nat] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),aa(nat,A,semiring_1_of_nat(A),M)) = aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,bit_se2584673776208193580ke_bit(nat,N),M)) ) ) ).
% take_bit_of_nat
tff(fact_2324_of__nat__mask__eq,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat] : ( aa(nat,A,semiring_1_of_nat(A),bit_se2239418461657761734s_mask(nat,N)) = bit_se2239418461657761734s_mask(A,N) ) ) ).
% of_nat_mask_eq
tff(fact_2325_of__bool__eq__iff,axiom,
! [A: $tType] :
( zero_neq_one(A)
=> ! [P2: bool,Q2: bool] :
( ( aa(bool,A,zero_neq_one_of_bool(A),P2) = aa(bool,A,zero_neq_one_of_bool(A),Q2) )
<=> ( pp(P2)
<=> pp(Q2) ) ) ) ).
% of_bool_eq_iff
tff(fact_2326_take__bit__add,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [N: nat,A2: A,B2: A] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2)),aa(A,A,bit_se2584673776208193580ke_bit(A,N),B2))) = aa(A,A,bit_se2584673776208193580ke_bit(A,N),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)) ) ) ).
% take_bit_add
tff(fact_2327_take__bit__tightened,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A,B2: A,M: nat] :
( ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2) = aa(A,A,bit_se2584673776208193580ke_bit(A,N),B2) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( aa(A,A,bit_se2584673776208193580ke_bit(A,M),A2) = aa(A,A,bit_se2584673776208193580ke_bit(A,M),B2) ) ) ) ) ).
% take_bit_tightened
tff(fact_2328_take__bit__nat__less__eq__self,axiom,
! [N: nat,M: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,bit_se2584673776208193580ke_bit(nat,N),M)),M)) ).
% take_bit_nat_less_eq_self
tff(fact_2329_take__bit__tightened__less__eq__nat,axiom,
! [M: nat,N: nat,Q2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,bit_se2584673776208193580ke_bit(nat,M),Q2)),aa(nat,nat,bit_se2584673776208193580ke_bit(nat,N),Q2))) ) ).
% take_bit_tightened_less_eq_nat
tff(fact_2330_fact__mono__nat,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),semiring_char_0_fact(nat,M)),semiring_char_0_fact(nat,N))) ) ).
% fact_mono_nat
tff(fact_2331_fact__ge__self,axiom,
! [N: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),semiring_char_0_fact(nat,N))) ).
% fact_ge_self
tff(fact_2332_of__bool__conj,axiom,
! [A: $tType] :
( semiring_1(A)
=> ! [P: bool,Q: bool] : ( aa(bool,A,zero_neq_one_of_bool(A),fconj(P,Q)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(bool,A,zero_neq_one_of_bool(A),P)),aa(bool,A,zero_neq_one_of_bool(A),Q)) ) ) ).
% of_bool_conj
tff(fact_2333_fact__nonzero,axiom,
! [A: $tType] :
( ( semiring_char_0(A)
& semiri3467727345109120633visors(A) )
=> ! [N: nat] : ( semiring_char_0_fact(A,N) != zero_zero(A) ) ) ).
% fact_nonzero
tff(fact_2334_take__bit__minus,axiom,
! [N: nat,K: int] : ( aa(int,int,bit_se2584673776208193580ke_bit(int,N),aa(int,int,uminus_uminus(int),aa(int,int,bit_se2584673776208193580ke_bit(int,N),K))) = aa(int,int,bit_se2584673776208193580ke_bit(int,N),aa(int,int,uminus_uminus(int),K)) ) ).
% take_bit_minus
tff(fact_2335_take__bit__mult,axiom,
! [N: nat,K: int,L: int] : ( aa(int,int,bit_se2584673776208193580ke_bit(int,N),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,bit_se2584673776208193580ke_bit(int,N),K)),aa(int,int,bit_se2584673776208193580ke_bit(int,N),L))) = aa(int,int,bit_se2584673776208193580ke_bit(int,N),aa(int,int,aa(int,fun(int,int),times_times(int),K),L)) ) ).
% take_bit_mult
tff(fact_2336_take__bit__diff,axiom,
! [N: nat,K: int,L: int] : ( aa(int,int,bit_se2584673776208193580ke_bit(int,N),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(int,int,bit_se2584673776208193580ke_bit(int,N),K)),aa(int,int,bit_se2584673776208193580ke_bit(int,N),L))) = aa(int,int,bit_se2584673776208193580ke_bit(int,N),aa(int,int,aa(int,fun(int,int),minus_minus(int),K),L)) ) ).
% take_bit_diff
tff(fact_2337_concat__bit__take__bit__eq,axiom,
! [N: nat,B2: int] : ( bit_concat_bit(N,aa(int,int,bit_se2584673776208193580ke_bit(int,N),B2)) = bit_concat_bit(N,B2) ) ).
% concat_bit_take_bit_eq
tff(fact_2338_concat__bit__eq__iff,axiom,
! [N: nat,K: int,L: int,R: int,S2: int] :
( ( aa(int,int,bit_concat_bit(N,K),L) = aa(int,int,bit_concat_bit(N,R),S2) )
<=> ( ( aa(int,int,bit_se2584673776208193580ke_bit(int,N),K) = aa(int,int,bit_se2584673776208193580ke_bit(int,N),R) )
& ( L = S2 ) ) ) ).
% concat_bit_eq_iff
tff(fact_2339_less__eq__mask,axiom,
! [N: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),bit_se2239418461657761734s_mask(nat,N))) ).
% less_eq_mask
tff(fact_2340_take__bit__eq__mask__iff,axiom,
! [N: nat,K: int] :
( ( aa(int,int,bit_se2584673776208193580ke_bit(int,N),K) = bit_se2239418461657761734s_mask(int,N) )
<=> ( aa(int,int,bit_se2584673776208193580ke_bit(int,N),aa(int,int,aa(int,fun(int,int),plus_plus(int),K),one_one(int))) = zero_zero(int) ) ) ).
% take_bit_eq_mask_iff
tff(fact_2341_subset__decode__imp__le,axiom,
! [M: nat,N: nat] :
( pp(aa(set(nat),bool,aa(set(nat),fun(set(nat),bool),ord_less_eq(set(nat)),nat_set_decode(M)),nat_set_decode(N)))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ).
% subset_decode_imp_le
tff(fact_2342_fact__less__mono__nat,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),M))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),semiring_char_0_fact(nat,M)),semiring_char_0_fact(nat,N))) ) ) ).
% fact_less_mono_nat
tff(fact_2343_zero__less__eq__of__bool,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [P: bool] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(bool,A,zero_neq_one_of_bool(A),P))) ) ).
% zero_less_eq_of_bool
tff(fact_2344_of__bool__less__eq__one,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [P: bool] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(bool,A,zero_neq_one_of_bool(A),P)),one_one(A))) ) ).
% of_bool_less_eq_one
tff(fact_2345_split__of__bool__asm,axiom,
! [A: $tType] :
( zero_neq_one(A)
=> ! [P: fun(A,bool),P2: bool] :
( pp(aa(A,bool,P,aa(bool,A,zero_neq_one_of_bool(A),P2)))
<=> ~ ( ( pp(P2)
& ~ pp(aa(A,bool,P,one_one(A))) )
| ( ~ pp(P2)
& ~ pp(aa(A,bool,P,zero_zero(A))) ) ) ) ) ).
% split_of_bool_asm
tff(fact_2346_split__of__bool,axiom,
! [A: $tType] :
( zero_neq_one(A)
=> ! [P: fun(A,bool),P2: bool] :
( pp(aa(A,bool,P,aa(bool,A,zero_neq_one_of_bool(A),P2)))
<=> ( ( pp(P2)
=> pp(aa(A,bool,P,one_one(A))) )
& ( ~ pp(P2)
=> pp(aa(A,bool,P,zero_zero(A))) ) ) ) ) ).
% split_of_bool
tff(fact_2347_of__bool__def,axiom,
! [A: $tType] :
( zero_neq_one(A)
=> ! [P2: bool] :
( ( pp(P2)
=> ( aa(bool,A,zero_neq_one_of_bool(A),P2) = one_one(A) ) )
& ( ~ pp(P2)
=> ( aa(bool,A,zero_neq_one_of_bool(A),P2) = zero_zero(A) ) ) ) ) ).
% of_bool_def
tff(fact_2348_dvd__fact,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),one_one(nat)),M))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),M),semiring_char_0_fact(nat,N))) ) ) ).
% dvd_fact
tff(fact_2349_take__bit__tightened__less__eq__int,axiom,
! [M: nat,N: nat,K: int] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,bit_se2584673776208193580ke_bit(int,M),K)),aa(int,int,bit_se2584673776208193580ke_bit(int,N),K))) ) ).
% take_bit_tightened_less_eq_int
tff(fact_2350_take__bit__nonnegative,axiom,
! [N: nat,K: int] : pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),aa(int,int,bit_se2584673776208193580ke_bit(int,N),K))) ).
% take_bit_nonnegative
tff(fact_2351_take__bit__int__less__eq__self__iff,axiom,
! [N: nat,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,bit_se2584673776208193580ke_bit(int,N),K)),K))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K)) ) ).
% take_bit_int_less_eq_self_iff
tff(fact_2352_not__take__bit__negative,axiom,
! [N: nat,K: int] : ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,bit_se2584673776208193580ke_bit(int,N),K)),zero_zero(int))) ).
% not_take_bit_negative
tff(fact_2353_take__bit__int__greater__self__iff,axiom,
! [K: int,N: nat] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),aa(int,int,bit_se2584673776208193580ke_bit(int,N),K)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),zero_zero(int))) ) ).
% take_bit_int_greater_self_iff
tff(fact_2354_signed__take__bit__eq__iff__take__bit__eq,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: nat,A2: A,B2: A] :
( ( aa(A,A,bit_ri4674362597316999326ke_bit(A,N),A2) = aa(A,A,bit_ri4674362597316999326ke_bit(A,N),B2) )
<=> ( aa(A,A,bit_se2584673776208193580ke_bit(A,aa(nat,nat,suc,N)),A2) = aa(A,A,bit_se2584673776208193580ke_bit(A,aa(nat,nat,suc,N)),B2) ) ) ) ).
% signed_take_bit_eq_iff_take_bit_eq
tff(fact_2355_fact__ge__zero,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [N: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),semiring_char_0_fact(A,N))) ) ).
% fact_ge_zero
tff(fact_2356_fact__not__neg,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [N: nat] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),semiring_char_0_fact(A,N)),zero_zero(A))) ) ).
% fact_not_neg
tff(fact_2357_fact__gt__zero,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [N: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),semiring_char_0_fact(A,N))) ) ).
% fact_gt_zero
tff(fact_2358_signed__take__bit__take__bit,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [M: nat,N: nat,A2: A] : ( aa(A,A,bit_ri4674362597316999326ke_bit(A,M),aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2)) = aa(A,A,if(fun(A,A),aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M),bit_se2584673776208193580ke_bit(A,N),bit_ri4674362597316999326ke_bit(A,M)),A2) ) ) ).
% signed_take_bit_take_bit
tff(fact_2359_fact__ge__1,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [N: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),semiring_char_0_fact(A,N))) ) ).
% fact_ge_1
tff(fact_2360_fact__mono,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),semiring_char_0_fact(A,M)),semiring_char_0_fact(A,N))) ) ) ).
% fact_mono
tff(fact_2361_take__bit__unset__bit__eq,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,M: nat,A2: A] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),aa(A,A,aa(nat,fun(A,A),bit_se2638667681897837118et_bit(A),M),A2)) = aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),aa(A,A,aa(nat,fun(A,A),bit_se2638667681897837118et_bit(A),M),A2)) = aa(A,A,aa(nat,fun(A,A),bit_se2638667681897837118et_bit(A),M),aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2)) ) ) ) ) ).
% take_bit_unset_bit_eq
tff(fact_2362_take__bit__set__bit__eq,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,M: nat,A2: A] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),aa(A,A,aa(nat,fun(A,A),bit_se5668285175392031749et_bit(A),M),A2)) = aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),aa(A,A,aa(nat,fun(A,A),bit_se5668285175392031749et_bit(A),M),A2)) = aa(A,A,aa(nat,fun(A,A),bit_se5668285175392031749et_bit(A),M),aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2)) ) ) ) ) ).
% take_bit_set_bit_eq
tff(fact_2363_take__bit__flip__bit__eq,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,M: nat,A2: A] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),bit_se8732182000553998342ip_bit(A,M,A2)) = aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),bit_se8732182000553998342ip_bit(A,M,A2)) = bit_se8732182000553998342ip_bit(A,M,aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2)) ) ) ) ) ).
% take_bit_flip_bit_eq
tff(fact_2364_fact__dvd,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),semiring_char_0_fact(A,N)),semiring_char_0_fact(A,M))) ) ) ).
% fact_dvd
tff(fact_2365_pochhammer__fact,axiom,
! [A: $tType] :
( ( semiring_char_0(A)
& comm_semiring_1(A) )
=> ! [N: nat] : ( semiring_char_0_fact(A,N) = comm_s3205402744901411588hammer(A,one_one(A),N) ) ) ).
% pochhammer_fact
tff(fact_2366_mask__nonnegative__int,axiom,
! [N: nat] : pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),bit_se2239418461657761734s_mask(int,N))) ).
% mask_nonnegative_int
tff(fact_2367_not__mask__negative__int,axiom,
! [N: nat] : ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),bit_se2239418461657761734s_mask(int,N)),zero_zero(int))) ).
% not_mask_negative_int
tff(fact_2368_fact__ge__Suc__0__nat,axiom,
! [N: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,suc,zero_zero(nat))),semiring_char_0_fact(nat,N))) ).
% fact_ge_Suc_0_nat
tff(fact_2369_take__bit__signed__take__bit,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [M: nat,N: nat,A2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),aa(nat,nat,suc,N)))
=> ( aa(A,A,bit_se2584673776208193580ke_bit(A,M),aa(A,A,bit_ri4674362597316999326ke_bit(A,N),A2)) = aa(A,A,bit_se2584673776208193580ke_bit(A,M),A2) ) ) ) ).
% take_bit_signed_take_bit
tff(fact_2370_take__bit__decr__eq,axiom,
! [N: nat,K: int] :
( ( aa(int,int,bit_se2584673776208193580ke_bit(int,N),K) != zero_zero(int) )
=> ( aa(int,int,bit_se2584673776208193580ke_bit(int,N),aa(int,int,aa(int,fun(int,int),minus_minus(int),K),one_one(int))) = aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(int,int,bit_se2584673776208193580ke_bit(int,N),K)),one_one(int)) ) ) ).
% take_bit_decr_eq
tff(fact_2371_take__bit__eq__mask__iff__exp__dvd,axiom,
! [N: nat,K: int] :
( ( aa(int,int,bit_se2584673776208193580ke_bit(int,N),K) = bit_se2239418461657761734s_mask(int,N) )
<=> pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)),aa(int,int,aa(int,fun(int,int),plus_plus(int),K),one_one(int)))) ) ).
% take_bit_eq_mask_iff_exp_dvd
tff(fact_2372_fact__less__mono,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),M))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),semiring_char_0_fact(A,M)),semiring_char_0_fact(A,N))) ) ) ) ).
% fact_less_mono
tff(fact_2373_fact__fact__dvd__fact,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [K: nat,N: nat] : pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,aa(A,fun(A,A),times_times(A),semiring_char_0_fact(A,K)),semiring_char_0_fact(A,N))),semiring_char_0_fact(A,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),K),N)))) ) ).
% fact_fact_dvd_fact
tff(fact_2374_fact__mod,axiom,
! [A: $tType] :
( ( linordered_semidom(A)
& semidom_modulo(A) )
=> ! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( modulo_modulo(A,semiring_char_0_fact(A,N),semiring_char_0_fact(A,M)) = zero_zero(A) ) ) ) ).
% fact_mod
tff(fact_2375_fact__le__power,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [N: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),semiring_char_0_fact(A,N)),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,power_power(nat,N),N)))) ) ).
% fact_le_power
tff(fact_2376_less__mask,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,zero_zero(nat))),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),bit_se2239418461657761734s_mask(nat,N))) ) ).
% less_mask
tff(fact_2377_fact__diff__Suc,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(nat,nat,suc,M)))
=> ( semiring_char_0_fact(nat,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,suc,M)),N)) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,suc,M)),N)),semiring_char_0_fact(nat,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N))) ) ) ).
% fact_diff_Suc
tff(fact_2378_fact__div__fact__le__pow,axiom,
! [R: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),R),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),semiring_char_0_fact(nat,N)),semiring_char_0_fact(nat,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),R)))),aa(nat,nat,power_power(nat,N),R))) ) ).
% fact_div_fact_le_pow
tff(fact_2379_binomial__fact__lemma,axiom,
! [K: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),semiring_char_0_fact(nat,K)),semiring_char_0_fact(nat,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),K)))),aa(nat,nat,binomial(N),K)) = semiring_char_0_fact(nat,N) ) ) ).
% binomial_fact_lemma
tff(fact_2380_choose__dvd,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [K: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,aa(A,fun(A,A),times_times(A),semiring_char_0_fact(A,K)),semiring_char_0_fact(A,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),K)))),semiring_char_0_fact(A,N))) ) ) ).
% choose_dvd
tff(fact_2381_fact__numeral,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [K: num] : ( semiring_char_0_fact(A,aa(num,nat,numeral_numeral(nat),K)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),K)),semiring_char_0_fact(A,pred_numeral(K))) ) ) ).
% fact_numeral
tff(fact_2382_take__bit__Suc__bit0,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [N: nat,K: num] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,aa(nat,nat,suc,N)),aa(num,A,numeral_numeral(A),bit0(K))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,bit_se2584673776208193580ke_bit(A,N),aa(num,A,numeral_numeral(A),K))),aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ).
% take_bit_Suc_bit0
tff(fact_2383_take__bit__eq__mod,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2) = modulo_modulo(A,A2,aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)) ) ) ).
% take_bit_eq_mod
tff(fact_2384_take__bit__nat__eq__self,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N)))
=> ( aa(nat,nat,bit_se2584673776208193580ke_bit(nat,N),M) = M ) ) ).
% take_bit_nat_eq_self
tff(fact_2385_take__bit__nat__less__exp,axiom,
! [N: nat,M: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,bit_se2584673776208193580ke_bit(nat,N),M)),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N))) ).
% take_bit_nat_less_exp
tff(fact_2386_take__bit__nat__eq__self__iff,axiom,
! [N: nat,M: nat] :
( ( aa(nat,nat,bit_se2584673776208193580ke_bit(nat,N),M) = M )
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N))) ) ).
% take_bit_nat_eq_self_iff
tff(fact_2387_take__bit__nat__def,axiom,
! [N: nat,M: nat] : ( aa(nat,nat,bit_se2584673776208193580ke_bit(nat,N),M) = modulo_modulo(nat,M,aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N)) ) ).
% take_bit_nat_def
tff(fact_2388_of__bool__odd__eq__mod__2,axiom,
! [A: $tType] :
( semiring_parity(A)
=> ! [A2: A] : ( aa(bool,A,zero_neq_one_of_bool(A),aa(bool,bool,fNot,aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))) = modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ).
% of_bool_odd_eq_mod_2
tff(fact_2389_take__bit__int__less__exp,axiom,
! [N: nat,K: int] : pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,bit_se2584673776208193580ke_bit(int,N),K)),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N))) ).
% take_bit_int_less_exp
tff(fact_2390_binomial__altdef__nat,axiom,
! [K: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N))
=> ( aa(nat,nat,binomial(N),K) = aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),semiring_char_0_fact(nat,N)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),semiring_char_0_fact(nat,K)),semiring_char_0_fact(nat,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),K)))) ) ) ).
% binomial_altdef_nat
tff(fact_2391_take__bit__int__def,axiom,
! [N: nat,K: int] : ( aa(int,int,bit_se2584673776208193580ke_bit(int,N),K) = modulo_modulo(int,K,aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)) ) ).
% take_bit_int_def
tff(fact_2392_num_Osize__gen_I1_J,axiom,
size_num(one2) = zero_zero(nat) ).
% num.size_gen(1)
tff(fact_2393_take__bit__eq__0__iff,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] :
( ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2) = zero_zero(A) )
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)),A2)) ) ) ).
% take_bit_eq_0_iff
tff(fact_2394_take__bit__numeral__bit0,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [L: num,K: num] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,aa(num,nat,numeral_numeral(nat),L)),aa(num,A,numeral_numeral(A),bit0(K))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,bit_se2584673776208193580ke_bit(A,pred_numeral(L)),aa(num,A,numeral_numeral(A),K))),aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ).
% take_bit_numeral_bit0
tff(fact_2395_take__bit__nat__less__self__iff,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,bit_se2584673776208193580ke_bit(nat,N),M)),M))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N)),M)) ) ).
% take_bit_nat_less_self_iff
tff(fact_2396_square__fact__le__2__fact,axiom,
! [N: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),times_times(real),semiring_char_0_fact(real,N)),semiring_char_0_fact(real,N))),semiring_char_0_fact(real,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)))) ).
% square_fact_le_2_fact
tff(fact_2397_Suc__mask__eq__exp,axiom,
! [N: nat] : ( aa(nat,nat,suc,bit_se2239418461657761734s_mask(nat,N)) = aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N) ) ).
% Suc_mask_eq_exp
tff(fact_2398_mask__nat__less__exp,axiom,
! [N: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),bit_se2239418461657761734s_mask(nat,N)),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N))) ).
% mask_nat_less_exp
tff(fact_2399_bits__induct,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [P: fun(A,bool),A2: A] :
( ! [A4: A] :
( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A4),aa(num,A,numeral_numeral(A),bit0(one2))) = A4 )
=> pp(aa(A,bool,P,A4)) )
=> ( ! [A4: A,B3: bool] :
( pp(aa(A,bool,P,A4))
=> ( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(bool,A,zero_neq_one_of_bool(A),B3)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),A4))),aa(num,A,numeral_numeral(A),bit0(one2))) = A4 )
=> pp(aa(A,bool,P,aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(bool,A,zero_neq_one_of_bool(A),B3)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),A4)))) ) )
=> pp(aa(A,bool,P,A2)) ) ) ) ).
% bits_induct
tff(fact_2400_take__bit__Suc__minus__bit0,axiom,
! [N: nat,K: num] : ( aa(int,int,bit_se2584673776208193580ke_bit(int,aa(nat,nat,suc,N)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),bit0(K)))) = aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,bit_se2584673776208193580ke_bit(int,N),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),K)))),aa(num,int,numeral_numeral(int),bit0(one2))) ) ).
% take_bit_Suc_minus_bit0
tff(fact_2401_take__bit__int__less__self__iff,axiom,
! [N: nat,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,bit_se2584673776208193580ke_bit(int,N),K)),K))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)),K)) ) ).
% take_bit_int_less_self_iff
tff(fact_2402_take__bit__int__greater__eq__self__iff,axiom,
! [K: int,N: nat] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),K),aa(int,int,bit_se2584673776208193580ke_bit(int,N),K)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N))) ) ).
% take_bit_int_greater_eq_self_iff
tff(fact_2403_fact__num__eq__if,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [M: nat] :
( ( ( M = zero_zero(nat) )
=> ( semiring_char_0_fact(A,M) = one_one(A) ) )
& ( ( M != zero_zero(nat) )
=> ( semiring_char_0_fact(A,M) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),M)),semiring_char_0_fact(A,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),one_one(nat)))) ) ) ) ) ).
% fact_num_eq_if
tff(fact_2404_fact__reduce,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( semiring_char_0_fact(A,N) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),N)),semiring_char_0_fact(A,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat)))) ) ) ) ).
% fact_reduce
tff(fact_2405_pochhammer__same,axiom,
! [A: $tType] :
( ( semiring_char_0(A)
& comm_ring_1(A)
& semiri3467727345109120633visors(A) )
=> ! [N: nat] : ( comm_s3205402744901411588hammer(A,aa(A,A,uminus_uminus(A),aa(nat,A,semiring_1_of_nat(A),N)),N) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),N)),semiring_char_0_fact(A,N)) ) ) ).
% pochhammer_same
tff(fact_2406_binomial__fact,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [K: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N))
=> ( aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,binomial(N),K)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),semiring_char_0_fact(A,N)),aa(A,A,aa(A,fun(A,A),times_times(A),semiring_char_0_fact(A,K)),semiring_char_0_fact(A,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),K)))) ) ) ) ).
% binomial_fact
tff(fact_2407_fact__binomial,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [K: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N))
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),semiring_char_0_fact(A,K)),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,binomial(N),K))) = aa(A,A,aa(A,fun(A,A),divide_divide(A),semiring_char_0_fact(A,N)),semiring_char_0_fact(A,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),K))) ) ) ) ).
% fact_binomial
tff(fact_2408_semiring__bit__operations__class_Oeven__mask__iff,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),bit_se2239418461657761734s_mask(A,N)))
<=> ( N = zero_zero(nat) ) ) ) ).
% semiring_bit_operations_class.even_mask_iff
tff(fact_2409_add__0__iff,axiom,
! [A: $tType] :
( semiri1453513574482234551roduct(A)
=> ! [B2: A,A2: A] :
( ( B2 = aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),A2) )
<=> ( A2 = zero_zero(A) ) ) ) ).
% add_0_iff
tff(fact_2410_exp__mod__exp,axiom,
! [A: $tType] :
( euclid5411537665997757685th_nat(A)
=> ! [M: nat,N: nat] : ( modulo_modulo(A,aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),M),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(bool,A,zero_neq_one_of_bool(A),aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),M)) ) ) ).
% exp_mod_exp
tff(fact_2411_crossproduct__noteq,axiom,
! [A: $tType] :
( semiri1453513574482234551roduct(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( ( A2 != B2 )
& ( C2 != D2 ) )
<=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),D2)) != aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),D2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)) ) ) ) ).
% crossproduct_noteq
tff(fact_2412_crossproduct__eq,axiom,
! [A: $tType] :
( semiri1453513574482234551roduct(A)
=> ! [W: A,Y: A,X2: A,Z: A] :
( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),W),Y)),aa(A,A,aa(A,fun(A,A),times_times(A),X2),Z)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),W),Z)),aa(A,A,aa(A,fun(A,A),times_times(A),X2),Y)) )
<=> ( ( W = X2 )
| ( Y = Z ) ) ) ) ).
% crossproduct_eq
tff(fact_2413_take__bit__int__eq__self,axiom,
! [K: int,N: nat] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)))
=> ( aa(int,int,bit_se2584673776208193580ke_bit(int,N),K) = K ) ) ) ).
% take_bit_int_eq_self
tff(fact_2414_take__bit__int__eq__self__iff,axiom,
! [N: nat,K: int] :
( ( aa(int,int,bit_se2584673776208193580ke_bit(int,N),K) = K )
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N))) ) ) ).
% take_bit_int_eq_self_iff
tff(fact_2415_take__bit__numeral__minus__bit0,axiom,
! [L: num,K: num] : ( aa(int,int,bit_se2584673776208193580ke_bit(int,aa(num,nat,numeral_numeral(nat),L)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),bit0(K)))) = aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,bit_se2584673776208193580ke_bit(int,pred_numeral(L)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),K)))),aa(num,int,numeral_numeral(int),bit0(one2))) ) ).
% take_bit_numeral_minus_bit0
tff(fact_2416_mask__nat__def,axiom,
! [N: nat] : ( bit_se2239418461657761734s_mask(nat,N) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N)),one_one(nat)) ) ).
% mask_nat_def
tff(fact_2417_mask__half__int,axiom,
! [N: nat] : ( aa(int,int,aa(int,fun(int,int),divide_divide(int),bit_se2239418461657761734s_mask(int,N)),aa(num,int,numeral_numeral(int),bit0(one2))) = bit_se2239418461657761734s_mask(int,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat))) ) ).
% mask_half_int
tff(fact_2418_take__bit__incr__eq,axiom,
! [N: nat,K: int] :
( ( aa(int,int,bit_se2584673776208193580ke_bit(int,N),K) != aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)),one_one(int)) )
=> ( aa(int,int,bit_se2584673776208193580ke_bit(int,N),aa(int,int,aa(int,fun(int,int),plus_plus(int),K),one_one(int))) = aa(int,int,aa(int,fun(int,int),plus_plus(int),one_one(int)),aa(int,int,bit_se2584673776208193580ke_bit(int,N),K)) ) ) ).
% take_bit_incr_eq
tff(fact_2419_mask__int__def,axiom,
! [N: nat] : ( bit_se2239418461657761734s_mask(int,N) = aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)),one_one(int)) ) ).
% mask_int_def
tff(fact_2420_take__bit__Suc__minus__1__eq,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: nat] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,aa(nat,nat,suc,N)),aa(A,A,uminus_uminus(A),one_one(A))) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),aa(nat,nat,suc,N))),one_one(A)) ) ) ).
% take_bit_Suc_minus_1_eq
tff(fact_2421_take__bit__Suc__bit1,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [N: nat,K: num] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,aa(nat,nat,suc,N)),aa(num,A,numeral_numeral(A),aa(num,num,bit1,K))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,bit_se2584673776208193580ke_bit(A,N),aa(num,A,numeral_numeral(A),K))),aa(num,A,numeral_numeral(A),bit0(one2)))),one_one(A)) ) ) ).
% take_bit_Suc_bit1
tff(fact_2422_take__bit__numeral__minus__1__eq,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [K: num] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,aa(num,nat,numeral_numeral(nat),K)),aa(A,A,uminus_uminus(A),one_one(A))) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),aa(num,nat,numeral_numeral(nat),K))),one_one(A)) ) ) ).
% take_bit_numeral_minus_1_eq
tff(fact_2423_take__bit__Suc,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,aa(nat,nat,suc,N)),A2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,bit_se2584673776208193580ke_bit(A,N),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2))))),aa(num,A,numeral_numeral(A),bit0(one2)))),modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2)))) ) ) ).
% take_bit_Suc
tff(fact_2424_mask__eq__exp__minus__1,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat] : ( bit_se2239418461657761734s_mask(A,N) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)),one_one(A)) ) ) ).
% mask_eq_exp_minus_1
tff(fact_2425_take__bit__int__less__eq,axiom,
! [N: nat,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)),K))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,bit_se2584673776208193580ke_bit(int,N),K)),aa(int,int,aa(int,fun(int,int),minus_minus(int),K),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)))) ) ) ).
% take_bit_int_less_eq
tff(fact_2426_take__bit__int__greater__eq,axiom,
! [K: int,N: nat] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),zero_zero(int)))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),K),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N))),aa(int,int,bit_se2584673776208193580ke_bit(int,N),K))) ) ).
% take_bit_int_greater_eq
tff(fact_2427_signed__take__bit__eq__take__bit__shift,axiom,
! [N: nat,K: int] : ( aa(int,int,bit_ri4674362597316999326ke_bit(int,N),K) = aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(int,int,bit_se2584673776208193580ke_bit(int,aa(nat,nat,suc,N)),aa(int,int,aa(int,fun(int,int),plus_plus(int),K),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)))),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)) ) ).
% signed_take_bit_eq_take_bit_shift
tff(fact_2428_stable__imp__take__bit__eq,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,N: nat] :
( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2))) = A2 )
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
=> ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2) = zero_zero(A) ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
=> ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)),one_one(A)) ) ) ) ) ) ).
% stable_imp_take_bit_eq
tff(fact_2429_take__bit__numeral__bit1,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [L: num,K: num] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,aa(num,nat,numeral_numeral(nat),L)),aa(num,A,numeral_numeral(A),aa(num,num,bit1,K))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,bit_se2584673776208193580ke_bit(A,pred_numeral(L)),aa(num,A,numeral_numeral(A),K))),aa(num,A,numeral_numeral(A),bit0(one2)))),one_one(A)) ) ) ).
% take_bit_numeral_bit1
tff(fact_2430_exp__div__exp__eq,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [M: nat,N: nat] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),M)),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(bool,A,zero_neq_one_of_bool(A),fconj(aa(bool,bool,fNot,aa(A,bool,aa(A,fun(A,bool),fequal(A),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),M)),zero_zero(A))),aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M)))),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N))) ) ) ).
% exp_div_exp_eq
tff(fact_2431_take__bit__minus__small__eq,axiom,
! [K: int,N: nat] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),K))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),K),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)))
=> ( aa(int,int,bit_se2584673776208193580ke_bit(int,N),aa(int,int,uminus_uminus(int),K)) = aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)),K) ) ) ) ).
% take_bit_minus_small_eq
tff(fact_2432_num_Osize__gen_I2_J,axiom,
! [X23: num] : ( size_num(bit0(X23)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),size_num(X23)),aa(nat,nat,suc,zero_zero(nat))) ) ).
% num.size_gen(2)
tff(fact_2433_sin__coeff__def,axiom,
! [X: nat] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),X))
=> ( sin_coeff(X) = zero_zero(real) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),X))
=> ( sin_coeff(X) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(nat,real,power_power(real,aa(real,real,uminus_uminus(real),one_one(real))),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),X),aa(nat,nat,suc,zero_zero(nat)))),aa(num,nat,numeral_numeral(nat),bit0(one2))))),semiring_char_0_fact(real,X)) ) ) ) ).
% sin_coeff_def
tff(fact_2434_binomial__code,axiom,
! [N: nat,K: nat] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),K))
=> ( aa(nat,nat,binomial(N),K) = zero_zero(nat) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),K))
=> ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),K)))
=> ( aa(nat,nat,binomial(N),K) = aa(nat,nat,binomial(N),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),K)) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),K)))
=> ( aa(nat,nat,binomial(N),K) = aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),set_fo6178422350223883121st_nat(nat,times_times(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),K)),one_one(nat)),N,one_one(nat))),semiring_char_0_fact(nat,K)) ) ) ) ) ) ).
% binomial_code
tff(fact_2435_cos__coeff__def,axiom,
! [X: nat] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),X))
=> ( aa(nat,real,cos_coeff,X) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(nat,real,power_power(real,aa(real,real,uminus_uminus(real),one_one(real))),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),X),aa(num,nat,numeral_numeral(nat),bit0(one2))))),semiring_char_0_fact(real,X)) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),X))
=> ( aa(nat,real,cos_coeff,X) = zero_zero(real) ) ) ) ).
% cos_coeff_def
tff(fact_2436_take__bit__numeral__minus__bit1,axiom,
! [L: num,K: num] : ( aa(int,int,bit_se2584673776208193580ke_bit(int,aa(num,nat,numeral_numeral(nat),L)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,K)))) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,bit_se2584673776208193580ke_bit(int,pred_numeral(L)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),inc(K))))),aa(num,int,numeral_numeral(int),bit0(one2)))),one_one(int)) ) ).
% take_bit_numeral_minus_bit1
tff(fact_2437_take__bit__Suc__minus__bit1,axiom,
! [N: nat,K: num] : ( aa(int,int,bit_se2584673776208193580ke_bit(int,aa(nat,nat,suc,N)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,K)))) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,bit_se2584673776208193580ke_bit(int,N),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),inc(K))))),aa(num,int,numeral_numeral(int),bit0(one2)))),one_one(int)) ) ).
% take_bit_Suc_minus_bit1
tff(fact_2438_fact__code,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [N: nat] : ( semiring_char_0_fact(A,N) = aa(nat,A,semiring_1_of_nat(A),set_fo6178422350223883121st_nat(nat,times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2)),N,one_one(nat))) ) ) ).
% fact_code
tff(fact_2439_sin__coeff__0,axiom,
sin_coeff(zero_zero(nat)) = zero_zero(real) ).
% sin_coeff_0
tff(fact_2440_cos__coeff__0,axiom,
aa(nat,real,cos_coeff,zero_zero(nat)) = one_one(real) ).
% cos_coeff_0
tff(fact_2441_pred__numeral__inc,axiom,
! [K: num] : ( pred_numeral(inc(K)) = aa(num,nat,numeral_numeral(nat),K) ) ).
% pred_numeral_inc
tff(fact_2442_add__neg__numeral__special_I5_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [N: num] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),one_one(A))),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N))) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),inc(N))) ) ) ).
% add_neg_numeral_special(5)
tff(fact_2443_add__neg__numeral__special_I6_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [M: num] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M))),aa(A,A,uminus_uminus(A),one_one(A))) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),inc(M))) ) ) ).
% add_neg_numeral_special(6)
tff(fact_2444_diff__numeral__special_I6_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [M: num] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(num,A,numeral_numeral(A),M)),aa(A,A,uminus_uminus(A),one_one(A))) = aa(num,A,numeral_numeral(A),inc(M)) ) ) ).
% diff_numeral_special(6)
tff(fact_2445_diff__numeral__special_I5_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [N: num] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,uminus_uminus(A),one_one(A))),aa(num,A,numeral_numeral(A),N)) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),inc(N))) ) ) ).
% diff_numeral_special(5)
tff(fact_2446_num__induct,axiom,
! [P: fun(num,bool),X2: num] :
( pp(aa(num,bool,P,one2))
=> ( ! [X3: num] :
( pp(aa(num,bool,P,X3))
=> pp(aa(num,bool,P,inc(X3))) )
=> pp(aa(num,bool,P,X2)) ) ) ).
% num_induct
tff(fact_2447_add__inc,axiom,
! [X2: num,Y: num] : ( aa(num,num,aa(num,fun(num,num),plus_plus(num),X2),inc(Y)) = inc(aa(num,num,aa(num,fun(num,num),plus_plus(num),X2),Y)) ) ).
% add_inc
tff(fact_2448_sin__coeff__Suc,axiom,
! [N: nat] : ( sin_coeff(aa(nat,nat,suc,N)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(nat,real,cos_coeff,N)),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,suc,N))) ) ).
% sin_coeff_Suc
tff(fact_2449_inc_Osimps_I1_J,axiom,
inc(one2) = bit0(one2) ).
% inc.simps(1)
tff(fact_2450_inc_Osimps_I3_J,axiom,
! [X2: num] : ( inc(aa(num,num,bit1,X2)) = bit0(inc(X2)) ) ).
% inc.simps(3)
tff(fact_2451_inc_Osimps_I2_J,axiom,
! [X2: num] : ( inc(bit0(X2)) = aa(num,num,bit1,X2) ) ).
% inc.simps(2)
tff(fact_2452_add__One,axiom,
! [X2: num] : ( aa(num,num,aa(num,fun(num,num),plus_plus(num),X2),one2) = inc(X2) ) ).
% add_One
tff(fact_2453_inc__BitM__eq,axiom,
! [N: num] : ( inc(bitM(N)) = bit0(N) ) ).
% inc_BitM_eq
tff(fact_2454_BitM__inc__eq,axiom,
! [N: num] : ( bitM(inc(N)) = aa(num,num,bit1,N) ) ).
% BitM_inc_eq
tff(fact_2455_cos__coeff__Suc,axiom,
! [N: nat] : ( aa(nat,real,cos_coeff,aa(nat,nat,suc,N)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,uminus_uminus(real),sin_coeff(N))),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,suc,N))) ) ).
% cos_coeff_Suc
tff(fact_2456_mult__inc,axiom,
! [X2: num,Y: num] : ( aa(num,num,aa(num,fun(num,num),times_times(num),X2),inc(Y)) = aa(num,num,aa(num,fun(num,num),plus_plus(num),aa(num,num,aa(num,fun(num,num),times_times(num),X2),Y)),X2) ) ).
% mult_inc
tff(fact_2457_numeral__inc,axiom,
! [A: $tType] :
( numeral(A)
=> ! [X2: num] : ( aa(num,A,numeral_numeral(A),inc(X2)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(num,A,numeral_numeral(A),X2)),one_one(A)) ) ) ).
% numeral_inc
tff(fact_2458_fold__atLeastAtMost__nat_Oelims,axiom,
! [A: $tType,X2: fun(nat,fun(A,A)),Xa: nat,Xb: nat,Xc: A,Y: A] :
( ( set_fo6178422350223883121st_nat(A,X2,Xa,Xb,Xc) = Y )
=> ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Xb),Xa))
=> ( Y = Xc ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Xb),Xa))
=> ( Y = set_fo6178422350223883121st_nat(A,X2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Xa),one_one(nat)),Xb,aa(A,A,aa(nat,fun(A,A),X2,Xa),Xc)) ) ) ) ) ).
% fold_atLeastAtMost_nat.elims
tff(fact_2459_fold__atLeastAtMost__nat_Osimps,axiom,
! [A: $tType,B2: nat,A2: nat,F2: fun(nat,fun(A,A)),Acc2: A] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),B2),A2))
=> ( set_fo6178422350223883121st_nat(A,F2,A2,B2,Acc2) = Acc2 ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),B2),A2))
=> ( set_fo6178422350223883121st_nat(A,F2,A2,B2,Acc2) = set_fo6178422350223883121st_nat(A,F2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),A2),one_one(nat)),B2,aa(A,A,aa(nat,fun(A,A),F2,A2),Acc2)) ) ) ) ).
% fold_atLeastAtMost_nat.simps
tff(fact_2460_signed__take__bit__eq__take__bit__minus,axiom,
! [N: nat,K: int] : ( aa(int,int,bit_ri4674362597316999326ke_bit(int,N),K) = aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(int,int,bit_se2584673776208193580ke_bit(int,aa(nat,nat,suc,N)),K)),aa(int,int,aa(int,fun(int,int),times_times(int),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),aa(nat,nat,suc,N))),aa(bool,int,zero_neq_one_of_bool(int),aa(nat,bool,bit_se5641148757651400278ts_bit(int,K),N)))) ) ).
% signed_take_bit_eq_take_bit_minus
tff(fact_2461_modulo__int__unfold,axiom,
! [L: int,K: int,N: nat,M: nat] :
( ( ( ( aa(int,int,sgn_sgn(int),L) = zero_zero(int) )
| ( aa(int,int,sgn_sgn(int),K) = zero_zero(int) )
| ( N = zero_zero(nat) ) )
=> ( modulo_modulo(int,aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,sgn_sgn(int),K)),aa(nat,int,semiring_1_of_nat(int),M)),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,sgn_sgn(int),L)),aa(nat,int,semiring_1_of_nat(int),N))) = aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,sgn_sgn(int),K)),aa(nat,int,semiring_1_of_nat(int),M)) ) )
& ( ~ ( ( aa(int,int,sgn_sgn(int),L) = zero_zero(int) )
| ( aa(int,int,sgn_sgn(int),K) = zero_zero(int) )
| ( N = zero_zero(nat) ) )
=> ( ( ( aa(int,int,sgn_sgn(int),K) = aa(int,int,sgn_sgn(int),L) )
=> ( modulo_modulo(int,aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,sgn_sgn(int),K)),aa(nat,int,semiring_1_of_nat(int),M)),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,sgn_sgn(int),L)),aa(nat,int,semiring_1_of_nat(int),N))) = aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,sgn_sgn(int),L)),aa(nat,int,semiring_1_of_nat(int),modulo_modulo(nat,M,N))) ) )
& ( ( aa(int,int,sgn_sgn(int),K) != aa(int,int,sgn_sgn(int),L) )
=> ( modulo_modulo(int,aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,sgn_sgn(int),K)),aa(nat,int,semiring_1_of_nat(int),M)),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,sgn_sgn(int),L)),aa(nat,int,semiring_1_of_nat(int),N))) = aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,sgn_sgn(int),L)),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),aa(bool,nat,zero_neq_one_of_bool(nat),aa(bool,bool,fNot,aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),N),M)))))),aa(nat,int,semiring_1_of_nat(int),modulo_modulo(nat,M,N)))) ) ) ) ) ) ).
% modulo_int_unfold
tff(fact_2462_divide__int__unfold,axiom,
! [L: int,K: int,N: nat,M: nat] :
( ( ( ( aa(int,int,sgn_sgn(int),L) = zero_zero(int) )
| ( aa(int,int,sgn_sgn(int),K) = zero_zero(int) )
| ( N = zero_zero(nat) ) )
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,sgn_sgn(int),K)),aa(nat,int,semiring_1_of_nat(int),M))),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,sgn_sgn(int),L)),aa(nat,int,semiring_1_of_nat(int),N))) = zero_zero(int) ) )
& ( ~ ( ( aa(int,int,sgn_sgn(int),L) = zero_zero(int) )
| ( aa(int,int,sgn_sgn(int),K) = zero_zero(int) )
| ( N = zero_zero(nat) ) )
=> ( ( ( aa(int,int,sgn_sgn(int),K) = aa(int,int,sgn_sgn(int),L) )
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,sgn_sgn(int),K)),aa(nat,int,semiring_1_of_nat(int),M))),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,sgn_sgn(int),L)),aa(nat,int,semiring_1_of_nat(int),N))) = aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N)) ) )
& ( ( aa(int,int,sgn_sgn(int),K) != aa(int,int,sgn_sgn(int),L) )
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,sgn_sgn(int),K)),aa(nat,int,semiring_1_of_nat(int),M))),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,sgn_sgn(int),L)),aa(nat,int,semiring_1_of_nat(int),N))) = aa(int,int,uminus_uminus(int),aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N)),aa(bool,nat,zero_neq_one_of_bool(nat),aa(bool,bool,fNot,aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),N),M)))))) ) ) ) ) ) ).
% divide_int_unfold
tff(fact_2463_tanh__real__altdef,axiom,
! [X2: real] : ( aa(real,real,tanh(real),X2) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),one_one(real)),aa(real,real,exp(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,uminus_uminus(real),aa(num,real,numeral_numeral(real),bit0(one2)))),X2)))),aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),aa(real,real,exp(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,uminus_uminus(real),aa(num,real,numeral_numeral(real),bit0(one2)))),X2)))) ) ).
% tanh_real_altdef
tff(fact_2464_power__numeral,axiom,
! [A: $tType] :
( semiring_numeral(A)
=> ! [K: num,L: num] : ( aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),K)),aa(num,nat,numeral_numeral(nat),L)) = aa(num,A,numeral_numeral(A),pow(K,L)) ) ) ).
% power_numeral
tff(fact_2465_and__int__unfold,axiom,
! [K: int,L: int] :
( ( ( ( K = zero_zero(int) )
| ( L = zero_zero(int) ) )
=> ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),K),L) = zero_zero(int) ) )
& ( ~ ( ( K = zero_zero(int) )
| ( L = zero_zero(int) ) )
=> ( ( ( K = aa(int,int,uminus_uminus(int),one_one(int)) )
=> ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),K),L) = L ) )
& ( ( K != aa(int,int,uminus_uminus(int),one_one(int)) )
=> ( ( ( L = aa(int,int,uminus_uminus(int),one_one(int)) )
=> ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),K),L) = K ) )
& ( ( L != aa(int,int,uminus_uminus(int),one_one(int)) )
=> ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),K),L) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),modulo_modulo(int,K,aa(num,int,numeral_numeral(int),bit0(one2)))),modulo_modulo(int,L,aa(num,int,numeral_numeral(int),bit0(one2))))),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),K),aa(num,int,numeral_numeral(int),bit0(one2)))),aa(int,int,aa(int,fun(int,int),divide_divide(int),L),aa(num,int,numeral_numeral(int),bit0(one2)))))) ) ) ) ) ) ) ) ).
% and_int_unfold
tff(fact_2466_and_Oright__idem,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),B2)),B2) = aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),B2) ) ) ).
% and.right_idem
tff(fact_2467_and_Oleft__idem,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),B2) ) ) ).
% and.left_idem
tff(fact_2468_and_Oidem,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),A2) = A2 ) ) ).
% and.idem
tff(fact_2469_sgn__sgn,axiom,
! [A: $tType] :
( idom_abs_sgn(A)
=> ! [A2: A] : ( aa(A,A,sgn_sgn(A),aa(A,A,sgn_sgn(A),A2)) = aa(A,A,sgn_sgn(A),A2) ) ) ).
% sgn_sgn
tff(fact_2470_bit_Oconj__zero__right,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),X2),zero_zero(A)) = zero_zero(A) ) ) ).
% bit.conj_zero_right
tff(fact_2471_bit_Oconj__zero__left,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),zero_zero(A)),X2) = zero_zero(A) ) ) ).
% bit.conj_zero_left
tff(fact_2472_zero__and__eq,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),zero_zero(A)),A2) = zero_zero(A) ) ) ).
% zero_and_eq
tff(fact_2473_and__zero__eq,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),zero_zero(A)) = zero_zero(A) ) ) ).
% and_zero_eq
tff(fact_2474_sgn__0,axiom,
! [A: $tType] :
( idom_abs_sgn(A)
=> ( aa(A,A,sgn_sgn(A),zero_zero(A)) = zero_zero(A) ) ) ).
% sgn_0
tff(fact_2475_sgn__zero,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ( aa(A,A,sgn_sgn(A),zero_zero(A)) = zero_zero(A) ) ) ).
% sgn_zero
tff(fact_2476_sgn__1,axiom,
! [A: $tType] :
( idom_abs_sgn(A)
=> ( aa(A,A,sgn_sgn(A),one_one(A)) = one_one(A) ) ) ).
% sgn_1
tff(fact_2477_sgn__one,axiom,
! [A: $tType] :
( real_V2822296259951069270ebra_1(A)
=> ( aa(A,A,sgn_sgn(A),one_one(A)) = one_one(A) ) ) ).
% sgn_one
tff(fact_2478_sgn__divide,axiom,
! [A: $tType] :
( field_abs_sgn(A)
=> ! [A2: A,B2: A] : ( aa(A,A,sgn_sgn(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,sgn_sgn(A),A2)),aa(A,A,sgn_sgn(A),B2)) ) ) ).
% sgn_divide
tff(fact_2479_idom__abs__sgn__class_Osgn__minus,axiom,
! [A: $tType] :
( idom_abs_sgn(A)
=> ! [A2: A] : ( aa(A,A,sgn_sgn(A),aa(A,A,uminus_uminus(A),A2)) = aa(A,A,uminus_uminus(A),aa(A,A,sgn_sgn(A),A2)) ) ) ).
% idom_abs_sgn_class.sgn_minus
tff(fact_2480_power__sgn,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A,N: nat] : ( aa(A,A,sgn_sgn(A),aa(nat,A,power_power(A,A2),N)) = aa(nat,A,power_power(A,aa(A,A,sgn_sgn(A),A2)),N) ) ) ).
% power_sgn
tff(fact_2481_exp__less__cancel__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,exp(real),X2)),aa(real,real,exp(real),Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),Y)) ) ).
% exp_less_cancel_iff
tff(fact_2482_exp__less__mono,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),Y))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,exp(real),X2)),aa(real,real,exp(real),Y))) ) ).
% exp_less_mono
tff(fact_2483_take__bit__and,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A,B2: A] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2)),aa(A,A,bit_se2584673776208193580ke_bit(A,N),B2)) ) ) ).
% take_bit_and
tff(fact_2484_exp__le__cancel__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,exp(real),X2)),aa(real,real,exp(real),Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),Y)) ) ).
% exp_le_cancel_iff
tff(fact_2485_sgn__less,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,sgn_sgn(A),A2)),zero_zero(A)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A))) ) ) ).
% sgn_less
tff(fact_2486_sgn__greater,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,sgn_sgn(A),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2)) ) ) ).
% sgn_greater
tff(fact_2487_exp__zero,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ( aa(A,A,exp(A),zero_zero(A)) = one_one(A) ) ) ).
% exp_zero
tff(fact_2488_bit_Oconj__one__right,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),X2),aa(A,A,uminus_uminus(A),one_one(A))) = X2 ) ) ).
% bit.conj_one_right
tff(fact_2489_and_Oright__neutral,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),aa(A,A,uminus_uminus(A),one_one(A))) = A2 ) ) ).
% and.right_neutral
tff(fact_2490_and_Oleft__neutral,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(A,A,uminus_uminus(A),one_one(A))),A2) = A2 ) ) ).
% and.left_neutral
tff(fact_2491_divide__sgn,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(A,A,sgn_sgn(A),B2)) = aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,sgn_sgn(A),B2)) ) ) ).
% divide_sgn
tff(fact_2492_exp__eq__one__iff,axiom,
! [X2: real] :
( ( aa(real,real,exp(real),X2) = one_one(real) )
<=> ( X2 = zero_zero(real) ) ) ).
% exp_eq_one_iff
tff(fact_2493_and__nonnegative__int__iff,axiom,
! [K: int,L: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),K),L)))
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K))
| pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),L)) ) ) ).
% and_nonnegative_int_iff
tff(fact_2494_and__negative__int__iff,axiom,
! [K: int,L: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),K),L)),zero_zero(int)))
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),zero_zero(int)))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),L),zero_zero(int))) ) ) ).
% and_negative_int_iff
tff(fact_2495_sgn__pos,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> ( aa(A,A,sgn_sgn(A),A2) = one_one(A) ) ) ) ).
% sgn_pos
tff(fact_2496_bit__numeral__Bit0__Suc__iff,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [M: num,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(num,A,numeral_numeral(A),bit0(M))),aa(nat,nat,suc,N)))
<=> pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(num,A,numeral_numeral(A),M)),N)) ) ) ).
% bit_numeral_Bit0_Suc_iff
tff(fact_2497_and__numerals_I8_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [X2: num] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(num,A,numeral_numeral(A),aa(num,num,bit1,X2))),one_one(A)) = one_one(A) ) ) ).
% and_numerals(8)
tff(fact_2498_and__numerals_I2_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [Y: num] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),one_one(A)),aa(num,A,numeral_numeral(A),aa(num,num,bit1,Y))) = one_one(A) ) ) ).
% and_numerals(2)
tff(fact_2499_abs__sgn__eq__1,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A] :
( ( A2 != zero_zero(A) )
=> ( aa(A,A,abs_abs(A),aa(A,A,sgn_sgn(A),A2)) = one_one(A) ) ) ) ).
% abs_sgn_eq_1
tff(fact_2500_bit__numeral__Bit1__Suc__iff,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [M: num,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(num,A,numeral_numeral(A),aa(num,num,bit1,M))),aa(nat,nat,suc,N)))
<=> pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(num,A,numeral_numeral(A),M)),N)) ) ) ).
% bit_numeral_Bit1_Suc_iff
tff(fact_2501_sgn__mult__self__eq,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,sgn_sgn(A),A2)),aa(A,A,sgn_sgn(A),A2)) = aa(bool,A,zero_neq_one_of_bool(A),aa(bool,bool,fNot,aa(A,bool,aa(A,fun(A,bool),fequal(A),A2),zero_zero(A)))) ) ) ).
% sgn_mult_self_eq
tff(fact_2502_idom__abs__sgn__class_Oabs__sgn,axiom,
! [A: $tType] :
( idom_abs_sgn(A)
=> ! [A2: A] : ( aa(A,A,sgn_sgn(A),aa(A,A,abs_abs(A),A2)) = aa(bool,A,zero_neq_one_of_bool(A),aa(bool,bool,fNot,aa(A,bool,aa(A,fun(A,bool),fequal(A),A2),zero_zero(A)))) ) ) ).
% idom_abs_sgn_class.abs_sgn
tff(fact_2503_sgn__abs,axiom,
! [A: $tType] :
( idom_abs_sgn(A)
=> ! [A2: A] : ( aa(A,A,abs_abs(A),aa(A,A,sgn_sgn(A),A2)) = aa(bool,A,zero_neq_one_of_bool(A),aa(bool,bool,fNot,aa(A,bool,aa(A,fun(A,bool),fequal(A),A2),zero_zero(A)))) ) ) ).
% sgn_abs
tff(fact_2504_one__less__exp__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),aa(real,real,exp(real),X2)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2)) ) ).
% one_less_exp_iff
tff(fact_2505_exp__less__one__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,exp(real),X2)),one_one(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),zero_zero(real))) ) ).
% exp_less_one_iff
tff(fact_2506_exp__le__one__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,exp(real),X2)),one_one(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),zero_zero(real))) ) ).
% exp_le_one_iff
tff(fact_2507_one__le__exp__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),aa(real,real,exp(real),X2)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2)) ) ).
% one_le_exp_iff
tff(fact_2508_exp__ln,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( aa(real,real,exp(real),aa(real,real,ln_ln(real),X2)) = X2 ) ) ).
% exp_ln
tff(fact_2509_exp__ln__iff,axiom,
! [X2: real] :
( ( aa(real,real,exp(real),aa(real,real,ln_ln(real),X2)) = X2 )
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2)) ) ).
% exp_ln_iff
tff(fact_2510_dvd__mult__sgn__iff,axiom,
! [L: int,K: int,R: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),L),aa(int,int,aa(int,fun(int,int),times_times(int),K),aa(int,int,sgn_sgn(int),R))))
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),L),K))
| ( R = zero_zero(int) ) ) ) ).
% dvd_mult_sgn_iff
tff(fact_2511_dvd__sgn__mult__iff,axiom,
! [L: int,R: int,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),L),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,sgn_sgn(int),R)),K)))
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),L),K))
| ( R = zero_zero(int) ) ) ) ).
% dvd_sgn_mult_iff
tff(fact_2512_mult__sgn__dvd__iff,axiom,
! [L: int,R: int,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(int,int,aa(int,fun(int,int),times_times(int),L),aa(int,int,sgn_sgn(int),R))),K))
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),L),K))
& ( ( R = zero_zero(int) )
=> ( K = zero_zero(int) ) ) ) ) ).
% mult_sgn_dvd_iff
tff(fact_2513_sgn__mult__dvd__iff,axiom,
! [R: int,L: int,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,sgn_sgn(int),R)),L)),K))
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),L),K))
& ( ( R = zero_zero(int) )
=> ( K = zero_zero(int) ) ) ) ) ).
% sgn_mult_dvd_iff
tff(fact_2514_signed__take__bit__nonnegative__iff,axiom,
! [N: nat,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),aa(int,int,bit_ri4674362597316999326ke_bit(int,N),K)))
<=> ~ pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,K),N)) ) ).
% signed_take_bit_nonnegative_iff
tff(fact_2515_signed__take__bit__negative__iff,axiom,
! [N: nat,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,bit_ri4674362597316999326ke_bit(int,N),K)),zero_zero(int)))
<=> pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,K),N)) ) ).
% signed_take_bit_negative_iff
tff(fact_2516_and__numerals_I1_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [Y: num] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),one_one(A)),aa(num,A,numeral_numeral(A),bit0(Y))) = zero_zero(A) ) ) ).
% and_numerals(1)
tff(fact_2517_and__numerals_I5_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [X2: num] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(num,A,numeral_numeral(A),bit0(X2))),one_one(A)) = zero_zero(A) ) ) ).
% and_numerals(5)
tff(fact_2518_sgn__neg,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A)))
=> ( aa(A,A,sgn_sgn(A),A2) = aa(A,A,uminus_uminus(A),one_one(A)) ) ) ) ).
% sgn_neg
tff(fact_2519_and__numerals_I3_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [X2: num,Y: num] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(num,A,numeral_numeral(A),bit0(X2))),aa(num,A,numeral_numeral(A),bit0(Y))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(num,A,numeral_numeral(A),X2)),aa(num,A,numeral_numeral(A),Y))) ) ) ).
% and_numerals(3)
tff(fact_2520_sgn__of__nat,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [N: nat] : ( aa(A,A,sgn_sgn(A),aa(nat,A,semiring_1_of_nat(A),N)) = aa(bool,A,zero_neq_one_of_bool(A),aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N)) ) ) ).
% sgn_of_nat
tff(fact_2521_bit__numeral__simps_I2_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [W: num,N: num] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(num,A,numeral_numeral(A),bit0(W))),aa(num,nat,numeral_numeral(nat),N)))
<=> pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(num,A,numeral_numeral(A),W)),pred_numeral(N))) ) ) ).
% bit_numeral_simps(2)
tff(fact_2522_bit__minus__numeral__Bit0__Suc__iff,axiom,
! [W: num,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),bit0(W)))),aa(nat,nat,suc,N)))
<=> pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),W))),N)) ) ).
% bit_minus_numeral_Bit0_Suc_iff
tff(fact_2523_bit__numeral__simps_I3_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [W: num,N: num] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(num,A,numeral_numeral(A),aa(num,num,bit1,W))),aa(num,nat,numeral_numeral(nat),N)))
<=> pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(num,A,numeral_numeral(A),W)),pred_numeral(N))) ) ) ).
% bit_numeral_simps(3)
tff(fact_2524_bit__minus__numeral__Bit1__Suc__iff,axiom,
! [W: num,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,W)))),aa(nat,nat,suc,N)))
<=> ~ pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,aa(num,int,numeral_numeral(int),W)),N)) ) ).
% bit_minus_numeral_Bit1_Suc_iff
tff(fact_2525_and__minus__numerals_I2_J,axiom,
! [N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),one_one(int)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,N)))) = one_one(int) ) ).
% and_minus_numerals(2)
tff(fact_2526_and__minus__numerals_I6_J,axiom,
! [N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,N)))),one_one(int)) = one_one(int) ) ).
% and_minus_numerals(6)
tff(fact_2527_and__numerals_I4_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [X2: num,Y: num] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(num,A,numeral_numeral(A),bit0(X2))),aa(num,A,numeral_numeral(A),aa(num,num,bit1,Y))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(num,A,numeral_numeral(A),X2)),aa(num,A,numeral_numeral(A),Y))) ) ) ).
% and_numerals(4)
tff(fact_2528_and__numerals_I6_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [X2: num,Y: num] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(num,A,numeral_numeral(A),aa(num,num,bit1,X2))),aa(num,A,numeral_numeral(A),bit0(Y))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(num,A,numeral_numeral(A),X2)),aa(num,A,numeral_numeral(A),Y))) ) ) ).
% and_numerals(6)
tff(fact_2529_bit__0,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [A2: A] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),zero_zero(nat)))
<=> ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2)) ) ) ).
% bit_0
tff(fact_2530_and__minus__numerals_I5_J,axiom,
! [N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),bit0(N)))),one_one(int)) = zero_zero(int) ) ).
% and_minus_numerals(5)
tff(fact_2531_and__minus__numerals_I1_J,axiom,
! [N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),one_one(int)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),bit0(N)))) = zero_zero(int) ) ).
% and_minus_numerals(1)
tff(fact_2532_bit__minus__numeral__int_I1_J,axiom,
! [W: num,N: num] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),bit0(W)))),aa(num,nat,numeral_numeral(nat),N)))
<=> pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),W))),pred_numeral(N))) ) ).
% bit_minus_numeral_int(1)
tff(fact_2533_bit__minus__numeral__int_I2_J,axiom,
! [W: num,N: num] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,W)))),aa(num,nat,numeral_numeral(nat),N)))
<=> ~ pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,aa(num,int,numeral_numeral(int),W)),pred_numeral(N))) ) ).
% bit_minus_numeral_int(2)
tff(fact_2534_bit__mod__2__iff,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [A2: A,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2)))),N))
<=> ( ( N = zero_zero(nat) )
& ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2)) ) ) ) ).
% bit_mod_2_iff
tff(fact_2535_and__numerals_I7_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [X2: num,Y: num] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(num,A,numeral_numeral(A),aa(num,num,bit1,X2))),aa(num,A,numeral_numeral(A),aa(num,num,bit1,Y))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(num,A,numeral_numeral(A),X2)),aa(num,A,numeral_numeral(A),Y)))) ) ) ).
% and_numerals(7)
tff(fact_2536_norm__exp,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(A,A,exp(A),X2))),aa(real,real,exp(real),real_V7770717601297561774m_norm(A,X2)))) ) ).
% norm_exp
tff(fact_2537_of__nat__and__eq,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [M: nat,N: nat] : ( aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344872417868541ns_and(nat),M),N)) = aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(nat,A,semiring_1_of_nat(A),M)),aa(nat,A,semiring_1_of_nat(A),N)) ) ) ).
% of_nat_and_eq
tff(fact_2538_bit__of__nat__iff__bit,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [M: nat,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(nat,A,semiring_1_of_nat(A),M)),N))
<=> pp(aa(nat,bool,bit_se5641148757651400278ts_bit(nat,M),N)) ) ) ).
% bit_of_nat_iff_bit
tff(fact_2539_bit__and__int__iff,axiom,
! [K: int,L: int,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),K),L)),N))
<=> ( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,K),N))
& pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,L),N)) ) ) ).
% bit_and_int_iff
tff(fact_2540_and_Oleft__commute,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [B2: A,A2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),B2),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),C2)) = aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),B2),C2)) ) ) ).
% and.left_commute
tff(fact_2541_bit__and__iff,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,B2: A,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),B2)),N))
<=> ( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N))
& pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,B2),N)) ) ) ) ).
% bit_and_iff
tff(fact_2542_and_Ocommute,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),B2) = aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),B2),A2) ) ) ).
% and.commute
tff(fact_2543_and_Oassoc,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),B2),C2)) ) ) ).
% and.assoc
tff(fact_2544_bit__numeral__iff,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [M: num,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(num,A,numeral_numeral(A),M)),N))
<=> pp(aa(nat,bool,bit_se5641148757651400278ts_bit(nat,aa(num,nat,numeral_numeral(nat),M)),N)) ) ) ).
% bit_numeral_iff
tff(fact_2545_bit__disjunctive__add__iff,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [A2: A,B2: A,N: nat] :
( ! [N3: nat] :
( ~ pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N3))
| ~ pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,B2),N3)) )
=> ( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),N))
<=> ( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N))
| pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,B2),N)) ) ) ) ) ).
% bit_disjunctive_add_iff
tff(fact_2546_exp__less__cancel,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,exp(real),X2)),aa(real,real,exp(real),Y)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),Y)) ) ).
% exp_less_cancel
tff(fact_2547_sgn__eq__0__iff,axiom,
! [A: $tType] :
( idom_abs_sgn(A)
=> ! [A2: A] :
( ( aa(A,A,sgn_sgn(A),A2) = zero_zero(A) )
<=> ( A2 = zero_zero(A) ) ) ) ).
% sgn_eq_0_iff
tff(fact_2548_sgn__0__0,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A] :
( ( aa(A,A,sgn_sgn(A),A2) = zero_zero(A) )
<=> ( A2 = zero_zero(A) ) ) ) ).
% sgn_0_0
tff(fact_2549_sgn__zero__iff,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X2: A] :
( ( aa(A,A,sgn_sgn(A),X2) = zero_zero(A) )
<=> ( X2 = zero_zero(A) ) ) ) ).
% sgn_zero_iff
tff(fact_2550_sgn__mult,axiom,
! [A: $tType] :
( idom_abs_sgn(A)
=> ! [A2: A,B2: A] : ( aa(A,A,sgn_sgn(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,sgn_sgn(A),A2)),aa(A,A,sgn_sgn(A),B2)) ) ) ).
% sgn_mult
tff(fact_2551_Real__Vector__Spaces_Osgn__mult,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [X2: A,Y: A] : ( aa(A,A,sgn_sgn(A),aa(A,A,aa(A,fun(A,A),times_times(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,sgn_sgn(A),X2)),aa(A,A,sgn_sgn(A),Y)) ) ) ).
% Real_Vector_Spaces.sgn_mult
tff(fact_2552_same__sgn__sgn__add,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [B2: A,A2: A] :
( ( aa(A,A,sgn_sgn(A),B2) = aa(A,A,sgn_sgn(A),A2) )
=> ( aa(A,A,sgn_sgn(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)) = aa(A,A,sgn_sgn(A),A2) ) ) ) ).
% same_sgn_sgn_add
tff(fact_2553_Real__Vector__Spaces_Osgn__minus,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X2: A] : ( aa(A,A,sgn_sgn(A),aa(A,A,uminus_uminus(A),X2)) = aa(A,A,uminus_uminus(A),aa(A,A,sgn_sgn(A),X2)) ) ) ).
% Real_Vector_Spaces.sgn_minus
tff(fact_2554_exp__not__eq__zero,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : ( aa(A,A,exp(A),X2) != zero_zero(A) ) ) ).
% exp_not_eq_zero
tff(fact_2555_exp__times__arg__commute,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [A3: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,exp(A),A3)),A3) = aa(A,A,aa(A,fun(A,A),times_times(A),A3),aa(A,A,exp(A),A3)) ) ) ).
% exp_times_arg_commute
tff(fact_2556_bit__unset__bit__iff,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [M: nat,A2: A,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(A,A,aa(nat,fun(A,A),bit_se2638667681897837118et_bit(A),M),A2)),N))
<=> ( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N))
& ( M != N ) ) ) ) ).
% bit_unset_bit_iff
tff(fact_2557_and__eq__minus__1__iff,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [A2: A,B2: A] :
( ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),B2) = aa(A,A,uminus_uminus(A),one_one(A)) )
<=> ( ( A2 = aa(A,A,uminus_uminus(A),one_one(A)) )
& ( B2 = aa(A,A,uminus_uminus(A),one_one(A)) ) ) ) ) ).
% and_eq_minus_1_iff
tff(fact_2558_not__bit__1__Suc,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat] : ~ pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,one_one(A)),aa(nat,nat,suc,N))) ) ).
% not_bit_1_Suc
tff(fact_2559_bit__1__iff,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,one_one(A)),N))
<=> ( N = zero_zero(nat) ) ) ) ).
% bit_1_iff
tff(fact_2560_bit__numeral__simps_I1_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [N: num] : ~ pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,one_one(A)),aa(num,nat,numeral_numeral(nat),N))) ) ).
% bit_numeral_simps(1)
tff(fact_2561_not__exp__less__zero,axiom,
! [X2: real] : ~ pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,exp(real),X2)),zero_zero(real))) ).
% not_exp_less_zero
tff(fact_2562_exp__gt__zero,axiom,
! [X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,exp(real),X2))) ).
% exp_gt_zero
tff(fact_2563_exp__total,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),Y))
=> ? [X3: real] : ( aa(real,real,exp(real),X3) = Y ) ) ).
% exp_total
tff(fact_2564_exp__ge__zero,axiom,
! [X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,exp(real),X2))) ).
% exp_ge_zero
tff(fact_2565_not__exp__le__zero,axiom,
! [X2: real] : ~ pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,exp(real),X2)),zero_zero(real))) ).
% not_exp_le_zero
tff(fact_2566_bit__take__bit__iff,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [M: nat,A2: A,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(A,A,bit_se2584673776208193580ke_bit(A,M),A2)),N))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M))
& pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N)) ) ) ) ).
% bit_take_bit_iff
tff(fact_2567_sgn__not__eq__imp,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [B2: A,A2: A] :
( ( aa(A,A,sgn_sgn(A),B2) != aa(A,A,sgn_sgn(A),A2) )
=> ( ( aa(A,A,sgn_sgn(A),A2) != zero_zero(A) )
=> ( ( aa(A,A,sgn_sgn(A),B2) != zero_zero(A) )
=> ( aa(A,A,sgn_sgn(A),A2) = aa(A,A,uminus_uminus(A),aa(A,A,sgn_sgn(A),B2)) ) ) ) ) ) ).
% sgn_not_eq_imp
tff(fact_2568_bit__of__bool__iff,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [B2: bool,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(bool,A,zero_neq_one_of_bool(A),B2)),N))
<=> ( pp(B2)
& ( N = zero_zero(nat) ) ) ) ) ).
% bit_of_bool_iff
tff(fact_2569_sgn__minus__1,axiom,
! [A: $tType] :
( idom_abs_sgn(A)
=> ( aa(A,A,sgn_sgn(A),aa(A,A,uminus_uminus(A),one_one(A))) = aa(A,A,uminus_uminus(A),one_one(A)) ) ) ).
% sgn_minus_1
tff(fact_2570_AND__lower,axiom,
! [X2: int,Y: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),X2))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),X2),Y))) ) ).
% AND_lower
tff(fact_2571_AND__upper1,axiom,
! [X2: int,Y: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),X2))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),X2),Y)),X2)) ) ).
% AND_upper1
tff(fact_2572_AND__upper2,axiom,
! [Y: int,X2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Y))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),X2),Y)),Y)) ) ).
% AND_upper2
tff(fact_2573_AND__upper1_H,axiom,
! [Y: int,Z: int,Ya: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Y))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),Y),Z))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),Y),Ya)),Z)) ) ) ).
% AND_upper1'
tff(fact_2574_AND__upper2_H,axiom,
! [Y: int,Z: int,X2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Y))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),Y),Z))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),X2),Y)),Z)) ) ) ).
% AND_upper2'
tff(fact_2575_mult__sgn__abs,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,sgn_sgn(A),X2)),aa(A,A,abs_abs(A),X2)) = X2 ) ) ).
% mult_sgn_abs
tff(fact_2576_sgn__mult__abs,axiom,
! [A: $tType] :
( idom_abs_sgn(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,sgn_sgn(A),A2)),aa(A,A,abs_abs(A),A2)) = A2 ) ) ).
% sgn_mult_abs
tff(fact_2577_abs__mult__sgn,axiom,
! [A: $tType] :
( idom_abs_sgn(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,abs_abs(A),A2)),aa(A,A,sgn_sgn(A),A2)) = A2 ) ) ).
% abs_mult_sgn
tff(fact_2578_linordered__idom__class_Oabs__sgn,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [K: A] : ( aa(A,A,abs_abs(A),K) = aa(A,A,aa(A,fun(A,A),times_times(A),K),aa(A,A,sgn_sgn(A),K)) ) ) ).
% linordered_idom_class.abs_sgn
tff(fact_2579_int__sgnE,axiom,
! [K: int] :
~ ! [N3: nat,L2: int] : ( K != aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,sgn_sgn(int),L2)),aa(nat,int,semiring_1_of_nat(int),N3)) ) ).
% int_sgnE
tff(fact_2580_same__sgn__abs__add,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [B2: A,A2: A] :
( ( aa(A,A,sgn_sgn(A),B2) = aa(A,A,sgn_sgn(A),A2) )
=> ( aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,abs_abs(A),A2)),aa(A,A,abs_abs(A),B2)) ) ) ) ).
% same_sgn_abs_add
tff(fact_2581_exp__add__commuting,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A,Y: A] :
( ( aa(A,A,aa(A,fun(A,A),times_times(A),X2),Y) = aa(A,A,aa(A,fun(A,A),times_times(A),Y),X2) )
=> ( aa(A,A,exp(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,exp(A),X2)),aa(A,A,exp(A),Y)) ) ) ) ).
% exp_add_commuting
tff(fact_2582_mult__exp__exp,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A,Y: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,exp(A),X2)),aa(A,A,exp(A),Y)) = aa(A,A,exp(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)) ) ) ).
% mult_exp_exp
tff(fact_2583_exp__diff,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A,Y: A] : ( aa(A,A,exp(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,exp(A),X2)),aa(A,A,exp(A),Y)) ) ) ).
% exp_diff
tff(fact_2584_div__eq__sgn__abs,axiom,
! [K: int,L: int] :
( ( aa(int,int,sgn_sgn(int),K) = aa(int,int,sgn_sgn(int),L) )
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),K),L) = aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,abs_abs(int),K)),aa(int,int,abs_abs(int),L)) ) ) ).
% div_eq_sgn_abs
tff(fact_2585_take__bit__eq__mask,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2) = aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),bit_se2239418461657761734s_mask(A,N)) ) ) ).
% take_bit_eq_mask
tff(fact_2586_signed__take__bit__eq__if__positive,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [A2: A,N: nat] :
( ~ pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N))
=> ( aa(A,A,bit_ri4674362597316999326ke_bit(A,N),A2) = aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2) ) ) ) ).
% signed_take_bit_eq_if_positive
tff(fact_2587_and__exp__eq__0__iff__not__bit,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,N: nat] :
( ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)) = zero_zero(A) )
<=> ~ pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N)) ) ) ).
% and_exp_eq_0_iff_not_bit
tff(fact_2588_pow_Osimps_I1_J,axiom,
! [X2: num] : ( pow(X2,one2) = X2 ) ).
% pow.simps(1)
tff(fact_2589_exp__gt__one,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),aa(real,real,exp(real),X2))) ) ).
% exp_gt_one
tff(fact_2590_sgn__1__pos,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A] :
( ( aa(A,A,sgn_sgn(A),A2) = one_one(A) )
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2)) ) ) ).
% sgn_1_pos
tff(fact_2591_exp__ge__add__one__self,axiom,
! [X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),X2)),aa(real,real,exp(real),X2))) ).
% exp_ge_add_one_self
tff(fact_2592_abs__sgn__eq,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A] :
( ( ( A2 = zero_zero(A) )
=> ( aa(A,A,abs_abs(A),aa(A,A,sgn_sgn(A),A2)) = zero_zero(A) ) )
& ( ( A2 != zero_zero(A) )
=> ( aa(A,A,abs_abs(A),aa(A,A,sgn_sgn(A),A2)) = one_one(A) ) ) ) ) ).
% abs_sgn_eq
tff(fact_2593_AND__upper2_H_H,axiom,
! [Y: int,Z: int,X2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Y))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),Y),Z))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),X2),Y)),Z)) ) ) ).
% AND_upper2''
tff(fact_2594_AND__upper1_H_H,axiom,
! [Y: int,Z: int,Ya: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Y))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),Y),Z))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),Y),Ya)),Z)) ) ) ).
% AND_upper1''
tff(fact_2595_and__less__eq,axiom,
! [L: int,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),L),zero_zero(int)))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),K),L)),K)) ) ).
% and_less_eq
tff(fact_2596_exp__minus__inverse,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,exp(A),X2)),aa(A,A,exp(A),aa(A,A,uminus_uminus(A),X2))) = one_one(A) ) ) ).
% exp_minus_inverse
tff(fact_2597_bit__not__int__iff_H,axiom,
! [K: int,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(int,int,uminus_uminus(int),K)),one_one(int))),N))
<=> ~ pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,K),N)) ) ).
% bit_not_int_iff'
tff(fact_2598_exp__of__nat2__mult,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A,N: nat] : ( aa(A,A,exp(A),aa(A,A,aa(A,fun(A,A),times_times(A),X2),aa(nat,A,semiring_1_of_nat(A),N))) = aa(nat,A,power_power(A,aa(A,A,exp(A),X2)),N) ) ) ).
% exp_of_nat2_mult
tff(fact_2599_exp__of__nat__mult,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [N: nat,X2: A] : ( aa(A,A,exp(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),N)),X2)) = aa(nat,A,power_power(A,aa(A,A,exp(A),X2)),N) ) ) ).
% exp_of_nat_mult
tff(fact_2600_sgn__mod,axiom,
! [L: int,K: int] :
( ( L != zero_zero(int) )
=> ( ~ pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),L),K))
=> ( aa(int,int,sgn_sgn(int),modulo_modulo(int,K,L)) = aa(int,int,sgn_sgn(int),L) ) ) ) ).
% sgn_mod
tff(fact_2601_flip__bit__eq__if,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] : ( bit_se8732182000553998342ip_bit(A,N,A2) = aa(A,A,aa(nat,fun(A,A),if(fun(nat,fun(A,A)),aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N),bit_se2638667681897837118et_bit(A),bit_se5668285175392031749et_bit(A)),N),A2) ) ) ).
% flip_bit_eq_if
tff(fact_2602_even__and__iff,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),B2)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
| pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),B2)) ) ) ) ).
% even_and_iff
tff(fact_2603_sgn__1__neg,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A] :
( ( aa(A,A,sgn_sgn(A),A2) = aa(A,A,uminus_uminus(A),one_one(A)) )
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A))) ) ) ).
% sgn_1_neg
tff(fact_2604_sgn__if,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: A] :
( ( ( X2 = zero_zero(A) )
=> ( aa(A,A,sgn_sgn(A),X2) = zero_zero(A) ) )
& ( ( X2 != zero_zero(A) )
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),X2))
=> ( aa(A,A,sgn_sgn(A),X2) = one_one(A) ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),X2))
=> ( aa(A,A,sgn_sgn(A),X2) = aa(A,A,uminus_uminus(A),one_one(A)) ) ) ) ) ) ) ).
% sgn_if
tff(fact_2605_exp__ge__add__one__self__aux,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),X2)),aa(real,real,exp(real),X2))) ) ).
% exp_ge_add_one_self_aux
tff(fact_2606_lemma__exp__total,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),Y))
=> ? [X3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X3),aa(real,real,aa(real,fun(real,real),minus_minus(real),Y),one_one(real))))
& ( aa(real,real,exp(real),X3) = Y ) ) ) ).
% lemma_exp_total
tff(fact_2607_even__and__iff__int,axiom,
! [K: int,L: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),K),L)))
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),K))
| pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),L)) ) ) ).
% even_and_iff_int
tff(fact_2608_ln__ge__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),aa(real,real,ln_ln(real),X2)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,exp(real),Y)),X2)) ) ) ).
% ln_ge_iff
tff(fact_2609_zsgn__def,axiom,
! [I: int] :
( ( ( I = zero_zero(int) )
=> ( aa(int,int,sgn_sgn(int),I) = zero_zero(int) ) )
& ( ( I != zero_zero(int) )
=> ( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),I))
=> ( aa(int,int,sgn_sgn(int),I) = one_one(int) ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),I))
=> ( aa(int,int,sgn_sgn(int),I) = aa(int,int,uminus_uminus(int),one_one(int)) ) ) ) ) ) ).
% zsgn_def
tff(fact_2610_ln__x__over__x__mono,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,exp(real),one_one(real))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),Y))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,ln_ln(real),Y)),Y)),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,ln_ln(real),X2)),X2))) ) ) ).
% ln_x_over_x_mono
tff(fact_2611_norm__sgn,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X2: A] :
( ( ( X2 = zero_zero(A) )
=> ( real_V7770717601297561774m_norm(A,aa(A,A,sgn_sgn(A),X2)) = zero_zero(real) ) )
& ( ( X2 != zero_zero(A) )
=> ( real_V7770717601297561774m_norm(A,aa(A,A,sgn_sgn(A),X2)) = one_one(real) ) ) ) ) ).
% norm_sgn
tff(fact_2612_div__sgn__abs__cancel,axiom,
! [V: int,K: int,L: int] :
( ( V != zero_zero(int) )
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,sgn_sgn(int),V)),aa(int,int,abs_abs(int),K))),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,sgn_sgn(int),V)),aa(int,int,abs_abs(int),L))) = aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,abs_abs(int),K)),aa(int,int,abs_abs(int),L)) ) ) ).
% div_sgn_abs_cancel
tff(fact_2613_bit__imp__take__bit__positive,axiom,
! [N: nat,M: nat,K: int] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M))
=> ( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,K),N))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),aa(int,int,bit_se2584673776208193580ke_bit(int,M),K))) ) ) ).
% bit_imp_take_bit_positive
tff(fact_2614_div__dvd__sgn__abs,axiom,
! [L: int,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),L),K))
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),K),L) = aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,sgn_sgn(int),K)),aa(int,int,sgn_sgn(int),L))),aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,abs_abs(int),K)),aa(int,int,abs_abs(int),L))) ) ) ).
% div_dvd_sgn_abs
tff(fact_2615_bit__concat__bit__iff,axiom,
! [M: nat,K: int,L: int,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,aa(int,int,bit_concat_bit(M,K),L)),N))
<=> ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M))
& pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,K),N)) )
| ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
& pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,L),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M))) ) ) ) ).
% bit_concat_bit_iff
tff(fact_2616_signed__take__bit__eq__concat__bit,axiom,
! [N: nat,K: int] : ( aa(int,int,bit_ri4674362597316999326ke_bit(int,N),K) = aa(int,int,bit_concat_bit(N,K),aa(int,int,uminus_uminus(int),aa(bool,int,zero_neq_one_of_bool(int),aa(nat,bool,bit_se5641148757651400278ts_bit(int,K),N)))) ) ).
% signed_take_bit_eq_concat_bit
tff(fact_2617_exp__eq__0__imp__not__bit,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [N: nat,A2: A] :
( ( aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N) = zero_zero(A) )
=> ~ pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N)) ) ) ).
% exp_eq_0_imp_not_bit
tff(fact_2618_bit__Suc,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [A2: A,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),aa(nat,nat,suc,N)))
<=> pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2)))),N)) ) ) ).
% bit_Suc
tff(fact_2619_one__and__eq,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),one_one(A)),A2) = modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ).
% one_and_eq
tff(fact_2620_and__one__eq,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),one_one(A)) = modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ).
% and_one_eq
tff(fact_2621_stable__imp__bit__iff__odd,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [A2: A,N: nat] :
( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2))) = A2 )
=> ( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N))
<=> ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2)) ) ) ) ).
% stable_imp_bit_iff_odd
tff(fact_2622_bit__iff__idd__imp__stable,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [A2: A] :
( ! [N3: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N3))
<=> ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2)) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2))) = A2 ) ) ) ).
% bit_iff_idd_imp_stable
tff(fact_2623_exp__le,axiom,
pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,exp(real),one_one(real))),aa(num,real,numeral_numeral(real),aa(num,num,bit1,one2)))) ).
% exp_le
tff(fact_2624_int__bit__bound,axiom,
! [K: int] :
~ ! [N3: nat] :
( ! [M2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N3),M2))
=> ( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,K),M2))
<=> pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,K),N3)) ) )
=> ~ ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N3))
=> ( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,K),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N3),one_one(nat))))
<=> ~ pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,K),N3)) ) ) ) ).
% int_bit_bound
tff(fact_2625_exp__divide__power__eq,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [N: nat,X2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(nat,A,power_power(A,aa(A,A,exp(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),aa(nat,A,semiring_1_of_nat(A),N)))),N) = aa(A,A,exp(A),X2) ) ) ) ).
% exp_divide_power_eq
tff(fact_2626_tanh__altdef,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : ( aa(A,A,tanh(A),X2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,exp(A),X2)),aa(A,A,exp(A),aa(A,A,uminus_uminus(A),X2)))),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,exp(A),X2)),aa(A,A,exp(A),aa(A,A,uminus_uminus(A),X2)))) ) ) ).
% tanh_altdef
tff(fact_2627_bit__iff__odd,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [A2: A,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N))
<=> ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)))) ) ) ).
% bit_iff_odd
tff(fact_2628_exp__half__le2,axiom,
pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,exp(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2))))),aa(num,real,numeral_numeral(real),bit0(one2)))) ).
% exp_half_le2
tff(fact_2629_exp__double,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [Z: A] : ( aa(A,A,exp(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),Z)) = aa(nat,A,power_power(A,aa(A,A,exp(A),Z)),aa(num,nat,numeral_numeral(nat),bit0(one2))) ) ) ).
% exp_double
tff(fact_2630_bit__int__def,axiom,
! [K: int,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,K),N))
<=> ~ pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),divide_divide(int),K),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)))) ) ).
% bit_int_def
tff(fact_2631_eucl__rel__int__remainderI,axiom,
! [R: int,L: int,K: int,Q2: int] :
( ( aa(int,int,sgn_sgn(int),R) = aa(int,int,sgn_sgn(int),L) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,abs_abs(int),R)),aa(int,int,abs_abs(int),L)))
=> ( ( K = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),Q2),L)),R) )
=> eucl_rel_int(K,L,aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),Q2),R)) ) ) ) ).
% eucl_rel_int_remainderI
tff(fact_2632_even__bit__succ__iff,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [A2: A,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
=> ( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),A2)),N))
<=> ( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N))
| ( N = zero_zero(nat) ) ) ) ) ) ).
% even_bit_succ_iff
tff(fact_2633_odd__bit__iff__bit__pred,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [A2: A,N: nat] :
( ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
=> ( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N))
<=> ( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),one_one(A))),N))
| ( N = zero_zero(nat) ) ) ) ) ) ).
% odd_bit_iff_bit_pred
tff(fact_2634_eucl__rel__int_Ocases,axiom,
! [A1: int,A22: int,A32: product_prod(int,int)] :
( eucl_rel_int(A1,A22,A32)
=> ( ( ( A22 = zero_zero(int) )
=> ( A32 != aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),zero_zero(int)),A1) ) )
=> ( ! [Q3: int] :
( ( A32 = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),Q3),zero_zero(int)) )
=> ( ( A22 != zero_zero(int) )
=> ( A1 != aa(int,int,aa(int,fun(int,int),times_times(int),Q3),A22) ) ) )
=> ~ ! [R4: int,Q3: int] :
( ( A32 = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),Q3),R4) )
=> ( ( aa(int,int,sgn_sgn(int),R4) = aa(int,int,sgn_sgn(int),A22) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,abs_abs(int),R4)),aa(int,int,abs_abs(int),A22)))
=> ( A1 != aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),Q3),A22)),R4) ) ) ) ) ) ) ) ).
% eucl_rel_int.cases
tff(fact_2635_eucl__rel__int_Osimps,axiom,
! [A1: int,A22: int,A32: product_prod(int,int)] :
( eucl_rel_int(A1,A22,A32)
<=> ( ? [K2: int] :
( ( A1 = K2 )
& ( A22 = zero_zero(int) )
& ( A32 = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),zero_zero(int)),K2) ) )
| ? [L3: int,K2: int,Q4: int] :
( ( A1 = K2 )
& ( A22 = L3 )
& ( A32 = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),Q4),zero_zero(int)) )
& ( L3 != zero_zero(int) )
& ( K2 = aa(int,int,aa(int,fun(int,int),times_times(int),Q4),L3) ) )
| ? [R5: int,L3: int,K2: int,Q4: int] :
( ( A1 = K2 )
& ( A22 = L3 )
& ( A32 = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),Q4),R5) )
& ( aa(int,int,sgn_sgn(int),R5) = aa(int,int,sgn_sgn(int),L3) )
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,abs_abs(int),R5)),aa(int,int,abs_abs(int),L3)))
& ( K2 = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),Q4),L3)),R5) ) ) ) ) ).
% eucl_rel_int.simps
tff(fact_2636_exp__bound__half,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [Z: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,Z)),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(A,A,exp(A),Z))),aa(num,real,numeral_numeral(real),bit0(one2)))) ) ) ).
% exp_bound_half
tff(fact_2637_div__noneq__sgn__abs,axiom,
! [L: int,K: int] :
( ( L != zero_zero(int) )
=> ( ( aa(int,int,sgn_sgn(int),K) != aa(int,int,sgn_sgn(int),L) )
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),K),L) = aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(int,int,uminus_uminus(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,abs_abs(int),K)),aa(int,int,abs_abs(int),L)))),aa(bool,int,zero_neq_one_of_bool(int),aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),L),K)))) ) ) ) ).
% div_noneq_sgn_abs
tff(fact_2638_bit__sum__mult__2__cases,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,B2: A,N: nat] :
( ! [J2: nat] : ~ pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),aa(nat,nat,suc,J2)))
=> ( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),B2))),N))
<=> ( ( ( N = zero_zero(nat) )
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2)) )
& ( ( N != zero_zero(nat) )
=> pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),B2)),N)) ) ) ) ) ) ).
% bit_sum_mult_2_cases
tff(fact_2639_bit__rec,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ! [A2: A,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N))
<=> ( ( ( N = zero_zero(nat) )
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2)) )
& ( ( N != zero_zero(nat) )
=> pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2)))),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat)))) ) ) ) ) ).
% bit_rec
tff(fact_2640_exp__bound,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),one_one(real)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,exp(real),X2)),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),X2)),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ) ).
% exp_bound
tff(fact_2641_and__int__rec,axiom,
! [K: int,L: int] : ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),K),L) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(bool,int,zero_neq_one_of_bool(int),fconj(aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),K)),aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),L))))),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),K),aa(num,int,numeral_numeral(int),bit0(one2)))),aa(int,int,aa(int,fun(int,int),divide_divide(int),L),aa(num,int,numeral_numeral(int),bit0(one2)))))) ) ).
% and_int_rec
tff(fact_2642_set__bit__eq,axiom,
! [N: nat,K: int] : ( aa(int,int,aa(nat,fun(int,int),bit_se5668285175392031749et_bit(int),N),K) = aa(int,int,aa(int,fun(int,int),plus_plus(int),K),aa(int,int,aa(int,fun(int,int),times_times(int),aa(bool,int,zero_neq_one_of_bool(int),aa(bool,bool,fNot,aa(nat,bool,bit_se5641148757651400278ts_bit(int,K),N)))),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N))) ) ).
% set_bit_eq
tff(fact_2643_unset__bit__eq,axiom,
! [N: nat,K: int] : ( aa(int,int,aa(nat,fun(int,int),bit_se2638667681897837118et_bit(int),N),K) = aa(int,int,aa(int,fun(int,int),minus_minus(int),K),aa(int,int,aa(int,fun(int,int),times_times(int),aa(bool,int,zero_neq_one_of_bool(int),aa(nat,bool,bit_se5641148757651400278ts_bit(int,K),N))),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N))) ) ).
% unset_bit_eq
tff(fact_2644_real__exp__bound__lemma,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,exp(real),X2)),aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),X2)))) ) ) ).
% real_exp_bound_lemma
tff(fact_2645_exp__ge__one__plus__x__over__n__power__n,axiom,
! [N: nat,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),aa(nat,real,semiring_1_of_nat(real),N))),X2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(nat,real,power_power(real,aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),aa(real,real,aa(real,fun(real,real),divide_divide(real),X2),aa(nat,real,semiring_1_of_nat(real),N)))),N)),aa(real,real,exp(real),X2))) ) ) ).
% exp_ge_one_plus_x_over_n_power_n
tff(fact_2646_exp__ge__one__minus__x__over__n__power__n,axiom,
! [X2: real,N: nat] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),aa(nat,real,semiring_1_of_nat(real),N)))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(nat,real,power_power(real,aa(real,real,aa(real,fun(real,real),minus_minus(real),one_one(real)),aa(real,real,aa(real,fun(real,real),divide_divide(real),X2),aa(nat,real,semiring_1_of_nat(real),N)))),N)),aa(real,real,exp(real),aa(real,real,uminus_uminus(real),X2)))) ) ) ).
% exp_ge_one_minus_x_over_n_power_n
tff(fact_2647_take__bit__Suc__from__most,axiom,
! [N: nat,K: int] : ( aa(int,int,bit_se2584673776208193580ke_bit(int,aa(nat,nat,suc,N)),K) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)),aa(bool,int,zero_neq_one_of_bool(int),aa(nat,bool,bit_se5641148757651400278ts_bit(int,K),N)))),aa(int,int,bit_se2584673776208193580ke_bit(int,N),K)) ) ).
% take_bit_Suc_from_most
tff(fact_2648_exp__bound__lemma,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [Z: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,Z)),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(A,A,exp(A),Z))),aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),real_V7770717601297561774m_norm(A,Z))))) ) ) ).
% exp_bound_lemma
tff(fact_2649_exp__lower__Taylor__quadratic,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),X2)),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(num,real,numeral_numeral(real),bit0(one2))))),aa(real,real,exp(real),X2))) ) ).
% exp_lower_Taylor_quadratic
tff(fact_2650_log__base__10__eq1,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( aa(real,real,log(aa(num,real,numeral_numeral(real),bit0(aa(num,num,bit1,bit0(one2))))),X2) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,ln_ln(real),aa(real,real,exp(real),one_one(real)))),aa(real,real,ln_ln(real),aa(num,real,numeral_numeral(real),bit0(aa(num,num,bit1,bit0(one2))))))),aa(real,real,ln_ln(real),X2)) ) ) ).
% log_base_10_eq1
tff(fact_2651_modulo__int__def,axiom,
! [L: int,K: int] :
( ( ( L = zero_zero(int) )
=> ( modulo_modulo(int,K,L) = K ) )
& ( ( L != zero_zero(int) )
=> ( ( ( aa(int,int,sgn_sgn(int),K) = aa(int,int,sgn_sgn(int),L) )
=> ( modulo_modulo(int,K,L) = aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,sgn_sgn(int),L)),aa(nat,int,semiring_1_of_nat(int),modulo_modulo(nat,aa(int,nat,nat2,aa(int,int,abs_abs(int),K)),aa(int,nat,nat2,aa(int,int,abs_abs(int),L))))) ) )
& ( ( aa(int,int,sgn_sgn(int),K) != aa(int,int,sgn_sgn(int),L) )
=> ( modulo_modulo(int,K,L) = aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,sgn_sgn(int),L)),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,abs_abs(int),L)),aa(bool,int,zero_neq_one_of_bool(int),aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),L),K))))),aa(nat,int,semiring_1_of_nat(int),modulo_modulo(nat,aa(int,nat,nat2,aa(int,int,abs_abs(int),K)),aa(int,nat,nat2,aa(int,int,abs_abs(int),L)))))) ) ) ) ) ) ).
% modulo_int_def
tff(fact_2652_divide__int__def,axiom,
! [L: int,K: int] :
( ( ( L = zero_zero(int) )
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),K),L) = zero_zero(int) ) )
& ( ( L != zero_zero(int) )
=> ( ( ( aa(int,int,sgn_sgn(int),K) = aa(int,int,sgn_sgn(int),L) )
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),K),L) = aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(int,nat,nat2,aa(int,int,abs_abs(int),K))),aa(int,nat,nat2,aa(int,int,abs_abs(int),L)))) ) )
& ( ( aa(int,int,sgn_sgn(int),K) != aa(int,int,sgn_sgn(int),L) )
=> ( aa(int,int,aa(int,fun(int,int),divide_divide(int),K),L) = aa(int,int,uminus_uminus(int),aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(int,nat,nat2,aa(int,int,abs_abs(int),K))),aa(int,nat,nat2,aa(int,int,abs_abs(int),L)))),aa(bool,nat,zero_neq_one_of_bool(nat),aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),L),K)))))) ) ) ) ) ) ).
% divide_int_def
tff(fact_2653_arctan__half,axiom,
! [X2: real] : ( aa(real,real,arctan,X2) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),aa(real,real,arctan,aa(real,real,aa(real,fun(real,real),divide_divide(real),X2),aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2))))))))) ) ).
% arctan_half
tff(fact_2654_log__base__10__eq2,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( aa(real,real,log(aa(num,real,numeral_numeral(real),bit0(aa(num,num,bit1,bit0(one2))))),X2) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,log(aa(num,real,numeral_numeral(real),bit0(aa(num,num,bit1,bit0(one2))))),aa(real,real,exp(real),one_one(real)))),aa(real,real,ln_ln(real),X2)) ) ) ).
% log_base_10_eq2
tff(fact_2655_machin,axiom,
aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(bit0(one2)))) = aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(bit0(one2)))),aa(real,real,arctan,aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),aa(num,num,bit1,bit0(one2))))))),aa(real,real,arctan,aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),aa(num,num,bit1,aa(num,num,bit1,aa(num,num,bit1,aa(num,num,bit1,bit0(aa(num,num,bit1,aa(num,num,bit1,one2))))))))))) ).
% machin
tff(fact_2656_real__sqrt__eq__iff,axiom,
! [X2: real,Y: real] :
( ( aa(real,real,sqrt,X2) = aa(real,real,sqrt,Y) )
<=> ( X2 = Y ) ) ).
% real_sqrt_eq_iff
tff(fact_2657_zero__le__sgn__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,sgn_sgn(real),X2)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2)) ) ).
% zero_le_sgn_iff
tff(fact_2658_sgn__le__0__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,sgn_sgn(real),X2)),zero_zero(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),zero_zero(real))) ) ).
% sgn_le_0_iff
tff(fact_2659_real__sqrt__zero,axiom,
aa(real,real,sqrt,zero_zero(real)) = zero_zero(real) ).
% real_sqrt_zero
tff(fact_2660_real__sqrt__eq__zero__cancel__iff,axiom,
! [X2: real] :
( ( aa(real,real,sqrt,X2) = zero_zero(real) )
<=> ( X2 = zero_zero(real) ) ) ).
% real_sqrt_eq_zero_cancel_iff
tff(fact_2661_real__sqrt__less__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,sqrt,X2)),aa(real,real,sqrt,Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),Y)) ) ).
% real_sqrt_less_iff
tff(fact_2662_real__sqrt__le__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,sqrt,X2)),aa(real,real,sqrt,Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),Y)) ) ).
% real_sqrt_le_iff
tff(fact_2663_real__sqrt__eq__1__iff,axiom,
! [X2: real] :
( ( aa(real,real,sqrt,X2) = one_one(real) )
<=> ( X2 = one_one(real) ) ) ).
% real_sqrt_eq_1_iff
tff(fact_2664_real__sqrt__one,axiom,
aa(real,real,sqrt,one_one(real)) = one_one(real) ).
% real_sqrt_one
tff(fact_2665_nat__int,axiom,
! [N: nat] : ( aa(int,nat,nat2,aa(nat,int,semiring_1_of_nat(int),N)) = N ) ).
% nat_int
tff(fact_2666_nat__numeral,axiom,
! [K: num] : ( aa(int,nat,nat2,aa(num,int,numeral_numeral(int),K)) = aa(num,nat,numeral_numeral(nat),K) ) ).
% nat_numeral
tff(fact_2667_real__sqrt__lt__0__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,sqrt,X2)),zero_zero(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),zero_zero(real))) ) ).
% real_sqrt_lt_0_iff
tff(fact_2668_real__sqrt__gt__0__iff,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,sqrt,Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),Y)) ) ).
% real_sqrt_gt_0_iff
tff(fact_2669_real__sqrt__ge__0__iff,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,sqrt,Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y)) ) ).
% real_sqrt_ge_0_iff
tff(fact_2670_real__sqrt__le__0__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,sqrt,X2)),zero_zero(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),zero_zero(real))) ) ).
% real_sqrt_le_0_iff
tff(fact_2671_real__sqrt__gt__1__iff,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),aa(real,real,sqrt,Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),Y)) ) ).
% real_sqrt_gt_1_iff
tff(fact_2672_real__sqrt__lt__1__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,sqrt,X2)),one_one(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),one_one(real))) ) ).
% real_sqrt_lt_1_iff
tff(fact_2673_real__sqrt__le__1__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,sqrt,X2)),one_one(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),one_one(real))) ) ).
% real_sqrt_le_1_iff
tff(fact_2674_real__sqrt__ge__1__iff,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),aa(real,real,sqrt,Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),Y)) ) ).
% real_sqrt_ge_1_iff
tff(fact_2675_log__one,axiom,
! [A2: real] : ( aa(real,real,log(A2),one_one(real)) = zero_zero(real) ) ).
% log_one
tff(fact_2676_real__sqrt__abs2,axiom,
! [X2: real] : ( aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),times_times(real),X2),X2)) = aa(real,real,abs_abs(real),X2) ) ).
% real_sqrt_abs2
tff(fact_2677_real__sqrt__mult__self,axiom,
! [A2: real] : ( aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,sqrt,A2)),aa(real,real,sqrt,A2)) = aa(real,real,abs_abs(real),A2) ) ).
% real_sqrt_mult_self
tff(fact_2678_real__sqrt__four,axiom,
aa(real,real,sqrt,aa(num,real,numeral_numeral(real),bit0(bit0(one2)))) = aa(num,real,numeral_numeral(real),bit0(one2)) ).
% real_sqrt_four
tff(fact_2679_nat__1,axiom,
aa(int,nat,nat2,one_one(int)) = aa(nat,nat,suc,zero_zero(nat)) ).
% nat_1
tff(fact_2680_nat__0__iff,axiom,
! [I: int] :
( ( aa(int,nat,nat2,I) = zero_zero(nat) )
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),I),zero_zero(int))) ) ).
% nat_0_iff
tff(fact_2681_nat__le__0,axiom,
! [Z: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),Z),zero_zero(int)))
=> ( aa(int,nat,nat2,Z) = zero_zero(nat) ) ) ).
% nat_le_0
tff(fact_2682_zless__nat__conj,axiom,
! [W: int,Z: int] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(int,nat,nat2,W)),aa(int,nat,nat2,Z)))
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),Z))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),W),Z)) ) ) ).
% zless_nat_conj
tff(fact_2683_nat__neg__numeral,axiom,
! [K: num] : ( aa(int,nat,nat2,aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),K))) = zero_zero(nat) ) ).
% nat_neg_numeral
tff(fact_2684_log__eq__one,axiom,
! [A2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),A2))
=> ( ( A2 != one_one(real) )
=> ( aa(real,real,log(A2),A2) = one_one(real) ) ) ) ).
% log_eq_one
tff(fact_2685_log__less__cancel__iff,axiom,
! [A2: real,X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),A2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,log(A2),X2)),aa(real,real,log(A2),Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),Y)) ) ) ) ) ).
% log_less_cancel_iff
tff(fact_2686_log__less__one__cancel__iff,axiom,
! [A2: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),A2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,log(A2),X2)),one_one(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),A2)) ) ) ) ).
% log_less_one_cancel_iff
tff(fact_2687_one__less__log__cancel__iff,axiom,
! [A2: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),A2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),aa(real,real,log(A2),X2)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),X2)) ) ) ) ).
% one_less_log_cancel_iff
tff(fact_2688_log__less__zero__cancel__iff,axiom,
! [A2: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),A2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,log(A2),X2)),zero_zero(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),one_one(real))) ) ) ) ).
% log_less_zero_cancel_iff
tff(fact_2689_zero__less__log__cancel__iff,axiom,
! [A2: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),A2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,log(A2),X2)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),X2)) ) ) ) ).
% zero_less_log_cancel_iff
tff(fact_2690_nat__zminus__int,axiom,
! [N: nat] : ( aa(int,nat,nat2,aa(int,int,uminus_uminus(int),aa(nat,int,semiring_1_of_nat(int),N))) = zero_zero(nat) ) ).
% nat_zminus_int
tff(fact_2691_int__nat__eq,axiom,
! [Z: int] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Z))
=> ( aa(nat,int,semiring_1_of_nat(int),aa(int,nat,nat2,Z)) = Z ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Z))
=> ( aa(nat,int,semiring_1_of_nat(int),aa(int,nat,nat2,Z)) = zero_zero(int) ) ) ) ).
% int_nat_eq
tff(fact_2692_zero__less__nat__eq,axiom,
! [Z: int] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(int,nat,nat2,Z)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),Z)) ) ).
% zero_less_nat_eq
tff(fact_2693_zero__le__log__cancel__iff,axiom,
! [A2: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),A2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,log(A2),X2)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),X2)) ) ) ) ).
% zero_le_log_cancel_iff
tff(fact_2694_log__le__zero__cancel__iff,axiom,
! [A2: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),A2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,log(A2),X2)),zero_zero(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),one_one(real))) ) ) ) ).
% log_le_zero_cancel_iff
tff(fact_2695_one__le__log__cancel__iff,axiom,
! [A2: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),A2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),aa(real,real,log(A2),X2)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),X2)) ) ) ) ).
% one_le_log_cancel_iff
tff(fact_2696_log__le__one__cancel__iff,axiom,
! [A2: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),A2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,log(A2),X2)),one_one(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),A2)) ) ) ) ).
% log_le_one_cancel_iff
tff(fact_2697_log__le__cancel__iff,axiom,
! [A2: real,X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),A2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,log(A2),X2)),aa(real,real,log(A2),Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),Y)) ) ) ) ) ).
% log_le_cancel_iff
tff(fact_2698_diff__nat__numeral,axiom,
! [V: num,V4: num] : ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(num,nat,numeral_numeral(nat),V)),aa(num,nat,numeral_numeral(nat),V4)) = aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(num,int,numeral_numeral(int),V)),aa(num,int,numeral_numeral(int),V4))) ) ).
% diff_nat_numeral
tff(fact_2699_and__nat__numerals_I1_J,axiom,
! [Y: num] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344872417868541ns_and(nat),aa(nat,nat,suc,zero_zero(nat))),aa(num,nat,numeral_numeral(nat),bit0(Y))) = zero_zero(nat) ) ).
% and_nat_numerals(1)
tff(fact_2700_and__nat__numerals_I3_J,axiom,
! [X2: num] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344872417868541ns_and(nat),aa(num,nat,numeral_numeral(nat),bit0(X2))),aa(nat,nat,suc,zero_zero(nat))) = zero_zero(nat) ) ).
% and_nat_numerals(3)
tff(fact_2701_numeral__power__eq__nat__cancel__iff,axiom,
! [X2: num,N: nat,Y: int] :
( ( aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),X2)),N) = aa(int,nat,nat2,Y) )
<=> ( aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),X2)),N) = Y ) ) ).
% numeral_power_eq_nat_cancel_iff
tff(fact_2702_nat__eq__numeral__power__cancel__iff,axiom,
! [Y: int,X2: num,N: nat] :
( ( aa(int,nat,nat2,Y) = aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),X2)),N) )
<=> ( Y = aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),X2)),N) ) ) ).
% nat_eq_numeral_power_cancel_iff
tff(fact_2703_nat__abs__dvd__iff,axiom,
! [K: int,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(int,nat,nat2,aa(int,int,abs_abs(int),K))),N))
<=> pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),K),aa(nat,int,semiring_1_of_nat(int),N))) ) ).
% nat_abs_dvd_iff
tff(fact_2704_dvd__nat__abs__iff,axiom,
! [N: nat,K: int] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),N),aa(int,nat,nat2,aa(int,int,abs_abs(int),K))))
<=> pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(nat,int,semiring_1_of_nat(int),N)),K)) ) ).
% dvd_nat_abs_iff
tff(fact_2705_one__less__nat__eq,axiom,
! [Z: int] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,zero_zero(nat))),aa(int,nat,nat2,Z)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),one_one(int)),Z)) ) ).
% one_less_nat_eq
tff(fact_2706_real__sqrt__abs,axiom,
! [X2: real] : ( aa(real,real,sqrt,aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))) = aa(real,real,abs_abs(real),X2) ) ).
% real_sqrt_abs
tff(fact_2707_log__pow__cancel,axiom,
! [A2: real,B2: nat] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),A2))
=> ( ( A2 != one_one(real) )
=> ( aa(real,real,log(A2),aa(nat,real,power_power(real,A2),B2)) = aa(nat,real,semiring_1_of_nat(real),B2) ) ) ) ).
% log_pow_cancel
tff(fact_2708_and__nat__numerals_I4_J,axiom,
! [X2: num] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344872417868541ns_and(nat),aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,X2))),aa(nat,nat,suc,zero_zero(nat))) = one_one(nat) ) ).
% and_nat_numerals(4)
tff(fact_2709_and__nat__numerals_I2_J,axiom,
! [Y: num] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344872417868541ns_and(nat),aa(nat,nat,suc,zero_zero(nat))),aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,Y))) = one_one(nat) ) ).
% and_nat_numerals(2)
tff(fact_2710_real__sqrt__pow2,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( aa(nat,real,power_power(real,aa(real,real,sqrt,X2)),aa(num,nat,numeral_numeral(nat),bit0(one2))) = X2 ) ) ).
% real_sqrt_pow2
tff(fact_2711_real__sqrt__pow2__iff,axiom,
! [X2: real] :
( ( aa(nat,real,power_power(real,aa(real,real,sqrt,X2)),aa(num,nat,numeral_numeral(nat),bit0(one2))) = X2 )
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2)) ) ).
% real_sqrt_pow2_iff
tff(fact_2712_real__sqrt__sum__squares__mult__squared__eq,axiom,
! [X2: real,Y: real,Xa: real,Ya: real] : ( aa(nat,real,power_power(real,aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,Y),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,Xa),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,Ya),aa(num,nat,numeral_numeral(nat),bit0(one2))))))),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,Y),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,Xa),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,Ya),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ).
% real_sqrt_sum_squares_mult_squared_eq
tff(fact_2713_nat__numeral__diff__1,axiom,
! [V: num] : ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(num,nat,numeral_numeral(nat),V)),one_one(nat)) = aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(num,int,numeral_numeral(int),V)),one_one(int))) ) ).
% nat_numeral_diff_1
tff(fact_2714_nat__less__numeral__power__cancel__iff,axiom,
! [A2: int,X2: num,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(int,nat,nat2,A2)),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),X2)),N)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),A2),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),X2)),N))) ) ).
% nat_less_numeral_power_cancel_iff
tff(fact_2715_numeral__power__less__nat__cancel__iff,axiom,
! [X2: num,N: nat,A2: int] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),X2)),N)),aa(int,nat,nat2,A2)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),X2)),N)),A2)) ) ).
% numeral_power_less_nat_cancel_iff
tff(fact_2716_numeral__power__le__nat__cancel__iff,axiom,
! [X2: num,N: nat,A2: int] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),X2)),N)),aa(int,nat,nat2,A2)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),X2)),N)),A2)) ) ).
% numeral_power_le_nat_cancel_iff
tff(fact_2717_nat__le__numeral__power__cancel__iff,axiom,
! [A2: int,X2: num,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(int,nat,nat2,A2)),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),X2)),N)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),A2),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),X2)),N))) ) ).
% nat_le_numeral_power_cancel_iff
tff(fact_2718_and__Suc__0__eq,axiom,
! [N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344872417868541ns_and(nat),N),aa(nat,nat,suc,zero_zero(nat))) = modulo_modulo(nat,N,aa(num,nat,numeral_numeral(nat),bit0(one2))) ) ).
% and_Suc_0_eq
tff(fact_2719_Suc__0__and__eq,axiom,
! [N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344872417868541ns_and(nat),aa(nat,nat,suc,zero_zero(nat))),N) = modulo_modulo(nat,N,aa(num,nat,numeral_numeral(nat),bit0(one2))) ) ).
% Suc_0_and_eq
tff(fact_2720_and__nat__def,axiom,
! [M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344872417868541ns_and(nat),M),N) = aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(nat,int,semiring_1_of_nat(int),M)),aa(nat,int,semiring_1_of_nat(int),N))) ) ).
% and_nat_def
tff(fact_2721_real__sqrt__less__mono,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),Y))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,sqrt,X2)),aa(real,real,sqrt,Y))) ) ).
% real_sqrt_less_mono
tff(fact_2722_real__sqrt__le__mono,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),Y))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,sqrt,X2)),aa(real,real,sqrt,Y))) ) ).
% real_sqrt_le_mono
tff(fact_2723_real__sqrt__divide,axiom,
! [X2: real,Y: real] : ( aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),divide_divide(real),X2),Y)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,sqrt,X2)),aa(real,real,sqrt,Y)) ) ).
% real_sqrt_divide
tff(fact_2724_real__sqrt__mult,axiom,
! [X2: real,Y: real] : ( aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),times_times(real),X2),Y)) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,sqrt,X2)),aa(real,real,sqrt,Y)) ) ).
% real_sqrt_mult
tff(fact_2725_real__sqrt__power,axiom,
! [X2: real,K: nat] : ( aa(real,real,sqrt,aa(nat,real,power_power(real,X2),K)) = aa(nat,real,power_power(real,aa(real,real,sqrt,X2)),K) ) ).
% real_sqrt_power
tff(fact_2726_real__sqrt__minus,axiom,
! [X2: real] : ( aa(real,real,sqrt,aa(real,real,uminus_uminus(real),X2)) = aa(real,real,uminus_uminus(real),aa(real,real,sqrt,X2)) ) ).
% real_sqrt_minus
tff(fact_2727_pi__neq__zero,axiom,
pi != zero_zero(real) ).
% pi_neq_zero
tff(fact_2728_bit__nat__iff,axiom,
! [K: int,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(nat,aa(int,nat,nat2,K)),N))
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K))
& pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,K),N)) ) ) ).
% bit_nat_iff
tff(fact_2729_bit__Suc__0__iff,axiom,
! [N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(nat,aa(nat,nat,suc,zero_zero(nat))),N))
<=> ( N = zero_zero(nat) ) ) ).
% bit_Suc_0_iff
tff(fact_2730_not__bit__Suc__0__Suc,axiom,
! [N: nat] : ~ pp(aa(nat,bool,bit_se5641148757651400278ts_bit(nat,aa(nat,nat,suc,zero_zero(nat))),aa(nat,nat,suc,N))) ).
% not_bit_Suc_0_Suc
tff(fact_2731_real__sqrt__gt__zero,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,sqrt,X2))) ) ).
% real_sqrt_gt_zero
tff(fact_2732_real__sqrt__eq__zero__cancel,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( ( aa(real,real,sqrt,X2) = zero_zero(real) )
=> ( X2 = zero_zero(real) ) ) ) ).
% real_sqrt_eq_zero_cancel
tff(fact_2733_real__sqrt__ge__zero,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,sqrt,X2))) ) ).
% real_sqrt_ge_zero
tff(fact_2734_real__sqrt__ge__one,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),aa(real,real,sqrt,X2))) ) ).
% real_sqrt_ge_one
tff(fact_2735_nat__zero__as__int,axiom,
zero_zero(nat) = aa(int,nat,nat2,zero_zero(int)) ).
% nat_zero_as_int
tff(fact_2736_nat__numeral__as__int,axiom,
! [X: num] : ( aa(num,nat,numeral_numeral(nat),X) = aa(int,nat,nat2,aa(num,int,numeral_numeral(int),X)) ) ).
% nat_numeral_as_int
tff(fact_2737_real__sgn__eq,axiom,
! [X2: real] : ( aa(real,real,sgn_sgn(real),X2) = aa(real,real,aa(real,fun(real,real),divide_divide(real),X2),aa(real,real,abs_abs(real),X2)) ) ).
% real_sgn_eq
tff(fact_2738_nat__mono,axiom,
! [X2: int,Y: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),X2),Y))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(int,nat,nat2,X2)),aa(int,nat,nat2,Y))) ) ).
% nat_mono
tff(fact_2739_ex__nat,axiom,
! [P: fun(nat,bool)] :
( ? [X_12: nat] : pp(aa(nat,bool,P,X_12))
<=> ? [X4: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),X4))
& pp(aa(nat,bool,P,aa(int,nat,nat2,X4))) ) ) ).
% ex_nat
tff(fact_2740_all__nat,axiom,
! [P: fun(nat,bool)] :
( ! [X_12: nat] : pp(aa(nat,bool,P,X_12))
<=> ! [X4: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),X4))
=> pp(aa(nat,bool,P,aa(int,nat,nat2,X4))) ) ) ).
% all_nat
tff(fact_2741_eq__nat__nat__iff,axiom,
! [Z: int,Z4: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Z))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Z4))
=> ( ( aa(int,nat,nat2,Z) = aa(int,nat,nat2,Z4) )
<=> ( Z = Z4 ) ) ) ) ).
% eq_nat_nat_iff
tff(fact_2742_nat__one__as__int,axiom,
one_one(nat) = aa(int,nat,nat2,one_one(int)) ).
% nat_one_as_int
tff(fact_2743_log__def,axiom,
! [A2: real,X2: real] : ( aa(real,real,log(A2),X2) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,ln_ln(real),X2)),aa(real,real,ln_ln(real),A2)) ) ).
% log_def
tff(fact_2744_pi__gt__zero,axiom,
pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),pi)) ).
% pi_gt_zero
tff(fact_2745_pi__not__less__zero,axiom,
~ pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),pi),zero_zero(real))) ).
% pi_not_less_zero
tff(fact_2746_pi__ge__zero,axiom,
pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),pi)) ).
% pi_ge_zero
tff(fact_2747_unset__bit__nat__def,axiom,
! [M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se2638667681897837118et_bit(nat),M),N) = aa(int,nat,nat2,aa(int,int,aa(nat,fun(int,int),bit_se2638667681897837118et_bit(int),M),aa(nat,int,semiring_1_of_nat(int),N))) ) ).
% unset_bit_nat_def
tff(fact_2748_nat__mask__eq,axiom,
! [N: nat] : ( aa(int,nat,nat2,bit_se2239418461657761734s_mask(int,N)) = bit_se2239418461657761734s_mask(nat,N) ) ).
% nat_mask_eq
tff(fact_2749_not__bit__Suc__0__numeral,axiom,
! [N: num] : ~ pp(aa(nat,bool,bit_se5641148757651400278ts_bit(nat,aa(nat,nat,suc,zero_zero(nat))),aa(num,nat,numeral_numeral(nat),N))) ).
% not_bit_Suc_0_numeral
tff(fact_2750_real__div__sqrt,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( aa(real,real,aa(real,fun(real,real),divide_divide(real),X2),aa(real,real,sqrt,X2)) = aa(real,real,sqrt,X2) ) ) ).
% real_div_sqrt
tff(fact_2751_sqrt__add__le__add__sqrt,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),Y))),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,sqrt,X2)),aa(real,real,sqrt,Y)))) ) ) ).
% sqrt_add_le_add_sqrt
tff(fact_2752_le__real__sqrt__sumsq,axiom,
! [X2: real,Y: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,aa(real,fun(real,real),times_times(real),X2),X2)),aa(real,real,aa(real,fun(real,real),times_times(real),Y),Y))))) ).
% le_real_sqrt_sumsq
tff(fact_2753_nat__mono__iff,axiom,
! [Z: int,W: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),Z))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(int,nat,nat2,W)),aa(int,nat,nat2,Z)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),W),Z)) ) ) ).
% nat_mono_iff
tff(fact_2754_zless__nat__eq__int__zless,axiom,
! [M: nat,Z: int] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),aa(int,nat,nat2,Z)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(nat,int,semiring_1_of_nat(int),M)),Z)) ) ).
% zless_nat_eq_int_zless
tff(fact_2755_nat__le__iff,axiom,
! [X2: int,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(int,nat,nat2,X2)),N))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),X2),aa(nat,int,semiring_1_of_nat(int),N))) ) ).
% nat_le_iff
tff(fact_2756_nat__0__le,axiom,
! [Z: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Z))
=> ( aa(nat,int,semiring_1_of_nat(int),aa(int,nat,nat2,Z)) = Z ) ) ).
% nat_0_le
tff(fact_2757_int__eq__iff,axiom,
! [M: nat,Z: int] :
( ( aa(nat,int,semiring_1_of_nat(int),M) = Z )
<=> ( ( M = aa(int,nat,nat2,Z) )
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Z)) ) ) ).
% int_eq_iff
tff(fact_2758_nat__int__add,axiom,
! [A2: nat,B2: nat] : ( aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(nat,int,semiring_1_of_nat(int),A2)),aa(nat,int,semiring_1_of_nat(int),B2))) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),A2),B2) ) ).
% nat_int_add
tff(fact_2759_int__minus,axiom,
! [N: nat,M: nat] : ( aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M)) = aa(nat,int,semiring_1_of_nat(int),aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(nat,int,semiring_1_of_nat(int),N)),aa(nat,int,semiring_1_of_nat(int),M)))) ) ).
% int_minus
tff(fact_2760_nat__abs__mult__distrib,axiom,
! [W: int,Z: int] : ( aa(int,nat,nat2,aa(int,int,abs_abs(int),aa(int,int,aa(int,fun(int,int),times_times(int),W),Z))) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(int,nat,nat2,aa(int,int,abs_abs(int),W))),aa(int,nat,nat2,aa(int,int,abs_abs(int),Z))) ) ).
% nat_abs_mult_distrib
tff(fact_2761_log__ln,axiom,
! [X2: real] : ( aa(real,real,ln_ln(real),X2) = aa(real,real,log(aa(real,real,exp(real),one_one(real))),X2) ) ).
% log_ln
tff(fact_2762_sqrt2__less__2,axiom,
pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,sqrt,aa(num,real,numeral_numeral(real),bit0(one2)))),aa(num,real,numeral_numeral(real),bit0(one2)))) ).
% sqrt2_less_2
tff(fact_2763_sgn__real__def,axiom,
! [A2: real] :
( ( ( A2 = zero_zero(real) )
=> ( aa(real,real,sgn_sgn(real),A2) = zero_zero(real) ) )
& ( ( A2 != zero_zero(real) )
=> ( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),A2))
=> ( aa(real,real,sgn_sgn(real),A2) = one_one(real) ) )
& ( ~ pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),A2))
=> ( aa(real,real,sgn_sgn(real),A2) = aa(real,real,uminus_uminus(real),one_one(real)) ) ) ) ) ) ).
% sgn_real_def
tff(fact_2764_log__base__change,axiom,
! [A2: real,B2: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),A2))
=> ( ( A2 != one_one(real) )
=> ( aa(real,real,log(B2),X2) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,log(A2),X2)),aa(real,real,log(A2),B2)) ) ) ) ).
% log_base_change
tff(fact_2765_less__log__of__power,axiom,
! [B2: real,N: nat,M: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(nat,real,power_power(real,B2),N)),M))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),B2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(nat,real,semiring_1_of_nat(real),N)),aa(real,real,log(B2),M))) ) ) ).
% less_log_of_power
tff(fact_2766_log__of__power__eq,axiom,
! [M: nat,B2: real,N: nat] :
( ( aa(nat,real,semiring_1_of_nat(real),M) = aa(nat,real,power_power(real,B2),N) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),B2))
=> ( aa(nat,real,semiring_1_of_nat(real),N) = aa(real,real,log(B2),aa(nat,real,semiring_1_of_nat(real),M)) ) ) ) ).
% log_of_power_eq
tff(fact_2767_nat__less__eq__zless,axiom,
! [W: int,Z: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),W))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(int,nat,nat2,W)),aa(int,nat,nat2,Z)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),W),Z)) ) ) ).
% nat_less_eq_zless
tff(fact_2768_nat__le__eq__zle,axiom,
! [W: int,Z: int] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),W))
| pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Z)) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(int,nat,nat2,W)),aa(int,nat,nat2,Z)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),W),Z)) ) ) ).
% nat_le_eq_zle
tff(fact_2769_nat__eq__iff2,axiom,
! [M: nat,W: int] :
( ( M = aa(int,nat,nat2,W) )
<=> ( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),W))
=> ( W = aa(nat,int,semiring_1_of_nat(int),M) ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),W))
=> ( M = zero_zero(nat) ) ) ) ) ).
% nat_eq_iff2
tff(fact_2770_nat__eq__iff,axiom,
! [W: int,M: nat] :
( ( aa(int,nat,nat2,W) = M )
<=> ( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),W))
=> ( W = aa(nat,int,semiring_1_of_nat(int),M) ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),W))
=> ( M = zero_zero(nat) ) ) ) ) ).
% nat_eq_iff
tff(fact_2771_split__nat,axiom,
! [P: fun(nat,bool),I: int] :
( pp(aa(nat,bool,P,aa(int,nat,nat2,I)))
<=> ( ! [N5: nat] :
( ( I = aa(nat,int,semiring_1_of_nat(int),N5) )
=> pp(aa(nat,bool,P,N5)) )
& ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),I),zero_zero(int)))
=> pp(aa(nat,bool,P,zero_zero(nat))) ) ) ) ).
% split_nat
tff(fact_2772_le__nat__iff,axiom,
! [K: int,N: nat] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),aa(int,nat,nat2,K)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(nat,int,semiring_1_of_nat(int),N)),K)) ) ) ).
% le_nat_iff
tff(fact_2773_nat__add__distrib,axiom,
! [Z: int,Z4: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Z))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Z4))
=> ( aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),plus_plus(int),Z),Z4)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(int,nat,nat2,Z)),aa(int,nat,nat2,Z4)) ) ) ) ).
% nat_add_distrib
tff(fact_2774_nat__mult__distrib,axiom,
! [Z: int,Z4: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Z))
=> ( aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),times_times(int),Z),Z4)) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(int,nat,nat2,Z)),aa(int,nat,nat2,Z4)) ) ) ).
% nat_mult_distrib
tff(fact_2775_Suc__as__int,axiom,
! [X: nat] : ( aa(nat,nat,suc,X) = aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(nat,int,semiring_1_of_nat(int),X)),one_one(int))) ) ).
% Suc_as_int
tff(fact_2776_nat__diff__distrib,axiom,
! [Z4: int,Z: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Z4))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),Z4),Z))
=> ( aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),minus_minus(int),Z),Z4)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(int,nat,nat2,Z)),aa(int,nat,nat2,Z4)) ) ) ) ).
% nat_diff_distrib
tff(fact_2777_nat__diff__distrib_H,axiom,
! [X2: int,Y: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),X2))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Y))
=> ( aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),minus_minus(int),X2),Y)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(int,nat,nat2,X2)),aa(int,nat,nat2,Y)) ) ) ) ).
% nat_diff_distrib'
tff(fact_2778_nat__abs__triangle__ineq,axiom,
! [K: int,L: int] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(int,nat,nat2,aa(int,int,abs_abs(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),K),L)))),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(int,nat,nat2,aa(int,int,abs_abs(int),K))),aa(int,nat,nat2,aa(int,int,abs_abs(int),L))))) ).
% nat_abs_triangle_ineq
tff(fact_2779_nat__div__distrib_H,axiom,
! [Y: int,X2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Y))
=> ( aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),divide_divide(int),X2),Y)) = aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(int,nat,nat2,X2)),aa(int,nat,nat2,Y)) ) ) ).
% nat_div_distrib'
tff(fact_2780_nat__div__distrib,axiom,
! [X2: int,Y: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),X2))
=> ( aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),divide_divide(int),X2),Y)) = aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(int,nat,nat2,X2)),aa(int,nat,nat2,Y)) ) ) ).
% nat_div_distrib
tff(fact_2781_nat__power__eq,axiom,
! [Z: int,N: nat] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Z))
=> ( aa(int,nat,nat2,aa(nat,int,power_power(int,Z),N)) = aa(nat,nat,power_power(nat,aa(int,nat,nat2,Z)),N) ) ) ).
% nat_power_eq
tff(fact_2782_nat__mod__distrib,axiom,
! [X2: int,Y: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),X2))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Y))
=> ( aa(int,nat,nat2,modulo_modulo(int,X2,Y)) = modulo_modulo(nat,aa(int,nat,nat2,X2),aa(int,nat,nat2,Y)) ) ) ) ).
% nat_mod_distrib
tff(fact_2783_pi__less__4,axiom,
pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),pi),aa(num,real,numeral_numeral(real),bit0(bit0(one2))))) ).
% pi_less_4
tff(fact_2784_pi__ge__two,axiom,
pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(num,real,numeral_numeral(real),bit0(one2))),pi)) ).
% pi_ge_two
tff(fact_2785_div__abs__eq__div__nat,axiom,
! [K: int,L: int] : ( aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,abs_abs(int),K)),aa(int,int,abs_abs(int),L)) = aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(int,nat,nat2,aa(int,int,abs_abs(int),K))),aa(int,nat,nat2,aa(int,int,abs_abs(int),L)))) ) ).
% div_abs_eq_div_nat
tff(fact_2786_pi__half__neq__two,axiom,
aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))) != aa(num,real,numeral_numeral(real),bit0(one2)) ).
% pi_half_neq_two
tff(fact_2787_mod__abs__eq__div__nat,axiom,
! [K: int,L: int] : ( modulo_modulo(int,aa(int,int,abs_abs(int),K),aa(int,int,abs_abs(int),L)) = aa(nat,int,semiring_1_of_nat(int),modulo_modulo(nat,aa(int,nat,nat2,aa(int,int,abs_abs(int),K)),aa(int,nat,nat2,aa(int,int,abs_abs(int),L)))) ) ).
% mod_abs_eq_div_nat
tff(fact_2788_take__bit__nat__eq,axiom,
! [K: int,N: nat] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K))
=> ( aa(nat,nat,bit_se2584673776208193580ke_bit(nat,N),aa(int,nat,nat2,K)) = aa(int,nat,nat2,aa(int,int,bit_se2584673776208193580ke_bit(int,N),K)) ) ) ).
% take_bit_nat_eq
tff(fact_2789_nat__take__bit__eq,axiom,
! [K: int,N: nat] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K))
=> ( aa(int,nat,nat2,aa(int,int,bit_se2584673776208193580ke_bit(int,N),K)) = aa(nat,nat,bit_se2584673776208193580ke_bit(nat,N),aa(int,nat,nat2,K)) ) ) ).
% nat_take_bit_eq
tff(fact_2790_arctan__inverse,axiom,
! [X2: real] :
( ( X2 != zero_zero(real) )
=> ( aa(real,real,arctan,aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),X2)) = aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,sgn_sgn(real),X2)),pi)),aa(num,real,numeral_numeral(real),bit0(one2)))),aa(real,real,arctan,X2)) ) ) ).
% arctan_inverse
tff(fact_2791_real__less__rsqrt,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),Y))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),aa(real,real,sqrt,Y))) ) ).
% real_less_rsqrt
tff(fact_2792_sqrt__le__D,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,sqrt,X2)),Y))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),aa(nat,real,power_power(real,Y),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ).
% sqrt_le_D
tff(fact_2793_real__le__rsqrt,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),Y))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),aa(real,real,sqrt,Y))) ) ).
% real_le_rsqrt
tff(fact_2794_nat__2,axiom,
aa(int,nat,nat2,aa(num,int,numeral_numeral(int),bit0(one2))) = aa(nat,nat,suc,aa(nat,nat,suc,zero_zero(nat))) ).
% nat_2
tff(fact_2795_log__mult,axiom,
! [A2: real,X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),A2))
=> ( ( A2 != one_one(real) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),Y))
=> ( aa(real,real,log(A2),aa(real,real,aa(real,fun(real,real),times_times(real),X2),Y)) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,log(A2),X2)),aa(real,real,log(A2),Y)) ) ) ) ) ) ).
% log_mult
tff(fact_2796_sgn__power__injE,axiom,
! [A2: real,N: nat,X2: real,B2: real] :
( ( aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,sgn_sgn(real),A2)),aa(nat,real,power_power(real,aa(real,real,abs_abs(real),A2)),N)) = X2 )
=> ( ( X2 = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,sgn_sgn(real),B2)),aa(nat,real,power_power(real,aa(real,real,abs_abs(real),B2)),N)) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( A2 = B2 ) ) ) ) ).
% sgn_power_injE
tff(fact_2797_log__divide,axiom,
! [A2: real,X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),A2))
=> ( ( A2 != one_one(real) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),Y))
=> ( aa(real,real,log(A2),aa(real,real,aa(real,fun(real,real),divide_divide(real),X2),Y)) = aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,log(A2),X2)),aa(real,real,log(A2),Y)) ) ) ) ) ) ).
% log_divide
tff(fact_2798_le__log__of__power,axiom,
! [B2: real,N: nat,M: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(nat,real,power_power(real,B2),N)),M))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),B2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(nat,real,semiring_1_of_nat(real),N)),aa(real,real,log(B2),M))) ) ) ).
% le_log_of_power
tff(fact_2799_log__base__pow,axiom,
! [A2: real,N: nat,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),A2))
=> ( aa(real,real,log(aa(nat,real,power_power(real,A2),N)),X2) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,log(A2),X2)),aa(nat,real,semiring_1_of_nat(real),N)) ) ) ).
% log_base_pow
tff(fact_2800_log__nat__power,axiom,
! [X2: real,B2: real,N: nat] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( aa(real,real,log(B2),aa(nat,real,power_power(real,X2),N)) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N)),aa(real,real,log(B2),X2)) ) ) ).
% log_nat_power
tff(fact_2801_Suc__nat__eq__nat__zadd1,axiom,
! [Z: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Z))
=> ( aa(nat,nat,suc,aa(int,nat,nat2,Z)) = aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),plus_plus(int),one_one(int)),Z)) ) ) ).
% Suc_nat_eq_nat_zadd1
tff(fact_2802_nat__less__iff,axiom,
! [W: int,M: nat] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),W))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(int,nat,nat2,W)),M))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),W),aa(nat,int,semiring_1_of_nat(int),M))) ) ) ).
% nat_less_iff
tff(fact_2803_nat__mult__distrib__neg,axiom,
! [Z: int,Z4: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),Z),zero_zero(int)))
=> ( aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),times_times(int),Z),Z4)) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(int,nat,nat2,aa(int,int,uminus_uminus(int),Z))),aa(int,nat,nat2,aa(int,int,uminus_uminus(int),Z4))) ) ) ).
% nat_mult_distrib_neg
tff(fact_2804_nat__abs__int__diff,axiom,
! [A2: nat,B2: nat] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),A2),B2))
=> ( aa(int,nat,nat2,aa(int,int,abs_abs(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(nat,int,semiring_1_of_nat(int),A2)),aa(nat,int,semiring_1_of_nat(int),B2)))) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),B2),A2) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),A2),B2))
=> ( aa(int,nat,nat2,aa(int,int,abs_abs(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(nat,int,semiring_1_of_nat(int),A2)),aa(nat,int,semiring_1_of_nat(int),B2)))) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),A2),B2) ) ) ) ).
% nat_abs_int_diff
tff(fact_2805_pi__half__neq__zero,axiom,
aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))) != zero_zero(real) ).
% pi_half_neq_zero
tff(fact_2806_pi__half__less__two,axiom,
pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))),aa(num,real,numeral_numeral(real),bit0(one2)))) ).
% pi_half_less_two
tff(fact_2807_pi__half__le__two,axiom,
pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))),aa(num,real,numeral_numeral(real),bit0(one2)))) ).
% pi_half_le_two
tff(fact_2808_real__le__lsqrt,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),aa(nat,real,power_power(real,Y),aa(num,nat,numeral_numeral(nat),bit0(one2)))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,sqrt,X2)),Y)) ) ) ) ).
% real_le_lsqrt
tff(fact_2809_real__sqrt__unique,axiom,
! [Y: real,X2: real] :
( ( aa(nat,real,power_power(real,Y),aa(num,nat,numeral_numeral(nat),bit0(one2))) = X2 )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y))
=> ( aa(real,real,sqrt,X2) = Y ) ) ) ).
% real_sqrt_unique
tff(fact_2810_lemma__real__divide__sqrt__less,axiom,
! [U: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),U))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),U),aa(real,real,sqrt,aa(num,real,numeral_numeral(real),bit0(one2))))),U)) ) ).
% lemma_real_divide_sqrt_less
tff(fact_2811_real__sqrt__sum__squares__eq__cancel,axiom,
! [X2: real,Y: real] :
( ( aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,Y),aa(num,nat,numeral_numeral(nat),bit0(one2))))) = X2 )
=> ( Y = zero_zero(real) ) ) ).
% real_sqrt_sum_squares_eq_cancel
tff(fact_2812_real__sqrt__sum__squares__eq__cancel2,axiom,
! [X2: real,Y: real] :
( ( aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,Y),aa(num,nat,numeral_numeral(nat),bit0(one2))))) = Y )
=> ( X2 = zero_zero(real) ) ) ).
% real_sqrt_sum_squares_eq_cancel2
tff(fact_2813_real__sqrt__sum__squares__ge1,axiom,
! [X2: real,Y: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,Y),aa(num,nat,numeral_numeral(nat),bit0(one2))))))) ).
% real_sqrt_sum_squares_ge1
tff(fact_2814_real__sqrt__sum__squares__ge2,axiom,
! [Y: real,X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,Y),aa(num,nat,numeral_numeral(nat),bit0(one2))))))) ).
% real_sqrt_sum_squares_ge2
tff(fact_2815_real__sqrt__sum__squares__triangle__ineq,axiom,
! [A2: real,C2: real,B2: real,D2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,aa(real,real,aa(real,fun(real,real),plus_plus(real),A2),C2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,aa(real,real,aa(real,fun(real,real),plus_plus(real),B2),D2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))))),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,A2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,B2),aa(num,nat,numeral_numeral(nat),bit0(one2)))))),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,C2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,D2),aa(num,nat,numeral_numeral(nat),bit0(one2)))))))) ).
% real_sqrt_sum_squares_triangle_ineq
tff(fact_2816_sqrt__ge__absD,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),X2)),aa(real,real,sqrt,Y)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),Y)) ) ).
% sqrt_ge_absD
tff(fact_2817_bit__nat__def,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(nat,M),N))
<=> ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N)))) ) ).
% bit_nat_def
tff(fact_2818_log2__of__power__eq,axiom,
! [M: nat,N: nat] :
( ( M = aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N) )
=> ( aa(nat,real,semiring_1_of_nat(real),N) = aa(real,real,log(aa(num,real,numeral_numeral(real),bit0(one2))),aa(nat,real,semiring_1_of_nat(real),M)) ) ) ).
% log2_of_power_eq
tff(fact_2819_log__of__power__less,axiom,
! [M: nat,B2: real,N: nat] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(nat,real,semiring_1_of_nat(real),M)),aa(nat,real,power_power(real,B2),N)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),B2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),M))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,log(B2),aa(nat,real,semiring_1_of_nat(real),M))),aa(nat,real,semiring_1_of_nat(real),N))) ) ) ) ).
% log_of_power_less
tff(fact_2820_log__eq__div__ln__mult__log,axiom,
! [A2: real,B2: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),A2))
=> ( ( A2 != one_one(real) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),B2))
=> ( ( B2 != one_one(real) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( aa(real,real,log(A2),X2) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,ln_ln(real),B2)),aa(real,real,ln_ln(real),A2))),aa(real,real,log(B2),X2)) ) ) ) ) ) ) ).
% log_eq_div_ln_mult_log
tff(fact_2821_nat__dvd__iff,axiom,
! [Z: int,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(int,nat,nat2,Z)),M))
<=> ( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Z))
=> pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),Z),aa(nat,int,semiring_1_of_nat(int),M))) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Z))
=> ( M = zero_zero(nat) ) ) ) ) ).
% nat_dvd_iff
tff(fact_2822_pi__half__gt__zero,axiom,
pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))) ).
% pi_half_gt_zero
tff(fact_2823_pi__half__ge__zero,axiom,
pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))) ).
% pi_half_ge_zero
tff(fact_2824_m2pi__less__pi,axiom,
pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),pi))),pi)) ).
% m2pi_less_pi
tff(fact_2825_arctan__ubound,axiom,
! [Y: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,arctan,Y)),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))) ).
% arctan_ubound
tff(fact_2826_arctan__one,axiom,
aa(real,real,arctan,one_one(real)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(bit0(one2)))) ).
% arctan_one
tff(fact_2827_real__less__lsqrt,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),aa(nat,real,power_power(real,Y),aa(num,nat,numeral_numeral(nat),bit0(one2)))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,sqrt,X2)),Y)) ) ) ) ).
% real_less_lsqrt
tff(fact_2828_sqrt__sum__squares__le__sum,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,Y),aa(num,nat,numeral_numeral(nat),bit0(one2)))))),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),Y))) ) ) ).
% sqrt_sum_squares_le_sum
tff(fact_2829_log__of__power__le,axiom,
! [M: nat,B2: real,N: nat] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(nat,real,semiring_1_of_nat(real),M)),aa(nat,real,power_power(real,B2),N)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),B2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),M))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,log(B2),aa(nat,real,semiring_1_of_nat(real),M))),aa(nat,real,semiring_1_of_nat(real),N))) ) ) ) ).
% log_of_power_le
tff(fact_2830_real__sqrt__ge__abs1,axiom,
! [X2: real,Y: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),X2)),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,Y),aa(num,nat,numeral_numeral(nat),bit0(one2))))))) ).
% real_sqrt_ge_abs1
tff(fact_2831_real__sqrt__ge__abs2,axiom,
! [Y: real,X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),Y)),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,Y),aa(num,nat,numeral_numeral(nat),bit0(one2))))))) ).
% real_sqrt_ge_abs2
tff(fact_2832_sqrt__sum__squares__le__sum__abs,axiom,
! [X2: real,Y: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,Y),aa(num,nat,numeral_numeral(nat),bit0(one2)))))),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,abs_abs(real),X2)),aa(real,real,abs_abs(real),Y)))) ).
% sqrt_sum_squares_le_sum_abs
tff(fact_2833_ln__sqrt,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( aa(real,real,ln_ln(real),aa(real,real,sqrt,X2)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,ln_ln(real),X2)),aa(num,real,numeral_numeral(real),bit0(one2))) ) ) ).
% ln_sqrt
tff(fact_2834_sqrt__even__pow2,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( aa(real,real,sqrt,aa(nat,real,power_power(real,aa(num,real,numeral_numeral(real),bit0(one2))),N)) = aa(nat,real,power_power(real,aa(num,real,numeral_numeral(real),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),aa(num,nat,numeral_numeral(nat),bit0(one2)))) ) ) ).
% sqrt_even_pow2
tff(fact_2835_minus__pi__half__less__zero,axiom,
pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),zero_zero(real))) ).
% minus_pi_half_less_zero
tff(fact_2836_arctan__lbound,axiom,
! [Y: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),aa(real,real,arctan,Y))) ).
% arctan_lbound
tff(fact_2837_arctan__bounded,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),aa(real,real,arctan,Y)))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,arctan,Y)),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))) ) ).
% arctan_bounded
tff(fact_2838_and__nat__unfold,axiom,
! [M: nat,N: nat] :
( ( ( ( M = zero_zero(nat) )
| ( N = zero_zero(nat) ) )
=> ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344872417868541ns_and(nat),M),N) = zero_zero(nat) ) )
& ( ~ ( ( M = zero_zero(nat) )
| ( N = zero_zero(nat) ) )
=> ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344872417868541ns_and(nat),M),N) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),modulo_modulo(nat,M,aa(num,nat,numeral_numeral(nat),bit0(one2)))),modulo_modulo(nat,N,aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344872417868541ns_and(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ) ) ).
% and_nat_unfold
tff(fact_2839_arsinh__real__aux,axiom,
! [X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),one_one(real)))))) ).
% arsinh_real_aux
tff(fact_2840_real__sqrt__sum__squares__mult__ge__zero,axiom,
! [X2: real,Y: real,Xa: real,Ya: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,Y),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,Xa),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,Ya),aa(num,nat,numeral_numeral(nat),bit0(one2)))))))) ).
% real_sqrt_sum_squares_mult_ge_zero
tff(fact_2841_real__sqrt__power__even,axiom,
! [N: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( aa(nat,real,power_power(real,aa(real,real,sqrt,X2)),N) = aa(nat,real,power_power(real,X2),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),aa(num,nat,numeral_numeral(nat),bit0(one2)))) ) ) ) ).
% real_sqrt_power_even
tff(fact_2842_arith__geo__mean__sqrt,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),times_times(real),X2),Y))),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),Y)),aa(num,real,numeral_numeral(real),bit0(one2))))) ) ) ).
% arith_geo_mean_sqrt
tff(fact_2843_less__log2__of__power,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N)),M))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(nat,real,semiring_1_of_nat(real),N)),aa(real,real,log(aa(num,real,numeral_numeral(real),bit0(one2))),aa(nat,real,semiring_1_of_nat(real),M)))) ) ).
% less_log2_of_power
tff(fact_2844_le__log2__of__power,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N)),M))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(nat,real,semiring_1_of_nat(real),N)),aa(real,real,log(aa(num,real,numeral_numeral(real),bit0(one2))),aa(nat,real,semiring_1_of_nat(real),M)))) ) ).
% le_log2_of_power
tff(fact_2845_and__nat__rec,axiom,
! [M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344872417868541ns_and(nat),M),N) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(bool,nat,zero_neq_one_of_bool(nat),fconj(aa(bool,bool,fNot,aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),M)),aa(bool,bool,fNot,aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))))),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344872417868541ns_and(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ).
% and_nat_rec
tff(fact_2846_even__nat__iff,axiom,
! [K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(int,nat,nat2,K)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),K)) ) ) ).
% even_nat_iff
tff(fact_2847_arsinh__real__def,axiom,
! [X2: real] : ( aa(real,real,arsinh(real),X2) = aa(real,real,ln_ln(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),one_one(real))))) ) ).
% arsinh_real_def
tff(fact_2848_log2__of__power__less,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N)))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),M))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,log(aa(num,real,numeral_numeral(real),bit0(one2))),aa(nat,real,semiring_1_of_nat(real),M))),aa(nat,real,semiring_1_of_nat(real),N))) ) ) ).
% log2_of_power_less
tff(fact_2849_cos__x__y__le__one,axiom,
! [X2: real,Y: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),X2),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,Y),aa(num,nat,numeral_numeral(nat),bit0(one2)))))))),one_one(real))) ).
% cos_x_y_le_one
tff(fact_2850_real__sqrt__sum__squares__less,axiom,
! [X2: real,U: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),X2)),aa(real,real,aa(real,fun(real,real),divide_divide(real),U),aa(real,real,sqrt,aa(num,real,numeral_numeral(real),bit0(one2))))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),Y)),aa(real,real,aa(real,fun(real,real),divide_divide(real),U),aa(real,real,sqrt,aa(num,real,numeral_numeral(real),bit0(one2))))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,Y),aa(num,nat,numeral_numeral(nat),bit0(one2)))))),U)) ) ) ).
% real_sqrt_sum_squares_less
tff(fact_2851_arcosh__real__def,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),X2))
=> ( aa(real,real,arcosh(real),X2) = aa(real,real,ln_ln(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),one_one(real))))) ) ) ).
% arcosh_real_def
tff(fact_2852_sqrt__sum__squares__half__less,axiom,
! [X2: real,U: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),U),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y),aa(real,real,aa(real,fun(real,real),divide_divide(real),U),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,Y),aa(num,nat,numeral_numeral(nat),bit0(one2)))))),U)) ) ) ) ) ).
% sqrt_sum_squares_half_less
tff(fact_2853_log2__of__power__le,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N)))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),M))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,log(aa(num,real,numeral_numeral(real),bit0(one2))),aa(nat,real,semiring_1_of_nat(real),M))),aa(nat,real,semiring_1_of_nat(real),N))) ) ) ).
% log2_of_power_le
tff(fact_2854_machin__Euler,axiom,
aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),aa(num,num,bit1,bit0(one2)))),aa(real,real,arctan,aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),aa(num,num,bit1,aa(num,num,bit1,one2))))))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),aa(real,real,arctan,aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(num,real,numeral_numeral(real),aa(num,num,bit1,one2))),aa(num,real,numeral_numeral(real),aa(num,num,bit1,aa(num,num,bit1,aa(num,num,bit1,aa(num,num,bit1,bit0(bit0(one2))))))))))) = aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(bit0(one2)))) ).
% machin_Euler
tff(fact_2855_sin__cos__npi,axiom,
! [N: nat] : ( sin(real,aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)))),pi)),aa(num,real,numeral_numeral(real),bit0(one2)))) = aa(nat,real,power_power(real,aa(real,real,uminus_uminus(real),one_one(real))),N) ) ).
% sin_cos_npi
tff(fact_2856_ceiling__log__nat__eq__powr__iff,axiom,
! [B2: nat,K: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),B2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),K))
=> ( ( archimedean_ceiling(real,aa(real,real,log(aa(nat,real,semiring_1_of_nat(real),B2)),aa(nat,real,semiring_1_of_nat(real),K))) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(nat,int,semiring_1_of_nat(int),N)),one_one(int)) )
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,power_power(nat,B2),N)),K))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),aa(nat,nat,power_power(nat,B2),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),one_one(nat))))) ) ) ) ) ).
% ceiling_log_nat_eq_powr_iff
tff(fact_2857_cos__pi__eq__zero,axiom,
! [M: nat] : ( aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),times_times(real),pi),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),M))))),aa(num,real,numeral_numeral(real),bit0(one2)))) = zero_zero(real) ) ).
% cos_pi_eq_zero
tff(fact_2858_ceiling__log__nat__eq__if,axiom,
! [B2: nat,N: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,power_power(nat,B2),N)),K))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),aa(nat,nat,power_power(nat,B2),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),one_one(nat)))))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),B2))
=> ( archimedean_ceiling(real,aa(real,real,log(aa(nat,real,semiring_1_of_nat(real),B2)),aa(nat,real,semiring_1_of_nat(real),K))) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(nat,int,semiring_1_of_nat(int),N)),one_one(int)) ) ) ) ) ).
% ceiling_log_nat_eq_if
tff(fact_2859_ceiling__log2__div2,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( archimedean_ceiling(real,aa(real,real,log(aa(num,real,numeral_numeral(real),bit0(one2))),aa(nat,real,semiring_1_of_nat(real),N))) = aa(int,int,aa(int,fun(int,int),plus_plus(int),archimedean_ceiling(real,aa(real,real,log(aa(num,real,numeral_numeral(real),bit0(one2))),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat))),aa(num,nat,numeral_numeral(nat),bit0(one2)))),one_one(nat)))))),one_one(int)) ) ) ).
% ceiling_log2_div2
tff(fact_2860_floor__log__nat__eq__powr__iff,axiom,
! [B2: nat,K: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),B2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),K))
=> ( ( aa(real,int,archim6421214686448440834_floor(real),aa(real,real,log(aa(nat,real,semiring_1_of_nat(real),B2)),aa(nat,real,semiring_1_of_nat(real),K))) = aa(nat,int,semiring_1_of_nat(int),N) )
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,power_power(nat,B2),N)),K))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),K),aa(nat,nat,power_power(nat,B2),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),one_one(nat))))) ) ) ) ) ).
% floor_log_nat_eq_powr_iff
tff(fact_2861_sin__zero,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ( sin(A,zero_zero(A)) = zero_zero(A) ) ) ).
% sin_zero
tff(fact_2862_cos__minus,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : ( aa(A,A,cos(A),aa(A,A,uminus_uminus(A),X2)) = aa(A,A,cos(A),X2) ) ) ).
% cos_minus
tff(fact_2863_sin__minus,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : ( sin(A,aa(A,A,uminus_uminus(A),X2)) = aa(A,A,uminus_uminus(A),sin(A,X2)) ) ) ).
% sin_minus
tff(fact_2864_cos__zero,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ( aa(A,A,cos(A),zero_zero(A)) = one_one(A) ) ) ).
% cos_zero
tff(fact_2865_floor__zero,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ( aa(A,int,archim6421214686448440834_floor(A),zero_zero(A)) = zero_zero(int) ) ) ).
% floor_zero
tff(fact_2866_floor__numeral,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [V: num] : ( aa(A,int,archim6421214686448440834_floor(A),aa(num,A,numeral_numeral(A),V)) = aa(num,int,numeral_numeral(int),V) ) ) ).
% floor_numeral
tff(fact_2867_ceiling__zero,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ( archimedean_ceiling(A,zero_zero(A)) = zero_zero(int) ) ) ).
% ceiling_zero
tff(fact_2868_floor__one,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ( aa(A,int,archim6421214686448440834_floor(A),one_one(A)) = one_one(int) ) ) ).
% floor_one
tff(fact_2869_ceiling__numeral,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [V: num] : ( archimedean_ceiling(A,aa(num,A,numeral_numeral(A),V)) = aa(num,int,numeral_numeral(int),V) ) ) ).
% ceiling_numeral
tff(fact_2870_ceiling__one,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ( archimedean_ceiling(A,one_one(A)) = one_one(int) ) ) ).
% ceiling_one
tff(fact_2871_sin__pi,axiom,
sin(real,pi) = zero_zero(real) ).
% sin_pi
tff(fact_2872_floor__of__nat,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [N: nat] : ( aa(A,int,archim6421214686448440834_floor(A),aa(nat,A,semiring_1_of_nat(A),N)) = aa(nat,int,semiring_1_of_nat(int),N) ) ) ).
% floor_of_nat
tff(fact_2873_ceiling__of__nat,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [N: nat] : ( archimedean_ceiling(A,aa(nat,A,semiring_1_of_nat(A),N)) = aa(nat,int,semiring_1_of_nat(int),N) ) ) ).
% ceiling_of_nat
tff(fact_2874_sin__pi__minus,axiom,
! [X2: real] : ( sin(real,aa(real,real,aa(real,fun(real,real),minus_minus(real),pi),X2)) = sin(real,X2) ) ).
% sin_pi_minus
tff(fact_2875_cos__pi,axiom,
aa(real,real,cos(real),pi) = aa(real,real,uminus_uminus(real),one_one(real)) ).
% cos_pi
tff(fact_2876_cos__periodic__pi2,axiom,
! [X2: real] : ( aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),pi),X2)) = aa(real,real,uminus_uminus(real),aa(real,real,cos(real),X2)) ) ).
% cos_periodic_pi2
tff(fact_2877_cos__periodic__pi,axiom,
! [X2: real] : ( aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),pi)) = aa(real,real,uminus_uminus(real),aa(real,real,cos(real),X2)) ) ).
% cos_periodic_pi
tff(fact_2878_sin__periodic__pi2,axiom,
! [X2: real] : ( sin(real,aa(real,real,aa(real,fun(real,real),plus_plus(real),pi),X2)) = aa(real,real,uminus_uminus(real),sin(real,X2)) ) ).
% sin_periodic_pi2
tff(fact_2879_sin__periodic__pi,axiom,
! [X2: real] : ( sin(real,aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),pi)) = aa(real,real,uminus_uminus(real),sin(real,X2)) ) ).
% sin_periodic_pi
tff(fact_2880_cos__pi__minus,axiom,
! [X2: real] : ( aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),pi),X2)) = aa(real,real,uminus_uminus(real),aa(real,real,cos(real),X2)) ) ).
% cos_pi_minus
tff(fact_2881_cos__minus__pi,axiom,
! [X2: real] : ( aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),X2),pi)) = aa(real,real,uminus_uminus(real),aa(real,real,cos(real),X2)) ) ).
% cos_minus_pi
tff(fact_2882_sin__minus__pi,axiom,
! [X2: real] : ( sin(real,aa(real,real,aa(real,fun(real,real),minus_minus(real),X2),pi)) = aa(real,real,uminus_uminus(real),sin(real,X2)) ) ).
% sin_minus_pi
tff(fact_2883_zero__le__floor,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),aa(A,int,archim6421214686448440834_floor(A),X2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X2)) ) ) ).
% zero_le_floor
tff(fact_2884_sin__cos__squared__add3,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,cos(A),X2)),aa(A,A,cos(A),X2))),aa(A,A,aa(A,fun(A,A),times_times(A),sin(A,X2)),sin(A,X2))) = one_one(A) ) ) ).
% sin_cos_squared_add3
tff(fact_2885_floor__less__zero,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(A,int,archim6421214686448440834_floor(A),X2)),zero_zero(int)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),zero_zero(A))) ) ) ).
% floor_less_zero
tff(fact_2886_numeral__le__floor,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [V: num,X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(num,int,numeral_numeral(int),V)),aa(A,int,archim6421214686448440834_floor(A),X2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(num,A,numeral_numeral(A),V)),X2)) ) ) ).
% numeral_le_floor
tff(fact_2887_zero__less__floor,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),aa(A,int,archim6421214686448440834_floor(A),X2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),X2)) ) ) ).
% zero_less_floor
tff(fact_2888_floor__le__zero,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(A,int,archim6421214686448440834_floor(A),X2)),zero_zero(int)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),one_one(A))) ) ) ).
% floor_le_zero
tff(fact_2889_ceiling__le__zero,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),archimedean_ceiling(A,X2)),zero_zero(int)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),zero_zero(A))) ) ) ).
% ceiling_le_zero
tff(fact_2890_floor__less__numeral,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,V: num] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(A,int,archim6421214686448440834_floor(A),X2)),aa(num,int,numeral_numeral(int),V)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),aa(num,A,numeral_numeral(A),V))) ) ) ).
% floor_less_numeral
tff(fact_2891_zero__less__ceiling,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),archimedean_ceiling(A,X2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),X2)) ) ) ).
% zero_less_ceiling
tff(fact_2892_one__le__floor,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),one_one(int)),aa(A,int,archim6421214686448440834_floor(A),X2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),X2)) ) ) ).
% one_le_floor
tff(fact_2893_ceiling__le__numeral,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,V: num] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),archimedean_ceiling(A,X2)),aa(num,int,numeral_numeral(int),V)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(num,A,numeral_numeral(A),V))) ) ) ).
% ceiling_le_numeral
tff(fact_2894_floor__less__one,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(A,int,archim6421214686448440834_floor(A),X2)),one_one(int)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),one_one(A))) ) ) ).
% floor_less_one
tff(fact_2895_ceiling__less__one,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),archimedean_ceiling(A,X2)),one_one(int)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),zero_zero(A))) ) ) ).
% ceiling_less_one
tff(fact_2896_one__le__ceiling,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),one_one(int)),archimedean_ceiling(A,X2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),X2)) ) ) ).
% one_le_ceiling
tff(fact_2897_numeral__less__ceiling,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [V: num,X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(num,int,numeral_numeral(int),V)),archimedean_ceiling(A,X2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(num,A,numeral_numeral(A),V)),X2)) ) ) ).
% numeral_less_ceiling
tff(fact_2898_floor__neg__numeral,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [V: num] : ( aa(A,int,archim6421214686448440834_floor(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),V))) = aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),V)) ) ) ).
% floor_neg_numeral
tff(fact_2899_ceiling__le__one,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),archimedean_ceiling(A,X2)),one_one(int)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),one_one(A))) ) ) ).
% ceiling_le_one
tff(fact_2900_one__less__ceiling,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),one_one(int)),archimedean_ceiling(A,X2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),X2)) ) ) ).
% one_less_ceiling
tff(fact_2901_ceiling__add__numeral,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,V: num] : ( archimedean_ceiling(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),aa(num,A,numeral_numeral(A),V))) = aa(int,int,aa(int,fun(int,int),plus_plus(int),archimedean_ceiling(A,X2)),aa(num,int,numeral_numeral(int),V)) ) ) ).
% ceiling_add_numeral
tff(fact_2902_floor__diff__numeral,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,V: num] : ( aa(A,int,archim6421214686448440834_floor(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),aa(num,A,numeral_numeral(A),V))) = aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(A,int,archim6421214686448440834_floor(A),X2)),aa(num,int,numeral_numeral(int),V)) ) ) ).
% floor_diff_numeral
tff(fact_2903_ceiling__neg__numeral,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [V: num] : ( archimedean_ceiling(A,aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),V))) = aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),V)) ) ) ).
% ceiling_neg_numeral
tff(fact_2904_ceiling__add__one,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] : ( archimedean_ceiling(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),one_one(A))) = aa(int,int,aa(int,fun(int,int),plus_plus(int),archimedean_ceiling(A,X2)),one_one(int)) ) ) ).
% ceiling_add_one
tff(fact_2905_floor__diff__one,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] : ( aa(A,int,archim6421214686448440834_floor(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),one_one(A))) = aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(A,int,archim6421214686448440834_floor(A),X2)),one_one(int)) ) ) ).
% floor_diff_one
tff(fact_2906_ceiling__diff__numeral,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,V: num] : ( archimedean_ceiling(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),aa(num,A,numeral_numeral(A),V))) = aa(int,int,aa(int,fun(int,int),minus_minus(int),archimedean_ceiling(A,X2)),aa(num,int,numeral_numeral(int),V)) ) ) ).
% ceiling_diff_numeral
tff(fact_2907_ceiling__diff__one,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] : ( archimedean_ceiling(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),one_one(A))) = aa(int,int,aa(int,fun(int,int),minus_minus(int),archimedean_ceiling(A,X2)),one_one(int)) ) ) ).
% ceiling_diff_one
tff(fact_2908_floor__numeral__power,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: num,N: nat] : ( aa(A,int,archim6421214686448440834_floor(A),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),X2)),N)) = aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),X2)),N) ) ) ).
% floor_numeral_power
tff(fact_2909_ceiling__numeral__power,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: num,N: nat] : ( archimedean_ceiling(A,aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),X2)),N)) = aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),X2)),N) ) ) ).
% ceiling_numeral_power
tff(fact_2910_sin__npi,axiom,
! [N: nat] : ( sin(real,aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N)),pi)) = zero_zero(real) ) ).
% sin_npi
tff(fact_2911_sin__npi2,axiom,
! [N: nat] : ( sin(real,aa(real,real,aa(real,fun(real,real),times_times(real),pi),aa(nat,real,semiring_1_of_nat(real),N))) = zero_zero(real) ) ).
% sin_npi2
tff(fact_2912_floor__divide__eq__div__numeral,axiom,
! [A2: num,B2: num] : ( aa(real,int,archim6421214686448440834_floor(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(num,real,numeral_numeral(real),A2)),aa(num,real,numeral_numeral(real),B2))) = aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(num,int,numeral_numeral(int),A2)),aa(num,int,numeral_numeral(int),B2)) ) ).
% floor_divide_eq_div_numeral
tff(fact_2913_nat__ceiling__le__eq,axiom,
! [X2: real,A2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(int,nat,nat2,archimedean_ceiling(real,X2))),A2))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),aa(nat,real,semiring_1_of_nat(real),A2))) ) ).
% nat_ceiling_le_eq
tff(fact_2914_ceiling__less__zero,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),archimedean_ceiling(A,X2)),zero_zero(int)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(A,A,uminus_uminus(A),one_one(A)))) ) ) ).
% ceiling_less_zero
tff(fact_2915_zero__le__ceiling,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),archimedean_ceiling(A,X2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),one_one(A))),X2)) ) ) ).
% zero_le_ceiling
tff(fact_2916_ceiling__divide__eq__div__numeral,axiom,
! [A2: num,B2: num] : ( archimedean_ceiling(real,aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(num,real,numeral_numeral(real),A2)),aa(num,real,numeral_numeral(real),B2))) = aa(int,int,uminus_uminus(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),A2))),aa(num,int,numeral_numeral(int),B2))) ) ).
% ceiling_divide_eq_div_numeral
tff(fact_2917_numeral__less__floor,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [V: num,X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(num,int,numeral_numeral(int),V)),aa(A,int,archim6421214686448440834_floor(A),X2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(num,A,numeral_numeral(A),V)),one_one(A))),X2)) ) ) ).
% numeral_less_floor
tff(fact_2918_floor__le__numeral,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,V: num] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(A,int,archim6421214686448440834_floor(A),X2)),aa(num,int,numeral_numeral(int),V)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(num,A,numeral_numeral(A),V)),one_one(A)))) ) ) ).
% floor_le_numeral
tff(fact_2919_one__less__floor,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),one_one(int)),aa(A,int,archim6421214686448440834_floor(A),X2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(num,A,numeral_numeral(A),bit0(one2))),X2)) ) ) ).
% one_less_floor
tff(fact_2920_floor__le__one,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(A,int,archim6421214686448440834_floor(A),X2)),one_one(int)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),aa(num,A,numeral_numeral(A),bit0(one2)))) ) ) ).
% floor_le_one
tff(fact_2921_ceiling__less__numeral,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,V: num] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),archimedean_ceiling(A,X2)),aa(num,int,numeral_numeral(int),V)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(num,A,numeral_numeral(A),V)),one_one(A)))) ) ) ).
% ceiling_less_numeral
tff(fact_2922_numeral__le__ceiling,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [V: num,X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(num,int,numeral_numeral(int),V)),archimedean_ceiling(A,X2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(num,A,numeral_numeral(A),V)),one_one(A))),X2)) ) ) ).
% numeral_le_ceiling
tff(fact_2923_neg__numeral__le__floor,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [V: num,X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),V))),aa(A,int,archim6421214686448440834_floor(A),X2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),V))),X2)) ) ) ).
% neg_numeral_le_floor
tff(fact_2924_floor__less__neg__numeral,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,V: num] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(A,int,archim6421214686448440834_floor(A),X2)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),V))))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),V)))) ) ) ).
% floor_less_neg_numeral
tff(fact_2925_ceiling__le__neg__numeral,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,V: num] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),archimedean_ceiling(A,X2)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),V))))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),V)))) ) ) ).
% ceiling_le_neg_numeral
tff(fact_2926_neg__numeral__less__ceiling,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [V: num,X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),V))),archimedean_ceiling(A,X2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),V))),X2)) ) ) ).
% neg_numeral_less_ceiling
tff(fact_2927_cos__pi__half,axiom,
aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))) = zero_zero(real) ).
% cos_pi_half
tff(fact_2928_sin__two__pi,axiom,
sin(real,aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),pi)) = zero_zero(real) ).
% sin_two_pi
tff(fact_2929_sin__pi__half,axiom,
sin(real,aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))) = one_one(real) ).
% sin_pi_half
tff(fact_2930_cos__two__pi,axiom,
aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),pi)) = one_one(real) ).
% cos_two_pi
tff(fact_2931_cos__periodic,axiom,
! [X2: real] : ( aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),pi))) = aa(real,real,cos(real),X2) ) ).
% cos_periodic
tff(fact_2932_sin__periodic,axiom,
! [X2: real] : ( sin(real,aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),pi))) = sin(real,X2) ) ).
% sin_periodic
tff(fact_2933_cos__2pi__minus,axiom,
! [X2: real] : ( aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),pi)),X2)) = aa(real,real,cos(real),X2) ) ).
% cos_2pi_minus
tff(fact_2934_cos__npi,axiom,
! [N: nat] : ( aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N)),pi)) = aa(nat,real,power_power(real,aa(real,real,uminus_uminus(real),one_one(real))),N) ) ).
% cos_npi
tff(fact_2935_cos__npi2,axiom,
! [N: nat] : ( aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),times_times(real),pi),aa(nat,real,semiring_1_of_nat(real),N))) = aa(nat,real,power_power(real,aa(real,real,uminus_uminus(real),one_one(real))),N) ) ).
% cos_npi2
tff(fact_2936_floor__one__divide__eq__div__numeral,axiom,
! [B2: num] : ( aa(real,int,archim6421214686448440834_floor(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),B2))) = aa(int,int,aa(int,fun(int,int),divide_divide(int),one_one(int)),aa(num,int,numeral_numeral(int),B2)) ) ).
% floor_one_divide_eq_div_numeral
tff(fact_2937_floor__minus__divide__eq__div__numeral,axiom,
! [A2: num,B2: num] : ( aa(real,int,archim6421214686448440834_floor(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(num,real,numeral_numeral(real),A2)),aa(num,real,numeral_numeral(real),B2)))) = aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),A2))),aa(num,int,numeral_numeral(int),B2)) ) ).
% floor_minus_divide_eq_div_numeral
tff(fact_2938_ceiling__minus__divide__eq__div__numeral,axiom,
! [A2: num,B2: num] : ( archimedean_ceiling(real,aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(num,real,numeral_numeral(real),A2)),aa(num,real,numeral_numeral(real),B2)))) = aa(int,int,uminus_uminus(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(num,int,numeral_numeral(int),A2)),aa(num,int,numeral_numeral(int),B2))) ) ).
% ceiling_minus_divide_eq_div_numeral
tff(fact_2939_sin__cos__squared__add2,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,power_power(A,aa(A,A,cos(A),X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,A,power_power(A,sin(A,X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))) = one_one(A) ) ) ).
% sin_cos_squared_add2
tff(fact_2940_sin__cos__squared__add,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,power_power(A,sin(A,X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,A,power_power(A,aa(A,A,cos(A),X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))) = one_one(A) ) ) ).
% sin_cos_squared_add
tff(fact_2941_sin__2npi,axiom,
! [N: nat] : ( sin(real,aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),aa(nat,real,semiring_1_of_nat(real),N))),pi)) = zero_zero(real) ) ).
% sin_2npi
tff(fact_2942_cos__2npi,axiom,
! [N: nat] : ( aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),aa(nat,real,semiring_1_of_nat(real),N))),pi)) = one_one(real) ) ).
% cos_2npi
tff(fact_2943_sin__2pi__minus,axiom,
! [X2: real] : ( sin(real,aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),pi)),X2)) = aa(real,real,uminus_uminus(real),sin(real,X2)) ) ).
% sin_2pi_minus
tff(fact_2944_neg__numeral__less__floor,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [V: num,X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),V))),aa(A,int,archim6421214686448440834_floor(A),X2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),V))),one_one(A))),X2)) ) ) ).
% neg_numeral_less_floor
tff(fact_2945_floor__le__neg__numeral,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,V: num] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(A,int,archim6421214686448440834_floor(A),X2)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),V))))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),V))),one_one(A)))) ) ) ).
% floor_le_neg_numeral
tff(fact_2946_ceiling__less__neg__numeral,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,V: num] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),archimedean_ceiling(A,X2)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),V))))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),V))),one_one(A)))) ) ) ).
% ceiling_less_neg_numeral
tff(fact_2947_neg__numeral__le__ceiling,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [V: num,X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),V))),archimedean_ceiling(A,X2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),V))),one_one(A))),X2)) ) ) ).
% neg_numeral_le_ceiling
tff(fact_2948_cos__3over2__pi,axiom,
aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(num,real,numeral_numeral(real),aa(num,num,bit1,one2))),aa(num,real,numeral_numeral(real),bit0(one2)))),pi)) = zero_zero(real) ).
% cos_3over2_pi
tff(fact_2949_floor__minus__one__divide__eq__div__numeral,axiom,
! [B2: num] : ( aa(real,int,archim6421214686448440834_floor(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),B2)))) = aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,uminus_uminus(int),one_one(int))),aa(num,int,numeral_numeral(int),B2)) ) ).
% floor_minus_one_divide_eq_div_numeral
tff(fact_2950_sin__3over2__pi,axiom,
sin(real,aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(num,real,numeral_numeral(real),aa(num,num,bit1,one2))),aa(num,real,numeral_numeral(real),bit0(one2)))),pi)) = aa(real,real,uminus_uminus(real),one_one(real)) ).
% sin_3over2_pi
tff(fact_2951_floor__le__ceiling,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] : pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(A,int,archim6421214686448440834_floor(A),X2)),archimedean_ceiling(A,X2))) ) ).
% floor_le_ceiling
tff(fact_2952_polar__Ex,axiom,
! [X2: real,Y: real] :
? [R4: real,A4: real] :
( ( X2 = aa(real,real,aa(real,fun(real,real),times_times(real),R4),aa(real,real,cos(real),A4)) )
& ( Y = aa(real,real,aa(real,fun(real,real),times_times(real),R4),sin(real,A4)) ) ) ).
% polar_Ex
tff(fact_2953_ceiling__minus,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] : ( archimedean_ceiling(A,aa(A,A,uminus_uminus(A),X2)) = aa(int,int,uminus_uminus(int),aa(A,int,archim6421214686448440834_floor(A),X2)) ) ) ).
% ceiling_minus
tff(fact_2954_floor__minus,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] : ( aa(A,int,archim6421214686448440834_floor(A),aa(A,A,uminus_uminus(A),X2)) = aa(int,int,uminus_uminus(int),archimedean_ceiling(A,X2)) ) ) ).
% floor_minus
tff(fact_2955_ceiling__def,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] : ( archimedean_ceiling(A,X2) = aa(int,int,uminus_uminus(int),aa(A,int,archim6421214686448440834_floor(A),aa(A,A,uminus_uminus(A),X2))) ) ) ).
% ceiling_def
tff(fact_2956_sin__diff,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A,Y: A] : ( sin(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),sin(A,X2)),aa(A,A,cos(A),Y))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,cos(A),X2)),sin(A,Y))) ) ) ).
% sin_diff
tff(fact_2957_sin__add,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A,Y: A] : ( sin(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),sin(A,X2)),aa(A,A,cos(A),Y))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,cos(A),X2)),sin(A,Y))) ) ) ).
% sin_add
tff(fact_2958_cos__one__sin__zero,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] :
( ( aa(A,A,cos(A),X2) = one_one(A) )
=> ( sin(A,X2) = zero_zero(A) ) ) ) ).
% cos_one_sin_zero
tff(fact_2959_cos__diff,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A,Y: A] : ( aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,cos(A),X2)),aa(A,A,cos(A),Y))),aa(A,A,aa(A,fun(A,A),times_times(A),sin(A,X2)),sin(A,Y))) ) ) ).
% cos_diff
tff(fact_2960_cos__add,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A,Y: A] : ( aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,cos(A),X2)),aa(A,A,cos(A),Y))),aa(A,A,aa(A,fun(A,A),times_times(A),sin(A,X2)),sin(A,Y))) ) ) ).
% cos_add
tff(fact_2961_sin__zero__norm__cos__one,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] :
( ( sin(A,X2) = zero_zero(A) )
=> ( real_V7770717601297561774m_norm(A,aa(A,A,cos(A),X2)) = one_one(real) ) ) ) ).
% sin_zero_norm_cos_one
tff(fact_2962_ceiling__diff__floor__le__1,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] : pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),archimedean_ceiling(A,X2)),aa(A,int,archim6421214686448440834_floor(A),X2))),one_one(int))) ) ).
% ceiling_diff_floor_le_1
tff(fact_2963_sin__zero__abs__cos__one,axiom,
! [X2: real] :
( ( sin(real,X2) = zero_zero(real) )
=> ( aa(real,real,abs_abs(real),aa(real,real,cos(real),X2)) = one_one(real) ) ) ).
% sin_zero_abs_cos_one
tff(fact_2964_sin__double,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : ( sin(A,aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),X2)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),sin(A,X2))),aa(A,A,cos(A),X2)) ) ) ).
% sin_double
tff(fact_2965_sincos__principal__value,axiom,
! [X2: real] :
? [Y3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),pi)),Y3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y3),pi))
& ( sin(real,Y3) = sin(real,X2) )
& ( aa(real,real,cos(real),Y3) = aa(real,real,cos(real),X2) ) ) ).
% sincos_principal_value
tff(fact_2966_floor__mono,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(A,int,archim6421214686448440834_floor(A),X2)),aa(A,int,archim6421214686448440834_floor(A),Y))) ) ) ).
% floor_mono
tff(fact_2967_floor__less__cancel,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,Y: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(A,int,archim6421214686448440834_floor(A),X2)),aa(A,int,archim6421214686448440834_floor(A),Y)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y)) ) ) ).
% floor_less_cancel
tff(fact_2968_ceiling__mono,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [Y: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),X2))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),archimedean_ceiling(A,Y)),archimedean_ceiling(A,X2))) ) ) ).
% ceiling_mono
tff(fact_2969_sin__x__le__x,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),sin(real,X2)),X2)) ) ).
% sin_x_le_x
tff(fact_2970_ceiling__less__cancel,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,Y: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),archimedean_ceiling(A,X2)),archimedean_ceiling(A,Y)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y)) ) ) ).
% ceiling_less_cancel
tff(fact_2971_sin__le__one,axiom,
! [X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),sin(real,X2)),one_one(real))) ).
% sin_le_one
tff(fact_2972_cos__le__one,axiom,
! [X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,cos(real),X2)),one_one(real))) ).
% cos_le_one
tff(fact_2973_abs__sin__x__le__abs__x,axiom,
! [X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),sin(real,X2))),aa(real,real,abs_abs(real),X2))) ).
% abs_sin_x_le_abs_x
tff(fact_2974_cos__arctan__not__zero,axiom,
! [X2: real] : ( aa(real,real,cos(real),aa(real,real,arctan,X2)) != zero_zero(real) ) ).
% cos_arctan_not_zero
tff(fact_2975_sin__cos__le1,axiom,
! [X2: real,Y: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,aa(real,fun(real,real),times_times(real),sin(real,X2)),sin(real,Y))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,cos(real),X2)),aa(real,real,cos(real),Y))))),one_one(real))) ).
% sin_cos_le1
tff(fact_2976_sin__squared__eq,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : ( aa(nat,A,power_power(A,sin(A,X2)),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),aa(nat,A,power_power(A,aa(A,A,cos(A),X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))) ) ) ).
% sin_squared_eq
tff(fact_2977_cos__squared__eq,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : ( aa(nat,A,power_power(A,aa(A,A,cos(A),X2)),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),aa(nat,A,power_power(A,sin(A,X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))) ) ) ).
% cos_squared_eq
tff(fact_2978_le__floor__add,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,Y: A] : pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(A,int,archim6421214686448440834_floor(A),X2)),aa(A,int,archim6421214686448440834_floor(A),Y))),aa(A,int,archim6421214686448440834_floor(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)))) ) ).
% le_floor_add
tff(fact_2979_of__nat__ceiling,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [R: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),R),aa(nat,A,semiring_1_of_nat(A),aa(int,nat,nat2,archimedean_ceiling(A,R))))) ) ).
% of_nat_ceiling
tff(fact_2980_sin__gt__zero,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),pi))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),sin(real,X2))) ) ) ).
% sin_gt_zero
tff(fact_2981_sin__x__ge__neg__x,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),X2)),sin(real,X2))) ) ).
% sin_x_ge_neg_x
tff(fact_2982_sin__ge__zero,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),pi))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),sin(real,X2))) ) ) ).
% sin_ge_zero
tff(fact_2983_real__nat__ceiling__ge,axiom,
! [X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),aa(nat,real,semiring_1_of_nat(real),aa(int,nat,nat2,archimedean_ceiling(real,X2))))) ).
% real_nat_ceiling_ge
tff(fact_2984_sin__ge__minus__one,axiom,
! [X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),sin(real,X2))) ).
% sin_ge_minus_one
tff(fact_2985_ceiling__add__le,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,Y: A] : pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),archimedean_ceiling(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y))),aa(int,int,aa(int,fun(int,int),plus_plus(int),archimedean_ceiling(A,X2)),archimedean_ceiling(A,Y)))) ) ).
% ceiling_add_le
tff(fact_2986_cos__inj__pi,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),pi))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),pi))
=> ( ( aa(real,real,cos(real),X2) = aa(real,real,cos(real),Y) )
=> ( X2 = Y ) ) ) ) ) ) ).
% cos_inj_pi
tff(fact_2987_cos__mono__le__eq,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),pi))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),pi))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,cos(real),X2)),aa(real,real,cos(real),Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),X2)) ) ) ) ) ) ).
% cos_mono_le_eq
tff(fact_2988_cos__monotone__0__pi__le,axiom,
! [Y: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),pi))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,cos(real),X2)),aa(real,real,cos(real),Y))) ) ) ) ).
% cos_monotone_0_pi_le
tff(fact_2989_cos__ge__minus__one,axiom,
! [X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),aa(real,real,cos(real),X2))) ).
% cos_ge_minus_one
tff(fact_2990_abs__sin__le__one,axiom,
! [X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),sin(real,X2))),one_one(real))) ).
% abs_sin_le_one
tff(fact_2991_abs__cos__le__one,axiom,
! [X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),aa(real,real,cos(real),X2))),one_one(real))) ).
% abs_cos_le_one
tff(fact_2992_sin__times__sin,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [W: A,Z: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),sin(A,W)),sin(A,Z)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),W),Z))),aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),W),Z)))),aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ).
% sin_times_sin
tff(fact_2993_sin__times__cos,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [W: A,Z: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),sin(A,W)),aa(A,A,cos(A),Z)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),sin(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),W),Z))),sin(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),W),Z)))),aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ).
% sin_times_cos
tff(fact_2994_cos__times__sin,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [W: A,Z: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,cos(A),W)),sin(A,Z)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),sin(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),W),Z))),sin(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),W),Z)))),aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ).
% cos_times_sin
tff(fact_2995_sin__plus__sin,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [W: A,Z: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),sin(A,W)),sin(A,Z)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),sin(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),W),Z)),aa(num,A,numeral_numeral(A),bit0(one2)))))),aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),W),Z)),aa(num,A,numeral_numeral(A),bit0(one2))))) ) ) ).
% sin_plus_sin
tff(fact_2996_sin__diff__sin,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [W: A,Z: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),sin(A,W)),sin(A,Z)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),sin(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),W),Z)),aa(num,A,numeral_numeral(A),bit0(one2)))))),aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),W),Z)),aa(num,A,numeral_numeral(A),bit0(one2))))) ) ) ).
% sin_diff_sin
tff(fact_2997_cos__diff__cos,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [W: A,Z: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,cos(A),W)),aa(A,A,cos(A),Z)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),sin(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),W),Z)),aa(num,A,numeral_numeral(A),bit0(one2)))))),sin(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),Z),W)),aa(num,A,numeral_numeral(A),bit0(one2))))) ) ) ).
% cos_diff_cos
tff(fact_2998_cos__double,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : ( aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),X2)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,power_power(A,aa(A,A,cos(A),X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,A,power_power(A,sin(A,X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))) ) ) ).
% cos_double
tff(fact_2999_cos__double__sin,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [W: A] : ( aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),W)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(nat,A,power_power(A,sin(A,W)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ) ).
% cos_double_sin
tff(fact_3000_of__nat__floor,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [R: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),R))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,semiring_1_of_nat(A),aa(int,nat,nat2,aa(A,int,archim6421214686448440834_floor(A),R)))),R)) ) ) ).
% of_nat_floor
tff(fact_3001_one__add__floor,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] : ( aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(A,int,archim6421214686448440834_floor(A),X2)),one_one(int)) = aa(A,int,archim6421214686448440834_floor(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),one_one(A))) ) ) ).
% one_add_floor
tff(fact_3002_le__mult__nat__floor,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [A2: A,B2: A] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(int,nat,nat2,aa(A,int,archim6421214686448440834_floor(A),A2))),aa(int,nat,nat2,aa(A,int,archim6421214686448440834_floor(A),B2)))),aa(int,nat,nat2,aa(A,int,archim6421214686448440834_floor(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2))))) ) ).
% le_mult_nat_floor
tff(fact_3003_floor__divide__of__nat__eq,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [M: nat,N: nat] : ( aa(A,int,archim6421214686448440834_floor(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(nat,A,semiring_1_of_nat(A),M)),aa(nat,A,semiring_1_of_nat(A),N))) = aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N)) ) ) ).
% floor_divide_of_nat_eq
tff(fact_3004_nat__floor__neg,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),zero_zero(real)))
=> ( aa(int,nat,nat2,aa(real,int,archim6421214686448440834_floor(real),X2)) = zero_zero(nat) ) ) ).
% nat_floor_neg
tff(fact_3005_cos__two__neq__zero,axiom,
aa(real,real,cos(real),aa(num,real,numeral_numeral(real),bit0(one2))) != zero_zero(real) ).
% cos_two_neq_zero
tff(fact_3006_floor__eq3,axiom,
! [N: nat,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(nat,real,semiring_1_of_nat(real),N)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,suc,N))))
=> ( aa(int,nat,nat2,aa(real,int,archim6421214686448440834_floor(real),X2)) = N ) ) ) ).
% floor_eq3
tff(fact_3007_le__nat__floor,axiom,
! [X2: nat,A2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(nat,real,semiring_1_of_nat(real),X2)),A2))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),X2),aa(int,nat,nat2,aa(real,int,archim6421214686448440834_floor(real),A2)))) ) ).
% le_nat_floor
tff(fact_3008_cos__mono__less__eq,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),pi))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),pi))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,cos(real),X2)),aa(real,real,cos(real),Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y),X2)) ) ) ) ) ) ).
% cos_mono_less_eq
tff(fact_3009_cos__monotone__0__pi,axiom,
! [Y: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),pi))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,cos(real),X2)),aa(real,real,cos(real),Y))) ) ) ) ).
% cos_monotone_0_pi
tff(fact_3010_sin__eq__0__pi,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),pi)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),pi))
=> ( ( sin(real,X2) = zero_zero(real) )
=> ( X2 = zero_zero(real) ) ) ) ) ).
% sin_eq_0_pi
tff(fact_3011_sin__zero__pi__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),X2)),pi))
=> ( ( sin(real,X2) = zero_zero(real) )
<=> ( X2 = zero_zero(real) ) ) ) ).
% sin_zero_pi_iff
tff(fact_3012_cos__monotone__minus__pi__0_H,axiom,
! [Y: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),pi)),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),zero_zero(real)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,cos(real),Y)),aa(real,real,cos(real),X2))) ) ) ) ).
% cos_monotone_minus_pi_0'
tff(fact_3013_sincos__total__pi,axiom,
! [Y: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y))
=> ( ( aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,Y),aa(num,nat,numeral_numeral(nat),bit0(one2)))) = one_one(real) )
=> ? [T3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),T3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),T3),pi))
& ( X2 = aa(real,real,cos(real),T3) )
& ( Y = sin(real,T3) ) ) ) ) ).
% sincos_total_pi
tff(fact_3014_sin__cos__sqrt,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),sin(real,X2)))
=> ( sin(real,X2) = aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),minus_minus(real),one_one(real)),aa(nat,real,power_power(real,aa(real,real,cos(real),X2)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ) ).
% sin_cos_sqrt
tff(fact_3015_sin__expansion__lemma,axiom,
! [X2: real,M: nat] : ( sin(real,aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,suc,M))),pi)),aa(num,real,numeral_numeral(real),bit0(one2))))) = aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),M)),pi)),aa(num,real,numeral_numeral(real),bit0(one2))))) ) ).
% sin_expansion_lemma
tff(fact_3016_le__mult__floor,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(A,int,archim6421214686448440834_floor(A),A2)),aa(A,int,archim6421214686448440834_floor(A),B2))),aa(A,int,archim6421214686448440834_floor(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)))) ) ) ) ).
% le_mult_floor
tff(fact_3017_cos__expansion__lemma,axiom,
! [X2: real,M: nat] : ( aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,suc,M))),pi)),aa(num,real,numeral_numeral(real),bit0(one2))))) = aa(real,real,uminus_uminus(real),sin(real,aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),M)),pi)),aa(num,real,numeral_numeral(real),bit0(one2)))))) ) ).
% cos_expansion_lemma
tff(fact_3018_sin__gt__zero__02,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),aa(num,real,numeral_numeral(real),bit0(one2))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),sin(real,X2))) ) ) ).
% sin_gt_zero_02
tff(fact_3019_mult__ceiling__le,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),archimedean_ceiling(A,aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2))),aa(int,int,aa(int,fun(int,int),times_times(int),archimedean_ceiling(A,A2)),archimedean_ceiling(A,B2)))) ) ) ) ).
% mult_ceiling_le
tff(fact_3020_floor__eq4,axiom,
! [N: nat,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(nat,real,semiring_1_of_nat(real),N)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,suc,N))))
=> ( aa(int,nat,nat2,aa(real,int,archim6421214686448440834_floor(real),X2)) = N ) ) ) ).
% floor_eq4
tff(fact_3021_cos__two__less__zero,axiom,
pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,cos(real),aa(num,real,numeral_numeral(real),bit0(one2)))),zero_zero(real))) ).
% cos_two_less_zero
tff(fact_3022_cos__two__le__zero,axiom,
pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,cos(real),aa(num,real,numeral_numeral(real),bit0(one2)))),zero_zero(real))) ).
% cos_two_le_zero
tff(fact_3023_cos__is__zero,axiom,
? [X3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X3),aa(num,real,numeral_numeral(real),bit0(one2))))
& ( aa(real,real,cos(real),X3) = zero_zero(real) )
& ! [Y4: real] :
( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y4))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y4),aa(num,real,numeral_numeral(real),bit0(one2))))
& ( aa(real,real,cos(real),Y4) = zero_zero(real) ) )
=> ( Y4 = X3 ) ) ) ).
% cos_is_zero
tff(fact_3024_cos__monotone__minus__pi__0,axiom,
! [Y: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),pi)),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),zero_zero(real)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,cos(real),Y)),aa(real,real,cos(real),X2))) ) ) ) ).
% cos_monotone_minus_pi_0
tff(fact_3025_cos__total,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),one_one(real)))
=> ? [X3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X3),pi))
& ( aa(real,real,cos(real),X3) = Y )
& ! [Y4: real] :
( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y4))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y4),pi))
& ( aa(real,real,cos(real),Y4) = Y ) )
=> ( Y4 = X3 ) ) ) ) ) ).
% cos_total
tff(fact_3026_sincos__total__pi__half,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y))
=> ( ( aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,Y),aa(num,nat,numeral_numeral(nat),bit0(one2)))) = one_one(real) )
=> ? [T3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),T3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),T3),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
& ( X2 = aa(real,real,cos(real),T3) )
& ( Y = sin(real,T3) ) ) ) ) ) ).
% sincos_total_pi_half
tff(fact_3027_sincos__total__2pi__le,axiom,
! [X2: real,Y: real] :
( ( aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,Y),aa(num,nat,numeral_numeral(nat),bit0(one2)))) = one_one(real) )
=> ? [T3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),T3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),T3),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),pi)))
& ( X2 = aa(real,real,cos(real),T3) )
& ( Y = sin(real,T3) ) ) ) ).
% sincos_total_2pi_le
tff(fact_3028_sincos__total__2pi,axiom,
! [X2: real,Y: real] :
( ( aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,Y),aa(num,nat,numeral_numeral(nat),bit0(one2)))) = one_one(real) )
=> ~ ! [T3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),T3))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),T3),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),pi)))
=> ( ( X2 = aa(real,real,cos(real),T3) )
=> ( Y != sin(real,T3) ) ) ) ) ) ).
% sincos_total_2pi
tff(fact_3029_sin__pi__divide__n__ge__0,axiom,
! [N: nat] :
( ( N != zero_zero(nat) )
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),sin(real,aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(nat,real,semiring_1_of_nat(real),N))))) ) ).
% sin_pi_divide_n_ge_0
tff(fact_3030_sin__45,axiom,
sin(real,aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(bit0(one2))))) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,sqrt,aa(num,real,numeral_numeral(real),bit0(one2)))),aa(num,real,numeral_numeral(real),bit0(one2))) ).
% sin_45
tff(fact_3031_cos__45,axiom,
aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(bit0(one2))))) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,sqrt,aa(num,real,numeral_numeral(real),bit0(one2)))),aa(num,real,numeral_numeral(real),bit0(one2))) ).
% cos_45
tff(fact_3032_cos__times__cos,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [W: A,Z: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,cos(A),W)),aa(A,A,cos(A),Z)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),W),Z))),aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),W),Z)))),aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ).
% cos_times_cos
tff(fact_3033_cos__plus__cos,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [W: A,Z: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,cos(A),W)),aa(A,A,cos(A),Z)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),W),Z)),aa(num,A,numeral_numeral(A),bit0(one2)))))),aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),W),Z)),aa(num,A,numeral_numeral(A),bit0(one2))))) ) ) ).
% cos_plus_cos
tff(fact_3034_sin__gt__zero2,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),sin(real,X2))) ) ) ).
% sin_gt_zero2
tff(fact_3035_sin__lt__zero,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),pi),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),pi)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),sin(real,X2)),zero_zero(real))) ) ) ).
% sin_lt_zero
tff(fact_3036_cos__double__less__one,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),aa(num,real,numeral_numeral(real),bit0(one2))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),X2))),one_one(real))) ) ) ).
% cos_double_less_one
tff(fact_3037_sin__30,axiom,
sin(real,aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(aa(num,num,bit1,one2))))) = aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2))) ).
% sin_30
tff(fact_3038_cos__gt__zero,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,cos(real),X2))) ) ) ).
% cos_gt_zero
tff(fact_3039_sin__monotone__2pi__le,axiom,
! [Y: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),sin(real,Y)),sin(real,X2))) ) ) ) ).
% sin_monotone_2pi_le
tff(fact_3040_sin__mono__le__eq,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),sin(real,X2)),sin(real,Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),Y)) ) ) ) ) ) ).
% sin_mono_le_eq
tff(fact_3041_sin__inj__pi,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> ( ( sin(real,X2) = sin(real,Y) )
=> ( X2 = Y ) ) ) ) ) ) ).
% sin_inj_pi
tff(fact_3042_cos__60,axiom,
aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),aa(num,num,bit1,one2)))) = aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2))) ).
% cos_60
tff(fact_3043_sin__60,axiom,
sin(real,aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),aa(num,num,bit1,one2)))) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,sqrt,aa(num,real,numeral_numeral(real),aa(num,num,bit1,one2)))),aa(num,real,numeral_numeral(real),bit0(one2))) ).
% sin_60
tff(fact_3044_cos__30,axiom,
aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(aa(num,num,bit1,one2))))) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,sqrt,aa(num,real,numeral_numeral(real),aa(num,num,bit1,one2)))),aa(num,real,numeral_numeral(real),bit0(one2))) ).
% cos_30
tff(fact_3045_cos__double__cos,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [W: A] : ( aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),W)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(nat,A,power_power(A,aa(A,A,cos(A),W)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),one_one(A)) ) ) ).
% cos_double_cos
tff(fact_3046_cos__treble__cos,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : ( aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),aa(num,num,bit1,one2))),X2)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(bit0(one2)))),aa(nat,A,power_power(A,aa(A,A,cos(A),X2)),aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,one2))))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),aa(num,num,bit1,one2))),aa(A,A,cos(A),X2))) ) ) ).
% cos_treble_cos
tff(fact_3047_sin__le__zero,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),pi),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),pi)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),sin(real,X2)),zero_zero(real))) ) ) ).
% sin_le_zero
tff(fact_3048_sin__less__zero,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,uminus_uminus(real),pi)),aa(num,real,numeral_numeral(real),bit0(one2)))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),zero_zero(real)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),sin(real,X2)),zero_zero(real))) ) ) ).
% sin_less_zero
tff(fact_3049_sin__monotone__2pi,axiom,
! [Y: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),sin(real,Y)),sin(real,X2))) ) ) ) ).
% sin_monotone_2pi
tff(fact_3050_sin__mono__less__eq,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),sin(real,X2)),sin(real,Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),Y)) ) ) ) ) ) ).
% sin_mono_less_eq
tff(fact_3051_sin__total,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),one_one(real)))
=> ? [X3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),X3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X3),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
& ( sin(real,X3) = Y )
& ! [Y4: real] :
( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),Y4))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y4),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
& ( sin(real,Y4) = Y ) )
=> ( Y4 = X3 ) ) ) ) ) ).
% sin_total
tff(fact_3052_cos__gt__zero__pi,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,cos(real),X2))) ) ) ).
% cos_gt_zero_pi
tff(fact_3053_cos__ge__zero,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,cos(real),X2))) ) ) ).
% cos_ge_zero
tff(fact_3054_cos__one__2pi,axiom,
! [X2: real] :
( ( aa(real,real,cos(real),X2) = one_one(real) )
<=> ( ? [X4: nat] : ( X2 = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),X4)),aa(num,real,numeral_numeral(real),bit0(one2)))),pi) )
| ? [X4: nat] : ( X2 = aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),X4)),aa(num,real,numeral_numeral(real),bit0(one2)))),pi)) ) ) ) ).
% cos_one_2pi
tff(fact_3055_sin__pi__divide__n__gt__0,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),sin(real,aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(nat,real,semiring_1_of_nat(real),N))))) ) ).
% sin_pi_divide_n_gt_0
tff(fact_3056_sin__arctan,axiom,
! [X2: real] : ( sin(real,aa(real,real,arctan,X2)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),X2),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ).
% sin_arctan
tff(fact_3057_cos__arctan,axiom,
! [X2: real] : ( aa(real,real,cos(real),aa(real,real,arctan,X2)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ).
% cos_arctan
tff(fact_3058_floor__log2__div2,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( aa(real,int,archim6421214686448440834_floor(real),aa(real,real,log(aa(num,real,numeral_numeral(real),bit0(one2))),aa(nat,real,semiring_1_of_nat(real),N))) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(real,int,archim6421214686448440834_floor(real),aa(real,real,log(aa(num,real,numeral_numeral(real),bit0(one2))),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),aa(num,nat,numeral_numeral(nat),bit0(one2))))))),one_one(int)) ) ) ).
% floor_log2_div2
tff(fact_3059_floor__log__nat__eq__if,axiom,
! [B2: nat,N: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,power_power(nat,B2),N)),K))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),K),aa(nat,nat,power_power(nat,B2),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),one_one(nat)))))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),B2))
=> ( aa(real,int,archim6421214686448440834_floor(real),aa(real,real,log(aa(nat,real,semiring_1_of_nat(real),B2)),aa(nat,real,semiring_1_of_nat(real),K))) = aa(nat,int,semiring_1_of_nat(int),N) ) ) ) ) ).
% floor_log_nat_eq_if
tff(fact_3060_sin__zero__lemma,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( ( sin(real,X2) = zero_zero(real) )
=> ? [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N3))
& ( X2 = aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N3)),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))) ) ) ) ) ).
% sin_zero_lemma
tff(fact_3061_sin__zero__iff,axiom,
! [X2: real] :
( ( sin(real,X2) = zero_zero(real) )
<=> ( ? [N5: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N5))
& ( X2 = aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N5)),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))) ) )
| ? [N5: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N5))
& ( X2 = aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N5)),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))) ) ) ) ) ).
% sin_zero_iff
tff(fact_3062_cos__zero__lemma,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( ( aa(real,real,cos(real),X2) = zero_zero(real) )
=> ? [N3: nat] :
( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N3))
& ( X2 = aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N3)),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))) ) ) ) ) ).
% cos_zero_lemma
tff(fact_3063_cos__zero__iff,axiom,
! [X2: real] :
( ( aa(real,real,cos(real),X2) = zero_zero(real) )
<=> ( ? [N5: nat] :
( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N5))
& ( X2 = aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N5)),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))) ) )
| ? [N5: nat] :
( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N5))
& ( X2 = aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N5)),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))) ) ) ) ) ).
% cos_zero_iff
tff(fact_3064_tan__double,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] :
( ( aa(A,A,cos(A),X2) != zero_zero(A) )
=> ( ( aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),X2)) != zero_zero(A) )
=> ( aa(A,A,tan(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),X2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,tan(A),X2))),aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),aa(nat,A,power_power(A,aa(A,A,tan(A),X2)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ) ) ) ).
% tan_double
tff(fact_3065_sin__tan,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),X2)),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> ( sin(real,X2) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,tan(real),X2)),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),aa(nat,real,power_power(real,aa(real,real,tan(real),X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ) ).
% sin_tan
tff(fact_3066_cos__tan,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),X2)),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> ( aa(real,real,cos(real),X2) = aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),aa(nat,real,power_power(real,aa(real,real,tan(real),X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ) ).
% cos_tan
tff(fact_3067_complex__unimodular__polar,axiom,
! [Z: complex] :
( ( real_V7770717601297561774m_norm(complex,Z) = one_one(real) )
=> ~ ! [T3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),T3))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),T3),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),pi)))
=> ( Z != complex2(aa(real,real,cos(real),T3),sin(real,T3)) ) ) ) ) ).
% complex_unimodular_polar
tff(fact_3068_ceiling__log__eq__powr__iff,axiom,
! [X2: real,B2: real,K: nat] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),B2))
=> ( ( archimedean_ceiling(real,aa(real,real,log(B2),X2)) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(nat,int,semiring_1_of_nat(int),K)),one_one(int)) )
<=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),powr(real,B2,aa(nat,real,semiring_1_of_nat(real),K))),X2))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),powr(real,B2,aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),K),one_one(nat)))))) ) ) ) ) ).
% ceiling_log_eq_powr_iff
tff(fact_3069_powr__eq__0__iff,axiom,
! [A: $tType] :
( ln(A)
=> ! [W: A,Z: A] :
( ( powr(A,W,Z) = zero_zero(A) )
<=> ( W = zero_zero(A) ) ) ) ).
% powr_eq_0_iff
tff(fact_3070_powr__0,axiom,
! [A: $tType] :
( ln(A)
=> ! [Z: A] : ( powr(A,zero_zero(A),Z) = zero_zero(A) ) ) ).
% powr_0
tff(fact_3071_powr__one__eq__one,axiom,
! [A: $tType] :
( ln(A)
=> ! [A2: A] : ( powr(A,one_one(A),A2) = one_one(A) ) ) ).
% powr_one_eq_one
tff(fact_3072_tan__zero,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ( aa(A,A,tan(A),zero_zero(A)) = zero_zero(A) ) ) ).
% tan_zero
tff(fact_3073_tan__minus,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : ( aa(A,A,tan(A),aa(A,A,uminus_uminus(A),X2)) = aa(A,A,uminus_uminus(A),aa(A,A,tan(A),X2)) ) ) ).
% tan_minus
tff(fact_3074_powr__zero__eq__one,axiom,
! [A: $tType] :
( ln(A)
=> ! [X2: A] :
( ( ( X2 = zero_zero(A) )
=> ( powr(A,X2,zero_zero(A)) = zero_zero(A) ) )
& ( ( X2 != zero_zero(A) )
=> ( powr(A,X2,zero_zero(A)) = one_one(A) ) ) ) ) ).
% powr_zero_eq_one
tff(fact_3075_powr__gt__zero,axiom,
! [X2: real,A2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),powr(real,X2,A2)))
<=> ( X2 != zero_zero(real) ) ) ).
% powr_gt_zero
tff(fact_3076_powr__nonneg__iff,axiom,
! [A2: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),powr(real,A2,X2)),zero_zero(real)))
<=> ( A2 = zero_zero(real) ) ) ).
% powr_nonneg_iff
tff(fact_3077_powr__less__cancel__iff,axiom,
! [X2: real,A2: real,B2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),powr(real,X2,A2)),powr(real,X2,B2)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),B2)) ) ) ).
% powr_less_cancel_iff
tff(fact_3078_tan__pi,axiom,
aa(real,real,tan(real),pi) = zero_zero(real) ).
% tan_pi
tff(fact_3079_tan__periodic__pi,axiom,
! [X2: real] : ( aa(real,real,tan(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),pi)) = aa(real,real,tan(real),X2) ) ).
% tan_periodic_pi
tff(fact_3080_powr__eq__one__iff,axiom,
! [A2: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),A2))
=> ( ( powr(real,A2,X2) = one_one(real) )
<=> ( X2 = zero_zero(real) ) ) ) ).
% powr_eq_one_iff
tff(fact_3081_powr__one__gt__zero__iff,axiom,
! [X2: real] :
( ( powr(real,X2,one_one(real)) = X2 )
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2)) ) ).
% powr_one_gt_zero_iff
tff(fact_3082_powr__one,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( powr(real,X2,one_one(real)) = X2 ) ) ).
% powr_one
tff(fact_3083_powr__le__cancel__iff,axiom,
! [X2: real,A2: real,B2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),powr(real,X2,A2)),powr(real,X2,B2)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),B2)) ) ) ).
% powr_le_cancel_iff
tff(fact_3084_numeral__powr__numeral__real,axiom,
! [M: num,N: num] : ( powr(real,aa(num,real,numeral_numeral(real),M),aa(num,real,numeral_numeral(real),N)) = aa(nat,real,power_power(real,aa(num,real,numeral_numeral(real),M)),aa(num,nat,numeral_numeral(nat),N)) ) ).
% numeral_powr_numeral_real
tff(fact_3085_powr__log__cancel,axiom,
! [A2: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),A2))
=> ( ( A2 != one_one(real) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( powr(real,A2,aa(real,real,log(A2),X2)) = X2 ) ) ) ) ).
% powr_log_cancel
tff(fact_3086_log__powr__cancel,axiom,
! [A2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),A2))
=> ( ( A2 != one_one(real) )
=> ( aa(real,real,log(A2),powr(real,A2,Y)) = Y ) ) ) ).
% log_powr_cancel
tff(fact_3087_tan__npi,axiom,
! [N: nat] : ( aa(real,real,tan(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N)),pi)) = zero_zero(real) ) ).
% tan_npi
tff(fact_3088_tan__periodic__n,axiom,
! [X2: real,N: num] : ( aa(real,real,tan(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),N)),pi))) = aa(real,real,tan(real),X2) ) ).
% tan_periodic_n
tff(fact_3089_tan__periodic__nat,axiom,
! [X2: real,N: nat] : ( aa(real,real,tan(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N)),pi))) = aa(real,real,tan(real),X2) ) ).
% tan_periodic_nat
tff(fact_3090_norm__cos__sin,axiom,
! [T2: real] : ( real_V7770717601297561774m_norm(complex,complex2(aa(real,real,cos(real),T2),sin(real,T2))) = one_one(real) ) ).
% norm_cos_sin
tff(fact_3091_powr__numeral,axiom,
! [X2: real,N: num] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( powr(real,X2,aa(num,real,numeral_numeral(real),N)) = aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),N)) ) ) ).
% powr_numeral
tff(fact_3092_tan__periodic,axiom,
! [X2: real] : ( aa(real,real,tan(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),pi))) = aa(real,real,tan(real),X2) ) ).
% tan_periodic
tff(fact_3093_square__powr__half,axiom,
! [X2: real] : ( powr(real,aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2)))) = aa(real,real,abs_abs(real),X2) ) ).
% square_powr_half
tff(fact_3094_powr__powr,axiom,
! [X2: real,A2: real,B2: real] : ( powr(real,powr(real,X2,A2),B2) = powr(real,X2,aa(real,real,aa(real,fun(real,real),times_times(real),A2),B2)) ) ).
% powr_powr
tff(fact_3095_zero__complex_Ocode,axiom,
zero_zero(complex) = complex2(zero_zero(real),zero_zero(real)) ).
% zero_complex.code
tff(fact_3096_Complex__eq__0,axiom,
! [A2: real,B2: real] :
( ( complex2(A2,B2) = zero_zero(complex) )
<=> ( ( A2 = zero_zero(real) )
& ( B2 = zero_zero(real) ) ) ) ).
% Complex_eq_0
tff(fact_3097_complex__minus,axiom,
! [A2: real,B2: real] : ( aa(complex,complex,uminus_uminus(complex),complex2(A2,B2)) = complex2(aa(real,real,uminus_uminus(real),A2),aa(real,real,uminus_uminus(real),B2)) ) ).
% complex_minus
tff(fact_3098_complex__diff,axiom,
! [A2: real,B2: real,C2: real,D2: real] : ( aa(complex,complex,aa(complex,fun(complex,complex),minus_minus(complex),complex2(A2,B2)),complex2(C2,D2)) = complex2(aa(real,real,aa(real,fun(real,real),minus_minus(real),A2),C2),aa(real,real,aa(real,fun(real,real),minus_minus(real),B2),D2)) ) ).
% complex_diff
tff(fact_3099_powr__non__neg,axiom,
! [A2: real,X2: real] : ~ pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),powr(real,A2,X2)),zero_zero(real))) ).
% powr_non_neg
tff(fact_3100_powr__less__mono2__neg,axiom,
! [A2: real,X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),zero_zero(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),Y))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),powr(real,Y,A2)),powr(real,X2,A2))) ) ) ) ).
% powr_less_mono2_neg
tff(fact_3101_powr__ge__pzero,axiom,
! [X2: real,Y: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),powr(real,X2,Y))) ).
% powr_ge_pzero
tff(fact_3102_powr__mono2,axiom,
! [A2: real,X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),A2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),Y))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),powr(real,X2,A2)),powr(real,Y,A2))) ) ) ) ).
% powr_mono2
tff(fact_3103_powr__less__cancel,axiom,
! [X2: real,A2: real,B2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),powr(real,X2,A2)),powr(real,X2,B2)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),B2)) ) ) ).
% powr_less_cancel
tff(fact_3104_powr__less__mono,axiom,
! [A2: real,B2: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),B2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),powr(real,X2,A2)),powr(real,X2,B2))) ) ) ).
% powr_less_mono
tff(fact_3105_powr__mono,axiom,
! [A2: real,B2: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),B2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),powr(real,X2,A2)),powr(real,X2,B2))) ) ) ).
% powr_mono
tff(fact_3106_Complex__eq__1,axiom,
! [A2: real,B2: real] :
( ( complex2(A2,B2) = one_one(complex) )
<=> ( ( A2 = one_one(real) )
& ( B2 = zero_zero(real) ) ) ) ).
% Complex_eq_1
tff(fact_3107_one__complex_Ocode,axiom,
one_one(complex) = complex2(one_one(real),zero_zero(real)) ).
% one_complex.code
tff(fact_3108_Complex__eq__numeral,axiom,
! [A2: real,B2: real,W: num] :
( ( complex2(A2,B2) = aa(num,complex,numeral_numeral(complex),W) )
<=> ( ( A2 = aa(num,real,numeral_numeral(real),W) )
& ( B2 = zero_zero(real) ) ) ) ).
% Complex_eq_numeral
tff(fact_3109_complex__add,axiom,
! [A2: real,B2: real,C2: real,D2: real] : ( aa(complex,complex,aa(complex,fun(complex,complex),plus_plus(complex),complex2(A2,B2)),complex2(C2,D2)) = complex2(aa(real,real,aa(real,fun(real,real),plus_plus(real),A2),C2),aa(real,real,aa(real,fun(real,real),plus_plus(real),B2),D2)) ) ).
% complex_add
tff(fact_3110_powr__mono2_H,axiom,
! [A2: real,X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),zero_zero(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),Y))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),powr(real,Y,A2)),powr(real,X2,A2))) ) ) ) ).
% powr_mono2'
tff(fact_3111_powr__less__mono2,axiom,
! [A2: real,X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),A2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),Y))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),powr(real,X2,A2)),powr(real,Y,A2))) ) ) ) ).
% powr_less_mono2
tff(fact_3112_powr__inj,axiom,
! [A2: real,X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),A2))
=> ( ( A2 != one_one(real) )
=> ( ( powr(real,A2,X2) = powr(real,A2,Y) )
<=> ( X2 = Y ) ) ) ) ).
% powr_inj
tff(fact_3113_gr__one__powr,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),Y))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),powr(real,X2,Y))) ) ) ).
% gr_one_powr
tff(fact_3114_ge__one__powr__ge__zero,axiom,
! [X2: real,A2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),A2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),powr(real,X2,A2))) ) ) ).
% ge_one_powr_ge_zero
tff(fact_3115_powr__mono__both,axiom,
! [A2: real,B2: real,X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),A2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),B2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),Y))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),powr(real,X2,A2)),powr(real,Y,B2))) ) ) ) ) ).
% powr_mono_both
tff(fact_3116_powr__le1,axiom,
! [A2: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),A2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),one_one(real)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),powr(real,X2,A2)),one_one(real))) ) ) ) ).
% powr_le1
tff(fact_3117_powr__divide,axiom,
! [X2: real,Y: real,A2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y))
=> ( powr(real,aa(real,real,aa(real,fun(real,real),divide_divide(real),X2),Y),A2) = aa(real,real,aa(real,fun(real,real),divide_divide(real),powr(real,X2,A2)),powr(real,Y,A2)) ) ) ) ).
% powr_divide
tff(fact_3118_powr__mult,axiom,
! [X2: real,Y: real,A2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y))
=> ( powr(real,aa(real,real,aa(real,fun(real,real),times_times(real),X2),Y),A2) = aa(real,real,aa(real,fun(real,real),times_times(real),powr(real,X2,A2)),powr(real,Y,A2)) ) ) ) ).
% powr_mult
tff(fact_3119_divide__powr__uminus,axiom,
! [A2: real,B2: real,C2: real] : ( aa(real,real,aa(real,fun(real,real),divide_divide(real),A2),powr(real,B2,C2)) = aa(real,real,aa(real,fun(real,real),times_times(real),A2),powr(real,B2,aa(real,real,uminus_uminus(real),C2))) ) ).
% divide_powr_uminus
tff(fact_3120_ln__powr,axiom,
! [X2: real,Y: real] :
( ( X2 != zero_zero(real) )
=> ( aa(real,real,ln_ln(real),powr(real,X2,Y)) = aa(real,real,aa(real,fun(real,real),times_times(real),Y),aa(real,real,ln_ln(real),X2)) ) ) ).
% ln_powr
tff(fact_3121_log__base__powr,axiom,
! [A2: real,B2: real,X2: real] :
( ( A2 != zero_zero(real) )
=> ( aa(real,real,log(powr(real,A2,B2)),X2) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,log(A2),X2)),B2) ) ) ).
% log_base_powr
tff(fact_3122_log__powr,axiom,
! [X2: real,B2: real,Y: real] :
( ( X2 != zero_zero(real) )
=> ( aa(real,real,log(B2),powr(real,X2,Y)) = aa(real,real,aa(real,fun(real,real),times_times(real),Y),aa(real,real,log(B2),X2)) ) ) ).
% log_powr
tff(fact_3123_Complex__eq__neg__1,axiom,
! [A2: real,B2: real] :
( ( complex2(A2,B2) = aa(complex,complex,uminus_uminus(complex),one_one(complex)) )
<=> ( ( A2 = aa(real,real,uminus_uminus(real),one_one(real)) )
& ( B2 = zero_zero(real) ) ) ) ).
% Complex_eq_neg_1
tff(fact_3124_Complex__eq__neg__numeral,axiom,
! [A2: real,B2: real,W: num] :
( ( complex2(A2,B2) = aa(complex,complex,uminus_uminus(complex),aa(num,complex,numeral_numeral(complex),W)) )
<=> ( ( A2 = aa(real,real,uminus_uminus(real),aa(num,real,numeral_numeral(real),W)) )
& ( B2 = zero_zero(real) ) ) ) ).
% Complex_eq_neg_numeral
tff(fact_3125_powr__add,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field(A)
& ln(A) )
=> ! [X2: A,A2: A,B2: A] : ( powr(A,X2,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),times_times(A),powr(A,X2,A2)),powr(A,X2,B2)) ) ) ).
% powr_add
tff(fact_3126_powr__diff,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field(A)
& ln(A) )
=> ! [W: A,Z1: A,Z22: A] : ( powr(A,W,aa(A,A,aa(A,fun(A,A),minus_minus(A),Z1),Z22)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),powr(A,W,Z1)),powr(A,W,Z22)) ) ) ).
% powr_diff
tff(fact_3127_complex__mult,axiom,
! [A2: real,B2: real,C2: real,D2: real] : ( aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),complex2(A2,B2)),complex2(C2,D2)) = complex2(aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(real,fun(real,real),times_times(real),A2),C2)),aa(real,real,aa(real,fun(real,real),times_times(real),B2),D2)),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,aa(real,fun(real,real),times_times(real),A2),D2)),aa(real,real,aa(real,fun(real,real),times_times(real),B2),C2))) ) ).
% complex_mult
tff(fact_3128_tan__def,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X: A] : ( aa(A,A,tan(A),X) = aa(A,A,aa(A,fun(A,A),divide_divide(A),sin(A,X)),aa(A,A,cos(A),X)) ) ) ).
% tan_def
tff(fact_3129_powr__realpow,axiom,
! [X2: real,N: nat] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( powr(real,X2,aa(nat,real,semiring_1_of_nat(real),N)) = aa(nat,real,power_power(real,X2),N) ) ) ).
% powr_realpow
tff(fact_3130_powr__less__iff,axiom,
! [B2: real,X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),B2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),powr(real,B2,Y)),X2))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y),aa(real,real,log(B2),X2))) ) ) ) ).
% powr_less_iff
tff(fact_3131_less__powr__iff,axiom,
! [B2: real,X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),B2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),powr(real,B2,Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,log(B2),X2)),Y)) ) ) ) ).
% less_powr_iff
tff(fact_3132_log__less__iff,axiom,
! [B2: real,X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),B2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,log(B2),X2)),Y))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),powr(real,B2,Y))) ) ) ) ).
% log_less_iff
tff(fact_3133_less__log__iff,axiom,
! [B2: real,X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),B2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y),aa(real,real,log(B2),X2)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),powr(real,B2,Y)),X2)) ) ) ) ).
% less_log_iff
tff(fact_3134_powr__minus__divide,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field(A)
& ln(A) )
=> ! [X2: A,A2: A] : ( powr(A,X2,aa(A,A,uminus_uminus(A),A2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),powr(A,X2,A2)) ) ) ).
% powr_minus_divide
tff(fact_3135_powr__neg__one,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( powr(real,X2,aa(real,real,uminus_uminus(real),one_one(real))) = aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),X2) ) ) ).
% powr_neg_one
tff(fact_3136_powr__mult__base,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( aa(real,real,aa(real,fun(real,real),times_times(real),X2),powr(real,X2,Y)) = powr(real,X2,aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),Y)) ) ) ).
% powr_mult_base
tff(fact_3137_le__log__iff,axiom,
! [B2: real,X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),B2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),aa(real,real,log(B2),X2)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),powr(real,B2,Y)),X2)) ) ) ) ).
% le_log_iff
tff(fact_3138_log__le__iff,axiom,
! [B2: real,X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),B2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,log(B2),X2)),Y))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),powr(real,B2,Y))) ) ) ) ).
% log_le_iff
tff(fact_3139_le__powr__iff,axiom,
! [B2: real,X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),B2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),powr(real,B2,Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,log(B2),X2)),Y)) ) ) ) ).
% le_powr_iff
tff(fact_3140_powr__le__iff,axiom,
! [B2: real,X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),B2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),powr(real,B2,Y)),X2))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),aa(real,real,log(B2),X2))) ) ) ) ).
% powr_le_iff
tff(fact_3141_ln__powr__bound,axiom,
! [X2: real,A2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),A2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,ln_ln(real),X2)),aa(real,real,aa(real,fun(real,real),divide_divide(real),powr(real,X2,A2)),A2))) ) ) ).
% ln_powr_bound
tff(fact_3142_ln__powr__bound2,axiom,
! [X2: real,A2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),A2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),powr(real,aa(real,real,ln_ln(real),X2),A2)),aa(real,real,aa(real,fun(real,real),times_times(real),powr(real,A2,A2)),X2))) ) ) ).
% ln_powr_bound2
tff(fact_3143_tan__45,axiom,
aa(real,real,tan(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(bit0(one2))))) = one_one(real) ).
% tan_45
tff(fact_3144_log__add__eq__powr,axiom,
! [B2: real,X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),B2))
=> ( ( B2 != one_one(real) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,log(B2),X2)),Y) = aa(real,real,log(B2),aa(real,real,aa(real,fun(real,real),times_times(real),X2),powr(real,B2,Y))) ) ) ) ) ).
% log_add_eq_powr
tff(fact_3145_add__log__eq__powr,axiom,
! [B2: real,X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),B2))
=> ( ( B2 != one_one(real) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( aa(real,real,aa(real,fun(real,real),plus_plus(real),Y),aa(real,real,log(B2),X2)) = aa(real,real,log(B2),aa(real,real,aa(real,fun(real,real),times_times(real),powr(real,B2,Y)),X2)) ) ) ) ) ).
% add_log_eq_powr
tff(fact_3146_minus__log__eq__powr,axiom,
! [B2: real,X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),B2))
=> ( ( B2 != one_one(real) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( aa(real,real,aa(real,fun(real,real),minus_minus(real),Y),aa(real,real,log(B2),X2)) = aa(real,real,log(B2),aa(real,real,aa(real,fun(real,real),divide_divide(real),powr(real,B2,Y)),X2)) ) ) ) ) ).
% minus_log_eq_powr
tff(fact_3147_tan__60,axiom,
aa(real,real,tan(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),aa(num,num,bit1,one2)))) = aa(real,real,sqrt,aa(num,real,numeral_numeral(real),aa(num,num,bit1,one2))) ).
% tan_60
tff(fact_3148_powr__def,axiom,
! [A: $tType] :
( ln(A)
=> ! [X2: A,A2: A] :
( ( ( X2 = zero_zero(A) )
=> ( powr(A,X2,A2) = zero_zero(A) ) )
& ( ( X2 != zero_zero(A) )
=> ( powr(A,X2,A2) = aa(A,A,exp(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,ln_ln(A),X2))) ) ) ) ) ).
% powr_def
tff(fact_3149_tan__gt__zero,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,tan(real),X2))) ) ) ).
% tan_gt_zero
tff(fact_3150_lemma__tan__total,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),Y))
=> ? [X3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X3),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y),aa(real,real,tan(real),X3))) ) ) ).
% lemma_tan_total
tff(fact_3151_tan__total,axiom,
! [Y: real] :
? [X3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),X3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X3),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
& ( aa(real,real,tan(real),X3) = Y )
& ! [Y4: real] :
( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),Y4))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y4),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
& ( aa(real,real,tan(real),Y4) = Y ) )
=> ( Y4 = X3 ) ) ) ).
% tan_total
tff(fact_3152_tan__monotone,axiom,
! [Y: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,tan(real),Y)),aa(real,real,tan(real),X2))) ) ) ) ).
% tan_monotone
tff(fact_3153_tan__monotone_H,axiom,
! [Y: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y),X2))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,tan(real),Y)),aa(real,real,tan(real),X2))) ) ) ) ) ) ).
% tan_monotone'
tff(fact_3154_tan__mono__lt__eq,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,tan(real),X2)),aa(real,real,tan(real),Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),Y)) ) ) ) ) ) ).
% tan_mono_lt_eq
tff(fact_3155_lemma__tan__total1,axiom,
! [Y: real] :
? [X3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),X3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X3),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
& ( aa(real,real,tan(real),X3) = Y ) ) ).
% lemma_tan_total1
tff(fact_3156_tan__minus__45,axiom,
aa(real,real,tan(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(bit0(one2)))))) = aa(real,real,uminus_uminus(real),one_one(real)) ).
% tan_minus_45
tff(fact_3157_tan__inverse,axiom,
! [Y: real] : ( aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(real,real,tan(real),Y)) = aa(real,real,tan(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))),Y)) ) ).
% tan_inverse
tff(fact_3158_log__minus__eq__powr,axiom,
! [B2: real,X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),B2))
=> ( ( B2 != one_one(real) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,log(B2),X2)),Y) = aa(real,real,log(B2),aa(real,real,aa(real,fun(real,real),times_times(real),X2),powr(real,B2,aa(real,real,uminus_uminus(real),Y)))) ) ) ) ) ).
% log_minus_eq_powr
tff(fact_3159_complex__norm,axiom,
! [X2: real,Y: real] : ( real_V7770717601297561774m_norm(complex,complex2(X2,Y)) = aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,Y),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ).
% complex_norm
tff(fact_3160_add__tan__eq,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A,Y: A] :
( ( aa(A,A,cos(A),X2) != zero_zero(A) )
=> ( ( aa(A,A,cos(A),Y) != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,tan(A),X2)),aa(A,A,tan(A),Y)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),sin(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,cos(A),X2)),aa(A,A,cos(A),Y))) ) ) ) ) ).
% add_tan_eq
tff(fact_3161_powr__half__sqrt,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( powr(real,X2,aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2)))) = aa(real,real,sqrt,X2) ) ) ).
% powr_half_sqrt
tff(fact_3162_powr__neg__numeral,axiom,
! [X2: real,N: num] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( powr(real,X2,aa(real,real,uminus_uminus(real),aa(num,real,numeral_numeral(real),N))) = aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),N))) ) ) ).
% powr_neg_numeral
tff(fact_3163_tan__total__pos,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y))
=> ? [X3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X3),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
& ( aa(real,real,tan(real),X3) = Y ) ) ) ).
% tan_total_pos
tff(fact_3164_tan__pos__pi2__le,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,tan(real),X2))) ) ) ).
% tan_pos_pi2_le
tff(fact_3165_tan__less__zero,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,uminus_uminus(real),pi)),aa(num,real,numeral_numeral(real),bit0(one2)))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),zero_zero(real)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,tan(real),X2)),zero_zero(real))) ) ) ).
% tan_less_zero
tff(fact_3166_tan__mono__le,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,tan(real),X2)),aa(real,real,tan(real),Y))) ) ) ) ).
% tan_mono_le
tff(fact_3167_tan__mono__le__eq,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,tan(real),X2)),aa(real,real,tan(real),Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),Y)) ) ) ) ) ) ).
% tan_mono_le_eq
tff(fact_3168_tan__bound__pi2,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),X2)),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(bit0(one2))))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),aa(real,real,tan(real),X2))),one_one(real))) ) ).
% tan_bound_pi2
tff(fact_3169_tan__30,axiom,
aa(real,real,tan(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(aa(num,num,bit1,one2))))) = aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(real,real,sqrt,aa(num,real,numeral_numeral(real),aa(num,num,bit1,one2)))) ).
% tan_30
tff(fact_3170_arctan__unique,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> ( ( aa(real,real,tan(real),X2) = Y )
=> ( aa(real,real,arctan,Y) = X2 ) ) ) ) ).
% arctan_unique
tff(fact_3171_arctan__tan,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> ( aa(real,real,arctan,aa(real,real,tan(real),X2)) = X2 ) ) ) ).
% arctan_tan
tff(fact_3172_arctan,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),aa(real,real,arctan,Y)))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,arctan,Y)),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
& ( aa(real,real,tan(real),aa(real,real,arctan,Y)) = Y ) ) ).
% arctan
tff(fact_3173_lemma__tan__add1,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A,Y: A] :
( ( aa(A,A,cos(A),X2) != zero_zero(A) )
=> ( ( aa(A,A,cos(A),Y) != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,tan(A),X2)),aa(A,A,tan(A),Y))) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,cos(A),X2)),aa(A,A,cos(A),Y))) ) ) ) ) ).
% lemma_tan_add1
tff(fact_3174_tan__diff,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A,Y: A] :
( ( aa(A,A,cos(A),X2) != zero_zero(A) )
=> ( ( aa(A,A,cos(A),Y) != zero_zero(A) )
=> ( ( aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y)) != zero_zero(A) )
=> ( aa(A,A,tan(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,tan(A),X2)),aa(A,A,tan(A),Y))),aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,tan(A),X2)),aa(A,A,tan(A),Y)))) ) ) ) ) ) ).
% tan_diff
tff(fact_3175_tan__add,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A,Y: A] :
( ( aa(A,A,cos(A),X2) != zero_zero(A) )
=> ( ( aa(A,A,cos(A),Y) != zero_zero(A) )
=> ( ( aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)) != zero_zero(A) )
=> ( aa(A,A,tan(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,tan(A),X2)),aa(A,A,tan(A),Y))),aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,tan(A),X2)),aa(A,A,tan(A),Y)))) ) ) ) ) ) ).
% tan_add
tff(fact_3176_tan__total__pi4,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),X2)),one_one(real)))
=> ? [Z3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(bit0(one2)))))),Z3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Z3),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(bit0(one2))))))
& ( aa(real,real,tan(real),Z3) = X2 ) ) ) ).
% tan_total_pi4
tff(fact_3177_tan__half,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : ( aa(A,A,tan(A),X2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),sin(A,aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),X2))),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),X2))),one_one(A))) ) ) ).
% tan_half
tff(fact_3178_arcosh__def,axiom,
! [A: $tType] :
( ln(A)
=> ! [X2: A] : ( aa(A,A,arcosh(A),X2) = aa(A,A,ln_ln(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),powr(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),one_one(A)),real_Vector_of_real(A,aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2))))))) ) ) ).
% arcosh_def
tff(fact_3179_cos__arcsin,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),one_one(real)))
=> ( aa(real,real,cos(real),aa(real,real,arcsin,X2)) = aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),minus_minus(real),one_one(real)),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ) ) ).
% cos_arcsin
tff(fact_3180_sin__arccos__abs,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),Y)),one_one(real)))
=> ( sin(real,aa(real,real,arccos,Y)) = aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),minus_minus(real),one_one(real)),aa(nat,real,power_power(real,Y),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ) ).
% sin_arccos_abs
tff(fact_3181_sin__arccos,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),one_one(real)))
=> ( sin(real,aa(real,real,arccos,X2)) = aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),minus_minus(real),one_one(real)),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ) ) ).
% sin_arccos
tff(fact_3182_arsinh__def,axiom,
! [A: $tType] :
( ln(A)
=> ! [X2: A] : ( aa(A,A,arsinh(A),X2) = aa(A,A,ln_ln(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),powr(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,power_power(A,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),one_one(A)),real_Vector_of_real(A,aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2))))))) ) ) ).
% arsinh_def
tff(fact_3183_arcsin__0,axiom,
aa(real,real,arcsin,zero_zero(real)) = zero_zero(real) ).
% arcsin_0
tff(fact_3184_of__real__eq__0__iff,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [X2: real] :
( ( real_Vector_of_real(A,X2) = zero_zero(A) )
<=> ( X2 = zero_zero(real) ) ) ) ).
% of_real_eq_0_iff
tff(fact_3185_of__real__0,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ( real_Vector_of_real(A,zero_zero(real)) = zero_zero(A) ) ) ).
% of_real_0
tff(fact_3186_of__real__1,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ( real_Vector_of_real(A,one_one(real)) = one_one(A) ) ) ).
% of_real_1
tff(fact_3187_of__real__eq__1__iff,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [X2: real] :
( ( real_Vector_of_real(A,X2) = one_one(A) )
<=> ( X2 = one_one(real) ) ) ) ).
% of_real_eq_1_iff
tff(fact_3188_of__real__numeral,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [W: num] : ( real_Vector_of_real(A,aa(num,real,numeral_numeral(real),W)) = aa(num,A,numeral_numeral(A),W) ) ) ).
% of_real_numeral
tff(fact_3189_of__real__mult,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [X2: real,Y: real] : ( real_Vector_of_real(A,aa(real,real,aa(real,fun(real,real),times_times(real),X2),Y)) = aa(A,A,aa(A,fun(A,A),times_times(A),real_Vector_of_real(A,X2)),real_Vector_of_real(A,Y)) ) ) ).
% of_real_mult
tff(fact_3190_of__real__divide,axiom,
! [A: $tType] :
( real_V5047593784448816457lgebra(A)
=> ! [X2: real,Y: real] : ( real_Vector_of_real(A,aa(real,real,aa(real,fun(real,real),divide_divide(real),X2),Y)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),real_Vector_of_real(A,X2)),real_Vector_of_real(A,Y)) ) ) ).
% of_real_divide
tff(fact_3191_of__real__add,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [X2: real,Y: real] : ( real_Vector_of_real(A,aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),Y)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),real_Vector_of_real(A,X2)),real_Vector_of_real(A,Y)) ) ) ).
% of_real_add
tff(fact_3192_of__real__power,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [X2: real,N: nat] : ( real_Vector_of_real(A,aa(nat,real,power_power(real,X2),N)) = aa(nat,A,power_power(A,real_Vector_of_real(A,X2)),N) ) ) ).
% of_real_power
tff(fact_3193_of__real__minus,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [X2: real] : ( real_Vector_of_real(A,aa(real,real,uminus_uminus(real),X2)) = aa(A,A,uminus_uminus(A),real_Vector_of_real(A,X2)) ) ) ).
% of_real_minus
tff(fact_3194_minus__of__real__eq__of__real__iff,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [X2: real,Y: real] :
( ( aa(A,A,uminus_uminus(A),real_Vector_of_real(A,X2)) = real_Vector_of_real(A,Y) )
<=> ( aa(real,real,uminus_uminus(real),X2) = Y ) ) ) ).
% minus_of_real_eq_of_real_iff
tff(fact_3195_of__real__eq__minus__of__real__iff,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [X2: real,Y: real] :
( ( real_Vector_of_real(A,X2) = aa(A,A,uminus_uminus(A),real_Vector_of_real(A,Y)) )
<=> ( X2 = aa(real,real,uminus_uminus(real),Y) ) ) ) ).
% of_real_eq_minus_of_real_iff
tff(fact_3196_of__real__diff,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [X2: real,Y: real] : ( real_Vector_of_real(A,aa(real,real,aa(real,fun(real,real),minus_minus(real),X2),Y)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),real_Vector_of_real(A,X2)),real_Vector_of_real(A,Y)) ) ) ).
% of_real_diff
tff(fact_3197_of__real__of__nat__eq,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [N: nat] : ( real_Vector_of_real(A,aa(nat,real,semiring_1_of_nat(real),N)) = aa(nat,A,semiring_1_of_nat(A),N) ) ) ).
% of_real_of_nat_eq
tff(fact_3198_arccos__1,axiom,
aa(real,real,arccos,one_one(real)) = zero_zero(real) ).
% arccos_1
tff(fact_3199_sin__of__real__pi,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ( sin(A,real_Vector_of_real(A,pi)) = zero_zero(A) ) ) ).
% sin_of_real_pi
tff(fact_3200_arccos__minus__1,axiom,
aa(real,real,arccos,aa(real,real,uminus_uminus(real),one_one(real))) = pi ).
% arccos_minus_1
tff(fact_3201_of__real__neg__numeral,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [W: num] : ( real_Vector_of_real(A,aa(real,real,uminus_uminus(real),aa(num,real,numeral_numeral(real),W))) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W)) ) ) ).
% of_real_neg_numeral
tff(fact_3202_cos__of__real__pi,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ( aa(A,A,cos(A),real_Vector_of_real(A,pi)) = aa(A,A,uminus_uminus(A),one_one(A)) ) ) ).
% cos_of_real_pi
tff(fact_3203_cos__arccos,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),one_one(real)))
=> ( aa(real,real,cos(real),aa(real,real,arccos,Y)) = Y ) ) ) ).
% cos_arccos
tff(fact_3204_sin__arcsin,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),one_one(real)))
=> ( sin(real,aa(real,real,arcsin,Y)) = Y ) ) ) ).
% sin_arcsin
tff(fact_3205_norm__of__real__add1,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [X2: real] : ( real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),real_Vector_of_real(A,X2)),one_one(A))) = aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),one_one(real))) ) ) ).
% norm_of_real_add1
tff(fact_3206_norm__of__real__addn,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [X2: real,B2: num] : ( real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),real_Vector_of_real(A,X2)),aa(num,A,numeral_numeral(A),B2))) = aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),aa(num,real,numeral_numeral(real),B2))) ) ) ).
% norm_of_real_addn
tff(fact_3207_arccos__0,axiom,
aa(real,real,arccos,zero_zero(real)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))) ).
% arccos_0
tff(fact_3208_arcsin__1,axiom,
aa(real,real,arcsin,one_one(real)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))) ).
% arcsin_1
tff(fact_3209_cos__of__real__pi__half,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V7773925162809079976_field(A)
& real_V2822296259951069270ebra_1(A) )
=> ( aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),real_Vector_of_real(A,pi)),aa(num,A,numeral_numeral(A),bit0(one2)))) = zero_zero(A) ) ) ).
% cos_of_real_pi_half
tff(fact_3210_sin__of__real__pi__half,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V7773925162809079976_field(A)
& real_V2822296259951069270ebra_1(A) )
=> ( sin(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),real_Vector_of_real(A,pi)),aa(num,A,numeral_numeral(A),bit0(one2)))) = one_one(A) ) ) ).
% sin_of_real_pi_half
tff(fact_3211_arcsin__minus__1,axiom,
aa(real,real,arcsin,aa(real,real,uminus_uminus(real),one_one(real))) = aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))) ).
% arcsin_minus_1
tff(fact_3212_complex__of__real__def,axiom,
! [R: real] : ( real_Vector_of_real(complex,R) = complex2(R,zero_zero(real)) ) ).
% complex_of_real_def
tff(fact_3213_complex__of__real__code,axiom,
! [X: real] : ( real_Vector_of_real(complex,X) = complex2(X,zero_zero(real)) ) ).
% complex_of_real_code
tff(fact_3214_complex__eq__cancel__iff2,axiom,
! [X2: real,Y: real,Xa: real] :
( ( complex2(X2,Y) = real_Vector_of_real(complex,Xa) )
<=> ( ( X2 = Xa )
& ( Y = zero_zero(real) ) ) ) ).
% complex_eq_cancel_iff2
tff(fact_3215_Complex__mult__complex__of__real,axiom,
! [X2: real,Y: real,R: real] : ( aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),complex2(X2,Y)),real_Vector_of_real(complex,R)) = complex2(aa(real,real,aa(real,fun(real,real),times_times(real),X2),R),aa(real,real,aa(real,fun(real,real),times_times(real),Y),R)) ) ).
% Complex_mult_complex_of_real
tff(fact_3216_complex__of__real__mult__Complex,axiom,
! [R: real,X2: real,Y: real] : ( aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),real_Vector_of_real(complex,R)),complex2(X2,Y)) = complex2(aa(real,real,aa(real,fun(real,real),times_times(real),R),X2),aa(real,real,aa(real,fun(real,real),times_times(real),R),Y)) ) ).
% complex_of_real_mult_Complex
tff(fact_3217_nonzero__of__real__divide,axiom,
! [A: $tType] :
( real_V7773925162809079976_field(A)
=> ! [Y: real,X2: real] :
( ( Y != zero_zero(real) )
=> ( real_Vector_of_real(A,aa(real,real,aa(real,fun(real,real),divide_divide(real),X2),Y)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),real_Vector_of_real(A,X2)),real_Vector_of_real(A,Y)) ) ) ) ).
% nonzero_of_real_divide
tff(fact_3218_Complex__add__complex__of__real,axiom,
! [X2: real,Y: real,R: real] : ( aa(complex,complex,aa(complex,fun(complex,complex),plus_plus(complex),complex2(X2,Y)),real_Vector_of_real(complex,R)) = complex2(aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),R),Y) ) ).
% Complex_add_complex_of_real
tff(fact_3219_complex__of__real__add__Complex,axiom,
! [R: real,X2: real,Y: real] : ( aa(complex,complex,aa(complex,fun(complex,complex),plus_plus(complex),real_Vector_of_real(complex,R)),complex2(X2,Y)) = complex2(aa(real,real,aa(real,fun(real,real),plus_plus(real),R),X2),Y) ) ).
% complex_of_real_add_Complex
tff(fact_3220_arccos__le__arccos,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),one_one(real)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,arccos,Y)),aa(real,real,arccos,X2))) ) ) ) ).
% arccos_le_arccos
tff(fact_3221_arccos__eq__iff,axiom,
! [X2: real,Y: real] :
( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),X2)),one_one(real)))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),Y)),one_one(real))) )
=> ( ( aa(real,real,arccos,X2) = aa(real,real,arccos,Y) )
<=> ( X2 = Y ) ) ) ).
% arccos_eq_iff
tff(fact_3222_arccos__le__mono,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),X2)),one_one(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),Y)),one_one(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,arccos,X2)),aa(real,real,arccos,Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),X2)) ) ) ) ).
% arccos_le_mono
tff(fact_3223_arcsin__minus,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),one_one(real)))
=> ( aa(real,real,arcsin,aa(real,real,uminus_uminus(real),X2)) = aa(real,real,uminus_uminus(real),aa(real,real,arcsin,X2)) ) ) ) ).
% arcsin_minus
tff(fact_3224_arcsin__le__arcsin,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),one_one(real)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,arcsin,X2)),aa(real,real,arcsin,Y))) ) ) ) ).
% arcsin_le_arcsin
tff(fact_3225_arcsin__eq__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),X2)),one_one(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),Y)),one_one(real)))
=> ( ( aa(real,real,arcsin,X2) = aa(real,real,arcsin,Y) )
<=> ( X2 = Y ) ) ) ) ).
% arcsin_eq_iff
tff(fact_3226_arcsin__le__mono,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),X2)),one_one(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),Y)),one_one(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,arcsin,X2)),aa(real,real,arcsin,Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),Y)) ) ) ) ).
% arcsin_le_mono
tff(fact_3227_norm__less__p1,axiom,
! [A: $tType] :
( real_V2822296259951069270ebra_1(A)
=> ! [X2: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,X2)),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),real_Vector_of_real(A,real_V7770717601297561774m_norm(A,X2))),one_one(A))))) ) ).
% norm_less_p1
tff(fact_3228_arccos__lbound,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),one_one(real)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,arccos,Y))) ) ) ).
% arccos_lbound
tff(fact_3229_arccos__less__arccos,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),one_one(real)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,arccos,Y)),aa(real,real,arccos,X2))) ) ) ) ).
% arccos_less_arccos
tff(fact_3230_arccos__less__mono,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),X2)),one_one(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),Y)),one_one(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,arccos,X2)),aa(real,real,arccos,Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y),X2)) ) ) ) ).
% arccos_less_mono
tff(fact_3231_arccos__ubound,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),one_one(real)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,arccos,Y)),pi)) ) ) ).
% arccos_ubound
tff(fact_3232_arccos__cos,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),pi))
=> ( aa(real,real,arccos,aa(real,real,cos(real),X2)) = X2 ) ) ) ).
% arccos_cos
tff(fact_3233_arcsin__less__arcsin,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),one_one(real)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,arcsin,X2)),aa(real,real,arcsin,Y))) ) ) ) ).
% arcsin_less_arcsin
tff(fact_3234_arcsin__less__mono,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),X2)),one_one(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),Y)),one_one(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,arcsin,X2)),aa(real,real,arcsin,Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),Y)) ) ) ) ).
% arcsin_less_mono
tff(fact_3235_cos__arccos__abs,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),Y)),one_one(real)))
=> ( aa(real,real,cos(real),aa(real,real,arccos,Y)) = Y ) ) ).
% cos_arccos_abs
tff(fact_3236_norm__of__real__diff,axiom,
! [A: $tType] :
( real_V2822296259951069270ebra_1(A)
=> ! [B2: real,A2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),real_Vector_of_real(A,B2)),real_Vector_of_real(A,A2)))),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),B2),A2)))) ) ).
% norm_of_real_diff
tff(fact_3237_arccos__cos__eq__abs,axiom,
! [Theta: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),Theta)),pi))
=> ( aa(real,real,arccos,aa(real,real,cos(real),Theta)) = aa(real,real,abs_abs(real),Theta) ) ) ).
% arccos_cos_eq_abs
tff(fact_3238_arccos__lt__bounded,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),one_one(real))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y),one_one(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,arccos,Y)))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,arccos,Y)),pi)) ) ) ) ).
% arccos_lt_bounded
tff(fact_3239_arccos__bounded,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),one_one(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,arccos,Y)))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,arccos,Y)),pi)) ) ) ) ).
% arccos_bounded
tff(fact_3240_sin__arccos__nonzero,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),one_one(real))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),one_one(real)))
=> ( sin(real,aa(real,real,arccos,X2)) != zero_zero(real) ) ) ) ).
% sin_arccos_nonzero
tff(fact_3241_arccos__minus,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),one_one(real)))
=> ( aa(real,real,arccos,aa(real,real,uminus_uminus(real),X2)) = aa(real,real,aa(real,fun(real,real),minus_minus(real),pi),aa(real,real,arccos,X2)) ) ) ) ).
% arccos_minus
tff(fact_3242_arccos__cos2,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),zero_zero(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),pi)),X2))
=> ( aa(real,real,arccos,aa(real,real,cos(real),X2)) = aa(real,real,uminus_uminus(real),X2) ) ) ) ).
% arccos_cos2
tff(fact_3243_cos__arcsin__nonzero,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),one_one(real))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),one_one(real)))
=> ( aa(real,real,cos(real),aa(real,real,arcsin,X2)) != zero_zero(real) ) ) ) ).
% cos_arcsin_nonzero
tff(fact_3244_arccos,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),one_one(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,arccos,Y)))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,arccos,Y)),pi))
& ( aa(real,real,cos(real),aa(real,real,arccos,Y)) = Y ) ) ) ) ).
% arccos
tff(fact_3245_arccos__minus__abs,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),X2)),one_one(real)))
=> ( aa(real,real,arccos,aa(real,real,uminus_uminus(real),X2)) = aa(real,real,aa(real,fun(real,real),minus_minus(real),pi),aa(real,real,arccos,X2)) ) ) ).
% arccos_minus_abs
tff(fact_3246_sin__cos__eq,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : ( sin(A,X2) = aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),real_Vector_of_real(A,pi)),aa(num,A,numeral_numeral(A),bit0(one2)))),X2)) ) ) ).
% sin_cos_eq
tff(fact_3247_cos__sin__eq,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : ( aa(A,A,cos(A),X2) = sin(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),real_Vector_of_real(A,pi)),aa(num,A,numeral_numeral(A),bit0(one2)))),X2)) ) ) ).
% cos_sin_eq
tff(fact_3248_minus__sin__cos__eq,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : ( aa(A,A,uminus_uminus(A),sin(A,X2)) = aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),aa(A,A,aa(A,fun(A,A),divide_divide(A),real_Vector_of_real(A,pi)),aa(num,A,numeral_numeral(A),bit0(one2))))) ) ) ).
% minus_sin_cos_eq
tff(fact_3249_arccos__le__pi2,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),one_one(real)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,arccos,Y)),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))) ) ) ).
% arccos_le_pi2
tff(fact_3250_arcsin__lt__bounded,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),one_one(real))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y),one_one(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),aa(real,real,arcsin,Y)))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,arcsin,Y)),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))) ) ) ) ).
% arcsin_lt_bounded
tff(fact_3251_arcsin__bounded,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),one_one(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),aa(real,real,arcsin,Y)))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,arcsin,Y)),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))) ) ) ) ).
% arcsin_bounded
tff(fact_3252_arcsin__ubound,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),one_one(real)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,arcsin,Y)),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))) ) ) ).
% arcsin_ubound
tff(fact_3253_arcsin__lbound,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),one_one(real)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),aa(real,real,arcsin,Y))) ) ) ).
% arcsin_lbound
tff(fact_3254_arcsin__sin,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> ( aa(real,real,arcsin,sin(real,X2)) = X2 ) ) ) ).
% arcsin_sin
tff(fact_3255_le__arcsin__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),one_one(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,uminus_uminus(real),pi)),aa(num,real,numeral_numeral(real),bit0(one2)))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),aa(real,real,arcsin,X2)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),sin(real,Y)),X2)) ) ) ) ) ) ).
% le_arcsin_iff
tff(fact_3256_arcsin__le__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),one_one(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,uminus_uminus(real),pi)),aa(num,real,numeral_numeral(real),bit0(one2)))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,arcsin,X2)),Y))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),sin(real,Y))) ) ) ) ) ) ).
% arcsin_le_iff
tff(fact_3257_arcsin__pi,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),one_one(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),aa(real,real,arcsin,Y)))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,arcsin,Y)),pi))
& ( sin(real,aa(real,real,arcsin,Y)) = Y ) ) ) ) ).
% arcsin_pi
tff(fact_3258_arcsin,axiom,
! [Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),one_one(real))),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),one_one(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),aa(real,real,arcsin,Y)))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,arcsin,Y)),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
& ( sin(real,aa(real,real,arcsin,Y)) = Y ) ) ) ) ).
% arcsin
tff(fact_3259_cos__npi__int,axiom,
! [N: int] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),N))
=> ( aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),times_times(real),pi),aa(int,real,ring_1_of_int(real),N))) = one_one(real) ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),N))
=> ( aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),times_times(real),pi),aa(int,real,ring_1_of_int(real),N))) = aa(real,real,uminus_uminus(real),one_one(real)) ) ) ) ).
% cos_npi_int
tff(fact_3260_cot__less__zero,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,uminus_uminus(real),pi)),aa(num,real,numeral_numeral(real),bit0(one2)))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),zero_zero(real)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,cot(real),X2)),zero_zero(real))) ) ) ).
% cot_less_zero
tff(fact_3261_cot__periodic,axiom,
! [X2: real] : ( aa(real,real,cot(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),pi))) = aa(real,real,cot(real),X2) ) ).
% cot_periodic
tff(fact_3262_powr__int,axiom,
! [X2: real,I: int] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),I))
=> ( powr(real,X2,aa(int,real,ring_1_of_int(real),I)) = aa(nat,real,power_power(real,X2),aa(int,nat,nat2,I)) ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),I))
=> ( powr(real,X2,aa(int,real,ring_1_of_int(real),I)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(nat,real,power_power(real,X2),aa(int,nat,nat2,aa(int,int,uminus_uminus(int),I)))) ) ) ) ) ).
% powr_int
tff(fact_3263_sin__zero__iff__int,axiom,
! [X2: real] :
( ( sin(real,X2) = zero_zero(real) )
<=> ? [I4: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),I4))
& ( X2 = aa(real,real,aa(real,fun(real,real),times_times(real),aa(int,real,ring_1_of_int(real),I4)),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))) ) ) ) ).
% sin_zero_iff_int
tff(fact_3264_of__int__floor__cancel,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( ( aa(int,A,ring_1_of_int(A),aa(A,int,archim6421214686448440834_floor(A),X2)) = X2 )
<=> ? [N5: int] : ( X2 = aa(int,A,ring_1_of_int(A),N5) ) ) ) ).
% of_int_floor_cancel
tff(fact_3265_of__int__ceiling__cancel,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( ( aa(int,A,ring_1_of_int(A),archimedean_ceiling(A,X2)) = X2 )
<=> ? [N5: int] : ( X2 = aa(int,A,ring_1_of_int(A),N5) ) ) ) ).
% of_int_ceiling_cancel
tff(fact_3266_cot__zero,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ( aa(A,A,cot(A),zero_zero(A)) = zero_zero(A) ) ) ).
% cot_zero
tff(fact_3267_cot__minus,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : ( aa(A,A,cot(A),aa(A,A,uminus_uminus(A),X2)) = aa(A,A,uminus_uminus(A),aa(A,A,cot(A),X2)) ) ) ).
% cot_minus
tff(fact_3268_of__int__eq__0__iff,axiom,
! [A: $tType] :
( ring_char_0(A)
=> ! [Z: int] :
( ( aa(int,A,ring_1_of_int(A),Z) = zero_zero(A) )
<=> ( Z = zero_zero(int) ) ) ) ).
% of_int_eq_0_iff
tff(fact_3269_of__int__0__eq__iff,axiom,
! [A: $tType] :
( ring_char_0(A)
=> ! [Z: int] :
( ( zero_zero(A) = aa(int,A,ring_1_of_int(A),Z) )
<=> ( Z = zero_zero(int) ) ) ) ).
% of_int_0_eq_iff
tff(fact_3270_of__int__0,axiom,
! [A: $tType] :
( ring_1(A)
=> ( aa(int,A,ring_1_of_int(A),zero_zero(int)) = zero_zero(A) ) ) ).
% of_int_0
tff(fact_3271_of__int__le__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [W: int,Z: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(int,A,ring_1_of_int(A),W)),aa(int,A,ring_1_of_int(A),Z)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),W),Z)) ) ) ).
% of_int_le_iff
tff(fact_3272_of__int__numeral,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [K: num] : ( aa(int,A,ring_1_of_int(A),aa(num,int,numeral_numeral(int),K)) = aa(num,A,numeral_numeral(A),K) ) ) ).
% of_int_numeral
tff(fact_3273_of__int__eq__numeral__iff,axiom,
! [A: $tType] :
( ring_char_0(A)
=> ! [Z: int,N: num] :
( ( aa(int,A,ring_1_of_int(A),Z) = aa(num,A,numeral_numeral(A),N) )
<=> ( Z = aa(num,int,numeral_numeral(int),N) ) ) ) ).
% of_int_eq_numeral_iff
tff(fact_3274_of__int__less__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [W: int,Z: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(int,A,ring_1_of_int(A),W)),aa(int,A,ring_1_of_int(A),Z)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),W),Z)) ) ) ).
% of_int_less_iff
tff(fact_3275_of__int__eq__1__iff,axiom,
! [A: $tType] :
( ring_char_0(A)
=> ! [Z: int] :
( ( aa(int,A,ring_1_of_int(A),Z) = one_one(A) )
<=> ( Z = one_one(int) ) ) ) ).
% of_int_eq_1_iff
tff(fact_3276_of__int__1,axiom,
! [A: $tType] :
( ring_1(A)
=> ( aa(int,A,ring_1_of_int(A),one_one(int)) = one_one(A) ) ) ).
% of_int_1
tff(fact_3277_of__int__mult,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [W: int,Z: int] : ( aa(int,A,ring_1_of_int(A),aa(int,int,aa(int,fun(int,int),times_times(int),W),Z)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(int,A,ring_1_of_int(A),W)),aa(int,A,ring_1_of_int(A),Z)) ) ) ).
% of_int_mult
tff(fact_3278_of__int__add,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [W: int,Z: int] : ( aa(int,A,ring_1_of_int(A),aa(int,int,aa(int,fun(int,int),plus_plus(int),W),Z)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(int,A,ring_1_of_int(A),W)),aa(int,A,ring_1_of_int(A),Z)) ) ) ).
% of_int_add
tff(fact_3279_of__int__minus,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [Z: int] : ( aa(int,A,ring_1_of_int(A),aa(int,int,uminus_uminus(int),Z)) = aa(A,A,uminus_uminus(A),aa(int,A,ring_1_of_int(A),Z)) ) ) ).
% of_int_minus
tff(fact_3280_of__int__diff,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [W: int,Z: int] : ( aa(int,A,ring_1_of_int(A),aa(int,int,aa(int,fun(int,int),minus_minus(int),W),Z)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(int,A,ring_1_of_int(A),W)),aa(int,A,ring_1_of_int(A),Z)) ) ) ).
% of_int_diff
tff(fact_3281_of__int__of__nat__eq,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [N: nat] : ( aa(int,A,ring_1_of_int(A),aa(nat,int,semiring_1_of_nat(int),N)) = aa(nat,A,semiring_1_of_nat(A),N) ) ) ).
% of_int_of_nat_eq
tff(fact_3282_of__int__power,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [Z: int,N: nat] : ( aa(int,A,ring_1_of_int(A),aa(nat,int,power_power(int,Z),N)) = aa(nat,A,power_power(A,aa(int,A,ring_1_of_int(A),Z)),N) ) ) ).
% of_int_power
tff(fact_3283_of__int__eq__of__int__power__cancel__iff,axiom,
! [A: $tType] :
( ring_char_0(A)
=> ! [B2: int,W: nat,X2: int] :
( ( aa(nat,A,power_power(A,aa(int,A,ring_1_of_int(A),B2)),W) = aa(int,A,ring_1_of_int(A),X2) )
<=> ( aa(nat,int,power_power(int,B2),W) = X2 ) ) ) ).
% of_int_eq_of_int_power_cancel_iff
tff(fact_3284_of__int__power__eq__of__int__cancel__iff,axiom,
! [A: $tType] :
( ring_char_0(A)
=> ! [X2: int,B2: int,W: nat] :
( ( aa(int,A,ring_1_of_int(A),X2) = aa(nat,A,power_power(A,aa(int,A,ring_1_of_int(A),B2)),W) )
<=> ( X2 = aa(nat,int,power_power(int,B2),W) ) ) ) ).
% of_int_power_eq_of_int_cancel_iff
tff(fact_3285_cot__pi,axiom,
aa(real,real,cot(real),pi) = zero_zero(real) ).
% cot_pi
tff(fact_3286_floor__uminus__of__int,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [Z: int] : ( aa(A,int,archim6421214686448440834_floor(A),aa(A,A,uminus_uminus(A),aa(int,A,ring_1_of_int(A),Z))) = aa(int,int,uminus_uminus(int),Z) ) ) ).
% floor_uminus_of_int
tff(fact_3287_ceiling__add__of__int,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,Z: int] : ( archimedean_ceiling(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),aa(int,A,ring_1_of_int(A),Z))) = aa(int,int,aa(int,fun(int,int),plus_plus(int),archimedean_ceiling(A,X2)),Z) ) ) ).
% ceiling_add_of_int
tff(fact_3288_floor__diff__of__int,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,Z: int] : ( aa(A,int,archim6421214686448440834_floor(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),aa(int,A,ring_1_of_int(A),Z))) = aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(A,int,archim6421214686448440834_floor(A),X2)),Z) ) ) ).
% floor_diff_of_int
tff(fact_3289_ceiling__diff__of__int,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,Z: int] : ( archimedean_ceiling(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),aa(int,A,ring_1_of_int(A),Z))) = aa(int,int,aa(int,fun(int,int),minus_minus(int),archimedean_ceiling(A,X2)),Z) ) ) ).
% ceiling_diff_of_int
tff(fact_3290_of__nat__nat__take__bit__eq,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [N: nat,K: int] : ( aa(nat,A,semiring_1_of_nat(A),aa(int,nat,nat2,aa(int,int,bit_se2584673776208193580ke_bit(int,N),K))) = aa(int,A,ring_1_of_int(A),aa(int,int,bit_se2584673776208193580ke_bit(int,N),K)) ) ) ).
% of_nat_nat_take_bit_eq
tff(fact_3291_of__int__le__0__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [Z: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(int,A,ring_1_of_int(A),Z)),zero_zero(A)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),Z),zero_zero(int))) ) ) ).
% of_int_le_0_iff
tff(fact_3292_of__int__0__le__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [Z: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(int,A,ring_1_of_int(A),Z)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Z)) ) ) ).
% of_int_0_le_iff
tff(fact_3293_of__int__0__less__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [Z: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(int,A,ring_1_of_int(A),Z)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),Z)) ) ) ).
% of_int_0_less_iff
tff(fact_3294_of__int__less__0__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [Z: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(int,A,ring_1_of_int(A),Z)),zero_zero(A)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),Z),zero_zero(int))) ) ) ).
% of_int_less_0_iff
tff(fact_3295_of__int__le__numeral__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [Z: int,N: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(int,A,ring_1_of_int(A),Z)),aa(num,A,numeral_numeral(A),N)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),Z),aa(num,int,numeral_numeral(int),N))) ) ) ).
% of_int_le_numeral_iff
tff(fact_3296_of__int__numeral__le__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [N: num,Z: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(num,A,numeral_numeral(A),N)),aa(int,A,ring_1_of_int(A),Z)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(num,int,numeral_numeral(int),N)),Z)) ) ) ).
% of_int_numeral_le_iff
tff(fact_3297_of__int__less__numeral__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [Z: int,N: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(int,A,ring_1_of_int(A),Z)),aa(num,A,numeral_numeral(A),N)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),Z),aa(num,int,numeral_numeral(int),N))) ) ) ).
% of_int_less_numeral_iff
tff(fact_3298_of__int__numeral__less__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [N: num,Z: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(num,A,numeral_numeral(A),N)),aa(int,A,ring_1_of_int(A),Z)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(num,int,numeral_numeral(int),N)),Z)) ) ) ).
% of_int_numeral_less_iff
tff(fact_3299_of__int__le__1__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [Z: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(int,A,ring_1_of_int(A),Z)),one_one(A)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),Z),one_one(int))) ) ) ).
% of_int_le_1_iff
tff(fact_3300_of__int__1__le__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [Z: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),aa(int,A,ring_1_of_int(A),Z)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),one_one(int)),Z)) ) ) ).
% of_int_1_le_iff
tff(fact_3301_of__int__1__less__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [Z: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),aa(int,A,ring_1_of_int(A),Z)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),one_one(int)),Z)) ) ) ).
% of_int_1_less_iff
tff(fact_3302_of__int__less__1__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [Z: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(int,A,ring_1_of_int(A),Z)),one_one(A)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),Z),one_one(int))) ) ) ).
% of_int_less_1_iff
tff(fact_3303_of__int__le__of__int__power__cancel__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [B2: int,W: nat,X2: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,aa(int,A,ring_1_of_int(A),B2)),W)),aa(int,A,ring_1_of_int(A),X2)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(nat,int,power_power(int,B2),W)),X2)) ) ) ).
% of_int_le_of_int_power_cancel_iff
tff(fact_3304_of__int__power__le__of__int__cancel__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: int,B2: int,W: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(int,A,ring_1_of_int(A),X2)),aa(nat,A,power_power(A,aa(int,A,ring_1_of_int(A),B2)),W)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),X2),aa(nat,int,power_power(int,B2),W))) ) ) ).
% of_int_power_le_of_int_cancel_iff
tff(fact_3305_numeral__power__eq__of__int__cancel__iff,axiom,
! [A: $tType] :
( ring_char_0(A)
=> ! [X2: num,N: nat,Y: int] :
( ( aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),X2)),N) = aa(int,A,ring_1_of_int(A),Y) )
<=> ( aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),X2)),N) = Y ) ) ) ).
% numeral_power_eq_of_int_cancel_iff
tff(fact_3306_of__int__eq__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( ring_char_0(A)
=> ! [Y: int,X2: num,N: nat] :
( ( aa(int,A,ring_1_of_int(A),Y) = aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),X2)),N) )
<=> ( Y = aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),X2)),N) ) ) ) ).
% of_int_eq_numeral_power_cancel_iff
tff(fact_3307_of__int__less__of__int__power__cancel__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [B2: int,W: nat,X2: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,power_power(A,aa(int,A,ring_1_of_int(A),B2)),W)),aa(int,A,ring_1_of_int(A),X2)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(nat,int,power_power(int,B2),W)),X2)) ) ) ).
% of_int_less_of_int_power_cancel_iff
tff(fact_3308_of__int__power__less__of__int__cancel__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: int,B2: int,W: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(int,A,ring_1_of_int(A),X2)),aa(nat,A,power_power(A,aa(int,A,ring_1_of_int(A),B2)),W)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),X2),aa(nat,int,power_power(int,B2),W))) ) ) ).
% of_int_power_less_of_int_cancel_iff
tff(fact_3309_of__nat__nat,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [Z: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Z))
=> ( aa(nat,A,semiring_1_of_nat(A),aa(int,nat,nat2,Z)) = aa(int,A,ring_1_of_int(A),Z) ) ) ) ).
% of_nat_nat
tff(fact_3310_sin__npi__int,axiom,
! [N: int] : ( sin(real,aa(real,real,aa(real,fun(real,real),times_times(real),pi),aa(int,real,ring_1_of_int(real),N))) = zero_zero(real) ) ).
% sin_npi_int
tff(fact_3311_tan__periodic__int,axiom,
! [X2: real,I: int] : ( aa(real,real,tan(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),aa(real,real,aa(real,fun(real,real),times_times(real),aa(int,real,ring_1_of_int(real),I)),pi))) = aa(real,real,tan(real),X2) ) ).
% tan_periodic_int
tff(fact_3312_cot__npi,axiom,
! [N: nat] : ( aa(real,real,cot(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N)),pi)) = zero_zero(real) ) ).
% cot_npi
tff(fact_3313_numeral__power__le__of__int__cancel__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: num,N: nat,A2: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),X2)),N)),aa(int,A,ring_1_of_int(A),A2)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),X2)),N)),A2)) ) ) ).
% numeral_power_le_of_int_cancel_iff
tff(fact_3314_of__int__le__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: int,X2: num,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(int,A,ring_1_of_int(A),A2)),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),X2)),N)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),A2),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),X2)),N))) ) ) ).
% of_int_le_numeral_power_cancel_iff
tff(fact_3315_numeral__power__less__of__int__cancel__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: num,N: nat,A2: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),X2)),N)),aa(int,A,ring_1_of_int(A),A2)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),X2)),N)),A2)) ) ) ).
% numeral_power_less_of_int_cancel_iff
tff(fact_3316_of__int__less__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: int,X2: num,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(int,A,ring_1_of_int(A),A2)),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),X2)),N)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),A2),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),X2)),N))) ) ) ).
% of_int_less_numeral_power_cancel_iff
tff(fact_3317_neg__numeral__power__eq__of__int__cancel__iff,axiom,
! [A: $tType] :
( ring_char_0(A)
=> ! [X2: num,N: nat,Y: int] :
( ( aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),X2))),N) = aa(int,A,ring_1_of_int(A),Y) )
<=> ( aa(nat,int,power_power(int,aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),X2))),N) = Y ) ) ) ).
% neg_numeral_power_eq_of_int_cancel_iff
tff(fact_3318_of__int__eq__neg__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( ring_char_0(A)
=> ! [Y: int,X2: num,N: nat] :
( ( aa(int,A,ring_1_of_int(A),Y) = aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),X2))),N) )
<=> ( Y = aa(nat,int,power_power(int,aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),X2))),N) ) ) ) ).
% of_int_eq_neg_numeral_power_cancel_iff
tff(fact_3319_sin__int__2pin,axiom,
! [N: int] : ( sin(real,aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),pi)),aa(int,real,ring_1_of_int(real),N))) = zero_zero(real) ) ).
% sin_int_2pin
tff(fact_3320_cos__int__2pin,axiom,
! [N: int] : ( aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),pi)),aa(int,real,ring_1_of_int(real),N))) = one_one(real) ) ).
% cos_int_2pin
tff(fact_3321_neg__numeral__power__le__of__int__cancel__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: num,N: nat,A2: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),X2))),N)),aa(int,A,ring_1_of_int(A),A2)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(nat,int,power_power(int,aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),X2))),N)),A2)) ) ) ).
% neg_numeral_power_le_of_int_cancel_iff
tff(fact_3322_of__int__le__neg__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: int,X2: num,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(int,A,ring_1_of_int(A),A2)),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),X2))),N)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),A2),aa(nat,int,power_power(int,aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),X2))),N))) ) ) ).
% of_int_le_neg_numeral_power_cancel_iff
tff(fact_3323_neg__numeral__power__less__of__int__cancel__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: num,N: nat,A2: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),X2))),N)),aa(int,A,ring_1_of_int(A),A2)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(nat,int,power_power(int,aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),X2))),N)),A2)) ) ) ).
% neg_numeral_power_less_of_int_cancel_iff
tff(fact_3324_of__int__less__neg__numeral__power__cancel__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: int,X2: num,N: nat] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(int,A,ring_1_of_int(A),A2)),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),X2))),N)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),A2),aa(nat,int,power_power(int,aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),X2))),N))) ) ) ).
% of_int_less_neg_numeral_power_cancel_iff
tff(fact_3325_mult__of__int__commute,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [X2: int,Y: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(int,A,ring_1_of_int(A),X2)),Y) = aa(A,A,aa(A,fun(A,A),times_times(A),Y),aa(int,A,ring_1_of_int(A),X2)) ) ) ).
% mult_of_int_commute
tff(fact_3326_ex__le__of__int,axiom,
! [A: $tType] :
( archim462609752435547400_field(A)
=> ! [X2: A] :
? [Z3: int] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(int,A,ring_1_of_int(A),Z3))) ) ).
% ex_le_of_int
tff(fact_3327_ex__less__of__int,axiom,
! [A: $tType] :
( archim462609752435547400_field(A)
=> ! [X2: A] :
? [Z3: int] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),aa(int,A,ring_1_of_int(A),Z3))) ) ).
% ex_less_of_int
tff(fact_3328_ex__of__int__less,axiom,
! [A: $tType] :
( archim462609752435547400_field(A)
=> ! [X2: A] :
? [Z3: int] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(int,A,ring_1_of_int(A),Z3)),X2)) ) ).
% ex_of_int_less
tff(fact_3329_of__int__floor__le,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(int,A,ring_1_of_int(A),aa(A,int,archim6421214686448440834_floor(A),X2))),X2)) ) ).
% of_int_floor_le
tff(fact_3330_le__of__int__ceiling,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(int,A,ring_1_of_int(A),archimedean_ceiling(A,X2)))) ) ).
% le_of_int_ceiling
tff(fact_3331_take__bit__of__int,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: nat,K: int] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),aa(int,A,ring_1_of_int(A),K)) = aa(int,A,ring_1_of_int(A),aa(int,int,bit_se2584673776208193580ke_bit(int,N),K)) ) ) ).
% take_bit_of_int
tff(fact_3332_of__int__and__eq,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [K: int,L: int] : ( aa(int,A,ring_1_of_int(A),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),K),L)) = aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(int,A,ring_1_of_int(A),K)),aa(int,A,ring_1_of_int(A),L)) ) ) ).
% of_int_and_eq
tff(fact_3333_cos__int__times__real,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [M: int,X2: real] : ( aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(int,A,ring_1_of_int(A),M)),real_Vector_of_real(A,X2))) = real_Vector_of_real(A,aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(int,real,ring_1_of_int(real),M)),X2))) ) ) ).
% cos_int_times_real
tff(fact_3334_sin__int__times__real,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [M: int,X2: real] : ( sin(A,aa(A,A,aa(A,fun(A,A),times_times(A),aa(int,A,ring_1_of_int(A),M)),real_Vector_of_real(A,X2))) = real_Vector_of_real(A,sin(real,aa(real,real,aa(real,fun(real,real),times_times(real),aa(int,real,ring_1_of_int(real),M)),X2))) ) ) ).
% sin_int_times_real
tff(fact_3335_of__int__mask__eq,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: nat] : ( aa(int,A,ring_1_of_int(A),bit_se2239418461657761734s_mask(int,N)) = bit_se2239418461657761734s_mask(A,N) ) ) ).
% of_int_mask_eq
tff(fact_3336_le__floor__iff,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [Z: int,X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),Z),aa(A,int,archim6421214686448440834_floor(A),X2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(int,A,ring_1_of_int(A),Z)),X2)) ) ) ).
% le_floor_iff
tff(fact_3337_floor__less__iff,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,Z: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(A,int,archim6421214686448440834_floor(A),X2)),Z))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),aa(int,A,ring_1_of_int(A),Z))) ) ) ).
% floor_less_iff
tff(fact_3338_ceiling__le,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,A2: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(int,A,ring_1_of_int(A),A2)))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),archimedean_ceiling(A,X2)),A2)) ) ) ).
% ceiling_le
tff(fact_3339_ceiling__le__iff,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,Z: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),archimedean_ceiling(A,X2)),Z))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(int,A,ring_1_of_int(A),Z))) ) ) ).
% ceiling_le_iff
tff(fact_3340_less__ceiling__iff,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [Z: int,X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),Z),archimedean_ceiling(A,X2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(int,A,ring_1_of_int(A),Z)),X2)) ) ) ).
% less_ceiling_iff
tff(fact_3341_floor__add__int,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,Z: int] : ( aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(A,int,archim6421214686448440834_floor(A),X2)),Z) = aa(A,int,archim6421214686448440834_floor(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),aa(int,A,ring_1_of_int(A),Z))) ) ) ).
% floor_add_int
tff(fact_3342_int__add__floor,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [Z: int,X2: A] : ( aa(int,int,aa(int,fun(int,int),plus_plus(int),Z),aa(A,int,archim6421214686448440834_floor(A),X2)) = aa(A,int,archim6421214686448440834_floor(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(int,A,ring_1_of_int(A),Z)),X2)) ) ) ).
% int_add_floor
tff(fact_3343_real__of__int__div4,axiom,
! [N: int,X2: int] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(int,real,ring_1_of_int(real),aa(int,int,aa(int,fun(int,int),divide_divide(int),N),X2))),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(int,real,ring_1_of_int(real),N)),aa(int,real,ring_1_of_int(real),X2)))) ).
% real_of_int_div4
tff(fact_3344_floor__divide__of__int__eq,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [K: int,L: int] : ( aa(A,int,archim6421214686448440834_floor(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(int,A,ring_1_of_int(A),K)),aa(int,A,ring_1_of_int(A),L))) = aa(int,int,aa(int,fun(int,int),divide_divide(int),K),L) ) ) ).
% floor_divide_of_int_eq
tff(fact_3345_floor__power,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,N: nat] :
( ( X2 = aa(int,A,ring_1_of_int(A),aa(A,int,archim6421214686448440834_floor(A),X2)) )
=> ( aa(A,int,archim6421214686448440834_floor(A),aa(nat,A,power_power(A,X2),N)) = aa(nat,int,power_power(int,aa(A,int,archim6421214686448440834_floor(A),X2)),N) ) ) ) ).
% floor_power
tff(fact_3346_real__of__int__div,axiom,
! [D2: int,N: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),D2),N))
=> ( aa(int,real,ring_1_of_int(real),aa(int,int,aa(int,fun(int,int),divide_divide(int),N),D2)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(int,real,ring_1_of_int(real),N)),aa(int,real,ring_1_of_int(real),D2)) ) ) ).
% real_of_int_div
tff(fact_3347_of__int__nonneg,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [Z: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Z))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(int,A,ring_1_of_int(A),Z))) ) ) ).
% of_int_nonneg
tff(fact_3348_of__int__leD,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [N: int,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),aa(int,A,ring_1_of_int(A),N))),X2))
=> ( ( N = zero_zero(int) )
| pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),X2)) ) ) ) ).
% of_int_leD
tff(fact_3349_of__int__pos,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [Z: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),Z))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(int,A,ring_1_of_int(A),Z))) ) ) ).
% of_int_pos
tff(fact_3350_of__int__lessD,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [N: int,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,abs_abs(A),aa(int,A,ring_1_of_int(A),N))),X2))
=> ( ( N = zero_zero(int) )
| pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),X2)) ) ) ) ).
% of_int_lessD
tff(fact_3351_floor__exists,axiom,
! [A: $tType] :
( archim462609752435547400_field(A)
=> ! [X2: A] :
? [Z3: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(int,A,ring_1_of_int(A),Z3)),X2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),aa(int,A,ring_1_of_int(A),aa(int,int,aa(int,fun(int,int),plus_plus(int),Z3),one_one(int))))) ) ) ).
% floor_exists
tff(fact_3352_floor__exists1,axiom,
! [A: $tType] :
( archim462609752435547400_field(A)
=> ! [X2: A] :
? [X3: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(int,A,ring_1_of_int(A),X3)),X2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),aa(int,A,ring_1_of_int(A),aa(int,int,aa(int,fun(int,int),plus_plus(int),X3),one_one(int)))))
& ! [Y4: int] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(int,A,ring_1_of_int(A),Y4)),X2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),aa(int,A,ring_1_of_int(A),aa(int,int,aa(int,fun(int,int),plus_plus(int),Y4),one_one(int))))) )
=> ( Y4 = X3 ) ) ) ) ).
% floor_exists1
tff(fact_3353_of__int__ceiling__le__add__one,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [R: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(int,A,ring_1_of_int(A),archimedean_ceiling(A,R))),aa(A,A,aa(A,fun(A,A),plus_plus(A),R),one_one(A)))) ) ).
% of_int_ceiling_le_add_one
tff(fact_3354_of__int__neg__numeral,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [K: num] : ( aa(int,A,ring_1_of_int(A),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),K))) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),K)) ) ) ).
% of_int_neg_numeral
tff(fact_3355_of__int__ceiling__diff__one__le,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [R: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(int,A,ring_1_of_int(A),archimedean_ceiling(A,R))),one_one(A))),R)) ) ).
% of_int_ceiling_diff_one_le
tff(fact_3356_of__nat__less__of__int__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [N: nat,X2: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,semiring_1_of_nat(A),N)),aa(int,A,ring_1_of_int(A),X2)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(nat,int,semiring_1_of_nat(int),N)),X2)) ) ) ).
% of_nat_less_of_int_iff
tff(fact_3357_int__le__real__less,axiom,
! [N: int,M: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),N),M))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(int,real,ring_1_of_int(real),N)),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(int,real,ring_1_of_int(real),M)),one_one(real)))) ) ).
% int_le_real_less
tff(fact_3358_int__less__real__le,axiom,
! [N: int,M: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),N),M))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(int,real,ring_1_of_int(real),N)),one_one(real))),aa(int,real,ring_1_of_int(real),M))) ) ).
% int_less_real_le
tff(fact_3359_ceiling__divide__eq__div,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [A2: int,B2: int] : ( archimedean_ceiling(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(int,A,ring_1_of_int(A),A2)),aa(int,A,ring_1_of_int(A),B2))) = aa(int,int,uminus_uminus(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,uminus_uminus(int),A2)),B2)) ) ) ).
% ceiling_divide_eq_div
tff(fact_3360_sin__zero__iff__int2,axiom,
! [X2: real] :
( ( sin(real,X2) = zero_zero(real) )
<=> ? [I4: int] : ( X2 = aa(real,real,aa(real,fun(real,real),times_times(real),aa(int,real,ring_1_of_int(real),I4)),pi) ) ) ).
% sin_zero_iff_int2
tff(fact_3361_ceiling__altdef,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( ( ( X2 = aa(int,A,ring_1_of_int(A),aa(A,int,archim6421214686448440834_floor(A),X2)) )
=> ( archimedean_ceiling(A,X2) = aa(A,int,archim6421214686448440834_floor(A),X2) ) )
& ( ( X2 != aa(int,A,ring_1_of_int(A),aa(A,int,archim6421214686448440834_floor(A),X2)) )
=> ( archimedean_ceiling(A,X2) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(A,int,archim6421214686448440834_floor(A),X2)),one_one(int)) ) ) ) ) ).
% ceiling_altdef
tff(fact_3362_real__of__int__div__aux,axiom,
! [X2: int,D2: int] : ( aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(int,real,ring_1_of_int(real),X2)),aa(int,real,ring_1_of_int(real),D2)) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(int,real,ring_1_of_int(real),aa(int,int,aa(int,fun(int,int),divide_divide(int),X2),D2))),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(int,real,ring_1_of_int(real),modulo_modulo(int,X2,D2))),aa(int,real,ring_1_of_int(real),D2))) ) ).
% real_of_int_div_aux
tff(fact_3363_real__of__int__floor__add__one__gt,axiom,
! [R: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),R),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(int,real,ring_1_of_int(real),aa(real,int,archim6421214686448440834_floor(real),R))),one_one(real)))) ).
% real_of_int_floor_add_one_gt
tff(fact_3364_floor__eq,axiom,
! [N: int,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(int,real,ring_1_of_int(real),N)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(int,real,ring_1_of_int(real),N)),one_one(real))))
=> ( aa(real,int,archim6421214686448440834_floor(real),X2) = N ) ) ) ).
% floor_eq
tff(fact_3365_real__of__int__floor__add__one__ge,axiom,
! [R: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),R),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(int,real,ring_1_of_int(real),aa(real,int,archim6421214686448440834_floor(real),R))),one_one(real)))) ).
% real_of_int_floor_add_one_ge
tff(fact_3366_real__of__int__floor__gt__diff__one,axiom,
! [R: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),R),one_one(real))),aa(int,real,ring_1_of_int(real),aa(real,int,archim6421214686448440834_floor(real),R)))) ).
% real_of_int_floor_gt_diff_one
tff(fact_3367_real__of__int__floor__ge__diff__one,axiom,
! [R: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),R),one_one(real))),aa(int,real,ring_1_of_int(real),aa(real,int,archim6421214686448440834_floor(real),R)))) ).
% real_of_int_floor_ge_diff_one
tff(fact_3368_floor__unique,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [Z: int,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(int,A,ring_1_of_int(A),Z)),X2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(int,A,ring_1_of_int(A),Z)),one_one(A))))
=> ( aa(A,int,archim6421214686448440834_floor(A),X2) = Z ) ) ) ) ).
% floor_unique
tff(fact_3369_floor__eq__iff,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,A2: int] :
( ( aa(A,int,archim6421214686448440834_floor(A),X2) = A2 )
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(int,A,ring_1_of_int(A),A2)),X2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(int,A,ring_1_of_int(A),A2)),one_one(A)))) ) ) ) ).
% floor_eq_iff
tff(fact_3370_floor__split,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [P: fun(int,bool),T2: A] :
( pp(aa(int,bool,P,aa(A,int,archim6421214686448440834_floor(A),T2)))
<=> ! [I4: int] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(int,A,ring_1_of_int(A),I4)),T2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),T2),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(int,A,ring_1_of_int(A),I4)),one_one(A)))) )
=> pp(aa(int,bool,P,I4)) ) ) ) ).
% floor_split
tff(fact_3371_ceiling__correct,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(int,A,ring_1_of_int(A),archimedean_ceiling(A,X2))),one_one(A))),X2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(int,A,ring_1_of_int(A),archimedean_ceiling(A,X2)))) ) ) ).
% ceiling_correct
tff(fact_3372_ceiling__unique,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [Z: int,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(int,A,ring_1_of_int(A),Z)),one_one(A))),X2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(int,A,ring_1_of_int(A),Z)))
=> ( archimedean_ceiling(A,X2) = Z ) ) ) ) ).
% ceiling_unique
tff(fact_3373_ceiling__eq__iff,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,A2: int] :
( ( archimedean_ceiling(A,X2) = A2 )
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(int,A,ring_1_of_int(A),A2)),one_one(A))),X2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(int,A,ring_1_of_int(A),A2))) ) ) ) ).
% ceiling_eq_iff
tff(fact_3374_ceiling__split,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [P: fun(int,bool),T2: A] :
( pp(aa(int,bool,P,archimedean_ceiling(A,T2)))
<=> ! [I4: int] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(int,A,ring_1_of_int(A),I4)),one_one(A))),T2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),T2),aa(int,A,ring_1_of_int(A),I4))) )
=> pp(aa(int,bool,P,I4)) ) ) ) ).
% ceiling_split
tff(fact_3375_less__floor__iff,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [Z: int,X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),Z),aa(A,int,archim6421214686448440834_floor(A),X2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(int,A,ring_1_of_int(A),Z)),one_one(A))),X2)) ) ) ).
% less_floor_iff
tff(fact_3376_floor__le__iff,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,Z: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(A,int,archim6421214686448440834_floor(A),X2)),Z))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(int,A,ring_1_of_int(A),Z)),one_one(A)))) ) ) ).
% floor_le_iff
tff(fact_3377_cot__def,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X: A] : ( aa(A,A,cot(A),X) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,cos(A),X)),sin(A,X)) ) ) ).
% cot_def
tff(fact_3378_ceiling__less__iff,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,Z: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),archimedean_ceiling(A,X2)),Z))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(int,A,ring_1_of_int(A),Z)),one_one(A)))) ) ) ).
% ceiling_less_iff
tff(fact_3379_le__ceiling__iff,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [Z: int,X2: A] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),Z),archimedean_ceiling(A,X2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(int,A,ring_1_of_int(A),Z)),one_one(A))),X2)) ) ) ).
% le_ceiling_iff
tff(fact_3380_floor__correct,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(int,A,ring_1_of_int(A),aa(A,int,archim6421214686448440834_floor(A),X2))),X2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),aa(int,A,ring_1_of_int(A),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(A,int,archim6421214686448440834_floor(A),X2)),one_one(int))))) ) ) ).
% floor_correct
tff(fact_3381_real__of__int__div2,axiom,
! [N: int,X2: int] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(int,real,ring_1_of_int(real),N)),aa(int,real,ring_1_of_int(real),X2))),aa(int,real,ring_1_of_int(real),aa(int,int,aa(int,fun(int,int),divide_divide(int),N),X2))))) ).
% real_of_int_div2
tff(fact_3382_real__of__int__div3,axiom,
! [N: int,X2: int] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(int,real,ring_1_of_int(real),N)),aa(int,real,ring_1_of_int(real),X2))),aa(int,real,ring_1_of_int(real),aa(int,int,aa(int,fun(int,int),divide_divide(int),N),X2)))),one_one(real))) ).
% real_of_int_div3
tff(fact_3383_floor__eq2,axiom,
! [N: int,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(int,real,ring_1_of_int(real),N)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(int,real,ring_1_of_int(real),N)),one_one(real))))
=> ( aa(real,int,archim6421214686448440834_floor(real),X2) = N ) ) ) ).
% floor_eq2
tff(fact_3384_floor__divide__real__eq__div,axiom,
! [B2: int,A2: real] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),B2))
=> ( aa(real,int,archim6421214686448440834_floor(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),A2),aa(int,real,ring_1_of_int(real),B2))) = aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(real,int,archim6421214686448440834_floor(real),A2)),B2) ) ) ).
% floor_divide_real_eq_div
tff(fact_3385_floor__divide__lower,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [Q2: A,P2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),Q2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(int,A,ring_1_of_int(A),aa(A,int,archim6421214686448440834_floor(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),P2),Q2)))),Q2)),P2)) ) ) ).
% floor_divide_lower
tff(fact_3386_ceiling__divide__upper,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [Q2: A,P2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),Q2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),P2),aa(A,A,aa(A,fun(A,A),times_times(A),aa(int,A,ring_1_of_int(A),archimedean_ceiling(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),P2),Q2)))),Q2))) ) ) ).
% ceiling_divide_upper
tff(fact_3387_even__of__int__iff,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [K: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(int,A,ring_1_of_int(A),K)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),K)) ) ) ).
% even_of_int_iff
tff(fact_3388_of__int__of__nat,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [K: int] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),zero_zero(int)))
=> ( aa(int,A,ring_1_of_int(A),K) = aa(A,A,uminus_uminus(A),aa(nat,A,semiring_1_of_nat(A),aa(int,nat,nat2,aa(int,int,uminus_uminus(int),K)))) ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),zero_zero(int)))
=> ( aa(int,A,ring_1_of_int(A),K) = aa(nat,A,semiring_1_of_nat(A),aa(int,nat,nat2,K)) ) ) ) ) ).
% of_int_of_nat
tff(fact_3389_floor__divide__upper,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [Q2: A,P2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),Q2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),P2),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(int,A,ring_1_of_int(A),aa(A,int,archim6421214686448440834_floor(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),P2),Q2)))),one_one(A))),Q2))) ) ) ).
% floor_divide_upper
tff(fact_3390_ceiling__divide__lower,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [Q2: A,P2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),Q2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(int,A,ring_1_of_int(A),archimedean_ceiling(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),P2),Q2)))),one_one(A))),Q2)),P2)) ) ) ).
% ceiling_divide_lower
tff(fact_3391_ceiling__eq,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [N: int,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(int,A,ring_1_of_int(A),N)),X2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(int,A,ring_1_of_int(A),N)),one_one(A))))
=> ( archimedean_ceiling(A,X2) = aa(int,int,aa(int,fun(int,int),plus_plus(int),N),one_one(int)) ) ) ) ) ).
% ceiling_eq
tff(fact_3392_cos__one__2pi__int,axiom,
! [X2: real] :
( ( aa(real,real,cos(real),X2) = one_one(real) )
<=> ? [X4: int] : ( X2 = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(int,real,ring_1_of_int(real),X4)),aa(num,real,numeral_numeral(real),bit0(one2)))),pi) ) ) ).
% cos_one_2pi_int
tff(fact_3393_arccos__cos__eq__abs__2pi,axiom,
! [Theta: real] :
~ ! [K3: int] : ( aa(real,real,arccos,aa(real,real,cos(real),Theta)) != aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),Theta),aa(real,real,aa(real,fun(real,real),times_times(real),aa(int,real,ring_1_of_int(real),K3)),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),pi)))) ) ).
% arccos_cos_eq_abs_2pi
tff(fact_3394_floor__log__eq__powr__iff,axiom,
! [X2: real,B2: real,K: int] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),B2))
=> ( ( aa(real,int,archim6421214686448440834_floor(real),aa(real,real,log(B2),X2)) = K )
<=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),powr(real,B2,aa(int,real,ring_1_of_int(real),K))),X2))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),powr(real,B2,aa(int,real,ring_1_of_int(real),aa(int,int,aa(int,fun(int,int),plus_plus(int),K),one_one(int)))))) ) ) ) ) ).
% floor_log_eq_powr_iff
tff(fact_3395_cot__gt__zero,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,cot(real),X2))) ) ) ).
% cot_gt_zero
tff(fact_3396_tan__cot_H,axiom,
! [X2: real] : ( aa(real,real,tan(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))),X2)) = aa(real,real,cot(real),X2) ) ).
% tan_cot'
tff(fact_3397_cos__zero__iff__int,axiom,
! [X2: real] :
( ( aa(real,real,cos(real),X2) = zero_zero(real) )
<=> ? [I4: int] :
( ~ pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),I4))
& ( X2 = aa(real,real,aa(real,fun(real,real),times_times(real),aa(int,real,ring_1_of_int(real),I4)),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))) ) ) ) ).
% cos_zero_iff_int
tff(fact_3398_round__unique,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,Y: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(num,A,numeral_numeral(A),bit0(one2))))),aa(int,A,ring_1_of_int(A),Y)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(int,A,ring_1_of_int(A),Y)),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(num,A,numeral_numeral(A),bit0(one2))))))
=> ( archimedean_round(A,X2) = Y ) ) ) ) ).
% round_unique
tff(fact_3399_round__unique_H,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,N: int] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),aa(int,A,ring_1_of_int(A),N)))),aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(num,A,numeral_numeral(A),bit0(one2)))))
=> ( archimedean_round(A,X2) = N ) ) ) ).
% round_unique'
tff(fact_3400_of__int__round__abs__le,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(int,A,ring_1_of_int(A),archimedean_round(A,X2))),X2))),aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(num,A,numeral_numeral(A),bit0(one2))))) ) ).
% of_int_round_abs_le
tff(fact_3401_of__int__round__gt,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(num,A,numeral_numeral(A),bit0(one2))))),aa(int,A,ring_1_of_int(A),archimedean_round(A,X2)))) ) ).
% of_int_round_gt
tff(fact_3402_of__int__round__ge,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(num,A,numeral_numeral(A),bit0(one2))))),aa(int,A,ring_1_of_int(A),archimedean_round(A,X2)))) ) ).
% of_int_round_ge
tff(fact_3403_round__0,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ( archimedean_round(A,zero_zero(A)) = zero_zero(int) ) ) ).
% round_0
tff(fact_3404_round__numeral,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [N: num] : ( archimedean_round(A,aa(num,A,numeral_numeral(A),N)) = aa(num,int,numeral_numeral(int),N) ) ) ).
% round_numeral
tff(fact_3405_round__1,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ( archimedean_round(A,one_one(A)) = one_one(int) ) ) ).
% round_1
tff(fact_3406_round__of__nat,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [N: nat] : ( archimedean_round(A,aa(nat,A,semiring_1_of_nat(A),N)) = aa(nat,int,semiring_1_of_nat(int),N) ) ) ).
% round_of_nat
tff(fact_3407_round__neg__numeral,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [N: num] : ( archimedean_round(A,aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N))) = aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),N)) ) ) ).
% round_neg_numeral
tff(fact_3408_round__mono,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),archimedean_round(A,X2)),archimedean_round(A,Y))) ) ) ).
% round_mono
tff(fact_3409_floor__le__round,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] : pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(A,int,archim6421214686448440834_floor(A),X2)),archimedean_round(A,X2))) ) ).
% floor_le_round
tff(fact_3410_ceiling__ge__round,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] : pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),archimedean_round(A,X2)),archimedean_ceiling(A,X2))) ) ).
% ceiling_ge_round
tff(fact_3411_round__diff__minimal,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [Z: A,M: int] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),Z),aa(int,A,ring_1_of_int(A),archimedean_round(A,Z))))),aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),Z),aa(int,A,ring_1_of_int(A),M))))) ) ).
% round_diff_minimal
tff(fact_3412_round__def,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] : ( archimedean_round(A,X2) = aa(A,int,archim6421214686448440834_floor(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(num,A,numeral_numeral(A),bit0(one2))))) ) ) ).
% round_def
tff(fact_3413_of__int__round__le,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(int,A,ring_1_of_int(A),archimedean_round(A,X2))),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(num,A,numeral_numeral(A),bit0(one2)))))) ) ).
% of_int_round_le
tff(fact_3414_round__altdef,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(num,A,numeral_numeral(A),bit0(one2)))),aa(A,A,archimedean_frac(A),X2)))
=> ( archimedean_round(A,X2) = archimedean_ceiling(A,X2) ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(num,A,numeral_numeral(A),bit0(one2)))),aa(A,A,archimedean_frac(A),X2)))
=> ( archimedean_round(A,X2) = aa(A,int,archim6421214686448440834_floor(A),X2) ) ) ) ) ).
% round_altdef
tff(fact_3415_exp__two__pi__i,axiom,
aa(complex,complex,exp(complex),aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),aa(num,complex,numeral_numeral(complex),bit0(one2))),real_Vector_of_real(complex,pi))),imaginary_unit)) = one_one(complex) ).
% exp_two_pi_i
tff(fact_3416_exp__two__pi__i_H,axiom,
aa(complex,complex,exp(complex),aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),imaginary_unit),aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),real_Vector_of_real(complex,pi)),aa(num,complex,numeral_numeral(complex),bit0(one2))))) = one_one(complex) ).
% exp_two_pi_i'
tff(fact_3417_powr__real__of__int,axiom,
! [X2: real,N: int] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),N))
=> ( powr(real,X2,aa(int,real,ring_1_of_int(real),N)) = aa(nat,real,power_power(real,X2),aa(int,nat,nat2,N)) ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),N))
=> ( powr(real,X2,aa(int,real,ring_1_of_int(real),N)) = aa(real,real,inverse_inverse(real),aa(nat,real,power_power(real,X2),aa(int,nat,nat2,aa(int,int,uminus_uminus(int),N)))) ) ) ) ) ).
% powr_real_of_int
tff(fact_3418_cis__2pi,axiom,
cis(aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),pi)) = one_one(complex) ).
% cis_2pi
tff(fact_3419_inverse__eq__iff__eq,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A,B2: A] :
( ( aa(A,A,inverse_inverse(A),A2) = aa(A,A,inverse_inverse(A),B2) )
<=> ( A2 = B2 ) ) ) ).
% inverse_eq_iff_eq
tff(fact_3420_inverse__inverse__eq,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A] : ( aa(A,A,inverse_inverse(A),aa(A,A,inverse_inverse(A),A2)) = A2 ) ) ).
% inverse_inverse_eq
tff(fact_3421_inverse__zero,axiom,
! [A: $tType] :
( division_ring(A)
=> ( aa(A,A,inverse_inverse(A),zero_zero(A)) = zero_zero(A) ) ) ).
% inverse_zero
tff(fact_3422_inverse__nonzero__iff__nonzero,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A] :
( ( aa(A,A,inverse_inverse(A),A2) = zero_zero(A) )
<=> ( A2 = zero_zero(A) ) ) ) ).
% inverse_nonzero_iff_nonzero
tff(fact_3423_inverse__mult__distrib,axiom,
! [A: $tType] :
( field(A)
=> ! [A2: A,B2: A] : ( aa(A,A,inverse_inverse(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,inverse_inverse(A),A2)),aa(A,A,inverse_inverse(A),B2)) ) ) ).
% inverse_mult_distrib
tff(fact_3424_inverse__1,axiom,
! [A: $tType] :
( division_ring(A)
=> ( aa(A,A,inverse_inverse(A),one_one(A)) = one_one(A) ) ) ).
% inverse_1
tff(fact_3425_inverse__eq__1__iff,axiom,
! [A: $tType] :
( field(A)
=> ! [X2: A] :
( ( aa(A,A,inverse_inverse(A),X2) = one_one(A) )
<=> ( X2 = one_one(A) ) ) ) ).
% inverse_eq_1_iff
tff(fact_3426_inverse__divide,axiom,
! [A: $tType] :
( field(A)
=> ! [A2: A,B2: A] : ( aa(A,A,inverse_inverse(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),A2) ) ) ).
% inverse_divide
tff(fact_3427_inverse__minus__eq,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A] : ( aa(A,A,inverse_inverse(A),aa(A,A,uminus_uminus(A),A2)) = aa(A,A,uminus_uminus(A),aa(A,A,inverse_inverse(A),A2)) ) ) ).
% inverse_minus_eq
tff(fact_3428_abs__inverse,axiom,
! [A: $tType] :
( field_abs_sgn(A)
=> ! [A2: A] : ( aa(A,A,abs_abs(A),aa(A,A,inverse_inverse(A),A2)) = aa(A,A,inverse_inverse(A),aa(A,A,abs_abs(A),A2)) ) ) ).
% abs_inverse
tff(fact_3429_sgn__inverse,axiom,
! [A: $tType] :
( field_abs_sgn(A)
=> ! [A2: A] : ( aa(A,A,sgn_sgn(A),aa(A,A,inverse_inverse(A),A2)) = aa(A,A,inverse_inverse(A),aa(A,A,sgn_sgn(A),A2)) ) ) ).
% sgn_inverse
tff(fact_3430_inverse__sgn,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A] : ( aa(A,A,inverse_inverse(A),aa(A,A,sgn_sgn(A),A2)) = aa(A,A,sgn_sgn(A),A2) ) ) ).
% inverse_sgn
tff(fact_3431_inverse__nonnegative__iff__nonnegative,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,inverse_inverse(A),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2)) ) ) ).
% inverse_nonnegative_iff_nonnegative
tff(fact_3432_inverse__nonpositive__iff__nonpositive,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,inverse_inverse(A),A2)),zero_zero(A)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),zero_zero(A))) ) ) ).
% inverse_nonpositive_iff_nonpositive
tff(fact_3433_inverse__less__iff__less,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,inverse_inverse(A),A2)),aa(A,A,inverse_inverse(A),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2)) ) ) ) ) ).
% inverse_less_iff_less
tff(fact_3434_inverse__less__iff__less__neg,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,inverse_inverse(A),A2)),aa(A,A,inverse_inverse(A),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2)) ) ) ) ) ).
% inverse_less_iff_less_neg
tff(fact_3435_inverse__negative__iff__negative,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,inverse_inverse(A),A2)),zero_zero(A)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A))) ) ) ).
% inverse_negative_iff_negative
tff(fact_3436_inverse__positive__iff__positive,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,inverse_inverse(A),A2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2)) ) ) ).
% inverse_positive_iff_positive
tff(fact_3437_frac__of__int,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [Z: int] : ( aa(A,A,archimedean_frac(A),aa(int,A,ring_1_of_int(A),Z)) = zero_zero(A) ) ) ).
% frac_of_int
tff(fact_3438_norm__ii,axiom,
real_V7770717601297561774m_norm(complex,imaginary_unit) = one_one(real) ).
% norm_ii
tff(fact_3439_norm__cis,axiom,
! [A2: real] : ( real_V7770717601297561774m_norm(complex,cis(A2)) = one_one(real) ) ).
% norm_cis
tff(fact_3440_cis__zero,axiom,
cis(zero_zero(real)) = one_one(complex) ).
% cis_zero
tff(fact_3441_inverse__le__iff__le,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,inverse_inverse(A),A2)),aa(A,A,inverse_inverse(A),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2)) ) ) ) ) ).
% inverse_le_iff_le
tff(fact_3442_inverse__le__iff__le__neg,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),zero_zero(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,inverse_inverse(A),A2)),aa(A,A,inverse_inverse(A),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2)) ) ) ) ) ).
% inverse_le_iff_le_neg
tff(fact_3443_right__inverse,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A] :
( ( A2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,inverse_inverse(A),A2)) = one_one(A) ) ) ) ).
% right_inverse
tff(fact_3444_left__inverse,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A] :
( ( A2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,inverse_inverse(A),A2)),A2) = one_one(A) ) ) ) ).
% left_inverse
tff(fact_3445_inverse__eq__divide__numeral,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [W: num] : ( aa(A,A,inverse_inverse(A),aa(num,A,numeral_numeral(A),W)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(num,A,numeral_numeral(A),W)) ) ) ).
% inverse_eq_divide_numeral
tff(fact_3446_inverse__eq__divide__neg__numeral,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [W: num] : ( aa(A,A,inverse_inverse(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))) = aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))) ) ) ).
% inverse_eq_divide_neg_numeral
tff(fact_3447_power2__i,axiom,
aa(nat,complex,power_power(complex,imaginary_unit),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(complex,complex,uminus_uminus(complex),one_one(complex)) ).
% power2_i
tff(fact_3448_cis__pi__half,axiom,
cis(aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))) = imaginary_unit ).
% cis_pi_half
tff(fact_3449_i__even__power,axiom,
! [N: nat] : ( aa(nat,complex,power_power(complex,imaginary_unit),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),aa(num,nat,numeral_numeral(nat),bit0(one2)))) = aa(nat,complex,power_power(complex,aa(complex,complex,uminus_uminus(complex),one_one(complex))),N) ) ).
% i_even_power
tff(fact_3450_cis__minus__pi__half,axiom,
cis(aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))) = aa(complex,complex,uminus_uminus(complex),imaginary_unit) ).
% cis_minus_pi_half
tff(fact_3451_nonzero__norm__inverse,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [A2: A] :
( ( A2 != zero_zero(A) )
=> ( real_V7770717601297561774m_norm(A,aa(A,A,inverse_inverse(A),A2)) = aa(real,real,inverse_inverse(real),real_V7770717601297561774m_norm(A,A2)) ) ) ) ).
% nonzero_norm_inverse
tff(fact_3452_mult__commute__imp__mult__inverse__commute,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [Y: A,X2: A] :
( ( aa(A,A,aa(A,fun(A,A),times_times(A),Y),X2) = aa(A,A,aa(A,fun(A,A),times_times(A),X2),Y) )
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,inverse_inverse(A),Y)),X2) = aa(A,A,aa(A,fun(A,A),times_times(A),X2),aa(A,A,inverse_inverse(A),Y)) ) ) ) ).
% mult_commute_imp_mult_inverse_commute
tff(fact_3453_field__class_Ofield__inverse__zero,axiom,
! [A: $tType] :
( field(A)
=> ( aa(A,A,inverse_inverse(A),zero_zero(A)) = zero_zero(A) ) ) ).
% field_class.field_inverse_zero
tff(fact_3454_inverse__zero__imp__zero,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A] :
( ( aa(A,A,inverse_inverse(A),A2) = zero_zero(A) )
=> ( A2 = zero_zero(A) ) ) ) ).
% inverse_zero_imp_zero
tff(fact_3455_nonzero__inverse__eq__imp__eq,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A,B2: A] :
( ( aa(A,A,inverse_inverse(A),A2) = aa(A,A,inverse_inverse(A),B2) )
=> ( ( A2 != zero_zero(A) )
=> ( ( B2 != zero_zero(A) )
=> ( A2 = B2 ) ) ) ) ) ).
% nonzero_inverse_eq_imp_eq
tff(fact_3456_nonzero__inverse__inverse__eq,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A] :
( ( A2 != zero_zero(A) )
=> ( aa(A,A,inverse_inverse(A),aa(A,A,inverse_inverse(A),A2)) = A2 ) ) ) ).
% nonzero_inverse_inverse_eq
tff(fact_3457_nonzero__imp__inverse__nonzero,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A] :
( ( A2 != zero_zero(A) )
=> ( aa(A,A,inverse_inverse(A),A2) != zero_zero(A) ) ) ) ).
% nonzero_imp_inverse_nonzero
tff(fact_3458_power__inverse,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A,N: nat] : ( aa(nat,A,power_power(A,aa(A,A,inverse_inverse(A),A2)),N) = aa(A,A,inverse_inverse(A),aa(nat,A,power_power(A,A2),N)) ) ) ).
% power_inverse
tff(fact_3459_inverse__eq__imp__eq,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A,B2: A] :
( ( aa(A,A,inverse_inverse(A),A2) = aa(A,A,inverse_inverse(A),B2) )
=> ( A2 = B2 ) ) ) ).
% inverse_eq_imp_eq
tff(fact_3460_real__sqrt__inverse,axiom,
! [X2: real] : ( aa(real,real,sqrt,aa(real,real,inverse_inverse(real),X2)) = aa(real,real,inverse_inverse(real),aa(real,real,sqrt,X2)) ) ).
% real_sqrt_inverse
tff(fact_3461_nonzero__of__real__inverse,axiom,
! [A: $tType] :
( real_V5047593784448816457lgebra(A)
=> ! [X2: real] :
( ( X2 != zero_zero(real) )
=> ( real_Vector_of_real(A,aa(real,real,inverse_inverse(real),X2)) = aa(A,A,inverse_inverse(A),real_Vector_of_real(A,X2)) ) ) ) ).
% nonzero_of_real_inverse
tff(fact_3462_cis__divide,axiom,
! [A2: real,B2: real] : ( aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),cis(A2)),cis(B2)) = cis(aa(real,real,aa(real,fun(real,real),minus_minus(real),A2),B2)) ) ).
% cis_divide
tff(fact_3463_complex__i__not__zero,axiom,
imaginary_unit != zero_zero(complex) ).
% complex_i_not_zero
tff(fact_3464_cis__neq__zero,axiom,
! [A2: real] : ( cis(A2) != zero_zero(complex) ) ).
% cis_neq_zero
tff(fact_3465_norm__inverse__le__norm,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [R: real,X2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),R),real_V7770717601297561774m_norm(A,X2)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),R))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(A,A,inverse_inverse(A),X2))),aa(real,real,inverse_inverse(real),R))) ) ) ) ).
% norm_inverse_le_norm
tff(fact_3466_positive__imp__inverse__positive,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,inverse_inverse(A),A2))) ) ) ).
% positive_imp_inverse_positive
tff(fact_3467_negative__imp__inverse__negative,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,inverse_inverse(A),A2)),zero_zero(A))) ) ) ).
% negative_imp_inverse_negative
tff(fact_3468_inverse__positive__imp__positive,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,inverse_inverse(A),A2)))
=> ( ( A2 != zero_zero(A) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2)) ) ) ) ).
% inverse_positive_imp_positive
tff(fact_3469_inverse__negative__imp__negative,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,inverse_inverse(A),A2)),zero_zero(A)))
=> ( ( A2 != zero_zero(A) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A))) ) ) ) ).
% inverse_negative_imp_negative
tff(fact_3470_less__imp__inverse__less__neg,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,inverse_inverse(A),B2)),aa(A,A,inverse_inverse(A),A2))) ) ) ) ).
% less_imp_inverse_less_neg
tff(fact_3471_inverse__less__imp__less__neg,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,inverse_inverse(A),A2)),aa(A,A,inverse_inverse(A),B2)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2)) ) ) ) ).
% inverse_less_imp_less_neg
tff(fact_3472_less__imp__inverse__less,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,inverse_inverse(A),B2)),aa(A,A,inverse_inverse(A),A2))) ) ) ) ).
% less_imp_inverse_less
tff(fact_3473_inverse__less__imp__less,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,inverse_inverse(A),A2)),aa(A,A,inverse_inverse(A),B2)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2)) ) ) ) ).
% inverse_less_imp_less
tff(fact_3474_nonzero__inverse__mult__distrib,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A,B2: A] :
( ( A2 != zero_zero(A) )
=> ( ( B2 != zero_zero(A) )
=> ( aa(A,A,inverse_inverse(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,inverse_inverse(A),B2)),aa(A,A,inverse_inverse(A),A2)) ) ) ) ) ).
% nonzero_inverse_mult_distrib
tff(fact_3475_nonzero__inverse__minus__eq,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A] :
( ( A2 != zero_zero(A) )
=> ( aa(A,A,inverse_inverse(A),aa(A,A,uminus_uminus(A),A2)) = aa(A,A,uminus_uminus(A),aa(A,A,inverse_inverse(A),A2)) ) ) ) ).
% nonzero_inverse_minus_eq
tff(fact_3476_inverse__numeral__1,axiom,
! [A: $tType] :
( division_ring(A)
=> ( aa(A,A,inverse_inverse(A),aa(num,A,numeral_numeral(A),one2)) = aa(num,A,numeral_numeral(A),one2) ) ) ).
% inverse_numeral_1
tff(fact_3477_inverse__unique,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A,B2: A] :
( ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2) = one_one(A) )
=> ( aa(A,A,inverse_inverse(A),A2) = B2 ) ) ) ).
% inverse_unique
tff(fact_3478_field__class_Ofield__divide__inverse,axiom,
! [A: $tType] :
( field(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) = aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,inverse_inverse(A),B2)) ) ) ).
% field_class.field_divide_inverse
tff(fact_3479_divide__inverse,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) = aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,inverse_inverse(A),B2)) ) ) ).
% divide_inverse
tff(fact_3480_divide__inverse__commute,axiom,
! [A: $tType] :
( field(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,inverse_inverse(A),B2)),A2) ) ) ).
% divide_inverse_commute
tff(fact_3481_inverse__eq__divide,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A] : ( aa(A,A,inverse_inverse(A),A2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),A2) ) ) ).
% inverse_eq_divide
tff(fact_3482_power__mult__inverse__distrib,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [X2: A,M: nat] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,X2),M)),aa(A,A,inverse_inverse(A),X2)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,inverse_inverse(A),X2)),aa(nat,A,power_power(A,X2),M)) ) ) ).
% power_mult_inverse_distrib
tff(fact_3483_power__mult__power__inverse__commute,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [X2: A,M: nat,N: nat] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,X2),M)),aa(nat,A,power_power(A,aa(A,A,inverse_inverse(A),X2)),N)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,aa(A,A,inverse_inverse(A),X2)),N)),aa(nat,A,power_power(A,X2),M)) ) ) ).
% power_mult_power_inverse_commute
tff(fact_3484_mult__inverse__of__nat__commute,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [Xa: nat,X2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,inverse_inverse(A),aa(nat,A,semiring_1_of_nat(A),Xa))),X2) = aa(A,A,aa(A,fun(A,A),times_times(A),X2),aa(A,A,inverse_inverse(A),aa(nat,A,semiring_1_of_nat(A),Xa))) ) ) ).
% mult_inverse_of_nat_commute
tff(fact_3485_nonzero__abs__inverse,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A] :
( ( A2 != zero_zero(A) )
=> ( aa(A,A,abs_abs(A),aa(A,A,inverse_inverse(A),A2)) = aa(A,A,inverse_inverse(A),aa(A,A,abs_abs(A),A2)) ) ) ) ).
% nonzero_abs_inverse
tff(fact_3486_mult__inverse__of__int__commute,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [Xa: int,X2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,inverse_inverse(A),aa(int,A,ring_1_of_int(A),Xa))),X2) = aa(A,A,aa(A,fun(A,A),times_times(A),X2),aa(A,A,inverse_inverse(A),aa(int,A,ring_1_of_int(A),Xa))) ) ) ).
% mult_inverse_of_int_commute
tff(fact_3487_exp__minus,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : ( aa(A,A,exp(A),aa(A,A,uminus_uminus(A),X2)) = aa(A,A,inverse_inverse(A),aa(A,A,exp(A),X2)) ) ) ).
% exp_minus
tff(fact_3488_powr__minus,axiom,
! [A: $tType] :
( ( real_V3459762299906320749_field(A)
& ln(A) )
=> ! [X2: A,A2: A] : ( powr(A,X2,aa(A,A,uminus_uminus(A),A2)) = aa(A,A,inverse_inverse(A),powr(A,X2,A2)) ) ) ).
% powr_minus
tff(fact_3489_divide__real__def,axiom,
! [X2: real,Y: real] : ( aa(real,real,aa(real,fun(real,real),divide_divide(real),X2),Y) = aa(real,real,aa(real,fun(real,real),times_times(real),X2),aa(real,real,inverse_inverse(real),Y)) ) ).
% divide_real_def
tff(fact_3490_DeMoivre,axiom,
! [A2: real,N: nat] : ( aa(nat,complex,power_power(complex,cis(A2)),N) = cis(aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N)),A2)) ) ).
% DeMoivre
tff(fact_3491_frac__ge__0,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,archimedean_frac(A),X2))) ) ).
% frac_ge_0
tff(fact_3492_cis__mult,axiom,
! [A2: real,B2: real] : ( aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),cis(A2)),cis(B2)) = cis(aa(real,real,aa(real,fun(real,real),plus_plus(real),A2),B2)) ) ).
% cis_mult
tff(fact_3493_frac__lt__1,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,archimedean_frac(A),X2)),one_one(A))) ) ).
% frac_lt_1
tff(fact_3494_frac__1__eq,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] : ( aa(A,A,archimedean_frac(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),one_one(A))) = aa(A,A,archimedean_frac(A),X2) ) ) ).
% frac_1_eq
tff(fact_3495_inverse__le__imp__le,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,inverse_inverse(A),A2)),aa(A,A,inverse_inverse(A),B2)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2)) ) ) ) ).
% inverse_le_imp_le
tff(fact_3496_le__imp__inverse__le,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,inverse_inverse(A),B2)),aa(A,A,inverse_inverse(A),A2))) ) ) ) ).
% le_imp_inverse_le
tff(fact_3497_inverse__le__imp__le__neg,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,inverse_inverse(A),A2)),aa(A,A,inverse_inverse(A),B2)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2)) ) ) ) ).
% inverse_le_imp_le_neg
tff(fact_3498_le__imp__inverse__le__neg,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,inverse_inverse(A),B2)),aa(A,A,inverse_inverse(A),A2))) ) ) ) ).
% le_imp_inverse_le_neg
tff(fact_3499_inverse__le__1__iff,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,inverse_inverse(A),X2)),one_one(A)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),zero_zero(A)))
| pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),X2)) ) ) ) ).
% inverse_le_1_iff
tff(fact_3500_one__less__inverse,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),one_one(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),aa(A,A,inverse_inverse(A),A2))) ) ) ) ).
% one_less_inverse
tff(fact_3501_one__less__inverse__iff,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),aa(A,A,inverse_inverse(A),X2)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),X2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),one_one(A))) ) ) ) ).
% one_less_inverse_iff
tff(fact_3502_division__ring__inverse__add,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A,B2: A] :
( ( A2 != zero_zero(A) )
=> ( ( B2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,inverse_inverse(A),A2)),aa(A,A,inverse_inverse(A),B2)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,inverse_inverse(A),A2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2))),aa(A,A,inverse_inverse(A),B2)) ) ) ) ) ).
% division_ring_inverse_add
tff(fact_3503_inverse__add,axiom,
! [A: $tType] :
( field(A)
=> ! [A2: A,B2: A] :
( ( A2 != zero_zero(A) )
=> ( ( B2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,inverse_inverse(A),A2)),aa(A,A,inverse_inverse(A),B2)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),aa(A,A,inverse_inverse(A),A2))),aa(A,A,inverse_inverse(A),B2)) ) ) ) ) ).
% inverse_add
tff(fact_3504_field__class_Ofield__inverse,axiom,
! [A: $tType] :
( field(A)
=> ! [A2: A] :
( ( A2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,inverse_inverse(A),A2)),A2) = one_one(A) ) ) ) ).
% field_class.field_inverse
tff(fact_3505_division__ring__inverse__diff,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A,B2: A] :
( ( A2 != zero_zero(A) )
=> ( ( B2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,inverse_inverse(A),A2)),aa(A,A,inverse_inverse(A),B2)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,inverse_inverse(A),A2)),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),A2))),aa(A,A,inverse_inverse(A),B2)) ) ) ) ) ).
% division_ring_inverse_diff
tff(fact_3506_nonzero__inverse__eq__divide,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A] :
( ( A2 != zero_zero(A) )
=> ( aa(A,A,inverse_inverse(A),A2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),A2) ) ) ) ).
% nonzero_inverse_eq_divide
tff(fact_3507_inverse__powr,axiom,
! [Y: real,A2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y))
=> ( powr(real,aa(real,real,inverse_inverse(real),Y),A2) = aa(real,real,inverse_inverse(real),powr(real,Y,A2)) ) ) ).
% inverse_powr
tff(fact_3508_imaginary__unit_Ocode,axiom,
imaginary_unit = complex2(zero_zero(real),one_one(real)) ).
% imaginary_unit.code
tff(fact_3509_Complex__eq__i,axiom,
! [X2: real,Y: real] :
( ( complex2(X2,Y) = imaginary_unit )
<=> ( ( X2 = zero_zero(real) )
& ( Y = one_one(real) ) ) ) ).
% Complex_eq_i
tff(fact_3510_inverse__le__iff,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,inverse_inverse(A),A2)),aa(A,A,inverse_inverse(A),B2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2)) )
& ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) ) ) ) ) ).
% inverse_le_iff
tff(fact_3511_inverse__less__iff,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,inverse_inverse(A),A2)),aa(A,A,inverse_inverse(A),B2)))
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2)) )
& ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) ) ) ) ) ).
% inverse_less_iff
tff(fact_3512_one__le__inverse__iff,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),aa(A,A,inverse_inverse(A),X2)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),X2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),one_one(A))) ) ) ) ).
% one_le_inverse_iff
tff(fact_3513_inverse__less__1__iff,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,inverse_inverse(A),X2)),one_one(A)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),zero_zero(A)))
| pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),one_one(A)),X2)) ) ) ) ).
% inverse_less_1_iff
tff(fact_3514_one__le__inverse,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),one_one(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),aa(A,A,inverse_inverse(A),A2))) ) ) ) ).
% one_le_inverse
tff(fact_3515_inverse__diff__inverse,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A2: A,B2: A] :
( ( A2 != zero_zero(A) )
=> ( ( B2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,inverse_inverse(A),A2)),aa(A,A,inverse_inverse(A),B2)) = aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,inverse_inverse(A),A2)),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2))),aa(A,A,inverse_inverse(A),B2))) ) ) ) ) ).
% inverse_diff_inverse
tff(fact_3516_reals__Archimedean,axiom,
! [A: $tType] :
( archim462609752435547400_field(A)
=> ! [X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),X2))
=> ? [N3: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,inverse_inverse(A),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,suc,N3)))),X2)) ) ) ).
% reals_Archimedean
tff(fact_3517_i__mult__Complex,axiom,
! [A2: real,B2: real] : ( aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),imaginary_unit),complex2(A2,B2)) = complex2(aa(real,real,uminus_uminus(real),B2),A2) ) ).
% i_mult_Complex
tff(fact_3518_Complex__mult__i,axiom,
! [A2: real,B2: real] : ( aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),complex2(A2,B2)),imaginary_unit) = complex2(aa(real,real,uminus_uminus(real),B2),A2) ) ).
% Complex_mult_i
tff(fact_3519_forall__pos__mono__1,axiom,
! [P: fun(real,bool),E: real] :
( ! [D3: real,E2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),D3),E2))
=> ( pp(aa(real,bool,P,D3))
=> pp(aa(real,bool,P,E2)) ) )
=> ( ! [N3: nat] : pp(aa(real,bool,P,aa(real,real,inverse_inverse(real),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,suc,N3)))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),E))
=> pp(aa(real,bool,P,E)) ) ) ) ).
% forall_pos_mono_1
tff(fact_3520_real__arch__inverse,axiom,
! [E: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),E))
<=> ? [N5: nat] :
( ( N5 != zero_zero(nat) )
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,inverse_inverse(real),aa(nat,real,semiring_1_of_nat(real),N5))))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,inverse_inverse(real),aa(nat,real,semiring_1_of_nat(real),N5))),E)) ) ) ).
% real_arch_inverse
tff(fact_3521_forall__pos__mono,axiom,
! [P: fun(real,bool),E: real] :
( ! [D3: real,E2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),D3),E2))
=> ( pp(aa(real,bool,P,D3))
=> pp(aa(real,bool,P,E2)) ) )
=> ( ! [N3: nat] :
( ( N3 != zero_zero(nat) )
=> pp(aa(real,bool,P,aa(real,real,inverse_inverse(real),aa(nat,real,semiring_1_of_nat(real),N3)))) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),E))
=> pp(aa(real,bool,P,E)) ) ) ) ).
% forall_pos_mono
tff(fact_3522_sqrt__divide__self__eq,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,sqrt,X2)),X2) = aa(real,real,inverse_inverse(real),aa(real,real,sqrt,X2)) ) ) ).
% sqrt_divide_self_eq
tff(fact_3523_ln__inverse,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( aa(real,real,ln_ln(real),aa(real,real,inverse_inverse(real),X2)) = aa(real,real,uminus_uminus(real),aa(real,real,ln_ln(real),X2)) ) ) ).
% ln_inverse
tff(fact_3524_frac__def,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] : ( aa(A,A,archimedean_frac(A),X2) = aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),aa(int,A,ring_1_of_int(A),aa(A,int,archim6421214686448440834_floor(A),X2))) ) ) ).
% frac_def
tff(fact_3525_ex__inverse__of__nat__less,axiom,
! [A: $tType] :
( archim462609752435547400_field(A)
=> ! [X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),X2))
=> ? [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,inverse_inverse(A),aa(nat,A,semiring_1_of_nat(A),N3))),X2)) ) ) ) ).
% ex_inverse_of_nat_less
tff(fact_3526_power__diff__conv__inverse,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [X2: A,M: nat,N: nat] :
( ( X2 != zero_zero(A) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( aa(nat,A,power_power(A,X2),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,X2),N)),aa(nat,A,power_power(A,aa(A,A,inverse_inverse(A),X2)),M)) ) ) ) ) ).
% power_diff_conv_inverse
tff(fact_3527_complex__of__real__i,axiom,
! [R: real] : ( aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),real_Vector_of_real(complex,R)),imaginary_unit) = complex2(zero_zero(real),R) ) ).
% complex_of_real_i
tff(fact_3528_i__complex__of__real,axiom,
! [R: real] : ( aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),imaginary_unit),real_Vector_of_real(complex,R)) = complex2(zero_zero(real),R) ) ).
% i_complex_of_real
tff(fact_3529_log__inverse,axiom,
! [A2: real,X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),A2))
=> ( ( A2 != one_one(real) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( aa(real,real,log(A2),aa(real,real,inverse_inverse(real),X2)) = aa(real,real,uminus_uminus(real),aa(real,real,log(A2),X2)) ) ) ) ) ).
% log_inverse
tff(fact_3530_frac__eq,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( ( aa(A,A,archimedean_frac(A),X2) = X2 )
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),one_one(A))) ) ) ) ).
% frac_eq
tff(fact_3531_frac__add,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,Y: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,archimedean_frac(A),X2)),aa(A,A,archimedean_frac(A),Y))),one_one(A)))
=> ( aa(A,A,archimedean_frac(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,archimedean_frac(A),X2)),aa(A,A,archimedean_frac(A),Y)) ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,archimedean_frac(A),X2)),aa(A,A,archimedean_frac(A),Y))),one_one(A)))
=> ( aa(A,A,archimedean_frac(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,archimedean_frac(A),X2)),aa(A,A,archimedean_frac(A),Y))),one_one(A)) ) ) ) ) ).
% frac_add
tff(fact_3532_Complex__eq,axiom,
! [A2: real,B2: real] : ( complex2(A2,B2) = aa(complex,complex,aa(complex,fun(complex,complex),plus_plus(complex),real_Vector_of_real(complex,A2)),aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),imaginary_unit),real_Vector_of_real(complex,B2))) ) ).
% Complex_eq
tff(fact_3533_exp__plus__inverse__exp,axiom,
! [X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(num,real,numeral_numeral(real),bit0(one2))),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,exp(real),X2)),aa(real,real,inverse_inverse(real),aa(real,real,exp(real),X2))))) ).
% exp_plus_inverse_exp
tff(fact_3534_complex__split__polar,axiom,
! [Z: complex] :
? [R4: real,A4: real] : ( Z = aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),real_Vector_of_real(complex,R4)),aa(complex,complex,aa(complex,fun(complex,complex),plus_plus(complex),real_Vector_of_real(complex,aa(real,real,cos(real),A4))),aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),imaginary_unit),real_Vector_of_real(complex,sin(real,A4))))) ) ).
% complex_split_polar
tff(fact_3535_plus__inverse__ge__2,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(num,real,numeral_numeral(real),bit0(one2))),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),aa(real,real,inverse_inverse(real),X2)))) ) ).
% plus_inverse_ge_2
tff(fact_3536_real__inv__sqrt__pow2,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( aa(nat,real,power_power(real,aa(real,real,inverse_inverse(real),aa(real,real,sqrt,X2))),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(real,real,inverse_inverse(real),X2) ) ) ).
% real_inv_sqrt_pow2
tff(fact_3537_tan__cot,axiom,
! [X2: real] : ( aa(real,real,tan(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))),X2)) = aa(real,real,inverse_inverse(real),aa(real,real,tan(real),X2)) ) ).
% tan_cot
tff(fact_3538_floor__add,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,Y: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,archimedean_frac(A),X2)),aa(A,A,archimedean_frac(A),Y))),one_one(A)))
=> ( aa(A,int,archim6421214686448440834_floor(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(A,int,archim6421214686448440834_floor(A),X2)),aa(A,int,archim6421214686448440834_floor(A),Y)) ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,archimedean_frac(A),X2)),aa(A,A,archimedean_frac(A),Y))),one_one(A)))
=> ( aa(A,int,archim6421214686448440834_floor(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(A,int,archim6421214686448440834_floor(A),X2)),aa(A,int,archim6421214686448440834_floor(A),Y))),one_one(int)) ) ) ) ) ).
% floor_add
tff(fact_3539_real__le__x__sinh,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,exp(real),X2)),aa(real,real,inverse_inverse(real),aa(real,real,exp(real),X2)))),aa(num,real,numeral_numeral(real),bit0(one2))))) ) ).
% real_le_x_sinh
tff(fact_3540_real__le__abs__sinh,axiom,
! [X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),X2)),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,exp(real),X2)),aa(real,real,inverse_inverse(real),aa(real,real,exp(real),X2)))),aa(num,real,numeral_numeral(real),bit0(one2)))))) ).
% real_le_abs_sinh
tff(fact_3541_tan__sec,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] :
( ( aa(A,A,cos(A),X2) != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),aa(nat,A,power_power(A,aa(A,A,tan(A),X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))) = aa(nat,A,power_power(A,aa(A,A,inverse_inverse(A),aa(A,A,cos(A),X2))),aa(num,nat,numeral_numeral(nat),bit0(one2))) ) ) ) ).
% tan_sec
tff(fact_3542_cmod__unit__one,axiom,
! [A2: real] : ( real_V7770717601297561774m_norm(complex,aa(complex,complex,aa(complex,fun(complex,complex),plus_plus(complex),real_Vector_of_real(complex,aa(real,real,cos(real),A2))),aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),imaginary_unit),real_Vector_of_real(complex,sin(real,A2))))) = one_one(real) ) ).
% cmod_unit_one
tff(fact_3543_cmod__complex__polar,axiom,
! [R: real,A2: real] : ( real_V7770717601297561774m_norm(complex,aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),real_Vector_of_real(complex,R)),aa(complex,complex,aa(complex,fun(complex,complex),plus_plus(complex),real_Vector_of_real(complex,aa(real,real,cos(real),A2))),aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),imaginary_unit),real_Vector_of_real(complex,sin(real,A2)))))) = aa(real,real,abs_abs(real),R) ) ).
% cmod_complex_polar
tff(fact_3544_Arg__minus__ii,axiom,
arg(aa(complex,complex,uminus_uminus(complex),imaginary_unit)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,uminus_uminus(real),pi)),aa(num,real,numeral_numeral(real),bit0(one2))) ).
% Arg_minus_ii
tff(fact_3545_csqrt__ii,axiom,
csqrt(imaginary_unit) = aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),aa(complex,complex,aa(complex,fun(complex,complex),plus_plus(complex),one_one(complex)),imaginary_unit)),real_Vector_of_real(complex,aa(real,real,sqrt,aa(num,real,numeral_numeral(real),bit0(one2))))) ).
% csqrt_ii
tff(fact_3546_Arg__ii,axiom,
arg(imaginary_unit) = aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))) ).
% Arg_ii
tff(fact_3547_Arg__correct,axiom,
! [Z: complex] :
( ( Z != zero_zero(complex) )
=> ( ( aa(complex,complex,sgn_sgn(complex),Z) = cis(arg(Z)) )
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),pi)),arg(Z)))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),arg(Z)),pi)) ) ) ).
% Arg_correct
tff(fact_3548_sinh__ln__real,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( sinh(real,aa(real,real,ln_ln(real),X2)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),X2),aa(real,real,inverse_inverse(real),X2))),aa(num,real,numeral_numeral(real),bit0(one2))) ) ) ).
% sinh_ln_real
tff(fact_3549_sinh__0,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ( sinh(A,zero_zero(A)) = zero_zero(A) ) ) ).
% sinh_0
tff(fact_3550_sinh__minus,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : ( sinh(A,aa(A,A,uminus_uminus(A),X2)) = aa(A,A,uminus_uminus(A),sinh(A,X2)) ) ) ).
% sinh_minus
tff(fact_3551_cis__inverse,axiom,
! [A2: real] : ( aa(complex,complex,inverse_inverse(complex),cis(A2)) = cis(aa(real,real,uminus_uminus(real),A2)) ) ).
% cis_inverse
tff(fact_3552_sinh__real__zero__iff,axiom,
! [X2: real] :
( ( sinh(real,X2) = zero_zero(real) )
<=> ( X2 = zero_zero(real) ) ) ).
% sinh_real_zero_iff
tff(fact_3553_sinh__real__less__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),sinh(real,X2)),sinh(real,Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),Y)) ) ).
% sinh_real_less_iff
tff(fact_3554_sinh__real__le__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),sinh(real,X2)),sinh(real,Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),Y)) ) ).
% sinh_real_le_iff
tff(fact_3555_csqrt__0,axiom,
csqrt(zero_zero(complex)) = zero_zero(complex) ).
% csqrt_0
tff(fact_3556_csqrt__eq__0,axiom,
! [Z: complex] :
( ( csqrt(Z) = zero_zero(complex) )
<=> ( Z = zero_zero(complex) ) ) ).
% csqrt_eq_0
tff(fact_3557_sinh__real__neg__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),sinh(real,X2)),zero_zero(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),zero_zero(real))) ) ).
% sinh_real_neg_iff
tff(fact_3558_sinh__real__pos__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),sinh(real,X2)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2)) ) ).
% sinh_real_pos_iff
tff(fact_3559_sinh__real__nonpos__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),sinh(real,X2)),zero_zero(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),zero_zero(real))) ) ).
% sinh_real_nonpos_iff
tff(fact_3560_sinh__real__nonneg__iff,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),sinh(real,X2)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2)) ) ).
% sinh_real_nonneg_iff
tff(fact_3561_power2__csqrt,axiom,
! [Z: complex] : ( aa(nat,complex,power_power(complex,csqrt(Z)),aa(num,nat,numeral_numeral(nat),bit0(one2))) = Z ) ).
% power2_csqrt
tff(fact_3562_Arg__zero,axiom,
arg(zero_zero(complex)) = zero_zero(real) ).
% Arg_zero
tff(fact_3563_cis__Arg,axiom,
! [Z: complex] :
( ( Z != zero_zero(complex) )
=> ( cis(arg(Z)) = aa(complex,complex,sgn_sgn(complex),Z) ) ) ).
% cis_Arg
tff(fact_3564_of__real__sqrt,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( real_Vector_of_real(complex,aa(real,real,sqrt,X2)) = csqrt(real_Vector_of_real(complex,X2)) ) ) ).
% of_real_sqrt
tff(fact_3565_Arg__bounded,axiom,
! [Z: complex] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),pi)),arg(Z)))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),arg(Z)),pi)) ) ).
% Arg_bounded
tff(fact_3566_complex__inverse,axiom,
! [A2: real,B2: real] : ( aa(complex,complex,inverse_inverse(complex),complex2(A2,B2)) = complex2(aa(real,real,aa(real,fun(real,real),divide_divide(real),A2),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,A2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,B2),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,uminus_uminus(real),B2)),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,A2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,B2),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ).
% complex_inverse
tff(fact_3567_sinh__field__def,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Z: A] : ( sinh(A,Z) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,exp(A),Z)),aa(A,A,exp(A),aa(A,A,uminus_uminus(A),Z)))),aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ).
% sinh_field_def
tff(fact_3568_cis__Arg__unique,axiom,
! [Z: complex,X2: real] :
( ( aa(complex,complex,sgn_sgn(complex),Z) = cis(X2) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),pi)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),pi))
=> ( arg(Z) = X2 ) ) ) ) ).
% cis_Arg_unique
tff(fact_3569_cis__multiple__2pi,axiom,
! [N: real] :
( pp(member(real,N,ring_1_Ints(real)))
=> ( cis(aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),pi)),N)) = one_one(complex) ) ) ).
% cis_multiple_2pi
tff(fact_3570_cosh__ln__real,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( cosh(real,aa(real,real,ln_ln(real),X2)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),aa(real,real,inverse_inverse(real),X2))),aa(num,real,numeral_numeral(real),bit0(one2))) ) ) ).
% cosh_ln_real
tff(fact_3571_Suc__0__xor__eq,axiom,
! [N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344971392196577ns_xor(nat),aa(nat,nat,suc,zero_zero(nat))),N) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),aa(bool,nat,zero_neq_one_of_bool(nat),aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)))),aa(bool,nat,zero_neq_one_of_bool(nat),aa(bool,bool,fNot,aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)))) ) ).
% Suc_0_xor_eq
tff(fact_3572_xor__Suc__0__eq,axiom,
! [N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344971392196577ns_xor(nat),N),aa(nat,nat,suc,zero_zero(nat))) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),aa(bool,nat,zero_neq_one_of_bool(nat),aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)))),aa(bool,nat,zero_neq_one_of_bool(nat),aa(bool,bool,fNot,aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)))) ) ).
% xor_Suc_0_eq
tff(fact_3573_gbinomial__absorption_H,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [K: nat,A2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),K))
=> ( aa(nat,A,gbinomial(A,A2),K) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(nat,A,semiring_1_of_nat(A),K))),aa(nat,A,gbinomial(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),one_one(A))),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),K),one_one(nat)))) ) ) ) ).
% gbinomial_absorption'
tff(fact_3574_bit_Oxor__left__self,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A,Y: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),X2),aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),X2),Y)) = Y ) ) ).
% bit.xor_left_self
tff(fact_3575_bit_Oxor__self,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),X2),X2) = zero_zero(A) ) ) ).
% bit.xor_self
tff(fact_3576_xor__self__eq,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),A2),A2) = zero_zero(A) ) ) ).
% xor_self_eq
tff(fact_3577_xor_Oleft__neutral,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),zero_zero(A)),A2) = A2 ) ) ).
% xor.left_neutral
tff(fact_3578_xor_Oright__neutral,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),A2),zero_zero(A)) = A2 ) ) ).
% xor.right_neutral
tff(fact_3579_cosh__minus,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : ( cosh(A,aa(A,A,uminus_uminus(A),X2)) = cosh(A,X2) ) ) ).
% cosh_minus
tff(fact_3580_take__bit__xor,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A,B2: A] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2)),aa(A,A,bit_se2584673776208193580ke_bit(A,N),B2)) ) ) ).
% take_bit_xor
tff(fact_3581_gbinomial__1,axiom,
! [A: $tType] :
( ( semiring_char_0(A)
& semidom_divide(A) )
=> ! [A2: A] : ( aa(nat,A,gbinomial(A,A2),one_one(nat)) = A2 ) ) ).
% gbinomial_1
tff(fact_3582_cosh__0,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ( cosh(A,zero_zero(A)) = one_one(A) ) ) ).
% cosh_0
tff(fact_3583_gbinomial__0_I2_J,axiom,
! [B: $tType] :
( ( semiring_char_0(B)
& semidom_divide(B) )
=> ! [K: nat] : ( aa(nat,B,gbinomial(B,zero_zero(B)),aa(nat,nat,suc,K)) = zero_zero(B) ) ) ).
% gbinomial_0(2)
tff(fact_3584_gbinomial__0_I1_J,axiom,
! [A: $tType] :
( ( semiring_char_0(A)
& semidom_divide(A) )
=> ! [A2: A] : ( aa(nat,A,gbinomial(A,A2),zero_zero(nat)) = one_one(A) ) ) ).
% gbinomial_0(1)
tff(fact_3585_gbinomial__Suc0,axiom,
! [A: $tType] :
( ( semiring_char_0(A)
& semidom_divide(A) )
=> ! [A2: A] : ( aa(nat,A,gbinomial(A,A2),aa(nat,nat,suc,zero_zero(nat))) = A2 ) ) ).
% gbinomial_Suc0
tff(fact_3586_frac__eq__0__iff,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( ( aa(A,A,archimedean_frac(A),X2) = zero_zero(A) )
<=> pp(member(A,X2,ring_1_Ints(A))) ) ) ).
% frac_eq_0_iff
tff(fact_3587_floor__add2,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,Y: A] :
( ( pp(member(A,X2,ring_1_Ints(A)))
| pp(member(A,Y,ring_1_Ints(A))) )
=> ( aa(A,int,archim6421214686448440834_floor(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(A,int,archim6421214686448440834_floor(A),X2)),aa(A,int,archim6421214686448440834_floor(A),Y)) ) ) ) ).
% floor_add2
tff(fact_3588_frac__gt__0__iff,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(A,A,archimedean_frac(A),X2)))
<=> ~ pp(member(A,X2,ring_1_Ints(A))) ) ) ).
% frac_gt_0_iff
tff(fact_3589_xor__numerals_I3_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [X2: num,Y: num] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),aa(num,A,numeral_numeral(A),bit0(X2))),aa(num,A,numeral_numeral(A),bit0(Y))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),aa(num,A,numeral_numeral(A),X2)),aa(num,A,numeral_numeral(A),Y))) ) ) ).
% xor_numerals(3)
tff(fact_3590_xor__numerals_I8_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [X2: num] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),aa(num,A,numeral_numeral(A),aa(num,num,bit1,X2))),one_one(A)) = aa(num,A,numeral_numeral(A),bit0(X2)) ) ) ).
% xor_numerals(8)
tff(fact_3591_xor__numerals_I5_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [X2: num] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),aa(num,A,numeral_numeral(A),bit0(X2))),one_one(A)) = aa(num,A,numeral_numeral(A),aa(num,num,bit1,X2)) ) ) ).
% xor_numerals(5)
tff(fact_3592_xor__numerals_I2_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [Y: num] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),one_one(A)),aa(num,A,numeral_numeral(A),aa(num,num,bit1,Y))) = aa(num,A,numeral_numeral(A),bit0(Y)) ) ) ).
% xor_numerals(2)
tff(fact_3593_xor__numerals_I1_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [Y: num] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),one_one(A)),aa(num,A,numeral_numeral(A),bit0(Y))) = aa(num,A,numeral_numeral(A),aa(num,num,bit1,Y)) ) ) ).
% xor_numerals(1)
tff(fact_3594_xor__numerals_I7_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [X2: num,Y: num] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),aa(num,A,numeral_numeral(A),aa(num,num,bit1,X2))),aa(num,A,numeral_numeral(A),aa(num,num,bit1,Y))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),aa(num,A,numeral_numeral(A),X2)),aa(num,A,numeral_numeral(A),Y))) ) ) ).
% xor_numerals(7)
tff(fact_3595_xor__nat__numerals_I1_J,axiom,
! [Y: num] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344971392196577ns_xor(nat),aa(nat,nat,suc,zero_zero(nat))),aa(num,nat,numeral_numeral(nat),bit0(Y))) = aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,Y)) ) ).
% xor_nat_numerals(1)
tff(fact_3596_xor__nat__numerals_I2_J,axiom,
! [Y: num] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344971392196577ns_xor(nat),aa(nat,nat,suc,zero_zero(nat))),aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,Y))) = aa(num,nat,numeral_numeral(nat),bit0(Y)) ) ).
% xor_nat_numerals(2)
tff(fact_3597_xor__nat__numerals_I3_J,axiom,
! [X2: num] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344971392196577ns_xor(nat),aa(num,nat,numeral_numeral(nat),bit0(X2))),aa(nat,nat,suc,zero_zero(nat))) = aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,X2)) ) ).
% xor_nat_numerals(3)
tff(fact_3598_xor__nat__numerals_I4_J,axiom,
! [X2: num] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344971392196577ns_xor(nat),aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,X2))),aa(nat,nat,suc,zero_zero(nat))) = aa(num,nat,numeral_numeral(nat),bit0(X2)) ) ).
% xor_nat_numerals(4)
tff(fact_3599_xor__numerals_I6_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [X2: num,Y: num] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),aa(num,A,numeral_numeral(A),aa(num,num,bit1,X2))),aa(num,A,numeral_numeral(A),bit0(Y))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),aa(num,A,numeral_numeral(A),X2)),aa(num,A,numeral_numeral(A),Y)))) ) ) ).
% xor_numerals(6)
tff(fact_3600_xor__numerals_I4_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [X2: num,Y: num] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),aa(num,A,numeral_numeral(A),bit0(X2))),aa(num,A,numeral_numeral(A),aa(num,num,bit1,Y))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),aa(num,A,numeral_numeral(A),X2)),aa(num,A,numeral_numeral(A),Y)))) ) ) ).
% xor_numerals(4)
tff(fact_3601_Ints__power,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [A2: A,N: nat] :
( pp(member(A,A2,ring_1_Ints(A)))
=> pp(member(A,aa(nat,A,power_power(A,A2),N),ring_1_Ints(A))) ) ) ).
% Ints_power
tff(fact_3602_of__int__xor__eq,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [K: int,L: int] : ( aa(int,A,ring_1_of_int(A),aa(int,int,aa(int,fun(int,int),bit_se5824344971392196577ns_xor(int),K),L)) = aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),aa(int,A,ring_1_of_int(A),K)),aa(int,A,ring_1_of_int(A),L)) ) ) ).
% of_int_xor_eq
tff(fact_3603_Ints__minus,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [A2: A] :
( pp(member(A,A2,ring_1_Ints(A)))
=> pp(member(A,aa(A,A,uminus_uminus(A),A2),ring_1_Ints(A))) ) ) ).
% Ints_minus
tff(fact_3604_minus__in__Ints__iff,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [X2: A] :
( pp(member(A,aa(A,A,uminus_uminus(A),X2),ring_1_Ints(A)))
<=> pp(member(A,X2,ring_1_Ints(A))) ) ) ).
% minus_in_Ints_iff
tff(fact_3605_Ints__of__nat,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [N: nat] : pp(member(A,aa(nat,A,semiring_1_of_nat(A),N),ring_1_Ints(A))) ) ).
% Ints_of_nat
tff(fact_3606_bit_Oconj__xor__distrib2,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [Y: A,Z: A,X2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),Y),Z)),X2) = aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),Y),X2)),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),Z),X2)) ) ) ).
% bit.conj_xor_distrib2
tff(fact_3607_bit_Oconj__xor__distrib,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A,Y: A,Z: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),X2),aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),Y),Z)) = aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),X2),Y)),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),X2),Z)) ) ) ).
% bit.conj_xor_distrib
tff(fact_3608_bit__xor__iff,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,B2: A,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),A2),B2)),N))
<=> ~ ( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N))
<=> pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,B2),N)) ) ) ) ).
% bit_xor_iff
tff(fact_3609_cosh__real__nonzero,axiom,
! [X2: real] : ( cosh(real,X2) != zero_zero(real) ) ).
% cosh_real_nonzero
tff(fact_3610_Ints__0,axiom,
! [A: $tType] :
( ring_1(A)
=> pp(member(A,zero_zero(A),ring_1_Ints(A))) ) ).
% Ints_0
tff(fact_3611_xor_Oassoc,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),A2),aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),B2),C2)) ) ) ).
% xor.assoc
tff(fact_3612_xor_Ocommute,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),A2),B2) = aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),B2),A2) ) ) ).
% xor.commute
tff(fact_3613_xor_Oleft__commute,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [B2: A,A2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),B2),aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),A2),C2)) = aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),A2),aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),B2),C2)) ) ) ).
% xor.left_commute
tff(fact_3614_of__nat__xor__eq,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [M: nat,N: nat] : ( aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344971392196577ns_xor(nat),M),N)) = aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),aa(nat,A,semiring_1_of_nat(A),M)),aa(nat,A,semiring_1_of_nat(A),N)) ) ) ).
% of_nat_xor_eq
tff(fact_3615_of__nat__gbinomial,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [N: nat,K: nat] : ( aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,gbinomial(nat,N),K)) = aa(nat,A,gbinomial(A,aa(nat,A,semiring_1_of_nat(A),N)),K) ) ) ).
% of_nat_gbinomial
tff(fact_3616_Ints__diff,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [A2: A,B2: A] :
( pp(member(A,A2,ring_1_Ints(A)))
=> ( pp(member(A,B2,ring_1_Ints(A)))
=> pp(member(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2),ring_1_Ints(A))) ) ) ) ).
% Ints_diff
tff(fact_3617_Ints__1,axiom,
! [A: $tType] :
( ring_1(A)
=> pp(member(A,one_one(A),ring_1_Ints(A))) ) ).
% Ints_1
tff(fact_3618_Ints__add,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [A2: A,B2: A] :
( pp(member(A,A2,ring_1_Ints(A)))
=> ( pp(member(A,B2,ring_1_Ints(A)))
=> pp(member(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2),ring_1_Ints(A))) ) ) ) ).
% Ints_add
tff(fact_3619_Ints__mult,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [A2: A,B2: A] :
( pp(member(A,A2,ring_1_Ints(A)))
=> ( pp(member(A,B2,ring_1_Ints(A)))
=> pp(member(A,aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2),ring_1_Ints(A))) ) ) ) ).
% Ints_mult
tff(fact_3620_Ints__numeral,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [N: num] : pp(member(A,aa(num,A,numeral_numeral(A),N),ring_1_Ints(A))) ) ).
% Ints_numeral
tff(fact_3621_cosh__real__pos,axiom,
! [X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),cosh(real,X2))) ).
% cosh_real_pos
tff(fact_3622_cosh__real__nonpos__le__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),zero_zero(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),zero_zero(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),cosh(real,X2)),cosh(real,Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),X2)) ) ) ) ).
% cosh_real_nonpos_le_iff
tff(fact_3623_cosh__real__nonneg__le__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),cosh(real,X2)),cosh(real,Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),Y)) ) ) ) ).
% cosh_real_nonneg_le_iff
tff(fact_3624_cosh__real__nonneg,axiom,
! [X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),cosh(real,X2))) ).
% cosh_real_nonneg
tff(fact_3625_cosh__real__ge__1,axiom,
! [X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),cosh(real,X2))) ).
% cosh_real_ge_1
tff(fact_3626_Ints__double__eq__0__iff,axiom,
! [A: $tType] :
( ring_char_0(A)
=> ! [A2: A] :
( pp(member(A,A2,ring_1_Ints(A)))
=> ( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),A2) = zero_zero(A) )
<=> ( A2 = zero_zero(A) ) ) ) ) ).
% Ints_double_eq_0_iff
tff(fact_3627_binomial__gbinomial,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [N: nat,K: nat] : ( aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,binomial(N),K)) = aa(nat,A,gbinomial(A,aa(nat,A,semiring_1_of_nat(A),N)),K) ) ) ).
% binomial_gbinomial
tff(fact_3628_sinh__less__cosh__real,axiom,
! [X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),sinh(real,X2)),cosh(real,X2))) ).
% sinh_less_cosh_real
tff(fact_3629_sinh__le__cosh__real,axiom,
! [X2: real] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),sinh(real,X2)),cosh(real,X2))) ).
% sinh_le_cosh_real
tff(fact_3630_gbinomial__Suc__Suc,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [A2: A,K: nat] : ( aa(nat,A,gbinomial(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),one_one(A))),aa(nat,nat,suc,K)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,gbinomial(A,A2),K)),aa(nat,A,gbinomial(A,A2),aa(nat,nat,suc,K))) ) ) ).
% gbinomial_Suc_Suc
tff(fact_3631_cosh__real__strict__mono,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),Y))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),cosh(real,X2)),cosh(real,Y))) ) ) ).
% cosh_real_strict_mono
tff(fact_3632_cosh__real__nonneg__less__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),cosh(real,X2)),cosh(real,Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),Y)) ) ) ) ).
% cosh_real_nonneg_less_iff
tff(fact_3633_cosh__real__nonpos__less__iff,axiom,
! [X2: real,Y: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),zero_zero(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y),zero_zero(real)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),cosh(real,X2)),cosh(real,Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y),X2)) ) ) ) ).
% cosh_real_nonpos_less_iff
tff(fact_3634_gbinomial__of__nat__symmetric,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [K: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N))
=> ( aa(nat,A,gbinomial(A,aa(nat,A,semiring_1_of_nat(A),N)),K) = aa(nat,A,gbinomial(A,aa(nat,A,semiring_1_of_nat(A),N)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),K)) ) ) ) ).
% gbinomial_of_nat_symmetric
tff(fact_3635_Ints__odd__nonzero,axiom,
! [A: $tType] :
( ring_char_0(A)
=> ! [A2: A] :
( pp(member(A,A2,ring_1_Ints(A)))
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),A2)),A2) != zero_zero(A) ) ) ) ).
% Ints_odd_nonzero
tff(fact_3636_of__int__divide__in__Ints,axiom,
! [A: $tType] :
( idom_divide(A)
=> ! [B2: int,A2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),B2),A2))
=> pp(member(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(int,A,ring_1_of_int(A),A2)),aa(int,A,ring_1_of_int(A),B2)),ring_1_Ints(A))) ) ) ).
% of_int_divide_in_Ints
tff(fact_3637_arcosh__cosh__real,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( aa(real,real,arcosh(real),cosh(real,X2)) = X2 ) ) ).
% arcosh_cosh_real
tff(fact_3638_cosh__add,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A,Y: A] : ( cosh(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),cosh(A,X2)),cosh(A,Y))),aa(A,A,aa(A,fun(A,A),times_times(A),sinh(A,X2)),sinh(A,Y))) ) ) ).
% cosh_add
tff(fact_3639_sinh__add,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A,Y: A] : ( sinh(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),sinh(A,X2)),cosh(A,Y))),aa(A,A,aa(A,fun(A,A),times_times(A),cosh(A,X2)),sinh(A,Y))) ) ) ).
% sinh_add
tff(fact_3640_sinh__diff,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A,Y: A] : ( sinh(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),sinh(A,X2)),cosh(A,Y))),aa(A,A,aa(A,fun(A,A),times_times(A),cosh(A,X2)),sinh(A,Y))) ) ) ).
% sinh_diff
tff(fact_3641_cosh__diff,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A,Y: A] : ( cosh(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),cosh(A,X2)),cosh(A,Y))),aa(A,A,aa(A,fun(A,A),times_times(A),sinh(A,X2)),sinh(A,Y))) ) ) ).
% cosh_diff
tff(fact_3642_cosh__plus__sinh,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),cosh(A,X2)),sinh(A,X2)) = aa(A,A,exp(A),X2) ) ) ).
% cosh_plus_sinh
tff(fact_3643_sinh__plus__cosh,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),sinh(A,X2)),cosh(A,X2)) = aa(A,A,exp(A),X2) ) ) ).
% sinh_plus_cosh
tff(fact_3644_tanh__def,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : ( aa(A,A,tanh(A),X2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),sinh(A,X2)),cosh(A,X2)) ) ) ).
% tanh_def
tff(fact_3645_gbinomial__addition__formula,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [A2: A,K: nat] : ( aa(nat,A,gbinomial(A,A2),aa(nat,nat,suc,K)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,gbinomial(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),one_one(A))),aa(nat,nat,suc,K))),aa(nat,A,gbinomial(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),one_one(A))),K)) ) ) ).
% gbinomial_addition_formula
tff(fact_3646_gbinomial__absorb__comp,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [A2: A,K: nat] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),aa(nat,A,semiring_1_of_nat(A),K))),aa(nat,A,gbinomial(A,A2),K)) = aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(nat,A,gbinomial(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),one_one(A))),K)) ) ) ).
% gbinomial_absorb_comp
tff(fact_3647_gbinomial__ge__n__over__k__pow__k,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [K: nat,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,semiring_1_of_nat(A),K)),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,power_power(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(nat,A,semiring_1_of_nat(A),K))),K)),aa(nat,A,gbinomial(A,A2),K))) ) ) ).
% gbinomial_ge_n_over_k_pow_k
tff(fact_3648_gbinomial__mult__1,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [A2: A,K: nat] : ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(nat,A,gbinomial(A,A2),K)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),K)),aa(nat,A,gbinomial(A,A2),K))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,suc,K))),aa(nat,A,gbinomial(A,A2),aa(nat,nat,suc,K)))) ) ) ).
% gbinomial_mult_1
tff(fact_3649_gbinomial__mult__1_H,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [A2: A,K: nat] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,gbinomial(A,A2),K)),A2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),K)),aa(nat,A,gbinomial(A,A2),K))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,suc,K))),aa(nat,A,gbinomial(A,A2),aa(nat,nat,suc,K)))) ) ) ).
% gbinomial_mult_1'
tff(fact_3650_even__xor__iff,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),A2),B2)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),B2)) ) ) ) ).
% even_xor_iff
tff(fact_3651_Ints__odd__less__0,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A] :
( pp(member(A,A2,ring_1_Ints(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),A2)),A2)),zero_zero(A)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),zero_zero(A))) ) ) ) ).
% Ints_odd_less_0
tff(fact_3652_Ints__nonzero__abs__ge1,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: A] :
( pp(member(A,X2,ring_1_Ints(A)))
=> ( ( X2 != zero_zero(A) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),aa(A,A,abs_abs(A),X2))) ) ) ) ).
% Ints_nonzero_abs_ge1
tff(fact_3653_Ints__nonzero__abs__less1,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: A] :
( pp(member(A,X2,ring_1_Ints(A)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,abs_abs(A),X2)),one_one(A)))
=> ( X2 = zero_zero(A) ) ) ) ) ).
% Ints_nonzero_abs_less1
tff(fact_3654_Ints__eq__abs__less1,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [X2: A,Y: A] :
( pp(member(A,X2,ring_1_Ints(A)))
=> ( pp(member(A,Y,ring_1_Ints(A)))
=> ( ( X2 = Y )
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y))),one_one(A))) ) ) ) ) ).
% Ints_eq_abs_less1
tff(fact_3655_sin__times__pi__eq__0,axiom,
! [X2: real] :
( ( sin(real,aa(real,real,aa(real,fun(real,real),times_times(real),X2),pi)) = zero_zero(real) )
<=> pp(member(real,X2,ring_1_Ints(real))) ) ).
% sin_times_pi_eq_0
tff(fact_3656_cosh__minus__sinh,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),cosh(A,X2)),sinh(A,X2)) = aa(A,A,exp(A),aa(A,A,uminus_uminus(A),X2)) ) ) ).
% cosh_minus_sinh
tff(fact_3657_sinh__minus__cosh,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),sinh(A,X2)),cosh(A,X2)) = aa(A,A,uminus_uminus(A),aa(A,A,exp(A),aa(A,A,uminus_uminus(A),X2))) ) ) ).
% sinh_minus_cosh
tff(fact_3658_Suc__times__gbinomial,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [K: nat,A2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,suc,K))),aa(nat,A,gbinomial(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),one_one(A))),aa(nat,nat,suc,K))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),one_one(A))),aa(nat,A,gbinomial(A,A2),K)) ) ) ).
% Suc_times_gbinomial
tff(fact_3659_gbinomial__absorption,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [K: nat,A2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,suc,K))),aa(nat,A,gbinomial(A,A2),aa(nat,nat,suc,K))) = aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(nat,A,gbinomial(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),one_one(A))),K)) ) ) ).
% gbinomial_absorption
tff(fact_3660_gbinomial__trinomial__revision,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [K: nat,M: nat,A2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),M))
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,gbinomial(A,A2),M)),aa(nat,A,gbinomial(A,aa(nat,A,semiring_1_of_nat(A),M)),K)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,gbinomial(A,A2),K)),aa(nat,A,gbinomial(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),aa(nat,A,semiring_1_of_nat(A),K))),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),K))) ) ) ) ).
% gbinomial_trinomial_revision
tff(fact_3661_frac__neg,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A] :
( ( pp(member(A,X2,ring_1_Ints(A)))
=> ( aa(A,A,archimedean_frac(A),aa(A,A,uminus_uminus(A),X2)) = zero_zero(A) ) )
& ( ~ pp(member(A,X2,ring_1_Ints(A)))
=> ( aa(A,A,archimedean_frac(A),aa(A,A,uminus_uminus(A),X2)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),aa(A,A,archimedean_frac(A),X2)) ) ) ) ) ).
% frac_neg
tff(fact_3662_sinh__double,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : ( sinh(A,aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),X2)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),sinh(A,X2))),cosh(A,X2)) ) ) ).
% sinh_double
tff(fact_3663_gbinomial__factors,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [A2: A,K: nat] : ( aa(nat,A,gbinomial(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),one_one(A))),aa(nat,nat,suc,K)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),one_one(A))),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,suc,K)))),aa(nat,A,gbinomial(A,A2),K)) ) ) ).
% gbinomial_factors
tff(fact_3664_gbinomial__rec,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [A2: A,K: nat] : ( aa(nat,A,gbinomial(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),one_one(A))),aa(nat,nat,suc,K)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,gbinomial(A,A2),K)),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),one_one(A))),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,suc,K)))) ) ) ).
% gbinomial_rec
tff(fact_3665_gbinomial__index__swap,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [K: nat,N: nat] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),K)),aa(nat,A,gbinomial(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,uminus_uminus(A),aa(nat,A,semiring_1_of_nat(A),N))),one_one(A))),K)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),N)),aa(nat,A,gbinomial(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,uminus_uminus(A),aa(nat,A,semiring_1_of_nat(A),K))),one_one(A))),N)) ) ) ).
% gbinomial_index_swap
tff(fact_3666_gbinomial__negated__upper,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [A2: A,K: nat] : ( aa(nat,A,gbinomial(A,A2),K) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),K)),aa(nat,A,gbinomial(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,semiring_1_of_nat(A),K)),A2)),one_one(A))),K)) ) ) ).
% gbinomial_negated_upper
tff(fact_3667_le__mult__floor__Ints,axiom,
! [A: $tType,B: $tType] :
( ( archim2362893244070406136eiling(B)
& linordered_idom(A) )
=> ! [A2: B,B2: B] :
( pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),zero_zero(B)),A2))
=> ( pp(member(B,A2,ring_1_Ints(B)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(int,A,ring_1_of_int(A),aa(int,int,aa(int,fun(int,int),times_times(int),aa(B,int,archim6421214686448440834_floor(B),A2)),aa(B,int,archim6421214686448440834_floor(B),B2)))),aa(int,A,ring_1_of_int(A),aa(B,int,archim6421214686448440834_floor(B),aa(B,B,aa(B,fun(B,B),times_times(B),A2),B2))))) ) ) ) ).
% le_mult_floor_Ints
tff(fact_3668_frac__unique__iff,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [X2: A,A2: A] :
( ( aa(A,A,archimedean_frac(A),X2) = A2 )
<=> ( pp(member(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),A2),ring_1_Ints(A)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),one_one(A))) ) ) ) ).
% frac_unique_iff
tff(fact_3669_mult__ceiling__le__Ints,axiom,
! [A: $tType,B: $tType] :
( ( archim2362893244070406136eiling(B)
& linordered_idom(A) )
=> ! [A2: B,B2: B] :
( pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),zero_zero(B)),A2))
=> ( pp(member(B,A2,ring_1_Ints(B)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(int,A,ring_1_of_int(A),archimedean_ceiling(B,aa(B,B,aa(B,fun(B,B),times_times(B),A2),B2)))),aa(int,A,ring_1_of_int(A),aa(int,int,aa(int,fun(int,int),times_times(int),archimedean_ceiling(B,A2)),archimedean_ceiling(B,B2))))) ) ) ) ).
% mult_ceiling_le_Ints
tff(fact_3670_tanh__add,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A,Y: A] :
( ( cosh(A,X2) != zero_zero(A) )
=> ( ( cosh(A,Y) != zero_zero(A) )
=> ( aa(A,A,tanh(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,tanh(A),X2)),aa(A,A,tanh(A),Y))),aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,tanh(A),X2)),aa(A,A,tanh(A),Y)))) ) ) ) ) ).
% tanh_add
tff(fact_3671_gbinomial__minus,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [A2: A,K: nat] : ( aa(nat,A,gbinomial(A,aa(A,A,uminus_uminus(A),A2)),K) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),K)),aa(nat,A,gbinomial(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(nat,A,semiring_1_of_nat(A),K))),one_one(A))),K)) ) ) ).
% gbinomial_minus
tff(fact_3672_gbinomial__reduce__nat,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [K: nat,A2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),K))
=> ( aa(nat,A,gbinomial(A,A2),K) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,gbinomial(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),one_one(A))),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),K),one_one(nat)))),aa(nat,A,gbinomial(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),one_one(A))),K)) ) ) ) ).
% gbinomial_reduce_nat
tff(fact_3673_gbinomial__pochhammer,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [A2: A,K: nat] : ( aa(nat,A,gbinomial(A,A2),K) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),K)),comm_s3205402744901411588hammer(A,aa(A,A,uminus_uminus(A),A2),K))),semiring_char_0_fact(A,K)) ) ) ).
% gbinomial_pochhammer
tff(fact_3674_gbinomial__pochhammer_H,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [A2: A,K: nat] : ( aa(nat,A,gbinomial(A,A2),K) = aa(A,A,aa(A,fun(A,A),divide_divide(A),comm_s3205402744901411588hammer(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),aa(nat,A,semiring_1_of_nat(A),K))),one_one(A)),K)),semiring_char_0_fact(A,K)) ) ) ).
% gbinomial_pochhammer'
tff(fact_3675_sin__integer__2pi,axiom,
! [N: real] :
( pp(member(real,N,ring_1_Ints(real)))
=> ( sin(real,aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),pi)),N)) = zero_zero(real) ) ) ).
% sin_integer_2pi
tff(fact_3676_cos__integer__2pi,axiom,
! [N: real] :
( pp(member(real,N,ring_1_Ints(real)))
=> ( aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),pi)),N)) = one_one(real) ) ) ).
% cos_integer_2pi
tff(fact_3677_cosh__field__def,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Z: A] : ( cosh(A,Z) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,exp(A),Z)),aa(A,A,exp(A),aa(A,A,uminus_uminus(A),Z)))),aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ).
% cosh_field_def
tff(fact_3678_xor__nat__unfold,axiom,
! [M: nat,N: nat] :
( ( ( M = zero_zero(nat) )
=> ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344971392196577ns_xor(nat),M),N) = N ) )
& ( ( M != zero_zero(nat) )
=> ( ( ( N = zero_zero(nat) )
=> ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344971392196577ns_xor(nat),M),N) = M ) )
& ( ( N != zero_zero(nat) )
=> ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344971392196577ns_xor(nat),M),N) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),modulo_modulo(nat,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),modulo_modulo(nat,M,aa(num,nat,numeral_numeral(nat),bit0(one2)))),modulo_modulo(nat,N,aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344971392196577ns_xor(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ) ) ) ) ).
% xor_nat_unfold
tff(fact_3679_cosh__square__eq,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : ( aa(nat,A,power_power(A,cosh(A,X2)),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,power_power(A,sinh(A,X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))),one_one(A)) ) ) ).
% cosh_square_eq
tff(fact_3680_sinh__square__eq,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : ( aa(nat,A,power_power(A,sinh(A,X2)),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,power_power(A,cosh(A,X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))),one_one(A)) ) ) ).
% sinh_square_eq
tff(fact_3681_hyperbolic__pythagoras,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,power_power(A,cosh(A,X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,A,power_power(A,sinh(A,X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))) = one_one(A) ) ) ).
% hyperbolic_pythagoras
tff(fact_3682_xor__nat__rec,axiom,
! [M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344971392196577ns_xor(nat),M),N) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(bool,nat,zero_neq_one_of_bool(nat),aa(bool,bool,fNot,aa(bool,bool,aa(bool,fun(bool,bool),fequal(bool),aa(bool,bool,fNot,aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),M))),aa(bool,bool,fNot,aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)))))),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344971392196577ns_xor(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ).
% xor_nat_rec
tff(fact_3683_one__xor__eq,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),one_one(A)),A2) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(bool,A,zero_neq_one_of_bool(A),aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2)))),aa(bool,A,zero_neq_one_of_bool(A),aa(bool,bool,fNot,aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2)))) ) ) ).
% one_xor_eq
tff(fact_3684_xor__one__eq,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),A2),one_one(A)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(bool,A,zero_neq_one_of_bool(A),aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2)))),aa(bool,A,zero_neq_one_of_bool(A),aa(bool,bool,fNot,aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2)))) ) ) ).
% xor_one_eq
tff(fact_3685_cosh__zero__iff,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] :
( ( cosh(A,X2) = zero_zero(A) )
<=> ( aa(nat,A,power_power(A,aa(A,A,exp(A),X2)),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(A,A,uminus_uminus(A),one_one(A)) ) ) ) ).
% cosh_zero_iff
tff(fact_3686_cosh__double,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : ( cosh(A,aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),X2)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,power_power(A,cosh(A,X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,A,power_power(A,sinh(A,X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))) ) ) ).
% cosh_double
tff(fact_3687_horner__sum__of__bool__2__less,axiom,
! [Bs: list(bool)] : pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),groups4207007520872428315er_sum(bool,int,zero_neq_one_of_bool(int),aa(num,int,numeral_numeral(int),bit0(one2)),Bs)),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),aa(list(bool),nat,size_size(list(bool)),Bs)))) ).
% horner_sum_of_bool_2_less
tff(fact_3688_push__bit__numeral__minus__1,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: num] : ( bit_se4730199178511100633sh_bit(A,aa(num,nat,numeral_numeral(nat),N),aa(A,A,uminus_uminus(A),one_one(A))) = aa(A,A,uminus_uminus(A),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),aa(num,nat,numeral_numeral(nat),N))) ) ) ).
% push_bit_numeral_minus_1
tff(fact_3689_subset__antisym,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),A3))
=> ( A3 = B4 ) ) ) ).
% subset_antisym
tff(fact_3690_subsetI,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( ! [X3: A] :
( pp(member(A,X3,A3))
=> pp(member(A,X3,B4)) )
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4)) ) ).
% subsetI
tff(fact_3691_Compl__subset__Compl__iff,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(A),set(A),uminus_uminus(set(A)),A3)),aa(set(A),set(A),uminus_uminus(set(A)),B4)))
<=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),A3)) ) ).
% Compl_subset_Compl_iff
tff(fact_3692_psubsetI,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> ( ( A3 != B4 )
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less(set(A)),A3),B4)) ) ) ).
% psubsetI
tff(fact_3693_push__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),bit_se4730199178511100633sh_bit(int,N,K)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K)) ) ).
% push_bit_nonnegative_int_iff
tff(fact_3694_push__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),bit_se4730199178511100633sh_bit(int,N,K)),zero_zero(int)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),zero_zero(int))) ) ).
% push_bit_negative_int_iff
tff(fact_3695_push__bit__eq__0__iff,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [N: nat,A2: A] :
( ( bit_se4730199178511100633sh_bit(A,N,A2) = zero_zero(A) )
<=> ( A2 = zero_zero(A) ) ) ) ).
% push_bit_eq_0_iff
tff(fact_3696_push__bit__of__0,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat] : ( bit_se4730199178511100633sh_bit(A,N,zero_zero(A)) = zero_zero(A) ) ) ).
% push_bit_of_0
tff(fact_3697_Compl__anti__mono,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(A),set(A),uminus_uminus(set(A)),B4)),aa(set(A),set(A),uminus_uminus(set(A)),A3))) ) ).
% Compl_anti_mono
tff(fact_3698_push__bit__push__bit,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [M: nat,N: nat,A2: A] : ( bit_se4730199178511100633sh_bit(A,M,bit_se4730199178511100633sh_bit(A,N,A2)) = bit_se4730199178511100633sh_bit(A,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N),A2) ) ) ).
% push_bit_push_bit
tff(fact_3699_push__bit__and,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A,B2: A] : ( bit_se4730199178511100633sh_bit(A,N,aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),bit_se4730199178511100633sh_bit(A,N,A2)),bit_se4730199178511100633sh_bit(A,N,B2)) ) ) ).
% push_bit_and
tff(fact_3700_push__bit__xor,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A,B2: A] : ( bit_se4730199178511100633sh_bit(A,N,aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),bit_se4730199178511100633sh_bit(A,N,A2)),bit_se4730199178511100633sh_bit(A,N,B2)) ) ) ).
% push_bit_xor
tff(fact_3701_concat__bit__of__zero__1,axiom,
! [N: nat,L: int] : ( aa(int,int,bit_concat_bit(N,zero_zero(int)),L) = bit_se4730199178511100633sh_bit(int,N,L) ) ).
% concat_bit_of_zero_1
tff(fact_3702_xor__nonnegative__int__iff,axiom,
! [K: int,L: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),aa(int,int,aa(int,fun(int,int),bit_se5824344971392196577ns_xor(int),K),L)))
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),L)) ) ) ).
% xor_nonnegative_int_iff
tff(fact_3703_xor__negative__int__iff,axiom,
! [K: int,L: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,aa(int,fun(int,int),bit_se5824344971392196577ns_xor(int),K),L)),zero_zero(int)))
<=> ~ ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),zero_zero(int)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),L),zero_zero(int))) ) ) ).
% xor_negative_int_iff
tff(fact_3704_push__bit__Suc__numeral,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,K: num] : ( bit_se4730199178511100633sh_bit(A,aa(nat,nat,suc,N),aa(num,A,numeral_numeral(A),K)) = bit_se4730199178511100633sh_bit(A,N,aa(num,A,numeral_numeral(A),bit0(K))) ) ) ).
% push_bit_Suc_numeral
tff(fact_3705_push__bit__Suc__minus__numeral,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: nat,K: num] : ( bit_se4730199178511100633sh_bit(A,aa(nat,nat,suc,N),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),K))) = bit_se4730199178511100633sh_bit(A,N,aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),bit0(K)))) ) ) ).
% push_bit_Suc_minus_numeral
tff(fact_3706_push__bit__numeral,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [L: num,K: num] : ( bit_se4730199178511100633sh_bit(A,aa(num,nat,numeral_numeral(nat),L),aa(num,A,numeral_numeral(A),K)) = bit_se4730199178511100633sh_bit(A,pred_numeral(L),aa(num,A,numeral_numeral(A),bit0(K))) ) ) ).
% push_bit_numeral
tff(fact_3707_push__bit__Suc,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] : ( bit_se4730199178511100633sh_bit(A,aa(nat,nat,suc,N),A2) = bit_se4730199178511100633sh_bit(A,N,aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(num,A,numeral_numeral(A),bit0(one2)))) ) ) ).
% push_bit_Suc
tff(fact_3708_push__bit__of__1,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat] : ( bit_se4730199178511100633sh_bit(A,N,one_one(A)) = aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N) ) ) ).
% push_bit_of_1
tff(fact_3709_push__bit__of__Suc__0,axiom,
! [N: nat] : ( bit_se4730199178511100633sh_bit(nat,N,aa(nat,nat,suc,zero_zero(nat))) = aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N) ) ).
% push_bit_of_Suc_0
tff(fact_3710_even__push__bit__iff,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),bit_se4730199178511100633sh_bit(A,N,A2)))
<=> ( ( N != zero_zero(nat) )
| pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2)) ) ) ) ).
% even_push_bit_iff
tff(fact_3711_push__bit__minus__numeral,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [L: num,K: num] : ( bit_se4730199178511100633sh_bit(A,aa(num,nat,numeral_numeral(nat),L),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),K))) = bit_se4730199178511100633sh_bit(A,pred_numeral(L),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),bit0(K)))) ) ) ).
% push_bit_minus_numeral
tff(fact_3712_bit__xor__int__iff,axiom,
! [K: int,L: int,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,aa(int,int,aa(int,fun(int,int),bit_se5824344971392196577ns_xor(int),K),L)),N))
<=> ~ ( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,K),N))
<=> pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,L),N)) ) ) ).
% bit_xor_int_iff
tff(fact_3713_flip__bit__int__def,axiom,
! [N: nat,K: int] : ( bit_se8732182000553998342ip_bit(int,N,K) = aa(int,int,aa(int,fun(int,int),bit_se5824344971392196577ns_xor(int),K),bit_se4730199178511100633sh_bit(int,N,one_one(int))) ) ).
% flip_bit_int_def
tff(fact_3714_push__bit__add,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A,B2: A] : ( bit_se4730199178511100633sh_bit(A,N,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),bit_se4730199178511100633sh_bit(A,N,A2)),bit_se4730199178511100633sh_bit(A,N,B2)) ) ) ).
% push_bit_add
tff(fact_3715_push__bit__minus,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: nat,A2: A] : ( bit_se4730199178511100633sh_bit(A,N,aa(A,A,uminus_uminus(A),A2)) = aa(A,A,uminus_uminus(A),bit_se4730199178511100633sh_bit(A,N,A2)) ) ) ).
% push_bit_minus
tff(fact_3716_push__bit__nat__eq,axiom,
! [N: nat,K: int] : ( bit_se4730199178511100633sh_bit(nat,N,aa(int,nat,nat2,K)) = aa(int,nat,nat2,bit_se4730199178511100633sh_bit(int,N,K)) ) ).
% push_bit_nat_eq
tff(fact_3717_push__bit__of__nat,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,M: nat] : ( bit_se4730199178511100633sh_bit(A,N,aa(nat,A,semiring_1_of_nat(A),M)) = aa(nat,A,semiring_1_of_nat(A),bit_se4730199178511100633sh_bit(nat,N,M)) ) ) ).
% push_bit_of_nat
tff(fact_3718_of__nat__push__bit,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [M: nat,N: nat] : ( aa(nat,A,semiring_1_of_nat(A),bit_se4730199178511100633sh_bit(nat,M,N)) = bit_se4730199178511100633sh_bit(A,M,aa(nat,A,semiring_1_of_nat(A),N)) ) ) ).
% of_nat_push_bit
tff(fact_3719_push__bit__of__int,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: nat,K: int] : ( bit_se4730199178511100633sh_bit(A,N,aa(int,A,ring_1_of_int(A),K)) = aa(int,A,ring_1_of_int(A),bit_se4730199178511100633sh_bit(int,N,K)) ) ) ).
% push_bit_of_int
tff(fact_3720_XOR__lower,axiom,
! [X2: int,Y: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),X2))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Y))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),aa(int,int,aa(int,fun(int,int),bit_se5824344971392196577ns_xor(int),X2),Y))) ) ) ).
% XOR_lower
tff(fact_3721_push__bit__take__bit,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [M: nat,N: nat,A2: A] : ( bit_se4730199178511100633sh_bit(A,M,aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2)) = aa(A,A,bit_se2584673776208193580ke_bit(A,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N)),bit_se4730199178511100633sh_bit(A,M,A2)) ) ) ).
% push_bit_take_bit
tff(fact_3722_take__bit__push__bit,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [M: nat,N: nat,A2: A] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,M),bit_se4730199178511100633sh_bit(A,N,A2)) = bit_se4730199178511100633sh_bit(A,N,aa(A,A,bit_se2584673776208193580ke_bit(A,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N)),A2)) ) ) ).
% take_bit_push_bit
tff(fact_3723_flip__bit__nat__def,axiom,
! [M: nat,N: nat] : ( bit_se8732182000553998342ip_bit(nat,M,N) = aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344971392196577ns_xor(nat),N),bit_se4730199178511100633sh_bit(nat,M,one_one(nat))) ) ).
% flip_bit_nat_def
tff(fact_3724_bit__push__bit__iff__int,axiom,
! [M: nat,K: int,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,bit_se4730199178511100633sh_bit(int,M,K)),N))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
& pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,K),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M))) ) ) ).
% bit_push_bit_iff_int
tff(fact_3725_xor__nat__def,axiom,
! [M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se5824344971392196577ns_xor(nat),M),N) = aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),bit_se5824344971392196577ns_xor(int),aa(nat,int,semiring_1_of_nat(int),M)),aa(nat,int,semiring_1_of_nat(int),N))) ) ).
% xor_nat_def
tff(fact_3726_psubsetE,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less(set(A)),A3),B4))
=> ~ ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),A3)) ) ) ).
% psubsetE
tff(fact_3727_psubset__eq,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less(set(A)),A3),B4))
<=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
& ( A3 != B4 ) ) ) ).
% psubset_eq
tff(fact_3728_psubset__imp__subset,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less(set(A)),A3),B4))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4)) ) ).
% psubset_imp_subset
tff(fact_3729_psubset__subset__trans,axiom,
! [A: $tType,A3: set(A),B4: set(A),C6: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less(set(A)),A3),B4))
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),C6))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less(set(A)),A3),C6)) ) ) ).
% psubset_subset_trans
tff(fact_3730_subset__not__subset__eq,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less(set(A)),A3),B4))
<=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
& ~ pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),A3)) ) ) ).
% subset_not_subset_eq
tff(fact_3731_subset__psubset__trans,axiom,
! [A: $tType,A3: set(A),B4: set(A),C6: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less(set(A)),B4),C6))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less(set(A)),A3),C6)) ) ) ).
% subset_psubset_trans
tff(fact_3732_subset__iff__psubset__eq,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
<=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less(set(A)),A3),B4))
| ( A3 = B4 ) ) ) ).
% subset_iff_psubset_eq
tff(fact_3733_in__mono,axiom,
! [A: $tType,A3: set(A),B4: set(A),X2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> ( pp(member(A,X2,A3))
=> pp(member(A,X2,B4)) ) ) ).
% in_mono
tff(fact_3734_subsetD,axiom,
! [A: $tType,A3: set(A),B4: set(A),C2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> ( pp(member(A,C2,A3))
=> pp(member(A,C2,B4)) ) ) ).
% subsetD
tff(fact_3735_equalityE,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( ( A3 = B4 )
=> ~ ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> ~ pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),A3)) ) ) ).
% equalityE
tff(fact_3736_subset__eq,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
<=> ! [X4: A] :
( pp(member(A,X4,A3))
=> pp(member(A,X4,B4)) ) ) ).
% subset_eq
tff(fact_3737_equalityD1,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( ( A3 = B4 )
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4)) ) ).
% equalityD1
tff(fact_3738_equalityD2,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( ( A3 = B4 )
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),A3)) ) ).
% equalityD2
tff(fact_3739_subset__iff,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
<=> ! [T4: A] :
( pp(member(A,T4,A3))
=> pp(member(A,T4,B4)) ) ) ).
% subset_iff
tff(fact_3740_subset__refl,axiom,
! [A: $tType,A3: set(A)] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),A3)) ).
% subset_refl
tff(fact_3741_Collect__mono,axiom,
! [A: $tType,P: fun(A,bool),Q: fun(A,bool)] :
( ! [X3: A] :
( pp(aa(A,bool,P,X3))
=> pp(aa(A,bool,Q,X3)) )
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(fun(A,bool),set(A),collect(A),P)),aa(fun(A,bool),set(A),collect(A),Q))) ) ).
% Collect_mono
tff(fact_3742_subset__trans,axiom,
! [A: $tType,A3: set(A),B4: set(A),C6: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),C6))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),C6)) ) ) ).
% subset_trans
tff(fact_3743_set__eq__subset,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( ( A3 = B4 )
<=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
& pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),A3)) ) ) ).
% set_eq_subset
tff(fact_3744_Collect__mono__iff,axiom,
! [A: $tType,P: fun(A,bool),Q: fun(A,bool)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(fun(A,bool),set(A),collect(A),P)),aa(fun(A,bool),set(A),collect(A),Q)))
<=> ! [X4: A] :
( pp(aa(A,bool,P,X4))
=> pp(aa(A,bool,Q,X4)) ) ) ).
% Collect_mono_iff
tff(fact_3745_double__diff,axiom,
! [A: $tType,A3: set(A),B4: set(A),C6: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),C6))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),B4),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),C6),A3)) = A3 ) ) ) ).
% double_diff
tff(fact_3746_Diff__subset,axiom,
! [A: $tType,A3: set(A),B4: set(A)] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)),A3)) ).
% Diff_subset
tff(fact_3747_Diff__mono,axiom,
! [A: $tType,A3: set(A),C6: set(A),D5: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),C6))
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),D5),B4))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),C6),D5))) ) ) ).
% Diff_mono
tff(fact_3748_bit__push__bit__iff__nat,axiom,
! [M: nat,Q2: nat,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(nat,bit_se4730199178511100633sh_bit(nat,M,Q2)),N))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
& pp(aa(nat,bool,bit_se5641148757651400278ts_bit(nat,Q2),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M))) ) ) ).
% bit_push_bit_iff_nat
tff(fact_3749_concat__bit__eq,axiom,
! [N: nat,K: int,L: int] : ( aa(int,int,bit_concat_bit(N,K),L) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,bit_se2584673776208193580ke_bit(int,N),K)),bit_se4730199178511100633sh_bit(int,N,L)) ) ).
% concat_bit_eq
tff(fact_3750_flip__bit__eq__xor,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] : ( bit_se8732182000553998342ip_bit(A,N,A2) = aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),A2),bit_se4730199178511100633sh_bit(A,N,one_one(A))) ) ) ).
% flip_bit_eq_xor
tff(fact_3751_push__bit__double,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] : ( bit_se4730199178511100633sh_bit(A,N,aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(num,A,numeral_numeral(A),bit0(one2)))) = aa(A,A,aa(A,fun(A,A),times_times(A),bit_se4730199178511100633sh_bit(A,N,A2)),aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ).
% push_bit_double
tff(fact_3752_bit__iff__and__push__bit__not__eq__0,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N))
<=> ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),bit_se4730199178511100633sh_bit(A,N,one_one(A))) != zero_zero(A) ) ) ) ).
% bit_iff_and_push_bit_not_eq_0
tff(fact_3753_push__bit__int__def,axiom,
! [N: nat,K: int] : ( bit_se4730199178511100633sh_bit(int,N,K) = aa(int,int,aa(int,fun(int,int),times_times(int),K),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)) ) ).
% push_bit_int_def
tff(fact_3754_push__bit__nat__def,axiom,
! [N: nat,M: nat] : ( bit_se4730199178511100633sh_bit(nat,N,M) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N)) ) ).
% push_bit_nat_def
tff(fact_3755_push__bit__eq__mult,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] : ( bit_se4730199178511100633sh_bit(A,N,A2) = aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)) ) ) ).
% push_bit_eq_mult
tff(fact_3756_exp__dvdE,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)),A2))
=> ~ ! [B3: A] : ( A2 != bit_se4730199178511100633sh_bit(A,N,B3) ) ) ) ).
% exp_dvdE
tff(fact_3757_push__bit__minus__one,axiom,
! [N: nat] : ( bit_se4730199178511100633sh_bit(int,N,aa(int,int,uminus_uminus(int),one_one(int))) = aa(int,int,uminus_uminus(int),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)) ) ).
% push_bit_minus_one
tff(fact_3758_XOR__upper,axiom,
! [X2: int,N: nat,Y: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),X2))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),X2),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),Y),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,aa(int,fun(int,int),bit_se5824344971392196577ns_xor(int),X2),Y)),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N))) ) ) ) ).
% XOR_upper
tff(fact_3759_xor__int__rec,axiom,
! [K: int,L: int] : ( aa(int,int,aa(int,fun(int,int),bit_se5824344971392196577ns_xor(int),K),L) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(bool,int,zero_neq_one_of_bool(int),aa(bool,bool,fNot,aa(bool,bool,aa(bool,fun(bool,bool),fequal(bool),aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),K))),aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),L)))))),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),bit_se5824344971392196577ns_xor(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),K),aa(num,int,numeral_numeral(int),bit0(one2)))),aa(int,int,aa(int,fun(int,int),divide_divide(int),L),aa(num,int,numeral_numeral(int),bit0(one2)))))) ) ).
% xor_int_rec
tff(fact_3760_bit__horner__sum__bit__iff,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [Bs: list(bool),N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,groups4207007520872428315er_sum(bool,A,zero_neq_one_of_bool(A),aa(num,A,numeral_numeral(A),bit0(one2)),Bs)),N))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(list(bool),nat,size_size(list(bool)),Bs)))
& pp(aa(nat,bool,nth(bool,Bs),N)) ) ) ) ).
% bit_horner_sum_bit_iff
tff(fact_3761_xor__int__unfold,axiom,
! [K: int,L: int] :
( ( ( K = aa(int,int,uminus_uminus(int),one_one(int)) )
=> ( aa(int,int,aa(int,fun(int,int),bit_se5824344971392196577ns_xor(int),K),L) = aa(int,int,bit_ri4277139882892585799ns_not(int),L) ) )
& ( ( K != aa(int,int,uminus_uminus(int),one_one(int)) )
=> ( ( ( L = aa(int,int,uminus_uminus(int),one_one(int)) )
=> ( aa(int,int,aa(int,fun(int,int),bit_se5824344971392196577ns_xor(int),K),L) = aa(int,int,bit_ri4277139882892585799ns_not(int),K) ) )
& ( ( L != aa(int,int,uminus_uminus(int),one_one(int)) )
=> ( ( ( K = zero_zero(int) )
=> ( aa(int,int,aa(int,fun(int,int),bit_se5824344971392196577ns_xor(int),K),L) = L ) )
& ( ( K != zero_zero(int) )
=> ( ( ( L = zero_zero(int) )
=> ( aa(int,int,aa(int,fun(int,int),bit_se5824344971392196577ns_xor(int),K),L) = K ) )
& ( ( L != zero_zero(int) )
=> ( aa(int,int,aa(int,fun(int,int),bit_se5824344971392196577ns_xor(int),K),L) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,abs_abs(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),modulo_modulo(int,K,aa(num,int,numeral_numeral(int),bit0(one2)))),modulo_modulo(int,L,aa(num,int,numeral_numeral(int),bit0(one2)))))),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),bit_se5824344971392196577ns_xor(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),K),aa(num,int,numeral_numeral(int),bit0(one2)))),aa(int,int,aa(int,fun(int,int),divide_divide(int),L),aa(num,int,numeral_numeral(int),bit0(one2)))))) ) ) ) ) ) ) ) ) ) ).
% xor_int_unfold
tff(fact_3762_valid__eq,axiom,
! [T2: vEBT_VEBT,D2: nat] :
( vEBT_VEBT_valid(T2,D2)
<=> vEBT_invar_vebt(T2,D2) ) ).
% valid_eq
tff(fact_3763_valid__eq1,axiom,
! [T2: vEBT_VEBT,D2: nat] :
( vEBT_invar_vebt(T2,D2)
=> vEBT_VEBT_valid(T2,D2) ) ).
% valid_eq1
tff(fact_3764_valid__eq2,axiom,
! [T2: vEBT_VEBT,D2: nat] :
( vEBT_VEBT_valid(T2,D2)
=> vEBT_invar_vebt(T2,D2) ) ).
% valid_eq2
tff(fact_3765_Diff__idemp,axiom,
! [A: $tType,A3: set(A),B4: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)),B4) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4) ) ).
% Diff_idemp
tff(fact_3766_Diff__iff,axiom,
! [A: $tType,C2: A,A3: set(A),B4: set(A)] :
( pp(member(A,C2,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)))
<=> ( pp(member(A,C2,A3))
& ~ pp(member(A,C2,B4)) ) ) ).
% Diff_iff
tff(fact_3767_DiffI,axiom,
! [A: $tType,C2: A,A3: set(A),B4: set(A)] :
( pp(member(A,C2,A3))
=> ( ~ pp(member(A,C2,B4))
=> pp(member(A,C2,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4))) ) ) ).
% DiffI
tff(fact_3768_bit_Odouble__compl,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A] : ( aa(A,A,bit_ri4277139882892585799ns_not(A),aa(A,A,bit_ri4277139882892585799ns_not(A),X2)) = X2 ) ) ).
% bit.double_compl
tff(fact_3769_bit_Ocompl__eq__compl__iff,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A,Y: A] :
( ( aa(A,A,bit_ri4277139882892585799ns_not(A),X2) = aa(A,A,bit_ri4277139882892585799ns_not(A),Y) )
<=> ( X2 = Y ) ) ) ).
% bit.compl_eq_compl_iff
tff(fact_3770_bit_Oxor__compl__left,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A,Y: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),aa(A,A,bit_ri4277139882892585799ns_not(A),X2)),Y) = aa(A,A,bit_ri4277139882892585799ns_not(A),aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),X2),Y)) ) ) ).
% bit.xor_compl_left
tff(fact_3771_bit_Oxor__compl__right,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A,Y: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),X2),aa(A,A,bit_ri4277139882892585799ns_not(A),Y)) = aa(A,A,bit_ri4277139882892585799ns_not(A),aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),X2),Y)) ) ) ).
% bit.xor_compl_right
tff(fact_3772_bit_Oconj__cancel__right,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),X2),aa(A,A,bit_ri4277139882892585799ns_not(A),X2)) = zero_zero(A) ) ) ).
% bit.conj_cancel_right
tff(fact_3773_bit_Oconj__cancel__left,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(A,A,bit_ri4277139882892585799ns_not(A),X2)),X2) = zero_zero(A) ) ) ).
% bit.conj_cancel_left
tff(fact_3774_bit_Ocompl__one,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ( aa(A,A,bit_ri4277139882892585799ns_not(A),aa(A,A,uminus_uminus(A),one_one(A))) = zero_zero(A) ) ) ).
% bit.compl_one
tff(fact_3775_bit_Ocompl__zero,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ( aa(A,A,bit_ri4277139882892585799ns_not(A),zero_zero(A)) = aa(A,A,uminus_uminus(A),one_one(A)) ) ) ).
% bit.compl_zero
tff(fact_3776_bit_Oxor__one__left,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),aa(A,A,uminus_uminus(A),one_one(A))),X2) = aa(A,A,bit_ri4277139882892585799ns_not(A),X2) ) ) ).
% bit.xor_one_left
tff(fact_3777_bit_Oxor__one__right,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),X2),aa(A,A,uminus_uminus(A),one_one(A))) = aa(A,A,bit_ri4277139882892585799ns_not(A),X2) ) ) ).
% bit.xor_one_right
tff(fact_3778_bit_Oxor__cancel__left,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),aa(A,A,bit_ri4277139882892585799ns_not(A),X2)),X2) = aa(A,A,uminus_uminus(A),one_one(A)) ) ) ).
% bit.xor_cancel_left
tff(fact_3779_bit_Oxor__cancel__right,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),X2),aa(A,A,bit_ri4277139882892585799ns_not(A),X2)) = aa(A,A,uminus_uminus(A),one_one(A)) ) ) ).
% bit.xor_cancel_right
tff(fact_3780_not__nonnegative__int__iff,axiom,
! [K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),aa(int,int,bit_ri4277139882892585799ns_not(int),K)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),zero_zero(int))) ) ).
% not_nonnegative_int_iff
tff(fact_3781_not__negative__int__iff,axiom,
! [K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,bit_ri4277139882892585799ns_not(int),K)),zero_zero(int)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K)) ) ).
% not_negative_int_iff
tff(fact_3782_minus__not__numeral__eq,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: num] : ( aa(A,A,uminus_uminus(A),aa(A,A,bit_ri4277139882892585799ns_not(A),aa(num,A,numeral_numeral(A),N))) = aa(num,A,numeral_numeral(A),inc(N)) ) ) ).
% minus_not_numeral_eq
tff(fact_3783_even__not__iff,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,bit_ri4277139882892585799ns_not(A),A2)))
<=> ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2)) ) ) ).
% even_not_iff
tff(fact_3784_push__bit__minus__one__eq__not__mask,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: nat] : ( bit_se4730199178511100633sh_bit(A,N,aa(A,A,uminus_uminus(A),one_one(A))) = aa(A,A,bit_ri4277139882892585799ns_not(A),bit_se2239418461657761734s_mask(A,N)) ) ) ).
% push_bit_minus_one_eq_not_mask
tff(fact_3785_not__one__eq,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ( aa(A,A,bit_ri4277139882892585799ns_not(A),one_one(A)) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ).
% not_one_eq
tff(fact_3786_DiffD2,axiom,
! [A: $tType,C2: A,A3: set(A),B4: set(A)] :
( pp(member(A,C2,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)))
=> ~ pp(member(A,C2,B4)) ) ).
% DiffD2
tff(fact_3787_DiffD1,axiom,
! [A: $tType,C2: A,A3: set(A),B4: set(A)] :
( pp(member(A,C2,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)))
=> pp(member(A,C2,A3)) ) ).
% DiffD1
tff(fact_3788_DiffE,axiom,
! [A: $tType,C2: A,A3: set(A),B4: set(A)] :
( pp(member(A,C2,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)))
=> ~ ( pp(member(A,C2,A3))
=> pp(member(A,C2,B4)) ) ) ).
% DiffE
tff(fact_3789_psubset__imp__ex__mem,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less(set(A)),A3),B4))
=> ? [B3: A] : pp(member(A,B3,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),B4),A3))) ) ).
% psubset_imp_ex_mem
tff(fact_3790_of__int__not__eq,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [K: int] : ( aa(int,A,ring_1_of_int(A),aa(int,int,bit_ri4277139882892585799ns_not(int),K)) = aa(A,A,bit_ri4277139882892585799ns_not(A),aa(int,A,ring_1_of_int(A),K)) ) ) ).
% of_int_not_eq
tff(fact_3791_bit__not__int__iff,axiom,
! [K: int,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,aa(int,int,bit_ri4277139882892585799ns_not(int),K)),N))
<=> ~ pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,K),N)) ) ).
% bit_not_int_iff
tff(fact_3792_take__bit__not__take__bit,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: nat,A2: A] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),aa(A,A,bit_ri4277139882892585799ns_not(A),aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2))) = aa(A,A,bit_se2584673776208193580ke_bit(A,N),aa(A,A,bit_ri4277139882892585799ns_not(A),A2)) ) ) ).
% take_bit_not_take_bit
tff(fact_3793_take__bit__not__iff,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: nat,A2: A,B2: A] :
( ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),aa(A,A,bit_ri4277139882892585799ns_not(A),A2)) = aa(A,A,bit_se2584673776208193580ke_bit(A,N),aa(A,A,bit_ri4277139882892585799ns_not(A),B2)) )
<=> ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2) = aa(A,A,bit_se2584673776208193580ke_bit(A,N),B2) ) ) ) ).
% take_bit_not_iff
tff(fact_3794_of__int__not__numeral,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [K: num] : ( aa(int,A,ring_1_of_int(A),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),K))) = aa(A,A,bit_ri4277139882892585799ns_not(A),aa(num,A,numeral_numeral(A),K)) ) ) ).
% of_int_not_numeral
tff(fact_3795_not__add__distrib,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [A2: A,B2: A] : ( aa(A,A,bit_ri4277139882892585799ns_not(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,bit_ri4277139882892585799ns_not(A),A2)),B2) ) ) ).
% not_add_distrib
tff(fact_3796_not__diff__distrib,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [A2: A,B2: A] : ( aa(A,A,bit_ri4277139882892585799ns_not(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,bit_ri4277139882892585799ns_not(A),A2)),B2) ) ) ).
% not_diff_distrib
tff(fact_3797_minus__eq__not__plus__1,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [A2: A] : ( aa(A,A,uminus_uminus(A),A2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,bit_ri4277139882892585799ns_not(A),A2)),one_one(A)) ) ) ).
% minus_eq_not_plus_1
tff(fact_3798_minus__eq__not__minus__1,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [A2: A] : ( aa(A,A,uminus_uminus(A),A2) = aa(A,A,bit_ri4277139882892585799ns_not(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),one_one(A))) ) ) ).
% minus_eq_not_minus_1
tff(fact_3799_not__eq__complement,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [A2: A] : ( aa(A,A,bit_ri4277139882892585799ns_not(A),A2) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,uminus_uminus(A),A2)),one_one(A)) ) ) ).
% not_eq_complement
tff(fact_3800_VEBT__internal_Ovalid_H_Osimps_I1_J,axiom,
! [Uu2: bool,Uv2: bool,D2: nat] :
( vEBT_VEBT_valid(vEBT_Leaf(Uu2,Uv2),D2)
<=> ( D2 = one_one(nat) ) ) ).
% VEBT_internal.valid'.simps(1)
tff(fact_3801_not__int__def,axiom,
! [K: int] : ( aa(int,int,bit_ri4277139882892585799ns_not(int),K) = aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(int,int,uminus_uminus(int),K)),one_one(int)) ) ).
% not_int_def
tff(fact_3802_and__not__numerals_I1_J,axiom,
aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),one_one(int)),aa(int,int,bit_ri4277139882892585799ns_not(int),one_one(int))) = zero_zero(int) ).
% and_not_numerals(1)
tff(fact_3803_disjunctive__diff,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [B2: A,A2: A] :
( ! [N3: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,B2),N3))
=> pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N3)) )
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2) = aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),aa(A,A,bit_ri4277139882892585799ns_not(A),B2)) ) ) ) ).
% disjunctive_diff
tff(fact_3804_take__bit__not__eq__mask__diff,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: nat,A2: A] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),aa(A,A,bit_ri4277139882892585799ns_not(A),A2)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),bit_se2239418461657761734s_mask(A,N)),aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2)) ) ) ).
% take_bit_not_eq_mask_diff
tff(fact_3805_minus__numeral__inc__eq,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: num] : ( aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),inc(N))) = aa(A,A,bit_ri4277139882892585799ns_not(A),aa(num,A,numeral_numeral(A),N)) ) ) ).
% minus_numeral_inc_eq
tff(fact_3806_unset__bit__int__def,axiom,
! [N: nat,K: int] : ( aa(int,int,aa(nat,fun(int,int),bit_se2638667681897837118et_bit(int),N),K) = aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),K),aa(int,int,bit_ri4277139882892585799ns_not(int),bit_se4730199178511100633sh_bit(int,N,one_one(int)))) ) ).
% unset_bit_int_def
tff(fact_3807_not__int__div__2,axiom,
! [K: int] : ( aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,bit_ri4277139882892585799ns_not(int),K)),aa(num,int,numeral_numeral(int),bit0(one2))) = aa(int,int,bit_ri4277139882892585799ns_not(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),K),aa(num,int,numeral_numeral(int),bit0(one2)))) ) ).
% not_int_div_2
tff(fact_3808_even__not__iff__int,axiom,
! [K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,bit_ri4277139882892585799ns_not(int),K)))
<=> ~ pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),K)) ) ).
% even_not_iff_int
tff(fact_3809_not__numeral__Bit0__eq,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: num] : ( aa(A,A,bit_ri4277139882892585799ns_not(A),aa(num,A,numeral_numeral(A),bit0(N))) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),aa(num,num,bit1,N))) ) ) ).
% not_numeral_Bit0_eq
tff(fact_3810_and__not__numerals_I2_J,axiom,
! [N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),one_one(int)),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),bit0(N)))) = one_one(int) ) ).
% and_not_numerals(2)
tff(fact_3811_and__not__numerals_I4_J,axiom,
! [M: num] : ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(num,int,numeral_numeral(int),bit0(M))),aa(int,int,bit_ri4277139882892585799ns_not(int),one_one(int))) = aa(num,int,numeral_numeral(int),bit0(M)) ) ).
% and_not_numerals(4)
tff(fact_3812_bit__minus__int__iff,axiom,
! [K: int,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,aa(int,int,uminus_uminus(int),K)),N))
<=> pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,aa(int,int,bit_ri4277139882892585799ns_not(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),K),one_one(int)))),N)) ) ).
% bit_minus_int_iff
tff(fact_3813_not__numeral__BitM__eq,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: num] : ( aa(A,A,bit_ri4277139882892585799ns_not(A),aa(num,A,numeral_numeral(A),bitM(N))) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),bit0(N))) ) ) ).
% not_numeral_BitM_eq
tff(fact_3814_take__bit__not__mask__eq__0,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( aa(A,A,bit_se2584673776208193580ke_bit(A,M),aa(A,A,bit_ri4277139882892585799ns_not(A),bit_se2239418461657761734s_mask(A,N))) = zero_zero(A) ) ) ) ).
% take_bit_not_mask_eq_0
tff(fact_3815_push__bit__mask__eq,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [M: nat,N: nat] : ( bit_se4730199178511100633sh_bit(A,M,bit_se2239418461657761734s_mask(A,N)) = aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),bit_se2239418461657761734s_mask(A,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),M))),aa(A,A,bit_ri4277139882892585799ns_not(A),bit_se2239418461657761734s_mask(A,M))) ) ) ).
% push_bit_mask_eq
tff(fact_3816_unset__bit__eq__and__not,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: nat,A2: A] : ( aa(A,A,aa(nat,fun(A,A),bit_se2638667681897837118et_bit(A),N),A2) = aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),aa(A,A,bit_ri4277139882892585799ns_not(A),bit_se4730199178511100633sh_bit(A,N,one_one(A)))) ) ) ).
% unset_bit_eq_and_not
tff(fact_3817_and__not__numerals_I5_J,axiom,
! [M: num,N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(num,int,numeral_numeral(int),bit0(M))),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),bit0(N)))) = aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(num,int,numeral_numeral(int),M)),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),N)))) ) ).
% and_not_numerals(5)
tff(fact_3818_and__not__numerals_I7_J,axiom,
! [M: num] : ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,M))),aa(int,int,bit_ri4277139882892585799ns_not(int),one_one(int))) = aa(num,int,numeral_numeral(int),bit0(M)) ) ).
% and_not_numerals(7)
tff(fact_3819_and__not__numerals_I3_J,axiom,
! [N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),one_one(int)),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,N)))) = zero_zero(int) ) ).
% and_not_numerals(3)
tff(fact_3820_and__not__numerals_I6_J,axiom,
! [M: num,N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(num,int,numeral_numeral(int),bit0(M))),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,N)))) = aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(num,int,numeral_numeral(int),M)),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),N)))) ) ).
% and_not_numerals(6)
tff(fact_3821_and__not__numerals_I9_J,axiom,
! [M: num,N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,M))),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,N)))) = aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(num,int,numeral_numeral(int),M)),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),N)))) ) ).
% and_not_numerals(9)
tff(fact_3822_bit__not__iff__eq,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [A2: A,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(A,A,bit_ri4277139882892585799ns_not(A),A2)),N))
<=> ( ( aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N) != zero_zero(A) )
& ~ pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N)) ) ) ) ).
% bit_not_iff_eq
tff(fact_3823_minus__exp__eq__not__mask,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: nat] : ( aa(A,A,uminus_uminus(A),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)) = aa(A,A,bit_ri4277139882892585799ns_not(A),bit_se2239418461657761734s_mask(A,N)) ) ) ).
% minus_exp_eq_not_mask
tff(fact_3824_and__not__numerals_I8_J,axiom,
! [M: num,N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,M))),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),bit0(N)))) = aa(int,int,aa(int,fun(int,int),plus_plus(int),one_one(int)),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(num,int,numeral_numeral(int),M)),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),N))))) ) ).
% and_not_numerals(8)
tff(fact_3825_not__int__rec,axiom,
! [K: int] : ( aa(int,int,bit_ri4277139882892585799ns_not(int),K) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(bool,int,zero_neq_one_of_bool(int),aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),K))),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),K),aa(num,int,numeral_numeral(int),bit0(one2)))))) ) ).
% not_int_rec
tff(fact_3826_uminus__apply,axiom,
! [B: $tType,A: $tType] :
( uminus(B)
=> ! [A3: fun(A,B),X2: A] : ( aa(A,B,aa(fun(A,B),fun(A,B),uminus_uminus(fun(A,B)),A3),X2) = aa(B,B,uminus_uminus(B),aa(A,B,A3,X2)) ) ) ).
% uminus_apply
tff(fact_3827_minus__apply,axiom,
! [B: $tType,A: $tType] :
( minus(B)
=> ! [A3: fun(A,B),B4: fun(A,B),X2: A] : ( aa(A,B,aa(fun(A,B),fun(A,B),aa(fun(A,B),fun(fun(A,B),fun(A,B)),minus_minus(fun(A,B)),A3),B4),X2) = aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(A,B,A3,X2)),aa(A,B,B4,X2)) ) ) ).
% minus_apply
tff(fact_3828_Cauchy__iff2,axiom,
! [X6: fun(nat,real)] :
( topolo3814608138187158403Cauchy(real,X6)
<=> ! [J3: nat] :
? [M8: nat] :
! [M6: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M8),M6))
=> ! [N5: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M8),N5))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(nat,real,X6,M6)),aa(nat,real,X6,N5)))),aa(real,real,inverse_inverse(real),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,suc,J3))))) ) ) ) ).
% Cauchy_iff2
tff(fact_3829_order__refl,axiom,
! [A: $tType] :
( preorder(A)
=> ! [X2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),X2)) ) ).
% order_refl
tff(fact_3830_dual__order_Orefl,axiom,
! [A: $tType] :
( preorder(A)
=> ! [A2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),A2)) ) ).
% dual_order.refl
tff(fact_3831_order__antisym__conv,axiom,
! [A: $tType] :
( order(A)
=> ! [Y: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),X2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
<=> ( X2 = Y ) ) ) ) ).
% order_antisym_conv
tff(fact_3832_linorder__le__cases,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X2: A,Y: A] :
( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),X2)) ) ) ).
% linorder_le_cases
tff(fact_3833_ord__le__eq__subst,axiom,
! [A: $tType,B: $tType] :
( ( ord(B)
& ord(A) )
=> ! [A2: A,B2: A,F2: fun(A,B),C2: B] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( ( aa(A,B,F2,B2) = C2 )
=> ( ! [X3: A,Y3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),Y3))
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),aa(A,B,F2,X3)),aa(A,B,F2,Y3))) )
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),aa(A,B,F2,A2)),C2)) ) ) ) ) ).
% ord_le_eq_subst
tff(fact_3834_ord__eq__le__subst,axiom,
! [A: $tType,B: $tType] :
( ( ord(B)
& ord(A) )
=> ! [A2: A,F2: fun(B,A),B2: B,C2: B] :
( ( A2 = aa(B,A,F2,B2) )
=> ( pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),B2),C2))
=> ( ! [X3: B,Y3: B] :
( pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),X3),Y3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,X3)),aa(B,A,F2,Y3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(B,A,F2,C2))) ) ) ) ) ).
% ord_eq_le_subst
tff(fact_3835_linorder__linear,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
| pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),X2)) ) ) ).
% linorder_linear
tff(fact_3836_order__eq__refl,axiom,
! [A: $tType] :
( preorder(A)
=> ! [X2: A,Y: A] :
( ( X2 = Y )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y)) ) ) ).
% order_eq_refl
tff(fact_3837_order__subst2,axiom,
! [A: $tType,C: $tType] :
( ( order(C)
& order(A) )
=> ! [A2: A,B2: A,F2: fun(A,C),C2: C] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(C,bool,aa(C,fun(C,bool),ord_less_eq(C),aa(A,C,F2,B2)),C2))
=> ( ! [X3: A,Y3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),Y3))
=> pp(aa(C,bool,aa(C,fun(C,bool),ord_less_eq(C),aa(A,C,F2,X3)),aa(A,C,F2,Y3))) )
=> pp(aa(C,bool,aa(C,fun(C,bool),ord_less_eq(C),aa(A,C,F2,A2)),C2)) ) ) ) ) ).
% order_subst2
tff(fact_3838_order__subst1,axiom,
! [A: $tType,B: $tType] :
( ( order(B)
& order(A) )
=> ! [A2: A,F2: fun(B,A),B2: B,C2: B] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(B,A,F2,B2)))
=> ( pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),B2),C2))
=> ( ! [X3: B,Y3: B] :
( pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),X3),Y3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,X3)),aa(B,A,F2,Y3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(B,A,F2,C2))) ) ) ) ) ).
% order_subst1
tff(fact_3839_Orderings_Oorder__eq__iff,axiom,
! [A: $tType] :
( order(A)
=> ! [A2: A,B2: A] :
( ( A2 = B2 )
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2)) ) ) ) ).
% Orderings.order_eq_iff
tff(fact_3840_le__fun__def,axiom,
! [B: $tType,A: $tType] :
( ord(B)
=> ! [F2: fun(A,B),G: fun(A,B)] :
( pp(aa(fun(A,B),bool,aa(fun(A,B),fun(fun(A,B),bool),ord_less_eq(fun(A,B)),F2),G))
<=> ! [X4: A] : pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),aa(A,B,F2,X4)),aa(A,B,G,X4))) ) ) ).
% le_fun_def
tff(fact_3841_le__funI,axiom,
! [B: $tType,A: $tType] :
( ord(B)
=> ! [F2: fun(A,B),G: fun(A,B)] :
( ! [X3: A] : pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),aa(A,B,F2,X3)),aa(A,B,G,X3)))
=> pp(aa(fun(A,B),bool,aa(fun(A,B),fun(fun(A,B),bool),ord_less_eq(fun(A,B)),F2),G)) ) ) ).
% le_funI
tff(fact_3842_le__funE,axiom,
! [B: $tType,A: $tType] :
( ord(B)
=> ! [F2: fun(A,B),G: fun(A,B),X2: A] :
( pp(aa(fun(A,B),bool,aa(fun(A,B),fun(fun(A,B),bool),ord_less_eq(fun(A,B)),F2),G))
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),aa(A,B,F2,X2)),aa(A,B,G,X2))) ) ) ).
% le_funE
tff(fact_3843_le__funD,axiom,
! [B: $tType,A: $tType] :
( ord(B)
=> ! [F2: fun(A,B),G: fun(A,B),X2: A] :
( pp(aa(fun(A,B),bool,aa(fun(A,B),fun(fun(A,B),bool),ord_less_eq(fun(A,B)),F2),G))
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),aa(A,B,F2,X2)),aa(A,B,G,X2))) ) ) ).
% le_funD
tff(fact_3844_antisym,axiom,
! [A: $tType] :
( order(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
=> ( A2 = B2 ) ) ) ) ).
% antisym
tff(fact_3845_dual__order_Otrans,axiom,
! [A: $tType] :
( preorder(A)
=> ! [B2: A,A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),A2)) ) ) ) ).
% dual_order.trans
tff(fact_3846_dual__order_Oantisym,axiom,
! [A: $tType] :
( order(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( A2 = B2 ) ) ) ) ).
% dual_order.antisym
tff(fact_3847_dual__order_Oeq__iff,axiom,
! [A: $tType] :
( order(A)
=> ! [A2: A,B2: A] :
( ( A2 = B2 )
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) ) ) ) ).
% dual_order.eq_iff
tff(fact_3848_linorder__wlog,axiom,
! [A: $tType] :
( linorder(A)
=> ! [P: fun(A,fun(A,bool)),A2: A,B2: A] :
( ! [A4: A,B3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A4),B3))
=> pp(aa(A,bool,aa(A,fun(A,bool),P,A4),B3)) )
=> ( ! [A4: A,B3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),P,B3),A4))
=> pp(aa(A,bool,aa(A,fun(A,bool),P,A4),B3)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),P,A2),B2)) ) ) ) ).
% linorder_wlog
tff(fact_3849_order__trans,axiom,
! [A: $tType] :
( preorder(A)
=> ! [X2: A,Y: A,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),Z))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Z)) ) ) ) ).
% order_trans
tff(fact_3850_order_Otrans,axiom,
! [A: $tType] :
( preorder(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),C2)) ) ) ) ).
% order.trans
tff(fact_3851_order__antisym,axiom,
! [A: $tType] :
( order(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),X2))
=> ( X2 = Y ) ) ) ) ).
% order_antisym
tff(fact_3852_ord__le__eq__trans,axiom,
! [A: $tType] :
( ord(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( ( B2 = C2 )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),C2)) ) ) ) ).
% ord_le_eq_trans
tff(fact_3853_ord__eq__le__trans,axiom,
! [A: $tType] :
( ord(A)
=> ! [A2: A,B2: A,C2: A] :
( ( A2 = B2 )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),C2)) ) ) ) ).
% ord_eq_le_trans
tff(fact_3854_order__class_Oorder__eq__iff,axiom,
! [A: $tType] :
( order(A)
=> ! [X2: A,Y: A] :
( ( X2 = Y )
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),X2)) ) ) ) ).
% order_class.order_eq_iff
tff(fact_3855_le__cases3,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X2: A,Y: A,Z: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),Z)) )
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),X2))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Z)) )
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Z))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Z),Y)) )
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Z),Y))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),X2)) )
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),Z))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Z),X2)) )
=> ~ ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Z),X2))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y)) ) ) ) ) ) ) ) ).
% le_cases3
tff(fact_3856_nle__le,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A2: A,B2: A] :
( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
& ( B2 != A2 ) ) ) ) ).
% nle_le
tff(fact_3857_lt__ex,axiom,
! [A: $tType] :
( no_bot(A)
=> ! [X2: A] :
? [Y3: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y3),X2)) ) ).
% lt_ex
tff(fact_3858_gt__ex,axiom,
! [A: $tType] :
( no_top(A)
=> ! [X2: A] :
? [X_13: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),X_13)) ) ).
% gt_ex
tff(fact_3859_dense,axiom,
! [A: $tType] :
( dense_order(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ? [Z3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Z3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Z3),Y)) ) ) ) ).
% dense
tff(fact_3860_less__imp__neq,axiom,
! [A: $tType] :
( order(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ( X2 != Y ) ) ) ).
% less_imp_neq
tff(fact_3861_order_Oasym,axiom,
! [A: $tType] :
( preorder(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2)) ) ) ).
% order.asym
tff(fact_3862_ord__eq__less__trans,axiom,
! [A: $tType] :
( ord(A)
=> ! [A2: A,B2: A,C2: A] :
( ( A2 = B2 )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),C2)) ) ) ) ).
% ord_eq_less_trans
tff(fact_3863_ord__less__eq__trans,axiom,
! [A: $tType] :
( ord(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( ( B2 = C2 )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),C2)) ) ) ) ).
% ord_less_eq_trans
tff(fact_3864_less__induct,axiom,
! [A: $tType] :
( wellorder(A)
=> ! [P: fun(A,bool),A2: A] :
( ! [X3: A] :
( ! [Y4: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y4),X3))
=> pp(aa(A,bool,P,Y4)) )
=> pp(aa(A,bool,P,X3)) )
=> pp(aa(A,bool,P,A2)) ) ) ).
% less_induct
tff(fact_3865_antisym__conv3,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Y: A,X2: A] :
( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X2))
=> ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
<=> ( X2 = Y ) ) ) ) ).
% antisym_conv3
tff(fact_3866_linorder__cases,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X2: A,Y: A] :
( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ( ( X2 != Y )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X2)) ) ) ) ).
% linorder_cases
tff(fact_3867_dual__order_Oasym,axiom,
! [A: $tType] :
( preorder(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) ) ) ).
% dual_order.asym
tff(fact_3868_dual__order_Oirrefl,axiom,
! [A: $tType] :
( preorder(A)
=> ! [A2: A] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),A2)) ) ).
% dual_order.irrefl
tff(fact_3869_exists__least__iff,axiom,
! [A: $tType] :
( wellorder(A)
=> ! [P: fun(A,bool)] :
( ? [X_12: A] : pp(aa(A,bool,P,X_12))
<=> ? [N5: A] :
( pp(aa(A,bool,P,N5))
& ! [M6: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),M6),N5))
=> ~ pp(aa(A,bool,P,M6)) ) ) ) ) ).
% exists_least_iff
tff(fact_3870_linorder__less__wlog,axiom,
! [A: $tType] :
( linorder(A)
=> ! [P: fun(A,fun(A,bool)),A2: A,B2: A] :
( ! [A4: A,B3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A4),B3))
=> pp(aa(A,bool,aa(A,fun(A,bool),P,A4),B3)) )
=> ( ! [A4: A] : pp(aa(A,bool,aa(A,fun(A,bool),P,A4),A4))
=> ( ! [A4: A,B3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),P,B3),A4))
=> pp(aa(A,bool,aa(A,fun(A,bool),P,A4),B3)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),P,A2),B2)) ) ) ) ) ).
% linorder_less_wlog
tff(fact_3871_order_Ostrict__trans,axiom,
! [A: $tType] :
( preorder(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),C2)) ) ) ) ).
% order.strict_trans
tff(fact_3872_not__less__iff__gr__or__eq,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X2: A,Y: A] :
( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X2))
| ( X2 = Y ) ) ) ) ).
% not_less_iff_gr_or_eq
tff(fact_3873_dual__order_Ostrict__trans,axiom,
! [A: $tType] :
( preorder(A)
=> ! [B2: A,A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),A2)) ) ) ) ).
% dual_order.strict_trans
tff(fact_3874_order_Ostrict__implies__not__eq,axiom,
! [A: $tType] :
( order(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( A2 != B2 ) ) ) ).
% order.strict_implies_not_eq
tff(fact_3875_dual__order_Ostrict__implies__not__eq,axiom,
! [A: $tType] :
( order(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2))
=> ( A2 != B2 ) ) ) ).
% dual_order.strict_implies_not_eq
tff(fact_3876_linorder__neqE,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X2: A,Y: A] :
( ( X2 != Y )
=> ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X2)) ) ) ) ).
% linorder_neqE
tff(fact_3877_order__less__asym,axiom,
! [A: $tType] :
( preorder(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X2)) ) ) ).
% order_less_asym
tff(fact_3878_linorder__neq__iff,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X2: A,Y: A] :
( ( X2 != Y )
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
| pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X2)) ) ) ) ).
% linorder_neq_iff
tff(fact_3879_order__less__asym_H,axiom,
! [A: $tType] :
( preorder(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2)) ) ) ).
% order_less_asym'
tff(fact_3880_order__less__trans,axiom,
! [A: $tType] :
( preorder(A)
=> ! [X2: A,Y: A,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),Z))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Z)) ) ) ) ).
% order_less_trans
tff(fact_3881_ord__eq__less__subst,axiom,
! [A: $tType,B: $tType] :
( ( ord(B)
& ord(A) )
=> ! [A2: A,F2: fun(B,A),B2: B,C2: B] :
( ( A2 = aa(B,A,F2,B2) )
=> ( pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),B2),C2))
=> ( ! [X3: B,Y3: B] :
( pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),X3),Y3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(B,A,F2,X3)),aa(B,A,F2,Y3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(B,A,F2,C2))) ) ) ) ) ).
% ord_eq_less_subst
tff(fact_3882_ord__less__eq__subst,axiom,
! [A: $tType,B: $tType] :
( ( ord(B)
& ord(A) )
=> ! [A2: A,B2: A,F2: fun(A,B),C2: B] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( ( aa(A,B,F2,B2) = C2 )
=> ( ! [X3: A,Y3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X3),Y3))
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),aa(A,B,F2,X3)),aa(A,B,F2,Y3))) )
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),aa(A,B,F2,A2)),C2)) ) ) ) ) ).
% ord_less_eq_subst
tff(fact_3883_order__less__irrefl,axiom,
! [A: $tType] :
( preorder(A)
=> ! [X2: A] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),X2)) ) ).
% order_less_irrefl
tff(fact_3884_order__less__subst1,axiom,
! [A: $tType,B: $tType] :
( ( order(B)
& order(A) )
=> ! [A2: A,F2: fun(B,A),B2: B,C2: B] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(B,A,F2,B2)))
=> ( pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),B2),C2))
=> ( ! [X3: B,Y3: B] :
( pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),X3),Y3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(B,A,F2,X3)),aa(B,A,F2,Y3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(B,A,F2,C2))) ) ) ) ) ).
% order_less_subst1
tff(fact_3885_order__less__subst2,axiom,
! [A: $tType,C: $tType] :
( ( order(C)
& order(A) )
=> ! [A2: A,B2: A,F2: fun(A,C),C2: C] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(C,bool,aa(C,fun(C,bool),ord_less(C),aa(A,C,F2,B2)),C2))
=> ( ! [X3: A,Y3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X3),Y3))
=> pp(aa(C,bool,aa(C,fun(C,bool),ord_less(C),aa(A,C,F2,X3)),aa(A,C,F2,Y3))) )
=> pp(aa(C,bool,aa(C,fun(C,bool),ord_less(C),aa(A,C,F2,A2)),C2)) ) ) ) ) ).
% order_less_subst2
tff(fact_3886_order__less__not__sym,axiom,
! [A: $tType] :
( preorder(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X2)) ) ) ).
% order_less_not_sym
tff(fact_3887_order__less__imp__triv,axiom,
! [A: $tType] :
( preorder(A)
=> ! [X2: A,Y: A,P: bool] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X2))
=> pp(P) ) ) ) ).
% order_less_imp_triv
tff(fact_3888_linorder__less__linear,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
| ( X2 = Y )
| pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X2)) ) ) ).
% linorder_less_linear
tff(fact_3889_order__less__imp__not__eq,axiom,
! [A: $tType] :
( order(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ( X2 != Y ) ) ) ).
% order_less_imp_not_eq
tff(fact_3890_order__less__imp__not__eq2,axiom,
! [A: $tType] :
( order(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ( Y != X2 ) ) ) ).
% order_less_imp_not_eq2
tff(fact_3891_order__less__imp__not__less,axiom,
! [A: $tType] :
( preorder(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X2)) ) ) ).
% order_less_imp_not_less
tff(fact_3892_fun__diff__def,axiom,
! [B: $tType,A: $tType] :
( minus(B)
=> ! [A3: fun(A,B),B4: fun(A,B),X: A] : ( aa(A,B,aa(fun(A,B),fun(A,B),aa(fun(A,B),fun(fun(A,B),fun(A,B)),minus_minus(fun(A,B)),A3),B4),X) = aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(A,B,A3,X)),aa(A,B,B4,X)) ) ) ).
% fun_diff_def
tff(fact_3893_fun__Compl__def,axiom,
! [B: $tType,A: $tType] :
( uminus(B)
=> ! [A3: fun(A,B),X: A] : ( aa(A,B,aa(fun(A,B),fun(A,B),uminus_uminus(fun(A,B)),A3),X) = aa(B,B,uminus_uminus(B),aa(A,B,A3,X)) ) ) ).
% fun_Compl_def
tff(fact_3894_CauchyD,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X6: fun(nat,A),E: real] :
( topolo3814608138187158403Cauchy(A,X6)
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),E))
=> ? [M9: nat] :
! [M2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M9),M2))
=> ! [N7: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M9),N7))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,X6,M2)),aa(nat,A,X6,N7)))),E)) ) ) ) ) ) ).
% CauchyD
tff(fact_3895_CauchyI,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X6: fun(nat,A)] :
( ! [E2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),E2))
=> ? [M10: nat] :
! [M3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M10),M3))
=> ! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M10),N3))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,X6,M3)),aa(nat,A,X6,N3)))),E2)) ) ) )
=> topolo3814608138187158403Cauchy(A,X6) ) ) ).
% CauchyI
tff(fact_3896_Cauchy__iff,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X6: fun(nat,A)] :
( topolo3814608138187158403Cauchy(A,X6)
<=> ! [E4: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),E4))
=> ? [M8: nat] :
! [M6: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M8),M6))
=> ! [N5: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M8),N5))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,X6,M6)),aa(nat,A,X6,N5)))),E4)) ) ) ) ) ) ).
% Cauchy_iff
tff(fact_3897_order__le__imp__less__or__eq,axiom,
! [A: $tType] :
( order(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
| ( X2 = Y ) ) ) ) ).
% order_le_imp_less_or_eq
tff(fact_3898_linorder__le__less__linear,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
| pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X2)) ) ) ).
% linorder_le_less_linear
tff(fact_3899_order__less__le__subst2,axiom,
! [A: $tType,C: $tType] :
( ( order(C)
& order(A) )
=> ! [A2: A,B2: A,F2: fun(A,C),C2: C] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(C,bool,aa(C,fun(C,bool),ord_less_eq(C),aa(A,C,F2,B2)),C2))
=> ( ! [X3: A,Y3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X3),Y3))
=> pp(aa(C,bool,aa(C,fun(C,bool),ord_less(C),aa(A,C,F2,X3)),aa(A,C,F2,Y3))) )
=> pp(aa(C,bool,aa(C,fun(C,bool),ord_less(C),aa(A,C,F2,A2)),C2)) ) ) ) ) ).
% order_less_le_subst2
tff(fact_3900_order__less__le__subst1,axiom,
! [A: $tType,B: $tType] :
( ( order(B)
& order(A) )
=> ! [A2: A,F2: fun(B,A),B2: B,C2: B] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(B,A,F2,B2)))
=> ( pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),B2),C2))
=> ( ! [X3: B,Y3: B] :
( pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),X3),Y3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,X3)),aa(B,A,F2,Y3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(B,A,F2,C2))) ) ) ) ) ).
% order_less_le_subst1
tff(fact_3901_order__le__less__subst2,axiom,
! [A: $tType,C: $tType] :
( ( order(C)
& order(A) )
=> ! [A2: A,B2: A,F2: fun(A,C),C2: C] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(C,bool,aa(C,fun(C,bool),ord_less(C),aa(A,C,F2,B2)),C2))
=> ( ! [X3: A,Y3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),Y3))
=> pp(aa(C,bool,aa(C,fun(C,bool),ord_less_eq(C),aa(A,C,F2,X3)),aa(A,C,F2,Y3))) )
=> pp(aa(C,bool,aa(C,fun(C,bool),ord_less(C),aa(A,C,F2,A2)),C2)) ) ) ) ) ).
% order_le_less_subst2
tff(fact_3902_order__le__less__subst1,axiom,
! [A: $tType,B: $tType] :
( ( order(B)
& order(A) )
=> ! [A2: A,F2: fun(B,A),B2: B,C2: B] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(B,A,F2,B2)))
=> ( pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),B2),C2))
=> ( ! [X3: B,Y3: B] :
( pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),X3),Y3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(B,A,F2,X3)),aa(B,A,F2,Y3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(B,A,F2,C2))) ) ) ) ) ).
% order_le_less_subst1
tff(fact_3903_order__less__le__trans,axiom,
! [A: $tType] :
( preorder(A)
=> ! [X2: A,Y: A,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),Z))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Z)) ) ) ) ).
% order_less_le_trans
tff(fact_3904_order__le__less__trans,axiom,
! [A: $tType] :
( preorder(A)
=> ! [X2: A,Y: A,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),Z))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Z)) ) ) ) ).
% order_le_less_trans
tff(fact_3905_order__neq__le__trans,axiom,
! [A: $tType] :
( order(A)
=> ! [A2: A,B2: A] :
( ( A2 != B2 )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) ) ) ) ).
% order_neq_le_trans
tff(fact_3906_order__le__neq__trans,axiom,
! [A: $tType] :
( order(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( ( A2 != B2 )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) ) ) ) ).
% order_le_neq_trans
tff(fact_3907_order__less__imp__le,axiom,
! [A: $tType] :
( preorder(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y)) ) ) ).
% order_less_imp_le
tff(fact_3908_linorder__not__less,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X2: A,Y: A] :
( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),X2)) ) ) ).
% linorder_not_less
tff(fact_3909_linorder__not__le,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X2: A,Y: A] :
( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X2)) ) ) ).
% linorder_not_le
tff(fact_3910_order__less__le,axiom,
! [A: $tType] :
( order(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
& ( X2 != Y ) ) ) ) ).
% order_less_le
tff(fact_3911_order__le__less,axiom,
! [A: $tType] :
( order(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
| ( X2 = Y ) ) ) ) ).
% order_le_less
tff(fact_3912_dual__order_Ostrict__implies__order,axiom,
! [A: $tType] :
( preorder(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2)) ) ) ).
% dual_order.strict_implies_order
tff(fact_3913_order_Ostrict__implies__order,axiom,
! [A: $tType] :
( preorder(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) ) ) ).
% order.strict_implies_order
tff(fact_3914_dual__order_Ostrict__iff__not,axiom,
! [A: $tType] :
( preorder(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
& ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) ) ) ) ).
% dual_order.strict_iff_not
tff(fact_3915_dual__order_Ostrict__trans2,axiom,
! [A: $tType] :
( preorder(A)
=> ! [B2: A,A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),A2)) ) ) ) ).
% dual_order.strict_trans2
tff(fact_3916_dual__order_Ostrict__trans1,axiom,
! [A: $tType] :
( preorder(A)
=> ! [B2: A,A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),A2)) ) ) ) ).
% dual_order.strict_trans1
tff(fact_3917_dual__order_Ostrict__iff__order,axiom,
! [A: $tType] :
( order(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
& ( A2 != B2 ) ) ) ) ).
% dual_order.strict_iff_order
tff(fact_3918_dual__order_Oorder__iff__strict,axiom,
! [A: $tType] :
( order(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2))
| ( A2 = B2 ) ) ) ) ).
% dual_order.order_iff_strict
tff(fact_3919_dense__le__bounded,axiom,
! [A: $tType] :
( dense_linorder(A)
=> ! [X2: A,Y: A,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ( ! [W2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),W2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),W2),Y))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),W2),Z)) ) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),Z)) ) ) ) ).
% dense_le_bounded
tff(fact_3920_dense__ge__bounded,axiom,
! [A: $tType] :
( dense_linorder(A)
=> ! [Z: A,X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Z),X2))
=> ( ! [W2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Z),W2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),W2),X2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),W2)) ) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),Z)) ) ) ) ).
% dense_ge_bounded
tff(fact_3921_order_Ostrict__iff__not,axiom,
! [A: $tType] :
( preorder(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
& ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2)) ) ) ) ).
% order.strict_iff_not
tff(fact_3922_order_Ostrict__trans2,axiom,
! [A: $tType] :
( preorder(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),C2)) ) ) ) ).
% order.strict_trans2
tff(fact_3923_order_Ostrict__trans1,axiom,
! [A: $tType] :
( preorder(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),C2)) ) ) ) ).
% order.strict_trans1
tff(fact_3924_order_Ostrict__iff__order,axiom,
! [A: $tType] :
( order(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
& ( A2 != B2 ) ) ) ) ).
% order.strict_iff_order
tff(fact_3925_order_Oorder__iff__strict,axiom,
! [A: $tType] :
( order(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
| ( A2 = B2 ) ) ) ) ).
% order.order_iff_strict
tff(fact_3926_not__le__imp__less,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Y: A,X2: A] :
( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),X2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y)) ) ) ).
% not_le_imp_less
tff(fact_3927_less__le__not__le,axiom,
! [A: $tType] :
( preorder(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
& ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),X2)) ) ) ) ).
% less_le_not_le
tff(fact_3928_dense__le,axiom,
! [A: $tType] :
( dense_linorder(A)
=> ! [Y: A,Z: A] :
( ! [X3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X3),Y))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),Z)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),Z)) ) ) ).
% dense_le
tff(fact_3929_dense__ge,axiom,
! [A: $tType] :
( dense_linorder(A)
=> ! [Z: A,Y: A] :
( ! [X3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Z),X3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),X3)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),Z)) ) ) ).
% dense_ge
tff(fact_3930_antisym__conv2,axiom,
! [A: $tType] :
( order(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
<=> ( X2 = Y ) ) ) ) ).
% antisym_conv2
tff(fact_3931_antisym__conv1,axiom,
! [A: $tType] :
( order(A)
=> ! [X2: A,Y: A] :
( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
<=> ( X2 = Y ) ) ) ) ).
% antisym_conv1
tff(fact_3932_nless__le,axiom,
! [A: $tType] :
( order(A)
=> ! [A2: A,B2: A] :
( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
<=> ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
| ( A2 = B2 ) ) ) ) ).
% nless_le
tff(fact_3933_leI,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X2: A,Y: A] :
( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),X2)) ) ) ).
% leI
tff(fact_3934_leD,axiom,
! [A: $tType] :
( order(A)
=> ! [Y: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),X2))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y)) ) ) ).
% leD
tff(fact_3935_VEBT__internal_Omembermima_Oelims_I3_J,axiom,
! [X2: vEBT_VEBT,Xa: nat] :
( ~ vEBT_VEBT_membermima(X2,Xa)
=> ( ! [Uu: bool,Uv: bool] : ( X2 != vEBT_Leaf(Uu,Uv) )
=> ( ! [Ux: list(vEBT_VEBT),Uy: vEBT_VEBT] : ( X2 != vEBT_Node(none(product_prod(nat,nat)),zero_zero(nat),Ux,Uy) )
=> ( ! [Mi3: nat,Ma3: nat] :
( ? [Va2: list(vEBT_VEBT),Vb: vEBT_VEBT] : ( X2 = vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi3),Ma3)),zero_zero(nat),Va2,Vb) )
=> ( ( Xa = Mi3 )
| ( Xa = Ma3 ) ) )
=> ( ! [Mi3: nat,Ma3: nat,V3: nat,TreeList3: list(vEBT_VEBT)] :
( ? [Vc: vEBT_VEBT] : ( X2 = vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi3),Ma3)),aa(nat,nat,suc,V3),TreeList3,Vc) )
=> ( ( Xa = Mi3 )
| ( Xa = Ma3 )
| ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3)))
=> vEBT_VEBT_membermima(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList3),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_VEBT_low(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3))) ) ) )
=> ~ ! [V3: nat,TreeList3: list(vEBT_VEBT)] :
( ? [Vd: vEBT_VEBT] : ( X2 = vEBT_Node(none(product_prod(nat,nat)),aa(nat,nat,suc,V3),TreeList3,Vd) )
=> ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3)))
=> vEBT_VEBT_membermima(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList3),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_VEBT_low(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3))) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.elims(3)
tff(fact_3936_VEBT__internal_Omembermima_Oelims_I1_J,axiom,
! [X2: vEBT_VEBT,Xa: nat,Y: bool] :
( ( vEBT_VEBT_membermima(X2,Xa)
<=> pp(Y) )
=> ( ( ? [Uu: bool,Uv: bool] : ( X2 = vEBT_Leaf(Uu,Uv) )
=> pp(Y) )
=> ( ( ? [Ux: list(vEBT_VEBT),Uy: vEBT_VEBT] : ( X2 = vEBT_Node(none(product_prod(nat,nat)),zero_zero(nat),Ux,Uy) )
=> pp(Y) )
=> ( ! [Mi3: nat,Ma3: nat] :
( ? [Va2: list(vEBT_VEBT),Vb: vEBT_VEBT] : ( X2 = vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi3),Ma3)),zero_zero(nat),Va2,Vb) )
=> ( pp(Y)
<=> ~ ( ( Xa = Mi3 )
| ( Xa = Ma3 ) ) ) )
=> ( ! [Mi3: nat,Ma3: nat,V3: nat,TreeList3: list(vEBT_VEBT)] :
( ? [Vc: vEBT_VEBT] : ( X2 = vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi3),Ma3)),aa(nat,nat,suc,V3),TreeList3,Vc) )
=> ( pp(Y)
<=> ~ ( ( Xa = Mi3 )
| ( Xa = Ma3 )
| ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3)))
=> vEBT_VEBT_membermima(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList3),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_VEBT_low(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3))) ) ) ) )
=> ~ ! [V3: nat,TreeList3: list(vEBT_VEBT)] :
( ? [Vd: vEBT_VEBT] : ( X2 = vEBT_Node(none(product_prod(nat,nat)),aa(nat,nat,suc,V3),TreeList3,Vd) )
=> ( pp(Y)
<=> ~ ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3)))
=> vEBT_VEBT_membermima(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList3),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_VEBT_low(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3))) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.elims(1)
tff(fact_3937_length__subseqs,axiom,
! [A: $tType,Xs: list(A)] : ( aa(list(list(A)),nat,size_size(list(list(A))),subseqs(A,Xs)) = aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(list(A),nat,size_size(list(A)),Xs)) ) ).
% length_subseqs
tff(fact_3938_csqrt_Osimps_I1_J,axiom,
! [Z: complex] : ( re(csqrt(Z)) = aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),real_V7770717601297561774m_norm(complex,Z)),re(Z))),aa(num,real,numeral_numeral(real),bit0(one2)))) ) ).
% csqrt.simps(1)
tff(fact_3939_complex__Re__of__nat,axiom,
! [N: nat] : ( re(aa(nat,complex,semiring_1_of_nat(complex),N)) = aa(nat,real,semiring_1_of_nat(real),N) ) ).
% complex_Re_of_nat
tff(fact_3940_complex__Re__numeral,axiom,
! [V: num] : ( re(aa(num,complex,numeral_numeral(complex),V)) = aa(num,real,numeral_numeral(real),V) ) ).
% complex_Re_numeral
tff(fact_3941_Re__divide__of__nat,axiom,
! [Z: complex,N: nat] : ( re(aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),Z),aa(nat,complex,semiring_1_of_nat(complex),N))) = aa(real,real,aa(real,fun(real,real),divide_divide(real),re(Z)),aa(nat,real,semiring_1_of_nat(real),N)) ) ).
% Re_divide_of_nat
tff(fact_3942_Re__divide__of__real,axiom,
! [Z: complex,R: real] : ( re(aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),Z),real_Vector_of_real(complex,R))) = aa(real,real,aa(real,fun(real,real),divide_divide(real),re(Z)),R) ) ).
% Re_divide_of_real
tff(fact_3943_Re__sgn,axiom,
! [Z: complex] : ( re(aa(complex,complex,sgn_sgn(complex),Z)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),re(Z)),real_V7770717601297561774m_norm(complex,Z)) ) ).
% Re_sgn
tff(fact_3944_Re__divide__numeral,axiom,
! [Z: complex,W: num] : ( re(aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),Z),aa(num,complex,numeral_numeral(complex),W))) = aa(real,real,aa(real,fun(real,real),divide_divide(real),re(Z)),aa(num,real,numeral_numeral(real),W)) ) ).
% Re_divide_numeral
tff(fact_3945_cos__Arg__i__mult__zero,axiom,
! [Y: complex] :
( ( Y != zero_zero(complex) )
=> ( ( re(Y) = zero_zero(real) )
=> ( aa(real,real,cos(real),arg(Y)) = zero_zero(real) ) ) ) ).
% cos_Arg_i_mult_zero
tff(fact_3946_minus__set__def,axiom,
! [A: $tType,A3: set(A),B4: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4) = aa(fun(A,bool),set(A),collect(A),aa(fun(A,bool),fun(A,bool),aa(fun(A,bool),fun(fun(A,bool),fun(A,bool)),minus_minus(fun(A,bool)),aTP_Lamp_a(set(A),fun(A,bool),A3)),aTP_Lamp_a(set(A),fun(A,bool),B4))) ) ).
% minus_set_def
tff(fact_3947_set__diff__eq,axiom,
! [A: $tType,A3: set(A),B4: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4) = aa(fun(A,bool),set(A),collect(A),aa(set(A),fun(A,bool),aTP_Lamp_aa(set(A),fun(set(A),fun(A,bool)),A3),B4)) ) ).
% set_diff_eq
tff(fact_3948_less__fun__def,axiom,
! [B: $tType,A: $tType] :
( ord(B)
=> ! [F2: fun(A,B),G: fun(A,B)] :
( pp(aa(fun(A,B),bool,aa(fun(A,B),fun(fun(A,B),bool),ord_less(fun(A,B)),F2),G))
<=> ( pp(aa(fun(A,B),bool,aa(fun(A,B),fun(fun(A,B),bool),ord_less_eq(fun(A,B)),F2),G))
& ~ pp(aa(fun(A,B),bool,aa(fun(A,B),fun(fun(A,B),bool),ord_less_eq(fun(A,B)),G),F2)) ) ) ) ).
% less_fun_def
tff(fact_3949_Collect__subset,axiom,
! [A: $tType,A3: set(A),P: fun(A,bool)] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(fun(A,bool),set(A),collect(A),aa(fun(A,bool),fun(A,bool),aTP_Lamp_ab(set(A),fun(fun(A,bool),fun(A,bool)),A3),P))),A3)) ).
% Collect_subset
tff(fact_3950_less__eq__set__def,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
<=> pp(aa(fun(A,bool),bool,aa(fun(A,bool),fun(fun(A,bool),bool),ord_less_eq(fun(A,bool)),aTP_Lamp_a(set(A),fun(A,bool),A3)),aTP_Lamp_a(set(A),fun(A,bool),B4))) ) ).
% less_eq_set_def
tff(fact_3951_numeral__code_I2_J,axiom,
! [A: $tType] :
( numeral(A)
=> ! [N: num] : ( aa(num,A,numeral_numeral(A),bit0(N)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(num,A,numeral_numeral(A),N)),aa(num,A,numeral_numeral(A),N)) ) ) ).
% numeral_code(2)
tff(fact_3952_lambda__zero,axiom,
! [A: $tType] :
( mult_zero(A)
=> ( aTP_Lamp_ac(A,A) = aa(A,fun(A,A),times_times(A),zero_zero(A)) ) ) ).
% lambda_zero
tff(fact_3953_mult__commute__abs,axiom,
! [A: $tType] :
( ab_semigroup_mult(A)
=> ! [C2: A] : ( aTP_Lamp_ad(A,fun(A,A),C2) = aa(A,fun(A,A),times_times(A),C2) ) ) ).
% mult_commute_abs
tff(fact_3954_lambda__one,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ( aTP_Lamp_ae(A,A) = aa(A,fun(A,A),times_times(A),one_one(A)) ) ) ).
% lambda_one
tff(fact_3955_subseqs__refl,axiom,
! [A: $tType,Xs: list(A)] : pp(member(list(A),Xs,aa(list(list(A)),set(list(A)),set2(list(A)),subseqs(A,Xs)))) ).
% subseqs_refl
tff(fact_3956_subset__divisors__dvd,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [A2: A,B2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(fun(A,bool),set(A),collect(A),aTP_Lamp_af(A,fun(A,bool),A2))),aa(fun(A,bool),set(A),collect(A),aTP_Lamp_af(A,fun(A,bool),B2))))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),B2)) ) ) ).
% subset_divisors_dvd
tff(fact_3957_nat__leq__as__int,axiom,
! [X: nat,Xa2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),X),Xa2))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(nat,int,semiring_1_of_nat(int),X)),aa(nat,int,semiring_1_of_nat(int),Xa2))) ) ).
% nat_leq_as_int
tff(fact_3958_nat__less__as__int,axiom,
! [X: nat,Xa2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),X),Xa2))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(nat,int,semiring_1_of_nat(int),X)),aa(nat,int,semiring_1_of_nat(int),Xa2))) ) ).
% nat_less_as_int
tff(fact_3959_strict__subset__divisors__dvd,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [A2: A,B2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less(set(A)),aa(fun(A,bool),set(A),collect(A),aTP_Lamp_af(A,fun(A,bool),A2))),aa(fun(A,bool),set(A),collect(A),aTP_Lamp_af(A,fun(A,bool),B2))))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),B2))
& ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),B2),A2)) ) ) ) ).
% strict_subset_divisors_dvd
tff(fact_3960_numeral__code_I3_J,axiom,
! [A: $tType] :
( numeral(A)
=> ! [N: num] : ( aa(num,A,numeral_numeral(A),aa(num,num,bit1,N)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(num,A,numeral_numeral(A),N)),aa(num,A,numeral_numeral(A),N))),one_one(A)) ) ) ).
% numeral_code(3)
tff(fact_3961_power__numeral__even,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [Z: A,W: num] : ( aa(nat,A,power_power(A,Z),aa(num,nat,numeral_numeral(nat),bit0(W))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,Z),aa(num,nat,numeral_numeral(nat),W))),aa(nat,A,power_power(A,Z),aa(num,nat,numeral_numeral(nat),W))) ) ) ).
% power_numeral_even
tff(fact_3962_power__numeral__odd,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [Z: A,W: num] : ( aa(nat,A,power_power(A,Z),aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,W))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),Z),aa(nat,A,power_power(A,Z),aa(num,nat,numeral_numeral(nat),W)))),aa(nat,A,power_power(A,Z),aa(num,nat,numeral_numeral(nat),W))) ) ) ).
% power_numeral_odd
tff(fact_3963_nat__plus__as__int,axiom,
! [X: nat,Xa2: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),X),Xa2) = aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(nat,int,semiring_1_of_nat(int),X)),aa(nat,int,semiring_1_of_nat(int),Xa2))) ) ).
% nat_plus_as_int
tff(fact_3964_nat__times__as__int,axiom,
! [X: nat,Xa2: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),X),Xa2) = aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),times_times(int),aa(nat,int,semiring_1_of_nat(int),X)),aa(nat,int,semiring_1_of_nat(int),Xa2))) ) ).
% nat_times_as_int
tff(fact_3965_nat__minus__as__int,axiom,
! [X: nat,Xa2: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),X),Xa2) = aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(nat,int,semiring_1_of_nat(int),X)),aa(nat,int,semiring_1_of_nat(int),Xa2))) ) ).
% nat_minus_as_int
tff(fact_3966_nat__div__as__int,axiom,
! [X: nat,Xa2: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),X),Xa2) = aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(nat,int,semiring_1_of_nat(int),X)),aa(nat,int,semiring_1_of_nat(int),Xa2))) ) ).
% nat_div_as_int
tff(fact_3967_nat__mod__as__int,axiom,
! [X: nat,Xa2: nat] : ( modulo_modulo(nat,X,Xa2) = aa(int,nat,nat2,modulo_modulo(int,aa(nat,int,semiring_1_of_nat(int),X),aa(nat,int,semiring_1_of_nat(int),Xa2))) ) ).
% nat_mod_as_int
tff(fact_3968_imaginary__unit_Osimps_I1_J,axiom,
re(imaginary_unit) = zero_zero(real) ).
% imaginary_unit.simps(1)
tff(fact_3969_complex__Re__le__cmod,axiom,
! [X2: complex] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),re(X2)),real_V7770717601297561774m_norm(complex,X2))) ).
% complex_Re_le_cmod
tff(fact_3970_zero__complex_Osimps_I1_J,axiom,
re(zero_zero(complex)) = zero_zero(real) ).
% zero_complex.simps(1)
tff(fact_3971_one__complex_Osimps_I1_J,axiom,
re(one_one(complex)) = one_one(real) ).
% one_complex.simps(1)
tff(fact_3972_uminus__complex_Osimps_I1_J,axiom,
! [X2: complex] : ( re(aa(complex,complex,uminus_uminus(complex),X2)) = aa(real,real,uminus_uminus(real),re(X2)) ) ).
% uminus_complex.simps(1)
tff(fact_3973_plus__complex_Osimps_I1_J,axiom,
! [X2: complex,Y: complex] : ( re(aa(complex,complex,aa(complex,fun(complex,complex),plus_plus(complex),X2),Y)) = aa(real,real,aa(real,fun(real,real),plus_plus(real),re(X2)),re(Y)) ) ).
% plus_complex.simps(1)
tff(fact_3974_minus__complex_Osimps_I1_J,axiom,
! [X2: complex,Y: complex] : ( re(aa(complex,complex,aa(complex,fun(complex,complex),minus_minus(complex),X2),Y)) = aa(real,real,aa(real,fun(real,real),minus_minus(real),re(X2)),re(Y)) ) ).
% minus_complex.simps(1)
tff(fact_3975_diff__nat__eq__if,axiom,
! [Z4: int,Z: int] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),Z4),zero_zero(int)))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(int,nat,nat2,Z)),aa(int,nat,nat2,Z4)) = aa(int,nat,nat2,Z) ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),Z4),zero_zero(int)))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(int,nat,nat2,Z)),aa(int,nat,nat2,Z4)) = if(nat,aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),Z),Z4)),zero_zero(int)),zero_zero(nat),aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),minus_minus(int),Z),Z4))) ) ) ) ).
% diff_nat_eq_if
tff(fact_3976_abs__Re__le__cmod,axiom,
! [X2: complex] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),re(X2))),real_V7770717601297561774m_norm(complex,X2))) ).
% abs_Re_le_cmod
tff(fact_3977_Re__csqrt,axiom,
! [Z: complex] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),re(csqrt(Z)))) ).
% Re_csqrt
tff(fact_3978_set__decode__def,axiom,
! [X2: nat] : ( nat_set_decode(X2) = aa(fun(nat,bool),set(nat),collect(nat),aTP_Lamp_ag(nat,fun(nat,bool),X2)) ) ).
% set_decode_def
tff(fact_3979_signed__take__bit__code,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: nat,A2: A] : ( aa(A,A,bit_ri4674362597316999326ke_bit(A,N),A2) = if(A,aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(A,A,bit_se2584673776208193580ke_bit(A,aa(nat,nat,suc,N)),A2)),N),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,bit_se2584673776208193580ke_bit(A,aa(nat,nat,suc,N)),A2)),bit_se4730199178511100633sh_bit(A,aa(nat,nat,suc,N),aa(A,A,uminus_uminus(A),one_one(A)))),aa(A,A,bit_se2584673776208193580ke_bit(A,aa(nat,nat,suc,N)),A2)) ) ) ).
% signed_take_bit_code
tff(fact_3980_pochhammer__code,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [N: nat,A2: A] :
( ( ( N = zero_zero(nat) )
=> ( comm_s3205402744901411588hammer(A,A2,N) = one_one(A) ) )
& ( ( N != zero_zero(nat) )
=> ( comm_s3205402744901411588hammer(A,A2,N) = set_fo6178422350223883121st_nat(A,aTP_Lamp_ah(A,fun(nat,fun(A,A)),A2),zero_zero(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat)),one_one(A)) ) ) ) ) ).
% pochhammer_code
tff(fact_3981_cmod__plus__Re__le__0__iff,axiom,
! [Z: complex] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),real_V7770717601297561774m_norm(complex,Z)),re(Z))),zero_zero(real)))
<=> ( re(Z) = aa(real,real,uminus_uminus(real),real_V7770717601297561774m_norm(complex,Z)) ) ) ).
% cmod_plus_Re_le_0_iff
tff(fact_3982_gbinomial__code,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [K: nat,A2: A] :
( ( ( K = zero_zero(nat) )
=> ( aa(nat,A,gbinomial(A,A2),K) = one_one(A) ) )
& ( ( K != zero_zero(nat) )
=> ( aa(nat,A,gbinomial(A,A2),K) = aa(A,A,aa(A,fun(A,A),divide_divide(A),set_fo6178422350223883121st_nat(A,aTP_Lamp_ai(A,fun(nat,fun(A,A)),A2),zero_zero(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),K),one_one(nat)),one_one(A))),semiring_char_0_fact(A,K)) ) ) ) ) ).
% gbinomial_code
tff(fact_3983_cos__n__Re__cis__pow__n,axiom,
! [N: nat,A2: real] : ( aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N)),A2)) = re(aa(nat,complex,power_power(complex,cis(A2)),N)) ) ).
% cos_n_Re_cis_pow_n
tff(fact_3984_VEBT__internal_Onaive__member_Osimps_I3_J,axiom,
! [Uy2: option(product_prod(nat,nat)),V: nat,TreeList: list(vEBT_VEBT),S2: vEBT_VEBT,X2: nat] :
( vEBT_V5719532721284313246member(vEBT_Node(Uy2,aa(nat,nat,suc,V),TreeList,S2),X2)
<=> ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(X2,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList)))
=> vEBT_V5719532721284313246member(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList),vEBT_VEBT_high(X2,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_VEBT_low(X2,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(X2,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList))) ) ) ).
% VEBT_internal.naive_member.simps(3)
tff(fact_3985_VEBT__internal_Omembermima_Osimps_I5_J,axiom,
! [V: nat,TreeList: list(vEBT_VEBT),Vd2: vEBT_VEBT,X2: nat] :
( vEBT_VEBT_membermima(vEBT_Node(none(product_prod(nat,nat)),aa(nat,nat,suc,V),TreeList,Vd2),X2)
<=> ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(X2,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList)))
=> vEBT_VEBT_membermima(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList),vEBT_VEBT_high(X2,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_VEBT_low(X2,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(X2,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList))) ) ) ).
% VEBT_internal.membermima.simps(5)
tff(fact_3986_VEBT__internal_Omembermima_Osimps_I4_J,axiom,
! [Mi: nat,Ma: nat,V: nat,TreeList: list(vEBT_VEBT),Vc2: vEBT_VEBT,X2: nat] :
( vEBT_VEBT_membermima(vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi),Ma)),aa(nat,nat,suc,V),TreeList,Vc2),X2)
<=> ( ( X2 = Mi )
| ( X2 = Ma )
| ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(X2,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList)))
=> vEBT_VEBT_membermima(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList),vEBT_VEBT_high(X2,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_VEBT_low(X2,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(X2,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList))) ) ) ) ).
% VEBT_internal.membermima.simps(4)
tff(fact_3987_VEBT__internal_Onaive__member_Oelims_I3_J,axiom,
! [X2: vEBT_VEBT,Xa: nat] :
( ~ vEBT_V5719532721284313246member(X2,Xa)
=> ( ! [A4: bool,B3: bool] :
( ( X2 = vEBT_Leaf(A4,B3) )
=> ( ( ( Xa = zero_zero(nat) )
=> pp(A4) )
& ( ( Xa != zero_zero(nat) )
=> ( ( ( Xa = one_one(nat) )
=> pp(B3) )
& ( Xa = one_one(nat) ) ) ) ) )
=> ( ! [Uu: option(product_prod(nat,nat)),Uv: list(vEBT_VEBT),Uw: vEBT_VEBT] : ( X2 != vEBT_Node(Uu,zero_zero(nat),Uv,Uw) )
=> ~ ! [Uy: option(product_prod(nat,nat)),V3: nat,TreeList3: list(vEBT_VEBT)] :
( ? [S3: vEBT_VEBT] : ( X2 = vEBT_Node(Uy,aa(nat,nat,suc,V3),TreeList3,S3) )
=> ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3)))
=> vEBT_V5719532721284313246member(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList3),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_VEBT_low(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3))) ) ) ) ) ) ).
% VEBT_internal.naive_member.elims(3)
tff(fact_3988_VEBT__internal_Onaive__member_Oelims_I2_J,axiom,
! [X2: vEBT_VEBT,Xa: nat] :
( vEBT_V5719532721284313246member(X2,Xa)
=> ( ! [A4: bool,B3: bool] :
( ( X2 = vEBT_Leaf(A4,B3) )
=> ~ ( ( ( Xa = zero_zero(nat) )
=> pp(A4) )
& ( ( Xa != zero_zero(nat) )
=> ( ( ( Xa = one_one(nat) )
=> pp(B3) )
& ( Xa = one_one(nat) ) ) ) ) )
=> ~ ! [Uy: option(product_prod(nat,nat)),V3: nat,TreeList3: list(vEBT_VEBT)] :
( ? [S3: vEBT_VEBT] : ( X2 = vEBT_Node(Uy,aa(nat,nat,suc,V3),TreeList3,S3) )
=> ~ ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3)))
=> vEBT_V5719532721284313246member(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList3),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_VEBT_low(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3))) ) ) ) ) ).
% VEBT_internal.naive_member.elims(2)
tff(fact_3989_VEBT__internal_Onaive__member_Oelims_I1_J,axiom,
! [X2: vEBT_VEBT,Xa: nat,Y: bool] :
( ( vEBT_V5719532721284313246member(X2,Xa)
<=> pp(Y) )
=> ( ! [A4: bool,B3: bool] :
( ( X2 = vEBT_Leaf(A4,B3) )
=> ( pp(Y)
<=> ~ ( ( ( Xa = zero_zero(nat) )
=> pp(A4) )
& ( ( Xa != zero_zero(nat) )
=> ( ( ( Xa = one_one(nat) )
=> pp(B3) )
& ( Xa = one_one(nat) ) ) ) ) ) )
=> ( ( ? [Uu: option(product_prod(nat,nat)),Uv: list(vEBT_VEBT),Uw: vEBT_VEBT] : ( X2 = vEBT_Node(Uu,zero_zero(nat),Uv,Uw) )
=> pp(Y) )
=> ~ ! [Uy: option(product_prod(nat,nat)),V3: nat,TreeList3: list(vEBT_VEBT)] :
( ? [S3: vEBT_VEBT] : ( X2 = vEBT_Node(Uy,aa(nat,nat,suc,V3),TreeList3,S3) )
=> ( pp(Y)
<=> ~ ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3)))
=> vEBT_V5719532721284313246member(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList3),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_VEBT_low(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3))) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.elims(1)
tff(fact_3990_VEBT__internal_Omembermima_Oelims_I2_J,axiom,
! [X2: vEBT_VEBT,Xa: nat] :
( vEBT_VEBT_membermima(X2,Xa)
=> ( ! [Mi3: nat,Ma3: nat] :
( ? [Va2: list(vEBT_VEBT),Vb: vEBT_VEBT] : ( X2 = vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi3),Ma3)),zero_zero(nat),Va2,Vb) )
=> ~ ( ( Xa = Mi3 )
| ( Xa = Ma3 ) ) )
=> ( ! [Mi3: nat,Ma3: nat,V3: nat,TreeList3: list(vEBT_VEBT)] :
( ? [Vc: vEBT_VEBT] : ( X2 = vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi3),Ma3)),aa(nat,nat,suc,V3),TreeList3,Vc) )
=> ~ ( ( Xa = Mi3 )
| ( Xa = Ma3 )
| ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3)))
=> vEBT_VEBT_membermima(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList3),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_VEBT_low(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3))) ) ) )
=> ~ ! [V3: nat,TreeList3: list(vEBT_VEBT)] :
( ? [Vd: vEBT_VEBT] : ( X2 = vEBT_Node(none(product_prod(nat,nat)),aa(nat,nat,suc,V3),TreeList3,Vd) )
=> ~ ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3)))
=> vEBT_VEBT_membermima(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList3),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_VEBT_low(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3))) ) ) ) ) ) ).
% VEBT_internal.membermima.elims(2)
tff(fact_3991_of__int__code__if,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [K: int] :
( ( ( K = zero_zero(int) )
=> ( aa(int,A,ring_1_of_int(A),K) = zero_zero(A) ) )
& ( ( K != zero_zero(int) )
=> ( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),zero_zero(int)))
=> ( aa(int,A,ring_1_of_int(A),K) = aa(A,A,uminus_uminus(A),aa(int,A,ring_1_of_int(A),aa(int,int,uminus_uminus(int),K))) ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),zero_zero(int)))
=> ( aa(int,A,ring_1_of_int(A),K) = if(A,aa(int,bool,aa(int,fun(int,bool),fequal(int),modulo_modulo(int,K,aa(num,int,numeral_numeral(int),bit0(one2)))),zero_zero(int)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(int,A,ring_1_of_int(A),aa(int,int,aa(int,fun(int,int),divide_divide(int),K),aa(num,int,numeral_numeral(int),bit0(one2))))),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(int,A,ring_1_of_int(A),aa(int,int,aa(int,fun(int,int),divide_divide(int),K),aa(num,int,numeral_numeral(int),bit0(one2)))))),one_one(A))) ) ) ) ) ) ) ).
% of_int_code_if
tff(fact_3992_foldr__zero,axiom,
! [Xs: list(nat),D2: nat] :
( ! [I3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I3),aa(list(nat),nat,size_size(list(nat)),Xs)))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(nat,nat,nth(nat,Xs),I3))) )
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(list(nat),nat,size_size(list(nat)),Xs)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,foldr(nat,nat,plus_plus(nat),Xs),D2)),D2))) ) ).
% foldr_zero
tff(fact_3993_monoseq__arctan__series,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),X2)),one_one(real)))
=> topological_monoseq(real,aTP_Lamp_aj(real,fun(nat,real),X2)) ) ).
% monoseq_arctan_series
tff(fact_3994_csqrt_Ocode,axiom,
! [Z: complex] : ( csqrt(Z) = complex2(aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),real_V7770717601297561774m_norm(complex,Z)),re(Z))),aa(num,real,numeral_numeral(real),bit0(one2)))),aa(real,real,aa(real,fun(real,real),times_times(real),if(real,aa(real,bool,aa(real,fun(real,bool),fequal(real),im(Z)),zero_zero(real)),one_one(real),aa(real,real,sgn_sgn(real),im(Z)))),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),real_V7770717601297561774m_norm(complex,Z)),re(Z))),aa(num,real,numeral_numeral(real),bit0(one2)))))) ) ).
% csqrt.code
tff(fact_3995_foldr__one,axiom,
! [D2: nat,Ys: list(nat)] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),D2),aa(nat,nat,foldr(nat,nat,plus_plus(nat),Ys),D2))) ).
% foldr_one
tff(fact_3996_predicate1I,axiom,
! [A: $tType,P: fun(A,bool),Q: fun(A,bool)] :
( ! [X3: A] :
( pp(aa(A,bool,P,X3))
=> pp(aa(A,bool,Q,X3)) )
=> pp(aa(fun(A,bool),bool,aa(fun(A,bool),fun(fun(A,bool),bool),ord_less_eq(fun(A,bool)),P),Q)) ) ).
% predicate1I
tff(fact_3997_foldr__mono,axiom,
! [Xs: list(nat),Ys: list(nat),C2: nat,D2: nat] :
( ( aa(list(nat),nat,size_size(list(nat)),Xs) = aa(list(nat),nat,size_size(list(nat)),Ys) )
=> ( ! [I3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I3),aa(list(nat),nat,size_size(list(nat)),Xs)))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,nth(nat,Xs),I3)),aa(nat,nat,nth(nat,Ys),I3))) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),C2),D2))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,foldr(nat,nat,plus_plus(nat),Xs),C2)),aa(list(nat),nat,size_size(list(nat)),Ys))),aa(nat,nat,foldr(nat,nat,plus_plus(nat),Ys),D2))) ) ) ) ).
% foldr_mono
tff(fact_3998_complex__Im__fact,axiom,
! [N: nat] : ( im(semiring_char_0_fact(complex,N)) = zero_zero(real) ) ).
% complex_Im_fact
tff(fact_3999_complex__Im__of__int,axiom,
! [Z: int] : ( im(aa(int,complex,ring_1_of_int(complex),Z)) = zero_zero(real) ) ).
% complex_Im_of_int
tff(fact_4000_Im__complex__of__real,axiom,
! [Z: real] : ( im(real_Vector_of_real(complex,Z)) = zero_zero(real) ) ).
% Im_complex_of_real
tff(fact_4001_Im__power__real,axiom,
! [X2: complex,N: nat] :
( ( im(X2) = zero_zero(real) )
=> ( im(aa(nat,complex,power_power(complex,X2),N)) = zero_zero(real) ) ) ).
% Im_power_real
tff(fact_4002_complex__Im__numeral,axiom,
! [V: num] : ( im(aa(num,complex,numeral_numeral(complex),V)) = zero_zero(real) ) ).
% complex_Im_numeral
tff(fact_4003_complex__Im__of__nat,axiom,
! [N: nat] : ( im(aa(nat,complex,semiring_1_of_nat(complex),N)) = zero_zero(real) ) ).
% complex_Im_of_nat
tff(fact_4004_Im__divide__of__real,axiom,
! [Z: complex,R: real] : ( im(aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),Z),real_Vector_of_real(complex,R))) = aa(real,real,aa(real,fun(real,real),divide_divide(real),im(Z)),R) ) ).
% Im_divide_of_real
tff(fact_4005_Im__sgn,axiom,
! [Z: complex] : ( im(aa(complex,complex,sgn_sgn(complex),Z)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),im(Z)),real_V7770717601297561774m_norm(complex,Z)) ) ).
% Im_sgn
tff(fact_4006_Re__power__real,axiom,
! [X2: complex,N: nat] :
( ( im(X2) = zero_zero(real) )
=> ( re(aa(nat,complex,power_power(complex,X2),N)) = aa(nat,real,power_power(real,re(X2)),N) ) ) ).
% Re_power_real
tff(fact_4007_Re__i__times,axiom,
! [Z: complex] : ( re(aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),imaginary_unit),Z)) = aa(real,real,uminus_uminus(real),im(Z)) ) ).
% Re_i_times
tff(fact_4008_Im__divide__numeral,axiom,
! [Z: complex,W: num] : ( im(aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),Z),aa(num,complex,numeral_numeral(complex),W))) = aa(real,real,aa(real,fun(real,real),divide_divide(real),im(Z)),aa(num,real,numeral_numeral(real),W)) ) ).
% Im_divide_numeral
tff(fact_4009_Im__divide__of__nat,axiom,
! [Z: complex,N: nat] : ( im(aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),Z),aa(nat,complex,semiring_1_of_nat(complex),N))) = aa(real,real,aa(real,fun(real,real),divide_divide(real),im(Z)),aa(nat,real,semiring_1_of_nat(real),N)) ) ).
% Im_divide_of_nat
tff(fact_4010_csqrt__of__real__nonneg,axiom,
! [X2: complex] :
( ( im(X2) = zero_zero(real) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),re(X2)))
=> ( csqrt(X2) = real_Vector_of_real(complex,aa(real,real,sqrt,re(X2))) ) ) ) ).
% csqrt_of_real_nonneg
tff(fact_4011_csqrt__minus,axiom,
! [X2: complex] :
( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),im(X2)),zero_zero(real)))
| ( ( im(X2) = zero_zero(real) )
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),re(X2))) ) )
=> ( csqrt(aa(complex,complex,uminus_uminus(complex),X2)) = aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),imaginary_unit),csqrt(X2)) ) ) ).
% csqrt_minus
tff(fact_4012_csqrt__of__real__nonpos,axiom,
! [X2: complex] :
( ( im(X2) = zero_zero(real) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),re(X2)),zero_zero(real)))
=> ( csqrt(X2) = aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),imaginary_unit),real_Vector_of_real(complex,aa(real,real,sqrt,aa(real,real,abs_abs(real),re(X2))))) ) ) ) ).
% csqrt_of_real_nonpos
tff(fact_4013_predicate1D,axiom,
! [A: $tType,P: fun(A,bool),Q: fun(A,bool),X2: A] :
( pp(aa(fun(A,bool),bool,aa(fun(A,bool),fun(fun(A,bool),bool),ord_less_eq(fun(A,bool)),P),Q))
=> ( pp(aa(A,bool,P,X2))
=> pp(aa(A,bool,Q,X2)) ) ) ).
% predicate1D
tff(fact_4014_rev__predicate1D,axiom,
! [A: $tType,P: fun(A,bool),X2: A,Q: fun(A,bool)] :
( pp(aa(A,bool,P,X2))
=> ( pp(aa(fun(A,bool),bool,aa(fun(A,bool),fun(fun(A,bool),bool),ord_less_eq(fun(A,bool)),P),Q))
=> pp(aa(A,bool,Q,X2)) ) ) ).
% rev_predicate1D
tff(fact_4015_foldr__cong,axiom,
! [B: $tType,A: $tType,A2: A,B2: A,L: list(B),K: list(B),F2: fun(B,fun(A,A)),G: fun(B,fun(A,A))] :
( ( A2 = B2 )
=> ( ( L = K )
=> ( ! [A4: A,X3: B] :
( pp(member(B,X3,aa(list(B),set(B),set2(B),L)))
=> ( aa(A,A,aa(B,fun(A,A),F2,X3),A4) = aa(A,A,aa(B,fun(A,A),G,X3),A4) ) )
=> ( aa(A,A,foldr(B,A,F2,L),A2) = aa(A,A,foldr(B,A,G,K),B2) ) ) ) ) ).
% foldr_cong
tff(fact_4016_imaginary__unit_Osimps_I2_J,axiom,
im(imaginary_unit) = one_one(real) ).
% imaginary_unit.simps(2)
tff(fact_4017_zero__complex_Osimps_I2_J,axiom,
im(zero_zero(complex)) = zero_zero(real) ).
% zero_complex.simps(2)
tff(fact_4018_one__complex_Osimps_I2_J,axiom,
im(one_one(complex)) = zero_zero(real) ).
% one_complex.simps(2)
tff(fact_4019_uminus__complex_Osimps_I2_J,axiom,
! [X2: complex] : ( im(aa(complex,complex,uminus_uminus(complex),X2)) = aa(real,real,uminus_uminus(real),im(X2)) ) ).
% uminus_complex.simps(2)
tff(fact_4020_plus__complex_Osimps_I2_J,axiom,
! [X2: complex,Y: complex] : ( im(aa(complex,complex,aa(complex,fun(complex,complex),plus_plus(complex),X2),Y)) = aa(real,real,aa(real,fun(real,real),plus_plus(real),im(X2)),im(Y)) ) ).
% plus_complex.simps(2)
tff(fact_4021_minus__complex_Osimps_I2_J,axiom,
! [X2: complex,Y: complex] : ( im(aa(complex,complex,aa(complex,fun(complex,complex),minus_minus(complex),X2),Y)) = aa(real,real,aa(real,fun(real,real),minus_minus(real),im(X2)),im(Y)) ) ).
% minus_complex.simps(2)
tff(fact_4022_complex__is__Int__iff,axiom,
! [Z: complex] :
( pp(member(complex,Z,ring_1_Ints(complex)))
<=> ( ( im(Z) = zero_zero(real) )
& ? [I4: int] : ( re(Z) = aa(int,real,ring_1_of_int(real),I4) ) ) ) ).
% complex_is_Int_iff
tff(fact_4023_abs__Im__le__cmod,axiom,
! [X2: complex] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),im(X2))),real_V7770717601297561774m_norm(complex,X2))) ).
% abs_Im_le_cmod
tff(fact_4024_times__complex_Osimps_I2_J,axiom,
! [X2: complex,Y: complex] : ( im(aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),X2),Y)) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,aa(real,fun(real,real),times_times(real),re(X2)),im(Y))),aa(real,real,aa(real,fun(real,real),times_times(real),im(X2)),re(Y))) ) ).
% times_complex.simps(2)
tff(fact_4025_cmod__eq__Re,axiom,
! [Z: complex] :
( ( im(Z) = zero_zero(real) )
=> ( real_V7770717601297561774m_norm(complex,Z) = aa(real,real,abs_abs(real),re(Z)) ) ) ).
% cmod_eq_Re
tff(fact_4026_cmod__eq__Im,axiom,
! [Z: complex] :
( ( re(Z) = zero_zero(real) )
=> ( real_V7770717601297561774m_norm(complex,Z) = aa(real,real,abs_abs(real),im(Z)) ) ) ).
% cmod_eq_Im
tff(fact_4027_Im__eq__0,axiom,
! [Z: complex] :
( ( aa(real,real,abs_abs(real),re(Z)) = real_V7770717601297561774m_norm(complex,Z) )
=> ( im(Z) = zero_zero(real) ) ) ).
% Im_eq_0
tff(fact_4028_cmod__Re__le__iff,axiom,
! [X2: complex,Y: complex] :
( ( im(X2) = im(Y) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(complex,X2)),real_V7770717601297561774m_norm(complex,Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),re(X2))),aa(real,real,abs_abs(real),re(Y)))) ) ) ).
% cmod_Re_le_iff
tff(fact_4029_cmod__Im__le__iff,axiom,
! [X2: complex,Y: complex] :
( ( re(X2) = re(Y) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(complex,X2)),real_V7770717601297561774m_norm(complex,Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),im(X2))),aa(real,real,abs_abs(real),im(Y)))) ) ) ).
% cmod_Im_le_iff
tff(fact_4030_times__complex_Osimps_I1_J,axiom,
! [X2: complex,Y: complex] : ( re(aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),X2),Y)) = aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(real,fun(real,real),times_times(real),re(X2)),re(Y))),aa(real,real,aa(real,fun(real,real),times_times(real),im(X2)),im(Y))) ) ).
% times_complex.simps(1)
tff(fact_4031_uminus__complex_Ocode,axiom,
! [X2: complex] : ( aa(complex,complex,uminus_uminus(complex),X2) = complex2(aa(real,real,uminus_uminus(real),re(X2)),aa(real,real,uminus_uminus(real),im(X2))) ) ).
% uminus_complex.code
tff(fact_4032_plus__complex_Ocode,axiom,
! [X2: complex,Y: complex] : ( aa(complex,complex,aa(complex,fun(complex,complex),plus_plus(complex),X2),Y) = complex2(aa(real,real,aa(real,fun(real,real),plus_plus(real),re(X2)),re(Y)),aa(real,real,aa(real,fun(real,real),plus_plus(real),im(X2)),im(Y))) ) ).
% plus_complex.code
tff(fact_4033_minus__complex_Ocode,axiom,
! [X2: complex,Y: complex] : ( aa(complex,complex,aa(complex,fun(complex,complex),minus_minus(complex),X2),Y) = complex2(aa(real,real,aa(real,fun(real,real),minus_minus(real),re(X2)),re(Y)),aa(real,real,aa(real,fun(real,real),minus_minus(real),im(X2)),im(Y))) ) ).
% minus_complex.code
tff(fact_4034_csqrt__principal,axiom,
! [Z: complex] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),re(csqrt(Z))))
| ( ( re(csqrt(Z)) = zero_zero(real) )
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),im(csqrt(Z)))) ) ) ).
% csqrt_principal
tff(fact_4035_cmod__le,axiom,
! [Z: complex] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(complex,Z)),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,abs_abs(real),re(Z))),aa(real,real,abs_abs(real),im(Z))))) ).
% cmod_le
tff(fact_4036_sin__n__Im__cis__pow__n,axiom,
! [N: nat,A2: real] : ( sin(real,aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N)),A2)) = im(aa(nat,complex,power_power(complex,cis(A2)),N)) ) ).
% sin_n_Im_cis_pow_n
tff(fact_4037_Re__exp,axiom,
! [Z: complex] : ( re(aa(complex,complex,exp(complex),Z)) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,exp(real),re(Z))),aa(real,real,cos(real),im(Z))) ) ).
% Re_exp
tff(fact_4038_Im__exp,axiom,
! [Z: complex] : ( im(aa(complex,complex,exp(complex),Z)) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,exp(real),re(Z))),sin(real,im(Z))) ) ).
% Im_exp
tff(fact_4039_complex__eq,axiom,
! [A2: complex] : ( A2 = aa(complex,complex,aa(complex,fun(complex,complex),plus_plus(complex),real_Vector_of_real(complex,re(A2))),aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),imaginary_unit),real_Vector_of_real(complex,im(A2)))) ) ).
% complex_eq
tff(fact_4040_fun__complex__eq,axiom,
! [A: $tType,F2: fun(A,complex),X: A] : ( aa(A,complex,F2,X) = aa(complex,complex,aa(complex,fun(complex,complex),plus_plus(complex),real_Vector_of_real(complex,re(aa(A,complex,F2,X)))),aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),imaginary_unit),real_Vector_of_real(complex,im(aa(A,complex,F2,X))))) ) ).
% fun_complex_eq
tff(fact_4041_monoseq__realpow,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),one_one(real)))
=> topological_monoseq(real,power_power(real,X2)) ) ) ).
% monoseq_realpow
tff(fact_4042_times__complex_Ocode,axiom,
! [X2: complex,Y: complex] : ( aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),X2),Y) = complex2(aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(real,fun(real,real),times_times(real),re(X2)),re(Y))),aa(real,real,aa(real,fun(real,real),times_times(real),im(X2)),im(Y))),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,aa(real,fun(real,real),times_times(real),re(X2)),im(Y))),aa(real,real,aa(real,fun(real,real),times_times(real),im(X2)),re(Y)))) ) ).
% times_complex.code
tff(fact_4043_cmod__power2,axiom,
! [Z: complex] : ( aa(nat,real,power_power(real,real_V7770717601297561774m_norm(complex,Z)),aa(num,nat,numeral_numeral(nat),bit0(one2))) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,re(Z)),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,im(Z)),aa(num,nat,numeral_numeral(nat),bit0(one2)))) ) ).
% cmod_power2
tff(fact_4044_Im__power2,axiom,
! [X2: complex] : ( im(aa(nat,complex,power_power(complex,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),re(X2))),im(X2)) ) ).
% Im_power2
tff(fact_4045_Re__power2,axiom,
! [X2: complex] : ( re(aa(nat,complex,power_power(complex,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))) = aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(nat,real,power_power(real,re(X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,im(X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))) ) ).
% Re_power2
tff(fact_4046_complex__eq__0,axiom,
! [Z: complex] :
( ( Z = zero_zero(complex) )
<=> ( aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,re(Z)),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,im(Z)),aa(num,nat,numeral_numeral(nat),bit0(one2)))) = zero_zero(real) ) ) ).
% complex_eq_0
tff(fact_4047_norm__complex__def,axiom,
! [Z: complex] : ( real_V7770717601297561774m_norm(complex,Z) = aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,re(Z)),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,im(Z)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ).
% norm_complex_def
tff(fact_4048_inverse__complex_Osimps_I1_J,axiom,
! [X2: complex] : ( re(aa(complex,complex,inverse_inverse(complex),X2)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),re(X2)),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,re(X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,im(X2)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ).
% inverse_complex.simps(1)
tff(fact_4049_complex__neq__0,axiom,
! [Z: complex] :
( ( Z != zero_zero(complex) )
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,re(Z)),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,im(Z)),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ).
% complex_neq_0
tff(fact_4050_Re__divide,axiom,
! [X2: complex,Y: complex] : ( re(aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),X2),Y)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,aa(real,fun(real,real),times_times(real),re(X2)),re(Y))),aa(real,real,aa(real,fun(real,real),times_times(real),im(X2)),im(Y)))),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,re(Y)),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,im(Y)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ).
% Re_divide
tff(fact_4051_csqrt__square,axiom,
! [B2: complex] :
( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),re(B2)))
| ( ( re(B2) = zero_zero(real) )
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),im(B2))) ) )
=> ( csqrt(aa(nat,complex,power_power(complex,B2),aa(num,nat,numeral_numeral(nat),bit0(one2)))) = B2 ) ) ).
% csqrt_square
tff(fact_4052_csqrt__unique,axiom,
! [W: complex,Z: complex] :
( ( aa(nat,complex,power_power(complex,W),aa(num,nat,numeral_numeral(nat),bit0(one2))) = Z )
=> ( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),re(W)))
| ( ( re(W) = zero_zero(real) )
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),im(W))) ) )
=> ( csqrt(Z) = W ) ) ) ).
% csqrt_unique
tff(fact_4053_inverse__complex_Osimps_I2_J,axiom,
! [X2: complex] : ( im(aa(complex,complex,inverse_inverse(complex),X2)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,uminus_uminus(real),im(X2))),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,re(X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,im(X2)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ).
% inverse_complex.simps(2)
tff(fact_4054_Im__divide,axiom,
! [X2: complex,Y: complex] : ( im(aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),X2),Y)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(real,fun(real,real),times_times(real),im(X2)),re(Y))),aa(real,real,aa(real,fun(real,real),times_times(real),re(X2)),im(Y)))),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,re(Y)),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,im(Y)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ).
% Im_divide
tff(fact_4055_complex__abs__le__norm,axiom,
! [Z: complex] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,abs_abs(real),re(Z))),aa(real,real,abs_abs(real),im(Z)))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,sqrt,aa(num,real,numeral_numeral(real),bit0(one2)))),real_V7770717601297561774m_norm(complex,Z)))) ).
% complex_abs_le_norm
tff(fact_4056_complex__unit__circle,axiom,
! [Z: complex] :
( ( Z != zero_zero(complex) )
=> ( aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,aa(real,real,aa(real,fun(real,real),divide_divide(real),re(Z)),real_V7770717601297561774m_norm(complex,Z))),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,aa(real,real,aa(real,fun(real,real),divide_divide(real),im(Z)),real_V7770717601297561774m_norm(complex,Z))),aa(num,nat,numeral_numeral(nat),bit0(one2)))) = one_one(real) ) ) ).
% complex_unit_circle
tff(fact_4057_inverse__complex_Ocode,axiom,
! [X2: complex] : ( aa(complex,complex,inverse_inverse(complex),X2) = complex2(aa(real,real,aa(real,fun(real,real),divide_divide(real),re(X2)),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,re(X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,im(X2)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,uminus_uminus(real),im(X2))),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,re(X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,im(X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ).
% inverse_complex.code
tff(fact_4058_Complex__divide,axiom,
! [X2: complex,Y: complex] : ( aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),X2),Y) = complex2(aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,aa(real,fun(real,real),times_times(real),re(X2)),re(Y))),aa(real,real,aa(real,fun(real,real),times_times(real),im(X2)),im(Y)))),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,re(Y)),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,im(Y)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(real,fun(real,real),times_times(real),im(X2)),re(Y))),aa(real,real,aa(real,fun(real,real),times_times(real),re(X2)),im(Y)))),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,re(Y)),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,im(Y)),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ).
% Complex_divide
tff(fact_4059_csqrt_Osimps_I2_J,axiom,
! [Z: complex] : ( im(csqrt(Z)) = aa(real,real,aa(real,fun(real,real),times_times(real),if(real,aa(real,bool,aa(real,fun(real,bool),fequal(real),im(Z)),zero_zero(real)),one_one(real),aa(real,real,sgn_sgn(real),im(Z)))),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),real_V7770717601297561774m_norm(complex,Z)),re(Z))),aa(num,real,numeral_numeral(real),bit0(one2))))) ) ).
% csqrt.simps(2)
tff(fact_4060_horner__sum__foldr,axiom,
! [B: $tType,A: $tType] :
( comm_semiring_0(A)
=> ! [F2: fun(B,A),A2: A,Xs: list(B)] : ( groups4207007520872428315er_sum(B,A,F2,A2,Xs) = aa(A,A,foldr(B,A,aa(A,fun(B,fun(A,A)),aTP_Lamp_ak(fun(B,A),fun(A,fun(B,fun(A,A))),F2),A2),Xs),zero_zero(A)) ) ) ).
% horner_sum_foldr
tff(fact_4061_ln__series,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),aa(num,real,numeral_numeral(real),bit0(one2))))
=> ( aa(real,real,ln_ln(real),X2) = suminf(real,aTP_Lamp_al(real,fun(nat,real),X2)) ) ) ) ).
% ln_series
tff(fact_4062_length__mul__elem,axiom,
! [A: $tType,Xs: list(list(A)),N: nat] :
( ! [X3: list(A)] :
( pp(member(list(A),X3,aa(list(list(A)),set(list(A)),set2(list(A)),Xs)))
=> ( aa(list(A),nat,size_size(list(A)),X3) = N ) )
=> ( aa(list(A),nat,size_size(list(A)),concat(A,Xs)) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(list(list(A)),nat,size_size(list(list(A))),Xs)),N) ) ) ).
% length_mul_elem
tff(fact_4063_list__every__elemnt__bound__sum__bound,axiom,
! [A: $tType,Xs: list(A),F2: fun(A,nat),Bound: nat,I: nat] :
( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),Xs)))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(A,nat,F2,X3)),Bound)) )
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,foldr(nat,nat,plus_plus(nat),aa(list(A),list(nat),map(A,nat,F2),Xs)),I)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(list(A),nat,size_size(list(A)),Xs)),Bound)),I))) ) ).
% list_every_elemnt_bound_sum_bound
tff(fact_4064_foldr0,axiom,
! [Xs: list(real),C2: real,D2: real] : ( aa(real,real,foldr(real,real,plus_plus(real),Xs),aa(real,real,aa(real,fun(real,real),plus_plus(real),C2),D2)) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,foldr(real,real,plus_plus(real),Xs),D2)),C2) ) ).
% foldr0
tff(fact_4065_map__ident,axiom,
! [A: $tType,X: list(A)] : ( aa(list(A),list(A),map(A,A,aTP_Lamp_am(A,A)),X) = X ) ).
% map_ident
tff(fact_4066_map__eq__conv,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),Xs: list(B),G: fun(B,A)] :
( ( aa(list(B),list(A),map(B,A,F2),Xs) = aa(list(B),list(A),map(B,A,G),Xs) )
<=> ! [X4: B] :
( pp(member(B,X4,aa(list(B),set(B),set2(B),Xs)))
=> ( aa(B,A,F2,X4) = aa(B,A,G,X4) ) ) ) ).
% map_eq_conv
tff(fact_4067_length__map,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),Xs: list(B)] : ( aa(list(A),nat,size_size(list(A)),aa(list(B),list(A),map(B,A,F2),Xs)) = aa(list(B),nat,size_size(list(B)),Xs) ) ).
% length_map
tff(fact_4068_nth__map,axiom,
! [B: $tType,A: $tType,N: nat,Xs: list(A),F2: fun(A,B)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( aa(nat,B,nth(B,aa(list(A),list(B),map(A,B,F2),Xs)),N) = aa(A,B,F2,aa(nat,A,nth(A,Xs),N)) ) ) ).
% nth_map
tff(fact_4069_powser__zero,axiom,
! [A: $tType] :
( real_V2822296259951069270ebra_1(A)
=> ! [F2: fun(nat,A)] : ( suminf(A,aTP_Lamp_an(fun(nat,A),fun(nat,A),F2)) = aa(nat,A,F2,zero_zero(nat)) ) ) ).
% powser_zero
tff(fact_4070_map__eq__imp__length__eq,axiom,
! [A: $tType,B: $tType,C: $tType,F2: fun(B,A),Xs: list(B),G: fun(C,A),Ys: list(C)] :
( ( aa(list(B),list(A),map(B,A,F2),Xs) = aa(list(C),list(A),map(C,A,G),Ys) )
=> ( aa(list(B),nat,size_size(list(B)),Xs) = aa(list(C),nat,size_size(list(C)),Ys) ) ) ).
% map_eq_imp_length_eq
tff(fact_4071_ex__map__conv,axiom,
! [B: $tType,A: $tType,Ys: list(B),F2: fun(A,B)] :
( ? [Xs3: list(A)] : ( Ys = aa(list(A),list(B),map(A,B,F2),Xs3) )
<=> ! [X4: B] :
( pp(member(B,X4,aa(list(B),set(B),set2(B),Ys)))
=> ? [Xa3: A] : ( X4 = aa(A,B,F2,Xa3) ) ) ) ).
% ex_map_conv
tff(fact_4072_map__cong,axiom,
! [B: $tType,A: $tType,Xs: list(A),Ys: list(A),F2: fun(A,B),G: fun(A,B)] :
( ( Xs = Ys )
=> ( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),Ys)))
=> ( aa(A,B,F2,X3) = aa(A,B,G,X3) ) )
=> ( aa(list(A),list(B),map(A,B,F2),Xs) = aa(list(A),list(B),map(A,B,G),Ys) ) ) ) ).
% map_cong
tff(fact_4073_map__idI,axiom,
! [A: $tType,Xs: list(A),F2: fun(A,A)] :
( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),Xs)))
=> ( aa(A,A,F2,X3) = X3 ) )
=> ( aa(list(A),list(A),map(A,A,F2),Xs) = Xs ) ) ).
% map_idI
tff(fact_4074_map__ext,axiom,
! [B: $tType,A: $tType,Xs: list(A),F2: fun(A,B),G: fun(A,B)] :
( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),Xs)))
=> ( aa(A,B,F2,X3) = aa(A,B,G,X3) ) )
=> ( aa(list(A),list(B),map(A,B,F2),Xs) = aa(list(A),list(B),map(A,B,G),Xs) ) ) ).
% map_ext
tff(fact_4075_list_Oinj__map__strong,axiom,
! [B: $tType,A: $tType,X2: list(A),Xa: list(A),F2: fun(A,B),Fa: fun(A,B)] :
( ! [Z3: A,Za: A] :
( pp(member(A,Z3,aa(list(A),set(A),set2(A),X2)))
=> ( pp(member(A,Za,aa(list(A),set(A),set2(A),Xa)))
=> ( ( aa(A,B,F2,Z3) = aa(A,B,Fa,Za) )
=> ( Z3 = Za ) ) ) )
=> ( ( aa(list(A),list(B),map(A,B,F2),X2) = aa(list(A),list(B),map(A,B,Fa),Xa) )
=> ( X2 = Xa ) ) ) ).
% list.inj_map_strong
tff(fact_4076_list_Omap__cong0,axiom,
! [B: $tType,A: $tType,X2: list(A),F2: fun(A,B),G: fun(A,B)] :
( ! [Z3: A] :
( pp(member(A,Z3,aa(list(A),set(A),set2(A),X2)))
=> ( aa(A,B,F2,Z3) = aa(A,B,G,Z3) ) )
=> ( aa(list(A),list(B),map(A,B,F2),X2) = aa(list(A),list(B),map(A,B,G),X2) ) ) ).
% list.map_cong0
tff(fact_4077_list_Omap__cong,axiom,
! [B: $tType,A: $tType,X2: list(A),Ya: list(A),F2: fun(A,B),G: fun(A,B)] :
( ( X2 = Ya )
=> ( ! [Z3: A] :
( pp(member(A,Z3,aa(list(A),set(A),set2(A),Ya)))
=> ( aa(A,B,F2,Z3) = aa(A,B,G,Z3) ) )
=> ( aa(list(A),list(B),map(A,B,F2),X2) = aa(list(A),list(B),map(A,B,G),Ya) ) ) ) ).
% list.map_cong
tff(fact_4078_map__concat,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),Xs: list(list(B))] : ( aa(list(B),list(A),map(B,A,F2),concat(B,Xs)) = concat(A,aa(list(list(B)),list(list(A)),map(list(B),list(A),map(B,A,F2)),Xs)) ) ).
% map_concat
tff(fact_4079_list_Omap__ident,axiom,
! [A: $tType,T2: list(A)] : ( aa(list(A),list(A),map(A,A,aTP_Lamp_am(A,A)),T2) = T2 ) ).
% list.map_ident
tff(fact_4080_pi__series,axiom,
aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(bit0(one2)))) = suminf(real,aTP_Lamp_ao(nat,real)) ).
% pi_series
tff(fact_4081_arctan__series,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),X2)),one_one(real)))
=> ( aa(real,real,arctan,X2) = suminf(real,aTP_Lamp_ap(real,fun(nat,real),X2)) ) ) ).
% arctan_series
tff(fact_4082__092_060open_062foldr_A_I_L_J_A_Imap_Acnt_AtreeList_J_A0_A_092_060le_062_A2_A_094_An_A_K_A2_A_K_A_I2_A_094_An_A_N_Ac_J_092_060close_062,axiom,
pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,foldr(real,real,plus_plus(real),aa(list(vEBT_VEBT),list(real),map(vEBT_VEBT,real,vEBT_VEBT_cnt),treeList)),zero_zero(real))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,power_power(real,aa(num,real,numeral_numeral(real),bit0(one2))),na)),aa(num,real,numeral_numeral(real),bit0(one2)))),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(nat,real,power_power(real,aa(num,real,numeral_numeral(real),bit0(one2))),na)),c)))) ).
% \<open>foldr (+) (map cnt treeList) 0 \<le> 2 ^ n * 2 * (2 ^ n - c)\<close>
tff(fact_4083_suminf__geometric,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [C2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,C2)),one_one(real)))
=> ( suminf(A,power_power(A,C2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),C2)) ) ) ) ).
% suminf_geometric
tff(fact_4084_suminf__zero,axiom,
! [A: $tType] :
( ( comm_monoid_add(A)
& topological_t2_space(A) )
=> ( suminf(A,aTP_Lamp_aq(nat,A)) = zero_zero(A) ) ) ).
% suminf_zero
tff(fact_4085_VEBT__internal_Ospace_Oelims,axiom,
! [X2: vEBT_VEBT,Y: nat] :
( ( aa(vEBT_VEBT,nat,vEBT_VEBT_space,X2) = Y )
=> ( ( ? [A4: bool,B3: bool] : ( X2 = vEBT_Leaf(A4,B3) )
=> ( Y != aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,one2)) ) )
=> ~ ! [Info2: option(product_prod(nat,nat)),Deg2: nat,TreeList3: list(vEBT_VEBT),Summary3: vEBT_VEBT] :
( ( X2 = vEBT_Node(Info2,Deg2,TreeList3,Summary3) )
=> ( Y != aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,bit0(one2)))),aa(vEBT_VEBT,nat,vEBT_VEBT_space,Summary3))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3))),aa(nat,nat,foldr(nat,nat,plus_plus(nat),aa(list(vEBT_VEBT),list(nat),map(vEBT_VEBT,nat,vEBT_VEBT_space),TreeList3)),zero_zero(nat))) ) ) ) ) ).
% VEBT_internal.space.elims
tff(fact_4086_f__g__map__foldr__bound,axiom,
! [A: $tType,Xs: list(A),F2: fun(A,real),C2: real,G: fun(A,real),D2: real] :
( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),Xs)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(A,real,F2,X3)),aa(real,real,aa(real,fun(real,real),times_times(real),C2),aa(A,real,G,X3)))) )
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,foldr(real,real,plus_plus(real),aa(list(A),list(real),map(A,real,F2),Xs)),D2)),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,aa(real,fun(real,real),times_times(real),C2),aa(real,real,foldr(real,real,plus_plus(real),aa(list(A),list(real),map(A,real,G),Xs)),zero_zero(real)))),D2))) ) ).
% f_g_map_foldr_bound
tff(fact_4087_real__nat__list,axiom,
! [A: $tType,F2: fun(A,nat),Xs: list(A),C2: nat] : ( aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,foldr(nat,nat,plus_plus(nat),aa(list(A),list(nat),map(A,nat,F2),Xs)),C2)) = aa(real,real,foldr(real,real,plus_plus(real),aa(list(A),list(real),map(A,real,aTP_Lamp_ar(fun(A,nat),fun(A,real),F2)),Xs)),aa(nat,real,semiring_1_of_nat(real),C2)) ) ).
% real_nat_list
tff(fact_4088_list__every__elemnt__bound__sum__bound__real,axiom,
! [A: $tType,Xs: list(A),F2: fun(A,real),Bound: real,I: real] :
( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),Xs)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(A,real,F2,X3)),Bound)) )
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,foldr(real,real,plus_plus(real),aa(list(A),list(real),map(A,real,F2),Xs)),I)),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),aa(list(A),nat,size_size(list(A)),Xs))),Bound)),I))) ) ).
% list_every_elemnt_bound_sum_bound_real
tff(fact_4089_space__space_H,axiom,
! [T2: vEBT_VEBT] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(vEBT_VEBT,nat,vEBT_VEBT_space,T2)),aa(vEBT_VEBT,nat,vEBT_VEBT_space2,T2))) ).
% space_space'
tff(fact_4090_product__concat__map,axiom,
! [B: $tType,A: $tType,Xs: list(A),Ys: list(B)] : ( product(A,B,Xs,Ys) = concat(product_prod(A,B),aa(list(A),list(list(product_prod(A,B))),map(A,list(product_prod(A,B)),aTP_Lamp_as(list(B),fun(A,list(product_prod(A,B))),Ys)),Xs)) ) ).
% product_concat_map
tff(fact_4091_VEBT__internal_Ocnt_Osimps_I2_J,axiom,
! [Info: option(product_prod(nat,nat)),Deg: nat,TreeList: list(vEBT_VEBT),Summary: vEBT_VEBT] : ( aa(vEBT_VEBT,real,vEBT_VEBT_cnt,vEBT_Node(Info,Deg,TreeList,Summary)) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),aa(vEBT_VEBT,real,vEBT_VEBT_cnt,Summary))),aa(real,real,foldr(real,real,plus_plus(real),aa(list(vEBT_VEBT),list(real),map(vEBT_VEBT,real,vEBT_VEBT_cnt),TreeList)),zero_zero(real))) ) ).
% VEBT_internal.cnt.simps(2)
tff(fact_4092_VEBT__internal_Ocnt_Oelims,axiom,
! [X2: vEBT_VEBT,Y: real] :
( ( aa(vEBT_VEBT,real,vEBT_VEBT_cnt,X2) = Y )
=> ( ( ? [A4: bool,B3: bool] : ( X2 = vEBT_Leaf(A4,B3) )
=> ( Y != one_one(real) ) )
=> ~ ! [Info2: option(product_prod(nat,nat)),Deg2: nat,TreeList3: list(vEBT_VEBT),Summary3: vEBT_VEBT] :
( ( X2 = vEBT_Node(Info2,Deg2,TreeList3,Summary3) )
=> ( Y != aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),aa(vEBT_VEBT,real,vEBT_VEBT_cnt,Summary3))),aa(real,real,foldr(real,real,plus_plus(real),aa(list(vEBT_VEBT),list(real),map(vEBT_VEBT,real,vEBT_VEBT_cnt),TreeList3)),zero_zero(real))) ) ) ) ) ).
% VEBT_internal.cnt.elims
tff(fact_4093_VEBT__internal_Ospace_Osimps_I1_J,axiom,
! [A2: bool,B2: bool] : ( aa(vEBT_VEBT,nat,vEBT_VEBT_space,vEBT_Leaf(A2,B2)) = aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,one2)) ) ).
% VEBT_internal.space.simps(1)
tff(fact_4094_VEBT__internal_Ospace_Osimps_I2_J,axiom,
! [Info: option(product_prod(nat,nat)),Deg: nat,TreeList: list(vEBT_VEBT),Summary: vEBT_VEBT] : ( aa(vEBT_VEBT,nat,vEBT_VEBT_space,vEBT_Node(Info,Deg,TreeList,Summary)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,bit0(one2)))),aa(vEBT_VEBT,nat,vEBT_VEBT_space,Summary))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList))),aa(nat,nat,foldr(nat,nat,plus_plus(nat),aa(list(vEBT_VEBT),list(nat),map(vEBT_VEBT,nat,vEBT_VEBT_space),TreeList)),zero_zero(nat))) ) ).
% VEBT_internal.space.simps(2)
tff(fact_4095_VEBT__internal_Ospace_H_Oelims,axiom,
! [X2: vEBT_VEBT,Y: nat] :
( ( aa(vEBT_VEBT,nat,vEBT_VEBT_space2,X2) = Y )
=> ( ( ? [A4: bool,B3: bool] : ( X2 = vEBT_Leaf(A4,B3) )
=> ( Y != aa(num,nat,numeral_numeral(nat),bit0(bit0(one2))) ) )
=> ~ ! [Info2: option(product_prod(nat,nat)),Deg2: nat,TreeList3: list(vEBT_VEBT),Summary3: vEBT_VEBT] :
( ( X2 = vEBT_Node(Info2,Deg2,TreeList3,Summary3) )
=> ( Y != aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(num,nat,numeral_numeral(nat),bit0(aa(num,num,bit1,one2)))),aa(vEBT_VEBT,nat,vEBT_VEBT_space2,Summary3))),aa(nat,nat,foldr(nat,nat,plus_plus(nat),aa(list(vEBT_VEBT),list(nat),map(vEBT_VEBT,nat,vEBT_VEBT_space2),TreeList3)),zero_zero(nat))) ) ) ) ) ).
% VEBT_internal.space'.elims
tff(fact_4096_VEBT__internal_Ospace_H_Osimps_I2_J,axiom,
! [Info: option(product_prod(nat,nat)),Deg: nat,TreeList: list(vEBT_VEBT),Summary: vEBT_VEBT] : ( aa(vEBT_VEBT,nat,vEBT_VEBT_space2,vEBT_Node(Info,Deg,TreeList,Summary)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(num,nat,numeral_numeral(nat),bit0(aa(num,num,bit1,one2)))),aa(vEBT_VEBT,nat,vEBT_VEBT_space2,Summary))),aa(nat,nat,foldr(nat,nat,plus_plus(nat),aa(list(vEBT_VEBT),list(nat),map(vEBT_VEBT,nat,vEBT_VEBT_space2),TreeList)),zero_zero(nat))) ) ).
% VEBT_internal.space'.simps(2)
tff(fact_4097_summable__arctan__series,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),X2)),one_one(real)))
=> summable(real,aTP_Lamp_ap(real,fun(nat,real),X2)) ) ).
% summable_arctan_series
tff(fact_4098_vebt__buildup_Oelims,axiom,
! [X2: nat,Y: vEBT_VEBT] :
( ( vEBT_vebt_buildup(X2) = Y )
=> ( ( ( X2 = zero_zero(nat) )
=> ( Y != vEBT_Leaf(fFalse,fFalse) ) )
=> ( ( ( X2 = aa(nat,nat,suc,zero_zero(nat)) )
=> ( Y != vEBT_Leaf(fFalse,fFalse) ) )
=> ~ ! [Va: nat] :
( ( X2 = aa(nat,nat,suc,aa(nat,nat,suc,Va)) )
=> ~ ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,suc,aa(nat,nat,suc,Va))))
=> ( Y = vEBT_Node(none(product_prod(nat,nat)),aa(nat,nat,suc,aa(nat,nat,suc,Va)),replicate(vEBT_VEBT,aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,aa(nat,nat,suc,Va))),aa(num,nat,numeral_numeral(nat),bit0(one2)))),vEBT_vebt_buildup(aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,aa(nat,nat,suc,Va))),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_vebt_buildup(aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,aa(nat,nat,suc,Va))),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,suc,aa(nat,nat,suc,Va))))
=> ( Y = vEBT_Node(none(product_prod(nat,nat)),aa(nat,nat,suc,aa(nat,nat,suc,Va)),replicate(vEBT_VEBT,aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,aa(nat,nat,suc,Va))),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_vebt_buildup(aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,aa(nat,nat,suc,Va))),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_vebt_buildup(aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,aa(nat,nat,suc,Va))),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ) ) ) ) ) ) ).
% vebt_buildup.elims
tff(fact_4099_intind,axiom,
! [A: $tType,I: nat,N: nat,P: fun(A,bool),X2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),N))
=> ( pp(aa(A,bool,P,X2))
=> pp(aa(A,bool,P,aa(nat,A,nth(A,replicate(A,N,X2)),I))) ) ) ).
% intind
tff(fact_4100_replicate__eq__replicate,axiom,
! [A: $tType,M: nat,X2: A,N: nat,Y: A] :
( ( replicate(A,M,X2) = replicate(A,N,Y) )
<=> ( ( M = N )
& ( ( M != zero_zero(nat) )
=> ( X2 = Y ) ) ) ) ).
% replicate_eq_replicate
tff(fact_4101_length__replicate,axiom,
! [A: $tType,N: nat,X2: A] : ( aa(list(A),nat,size_size(list(A)),replicate(A,N,X2)) = N ) ).
% length_replicate
tff(fact_4102_map__replicate,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),N: nat,X2: B] : ( aa(list(B),list(A),map(B,A,F2),replicate(B,N,X2)) = replicate(A,N,aa(B,A,F2,X2)) ) ).
% map_replicate
tff(fact_4103_summable__zero,axiom,
! [A: $tType] :
( ( comm_monoid_add(A)
& topolo4958980785337419405_space(A) )
=> summable(A,aTP_Lamp_at(nat,A)) ) ).
% summable_zero
tff(fact_4104_summable__single,axiom,
! [A: $tType] :
( ( comm_monoid_add(A)
& topolo4958980785337419405_space(A) )
=> ! [I: nat,F2: fun(nat,A)] : summable(A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_au(nat,fun(fun(nat,A),fun(nat,A)),I),F2)) ) ).
% summable_single
tff(fact_4105_summable__iff__shift,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A),K: nat] :
( summable(A,aa(nat,fun(nat,A),aTP_Lamp_av(fun(nat,A),fun(nat,fun(nat,A)),F2),K))
<=> summable(A,F2) ) ) ).
% summable_iff_shift
tff(fact_4106_in__set__replicate,axiom,
! [A: $tType,X2: A,N: nat,Y: A] :
( pp(member(A,X2,aa(list(A),set(A),set2(A),replicate(A,N,Y))))
<=> ( ( X2 = Y )
& ( N != zero_zero(nat) ) ) ) ).
% in_set_replicate
tff(fact_4107_Bex__set__replicate,axiom,
! [A: $tType,N: nat,A2: A,P: fun(A,bool)] :
( ? [X4: A] :
( pp(member(A,X4,aa(list(A),set(A),set2(A),replicate(A,N,A2))))
& pp(aa(A,bool,P,X4)) )
<=> ( pp(aa(A,bool,P,A2))
& ( N != zero_zero(nat) ) ) ) ).
% Bex_set_replicate
tff(fact_4108_Ball__set__replicate,axiom,
! [A: $tType,N: nat,A2: A,P: fun(A,bool)] :
( ! [X4: A] :
( pp(member(A,X4,aa(list(A),set(A),set2(A),replicate(A,N,A2))))
=> pp(aa(A,bool,P,X4)) )
<=> ( pp(aa(A,bool,P,A2))
| ( N = zero_zero(nat) ) ) ) ).
% Ball_set_replicate
tff(fact_4109_nth__replicate,axiom,
! [A: $tType,I: nat,N: nat,X2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),N))
=> ( aa(nat,A,nth(A,replicate(A,N,X2)),I) = X2 ) ) ).
% nth_replicate
tff(fact_4110_summable__cmult__iff,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [C2: A,F2: fun(nat,A)] :
( summable(A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_aw(A,fun(fun(nat,A),fun(nat,A)),C2),F2))
<=> ( ( C2 = zero_zero(A) )
| summable(A,F2) ) ) ) ).
% summable_cmult_iff
tff(fact_4111_summable__divide__iff,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(nat,A),C2: A] :
( summable(A,aa(A,fun(nat,A),aTP_Lamp_ax(fun(nat,A),fun(A,fun(nat,A)),F2),C2))
<=> ( ( C2 = zero_zero(A) )
| summable(A,F2) ) ) ) ).
% summable_divide_iff
tff(fact_4112_summable__geometric__iff,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [C2: A] :
( summable(A,power_power(A,C2))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,C2)),one_one(real))) ) ) ).
% summable_geometric_iff
tff(fact_4113_summable__minus__iff,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A)] :
( summable(A,aTP_Lamp_ay(fun(nat,A),fun(nat,A),F2))
<=> summable(A,F2) ) ) ).
% summable_minus_iff
tff(fact_4114_summable__minus,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A)] :
( summable(A,F2)
=> summable(A,aTP_Lamp_ay(fun(nat,A),fun(nat,A),F2)) ) ) ).
% summable_minus
tff(fact_4115_summable__divide,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(nat,A),C2: A] :
( summable(A,F2)
=> summable(A,aa(A,fun(nat,A),aTP_Lamp_ax(fun(nat,A),fun(A,fun(nat,A)),F2),C2)) ) ) ).
% summable_divide
tff(fact_4116_summable__mult2,axiom,
! [A: $tType] :
( real_V4412858255891104859lgebra(A)
=> ! [F2: fun(nat,A),C2: A] :
( summable(A,F2)
=> summable(A,aa(A,fun(nat,A),aTP_Lamp_az(fun(nat,A),fun(A,fun(nat,A)),F2),C2)) ) ) ).
% summable_mult2
tff(fact_4117_summable__mult,axiom,
! [A: $tType] :
( real_V4412858255891104859lgebra(A)
=> ! [F2: fun(nat,A),C2: A] :
( summable(A,F2)
=> summable(A,aa(A,fun(nat,A),aTP_Lamp_ba(fun(nat,A),fun(A,fun(nat,A)),F2),C2)) ) ) ).
% summable_mult
tff(fact_4118_summable__const__iff,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [C2: A] :
( summable(A,aTP_Lamp_bb(A,fun(nat,A),C2))
<=> ( C2 = zero_zero(A) ) ) ) ).
% summable_const_iff
tff(fact_4119_summable__ignore__initial__segment,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A),K: nat] :
( summable(A,F2)
=> summable(A,aa(nat,fun(nat,A),aTP_Lamp_av(fun(nat,A),fun(nat,fun(nat,A)),F2),K)) ) ) ).
% summable_ignore_initial_segment
tff(fact_4120_summable__add,axiom,
! [A: $tType] :
( ( topolo5987344860129210374id_add(A)
& topological_t2_space(A) )
=> ! [F2: fun(nat,A),G: fun(nat,A)] :
( summable(A,F2)
=> ( summable(A,G)
=> summable(A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_bc(fun(nat,A),fun(fun(nat,A),fun(nat,A)),F2),G)) ) ) ) ).
% summable_add
tff(fact_4121_summable__Suc__iff,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A)] :
( summable(A,aTP_Lamp_bd(fun(nat,A),fun(nat,A),F2))
<=> summable(A,F2) ) ) ).
% summable_Suc_iff
tff(fact_4122_summable__comparison__test,axiom,
! [A: $tType] :
( real_Vector_banach(A)
=> ! [F2: fun(nat,A),G: fun(nat,real)] :
( ? [N8: nat] :
! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N8),N3))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(nat,A,F2,N3))),aa(nat,real,G,N3))) )
=> ( summable(real,G)
=> summable(A,F2) ) ) ) ).
% summable_comparison_test
tff(fact_4123_summable__comparison__test_H,axiom,
! [A: $tType] :
( real_Vector_banach(A)
=> ! [G: fun(nat,real),N2: nat,F2: fun(nat,A)] :
( summable(real,G)
=> ( ! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N2),N3))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(nat,A,F2,N3))),aa(nat,real,G,N3))) )
=> summable(A,F2) ) ) ) ).
% summable_comparison_test'
tff(fact_4124_summable__diff,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A),G: fun(nat,A)] :
( summable(A,F2)
=> ( summable(A,G)
=> summable(A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_be(fun(nat,A),fun(fun(nat,A),fun(nat,A)),F2),G)) ) ) ) ).
% summable_diff
tff(fact_4125_powser__insidea,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [F2: fun(nat,A),X2: A,Z: A] :
( summable(A,aa(A,fun(nat,A),aTP_Lamp_bf(fun(nat,A),fun(A,fun(nat,A)),F2),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,Z)),real_V7770717601297561774m_norm(A,X2)))
=> summable(real,aa(A,fun(nat,real),aTP_Lamp_bg(fun(nat,A),fun(A,fun(nat,real)),F2),Z)) ) ) ) ).
% powser_insidea
tff(fact_4126_suminf__le,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add(A)
& topolo1944317154257567458pology(A) )
=> ! [F2: fun(nat,A),G: fun(nat,A)] :
( ! [N3: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,F2,N3)),aa(nat,A,G,N3)))
=> ( summable(A,F2)
=> ( summable(A,G)
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),suminf(A,F2)),suminf(A,G))) ) ) ) ) ).
% suminf_le
tff(fact_4127_replicate__eqI,axiom,
! [A: $tType,Xs: list(A),N: nat,X2: A] :
( ( aa(list(A),nat,size_size(list(A)),Xs) = N )
=> ( ! [Y3: A] :
( pp(member(A,Y3,aa(list(A),set(A),set2(A),Xs)))
=> ( Y3 = X2 ) )
=> ( Xs = replicate(A,N,X2) ) ) ) ).
% replicate_eqI
tff(fact_4128_replicate__length__same,axiom,
! [A: $tType,Xs: list(A),X2: A] :
( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),Xs)))
=> ( X3 = X2 ) )
=> ( replicate(A,aa(list(A),nat,size_size(list(A)),Xs),X2) = Xs ) ) ).
% replicate_length_same
tff(fact_4129_summable__mult__D,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [C2: A,F2: fun(nat,A)] :
( summable(A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_aw(A,fun(fun(nat,A),fun(nat,A)),C2),F2))
=> ( ( C2 != zero_zero(A) )
=> summable(A,F2) ) ) ) ).
% summable_mult_D
tff(fact_4130_summable__zero__power,axiom,
! [A: $tType] :
( ( comm_ring_1(A)
& topolo4958980785337419405_space(A) )
=> summable(A,power_power(A,zero_zero(A))) ) ).
% summable_zero_power
tff(fact_4131_suminf__mult,axiom,
! [A: $tType] :
( real_V4412858255891104859lgebra(A)
=> ! [F2: fun(nat,A),C2: A] :
( summable(A,F2)
=> ( suminf(A,aa(A,fun(nat,A),aTP_Lamp_ba(fun(nat,A),fun(A,fun(nat,A)),F2),C2)) = aa(A,A,aa(A,fun(A,A),times_times(A),C2),suminf(A,F2)) ) ) ) ).
% suminf_mult
tff(fact_4132_suminf__mult2,axiom,
! [A: $tType] :
( real_V4412858255891104859lgebra(A)
=> ! [F2: fun(nat,A),C2: A] :
( summable(A,F2)
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),suminf(A,F2)),C2) = suminf(A,aa(A,fun(nat,A),aTP_Lamp_az(fun(nat,A),fun(A,fun(nat,A)),F2),C2)) ) ) ) ).
% suminf_mult2
tff(fact_4133_suminf__add,axiom,
! [A: $tType] :
( ( topolo5987344860129210374id_add(A)
& topological_t2_space(A) )
=> ! [F2: fun(nat,A),G: fun(nat,A)] :
( summable(A,F2)
=> ( summable(A,G)
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),suminf(A,F2)),suminf(A,G)) = suminf(A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_bc(fun(nat,A),fun(fun(nat,A),fun(nat,A)),F2),G)) ) ) ) ) ).
% suminf_add
tff(fact_4134_suminf__diff,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A),G: fun(nat,A)] :
( summable(A,F2)
=> ( summable(A,G)
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),suminf(A,F2)),suminf(A,G)) = suminf(A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_be(fun(nat,A),fun(fun(nat,A),fun(nat,A)),F2),G)) ) ) ) ) ).
% suminf_diff
tff(fact_4135_suminf__divide,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(nat,A),C2: A] :
( summable(A,F2)
=> ( suminf(A,aa(A,fun(nat,A),aTP_Lamp_ax(fun(nat,A),fun(A,fun(nat,A)),F2),C2)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),suminf(A,F2)),C2) ) ) ) ).
% suminf_divide
tff(fact_4136_suminf__minus,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A)] :
( summable(A,F2)
=> ( suminf(A,aTP_Lamp_ay(fun(nat,A),fun(nat,A),F2)) = aa(A,A,uminus_uminus(A),suminf(A,F2)) ) ) ) ).
% suminf_minus
tff(fact_4137_map__replicate__const,axiom,
! [B: $tType,A: $tType,K: A,Lst: list(B)] : ( aa(list(B),list(A),map(B,A,aTP_Lamp_bh(A,fun(B,A),K)),Lst) = replicate(A,aa(list(B),nat,size_size(list(B)),Lst),K) ) ).
% map_replicate_const
tff(fact_4138_suminf__eq__zero__iff,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add(A)
& topolo1944317154257567458pology(A) )
=> ! [F2: fun(nat,A)] :
( summable(A,F2)
=> ( ! [N3: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(nat,A,F2,N3)))
=> ( ( suminf(A,F2) = zero_zero(A) )
<=> ! [N5: nat] : ( aa(nat,A,F2,N5) = zero_zero(A) ) ) ) ) ) ).
% suminf_eq_zero_iff
tff(fact_4139_suminf__nonneg,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add(A)
& topolo1944317154257567458pology(A) )
=> ! [F2: fun(nat,A)] :
( summable(A,F2)
=> ( ! [N3: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(nat,A,F2,N3)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),suminf(A,F2))) ) ) ) ).
% suminf_nonneg
tff(fact_4140_suminf__pos,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add(A)
& topolo1944317154257567458pology(A) )
=> ! [F2: fun(nat,A)] :
( summable(A,F2)
=> ( ! [N3: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(nat,A,F2,N3)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),suminf(A,F2))) ) ) ) ).
% suminf_pos
tff(fact_4141_summable__0__powser,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [F2: fun(nat,A)] : summable(A,aTP_Lamp_bi(fun(nat,A),fun(nat,A),F2)) ) ).
% summable_0_powser
tff(fact_4142_summable__zero__power_H,axiom,
! [A: $tType] :
( ( ring_1(A)
& topolo4958980785337419405_space(A) )
=> ! [F2: fun(nat,A)] : summable(A,aTP_Lamp_bj(fun(nat,A),fun(nat,A),F2)) ) ).
% summable_zero_power'
tff(fact_4143_summable__powser__split__head,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [F2: fun(nat,A),Z: A] :
( summable(A,aa(A,fun(nat,A),aTP_Lamp_bk(fun(nat,A),fun(A,fun(nat,A)),F2),Z))
<=> summable(A,aa(A,fun(nat,A),aTP_Lamp_bf(fun(nat,A),fun(A,fun(nat,A)),F2),Z)) ) ) ).
% summable_powser_split_head
tff(fact_4144_powser__split__head_I3_J,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V8999393235501362500lgebra(A) )
=> ! [F2: fun(nat,A),Z: A] :
( summable(A,aa(A,fun(nat,A),aTP_Lamp_bl(fun(nat,A),fun(A,fun(nat,A)),F2),Z))
=> summable(A,aa(A,fun(nat,A),aTP_Lamp_bm(fun(nat,A),fun(A,fun(nat,A)),F2),Z)) ) ) ).
% powser_split_head(3)
tff(fact_4145_summable__powser__ignore__initial__segment,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [F2: fun(nat,A),M: nat,Z: A] :
( summable(A,aa(A,fun(nat,A),aa(nat,fun(A,fun(nat,A)),aTP_Lamp_bn(fun(nat,A),fun(nat,fun(A,fun(nat,A))),F2),M),Z))
<=> summable(A,aa(A,fun(nat,A),aTP_Lamp_bf(fun(nat,A),fun(A,fun(nat,A)),F2),Z)) ) ) ).
% summable_powser_ignore_initial_segment
tff(fact_4146_summable__norm__comparison__test,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A),G: fun(nat,real)] :
( ? [N8: nat] :
! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N8),N3))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(nat,A,F2,N3))),aa(nat,real,G,N3))) )
=> ( summable(real,G)
=> summable(real,aTP_Lamp_bo(fun(nat,A),fun(nat,real),F2)) ) ) ) ).
% summable_norm_comparison_test
tff(fact_4147_summable__rabs__comparison__test,axiom,
! [F2: fun(nat,real),G: fun(nat,real)] :
( ? [N8: nat] :
! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N8),N3))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),aa(nat,real,F2,N3))),aa(nat,real,G,N3))) )
=> ( summable(real,G)
=> summable(real,aTP_Lamp_bp(fun(nat,real),fun(nat,real),F2)) ) ) ).
% summable_rabs_comparison_test
tff(fact_4148_summable__rabs,axiom,
! [F2: fun(nat,real)] :
( summable(real,aTP_Lamp_bp(fun(nat,real),fun(nat,real),F2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),suminf(real,F2))),suminf(real,aTP_Lamp_bp(fun(nat,real),fun(nat,real),F2)))) ) ).
% summable_rabs
tff(fact_4149_suminf__pos2,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add(A)
& topolo1944317154257567458pology(A) )
=> ! [F2: fun(nat,A),I: nat] :
( summable(A,F2)
=> ( ! [N3: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(nat,A,F2,N3)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(nat,A,F2,I)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),suminf(A,F2))) ) ) ) ) ).
% suminf_pos2
tff(fact_4150_suminf__pos__iff,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add(A)
& topolo1944317154257567458pology(A) )
=> ! [F2: fun(nat,A)] :
( summable(A,F2)
=> ( ! [N3: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(nat,A,F2,N3)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),suminf(A,F2)))
<=> ? [I4: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(nat,A,F2,I4))) ) ) ) ) ).
% suminf_pos_iff
tff(fact_4151_powser__inside,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V8999393235501362500lgebra(A) )
=> ! [F2: fun(nat,A),X2: A,Z: A] :
( summable(A,aa(A,fun(nat,A),aTP_Lamp_bl(fun(nat,A),fun(A,fun(nat,A)),F2),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,Z)),real_V7770717601297561774m_norm(A,X2)))
=> summable(A,aa(A,fun(nat,A),aTP_Lamp_bl(fun(nat,A),fun(A,fun(nat,A)),F2),Z)) ) ) ) ).
% powser_inside
tff(fact_4152_complete__algebra__summable__geometric,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,X2)),one_one(real)))
=> summable(A,power_power(A,X2)) ) ) ).
% complete_algebra_summable_geometric
tff(fact_4153_summable__geometric,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [C2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,C2)),one_one(real)))
=> summable(A,power_power(A,C2)) ) ) ).
% summable_geometric
tff(fact_4154_suminf__split__head,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A)] :
( summable(A,F2)
=> ( suminf(A,aTP_Lamp_bd(fun(nat,A),fun(nat,A),F2)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),suminf(A,F2)),aa(nat,A,F2,zero_zero(nat))) ) ) ) ).
% suminf_split_head
tff(fact_4155_summable__exp,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : summable(A,aTP_Lamp_bq(A,fun(nat,A),X2)) ) ).
% summable_exp
tff(fact_4156_summable__norm,axiom,
! [A: $tType] :
( real_Vector_banach(A)
=> ! [F2: fun(nat,A)] :
( summable(real,aTP_Lamp_br(fun(nat,A),fun(nat,real),F2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,suminf(A,F2))),suminf(real,aTP_Lamp_br(fun(nat,A),fun(nat,real),F2)))) ) ) ).
% summable_norm
tff(fact_4157_powser__split__head_I1_J,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V8999393235501362500lgebra(A) )
=> ! [F2: fun(nat,A),Z: A] :
( summable(A,aa(A,fun(nat,A),aTP_Lamp_bl(fun(nat,A),fun(A,fun(nat,A)),F2),Z))
=> ( suminf(A,aa(A,fun(nat,A),aTP_Lamp_bl(fun(nat,A),fun(A,fun(nat,A)),F2),Z)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,F2,zero_zero(nat))),aa(A,A,aa(A,fun(A,A),times_times(A),suminf(A,aa(A,fun(nat,A),aTP_Lamp_bm(fun(nat,A),fun(A,fun(nat,A)),F2),Z))),Z)) ) ) ) ).
% powser_split_head(1)
tff(fact_4158_powser__split__head_I2_J,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V8999393235501362500lgebra(A) )
=> ! [F2: fun(nat,A),Z: A] :
( summable(A,aa(A,fun(nat,A),aTP_Lamp_bl(fun(nat,A),fun(A,fun(nat,A)),F2),Z))
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),suminf(A,aa(A,fun(nat,A),aTP_Lamp_bm(fun(nat,A),fun(A,fun(nat,A)),F2),Z))),Z) = aa(A,A,aa(A,fun(A,A),minus_minus(A),suminf(A,aa(A,fun(nat,A),aTP_Lamp_bl(fun(nat,A),fun(A,fun(nat,A)),F2),Z))),aa(nat,A,F2,zero_zero(nat))) ) ) ) ).
% powser_split_head(2)
tff(fact_4159_suminf__exist__split,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [R: real,F2: fun(nat,A)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),R))
=> ( summable(A,F2)
=> ? [N9: nat] :
! [N7: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N9),N7))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,suminf(A,aa(nat,fun(nat,A),aTP_Lamp_av(fun(nat,A),fun(nat,fun(nat,A)),F2),N7)))),R)) ) ) ) ) ).
% suminf_exist_split
tff(fact_4160_summable__power__series,axiom,
! [F2: fun(nat,real),Z: real] :
( ! [I3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(nat,real,F2,I3)),one_one(real)))
=> ( ! [I3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(nat,real,F2,I3)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Z))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Z),one_one(real)))
=> summable(real,aa(real,fun(nat,real),aTP_Lamp_bs(fun(nat,real),fun(real,fun(nat,real)),F2),Z)) ) ) ) ) ).
% summable_power_series
tff(fact_4161_Abel__lemma,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [R: real,R0: real,A2: fun(nat,A),M7: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),R))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),R),R0))
=> ( ! [N3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),times_times(real),real_V7770717601297561774m_norm(A,aa(nat,A,A2,N3))),aa(nat,real,power_power(real,R0),N3))),M7))
=> summable(real,aa(fun(nat,A),fun(nat,real),aTP_Lamp_bt(real,fun(fun(nat,A),fun(nat,real)),R),A2)) ) ) ) ) ).
% Abel_lemma
tff(fact_4162_summable__ratio__test,axiom,
! [A: $tType] :
( real_Vector_banach(A)
=> ! [C2: real,N2: nat,F2: fun(nat,A)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),C2),one_one(real)))
=> ( ! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N2),N3))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(nat,A,F2,aa(nat,nat,suc,N3)))),aa(real,real,aa(real,fun(real,real),times_times(real),C2),real_V7770717601297561774m_norm(A,aa(nat,A,F2,N3))))) )
=> summable(A,F2) ) ) ) ).
% summable_ratio_test
tff(fact_4163_VEBT__internal_Ospace_H_Osimps_I1_J,axiom,
! [A2: bool,B2: bool] : ( aa(vEBT_VEBT,nat,vEBT_VEBT_space2,vEBT_Leaf(A2,B2)) = aa(num,nat,numeral_numeral(nat),bit0(bit0(one2))) ) ).
% VEBT_internal.space'.simps(1)
tff(fact_4164_vebt__buildup_Osimps_I3_J,axiom,
! [Va3: nat] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,suc,aa(nat,nat,suc,Va3))))
=> ( vEBT_vebt_buildup(aa(nat,nat,suc,aa(nat,nat,suc,Va3))) = vEBT_Node(none(product_prod(nat,nat)),aa(nat,nat,suc,aa(nat,nat,suc,Va3)),replicate(vEBT_VEBT,aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,aa(nat,nat,suc,Va3))),aa(num,nat,numeral_numeral(nat),bit0(one2)))),vEBT_vebt_buildup(aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,aa(nat,nat,suc,Va3))),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_vebt_buildup(aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,aa(nat,nat,suc,Va3))),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,suc,aa(nat,nat,suc,Va3))))
=> ( vEBT_vebt_buildup(aa(nat,nat,suc,aa(nat,nat,suc,Va3))) = vEBT_Node(none(product_prod(nat,nat)),aa(nat,nat,suc,aa(nat,nat,suc,Va3)),replicate(vEBT_VEBT,aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,aa(nat,nat,suc,Va3))),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_vebt_buildup(aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,aa(nat,nat,suc,Va3))),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_vebt_buildup(aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,aa(nat,nat,suc,Va3))),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ) ) ).
% vebt_buildup.simps(3)
tff(fact_4165_product__code,axiom,
! [B: $tType,A: $tType,Xs: list(A),Ys: list(B)] : ( product_product(A,B,aa(list(A),set(A),set2(A),Xs),aa(list(B),set(B),set2(B),Ys)) = aa(list(product_prod(A,B)),set(product_prod(A,B)),set2(product_prod(A,B)),concat(product_prod(A,B),aa(list(A),list(list(product_prod(A,B))),map(A,list(product_prod(A,B)),aTP_Lamp_as(list(B),fun(A,list(product_prod(A,B))),Ys)),Xs))) ) ).
% product_code
tff(fact_4166_Im__Reals__divide,axiom,
! [R: complex,Z: complex] :
( pp(member(complex,R,real_Vector_Reals(complex)))
=> ( im(aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),R),Z)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,uminus_uminus(real),re(R))),im(Z))),aa(nat,real,power_power(real,real_V7770717601297561774m_norm(complex,Z)),aa(num,nat,numeral_numeral(nat),bit0(one2)))) ) ) ).
% Im_Reals_divide
tff(fact_4167_sin__paired,axiom,
! [X2: real] : sums(real,aTP_Lamp_bu(real,fun(nat,real),X2),sin(real,X2)) ).
% sin_paired
tff(fact_4168_VEBT__internal_Omembermima_Opelims_I3_J,axiom,
! [X2: vEBT_VEBT,Xa: nat] :
( ~ vEBT_VEBT_membermima(X2,Xa)
=> ( pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V4351362008482014158ma_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),X2),Xa)))
=> ( ! [Uu: bool,Uv: bool] :
( ( X2 = vEBT_Leaf(Uu,Uv) )
=> ~ pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V4351362008482014158ma_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Leaf(Uu,Uv)),Xa))) )
=> ( ! [Ux: list(vEBT_VEBT),Uy: vEBT_VEBT] :
( ( X2 = vEBT_Node(none(product_prod(nat,nat)),zero_zero(nat),Ux,Uy) )
=> ~ pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V4351362008482014158ma_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Node(none(product_prod(nat,nat)),zero_zero(nat),Ux,Uy)),Xa))) )
=> ( ! [Mi3: nat,Ma3: nat,Va2: list(vEBT_VEBT),Vb: vEBT_VEBT] :
( ( X2 = vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi3),Ma3)),zero_zero(nat),Va2,Vb) )
=> ( pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V4351362008482014158ma_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi3),Ma3)),zero_zero(nat),Va2,Vb)),Xa)))
=> ( ( Xa = Mi3 )
| ( Xa = Ma3 ) ) ) )
=> ( ! [Mi3: nat,Ma3: nat,V3: nat,TreeList3: list(vEBT_VEBT),Vc: vEBT_VEBT] :
( ( X2 = vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi3),Ma3)),aa(nat,nat,suc,V3),TreeList3,Vc) )
=> ( pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V4351362008482014158ma_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi3),Ma3)),aa(nat,nat,suc,V3),TreeList3,Vc)),Xa)))
=> ( ( Xa = Mi3 )
| ( Xa = Ma3 )
| ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3)))
=> vEBT_VEBT_membermima(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList3),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_VEBT_low(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3))) ) ) ) )
=> ~ ! [V3: nat,TreeList3: list(vEBT_VEBT),Vd: vEBT_VEBT] :
( ( X2 = vEBT_Node(none(product_prod(nat,nat)),aa(nat,nat,suc,V3),TreeList3,Vd) )
=> ( pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V4351362008482014158ma_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Node(none(product_prod(nat,nat)),aa(nat,nat,suc,V3),TreeList3,Vd)),Xa)))
=> ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3)))
=> vEBT_VEBT_membermima(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList3),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_VEBT_low(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3))) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.pelims(3)
tff(fact_4169_Reals__minus__iff,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [A2: A] :
( pp(member(A,aa(A,A,uminus_uminus(A),A2),real_Vector_Reals(A)))
<=> pp(member(A,A2,real_Vector_Reals(A))) ) ) ).
% Reals_minus_iff
tff(fact_4170_sums__zero,axiom,
! [A: $tType] :
( ( comm_monoid_add(A)
& topolo4958980785337419405_space(A) )
=> sums(A,aTP_Lamp_at(nat,A),zero_zero(A)) ) ).
% sums_zero
tff(fact_4171_Re__divide__Reals,axiom,
! [R: complex,Z: complex] :
( pp(member(complex,R,real_Vector_Reals(complex)))
=> ( re(aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),Z),R)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),re(Z)),re(R)) ) ) ).
% Re_divide_Reals
tff(fact_4172_imaginary__eq__real__iff,axiom,
! [Y: complex,X2: complex] :
( pp(member(complex,Y,real_Vector_Reals(complex)))
=> ( pp(member(complex,X2,real_Vector_Reals(complex)))
=> ( ( aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),imaginary_unit),Y) = X2 )
<=> ( ( X2 = zero_zero(complex) )
& ( Y = zero_zero(complex) ) ) ) ) ) ).
% imaginary_eq_real_iff
tff(fact_4173_real__eq__imaginary__iff,axiom,
! [Y: complex,X2: complex] :
( pp(member(complex,Y,real_Vector_Reals(complex)))
=> ( pp(member(complex,X2,real_Vector_Reals(complex)))
=> ( ( X2 = aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),imaginary_unit),Y) )
<=> ( ( X2 = zero_zero(complex) )
& ( Y = zero_zero(complex) ) ) ) ) ) ).
% real_eq_imaginary_iff
tff(fact_4174_powser__sums__zero__iff,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [A2: fun(nat,A),X2: A] :
( sums(A,aTP_Lamp_bi(fun(nat,A),fun(nat,A),A2),X2)
<=> ( aa(nat,A,A2,zero_zero(nat)) = X2 ) ) ) ).
% powser_sums_zero_iff
tff(fact_4175_Im__divide__Reals,axiom,
! [R: complex,Z: complex] :
( pp(member(complex,R,real_Vector_Reals(complex)))
=> ( im(aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),Z),R)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),im(Z)),re(R)) ) ) ).
% Im_divide_Reals
tff(fact_4176_Reals__power,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [A2: A,N: nat] :
( pp(member(A,A2,real_Vector_Reals(A)))
=> pp(member(A,aa(nat,A,power_power(A,A2),N),real_Vector_Reals(A))) ) ) ).
% Reals_power
tff(fact_4177_Reals__divide,axiom,
! [A: $tType] :
( real_V7773925162809079976_field(A)
=> ! [A2: A,B2: A] :
( pp(member(A,A2,real_Vector_Reals(A)))
=> ( pp(member(A,B2,real_Vector_Reals(A)))
=> pp(member(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2),real_Vector_Reals(A))) ) ) ) ).
% Reals_divide
tff(fact_4178_Reals__1,axiom,
! [B: $tType] :
( real_V2191834092415804123ebra_1(B)
=> pp(member(B,one_one(B),real_Vector_Reals(B))) ) ).
% Reals_1
tff(fact_4179_Reals__add,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [A2: A,B2: A] :
( pp(member(A,A2,real_Vector_Reals(A)))
=> ( pp(member(A,B2,real_Vector_Reals(A)))
=> pp(member(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2),real_Vector_Reals(A))) ) ) ) ).
% Reals_add
tff(fact_4180_Reals__mult,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [A2: A,B2: A] :
( pp(member(A,A2,real_Vector_Reals(A)))
=> ( pp(member(A,B2,real_Vector_Reals(A)))
=> pp(member(A,aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2),real_Vector_Reals(A))) ) ) ) ).
% Reals_mult
tff(fact_4181_Reals__numeral,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [W: num] : pp(member(A,aa(num,A,numeral_numeral(A),W),real_Vector_Reals(A))) ) ).
% Reals_numeral
tff(fact_4182_Reals__0,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> pp(member(A,zero_zero(A),real_Vector_Reals(A))) ) ).
% Reals_0
tff(fact_4183_Reals__minus,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [A2: A] :
( pp(member(A,A2,real_Vector_Reals(A)))
=> pp(member(A,aa(A,A,uminus_uminus(A),A2),real_Vector_Reals(A))) ) ) ).
% Reals_minus
tff(fact_4184_Reals__diff,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [A2: A,B2: A] :
( pp(member(A,A2,real_Vector_Reals(A)))
=> ( pp(member(A,B2,real_Vector_Reals(A)))
=> pp(member(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2),real_Vector_Reals(A))) ) ) ) ).
% Reals_diff
tff(fact_4185_Reals__of__nat,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [N: nat] : pp(member(A,aa(nat,A,semiring_1_of_nat(A),N),real_Vector_Reals(A))) ) ).
% Reals_of_nat
tff(fact_4186_sums__diff,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A),A2: A,G: fun(nat,A),B2: A] :
( sums(A,F2,A2)
=> ( sums(A,G,B2)
=> sums(A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_be(fun(nat,A),fun(fun(nat,A),fun(nat,A)),F2),G),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)) ) ) ) ).
% sums_diff
tff(fact_4187_sums__le,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add(A)
& topolo1944317154257567458pology(A) )
=> ! [F2: fun(nat,A),G: fun(nat,A),S2: A,T2: A] :
( ! [N3: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,F2,N3)),aa(nat,A,G,N3)))
=> ( sums(A,F2,S2)
=> ( sums(A,G,T2)
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),S2),T2)) ) ) ) ) ).
% sums_le
tff(fact_4188_sums__0,axiom,
! [A: $tType] :
( ( comm_monoid_add(A)
& topolo4958980785337419405_space(A) )
=> ! [F2: fun(nat,A)] :
( ! [N3: nat] : ( aa(nat,A,F2,N3) = zero_zero(A) )
=> sums(A,F2,zero_zero(A)) ) ) ).
% sums_0
tff(fact_4189_sums__add,axiom,
! [A: $tType] :
( ( topolo5987344860129210374id_add(A)
& topological_t2_space(A) )
=> ! [F2: fun(nat,A),A2: A,G: fun(nat,A),B2: A] :
( sums(A,F2,A2)
=> ( sums(A,G,B2)
=> sums(A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_bc(fun(nat,A),fun(fun(nat,A),fun(nat,A)),F2),G),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)) ) ) ) ).
% sums_add
tff(fact_4190_sums__single,axiom,
! [A: $tType] :
( ( comm_monoid_add(A)
& topolo4958980785337419405_space(A) )
=> ! [I: nat,F2: fun(nat,A)] : sums(A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_au(nat,fun(fun(nat,A),fun(nat,A)),I),F2),aa(nat,A,F2,I)) ) ).
% sums_single
tff(fact_4191_sums__mult,axiom,
! [A: $tType] :
( real_V4412858255891104859lgebra(A)
=> ! [F2: fun(nat,A),A2: A,C2: A] :
( sums(A,F2,A2)
=> sums(A,aa(A,fun(nat,A),aTP_Lamp_ba(fun(nat,A),fun(A,fun(nat,A)),F2),C2),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)) ) ) ).
% sums_mult
tff(fact_4192_sums__mult2,axiom,
! [A: $tType] :
( real_V4412858255891104859lgebra(A)
=> ! [F2: fun(nat,A),A2: A,C2: A] :
( sums(A,F2,A2)
=> sums(A,aa(A,fun(nat,A),aTP_Lamp_az(fun(nat,A),fun(A,fun(nat,A)),F2),C2),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)) ) ) ).
% sums_mult2
tff(fact_4193_sums__divide,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(nat,A),A2: A,C2: A] :
( sums(A,F2,A2)
=> sums(A,aa(A,fun(nat,A),aTP_Lamp_ax(fun(nat,A),fun(A,fun(nat,A)),F2),C2),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),C2)) ) ) ).
% sums_divide
tff(fact_4194_sums__minus,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A),A2: A] :
( sums(A,F2,A2)
=> sums(A,aTP_Lamp_ay(fun(nat,A),fun(nat,A),F2),aa(A,A,uminus_uminus(A),A2)) ) ) ).
% sums_minus
tff(fact_4195_sums__mult2__iff,axiom,
! [A: $tType] :
( ( field(A)
& real_V4412858255891104859lgebra(A) )
=> ! [C2: A,F2: fun(nat,A),D2: A] :
( ( C2 != zero_zero(A) )
=> ( sums(A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_bv(A,fun(fun(nat,A),fun(nat,A)),C2),F2),aa(A,A,aa(A,fun(A,A),times_times(A),D2),C2))
<=> sums(A,F2,D2) ) ) ) ).
% sums_mult2_iff
tff(fact_4196_sums__mult__iff,axiom,
! [A: $tType] :
( ( field(A)
& real_V4412858255891104859lgebra(A) )
=> ! [C2: A,F2: fun(nat,A),D2: A] :
( ( C2 != zero_zero(A) )
=> ( sums(A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_bw(A,fun(fun(nat,A),fun(nat,A)),C2),F2),aa(A,A,aa(A,fun(A,A),times_times(A),C2),D2))
<=> sums(A,F2,D2) ) ) ) ).
% sums_mult_iff
tff(fact_4197_complex__is__Real__iff,axiom,
! [Z: complex] :
( pp(member(complex,Z,real_Vector_Reals(complex)))
<=> ( im(Z) = zero_zero(real) ) ) ).
% complex_is_Real_iff
tff(fact_4198_nonzero__Reals__divide,axiom,
! [A: $tType] :
( real_V7773925162809079976_field(A)
=> ! [A2: A,B2: A] :
( pp(member(A,A2,real_Vector_Reals(A)))
=> ( pp(member(A,B2,real_Vector_Reals(A)))
=> ( ( B2 != zero_zero(A) )
=> pp(member(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2),real_Vector_Reals(A))) ) ) ) ) ).
% nonzero_Reals_divide
tff(fact_4199_Complex__in__Reals,axiom,
! [X2: real] : pp(member(complex,complex2(X2,zero_zero(real)),real_Vector_Reals(complex))) ).
% Complex_in_Reals
tff(fact_4200_nonzero__Reals__inverse,axiom,
! [A: $tType] :
( real_V5047593784448816457lgebra(A)
=> ! [A2: A] :
( pp(member(A,A2,real_Vector_Reals(A)))
=> ( ( A2 != zero_zero(A) )
=> pp(member(A,aa(A,A,inverse_inverse(A),A2),real_Vector_Reals(A))) ) ) ) ).
% nonzero_Reals_inverse
tff(fact_4201_sums__mult__D,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [C2: A,F2: fun(nat,A),A2: A] :
( sums(A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_aw(A,fun(fun(nat,A),fun(nat,A)),C2),F2),A2)
=> ( ( C2 != zero_zero(A) )
=> sums(A,F2,aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),C2)) ) ) ) ).
% sums_mult_D
tff(fact_4202_sums__Suc__imp,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A),S2: A] :
( ( aa(nat,A,F2,zero_zero(nat)) = zero_zero(A) )
=> ( sums(A,aTP_Lamp_bd(fun(nat,A),fun(nat,A),F2),S2)
=> sums(A,F2,S2) ) ) ) ).
% sums_Suc_imp
tff(fact_4203_sums__Suc__iff,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A),S2: A] :
( sums(A,aTP_Lamp_bd(fun(nat,A),fun(nat,A),F2),S2)
<=> sums(A,F2,aa(A,A,aa(A,fun(A,A),plus_plus(A),S2),aa(nat,A,F2,zero_zero(nat)))) ) ) ).
% sums_Suc_iff
tff(fact_4204_sums__Suc,axiom,
! [A: $tType] :
( ( topolo5987344860129210374id_add(A)
& topological_t2_space(A) )
=> ! [F2: fun(nat,A),L: A] :
( sums(A,aTP_Lamp_bx(fun(nat,A),fun(nat,A),F2),L)
=> sums(A,F2,aa(A,A,aa(A,fun(A,A),plus_plus(A),L),aa(nat,A,F2,zero_zero(nat)))) ) ) ).
% sums_Suc
tff(fact_4205_sums__zero__iff__shift,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [N: nat,F2: fun(nat,A),S2: A] :
( ! [I3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I3),N))
=> ( aa(nat,A,F2,I3) = zero_zero(A) ) )
=> ( sums(A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_by(nat,fun(fun(nat,A),fun(nat,A)),N),F2),S2)
<=> sums(A,F2,S2) ) ) ) ).
% sums_zero_iff_shift
tff(fact_4206_powser__sums__if,axiom,
! [A: $tType] :
( ( ring_1(A)
& topolo4958980785337419405_space(A) )
=> ! [M: nat,Z: A] : sums(A,aa(A,fun(nat,A),aTP_Lamp_bz(nat,fun(A,fun(nat,A)),M),Z),aa(nat,A,power_power(A,Z),M)) ) ).
% powser_sums_if
tff(fact_4207_powser__sums__zero,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [A2: fun(nat,A)] : sums(A,aTP_Lamp_bi(fun(nat,A),fun(nat,A),A2),aa(nat,A,A2,zero_zero(nat))) ) ).
% powser_sums_zero
tff(fact_4208_geometric__sums,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [C2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,C2)),one_one(real)))
=> sums(A,power_power(A,C2),aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),C2))) ) ) ).
% geometric_sums
tff(fact_4209_power__half__series,axiom,
sums(real,aTP_Lamp_ca(nat,real),one_one(real)) ).
% power_half_series
tff(fact_4210_sums__if_H,axiom,
! [G: fun(nat,real),X2: real] :
( sums(real,G,X2)
=> sums(real,aTP_Lamp_cb(fun(nat,real),fun(nat,real),G),X2) ) ).
% sums_if'
tff(fact_4211_sums__if,axiom,
! [G: fun(nat,real),X2: real,F2: fun(nat,real),Y: real] :
( sums(real,G,X2)
=> ( sums(real,F2,Y)
=> sums(real,aa(fun(nat,real),fun(nat,real),aTP_Lamp_cc(fun(nat,real),fun(fun(nat,real),fun(nat,real)),G),F2),aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),Y)) ) ) ).
% sums_if
tff(fact_4212_series__comparison__complex,axiom,
! [A: $tType] :
( real_Vector_banach(A)
=> ! [G: fun(nat,complex),N2: nat,F2: fun(nat,A)] :
( summable(complex,G)
=> ( ! [N3: nat] : pp(member(complex,aa(nat,complex,G,N3),real_Vector_Reals(complex)))
=> ( ! [N3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),re(aa(nat,complex,G,N3))))
=> ( ! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N2),N3))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(nat,A,F2,N3))),real_V7770717601297561774m_norm(complex,aa(nat,complex,G,N3)))) )
=> summable(A,F2) ) ) ) ) ) ).
% series_comparison_complex
tff(fact_4213_Re__Reals__divide,axiom,
! [R: complex,Z: complex] :
( pp(member(complex,R,real_Vector_Reals(complex)))
=> ( re(aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),R),Z)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),times_times(real),re(R)),re(Z))),aa(nat,real,power_power(real,real_V7770717601297561774m_norm(complex,Z)),aa(num,nat,numeral_numeral(nat),bit0(one2)))) ) ) ).
% Re_Reals_divide
tff(fact_4214_cos__paired,axiom,
! [X2: real] : sums(real,aTP_Lamp_cd(real,fun(nat,real),X2),aa(real,real,cos(real),X2)) ).
% cos_paired
tff(fact_4215_VEBT__internal_Omembermima_Opelims_I2_J,axiom,
! [X2: vEBT_VEBT,Xa: nat] :
( vEBT_VEBT_membermima(X2,Xa)
=> ( pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V4351362008482014158ma_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),X2),Xa)))
=> ( ! [Mi3: nat,Ma3: nat,Va2: list(vEBT_VEBT),Vb: vEBT_VEBT] :
( ( X2 = vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi3),Ma3)),zero_zero(nat),Va2,Vb) )
=> ( pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V4351362008482014158ma_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi3),Ma3)),zero_zero(nat),Va2,Vb)),Xa)))
=> ~ ( ( Xa = Mi3 )
| ( Xa = Ma3 ) ) ) )
=> ( ! [Mi3: nat,Ma3: nat,V3: nat,TreeList3: list(vEBT_VEBT),Vc: vEBT_VEBT] :
( ( X2 = vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi3),Ma3)),aa(nat,nat,suc,V3),TreeList3,Vc) )
=> ( pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V4351362008482014158ma_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi3),Ma3)),aa(nat,nat,suc,V3),TreeList3,Vc)),Xa)))
=> ~ ( ( Xa = Mi3 )
| ( Xa = Ma3 )
| ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3)))
=> vEBT_VEBT_membermima(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList3),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_VEBT_low(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3))) ) ) ) )
=> ~ ! [V3: nat,TreeList3: list(vEBT_VEBT),Vd: vEBT_VEBT] :
( ( X2 = vEBT_Node(none(product_prod(nat,nat)),aa(nat,nat,suc,V3),TreeList3,Vd) )
=> ( pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V4351362008482014158ma_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Node(none(product_prod(nat,nat)),aa(nat,nat,suc,V3),TreeList3,Vd)),Xa)))
=> ~ ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3)))
=> vEBT_VEBT_membermima(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList3),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_VEBT_low(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3))) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.pelims(2)
tff(fact_4216_geometric__deriv__sums,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Z: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,Z)),one_one(real)))
=> sums(A,aTP_Lamp_ce(A,fun(nat,A),Z),aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(nat,A,power_power(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),Z)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ) ).
% geometric_deriv_sums
tff(fact_4217_VEBT__internal_Omembermima_Opelims_I1_J,axiom,
! [X2: vEBT_VEBT,Xa: nat,Y: bool] :
( ( vEBT_VEBT_membermima(X2,Xa)
<=> pp(Y) )
=> ( pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V4351362008482014158ma_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),X2),Xa)))
=> ( ! [Uu: bool,Uv: bool] :
( ( X2 = vEBT_Leaf(Uu,Uv) )
=> ( ~ pp(Y)
=> ~ pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V4351362008482014158ma_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Leaf(Uu,Uv)),Xa))) ) )
=> ( ! [Ux: list(vEBT_VEBT),Uy: vEBT_VEBT] :
( ( X2 = vEBT_Node(none(product_prod(nat,nat)),zero_zero(nat),Ux,Uy) )
=> ( ~ pp(Y)
=> ~ pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V4351362008482014158ma_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Node(none(product_prod(nat,nat)),zero_zero(nat),Ux,Uy)),Xa))) ) )
=> ( ! [Mi3: nat,Ma3: nat,Va2: list(vEBT_VEBT),Vb: vEBT_VEBT] :
( ( X2 = vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi3),Ma3)),zero_zero(nat),Va2,Vb) )
=> ( ( pp(Y)
<=> ( ( Xa = Mi3 )
| ( Xa = Ma3 ) ) )
=> ~ pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V4351362008482014158ma_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi3),Ma3)),zero_zero(nat),Va2,Vb)),Xa))) ) )
=> ( ! [Mi3: nat,Ma3: nat,V3: nat,TreeList3: list(vEBT_VEBT),Vc: vEBT_VEBT] :
( ( X2 = vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi3),Ma3)),aa(nat,nat,suc,V3),TreeList3,Vc) )
=> ( ( pp(Y)
<=> ( ( Xa = Mi3 )
| ( Xa = Ma3 )
| ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3)))
=> vEBT_VEBT_membermima(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList3),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_VEBT_low(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3))) ) ) )
=> ~ pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V4351362008482014158ma_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Mi3),Ma3)),aa(nat,nat,suc,V3),TreeList3,Vc)),Xa))) ) )
=> ~ ! [V3: nat,TreeList3: list(vEBT_VEBT),Vd: vEBT_VEBT] :
( ( X2 = vEBT_Node(none(product_prod(nat,nat)),aa(nat,nat,suc,V3),TreeList3,Vd) )
=> ( ( pp(Y)
<=> ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3)))
=> vEBT_VEBT_membermima(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList3),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_VEBT_low(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3))) ) )
=> ~ pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V4351362008482014158ma_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Node(none(product_prod(nat,nat)),aa(nat,nat,suc,V3),TreeList3,Vd)),Xa))) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.pelims(1)
tff(fact_4218_VEBT__internal_Onaive__member_Opelims_I3_J,axiom,
! [X2: vEBT_VEBT,Xa: nat] :
( ~ vEBT_V5719532721284313246member(X2,Xa)
=> ( pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V5765760719290551771er_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),X2),Xa)))
=> ( ! [A4: bool,B3: bool] :
( ( X2 = vEBT_Leaf(A4,B3) )
=> ( pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V5765760719290551771er_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Leaf(A4,B3)),Xa)))
=> ( ( ( Xa = zero_zero(nat) )
=> pp(A4) )
& ( ( Xa != zero_zero(nat) )
=> ( ( ( Xa = one_one(nat) )
=> pp(B3) )
& ( Xa = one_one(nat) ) ) ) ) ) )
=> ( ! [Uu: option(product_prod(nat,nat)),Uv: list(vEBT_VEBT),Uw: vEBT_VEBT] :
( ( X2 = vEBT_Node(Uu,zero_zero(nat),Uv,Uw) )
=> ~ pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V5765760719290551771er_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Node(Uu,zero_zero(nat),Uv,Uw)),Xa))) )
=> ~ ! [Uy: option(product_prod(nat,nat)),V3: nat,TreeList3: list(vEBT_VEBT),S3: vEBT_VEBT] :
( ( X2 = vEBT_Node(Uy,aa(nat,nat,suc,V3),TreeList3,S3) )
=> ( pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V5765760719290551771er_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Node(Uy,aa(nat,nat,suc,V3),TreeList3,S3)),Xa)))
=> ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3)))
=> vEBT_V5719532721284313246member(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList3),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_VEBT_low(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3))) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.pelims(3)
tff(fact_4219_VEBT__internal_Onaive__member_Opelims_I2_J,axiom,
! [X2: vEBT_VEBT,Xa: nat] :
( vEBT_V5719532721284313246member(X2,Xa)
=> ( pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V5765760719290551771er_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),X2),Xa)))
=> ( ! [A4: bool,B3: bool] :
( ( X2 = vEBT_Leaf(A4,B3) )
=> ( pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V5765760719290551771er_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Leaf(A4,B3)),Xa)))
=> ~ ( ( ( Xa = zero_zero(nat) )
=> pp(A4) )
& ( ( Xa != zero_zero(nat) )
=> ( ( ( Xa = one_one(nat) )
=> pp(B3) )
& ( Xa = one_one(nat) ) ) ) ) ) )
=> ~ ! [Uy: option(product_prod(nat,nat)),V3: nat,TreeList3: list(vEBT_VEBT),S3: vEBT_VEBT] :
( ( X2 = vEBT_Node(Uy,aa(nat,nat,suc,V3),TreeList3,S3) )
=> ( pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V5765760719290551771er_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Node(Uy,aa(nat,nat,suc,V3),TreeList3,S3)),Xa)))
=> ~ ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3)))
=> vEBT_V5719532721284313246member(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList3),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_VEBT_low(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3))) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.pelims(2)
tff(fact_4220_VEBT__internal_Onaive__member_Opelims_I1_J,axiom,
! [X2: vEBT_VEBT,Xa: nat,Y: bool] :
( ( vEBT_V5719532721284313246member(X2,Xa)
<=> pp(Y) )
=> ( pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V5765760719290551771er_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),X2),Xa)))
=> ( ! [A4: bool,B3: bool] :
( ( X2 = vEBT_Leaf(A4,B3) )
=> ( ( pp(Y)
<=> ( ( ( Xa = zero_zero(nat) )
=> pp(A4) )
& ( ( Xa != zero_zero(nat) )
=> ( ( ( Xa = one_one(nat) )
=> pp(B3) )
& ( Xa = one_one(nat) ) ) ) ) )
=> ~ pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V5765760719290551771er_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Leaf(A4,B3)),Xa))) ) )
=> ( ! [Uu: option(product_prod(nat,nat)),Uv: list(vEBT_VEBT),Uw: vEBT_VEBT] :
( ( X2 = vEBT_Node(Uu,zero_zero(nat),Uv,Uw) )
=> ( ~ pp(Y)
=> ~ pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V5765760719290551771er_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Node(Uu,zero_zero(nat),Uv,Uw)),Xa))) ) )
=> ~ ! [Uy: option(product_prod(nat,nat)),V3: nat,TreeList3: list(vEBT_VEBT),S3: vEBT_VEBT] :
( ( X2 = vEBT_Node(Uy,aa(nat,nat,suc,V3),TreeList3,S3) )
=> ( ( pp(Y)
<=> ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3)))
=> vEBT_V5719532721284313246member(aa(nat,vEBT_VEBT,nth(vEBT_VEBT,TreeList3),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_VEBT_low(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),vEBT_VEBT_high(Xa,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,V3)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3))) ) )
=> ~ pp(aa(product_prod(vEBT_VEBT,nat),bool,accp(product_prod(vEBT_VEBT,nat),vEBT_V5765760719290551771er_rel),aa(nat,product_prod(vEBT_VEBT,nat),aa(vEBT_VEBT,fun(nat,product_prod(vEBT_VEBT,nat)),product_Pair(vEBT_VEBT,nat),vEBT_Node(Uy,aa(nat,nat,suc,V3),TreeList3,S3)),Xa))) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.pelims(1)
tff(fact_4221_diffs__equiv,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector(A)
& ring_1(A) )
=> ! [C2: fun(nat,A),X2: A] :
( summable(A,aa(A,fun(nat,A),aTP_Lamp_cf(fun(nat,A),fun(A,fun(nat,A)),C2),X2))
=> sums(A,aa(A,fun(nat,A),aTP_Lamp_cg(fun(nat,A),fun(A,fun(nat,A)),C2),X2),suminf(A,aa(A,fun(nat,A),aTP_Lamp_cf(fun(nat,A),fun(A,fun(nat,A)),C2),X2))) ) ) ).
% diffs_equiv
tff(fact_4222_diffs__minus,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [C2: fun(nat,A),X: nat] : ( aa(nat,A,diffs(A,aTP_Lamp_ch(fun(nat,A),fun(nat,A),C2)),X) = aa(A,A,uminus_uminus(A),aa(nat,A,diffs(A,C2),X)) ) ) ).
% diffs_minus
tff(fact_4223_diffs__def,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [C2: fun(nat,A),X: nat] : ( aa(nat,A,diffs(A,C2),X) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,suc,X))),aa(nat,A,C2,aa(nat,nat,suc,X))) ) ) ).
% diffs_def
tff(fact_4224_termdiff__converges__all,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [C2: fun(nat,A),X2: A] :
( ! [X3: A] : summable(A,aa(A,fun(nat,A),aTP_Lamp_ci(fun(nat,A),fun(A,fun(nat,A)),C2),X3))
=> summable(A,aa(A,fun(nat,A),aTP_Lamp_cj(fun(nat,A),fun(A,fun(nat,A)),C2),X2)) ) ) ).
% termdiff_converges_all
tff(fact_4225_diffs__cos__coeff,axiom,
! [X: nat] : ( aa(nat,real,diffs(real,cos_coeff),X) = aa(real,real,uminus_uminus(real),sin_coeff(X)) ) ).
% diffs_cos_coeff
tff(fact_4226_termdiff__converges,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A,K5: real,C2: fun(nat,A)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,X2)),K5))
=> ( ! [X3: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,X3)),K5))
=> summable(A,aa(A,fun(nat,A),aTP_Lamp_ci(fun(nat,A),fun(A,fun(nat,A)),C2),X3)) )
=> summable(A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_ck(A,fun(fun(nat,A),fun(nat,A)),X2),C2)) ) ) ) ).
% termdiff_converges
tff(fact_4227_monoI1,axiom,
! [A: $tType] :
( order(A)
=> ! [X6: fun(nat,A)] :
( ! [M3: nat,N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M3),N3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,X6,M3)),aa(nat,A,X6,N3))) )
=> topological_monoseq(A,X6) ) ) ).
% monoI1
tff(fact_4228_monoI2,axiom,
! [A: $tType] :
( order(A)
=> ! [X6: fun(nat,A)] :
( ! [M3: nat,N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M3),N3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,X6,N3)),aa(nat,A,X6,M3))) )
=> topological_monoseq(A,X6) ) ) ).
% monoI2
tff(fact_4229_monoseq__def,axiom,
! [A: $tType] :
( order(A)
=> ! [X6: fun(nat,A)] :
( topological_monoseq(A,X6)
<=> ( ! [M6: nat,N5: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M6),N5))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,X6,M6)),aa(nat,A,X6,N5))) )
| ! [M6: nat,N5: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M6),N5))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,X6,N5)),aa(nat,A,X6,M6))) ) ) ) ) ).
% monoseq_def
tff(fact_4230_exp__first__two__terms,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : ( aa(A,A,exp(A),X2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),X2)),suminf(A,aTP_Lamp_cl(A,fun(nat,A),X2))) ) ) ).
% exp_first_two_terms
tff(fact_4231_scaleR__cancel__right,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [A2: real,X2: A,B2: real] :
( ( aa(A,A,real_V8093663219630862766scaleR(A,A2),X2) = aa(A,A,real_V8093663219630862766scaleR(A,B2),X2) )
<=> ( ( A2 = B2 )
| ( X2 = zero_zero(A) ) ) ) ) ).
% scaleR_cancel_right
tff(fact_4232_scaleR__zero__right,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [A2: real] : ( aa(A,A,real_V8093663219630862766scaleR(A,A2),zero_zero(A)) = zero_zero(A) ) ) ).
% scaleR_zero_right
tff(fact_4233_mult__scaleR__left,axiom,
! [A: $tType] :
( real_V6157519004096292374lgebra(A)
=> ! [A2: real,X2: A,Y: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,real_V8093663219630862766scaleR(A,A2),X2)),Y) = aa(A,A,real_V8093663219630862766scaleR(A,A2),aa(A,A,aa(A,fun(A,A),times_times(A),X2),Y)) ) ) ).
% mult_scaleR_left
tff(fact_4234_mult__scaleR__right,axiom,
! [A: $tType] :
( real_V6157519004096292374lgebra(A)
=> ! [X2: A,A2: real,Y: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),X2),aa(A,A,real_V8093663219630862766scaleR(A,A2),Y)) = aa(A,A,real_V8093663219630862766scaleR(A,A2),aa(A,A,aa(A,fun(A,A),times_times(A),X2),Y)) ) ) ).
% mult_scaleR_right
tff(fact_4235_scaleR__minus__right,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [A2: real,X2: A] : ( aa(A,A,real_V8093663219630862766scaleR(A,A2),aa(A,A,uminus_uminus(A),X2)) = aa(A,A,uminus_uminus(A),aa(A,A,real_V8093663219630862766scaleR(A,A2),X2)) ) ) ).
% scaleR_minus_right
tff(fact_4236_scaleR__cancel__left,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [A2: real,X2: A,Y: A] :
( ( aa(A,A,real_V8093663219630862766scaleR(A,A2),X2) = aa(A,A,real_V8093663219630862766scaleR(A,A2),Y) )
<=> ( ( X2 = Y )
| ( A2 = zero_zero(real) ) ) ) ) ).
% scaleR_cancel_left
tff(fact_4237_scaleR__one,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [X2: A] : ( aa(A,A,real_V8093663219630862766scaleR(A,one_one(real)),X2) = X2 ) ) ).
% scaleR_one
tff(fact_4238_scaleR__scaleR,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [A2: real,B2: real,X2: A] : ( aa(A,A,real_V8093663219630862766scaleR(A,A2),aa(A,A,real_V8093663219630862766scaleR(A,B2),X2)) = aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,aa(real,fun(real,real),times_times(real),A2),B2)),X2) ) ) ).
% scaleR_scaleR
tff(fact_4239_scaleR__zero__left,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [X2: A] : ( aa(A,A,real_V8093663219630862766scaleR(A,zero_zero(real)),X2) = zero_zero(A) ) ) ).
% scaleR_zero_left
tff(fact_4240_scaleR__eq__0__iff,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [A2: real,X2: A] :
( ( aa(A,A,real_V8093663219630862766scaleR(A,A2),X2) = zero_zero(A) )
<=> ( ( A2 = zero_zero(real) )
| ( X2 = zero_zero(A) ) ) ) ) ).
% scaleR_eq_0_iff
tff(fact_4241_scaleR__eq__iff,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [B2: A,U: real,A2: A] :
( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),aa(A,A,real_V8093663219630862766scaleR(A,U),A2)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(A,A,real_V8093663219630862766scaleR(A,U),B2)) )
<=> ( ( A2 = B2 )
| ( U = one_one(real) ) ) ) ) ).
% scaleR_eq_iff
tff(fact_4242_scaleR__power,axiom,
! [A: $tType] :
( real_V2822296259951069270ebra_1(A)
=> ! [X2: real,Y: A,N: nat] : ( aa(nat,A,power_power(A,aa(A,A,real_V8093663219630862766scaleR(A,X2),Y)),N) = aa(A,A,real_V8093663219630862766scaleR(A,aa(nat,real,power_power(real,X2),N)),aa(nat,A,power_power(A,Y),N)) ) ) ).
% scaleR_power
tff(fact_4243_scaleR__left_Ominus,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [X2: real,Xa: A] : ( aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,uminus_uminus(real),X2)),Xa) = aa(A,A,uminus_uminus(A),aa(A,A,real_V8093663219630862766scaleR(A,X2),Xa)) ) ) ).
% scaleR_left.minus
tff(fact_4244_scaleR__minus__left,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [A2: real,X2: A] : ( aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,uminus_uminus(real),A2)),X2) = aa(A,A,uminus_uminus(A),aa(A,A,real_V8093663219630862766scaleR(A,A2),X2)) ) ) ).
% scaleR_minus_left
tff(fact_4245_scaleR__minus1__left,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [X2: A] : ( aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,uminus_uminus(real),one_one(real))),X2) = aa(A,A,uminus_uminus(A),X2) ) ) ).
% scaleR_minus1_left
tff(fact_4246_scaleR__collapse,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [U: real,A2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,aa(real,fun(real,real),minus_minus(real),one_one(real)),U)),A2)),aa(A,A,real_V8093663219630862766scaleR(A,U),A2)) = A2 ) ) ).
% scaleR_collapse
tff(fact_4247_norm__scaleR,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [A2: real,X2: A] : ( real_V7770717601297561774m_norm(A,aa(A,A,real_V8093663219630862766scaleR(A,A2),X2)) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,abs_abs(real),A2)),real_V7770717601297561774m_norm(A,X2)) ) ) ).
% norm_scaleR
tff(fact_4248_scaleR__times,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [U: num,W: num,A2: A] : ( aa(A,A,real_V8093663219630862766scaleR(A,aa(num,real,numeral_numeral(real),U)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),W)),A2)) = aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),U)),aa(num,real,numeral_numeral(real),W))),A2) ) ) ).
% scaleR_times
tff(fact_4249_inverse__scaleR__times,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [V: num,W: num,A2: A] : ( aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),V))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),W)),A2)) = aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(num,real,numeral_numeral(real),W)),aa(num,real,numeral_numeral(real),V))),A2) ) ) ).
% inverse_scaleR_times
tff(fact_4250_fraction__scaleR__times,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [U: num,V: num,W: num,A2: A] : ( aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(num,real,numeral_numeral(real),U)),aa(num,real,numeral_numeral(real),V))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),W)),A2)) = aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),U)),aa(num,real,numeral_numeral(real),W))),aa(num,real,numeral_numeral(real),V))),A2) ) ) ).
% fraction_scaleR_times
tff(fact_4251_scaleR__half__double,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [A2: A] : ( aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2)))),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),A2)) = A2 ) ) ).
% scaleR_half_double
tff(fact_4252_scaleR__right__distrib,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [A2: real,X2: A,Y: A] : ( aa(A,A,real_V8093663219630862766scaleR(A,A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,real_V8093663219630862766scaleR(A,A2),X2)),aa(A,A,real_V8093663219630862766scaleR(A,A2),Y)) ) ) ).
% scaleR_right_distrib
tff(fact_4253_real__scaleR__def,axiom,
! [A2: real,X2: real] : ( aa(real,real,real_V8093663219630862766scaleR(real,A2),X2) = aa(real,real,aa(real,fun(real,real),times_times(real),A2),X2) ) ).
% real_scaleR_def
tff(fact_4254_scaleR__right__imp__eq,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [X2: A,A2: real,B2: real] :
( ( X2 != zero_zero(A) )
=> ( ( aa(A,A,real_V8093663219630862766scaleR(A,A2),X2) = aa(A,A,real_V8093663219630862766scaleR(A,B2),X2) )
=> ( A2 = B2 ) ) ) ) ).
% scaleR_right_imp_eq
tff(fact_4255_scaleR__left__imp__eq,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [A2: real,X2: A,Y: A] :
( ( A2 != zero_zero(real) )
=> ( ( aa(A,A,real_V8093663219630862766scaleR(A,A2),X2) = aa(A,A,real_V8093663219630862766scaleR(A,A2),Y) )
=> ( X2 = Y ) ) ) ) ).
% scaleR_left_imp_eq
tff(fact_4256_scaleR__right__diff__distrib,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [A2: real,X2: A,Y: A] : ( aa(A,A,real_V8093663219630862766scaleR(A,A2),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,real_V8093663219630862766scaleR(A,A2),X2)),aa(A,A,real_V8093663219630862766scaleR(A,A2),Y)) ) ) ).
% scaleR_right_diff_distrib
tff(fact_4257_scaleR__left_Oadd,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [X2: real,Y: real,Xa: A] : ( aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),Y)),Xa) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,real_V8093663219630862766scaleR(A,X2),Xa)),aa(A,A,real_V8093663219630862766scaleR(A,Y),Xa)) ) ) ).
% scaleR_left.add
tff(fact_4258_scaleR__left__distrib,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [A2: real,B2: real,X2: A] : ( aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,aa(real,fun(real,real),plus_plus(real),A2),B2)),X2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,real_V8093663219630862766scaleR(A,A2),X2)),aa(A,A,real_V8093663219630862766scaleR(A,B2),X2)) ) ) ).
% scaleR_left_distrib
tff(fact_4259_scaleR__conv__of__real,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [R: real,X2: A] : ( aa(A,A,real_V8093663219630862766scaleR(A,R),X2) = aa(A,A,aa(A,fun(A,A),times_times(A),real_Vector_of_real(A,R)),X2) ) ) ).
% scaleR_conv_of_real
tff(fact_4260_of__real__def,axiom,
! [A: $tType] :
( real_V2191834092415804123ebra_1(A)
=> ! [R: real] : ( real_Vector_of_real(A,R) = aa(A,A,real_V8093663219630862766scaleR(A,R),one_one(A)) ) ) ).
% of_real_def
tff(fact_4261_scaleR__left__diff__distrib,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [A2: real,B2: real,X2: A] : ( aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,aa(real,fun(real,real),minus_minus(real),A2),B2)),X2) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,real_V8093663219630862766scaleR(A,A2),X2)),aa(A,A,real_V8093663219630862766scaleR(A,B2),X2)) ) ) ).
% scaleR_left_diff_distrib
tff(fact_4262_scaleR__left_Odiff,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [X2: real,Y: real,Xa: A] : ( aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,aa(real,fun(real,real),minus_minus(real),X2),Y)),Xa) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,real_V8093663219630862766scaleR(A,X2),Xa)),aa(A,A,real_V8093663219630862766scaleR(A,Y),Xa)) ) ) ).
% scaleR_left.diff
tff(fact_4263_scaleR__complex_Osimps_I1_J,axiom,
! [R: real,X2: complex] : ( re(aa(complex,complex,real_V8093663219630862766scaleR(complex,R),X2)) = aa(real,real,aa(real,fun(real,real),times_times(real),R),re(X2)) ) ).
% scaleR_complex.simps(1)
tff(fact_4264_scaleR__complex_Osimps_I2_J,axiom,
! [R: real,X2: complex] : ( im(aa(complex,complex,real_V8093663219630862766scaleR(complex,R),X2)) = aa(real,real,aa(real,fun(real,real),times_times(real),R),im(X2)) ) ).
% scaleR_complex.simps(2)
tff(fact_4265_complex__scaleR,axiom,
! [R: real,A2: real,B2: real] : ( aa(complex,complex,real_V8093663219630862766scaleR(complex,R),complex2(A2,B2)) = complex2(aa(real,real,aa(real,fun(real,real),times_times(real),R),A2),aa(real,real,aa(real,fun(real,real),times_times(real),R),B2)) ) ).
% complex_scaleR
tff(fact_4266_scaleR__right__mono__neg,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [B2: real,A2: real,C2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),B2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,real_V8093663219630862766scaleR(A,A2),C2)),aa(A,A,real_V8093663219630862766scaleR(A,B2),C2))) ) ) ) ).
% scaleR_right_mono_neg
tff(fact_4267_scaleR__right__mono,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [A2: real,B2: real,X2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,real_V8093663219630862766scaleR(A,A2),X2)),aa(A,A,real_V8093663219630862766scaleR(A,B2),X2))) ) ) ) ).
% scaleR_right_mono
tff(fact_4268_scaleR__le__cancel__left__pos,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [C2: real,A2: A,B2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,real_V8093663219630862766scaleR(A,C2),A2)),aa(A,A,real_V8093663219630862766scaleR(A,C2),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) ) ) ) ).
% scaleR_le_cancel_left_pos
tff(fact_4269_scaleR__le__cancel__left__neg,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [C2: real,A2: A,B2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),C2),zero_zero(real)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,real_V8093663219630862766scaleR(A,C2),A2)),aa(A,A,real_V8093663219630862766scaleR(A,C2),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2)) ) ) ) ).
% scaleR_le_cancel_left_neg
tff(fact_4270_scaleR__le__cancel__left,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [C2: real,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,real_V8093663219630862766scaleR(A,C2),A2)),aa(A,A,real_V8093663219630862766scaleR(A,C2),B2)))
<=> ( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) )
& ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),C2),zero_zero(real)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2)) ) ) ) ) ).
% scaleR_le_cancel_left
tff(fact_4271_scaleR__left__mono__neg,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [B2: A,A2: A,C2: real] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),C2),zero_zero(real)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,real_V8093663219630862766scaleR(A,C2),A2)),aa(A,A,real_V8093663219630862766scaleR(A,C2),B2))) ) ) ) ).
% scaleR_left_mono_neg
tff(fact_4272_scaleR__left__mono,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [X2: A,Y: A,A2: real] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,real_V8093663219630862766scaleR(A,A2),X2)),aa(A,A,real_V8093663219630862766scaleR(A,A2),Y))) ) ) ) ).
% scaleR_left_mono
tff(fact_4273_eq__vector__fraction__iff,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [X2: A,U: real,V: real,A2: A] :
( ( X2 = aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,aa(real,fun(real,real),divide_divide(real),U),V)),A2) )
<=> ( ( ( V = zero_zero(real) )
=> ( X2 = zero_zero(A) ) )
& ( ( V != zero_zero(real) )
=> ( aa(A,A,real_V8093663219630862766scaleR(A,V),X2) = aa(A,A,real_V8093663219630862766scaleR(A,U),A2) ) ) ) ) ) ).
% eq_vector_fraction_iff
tff(fact_4274_vector__fraction__eq__iff,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [U: real,V: real,A2: A,X2: A] :
( ( aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,aa(real,fun(real,real),divide_divide(real),U),V)),A2) = X2 )
<=> ( ( ( V = zero_zero(real) )
=> ( X2 = zero_zero(A) ) )
& ( ( V != zero_zero(real) )
=> ( aa(A,A,real_V8093663219630862766scaleR(A,U),A2) = aa(A,A,real_V8093663219630862766scaleR(A,V),X2) ) ) ) ) ) ).
% vector_fraction_eq_iff
tff(fact_4275_Real__Vector__Spaces_Ole__add__iff2,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [A2: real,E: A,C2: A,B2: real,D2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,real_V8093663219630862766scaleR(A,A2),E)),C2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,real_V8093663219630862766scaleR(A,B2),E)),D2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,aa(real,fun(real,real),minus_minus(real),B2),A2)),E)),D2))) ) ) ).
% Real_Vector_Spaces.le_add_iff2
tff(fact_4276_Real__Vector__Spaces_Ole__add__iff1,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [A2: real,E: A,C2: A,B2: real,D2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,real_V8093663219630862766scaleR(A,A2),E)),C2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,real_V8093663219630862766scaleR(A,B2),E)),D2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,aa(real,fun(real,real),minus_minus(real),A2),B2)),E)),C2)),D2)) ) ) ).
% Real_Vector_Spaces.le_add_iff1
tff(fact_4277_scaleR__le__0__iff,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [A2: real,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,real_V8093663219630862766scaleR(A,A2),B2)),zero_zero(A)))
<=> ( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),zero_zero(A))) )
| ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),zero_zero(real)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2)) )
| ( A2 = zero_zero(real) ) ) ) ) ).
% scaleR_le_0_iff
tff(fact_4278_zero__le__scaleR__iff,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [A2: real,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,real_V8093663219630862766scaleR(A,A2),B2)))
<=> ( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2)) )
| ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),zero_zero(real)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),zero_zero(A))) )
| ( A2 = zero_zero(real) ) ) ) ) ).
% zero_le_scaleR_iff
tff(fact_4279_scaleR__nonpos__nonpos,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [A2: real,B2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),zero_zero(real)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,real_V8093663219630862766scaleR(A,A2),B2))) ) ) ) ).
% scaleR_nonpos_nonpos
tff(fact_4280_scaleR__nonpos__nonneg,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [A2: real,X2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),zero_zero(real)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,real_V8093663219630862766scaleR(A,A2),X2)),zero_zero(A))) ) ) ) ).
% scaleR_nonpos_nonneg
tff(fact_4281_scaleR__nonneg__nonpos,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [A2: real,X2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),zero_zero(A)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,real_V8093663219630862766scaleR(A,A2),X2)),zero_zero(A))) ) ) ) ).
% scaleR_nonneg_nonpos
tff(fact_4282_scaleR__nonneg__nonneg,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [A2: real,X2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,real_V8093663219630862766scaleR(A,A2),X2))) ) ) ) ).
% scaleR_nonneg_nonneg
tff(fact_4283_split__scaleR__pos__le,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [A2: real,B2: A] :
( ( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),B2)) )
| ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),zero_zero(real)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),zero_zero(A))) ) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(A,A,real_V8093663219630862766scaleR(A,A2),B2))) ) ) ).
% split_scaleR_pos_le
tff(fact_4284_split__scaleR__neg__le,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [A2: real,X2: A] :
( ( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),zero_zero(A))) )
| ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),zero_zero(real)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X2)) ) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,real_V8093663219630862766scaleR(A,A2),X2)),zero_zero(A))) ) ) ).
% split_scaleR_neg_le
tff(fact_4285_scaleR__mono_H,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [A2: real,B2: real,C2: A,D2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),D2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,real_V8093663219630862766scaleR(A,A2),C2)),aa(A,A,real_V8093663219630862766scaleR(A,B2),D2))) ) ) ) ) ) ).
% scaleR_mono'
tff(fact_4286_scaleR__mono,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [A2: real,B2: real,X2: A,Y: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,real_V8093663219630862766scaleR(A,A2),X2)),aa(A,A,real_V8093663219630862766scaleR(A,B2),Y))) ) ) ) ) ) ).
% scaleR_mono
tff(fact_4287_scaleR__left__le__one__le,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [X2: A,A2: real] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),one_one(real)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,real_V8093663219630862766scaleR(A,A2),X2)),X2)) ) ) ) ).
% scaleR_left_le_one_le
tff(fact_4288_scaleR__2,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [X2: A] : ( aa(A,A,real_V8093663219630862766scaleR(A,aa(num,real,numeral_numeral(real),bit0(one2))),X2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),X2) ) ) ).
% scaleR_2
tff(fact_4289_real__vector__eq__affinity,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [M: real,Y: A,X2: A,C2: A] :
( ( M != zero_zero(real) )
=> ( ( Y = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,real_V8093663219630862766scaleR(A,M),X2)),C2) )
<=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),M)),Y)),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),M)),C2)) = X2 ) ) ) ) ).
% real_vector_eq_affinity
tff(fact_4290_real__vector__affinity__eq,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [M: real,X2: A,C2: A,Y: A] :
( ( M != zero_zero(real) )
=> ( ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,real_V8093663219630862766scaleR(A,M),X2)),C2) = Y )
<=> ( X2 = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),M)),Y)),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),M)),C2)) ) ) ) ) ).
% real_vector_affinity_eq
tff(fact_4291_pos__divideR__le__eq,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [C2: real,B2: A,A2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),C2)),B2)),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),aa(A,A,real_V8093663219630862766scaleR(A,C2),A2))) ) ) ) ).
% pos_divideR_le_eq
tff(fact_4292_pos__le__divideR__eq,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [C2: real,A2: A,B2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),C2)),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,real_V8093663219630862766scaleR(A,C2),A2)),B2)) ) ) ) ).
% pos_le_divideR_eq
tff(fact_4293_neg__divideR__le__eq,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [C2: real,B2: A,A2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),C2),zero_zero(real)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),C2)),B2)),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,real_V8093663219630862766scaleR(A,C2),A2)),B2)) ) ) ) ).
% neg_divideR_le_eq
tff(fact_4294_neg__le__divideR__eq,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [C2: real,A2: A,B2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),C2),zero_zero(real)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),C2)),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),aa(A,A,real_V8093663219630862766scaleR(A,C2),A2))) ) ) ) ).
% neg_le_divideR_eq
tff(fact_4295_neg__less__divideR__eq,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [C2: real,A2: A,B2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),C2),zero_zero(real)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),C2)),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),aa(A,A,real_V8093663219630862766scaleR(A,C2),A2))) ) ) ) ).
% neg_less_divideR_eq
tff(fact_4296_neg__divideR__less__eq,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [C2: real,B2: A,A2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),C2),zero_zero(real)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),C2)),B2)),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,real_V8093663219630862766scaleR(A,C2),A2)),B2)) ) ) ) ).
% neg_divideR_less_eq
tff(fact_4297_pos__less__divideR__eq,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [C2: real,A2: A,B2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),C2)),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,real_V8093663219630862766scaleR(A,C2),A2)),B2)) ) ) ) ).
% pos_less_divideR_eq
tff(fact_4298_pos__divideR__less__eq,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [C2: real,B2: A,A2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),C2)),B2)),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),aa(A,A,real_V8093663219630862766scaleR(A,C2),A2))) ) ) ) ).
% pos_divideR_less_eq
tff(fact_4299_nonzero__inverse__scaleR__distrib,axiom,
! [A: $tType] :
( real_V5047593784448816457lgebra(A)
=> ! [A2: real,X2: A] :
( ( A2 != zero_zero(real) )
=> ( ( X2 != zero_zero(A) )
=> ( aa(A,A,inverse_inverse(A),aa(A,A,real_V8093663219630862766scaleR(A,A2),X2)) = aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),A2)),aa(A,A,inverse_inverse(A),X2)) ) ) ) ) ).
% nonzero_inverse_scaleR_distrib
tff(fact_4300_scaleR__complex_Ocode,axiom,
! [R: real,X2: complex] : ( aa(complex,complex,real_V8093663219630862766scaleR(complex,R),X2) = complex2(aa(real,real,aa(real,fun(real,real),times_times(real),R),re(X2)),aa(real,real,aa(real,fun(real,real),times_times(real),R),im(X2))) ) ).
% scaleR_complex.code
tff(fact_4301_summable__exp__generic,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : summable(A,aTP_Lamp_cm(A,fun(nat,A),X2)) ) ).
% summable_exp_generic
tff(fact_4302_sin__converges,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : sums(A,aTP_Lamp_cn(A,fun(nat,A),X2),sin(A,X2)) ) ).
% sin_converges
tff(fact_4303_sin__def,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X: A] : ( sin(A,X) = suminf(A,aTP_Lamp_cn(A,fun(nat,A),X)) ) ) ).
% sin_def
tff(fact_4304_cos__converges,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : sums(A,aTP_Lamp_co(A,fun(nat,A),X2),aa(A,A,cos(A),X2)) ) ).
% cos_converges
tff(fact_4305_cos__def,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X: A] : ( aa(A,A,cos(A),X) = suminf(A,aTP_Lamp_co(A,fun(nat,A),X)) ) ) ).
% cos_def
tff(fact_4306_summable__norm__sin,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : summable(real,aTP_Lamp_cp(A,fun(nat,real),X2)) ) ).
% summable_norm_sin
tff(fact_4307_summable__norm__cos,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : summable(real,aTP_Lamp_cq(A,fun(nat,real),X2)) ) ).
% summable_norm_cos
tff(fact_4308_neg__minus__divideR__le__eq,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [C2: real,B2: A,A2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),C2),zero_zero(real)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),C2)),B2))),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,real_V8093663219630862766scaleR(A,C2),A2)),aa(A,A,uminus_uminus(A),B2))) ) ) ) ).
% neg_minus_divideR_le_eq
tff(fact_4309_neg__le__minus__divideR__eq,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [C2: real,A2: A,B2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),C2),zero_zero(real)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(A,A,uminus_uminus(A),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),C2)),B2))))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),B2)),aa(A,A,real_V8093663219630862766scaleR(A,C2),A2))) ) ) ) ).
% neg_le_minus_divideR_eq
tff(fact_4310_pos__minus__divideR__le__eq,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [C2: real,B2: A,A2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),C2)),B2))),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),B2)),aa(A,A,real_V8093663219630862766scaleR(A,C2),A2))) ) ) ) ).
% pos_minus_divideR_le_eq
tff(fact_4311_pos__le__minus__divideR__eq,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [C2: real,A2: A,B2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(A,A,uminus_uminus(A),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),C2)),B2))))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,real_V8093663219630862766scaleR(A,C2),A2)),aa(A,A,uminus_uminus(A),B2))) ) ) ) ).
% pos_le_minus_divideR_eq
tff(fact_4312_pos__less__minus__divideR__eq,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [C2: real,A2: A,B2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(A,A,uminus_uminus(A),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),C2)),B2))))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,real_V8093663219630862766scaleR(A,C2),A2)),aa(A,A,uminus_uminus(A),B2))) ) ) ) ).
% pos_less_minus_divideR_eq
tff(fact_4313_pos__minus__divideR__less__eq,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [C2: real,B2: A,A2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),C2)),B2))),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),B2)),aa(A,A,real_V8093663219630862766scaleR(A,C2),A2))) ) ) ) ).
% pos_minus_divideR_less_eq
tff(fact_4314_neg__less__minus__divideR__eq,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [C2: real,A2: A,B2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),C2),zero_zero(real)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(A,A,uminus_uminus(A),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),C2)),B2))))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),B2)),aa(A,A,real_V8093663219630862766scaleR(A,C2),A2))) ) ) ) ).
% neg_less_minus_divideR_eq
tff(fact_4315_neg__minus__divideR__less__eq,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [C2: real,B2: A,A2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),C2),zero_zero(real)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,uminus_uminus(A),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),C2)),B2))),A2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,real_V8093663219630862766scaleR(A,C2),A2)),aa(A,A,uminus_uminus(A),B2))) ) ) ) ).
% neg_minus_divideR_less_eq
tff(fact_4316_exp__converges,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : sums(A,aTP_Lamp_cm(A,fun(nat,A),X2),aa(A,A,exp(A),X2)) ) ).
% exp_converges
tff(fact_4317_exp__def,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X: A] : ( aa(A,A,exp(A),X) = suminf(A,aTP_Lamp_cm(A,fun(nat,A),X)) ) ) ).
% exp_def
tff(fact_4318_summable__norm__exp,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : summable(real,aTP_Lamp_cr(A,fun(nat,real),X2)) ) ).
% summable_norm_exp
tff(fact_4319_sin__minus__converges,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : sums(A,aTP_Lamp_cs(A,fun(nat,A),X2),sin(A,X2)) ) ).
% sin_minus_converges
tff(fact_4320_cos__minus__converges,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : sums(A,aTP_Lamp_ct(A,fun(nat,A),X2),aa(A,A,cos(A),X2)) ) ).
% cos_minus_converges
tff(fact_4321_cosh__def,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : ( cosh(A,X2) = aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),aa(num,real,numeral_numeral(real),bit0(one2)))),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,exp(A),X2)),aa(A,A,exp(A),aa(A,A,uminus_uminus(A),X2)))) ) ) ).
% cosh_def
tff(fact_4322_sinh__def,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : ( sinh(A,X2) = aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),aa(num,real,numeral_numeral(real),bit0(one2)))),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,exp(A),X2)),aa(A,A,exp(A),aa(A,A,uminus_uminus(A),X2)))) ) ) ).
% sinh_def
tff(fact_4323_exp__first__term,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : ( aa(A,A,exp(A),X2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),suminf(A,aTP_Lamp_cu(A,fun(nat,A),X2))) ) ) ).
% exp_first_term
tff(fact_4324_monoseq__minus,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [A2: fun(nat,A)] :
( topological_monoseq(A,A2)
=> topological_monoseq(A,aTP_Lamp_cv(fun(nat,A),fun(nat,A),A2)) ) ) ).
% monoseq_minus
tff(fact_4325_cosh__converges,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : sums(A,aTP_Lamp_cw(A,fun(nat,A),X2),cosh(A,X2)) ) ).
% cosh_converges
tff(fact_4326_sinh__converges,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A] : sums(A,aTP_Lamp_cx(A,fun(nat,A),X2),sinh(A,X2)) ) ).
% sinh_converges
tff(fact_4327_monoseq__Suc,axiom,
! [A: $tType] :
( order(A)
=> ! [X6: fun(nat,A)] :
( topological_monoseq(A,X6)
<=> ( ! [N5: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,X6,N5)),aa(nat,A,X6,aa(nat,nat,suc,N5))))
| ! [N5: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,X6,aa(nat,nat,suc,N5))),aa(nat,A,X6,N5))) ) ) ) ).
% monoseq_Suc
tff(fact_4328_mono__SucI2,axiom,
! [A: $tType] :
( order(A)
=> ! [X6: fun(nat,A)] :
( ! [N3: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,X6,aa(nat,nat,suc,N3))),aa(nat,A,X6,N3)))
=> topological_monoseq(A,X6) ) ) ).
% mono_SucI2
tff(fact_4329_mono__SucI1,axiom,
! [A: $tType] :
( order(A)
=> ! [X6: fun(nat,A)] :
( ! [N3: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,X6,N3)),aa(nat,A,X6,aa(nat,nat,suc,N3))))
=> topological_monoseq(A,X6) ) ) ).
% mono_SucI1
tff(fact_4330_of__nat__code,axiom,
! [A: $tType] :
( semiring_1(A)
=> ! [N: nat] : ( aa(nat,A,semiring_1_of_nat(A),N) = semiri8178284476397505188at_aux(A,aTP_Lamp_cy(A,A),N,zero_zero(A)) ) ) ).
% of_nat_code
tff(fact_4331_Arg__def,axiom,
! [Z: complex] :
( ( ( Z = zero_zero(complex) )
=> ( arg(Z) = zero_zero(real) ) )
& ( ( Z != zero_zero(complex) )
=> ( arg(Z) = fChoice(real,aTP_Lamp_cz(complex,fun(real,bool),Z)) ) ) ) ).
% Arg_def
tff(fact_4332_set__vebt__def,axiom,
! [T2: vEBT_VEBT] : ( vEBT_set_vebt(T2) = aa(fun(nat,bool),set(nat),collect(nat),vEBT_V8194947554948674370ptions(T2)) ) ).
% set_vebt_def
tff(fact_4333_VEBT__internal_Ospace_Opelims,axiom,
! [X2: vEBT_VEBT,Y: nat] :
( ( aa(vEBT_VEBT,nat,vEBT_VEBT_space,X2) = Y )
=> ( pp(aa(vEBT_VEBT,bool,accp(vEBT_VEBT,vEBT_VEBT_space_rel2),X2))
=> ( ! [A4: bool,B3: bool] :
( ( X2 = vEBT_Leaf(A4,B3) )
=> ( ( Y = aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,one2)) )
=> ~ pp(aa(vEBT_VEBT,bool,accp(vEBT_VEBT,vEBT_VEBT_space_rel2),vEBT_Leaf(A4,B3))) ) )
=> ~ ! [Info2: option(product_prod(nat,nat)),Deg2: nat,TreeList3: list(vEBT_VEBT),Summary3: vEBT_VEBT] :
( ( X2 = vEBT_Node(Info2,Deg2,TreeList3,Summary3) )
=> ( ( Y = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,bit0(one2)))),aa(vEBT_VEBT,nat,vEBT_VEBT_space,Summary3))),aa(list(vEBT_VEBT),nat,size_size(list(vEBT_VEBT)),TreeList3))),aa(nat,nat,foldr(nat,nat,plus_plus(nat),aa(list(vEBT_VEBT),list(nat),map(vEBT_VEBT,nat,vEBT_VEBT_space),TreeList3)),zero_zero(nat))) )
=> ~ pp(aa(vEBT_VEBT,bool,accp(vEBT_VEBT,vEBT_VEBT_space_rel2),vEBT_Node(Info2,Deg2,TreeList3,Summary3))) ) ) ) ) ) ).
% VEBT_internal.space.pelims
tff(fact_4334_of__nat__aux_Osimps_I2_J,axiom,
! [A: $tType] :
( semiring_1(A)
=> ! [Inc: fun(A,A),N: nat,I: A] : ( semiri8178284476397505188at_aux(A,Inc,aa(nat,nat,suc,N),I) = semiri8178284476397505188at_aux(A,Inc,N,aa(A,A,Inc,I)) ) ) ).
% of_nat_aux.simps(2)
tff(fact_4335_of__nat__aux_Osimps_I1_J,axiom,
! [A: $tType] :
( semiring_1(A)
=> ! [Inc: fun(A,A),I: A] : ( semiri8178284476397505188at_aux(A,Inc,zero_zero(nat),I) = I ) ) ).
% of_nat_aux.simps(1)
tff(fact_4336_VEBT__internal_Ospace_H_Opelims,axiom,
! [X2: vEBT_VEBT,Y: nat] :
( ( aa(vEBT_VEBT,nat,vEBT_VEBT_space2,X2) = Y )
=> ( pp(aa(vEBT_VEBT,bool,accp(vEBT_VEBT,vEBT_VEBT_space_rel),X2))
=> ( ! [A4: bool,B3: bool] :
( ( X2 = vEBT_Leaf(A4,B3) )
=> ( ( Y = aa(num,nat,numeral_numeral(nat),bit0(bit0(one2))) )
=> ~ pp(aa(vEBT_VEBT,bool,accp(vEBT_VEBT,vEBT_VEBT_space_rel),vEBT_Leaf(A4,B3))) ) )
=> ~ ! [Info2: option(product_prod(nat,nat)),Deg2: nat,TreeList3: list(vEBT_VEBT),Summary3: vEBT_VEBT] :
( ( X2 = vEBT_Node(Info2,Deg2,TreeList3,Summary3) )
=> ( ( Y = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(num,nat,numeral_numeral(nat),bit0(aa(num,num,bit1,one2)))),aa(vEBT_VEBT,nat,vEBT_VEBT_space2,Summary3))),aa(nat,nat,foldr(nat,nat,plus_plus(nat),aa(list(vEBT_VEBT),list(nat),map(vEBT_VEBT,nat,vEBT_VEBT_space2),TreeList3)),zero_zero(nat))) )
=> ~ pp(aa(vEBT_VEBT,bool,accp(vEBT_VEBT,vEBT_VEBT_space_rel),vEBT_Node(Info2,Deg2,TreeList3,Summary3))) ) ) ) ) ) ).
% VEBT_internal.space'.pelims
tff(fact_4337_VEBT__internal_Ocnt_Opelims,axiom,
! [X2: vEBT_VEBT,Y: real] :
( ( aa(vEBT_VEBT,real,vEBT_VEBT_cnt,X2) = Y )
=> ( pp(aa(vEBT_VEBT,bool,accp(vEBT_VEBT,vEBT_VEBT_cnt_rel),X2))
=> ( ! [A4: bool,B3: bool] :
( ( X2 = vEBT_Leaf(A4,B3) )
=> ( ( Y = one_one(real) )
=> ~ pp(aa(vEBT_VEBT,bool,accp(vEBT_VEBT,vEBT_VEBT_cnt_rel),vEBT_Leaf(A4,B3))) ) )
=> ~ ! [Info2: option(product_prod(nat,nat)),Deg2: nat,TreeList3: list(vEBT_VEBT),Summary3: vEBT_VEBT] :
( ( X2 = vEBT_Node(Info2,Deg2,TreeList3,Summary3) )
=> ( ( Y = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),aa(vEBT_VEBT,real,vEBT_VEBT_cnt,Summary3))),aa(real,real,foldr(real,real,plus_plus(real),aa(list(vEBT_VEBT),list(real),map(vEBT_VEBT,real,vEBT_VEBT_cnt),TreeList3)),zero_zero(real))) )
=> ~ pp(aa(vEBT_VEBT,bool,accp(vEBT_VEBT,vEBT_VEBT_cnt_rel),vEBT_Node(Info2,Deg2,TreeList3,Summary3))) ) ) ) ) ) ).
% VEBT_internal.cnt.pelims
tff(fact_4338_sin__x__sin__y,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A,Y: A] : sums(A,aa(A,fun(nat,A),aTP_Lamp_db(A,fun(A,fun(nat,A)),X2),Y),aa(A,A,aa(A,fun(A,A),times_times(A),sin(A,X2)),sin(A,Y))) ) ).
% sin_x_sin_y
tff(fact_4339_sums__cos__x__plus__y,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A,Y: A] : sums(A,aa(A,fun(nat,A),aTP_Lamp_dd(A,fun(A,fun(nat,A)),X2),Y),aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y))) ) ).
% sums_cos_x_plus_y
tff(fact_4340_atMost__eq__iff,axiom,
! [A: $tType] :
( order(A)
=> ! [X2: A,Y: A] :
( ( aa(A,set(A),set_ord_atMost(A),X2) = aa(A,set(A),set_ord_atMost(A),Y) )
<=> ( X2 = Y ) ) ) ).
% atMost_eq_iff
tff(fact_4341_atMost__iff,axiom,
! [A: $tType] :
( ord(A)
=> ! [I: A,K: A] :
( pp(member(A,I,aa(A,set(A),set_ord_atMost(A),K)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),I),K)) ) ) ).
% atMost_iff
tff(fact_4342_of__nat__sum,axiom,
! [A: $tType,B: $tType] :
( semiring_1(A)
=> ! [F2: fun(B,nat),A3: set(B)] : ( aa(nat,A,semiring_1_of_nat(A),aa(set(B),nat,aa(fun(B,nat),fun(set(B),nat),groups7311177749621191930dd_sum(B,nat),F2),A3)) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aTP_Lamp_de(fun(B,nat),fun(B,A),F2)),A3) ) ) ).
% of_nat_sum
tff(fact_4343_atMost__subset__iff,axiom,
! [A: $tType] :
( preorder(A)
=> ! [X2: A,Y: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(A,set(A),set_ord_atMost(A),X2)),aa(A,set(A),set_ord_atMost(A),Y)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y)) ) ) ).
% atMost_subset_iff
tff(fact_4344_sum_OatMost__Suc,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),aa(nat,set(nat),set_ord_atMost(nat),aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),aa(nat,set(nat),set_ord_atMost(nat),N))),aa(nat,A,G,aa(nat,nat,suc,N))) ) ) ).
% sum.atMost_Suc
tff(fact_4345_sum_OatMost__Suc__shift,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),aa(nat,set(nat),set_ord_atMost(nat),aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,G,zero_zero(nat))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_df(fun(nat,A),fun(nat,A),G)),aa(nat,set(nat),set_ord_atMost(nat),N))) ) ) ).
% sum.atMost_Suc_shift
tff(fact_4346_sum__telescope,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [F2: fun(nat,A),I: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_dg(fun(nat,A),fun(nat,A),F2)),aa(nat,set(nat),set_ord_atMost(nat),I)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,F2,zero_zero(nat))),aa(nat,A,F2,aa(nat,nat,suc,I))) ) ) ).
% sum_telescope
tff(fact_4347_polyfun__eq__coeffs,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra(A)
& idom(A) )
=> ! [C2: fun(nat,A),N: nat,D2: fun(nat,A)] :
( ! [X4: A] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aTP_Lamp_dh(fun(nat,A),fun(A,fun(nat,A)),C2),X4)),aa(nat,set(nat),set_ord_atMost(nat),N)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aTP_Lamp_dh(fun(nat,A),fun(A,fun(nat,A)),D2),X4)),aa(nat,set(nat),set_ord_atMost(nat),N)) )
<=> ! [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I4),N))
=> ( aa(nat,A,C2,I4) = aa(nat,A,D2,I4) ) ) ) ) ).
% polyfun_eq_coeffs
tff(fact_4348_bounded__imp__summable,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder(A)
& linord2810124833399127020strict(A)
& topolo1944317154257567458pology(A) )
=> ! [A2: fun(nat,A),B4: A] :
( ! [N3: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(nat,A,A2,N3)))
=> ( ! [N3: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),A2),aa(nat,set(nat),set_ord_atMost(nat),N3))),B4))
=> summable(A,A2) ) ) ) ).
% bounded_imp_summable
tff(fact_4349_mod__sum__eq,axiom,
! [B: $tType,A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [F2: fun(B,A),A2: A,A3: set(B)] : ( modulo_modulo(A,aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aa(A,fun(B,A),aTP_Lamp_di(fun(B,A),fun(A,fun(B,A)),F2),A2)),A3),A2) = modulo_modulo(A,aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),A3),A2) ) ) ).
% mod_sum_eq
tff(fact_4350_sum__choose__upper,axiom,
! [M: nat,N: nat] : ( aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),aTP_Lamp_dj(nat,fun(nat,nat),M)),aa(nat,set(nat),set_ord_atMost(nat),N)) = aa(nat,nat,binomial(aa(nat,nat,suc,N)),aa(nat,nat,suc,M)) ) ).
% sum_choose_upper
tff(fact_4351_norm__sum,axiom,
! [A: $tType,B: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(B,A),A3: set(B)] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),A3))),aa(set(B),real,aa(fun(B,real),fun(set(B),real),groups7311177749621191930dd_sum(B,real),aTP_Lamp_dk(fun(B,A),fun(B,real),F2)),A3))) ) ).
% norm_sum
tff(fact_4352_sum__norm__le,axiom,
! [A: $tType,B: $tType] :
( real_V822414075346904944vector(A)
=> ! [S: set(B),F2: fun(B,A),G: fun(B,real)] :
( ! [X3: B] :
( pp(member(B,X3,S))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(B,A,F2,X3))),aa(B,real,G,X3))) )
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),S))),aa(set(B),real,aa(fun(B,real),fun(set(B),real),groups7311177749621191930dd_sum(B,real),G),S))) ) ) ).
% sum_norm_le
tff(fact_4353_atMost__def,axiom,
! [A: $tType] :
( ord(A)
=> ! [U: A] : ( aa(A,set(A),set_ord_atMost(A),U) = aa(fun(A,bool),set(A),collect(A),aTP_Lamp_dl(A,fun(A,bool),U)) ) ) ).
% atMost_def
tff(fact_4354_sum__choose__lower,axiom,
! [R: nat,N: nat] : ( aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),aTP_Lamp_dm(nat,fun(nat,nat),R)),aa(nat,set(nat),set_ord_atMost(nat),N)) = aa(nat,nat,binomial(aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),R),N))),N) ) ).
% sum_choose_lower
tff(fact_4355_choose__rising__sum_I2_J,axiom,
! [N: nat,M: nat] : ( aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),aTP_Lamp_dn(nat,fun(nat,nat),N)),aa(nat,set(nat),set_ord_atMost(nat),M)) = aa(nat,nat,binomial(aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),M)),one_one(nat))),M) ) ).
% choose_rising_sum(2)
tff(fact_4356_choose__rising__sum_I1_J,axiom,
! [N: nat,M: nat] : ( aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),aTP_Lamp_dn(nat,fun(nat,nat),N)),aa(nat,set(nat),set_ord_atMost(nat),M)) = aa(nat,nat,binomial(aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),M)),one_one(nat))),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),one_one(nat))) ) ).
% choose_rising_sum(1)
tff(fact_4357_zero__polynom__imp__zero__coeffs,axiom,
! [A: $tType] :
( ( ab_semigroup_mult(A)
& real_V8999393235501362500lgebra(A) )
=> ! [C2: fun(nat,A),N: nat,K: nat] :
( ! [W2: A] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aTP_Lamp_do(fun(nat,A),fun(A,fun(nat,A)),C2),W2)),aa(nat,set(nat),set_ord_atMost(nat),N)) = zero_zero(A) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N))
=> ( aa(nat,A,C2,K) = zero_zero(A) ) ) ) ) ).
% zero_polynom_imp_zero_coeffs
tff(fact_4358_polyfun__eq__0,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra(A)
& idom(A) )
=> ! [C2: fun(nat,A),N: nat] :
( ! [X4: A] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aTP_Lamp_dh(fun(nat,A),fun(A,fun(nat,A)),C2),X4)),aa(nat,set(nat),set_ord_atMost(nat),N)) = zero_zero(A) )
<=> ! [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I4),N))
=> ( aa(nat,A,C2,I4) = zero_zero(A) ) ) ) ) ).
% polyfun_eq_0
tff(fact_4359_gbinomial__parallel__sum,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [A2: A,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_dp(A,fun(nat,A),A2)),aa(nat,set(nat),set_ord_atMost(nat),N)) = aa(nat,A,gbinomial(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(nat,A,semiring_1_of_nat(A),N))),one_one(A))),N) ) ) ).
% gbinomial_parallel_sum
tff(fact_4360_sum__choose__diagonal,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),aa(nat,fun(nat,nat),aTP_Lamp_dq(nat,fun(nat,fun(nat,nat)),M),N)),aa(nat,set(nat),set_ord_atMost(nat),M)) = aa(nat,nat,binomial(aa(nat,nat,suc,N)),M) ) ) ).
% sum_choose_diagonal
tff(fact_4361_vandermonde,axiom,
! [M: nat,N: nat,R: nat] : ( aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),aa(nat,fun(nat,nat),aa(nat,fun(nat,fun(nat,nat)),aTP_Lamp_dr(nat,fun(nat,fun(nat,fun(nat,nat))),M),N),R)),aa(nat,set(nat),set_ord_atMost(nat),R)) = aa(nat,nat,binomial(aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N)),R) ) ).
% vandermonde
tff(fact_4362_sum__gp__basic,axiom,
! [A: $tType] :
( ( monoid_mult(A)
& comm_ring(A) )
=> ! [X2: A,N: nat] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),X2)),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),power_power(A,X2)),aa(nat,set(nat),set_ord_atMost(nat),N))) = aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),aa(nat,A,power_power(A,X2),aa(nat,nat,suc,N))) ) ) ).
% sum_gp_basic
tff(fact_4363_choose__row__sum,axiom,
! [N: nat] : ( aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),binomial(N)),aa(nat,set(nat),set_ord_atMost(nat),N)) = aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N) ) ).
% choose_row_sum
tff(fact_4364_binomial,axiom,
! [A2: nat,B2: nat,N: nat] : ( aa(nat,nat,power_power(nat,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),A2),B2)),N) = aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),aa(nat,fun(nat,nat),aa(nat,fun(nat,fun(nat,nat)),aTP_Lamp_ds(nat,fun(nat,fun(nat,fun(nat,nat))),A2),B2),N)),aa(nat,set(nat),set_ord_atMost(nat),N)) ) ).
% binomial
tff(fact_4365_summable__Cauchy__product,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V4412858255891104859lgebra(A) )
=> ! [A2: fun(nat,A),B2: fun(nat,A)] :
( summable(real,aTP_Lamp_dt(fun(nat,A),fun(nat,real),A2))
=> ( summable(real,aTP_Lamp_dt(fun(nat,A),fun(nat,real),B2))
=> summable(A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_dv(fun(nat,A),fun(fun(nat,A),fun(nat,A)),A2),B2)) ) ) ) ).
% summable_Cauchy_product
tff(fact_4366_Cauchy__product,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V4412858255891104859lgebra(A) )
=> ! [A2: fun(nat,A),B2: fun(nat,A)] :
( summable(real,aTP_Lamp_dt(fun(nat,A),fun(nat,real),A2))
=> ( summable(real,aTP_Lamp_dt(fun(nat,A),fun(nat,real),B2))
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),suminf(A,A2)),suminf(A,B2)) = suminf(A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_dv(fun(nat,A),fun(fun(nat,A),fun(nat,A)),A2),B2)) ) ) ) ) ).
% Cauchy_product
tff(fact_4367_sum_Oin__pairs__0,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),aa(nat,set(nat),set_ord_atMost(nat),aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_dw(fun(nat,A),fun(nat,A),G)),aa(nat,set(nat),set_ord_atMost(nat),N)) ) ) ).
% sum.in_pairs_0
tff(fact_4368_polynomial__product,axiom,
! [A: $tType] :
( idom(A)
=> ! [M: nat,A2: fun(nat,A),N: nat,B2: fun(nat,A),X2: A] :
( ! [I3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),I3))
=> ( aa(nat,A,A2,I3) = zero_zero(A) ) )
=> ( ! [J2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),J2))
=> ( aa(nat,A,B2,J2) = zero_zero(A) ) )
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aTP_Lamp_dx(fun(nat,A),fun(A,fun(nat,A)),A2),X2)),aa(nat,set(nat),set_ord_atMost(nat),M))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aTP_Lamp_dx(fun(nat,A),fun(A,fun(nat,A)),B2),X2)),aa(nat,set(nat),set_ord_atMost(nat),N))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aa(fun(nat,A),fun(A,fun(nat,A)),aTP_Lamp_dz(fun(nat,A),fun(fun(nat,A),fun(A,fun(nat,A))),A2),B2),X2)),aa(nat,set(nat),set_ord_atMost(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N))) ) ) ) ) ).
% polynomial_product
tff(fact_4369_gbinomial__sum__lower__neg,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [A2: A,M: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_ea(A,fun(nat,A),A2)),aa(nat,set(nat),set_ord_atMost(nat),M)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),M)),aa(nat,A,gbinomial(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),one_one(A))),M)) ) ) ).
% gbinomial_sum_lower_neg
tff(fact_4370_binomial__ring,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [A2: A,B2: A,N: nat] : ( aa(nat,A,power_power(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),N) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aa(A,fun(nat,fun(nat,A)),aTP_Lamp_eb(A,fun(A,fun(nat,fun(nat,A))),A2),B2),N)),aa(nat,set(nat),set_ord_atMost(nat),N)) ) ) ).
% binomial_ring
tff(fact_4371_polynomial__product__nat,axiom,
! [M: nat,A2: fun(nat,nat),N: nat,B2: fun(nat,nat),X2: nat] :
( ! [I3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),I3))
=> ( aa(nat,nat,A2,I3) = zero_zero(nat) ) )
=> ( ! [J2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),J2))
=> ( aa(nat,nat,B2,J2) = zero_zero(nat) ) )
=> ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),aa(nat,fun(nat,nat),aTP_Lamp_ec(fun(nat,nat),fun(nat,fun(nat,nat)),A2),X2)),aa(nat,set(nat),set_ord_atMost(nat),M))),aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),aa(nat,fun(nat,nat),aTP_Lamp_ec(fun(nat,nat),fun(nat,fun(nat,nat)),B2),X2)),aa(nat,set(nat),set_ord_atMost(nat),N))) = aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),aa(nat,fun(nat,nat),aa(fun(nat,nat),fun(nat,fun(nat,nat)),aTP_Lamp_ee(fun(nat,nat),fun(fun(nat,nat),fun(nat,fun(nat,nat))),A2),B2),X2)),aa(nat,set(nat),set_ord_atMost(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N))) ) ) ) ).
% polynomial_product_nat
tff(fact_4372_choose__square__sum,axiom,
! [N: nat] : ( aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),aTP_Lamp_ef(nat,fun(nat,nat),N)),aa(nat,set(nat),set_ord_atMost(nat),N)) = aa(nat,nat,binomial(aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)),N) ) ).
% choose_square_sum
tff(fact_4373_pochhammer__binomial__sum,axiom,
! [A: $tType] :
( comm_ring_1(A)
=> ! [A2: A,B2: A,N: nat] : ( comm_s3205402744901411588hammer(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2),N) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aa(A,fun(nat,fun(nat,A)),aTP_Lamp_eg(A,fun(A,fun(nat,fun(nat,A))),A2),B2),N)),aa(nat,set(nat),set_ord_atMost(nat),N)) ) ) ).
% pochhammer_binomial_sum
tff(fact_4374_Cauchy__product__sums,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V4412858255891104859lgebra(A) )
=> ! [A2: fun(nat,A),B2: fun(nat,A)] :
( summable(real,aTP_Lamp_dt(fun(nat,A),fun(nat,real),A2))
=> ( summable(real,aTP_Lamp_dt(fun(nat,A),fun(nat,real),B2))
=> sums(A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_dv(fun(nat,A),fun(fun(nat,A),fun(nat,A)),A2),B2),aa(A,A,aa(A,fun(A,A),times_times(A),suminf(A,A2)),suminf(A,B2))) ) ) ) ).
% Cauchy_product_sums
tff(fact_4375_sum__power__add,axiom,
! [A: $tType] :
( ( monoid_mult(A)
& comm_ring(A) )
=> ! [X2: A,M: nat,I5: set(nat)] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aTP_Lamp_eh(A,fun(nat,fun(nat,A)),X2),M)),I5) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,X2),M)),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),power_power(A,X2)),I5)) ) ) ).
% sum_power_add
tff(fact_4376_sum_Ozero__middle,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [P2: nat,K: nat,G: fun(nat,A),H: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),one_one(nat)),P2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),P2))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(fun(nat,A),fun(nat,A),aa(fun(nat,A),fun(fun(nat,A),fun(nat,A)),aTP_Lamp_ei(nat,fun(fun(nat,A),fun(fun(nat,A),fun(nat,A))),K),G),H)),aa(nat,set(nat),set_ord_atMost(nat),P2)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(fun(nat,A),fun(nat,A),aa(fun(nat,A),fun(fun(nat,A),fun(nat,A)),aTP_Lamp_ej(nat,fun(fun(nat,A),fun(fun(nat,A),fun(nat,A))),K),G),H)),aa(nat,set(nat),set_ord_atMost(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),P2),aa(nat,nat,suc,zero_zero(nat))))) ) ) ) ) ).
% sum.zero_middle
tff(fact_4377_gbinomial__partial__sum__poly,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [M: nat,A2: A,X2: A,Y: A] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aa(A,fun(A,fun(nat,A)),aa(A,fun(A,fun(A,fun(nat,A))),aTP_Lamp_ek(nat,fun(A,fun(A,fun(A,fun(nat,A)))),M),A2),X2),Y)),aa(nat,set(nat),set_ord_atMost(nat),M)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aa(A,fun(A,fun(nat,A)),aa(A,fun(A,fun(A,fun(nat,A))),aTP_Lamp_el(nat,fun(A,fun(A,fun(A,fun(nat,A)))),M),A2),X2),Y)),aa(nat,set(nat),set_ord_atMost(nat),M)) ) ) ).
% gbinomial_partial_sum_poly
tff(fact_4378_exp__series__add__commuting,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A,Y: A,N: nat] :
( ( aa(A,A,aa(A,fun(A,A),times_times(A),X2),Y) = aa(A,A,aa(A,fun(A,A),times_times(A),Y),X2) )
=> ( aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),semiring_char_0_fact(real,N))),aa(nat,A,power_power(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)),N)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aa(A,fun(nat,fun(nat,A)),aTP_Lamp_em(A,fun(A,fun(nat,fun(nat,A))),X2),Y),N)),aa(nat,set(nat),set_ord_atMost(nat),N)) ) ) ) ).
% exp_series_add_commuting
tff(fact_4379_root__polyfun,axiom,
! [A: $tType] :
( idom(A)
=> ! [N: nat,Z: A,A2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),one_one(nat)),N))
=> ( ( aa(nat,A,power_power(A,Z),N) = A2 )
<=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aa(A,fun(A,fun(nat,A)),aTP_Lamp_en(nat,fun(A,fun(A,fun(nat,A))),N),Z),A2)),aa(nat,set(nat),set_ord_atMost(nat),N)) = zero_zero(A) ) ) ) ) ).
% root_polyfun
tff(fact_4380_sum__gp0,axiom,
! [A: $tType] :
( ( division_ring(A)
& comm_ring(A) )
=> ! [X2: A,N: nat] :
( ( ( X2 = one_one(A) )
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),power_power(A,X2)),aa(nat,set(nat),set_ord_atMost(nat),N)) = aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),one_one(nat))) ) )
& ( ( X2 != one_one(A) )
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),power_power(A,X2)),aa(nat,set(nat),set_ord_atMost(nat),N)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),aa(nat,A,power_power(A,X2),aa(nat,nat,suc,N)))),aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),X2)) ) ) ) ) ).
% sum_gp0
tff(fact_4381_choose__alternating__linear__sum,axiom,
! [A: $tType] :
( comm_ring_1(A)
=> ! [N: nat] :
( ( N != one_one(nat) )
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_eo(nat,fun(nat,A),N)),aa(nat,set(nat),set_ord_atMost(nat),N)) = zero_zero(A) ) ) ) ).
% choose_alternating_linear_sum
tff(fact_4382_gbinomial__sum__nat__pow2,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [M: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_ep(nat,fun(nat,A),M)),aa(nat,set(nat),set_ord_atMost(nat),M)) = aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),M) ) ) ).
% gbinomial_sum_nat_pow2
tff(fact_4383_gbinomial__partial__sum__poly__xpos,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [M: nat,A2: A,X2: A,Y: A] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aa(A,fun(A,fun(nat,A)),aa(A,fun(A,fun(A,fun(nat,A))),aTP_Lamp_ek(nat,fun(A,fun(A,fun(A,fun(nat,A)))),M),A2),X2),Y)),aa(nat,set(nat),set_ord_atMost(nat),M)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aa(A,fun(A,fun(nat,A)),aa(A,fun(A,fun(A,fun(nat,A))),aTP_Lamp_eq(nat,fun(A,fun(A,fun(A,fun(nat,A)))),M),A2),X2),Y)),aa(nat,set(nat),set_ord_atMost(nat),M)) ) ) ).
% gbinomial_partial_sum_poly_xpos
tff(fact_4384_binomial__r__part__sum,axiom,
! [M: nat] : ( aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),binomial(aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),M)),one_one(nat)))),aa(nat,set(nat),set_ord_atMost(nat),M)) = aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),M)) ) ).
% binomial_r_part_sum
tff(fact_4385_choose__linear__sum,axiom,
! [N: nat] : ( aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),aTP_Lamp_er(nat,fun(nat,nat),N)),aa(nat,set(nat),set_ord_atMost(nat),N)) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat)))) ) ).
% choose_linear_sum
tff(fact_4386_choose__alternating__sum,axiom,
! [A: $tType] :
( comm_ring_1(A)
=> ! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_es(nat,fun(nat,A),N)),aa(nat,set(nat),set_ord_atMost(nat),N)) = zero_zero(A) ) ) ) ).
% choose_alternating_sum
tff(fact_4387_polyfun__extremal__lemma,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [E: real,C2: fun(nat,A),N: nat] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),E))
=> ? [M9: real] :
! [Z2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),M9),real_V7770717601297561774m_norm(A,Z2)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aTP_Lamp_bf(fun(nat,A),fun(A,fun(nat,A)),C2),Z2)),aa(nat,set(nat),set_ord_atMost(nat),N)))),aa(real,real,aa(real,fun(real,real),times_times(real),E),aa(nat,real,power_power(real,real_V7770717601297561774m_norm(A,Z2)),aa(nat,nat,suc,N))))) ) ) ) ).
% polyfun_extremal_lemma
tff(fact_4388_gbinomial__r__part__sum,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [M: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),gbinomial(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(nat,A,semiring_1_of_nat(A),M))),one_one(A)))),aa(nat,set(nat),set_ord_atMost(nat),M)) = aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),M)) ) ) ).
% gbinomial_r_part_sum
tff(fact_4389_choose__even__sum,axiom,
! [A: $tType] :
( comm_ring_1(A)
=> ! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_et(nat,fun(nat,A),N)),aa(nat,set(nat),set_ord_atMost(nat),N))) = aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N) ) ) ) ).
% choose_even_sum
tff(fact_4390_choose__odd__sum,axiom,
! [A: $tType] :
( comm_ring_1(A)
=> ! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_eu(nat,fun(nat,A),N)),aa(nat,set(nat),set_ord_atMost(nat),N))) = aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N) ) ) ) ).
% choose_odd_sum
tff(fact_4391_gbinomial__partial__row__sum,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [A2: A,M: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_ev(A,fun(nat,A),A2)),aa(nat,set(nat),set_ord_atMost(nat),M)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,semiring_1_of_nat(A),M)),one_one(A))),aa(num,A,numeral_numeral(A),bit0(one2)))),aa(nat,A,gbinomial(A,A2),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),one_one(nat)))) ) ) ).
% gbinomial_partial_row_sum
tff(fact_4392_mask__eq__sum__exp,axiom,
! [A: $tType] :
( semiring_parity(A)
=> ! [N: nat] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)),one_one(A)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),power_power(A,aa(num,A,numeral_numeral(A),bit0(one2)))),aa(fun(nat,bool),set(nat),collect(nat),aa(nat,fun(nat,bool),aTP_Lamp_ew(nat,fun(nat,bool)),N))) ) ) ).
% mask_eq_sum_exp
tff(fact_4393_mask__eq__sum__exp__nat,axiom,
! [N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N)),aa(nat,nat,suc,zero_zero(nat))) = aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(fun(nat,bool),set(nat),collect(nat),aa(nat,fun(nat,bool),aTP_Lamp_ew(nat,fun(nat,bool)),N))) ) ).
% mask_eq_sum_exp_nat
tff(fact_4394_cos__x__cos__y,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A,Y: A] : sums(A,aa(A,fun(nat,A),aTP_Lamp_ey(A,fun(A,fun(nat,A)),X2),Y),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,cos(A),X2)),aa(A,A,cos(A),Y))) ) ).
% cos_x_cos_y
tff(fact_4395_sum__abs__ge__zero,axiom,
! [B: $tType,A: $tType] :
( ordere166539214618696060dd_abs(B)
=> ! [F2: fun(A,B),A3: set(A)] : pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),zero_zero(B)),aa(set(A),B,aa(fun(A,B),fun(set(A),B),groups7311177749621191930dd_sum(A,B),aTP_Lamp_ez(fun(A,B),fun(A,B),F2)),A3))) ) ).
% sum_abs_ge_zero
tff(fact_4396_sum__abs,axiom,
! [B: $tType,A: $tType] :
( ordere166539214618696060dd_abs(B)
=> ! [F2: fun(A,B),A3: set(A)] : pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),aa(B,B,abs_abs(B),aa(set(A),B,aa(fun(A,B),fun(set(A),B),groups7311177749621191930dd_sum(A,B),F2),A3))),aa(set(A),B,aa(fun(A,B),fun(set(A),B),groups7311177749621191930dd_sum(A,B),aTP_Lamp_ez(fun(A,B),fun(A,B),F2)),A3))) ) ).
% sum_abs
tff(fact_4397_convex__sum__bound__le,axiom,
! [A: $tType,B: $tType] :
( linordered_idom(B)
=> ! [I5: set(A),X2: fun(A,B),A2: fun(A,B),B2: B,Delta: B] :
( ! [I3: A] :
( pp(member(A,I3,I5))
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),zero_zero(B)),aa(A,B,X2,I3))) )
=> ( ( aa(set(A),B,aa(fun(A,B),fun(set(A),B),groups7311177749621191930dd_sum(A,B),X2),I5) = one_one(B) )
=> ( ! [I3: A] :
( pp(member(A,I3,I5))
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),aa(B,B,abs_abs(B),aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(A,B,A2,I3)),B2))),Delta)) )
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),aa(B,B,abs_abs(B),aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(set(A),B,aa(fun(A,B),fun(set(A),B),groups7311177749621191930dd_sum(A,B),aa(fun(A,B),fun(A,B),aTP_Lamp_fa(fun(A,B),fun(fun(A,B),fun(A,B)),X2),A2)),I5)),B2))),Delta)) ) ) ) ) ).
% convex_sum_bound_le
tff(fact_4398_sum_Oneutral__const,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_add(A)
=> ! [A3: set(B)] : ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aTP_Lamp_fb(B,A)),A3) = zero_zero(A) ) ) ).
% sum.neutral_const
tff(fact_4399_of__nat__id,axiom,
! [N: nat] : ( aa(nat,nat,semiring_1_of_nat(nat),N) = N ) ).
% of_nat_id
tff(fact_4400_sum__subtractf__nat,axiom,
! [A: $tType,A3: set(A),G: fun(A,nat),F2: fun(A,nat)] :
( ! [X3: A] :
( pp(member(A,X3,A3))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(A,nat,G,X3)),aa(A,nat,F2,X3))) )
=> ( aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),aa(fun(A,nat),fun(A,nat),aTP_Lamp_fc(fun(A,nat),fun(fun(A,nat),fun(A,nat)),G),F2)),A3) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),F2),A3)),aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),G),A3)) ) ) ).
% sum_subtractf_nat
tff(fact_4401_Complex__sum_H,axiom,
! [A: $tType,F2: fun(A,real),S2: set(A)] : ( aa(set(A),complex,aa(fun(A,complex),fun(set(A),complex),groups7311177749621191930dd_sum(A,complex),aTP_Lamp_fd(fun(A,real),fun(A,complex),F2)),S2) = complex2(aa(set(A),real,aa(fun(A,real),fun(set(A),real),groups7311177749621191930dd_sum(A,real),F2),S2),zero_zero(real)) ) ).
% Complex_sum'
tff(fact_4402_int__sum,axiom,
! [B: $tType,F2: fun(B,nat),A3: set(B)] : ( aa(nat,int,semiring_1_of_nat(int),aa(set(B),nat,aa(fun(B,nat),fun(set(B),nat),groups7311177749621191930dd_sum(B,nat),F2),A3)) = aa(set(B),int,aa(fun(B,int),fun(set(B),int),groups7311177749621191930dd_sum(B,int),aTP_Lamp_fe(fun(B,nat),fun(B,int),F2)),A3) ) ).
% int_sum
tff(fact_4403_sum__SucD,axiom,
! [A: $tType,F2: fun(A,nat),A3: set(A),N: nat] :
( ( aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),F2),A3) = aa(nat,nat,suc,N) )
=> ? [X3: A] :
( pp(member(A,X3,A3))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(A,nat,F2,X3))) ) ) ).
% sum_SucD
tff(fact_4404_sum__nth__roots,axiom,
! [N: nat,C2: complex] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),one_one(nat)),N))
=> ( aa(set(complex),complex,aa(fun(complex,complex),fun(set(complex),complex),groups7311177749621191930dd_sum(complex,complex),aTP_Lamp_ff(complex,complex)),aa(fun(complex,bool),set(complex),collect(complex),aa(complex,fun(complex,bool),aTP_Lamp_fg(nat,fun(complex,fun(complex,bool)),N),C2))) = zero_zero(complex) ) ) ).
% sum_nth_roots
tff(fact_4405_sum__roots__unity,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),one_one(nat)),N))
=> ( aa(set(complex),complex,aa(fun(complex,complex),fun(set(complex),complex),groups7311177749621191930dd_sum(complex,complex),aTP_Lamp_ff(complex,complex)),aa(fun(complex,bool),set(complex),collect(complex),aTP_Lamp_fh(nat,fun(complex,bool),N))) = zero_zero(complex) ) ) ).
% sum_roots_unity
tff(fact_4406_sum_Onot__neutral__contains__not__neutral,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(B,A),A3: set(B)] :
( ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),A3) != zero_zero(A) )
=> ~ ! [A4: B] :
( pp(member(B,A4,A3))
=> ( aa(B,A,G,A4) = zero_zero(A) ) ) ) ) ).
% sum.not_neutral_contains_not_neutral
tff(fact_4407_sum_Oneutral,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_add(A)
=> ! [A3: set(B),G: fun(B,A)] :
( ! [X3: B] :
( pp(member(B,X3,A3))
=> ( aa(B,A,G,X3) = zero_zero(A) ) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),A3) = zero_zero(A) ) ) ) ).
% sum.neutral
tff(fact_4408_sum__mono,axiom,
! [A: $tType,B: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [K5: set(B),F2: fun(B,A),G: fun(B,A)] :
( ! [I3: B] :
( pp(member(B,I3,K5))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,I3)),aa(B,A,G,I3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),K5)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),K5))) ) ) ).
% sum_mono
tff(fact_4409_sum__distrib__left,axiom,
! [A: $tType,B: $tType] :
( semiring_0(A)
=> ! [R: A,F2: fun(B,A),A3: set(B)] : ( aa(A,A,aa(A,fun(A,A),times_times(A),R),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),A3)) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aa(fun(B,A),fun(B,A),aTP_Lamp_fi(A,fun(fun(B,A),fun(B,A)),R),F2)),A3) ) ) ).
% sum_distrib_left
tff(fact_4410_sum__distrib__right,axiom,
! [A: $tType,B: $tType] :
( semiring_0(A)
=> ! [F2: fun(B,A),A3: set(B),R: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),A3)),R) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aa(A,fun(B,A),aTP_Lamp_fj(fun(B,A),fun(A,fun(B,A)),F2),R)),A3) ) ) ).
% sum_distrib_right
tff(fact_4411_sum__product,axiom,
! [C: $tType,B: $tType,A: $tType] :
( semiring_0(B)
=> ! [F2: fun(A,B),A3: set(A),G: fun(C,B),B4: set(C)] : ( aa(B,B,aa(B,fun(B,B),times_times(B),aa(set(A),B,aa(fun(A,B),fun(set(A),B),groups7311177749621191930dd_sum(A,B),F2),A3)),aa(set(C),B,aa(fun(C,B),fun(set(C),B),groups7311177749621191930dd_sum(C,B),G),B4)) = aa(set(A),B,aa(fun(A,B),fun(set(A),B),groups7311177749621191930dd_sum(A,B),aa(set(C),fun(A,B),aa(fun(C,B),fun(set(C),fun(A,B)),aTP_Lamp_fl(fun(A,B),fun(fun(C,B),fun(set(C),fun(A,B))),F2),G),B4)),A3) ) ) ).
% sum_product
tff(fact_4412_sum_Odistrib,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(B,A),H: fun(B,A),A3: set(B)] : ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aa(fun(B,A),fun(B,A),aTP_Lamp_fm(fun(B,A),fun(fun(B,A),fun(B,A)),G),H)),A3) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),A3)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),H),A3)) ) ) ).
% sum.distrib
tff(fact_4413_sum__subtractf,axiom,
! [A: $tType,B: $tType] :
( ab_group_add(A)
=> ! [F2: fun(B,A),G: fun(B,A),A3: set(B)] : ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aa(fun(B,A),fun(B,A),aTP_Lamp_fn(fun(B,A),fun(fun(B,A),fun(B,A)),F2),G)),A3) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),A3)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),A3)) ) ) ).
% sum_subtractf
tff(fact_4414_sum__divide__distrib,axiom,
! [A: $tType,B: $tType] :
( field(A)
=> ! [F2: fun(B,A),A3: set(B),R: A] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),A3)),R) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aa(A,fun(B,A),aTP_Lamp_fo(fun(B,A),fun(A,fun(B,A)),F2),R)),A3) ) ) ).
% sum_divide_distrib
tff(fact_4415_sum__negf,axiom,
! [A: $tType,B: $tType] :
( ab_group_add(A)
=> ! [F2: fun(B,A),A3: set(B)] : ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aTP_Lamp_fp(fun(B,A),fun(B,A),F2)),A3) = aa(A,A,uminus_uminus(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),A3)) ) ) ).
% sum_negf
tff(fact_4416_sum__nonneg,axiom,
! [A: $tType,B: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [A3: set(B),F2: fun(B,A)] :
( ! [X3: B] :
( pp(member(B,X3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(B,A,F2,X3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),A3))) ) ) ).
% sum_nonneg
tff(fact_4417_sum__nonpos,axiom,
! [B: $tType,A: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [A3: set(B),F2: fun(B,A)] :
( ! [X3: B] :
( pp(member(B,X3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,X3)),zero_zero(A))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),A3)),zero_zero(A))) ) ) ).
% sum_nonpos
tff(fact_4418_sum__cong__Suc,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [A3: set(nat),F2: fun(nat,A),G: fun(nat,A)] :
( ~ pp(member(nat,zero_zero(nat),A3))
=> ( ! [X3: nat] :
( pp(member(nat,aa(nat,nat,suc,X3),A3))
=> ( aa(nat,A,F2,aa(nat,nat,suc,X3)) = aa(nat,A,G,aa(nat,nat,suc,X3)) ) )
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),A3) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),A3) ) ) ) ) ).
% sum_cong_Suc
tff(fact_4419_Maclaurin__minus__cos__expansion,axiom,
! [N: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),zero_zero(real)))
=> ? [T3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),T3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),T3),zero_zero(real)))
& ( aa(real,real,cos(real),X2) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aTP_Lamp_fq(real,fun(nat,real),X2)),aa(nat,set(nat),set_ord_lessThan(nat),N))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),T3),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2)))),aa(nat,real,semiring_1_of_nat(real),N))),pi)))),semiring_char_0_fact(real,N))),aa(nat,real,power_power(real,X2),N))) ) ) ) ) ).
% Maclaurin_minus_cos_expansion
tff(fact_4420_Maclaurin__cos__expansion2,axiom,
! [X2: real,N: nat] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ? [T3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),T3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),T3),X2))
& ( aa(real,real,cos(real),X2) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aTP_Lamp_fq(real,fun(nat,real),X2)),aa(nat,set(nat),set_ord_lessThan(nat),N))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),T3),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2)))),aa(nat,real,semiring_1_of_nat(real),N))),pi)))),semiring_char_0_fact(real,N))),aa(nat,real,power_power(real,X2),N))) ) ) ) ) ).
% Maclaurin_cos_expansion2
tff(fact_4421_Maclaurin__sin__expansion3,axiom,
! [N: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ? [T3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),T3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),T3),X2))
& ( sin(real,X2) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aTP_Lamp_fr(real,fun(nat,real),X2)),aa(nat,set(nat),set_ord_lessThan(nat),N))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),sin(real,aa(real,real,aa(real,fun(real,real),plus_plus(real),T3),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2)))),aa(nat,real,semiring_1_of_nat(real),N))),pi)))),semiring_char_0_fact(real,N))),aa(nat,real,power_power(real,X2),N))) ) ) ) ) ).
% Maclaurin_sin_expansion3
tff(fact_4422_Maclaurin__sin__expansion4,axiom,
! [X2: real,N: nat] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ? [T3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),T3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),T3),X2))
& ( sin(real,X2) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aTP_Lamp_fr(real,fun(nat,real),X2)),aa(nat,set(nat),set_ord_lessThan(nat),N))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),sin(real,aa(real,real,aa(real,fun(real,real),plus_plus(real),T3),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2)))),aa(nat,real,semiring_1_of_nat(real),N))),pi)))),semiring_char_0_fact(real,N))),aa(nat,real,power_power(real,X2),N))) ) ) ) ).
% Maclaurin_sin_expansion4
tff(fact_4423_lessThan__eq__iff,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X2: A,Y: A] :
( ( aa(A,set(A),set_ord_lessThan(A),X2) = aa(A,set(A),set_ord_lessThan(A),Y) )
<=> ( X2 = Y ) ) ) ).
% lessThan_eq_iff
tff(fact_4424_lessThan__iff,axiom,
! [A: $tType] :
( ord(A)
=> ! [I: A,K: A] :
( pp(member(A,I,aa(A,set(A),set_ord_lessThan(A),K)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),I),K)) ) ) ).
% lessThan_iff
tff(fact_4425_lessThan__subset__iff,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X2: A,Y: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(A,set(A),set_ord_lessThan(A),X2)),aa(A,set(A),set_ord_lessThan(A),Y)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y)) ) ) ).
% lessThan_subset_iff
tff(fact_4426_sum_OlessThan__Suc,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),aa(nat,set(nat),set_ord_lessThan(nat),N))),aa(nat,A,G,N)) ) ) ).
% sum.lessThan_Suc
tff(fact_4427_sumr__cos__zero__one,axiom,
! [N: nat] : ( aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aTP_Lamp_fs(nat,real)),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,suc,N))) = one_one(real) ) ).
% sumr_cos_zero_one
tff(fact_4428_lessThan__def,axiom,
! [A: $tType] :
( ord(A)
=> ! [U: A] : ( aa(A,set(A),set_ord_lessThan(A),U) = aa(fun(A,bool),set(A),collect(A),aTP_Lamp_ft(A,fun(A,bool),U)) ) ) ).
% lessThan_def
tff(fact_4429_lessThan__strict__subset__iff,axiom,
! [A: $tType] :
( linorder(A)
=> ! [M: A,N: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less(set(A)),aa(A,set(A),set_ord_lessThan(A),M)),aa(A,set(A),set_ord_lessThan(A),N)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),M),N)) ) ) ).
% lessThan_strict_subset_iff
tff(fact_4430_lessThan__Suc__atMost,axiom,
! [K: nat] : ( aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,suc,K)) = aa(nat,set(nat),set_ord_atMost(nat),K) ) ).
% lessThan_Suc_atMost
tff(fact_4431_Iic__subset__Iio__iff,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A2: A,B2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(A,set(A),set_ord_atMost(A),A2)),aa(A,set(A),set_ord_lessThan(A),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) ) ) ).
% Iic_subset_Iio_iff
tff(fact_4432_sum_Onat__diff__reindex,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aTP_Lamp_fu(fun(nat,A),fun(nat,fun(nat,A)),G),N)),aa(nat,set(nat),set_ord_lessThan(nat),N)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),aa(nat,set(nat),set_ord_lessThan(nat),N)) ) ) ).
% sum.nat_diff_reindex
tff(fact_4433_sum__diff__distrib,axiom,
! [A: $tType] :
( ord(A)
=> ! [Q: fun(A,nat),P: fun(A,nat),N: A] :
( ! [X3: A] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(A,nat,Q,X3)),aa(A,nat,P,X3)))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),P),aa(A,set(A),set_ord_lessThan(A),N))),aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),Q),aa(A,set(A),set_ord_lessThan(A),N))) = aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),aa(fun(A,nat),fun(A,nat),aTP_Lamp_fv(fun(A,nat),fun(fun(A,nat),fun(A,nat)),Q),P)),aa(A,set(A),set_ord_lessThan(A),N)) ) ) ) ).
% sum_diff_distrib
tff(fact_4434_suminf__le__const,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add(A)
& topolo1944317154257567458pology(A) )
=> ! [F2: fun(nat,A),X2: A] :
( summable(A,F2)
=> ( ! [N3: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),aa(nat,set(nat),set_ord_lessThan(nat),N3))),X2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),suminf(A,F2)),X2)) ) ) ) ).
% suminf_le_const
tff(fact_4435_sumr__diff__mult__const2,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [F2: fun(nat,A),N: nat,R: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),aa(nat,set(nat),set_ord_lessThan(nat),N))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),N)),R)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aTP_Lamp_fw(fun(nat,A),fun(A,fun(nat,A)),F2),R)),aa(nat,set(nat),set_ord_lessThan(nat),N)) ) ) ).
% sumr_diff_mult_const2
tff(fact_4436_sum_OlessThan__Suc__shift,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,G,zero_zero(nat))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_df(fun(nat,A),fun(nat,A),G)),aa(nat,set(nat),set_ord_lessThan(nat),N))) ) ) ).
% sum.lessThan_Suc_shift
tff(fact_4437_sum__lessThan__telescope_H,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [F2: fun(nat,A),M: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_dg(fun(nat,A),fun(nat,A),F2)),aa(nat,set(nat),set_ord_lessThan(nat),M)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,F2,zero_zero(nat))),aa(nat,A,F2,M)) ) ) ).
% sum_lessThan_telescope'
tff(fact_4438_sum__lessThan__telescope,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [F2: fun(nat,A),M: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_fx(fun(nat,A),fun(nat,A),F2)),aa(nat,set(nat),set_ord_lessThan(nat),M)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,F2,M)),aa(nat,A,F2,zero_zero(nat))) ) ) ).
% sum_lessThan_telescope
tff(fact_4439_summableI__nonneg__bounded,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder(A)
& ordere6911136660526730532id_add(A)
& topolo1944317154257567458pology(A) )
=> ! [F2: fun(nat,A),X2: A] :
( ! [N3: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(nat,A,F2,N3)))
=> ( ! [N3: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),aa(nat,set(nat),set_ord_lessThan(nat),N3))),X2))
=> summable(A,F2) ) ) ) ).
% summableI_nonneg_bounded
tff(fact_4440_sums__iff__shift,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A),N: nat,S2: A] :
( sums(A,aa(nat,fun(nat,A),aTP_Lamp_av(fun(nat,A),fun(nat,fun(nat,A)),F2),N),S2)
<=> sums(A,F2,aa(A,A,aa(A,fun(A,A),plus_plus(A),S2),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),aa(nat,set(nat),set_ord_lessThan(nat),N)))) ) ) ).
% sums_iff_shift
tff(fact_4441_sums__split__initial__segment,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A),S2: A,N: nat] :
( sums(A,F2,S2)
=> sums(A,aa(nat,fun(nat,A),aTP_Lamp_av(fun(nat,A),fun(nat,fun(nat,A)),F2),N),aa(A,A,aa(A,fun(A,A),minus_minus(A),S2),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),aa(nat,set(nat),set_ord_lessThan(nat),N)))) ) ) ).
% sums_split_initial_segment
tff(fact_4442_sums__iff__shift_H,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A),N: nat,S2: A] :
( sums(A,aa(nat,fun(nat,A),aTP_Lamp_av(fun(nat,A),fun(nat,fun(nat,A)),F2),N),aa(A,A,aa(A,fun(A,A),minus_minus(A),S2),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),aa(nat,set(nat),set_ord_lessThan(nat),N))))
<=> sums(A,F2,S2) ) ) ).
% sums_iff_shift'
tff(fact_4443_one__diff__power__eq,axiom,
! [A: $tType] :
( ( monoid_mult(A)
& comm_ring(A) )
=> ! [X2: A,N: nat] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),aa(nat,A,power_power(A,X2),N)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),X2)),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),power_power(A,X2)),aa(nat,set(nat),set_ord_lessThan(nat),N))) ) ) ).
% one_diff_power_eq
tff(fact_4444_power__diff__1__eq,axiom,
! [A: $tType] :
( ( monoid_mult(A)
& comm_ring(A) )
=> ! [X2: A,N: nat] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,power_power(A,X2),N)),one_one(A)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),one_one(A))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),power_power(A,X2)),aa(nat,set(nat),set_ord_lessThan(nat),N))) ) ) ).
% power_diff_1_eq
tff(fact_4445_geometric__sum,axiom,
! [A: $tType] :
( field(A)
=> ! [X2: A,N: nat] :
( ( X2 != one_one(A) )
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),power_power(A,X2)),aa(nat,set(nat),set_ord_lessThan(nat),N)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,power_power(A,X2),N)),one_one(A))),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),one_one(A))) ) ) ) ).
% geometric_sum
tff(fact_4446_sum_OatMost__shift,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),aa(nat,set(nat),set_ord_atMost(nat),N)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,G,zero_zero(nat))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_df(fun(nat,A),fun(nat,A),G)),aa(nat,set(nat),set_ord_lessThan(nat),N))) ) ) ).
% sum.atMost_shift
tff(fact_4447_suminf__split__initial__segment,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A),K: nat] :
( summable(A,F2)
=> ( suminf(A,F2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),suminf(A,aa(nat,fun(nat,A),aTP_Lamp_av(fun(nat,A),fun(nat,fun(nat,A)),F2),K))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),aa(nat,set(nat),set_ord_lessThan(nat),K))) ) ) ) ).
% suminf_split_initial_segment
tff(fact_4448_suminf__minus__initial__segment,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A),K: nat] :
( summable(A,F2)
=> ( suminf(A,aa(nat,fun(nat,A),aTP_Lamp_av(fun(nat,A),fun(nat,fun(nat,A)),F2),K)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),suminf(A,F2)),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),aa(nat,set(nat),set_ord_lessThan(nat),K))) ) ) ) ).
% suminf_minus_initial_segment
tff(fact_4449_sum__less__suminf,axiom,
! [A: $tType] :
( ( ordere8940638589300402666id_add(A)
& topolo1944317154257567458pology(A) )
=> ! [F2: fun(nat,A),N: nat] :
( summable(A,F2)
=> ( ! [M3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(nat,A,F2,M3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),aa(nat,set(nat),set_ord_lessThan(nat),N))),suminf(A,F2))) ) ) ) ).
% sum_less_suminf
tff(fact_4450_sum__gp__strict,axiom,
! [A: $tType] :
( ( division_ring(A)
& comm_ring(A) )
=> ! [X2: A,N: nat] :
( ( ( X2 = one_one(A) )
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),power_power(A,X2)),aa(nat,set(nat),set_ord_lessThan(nat),N)) = aa(nat,A,semiring_1_of_nat(A),N) ) )
& ( ( X2 != one_one(A) )
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),power_power(A,X2)),aa(nat,set(nat),set_ord_lessThan(nat),N)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),aa(nat,A,power_power(A,X2),N))),aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),X2)) ) ) ) ) ).
% sum_gp_strict
tff(fact_4451_lemma__termdiff1,axiom,
! [A: $tType] :
( ( monoid_mult(A)
& comm_ring(A) )
=> ! [Z: A,H: A,M: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aa(A,fun(nat,fun(nat,A)),aTP_Lamp_fy(A,fun(A,fun(nat,fun(nat,A))),Z),H),M)),aa(nat,set(nat),set_ord_lessThan(nat),M)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aa(A,fun(nat,fun(nat,A)),aTP_Lamp_fz(A,fun(A,fun(nat,fun(nat,A))),Z),H),M)),aa(nat,set(nat),set_ord_lessThan(nat),M)) ) ) ).
% lemma_termdiff1
tff(fact_4452_power__diff__sumr2,axiom,
! [A: $tType] :
( ( monoid_mult(A)
& comm_ring(A) )
=> ! [X2: A,N: nat,Y: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,power_power(A,X2),N)),aa(nat,A,power_power(A,Y),N)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y)),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aa(nat,fun(A,fun(nat,A)),aTP_Lamp_ga(A,fun(nat,fun(A,fun(nat,A))),X2),N),Y)),aa(nat,set(nat),set_ord_lessThan(nat),N))) ) ) ).
% power_diff_sumr2
tff(fact_4453_diff__power__eq__sum,axiom,
! [A: $tType] :
( ( monoid_mult(A)
& comm_ring(A) )
=> ! [X2: A,N: nat,Y: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,power_power(A,X2),aa(nat,nat,suc,N))),aa(nat,A,power_power(A,Y),aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y)),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aa(nat,fun(A,fun(nat,A)),aTP_Lamp_gb(A,fun(nat,fun(A,fun(nat,A))),X2),N),Y)),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,suc,N)))) ) ) ).
% diff_power_eq_sum
tff(fact_4454_polyfun__linear__factor__root,axiom,
! [A: $tType] :
( idom(A)
=> ! [C2: fun(nat,A),A2: A,N: nat] :
( ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aTP_Lamp_dx(fun(nat,A),fun(A,fun(nat,A)),C2),A2)),aa(nat,set(nat),set_ord_atMost(nat),N)) = zero_zero(A) )
=> ~ ! [B3: fun(nat,A)] :
~ ! [Z2: A] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aTP_Lamp_dx(fun(nat,A),fun(A,fun(nat,A)),C2),Z2)),aa(nat,set(nat),set_ord_atMost(nat),N)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),Z2),A2)),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aTP_Lamp_dx(fun(nat,A),fun(A,fun(nat,A)),B3),Z2)),aa(nat,set(nat),set_ord_lessThan(nat),N))) ) ) ) ).
% polyfun_linear_factor_root
tff(fact_4455_polyfun__linear__factor,axiom,
! [A: $tType] :
( idom(A)
=> ! [C2: fun(nat,A),N: nat,A2: A] :
? [B3: fun(nat,A)] :
! [Z2: A] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aTP_Lamp_dx(fun(nat,A),fun(A,fun(nat,A)),C2),Z2)),aa(nat,set(nat),set_ord_atMost(nat),N)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),Z2),A2)),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aTP_Lamp_dx(fun(nat,A),fun(A,fun(nat,A)),B3),Z2)),aa(nat,set(nat),set_ord_lessThan(nat),N)))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aTP_Lamp_dx(fun(nat,A),fun(A,fun(nat,A)),C2),A2)),aa(nat,set(nat),set_ord_atMost(nat),N))) ) ) ).
% polyfun_linear_factor
tff(fact_4456_real__sum__nat__ivl__bounded2,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [N: nat,F2: fun(nat,A),K5: A,K: nat] :
( ! [P4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),P4),N))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,F2,P4)),K5)) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),K5))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),K)))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),N)),K5))) ) ) ) ).
% real_sum_nat_ivl_bounded2
tff(fact_4457_sum__less__suminf2,axiom,
! [A: $tType] :
( ( ordere8940638589300402666id_add(A)
& topolo1944317154257567458pology(A) )
=> ! [F2: fun(nat,A),N: nat,I: nat] :
( summable(A,F2)
=> ( ! [M3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(nat,A,F2,M3))) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),I))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(nat,A,F2,I)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),aa(nat,set(nat),set_ord_lessThan(nat),N))),suminf(A,F2))) ) ) ) ) ) ).
% sum_less_suminf2
tff(fact_4458_one__diff__power__eq_H,axiom,
! [A: $tType] :
( ( monoid_mult(A)
& comm_ring(A) )
=> ! [X2: A,N: nat] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),aa(nat,A,power_power(A,X2),N)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),X2)),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aTP_Lamp_gc(A,fun(nat,fun(nat,A)),X2),N)),aa(nat,set(nat),set_ord_lessThan(nat),N))) ) ) ).
% one_diff_power_eq'
tff(fact_4459_Maclaurin__zero,axiom,
! [A: $tType] :
( zero(A)
=> ! [X2: real,N: nat,Diff: fun(nat,fun(A,real))] :
( ( X2 = zero_zero(real) )
=> ( ( N != zero_zero(nat) )
=> ( aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aa(fun(nat,fun(A,real)),fun(nat,real),aTP_Lamp_gd(real,fun(fun(nat,fun(A,real)),fun(nat,real)),X2),Diff)),aa(nat,set(nat),set_ord_lessThan(nat),N)) = aa(A,real,aa(nat,fun(A,real),Diff,zero_zero(nat)),zero_zero(A)) ) ) ) ) ).
% Maclaurin_zero
tff(fact_4460_Maclaurin__lemma,axiom,
! [H: real,F2: fun(real,real),J: fun(nat,real),N: nat] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),H))
=> ? [B8: real] : ( aa(real,real,F2,H) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aa(fun(nat,real),fun(nat,real),aTP_Lamp_ge(real,fun(fun(nat,real),fun(nat,real)),H),J)),aa(nat,set(nat),set_ord_lessThan(nat),N))),aa(real,real,aa(real,fun(real,real),times_times(real),B8),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(nat,real,power_power(real,H),N)),semiring_char_0_fact(real,N)))) ) ) ).
% Maclaurin_lemma
tff(fact_4461_sum__split__even__odd,axiom,
! [F2: fun(nat,real),G: fun(nat,real),N: nat] : ( aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aa(fun(nat,real),fun(nat,real),aTP_Lamp_gf(fun(nat,real),fun(fun(nat,real),fun(nat,real)),F2),G)),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aTP_Lamp_gg(fun(nat,real),fun(nat,real),F2)),aa(nat,set(nat),set_ord_lessThan(nat),N))),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aTP_Lamp_gh(fun(nat,real),fun(nat,real),G)),aa(nat,set(nat),set_ord_lessThan(nat),N))) ) ).
% sum_split_even_odd
tff(fact_4462_Maclaurin__exp__le,axiom,
! [X2: real,N: nat] :
? [T3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),T3)),aa(real,real,abs_abs(real),X2)))
& ( aa(real,real,exp(real),X2) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aTP_Lamp_gi(real,fun(nat,real),X2)),aa(nat,set(nat),set_ord_lessThan(nat),N))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,exp(real),T3)),semiring_char_0_fact(real,N))),aa(nat,real,power_power(real,X2),N))) ) ) ).
% Maclaurin_exp_le
tff(fact_4463_polyfun__diff__alt,axiom,
! [A: $tType] :
( idom(A)
=> ! [N: nat,A2: fun(nat,A),X2: A,Y: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),one_one(nat)),N))
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aTP_Lamp_dx(fun(nat,A),fun(A,fun(nat,A)),A2),X2)),aa(nat,set(nat),set_ord_atMost(nat),N))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aTP_Lamp_dx(fun(nat,A),fun(A,fun(nat,A)),A2),Y)),aa(nat,set(nat),set_ord_atMost(nat),N))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y)),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aa(A,fun(A,fun(nat,A)),aa(fun(nat,A),fun(A,fun(A,fun(nat,A))),aTP_Lamp_gk(nat,fun(fun(nat,A),fun(A,fun(A,fun(nat,A)))),N),A2),X2),Y)),aa(nat,set(nat),set_ord_lessThan(nat),N))) ) ) ) ).
% polyfun_diff_alt
tff(fact_4464_exp__first__terms,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [X2: A,K: nat] : ( aa(A,A,exp(A),X2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_cm(A,fun(nat,A),X2)),aa(nat,set(nat),set_ord_lessThan(nat),K))),suminf(A,aa(nat,fun(nat,A),aTP_Lamp_gl(A,fun(nat,fun(nat,A)),X2),K))) ) ) ).
% exp_first_terms
tff(fact_4465_Maclaurin__sin__bound,axiom,
! [X2: real,N: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),sin(real,X2)),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aTP_Lamp_fr(real,fun(nat,real),X2)),aa(nat,set(nat),set_ord_lessThan(nat),N))))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,inverse_inverse(real),semiring_char_0_fact(real,N))),aa(nat,real,power_power(real,aa(real,real,abs_abs(real),X2)),N)))) ).
% Maclaurin_sin_bound
tff(fact_4466_sum__pos__lt__pair,axiom,
! [F2: fun(nat,real),K: nat] :
( summable(real,F2)
=> ( ! [D3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,F2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),K),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,suc,aa(nat,nat,suc,zero_zero(nat)))),D3)))),aa(nat,real,F2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),K),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,suc,aa(nat,nat,suc,zero_zero(nat)))),D3)),one_one(nat)))))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),F2),aa(nat,set(nat),set_ord_lessThan(nat),K))),suminf(real,F2))) ) ) ).
% sum_pos_lt_pair
tff(fact_4467_Maclaurin__exp__lt,axiom,
! [X2: real,N: nat] :
( ( X2 != zero_zero(real) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ? [T3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,abs_abs(real),T3)))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),T3)),aa(real,real,abs_abs(real),X2)))
& ( aa(real,real,exp(real),X2) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aTP_Lamp_gi(real,fun(nat,real),X2)),aa(nat,set(nat),set_ord_lessThan(nat),N))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,exp(real),T3)),semiring_char_0_fact(real,N))),aa(nat,real,power_power(real,X2),N))) ) ) ) ) ).
% Maclaurin_exp_lt
tff(fact_4468_Maclaurin__sin__expansion,axiom,
! [X2: real,N: nat] :
? [T3: real] : ( sin(real,X2) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aTP_Lamp_fr(real,fun(nat,real),X2)),aa(nat,set(nat),set_ord_lessThan(nat),N))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),sin(real,aa(real,real,aa(real,fun(real,real),plus_plus(real),T3),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2)))),aa(nat,real,semiring_1_of_nat(real),N))),pi)))),semiring_char_0_fact(real,N))),aa(nat,real,power_power(real,X2),N))) ) ).
% Maclaurin_sin_expansion
tff(fact_4469_lemma__termdiff2,axiom,
! [A: $tType] :
( field(A)
=> ! [H: A,Z: A,N: nat] :
( ( H != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,power_power(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),Z),H)),N)),aa(nat,A,power_power(A,Z),N))),H)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),N)),aa(nat,A,power_power(A,Z),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(nat,nat,suc,zero_zero(nat)))))) = aa(A,A,aa(A,fun(A,A),times_times(A),H),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aa(A,fun(nat,fun(nat,A)),aTP_Lamp_gn(A,fun(A,fun(nat,fun(nat,A))),H),Z),N)),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(nat,nat,suc,zero_zero(nat)))))) ) ) ) ).
% lemma_termdiff2
tff(fact_4470_Maclaurin__sin__expansion2,axiom,
! [X2: real,N: nat] :
? [T3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),T3)),aa(real,real,abs_abs(real),X2)))
& ( sin(real,X2) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aTP_Lamp_fr(real,fun(nat,real),X2)),aa(nat,set(nat),set_ord_lessThan(nat),N))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),sin(real,aa(real,real,aa(real,fun(real,real),plus_plus(real),T3),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2)))),aa(nat,real,semiring_1_of_nat(real),N))),pi)))),semiring_char_0_fact(real,N))),aa(nat,real,power_power(real,X2),N))) ) ) ).
% Maclaurin_sin_expansion2
tff(fact_4471_Maclaurin__cos__expansion,axiom,
! [X2: real,N: nat] :
? [T3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),T3)),aa(real,real,abs_abs(real),X2)))
& ( aa(real,real,cos(real),X2) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aTP_Lamp_fq(real,fun(nat,real),X2)),aa(nat,set(nat),set_ord_lessThan(nat),N))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),T3),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2)))),aa(nat,real,semiring_1_of_nat(real),N))),pi)))),semiring_char_0_fact(real,N))),aa(nat,real,power_power(real,X2),N))) ) ) ).
% Maclaurin_cos_expansion
tff(fact_4472_bij__betw__roots__unity,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> bij_betw(nat,complex,aTP_Lamp_go(nat,fun(nat,complex),N),aa(nat,set(nat),set_ord_lessThan(nat),N),aa(fun(complex,bool),set(complex),collect(complex),aTP_Lamp_fh(nat,fun(complex,bool),N))) ) ).
% bij_betw_roots_unity
tff(fact_4473_sum__gp,axiom,
! [A: $tType] :
( ( division_ring(A)
& comm_ring(A) )
=> ! [N: nat,M: nat,X2: A] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),power_power(A,X2)),set_or1337092689740270186AtMost(nat,M,N)) = zero_zero(A) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M))
=> ( ( ( X2 = one_one(A) )
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),power_power(A,X2)),set_or1337092689740270186AtMost(nat,M,N)) = aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),one_one(nat))),M)) ) )
& ( ( X2 != one_one(A) )
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),power_power(A,X2)),set_or1337092689740270186AtMost(nat,M,N)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,power_power(A,X2),M)),aa(nat,A,power_power(A,X2),aa(nat,nat,suc,N)))),aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),X2)) ) ) ) ) ) ) ).
% sum_gp
tff(fact_4474_gchoose__row__sum__weighted,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [R: A,M: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_ev(A,fun(nat,A),R)),set_or1337092689740270186AtMost(nat,zero_zero(nat),M)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,suc,M))),aa(num,A,numeral_numeral(A),bit0(one2)))),aa(nat,A,gbinomial(A,R),aa(nat,nat,suc,M))) ) ) ).
% gchoose_row_sum_weighted
tff(fact_4475_gauss__sum__from__Suc__0,axiom,
! [A: $tType] :
( euclid5411537665997757685th_nat(A)
=> ! [N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),semiring_1_of_nat(A)),set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,zero_zero(nat)),N)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),N)),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,semiring_1_of_nat(A),N)),one_one(A)))),aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ).
% gauss_sum_from_Suc_0
tff(fact_4476_atLeastAtMost__iff,axiom,
! [A: $tType] :
( ord(A)
=> ! [I: A,L: A,U: A] :
( pp(member(A,I,set_or1337092689740270186AtMost(A,L,U)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L),I))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),I),U)) ) ) ) ).
% atLeastAtMost_iff
tff(fact_4477_Icc__eq__Icc,axiom,
! [A: $tType] :
( order(A)
=> ! [L: A,H: A,L4: A,H2: A] :
( ( set_or1337092689740270186AtMost(A,L,H) = set_or1337092689740270186AtMost(A,L4,H2) )
<=> ( ( ( L = L4 )
& ( H = H2 ) )
| ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L),H))
& ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L4),H2)) ) ) ) ) ).
% Icc_eq_Icc
tff(fact_4478_atLeastatMost__subset__iff,axiom,
! [A: $tType] :
( preorder(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),set_or1337092689740270186AtMost(A,A2,B2)),set_or1337092689740270186AtMost(A,C2,D2)))
<=> ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
| ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),D2)) ) ) ) ) ).
% atLeastatMost_subset_iff
tff(fact_4479_Icc__subset__Iic__iff,axiom,
! [A: $tType] :
( preorder(A)
=> ! [L: A,H: A,H2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),set_or1337092689740270186AtMost(A,L,H)),aa(A,set(A),set_ord_atMost(A),H2)))
<=> ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L),H))
| pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),H),H2)) ) ) ) ).
% Icc_subset_Iic_iff
tff(fact_4480_sum_Ocl__ivl__Suc,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [N: nat,M: nat,G: fun(nat,A)] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,N)),M))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,M,aa(nat,nat,suc,N))) = zero_zero(A) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,N)),M))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,M,aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,M,N))),aa(nat,A,G,aa(nat,nat,suc,N))) ) ) ) ) ).
% sum.cl_ivl_Suc
tff(fact_4481_not__Iic__eq__Icc,axiom,
! [A: $tType] :
( no_bot(A)
=> ! [H2: A,L: A,H: A] : ( aa(A,set(A),set_ord_atMost(A),H2) != set_or1337092689740270186AtMost(A,L,H) ) ) ).
% not_Iic_eq_Icc
tff(fact_4482_not__Iic__le__Icc,axiom,
! [A: $tType] :
( no_bot(A)
=> ! [H: A,L4: A,H2: A] : ~ pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(A,set(A),set_ord_atMost(A),H)),set_or1337092689740270186AtMost(A,L4,H2))) ) ).
% not_Iic_le_Icc
tff(fact_4483_ex__nat__less,axiom,
! [N: nat,P: fun(nat,bool)] :
( ? [M6: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M6),N))
& pp(aa(nat,bool,P,M6)) )
<=> ? [X4: nat] :
( pp(member(nat,X4,set_or1337092689740270186AtMost(nat,zero_zero(nat),N)))
& pp(aa(nat,bool,P,X4)) ) ) ).
% ex_nat_less
tff(fact_4484_all__nat__less,axiom,
! [N: nat,P: fun(nat,bool)] :
( ! [M6: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M6),N))
=> pp(aa(nat,bool,P,M6)) )
<=> ! [X4: nat] :
( pp(member(nat,X4,set_or1337092689740270186AtMost(nat,zero_zero(nat),N)))
=> pp(aa(nat,bool,P,X4)) ) ) ).
% all_nat_less
tff(fact_4485_atMost__atLeast0,axiom,
! [N: nat] : ( aa(nat,set(nat),set_ord_atMost(nat),N) = set_or1337092689740270186AtMost(nat,zero_zero(nat),N) ) ).
% atMost_atLeast0
tff(fact_4486_sum_Oshift__bounds__cl__Suc__ivl,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),M: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,M),aa(nat,nat,suc,N))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_df(fun(nat,A),fun(nat,A),G)),set_or1337092689740270186AtMost(nat,M,N)) ) ) ).
% sum.shift_bounds_cl_Suc_ivl
tff(fact_4487_sum_Oshift__bounds__cl__nat__ivl,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),M: nat,K: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),K),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),K))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aTP_Lamp_gp(fun(nat,A),fun(nat,fun(nat,A)),G),K)),set_or1337092689740270186AtMost(nat,M,N)) ) ) ).
% sum.shift_bounds_cl_nat_ivl
tff(fact_4488_atLeastatMost__psubset__iff,axiom,
! [A: $tType] :
( preorder(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less(set(A)),set_or1337092689740270186AtMost(A,A2,B2)),set_or1337092689740270186AtMost(A,C2,D2)))
<=> ( ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
| ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),D2))
& ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),A2))
| pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),D2)) ) ) )
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),D2)) ) ) ) ).
% atLeastatMost_psubset_iff
tff(fact_4489_sum_OatLeastAtMost__rev,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),N: nat,M: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,N,M)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aa(nat,fun(nat,fun(nat,A)),aTP_Lamp_gq(fun(nat,A),fun(nat,fun(nat,fun(nat,A))),G),N),M)),set_or1337092689740270186AtMost(nat,N,M)) ) ) ).
% sum.atLeastAtMost_rev
tff(fact_4490_sum__shift__lb__Suc0__0,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [F2: fun(nat,A),K: nat] :
( ( aa(nat,A,F2,zero_zero(nat)) = zero_zero(A) )
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,zero_zero(nat)),K)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),set_or1337092689740270186AtMost(nat,zero_zero(nat),K)) ) ) ) ).
% sum_shift_lb_Suc0_0
tff(fact_4491_sum_OatLeast0__atMost__Suc,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,zero_zero(nat),aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,zero_zero(nat),N))),aa(nat,A,G,aa(nat,nat,suc,N))) ) ) ).
% sum.atLeast0_atMost_Suc
tff(fact_4492_sum_OatLeast__Suc__atMost,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [M: nat,N: nat,G: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,M,N)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,G,M)),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,M),N))) ) ) ) ).
% sum.atLeast_Suc_atMost
tff(fact_4493_sum_Onat__ivl__Suc_H,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [M: nat,N: nat,G: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),aa(nat,nat,suc,N)))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,M,aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,G,aa(nat,nat,suc,N))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,M,N))) ) ) ) ).
% sum.nat_ivl_Suc'
tff(fact_4494_sum_OSuc__reindex__ivl,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [M: nat,N: nat,G: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,M,N))),aa(nat,A,G,aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,G,M)),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_df(fun(nat,A),fun(nat,A),G)),set_or1337092689740270186AtMost(nat,M,N))) ) ) ) ).
% sum.Suc_reindex_ivl
tff(fact_4495_sum__Suc__diff,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [M: nat,N: nat,F2: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),aa(nat,nat,suc,N)))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_fx(fun(nat,A),fun(nat,A),F2)),set_or1337092689740270186AtMost(nat,M,N)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,F2,aa(nat,nat,suc,N))),aa(nat,A,F2,M)) ) ) ) ).
% sum_Suc_diff
tff(fact_4496_sum_OatLeast1__atMost__eq,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,zero_zero(nat)),N)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_df(fun(nat,A),fun(nat,A),G)),aa(nat,set(nat),set_ord_lessThan(nat),N)) ) ) ).
% sum.atLeast1_atMost_eq
tff(fact_4497_sum__bounds__lt__plus1,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [F2: fun(nat,A),Mm: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_df(fun(nat,A),fun(nat,A),F2)),aa(nat,set(nat),set_ord_lessThan(nat),Mm)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),set_or1337092689740270186AtMost(nat,one_one(nat),Mm)) ) ) ).
% sum_bounds_lt_plus1
tff(fact_4498_sum_Onested__swap_H,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [A2: fun(nat,fun(nat,A)),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_gr(fun(nat,fun(nat,A)),fun(nat,A),A2)),aa(nat,set(nat),set_ord_atMost(nat),N)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aTP_Lamp_gt(fun(nat,fun(nat,A)),fun(nat,fun(nat,A)),A2),N)),aa(nat,set(nat),set_ord_lessThan(nat),N)) ) ) ).
% sum.nested_swap'
tff(fact_4499_sum__atLeastAtMost__code,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [F2: fun(nat,A),A2: nat,B2: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),set_or1337092689740270186AtMost(nat,A2,B2)) = set_fo6178422350223883121st_nat(A,aTP_Lamp_gu(fun(nat,A),fun(nat,fun(A,A)),F2),A2,B2,zero_zero(A)) ) ) ).
% sum_atLeastAtMost_code
tff(fact_4500_sum_Oub__add__nat,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [M: nat,N: nat,G: fun(nat,A),P2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),one_one(nat))))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,M,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),P2))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,M,N))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),one_one(nat)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),P2)))) ) ) ) ).
% sum.ub_add_nat
tff(fact_4501_sum__up__index__split,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [F2: fun(nat,A),M: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),aa(nat,set(nat),set_ord_atMost(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),aa(nat,set(nat),set_ord_atMost(nat),M))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,M),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N)))) ) ) ).
% sum_up_index_split
tff(fact_4502_sum__natinterval__diff,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [M: nat,N: nat,F2: fun(nat,A)] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_gv(fun(nat,A),fun(nat,A),F2)),set_or1337092689740270186AtMost(nat,M,N)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,F2,M)),aa(nat,A,F2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),one_one(nat)))) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_gv(fun(nat,A),fun(nat,A),F2)),set_or1337092689740270186AtMost(nat,M,N)) = zero_zero(A) ) ) ) ) ).
% sum_natinterval_diff
tff(fact_4503_sum__telescope_H_H,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [M: nat,N: nat,F2: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_gw(fun(nat,A),fun(nat,A),F2)),set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,M),N)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,F2,N)),aa(nat,A,F2,M)) ) ) ) ).
% sum_telescope''
tff(fact_4504_sum__power__shift,axiom,
! [A: $tType] :
( ( monoid_mult(A)
& comm_ring(A) )
=> ! [M: nat,N: nat,X2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),power_power(A,X2)),set_or1337092689740270186AtMost(nat,M,N)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,X2),M)),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),power_power(A,X2)),aa(nat,set(nat),set_ord_atMost(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M)))) ) ) ) ).
% sum_power_shift
tff(fact_4505_summable__partial__sum__bound,axiom,
! [A: $tType] :
( real_Vector_banach(A)
=> ! [F2: fun(nat,A),E: real] :
( summable(A,F2)
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),E))
=> ~ ! [N9: nat] :
~ ! [M2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N9),M2))
=> ! [N7: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),set_or1337092689740270186AtMost(nat,M2,N7)))),E)) ) ) ) ) ).
% summable_partial_sum_bound
tff(fact_4506_sum__gp__multiplied,axiom,
! [A: $tType] :
( ( monoid_mult(A)
& comm_ring(A) )
=> ! [M: nat,N: nat,X2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),X2)),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),power_power(A,X2)),set_or1337092689740270186AtMost(nat,M,N))) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,power_power(A,X2),M)),aa(nat,A,power_power(A,X2),aa(nat,nat,suc,N))) ) ) ) ).
% sum_gp_multiplied
tff(fact_4507_sum_Oin__pairs,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),M: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),M),aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_dw(fun(nat,A),fun(nat,A),G)),set_or1337092689740270186AtMost(nat,M,N)) ) ) ).
% sum.in_pairs
tff(fact_4508_polyfun__eq__const,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra(A)
& idom(A) )
=> ! [C2: fun(nat,A),N: nat,K: A] :
( ! [X4: A] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aTP_Lamp_dh(fun(nat,A),fun(A,fun(nat,A)),C2),X4)),aa(nat,set(nat),set_ord_atMost(nat),N)) = K )
<=> ( ( aa(nat,A,C2,zero_zero(nat)) = K )
& ! [X4: nat] :
( pp(member(nat,X4,set_or1337092689740270186AtMost(nat,one_one(nat),N)))
=> ( aa(nat,A,C2,X4) = zero_zero(A) ) ) ) ) ) ).
% polyfun_eq_const
tff(fact_4509_gbinomial__sum__up__index,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [K: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_gx(nat,fun(nat,A),K)),set_or1337092689740270186AtMost(nat,zero_zero(nat),N)) = aa(nat,A,gbinomial(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,semiring_1_of_nat(A),N)),one_one(A))),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),K),one_one(nat))) ) ) ).
% gbinomial_sum_up_index
tff(fact_4510_gauss__sum__nat,axiom,
! [N: nat] : ( aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),aTP_Lamp_gy(nat,nat)),set_or1337092689740270186AtMost(nat,zero_zero(nat),N)) = aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),aa(nat,nat,suc,N))),aa(num,nat,numeral_numeral(nat),bit0(one2))) ) ).
% gauss_sum_nat
tff(fact_4511_double__arith__series,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [A2: A,D2: A,N: nat] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aTP_Lamp_gz(A,fun(A,fun(nat,A)),A2),D2)),set_or1337092689740270186AtMost(nat,zero_zero(nat),N))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,semiring_1_of_nat(A),N)),one_one(A))),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),N)),D2))) ) ) ).
% double_arith_series
tff(fact_4512_double__gauss__sum,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [N: nat] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),semiring_1_of_nat(A)),set_or1337092689740270186AtMost(nat,zero_zero(nat),N))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),N)),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,semiring_1_of_nat(A),N)),one_one(A))) ) ) ).
% double_gauss_sum
tff(fact_4513_arith__series__nat,axiom,
! [A2: nat,D2: nat,N: nat] : ( aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),aa(nat,fun(nat,nat),aTP_Lamp_ha(nat,fun(nat,fun(nat,nat)),A2),D2)),set_or1337092689740270186AtMost(nat,zero_zero(nat),N)) = aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,suc,N)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),A2)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),D2)))),aa(num,nat,numeral_numeral(nat),bit0(one2))) ) ).
% arith_series_nat
tff(fact_4514_Sum__Icc__nat,axiom,
! [M: nat,N: nat] : ( aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),aTP_Lamp_gy(nat,nat)),set_or1337092689740270186AtMost(nat,M,N)) = aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),one_one(nat)))),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),one_one(nat))))),aa(num,nat,numeral_numeral(nat),bit0(one2))) ) ).
% Sum_Icc_nat
tff(fact_4515_arith__series,axiom,
! [A: $tType] :
( euclid5411537665997757685th_nat(A)
=> ! [A2: A,D2: A,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aTP_Lamp_hb(A,fun(A,fun(nat,A)),A2),D2)),set_or1337092689740270186AtMost(nat,zero_zero(nat),N)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,semiring_1_of_nat(A),N)),one_one(A))),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),N)),D2)))),aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ).
% arith_series
tff(fact_4516_gauss__sum,axiom,
! [A: $tType] :
( euclid5411537665997757685th_nat(A)
=> ! [N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),semiring_1_of_nat(A)),set_or1337092689740270186AtMost(nat,zero_zero(nat),N)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),N)),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,semiring_1_of_nat(A),N)),one_one(A)))),aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ).
% gauss_sum
tff(fact_4517_double__gauss__sum__from__Suc__0,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [N: nat] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),semiring_1_of_nat(A)),set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,zero_zero(nat)),N))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),N)),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,semiring_1_of_nat(A),N)),one_one(A))) ) ) ).
% double_gauss_sum_from_Suc_0
tff(fact_4518_sum__gp__offset,axiom,
! [A: $tType] :
( ( division_ring(A)
& comm_ring(A) )
=> ! [X2: A,M: nat,N: nat] :
( ( ( X2 = one_one(A) )
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),power_power(A,X2)),set_or1337092689740270186AtMost(nat,M,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,semiring_1_of_nat(A),N)),one_one(A)) ) )
& ( ( X2 != one_one(A) )
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),power_power(A,X2)),set_or1337092689740270186AtMost(nat,M,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N))) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,X2),M)),aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),aa(nat,A,power_power(A,X2),aa(nat,nat,suc,N))))),aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),X2)) ) ) ) ) ).
% sum_gp_offset
tff(fact_4519_polyfun__diff,axiom,
! [A: $tType] :
( idom(A)
=> ! [N: nat,A2: fun(nat,A),X2: A,Y: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),one_one(nat)),N))
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aTP_Lamp_dx(fun(nat,A),fun(A,fun(nat,A)),A2),X2)),aa(nat,set(nat),set_ord_atMost(nat),N))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aTP_Lamp_dx(fun(nat,A),fun(A,fun(nat,A)),A2),Y)),aa(nat,set(nat),set_ord_atMost(nat),N))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y)),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aa(A,fun(A,fun(nat,A)),aa(fun(nat,A),fun(A,fun(A,fun(nat,A))),aTP_Lamp_hd(nat,fun(fun(nat,A),fun(A,fun(A,fun(nat,A)))),N),A2),X2),Y)),aa(nat,set(nat),set_ord_lessThan(nat),N))) ) ) ) ).
% polyfun_diff
tff(fact_4520_pochhammer__times__pochhammer__half,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [Z: A,N: nat] : ( aa(A,A,aa(A,fun(A,A),times_times(A),comm_s3205402744901411588hammer(A,Z,aa(nat,nat,suc,N))),comm_s3205402744901411588hammer(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),Z),aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(num,A,numeral_numeral(A),bit0(one2)))),aa(nat,nat,suc,N))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aTP_Lamp_he(A,fun(nat,A),Z)),set_or1337092689740270186AtMost(nat,zero_zero(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)),one_one(nat)))) ) ) ).
% pochhammer_times_pochhammer_half
tff(fact_4521_length__product__lists,axiom,
! [B: $tType,Xss: list(list(B))] : ( aa(list(list(B)),nat,size_size(list(list(B))),product_lists(B,Xss)) = aa(nat,nat,foldr(nat,nat,times_times(nat),aa(list(list(B)),list(nat),map(list(B),nat,size_size(list(B))),Xss)),one_one(nat)) ) ).
% length_product_lists
tff(fact_4522_vebt__buildup_Opelims,axiom,
! [X2: nat,Y: vEBT_VEBT] :
( ( vEBT_vebt_buildup(X2) = Y )
=> ( pp(aa(nat,bool,accp(nat,vEBT_v4011308405150292612up_rel),X2))
=> ( ( ( X2 = zero_zero(nat) )
=> ( ( Y = vEBT_Leaf(fFalse,fFalse) )
=> ~ pp(aa(nat,bool,accp(nat,vEBT_v4011308405150292612up_rel),zero_zero(nat))) ) )
=> ( ( ( X2 = aa(nat,nat,suc,zero_zero(nat)) )
=> ( ( Y = vEBT_Leaf(fFalse,fFalse) )
=> ~ pp(aa(nat,bool,accp(nat,vEBT_v4011308405150292612up_rel),aa(nat,nat,suc,zero_zero(nat)))) ) )
=> ~ ! [Va: nat] :
( ( X2 = aa(nat,nat,suc,aa(nat,nat,suc,Va)) )
=> ( ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,suc,aa(nat,nat,suc,Va))))
=> ( Y = vEBT_Node(none(product_prod(nat,nat)),aa(nat,nat,suc,aa(nat,nat,suc,Va)),replicate(vEBT_VEBT,aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,aa(nat,nat,suc,Va))),aa(num,nat,numeral_numeral(nat),bit0(one2)))),vEBT_vebt_buildup(aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,aa(nat,nat,suc,Va))),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_vebt_buildup(aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,aa(nat,nat,suc,Va))),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,suc,aa(nat,nat,suc,Va))))
=> ( Y = vEBT_Node(none(product_prod(nat,nat)),aa(nat,nat,suc,aa(nat,nat,suc,Va)),replicate(vEBT_VEBT,aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,aa(nat,nat,suc,Va))),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_vebt_buildup(aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,aa(nat,nat,suc,Va))),aa(num,nat,numeral_numeral(nat),bit0(one2))))),vEBT_vebt_buildup(aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,aa(nat,nat,suc,Va))),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ) )
=> ~ pp(aa(nat,bool,accp(nat,vEBT_v4011308405150292612up_rel),aa(nat,nat,suc,aa(nat,nat,suc,Va)))) ) ) ) ) ) ) ).
% vebt_buildup.pelims
tff(fact_4523_divmod__algorithm__code_I6_J,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [M: num,N: num] : ( unique8689654367752047608divmod(A,aa(num,num,bit1,M),bit0(N)) = aa(product_prod(A,A),product_prod(A,A),aa(fun(A,fun(A,product_prod(A,A))),fun(product_prod(A,A),product_prod(A,A)),product_case_prod(A,A,product_prod(A,A)),aTP_Lamp_hf(A,fun(A,product_prod(A,A)))),unique8689654367752047608divmod(A,M,N)) ) ) ).
% divmod_algorithm_code(6)
tff(fact_4524_case__prod__conv,axiom,
! [B: $tType,A: $tType,C: $tType,F2: fun(B,fun(C,A)),A2: B,B2: C] : ( aa(product_prod(B,C),A,aa(fun(B,fun(C,A)),fun(product_prod(B,C),A),product_case_prod(B,C,A),F2),aa(C,product_prod(B,C),aa(B,fun(C,product_prod(B,C)),product_Pair(B,C),A2),B2)) = aa(C,A,aa(B,fun(C,A),F2,A2),B2) ) ).
% case_prod_conv
tff(fact_4525_prod_Oneutral__const,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_mult(A)
=> ! [A3: set(B)] : ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),aTP_Lamp_hg(B,A)),A3) = one_one(A) ) ) ).
% prod.neutral_const
tff(fact_4526_of__nat__prod,axiom,
! [A: $tType,B: $tType] :
( comm_semiring_1(A)
=> ! [F2: fun(B,nat),A3: set(B)] : ( aa(nat,A,semiring_1_of_nat(A),aa(set(B),nat,aa(fun(B,nat),fun(set(B),nat),groups7121269368397514597t_prod(B,nat),F2),A3)) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),aTP_Lamp_hh(fun(B,nat),fun(B,A),F2)),A3) ) ) ).
% of_nat_prod
tff(fact_4527_prod_OlessThan__Suc,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),aa(nat,set(nat),set_ord_lessThan(nat),N))),aa(nat,A,G,N)) ) ) ).
% prod.lessThan_Suc
tff(fact_4528_prod_OatMost__Suc,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),aa(nat,set(nat),set_ord_atMost(nat),aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),aa(nat,set(nat),set_ord_atMost(nat),N))),aa(nat,A,G,aa(nat,nat,suc,N))) ) ) ).
% prod.atMost_Suc
tff(fact_4529_prod_Ocl__ivl__Suc,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [N: nat,M: nat,G: fun(nat,A)] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,N)),M))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,M,aa(nat,nat,suc,N))) = one_one(A) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,N)),M))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,M,aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,M,N))),aa(nat,A,G,aa(nat,nat,suc,N))) ) ) ) ) ).
% prod.cl_ivl_Suc
tff(fact_4530_divmod__algorithm__code_I5_J,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [M: num,N: num] : ( unique8689654367752047608divmod(A,bit0(M),bit0(N)) = aa(product_prod(A,A),product_prod(A,A),aa(fun(A,fun(A,product_prod(A,A))),fun(product_prod(A,A),product_prod(A,A)),product_case_prod(A,A,product_prod(A,A)),aTP_Lamp_hi(A,fun(A,product_prod(A,A)))),unique8689654367752047608divmod(A,M,N)) ) ) ).
% divmod_algorithm_code(5)
tff(fact_4531_prod_Oneutral,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_mult(A)
=> ! [A3: set(B),G: fun(B,A)] :
( ! [X3: B] :
( pp(member(B,X3,A3))
=> ( aa(B,A,G,X3) = one_one(A) ) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),A3) = one_one(A) ) ) ) ).
% prod.neutral
tff(fact_4532_prod_Onot__neutral__contains__not__neutral,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(B,A),A3: set(B)] :
( ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),A3) != one_one(A) )
=> ~ ! [A4: B] :
( pp(member(B,A4,A3))
=> ( aa(B,A,G,A4) = one_one(A) ) ) ) ) ).
% prod.not_neutral_contains_not_neutral
tff(fact_4533_prod_Odistrib,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(B,A),H: fun(B,A),A3: set(B)] : ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),aa(fun(B,A),fun(B,A),aTP_Lamp_hj(fun(B,A),fun(fun(B,A),fun(B,A)),G),H)),A3) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),A3)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),H),A3)) ) ) ).
% prod.distrib
tff(fact_4534_prod__power__distrib,axiom,
! [B: $tType,A: $tType] :
( comm_semiring_1(B)
=> ! [F2: fun(A,B),A3: set(A),N: nat] : ( aa(nat,B,power_power(B,aa(set(A),B,aa(fun(A,B),fun(set(A),B),groups7121269368397514597t_prod(A,B),F2),A3)),N) = aa(set(A),B,aa(fun(A,B),fun(set(A),B),groups7121269368397514597t_prod(A,B),aa(nat,fun(A,B),aTP_Lamp_hk(fun(A,B),fun(nat,fun(A,B)),F2),N)),A3) ) ) ).
% prod_power_distrib
tff(fact_4535_prod__dividef,axiom,
! [A: $tType,B: $tType] :
( field(A)
=> ! [F2: fun(B,A),G: fun(B,A),A3: set(B)] : ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),aa(fun(B,A),fun(B,A),aTP_Lamp_hl(fun(B,A),fun(fun(B,A),fun(B,A)),F2),G)),A3) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),F2),A3)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),A3)) ) ) ).
% prod_dividef
tff(fact_4536_cond__case__prod__eta,axiom,
! [C: $tType,B: $tType,A: $tType,F2: fun(A,fun(B,C)),G: fun(product_prod(A,B),C)] :
( ! [X3: A,Y3: B] : ( aa(B,C,aa(A,fun(B,C),F2,X3),Y3) = aa(product_prod(A,B),C,G,aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X3),Y3)) )
=> ( aa(fun(A,fun(B,C)),fun(product_prod(A,B),C),product_case_prod(A,B,C),F2) = G ) ) ).
% cond_case_prod_eta
tff(fact_4537_case__prod__eta,axiom,
! [C: $tType,B: $tType,A: $tType,F2: fun(product_prod(A,B),C)] : ( aa(fun(A,fun(B,C)),fun(product_prod(A,B),C),product_case_prod(A,B,C),aTP_Lamp_hm(fun(product_prod(A,B),C),fun(A,fun(B,C)),F2)) = F2 ) ).
% case_prod_eta
tff(fact_4538_case__prodE2,axiom,
! [B: $tType,A: $tType,C: $tType,Q: fun(A,bool),P: fun(B,fun(C,A)),Z: product_prod(B,C)] :
( pp(aa(A,bool,Q,aa(product_prod(B,C),A,aa(fun(B,fun(C,A)),fun(product_prod(B,C),A),product_case_prod(B,C,A),P),Z)))
=> ~ ! [X3: B,Y3: C] :
( ( Z = aa(C,product_prod(B,C),aa(B,fun(C,product_prod(B,C)),product_Pair(B,C),X3),Y3) )
=> ~ pp(aa(A,bool,Q,aa(C,A,aa(B,fun(C,A),P,X3),Y3))) ) ) ).
% case_prodE2
tff(fact_4539_mod__prod__eq,axiom,
! [B: $tType,A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [F2: fun(B,A),A2: A,A3: set(B)] : ( modulo_modulo(A,aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),aa(A,fun(B,A),aTP_Lamp_di(fun(B,A),fun(A,fun(B,A)),F2),A2)),A3),A2) = modulo_modulo(A,aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),F2),A3),A2) ) ) ).
% mod_prod_eq
tff(fact_4540_old_Oprod_Ocase,axiom,
! [A: $tType,C: $tType,B: $tType,F2: fun(A,fun(B,C)),X1: A,X23: B] : ( aa(product_prod(A,B),C,aa(fun(A,fun(B,C)),fun(product_prod(A,B),C),product_case_prod(A,B,C),F2),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X1),X23)) = aa(B,C,aa(A,fun(B,C),F2,X1),X23) ) ).
% old.prod.case
tff(fact_4541_norm__prod__le,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [F2: fun(B,A),A3: set(B)] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),F2),A3))),aa(set(B),real,aa(fun(B,real),fun(set(B),real),groups7121269368397514597t_prod(B,real),aTP_Lamp_hn(fun(B,A),fun(B,real),F2)),A3))) ) ).
% norm_prod_le
tff(fact_4542_prod__nonneg,axiom,
! [A: $tType,B: $tType] :
( linordered_semidom(A)
=> ! [A3: set(B),F2: fun(B,A)] :
( ! [X3: B] :
( pp(member(B,X3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(B,A,F2,X3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),F2),A3))) ) ) ).
% prod_nonneg
tff(fact_4543_prod__mono,axiom,
! [A: $tType,B: $tType] :
( linordered_semidom(A)
=> ! [A3: set(B),F2: fun(B,A),G: fun(B,A)] :
( ! [I3: B] :
( pp(member(B,I3,A3))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(B,A,F2,I3)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,I3)),aa(B,A,G,I3))) ) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),F2),A3)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),A3))) ) ) ).
% prod_mono
tff(fact_4544_prod__pos,axiom,
! [A: $tType,B: $tType] :
( linordered_semidom(A)
=> ! [A3: set(B),F2: fun(B,A)] :
( ! [X3: B] :
( pp(member(B,X3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(B,A,F2,X3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),F2),A3))) ) ) ).
% prod_pos
tff(fact_4545_prod__ge__1,axiom,
! [A: $tType,B: $tType] :
( linord181362715937106298miring(A)
=> ! [A3: set(B),F2: fun(B,A)] :
( ! [X3: B] :
( pp(member(B,X3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),aa(B,A,F2,X3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),F2),A3))) ) ) ).
% prod_ge_1
tff(fact_4546_prod_Oshift__bounds__cl__Suc__ivl,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),M: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,M),aa(nat,nat,suc,N))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aTP_Lamp_ho(fun(nat,A),fun(nat,A),G)),set_or1337092689740270186AtMost(nat,M,N)) ) ) ).
% prod.shift_bounds_cl_Suc_ivl
tff(fact_4547_power__sum,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [C2: A,F2: fun(B,nat),A3: set(B)] : ( aa(nat,A,power_power(A,C2),aa(set(B),nat,aa(fun(B,nat),fun(set(B),nat),groups7311177749621191930dd_sum(B,nat),F2),A3)) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),aa(fun(B,nat),fun(B,A),aTP_Lamp_hp(A,fun(fun(B,nat),fun(B,A)),C2),F2)),A3) ) ) ).
% power_sum
tff(fact_4548_prod_Oshift__bounds__cl__nat__ivl,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),M: nat,K: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),K),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),K))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(nat,fun(nat,A),aTP_Lamp_hq(fun(nat,A),fun(nat,fun(nat,A)),G),K)),set_or1337092689740270186AtMost(nat,M,N)) ) ) ).
% prod.shift_bounds_cl_nat_ivl
tff(fact_4549_prod__le__1,axiom,
! [B: $tType,A: $tType] :
( linord181362715937106298miring(A)
=> ! [A3: set(B),F2: fun(B,A)] :
( ! [X3: B] :
( pp(member(B,X3,A3))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(B,A,F2,X3)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,X3)),one_one(A))) ) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),F2),A3)),one_one(A))) ) ) ).
% prod_le_1
tff(fact_4550_bset_I1_J,axiom,
! [D5: int,B4: set(int),P: fun(int,bool),Q: fun(int,bool)] :
( ! [X3: int] :
( ! [Xa2: int] :
( pp(member(int,Xa2,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb2: int] :
( pp(member(int,Xb2,B4))
=> ( X3 != aa(int,int,aa(int,fun(int,int),plus_plus(int),Xb2),Xa2) ) ) )
=> ( pp(aa(int,bool,P,X3))
=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),minus_minus(int),X3),D5))) ) )
=> ( ! [X3: int] :
( ! [Xa2: int] :
( pp(member(int,Xa2,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb2: int] :
( pp(member(int,Xb2,B4))
=> ( X3 != aa(int,int,aa(int,fun(int,int),plus_plus(int),Xb2),Xa2) ) ) )
=> ( pp(aa(int,bool,Q,X3))
=> pp(aa(int,bool,Q,aa(int,int,aa(int,fun(int,int),minus_minus(int),X3),D5))) ) )
=> ! [X: int] :
( ! [Xa4: int] :
( pp(member(int,Xa4,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb3: int] :
( pp(member(int,Xb3,B4))
=> ( X != aa(int,int,aa(int,fun(int,int),plus_plus(int),Xb3),Xa4) ) ) )
=> ( ( pp(aa(int,bool,P,X))
& pp(aa(int,bool,Q,X)) )
=> ( pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),minus_minus(int),X),D5)))
& pp(aa(int,bool,Q,aa(int,int,aa(int,fun(int,int),minus_minus(int),X),D5))) ) ) ) ) ) ).
% bset(1)
tff(fact_4551_bset_I2_J,axiom,
! [D5: int,B4: set(int),P: fun(int,bool),Q: fun(int,bool)] :
( ! [X3: int] :
( ! [Xa2: int] :
( pp(member(int,Xa2,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb2: int] :
( pp(member(int,Xb2,B4))
=> ( X3 != aa(int,int,aa(int,fun(int,int),plus_plus(int),Xb2),Xa2) ) ) )
=> ( pp(aa(int,bool,P,X3))
=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),minus_minus(int),X3),D5))) ) )
=> ( ! [X3: int] :
( ! [Xa2: int] :
( pp(member(int,Xa2,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb2: int] :
( pp(member(int,Xb2,B4))
=> ( X3 != aa(int,int,aa(int,fun(int,int),plus_plus(int),Xb2),Xa2) ) ) )
=> ( pp(aa(int,bool,Q,X3))
=> pp(aa(int,bool,Q,aa(int,int,aa(int,fun(int,int),minus_minus(int),X3),D5))) ) )
=> ! [X: int] :
( ! [Xa4: int] :
( pp(member(int,Xa4,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb3: int] :
( pp(member(int,Xb3,B4))
=> ( X != aa(int,int,aa(int,fun(int,int),plus_plus(int),Xb3),Xa4) ) ) )
=> ( ( pp(aa(int,bool,P,X))
| pp(aa(int,bool,Q,X)) )
=> ( pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),minus_minus(int),X),D5)))
| pp(aa(int,bool,Q,aa(int,int,aa(int,fun(int,int),minus_minus(int),X),D5))) ) ) ) ) ) ).
% bset(2)
tff(fact_4552_aset_I1_J,axiom,
! [D5: int,A3: set(int),P: fun(int,bool),Q: fun(int,bool)] :
( ! [X3: int] :
( ! [Xa2: int] :
( pp(member(int,Xa2,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb2: int] :
( pp(member(int,Xb2,A3))
=> ( X3 != aa(int,int,aa(int,fun(int,int),minus_minus(int),Xb2),Xa2) ) ) )
=> ( pp(aa(int,bool,P,X3))
=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),plus_plus(int),X3),D5))) ) )
=> ( ! [X3: int] :
( ! [Xa2: int] :
( pp(member(int,Xa2,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb2: int] :
( pp(member(int,Xb2,A3))
=> ( X3 != aa(int,int,aa(int,fun(int,int),minus_minus(int),Xb2),Xa2) ) ) )
=> ( pp(aa(int,bool,Q,X3))
=> pp(aa(int,bool,Q,aa(int,int,aa(int,fun(int,int),plus_plus(int),X3),D5))) ) )
=> ! [X: int] :
( ! [Xa4: int] :
( pp(member(int,Xa4,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb3: int] :
( pp(member(int,Xb3,A3))
=> ( X != aa(int,int,aa(int,fun(int,int),minus_minus(int),Xb3),Xa4) ) ) )
=> ( ( pp(aa(int,bool,P,X))
& pp(aa(int,bool,Q,X)) )
=> ( pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),plus_plus(int),X),D5)))
& pp(aa(int,bool,Q,aa(int,int,aa(int,fun(int,int),plus_plus(int),X),D5))) ) ) ) ) ) ).
% aset(1)
tff(fact_4553_aset_I2_J,axiom,
! [D5: int,A3: set(int),P: fun(int,bool),Q: fun(int,bool)] :
( ! [X3: int] :
( ! [Xa2: int] :
( pp(member(int,Xa2,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb2: int] :
( pp(member(int,Xb2,A3))
=> ( X3 != aa(int,int,aa(int,fun(int,int),minus_minus(int),Xb2),Xa2) ) ) )
=> ( pp(aa(int,bool,P,X3))
=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),plus_plus(int),X3),D5))) ) )
=> ( ! [X3: int] :
( ! [Xa2: int] :
( pp(member(int,Xa2,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb2: int] :
( pp(member(int,Xb2,A3))
=> ( X3 != aa(int,int,aa(int,fun(int,int),minus_minus(int),Xb2),Xa2) ) ) )
=> ( pp(aa(int,bool,Q,X3))
=> pp(aa(int,bool,Q,aa(int,int,aa(int,fun(int,int),plus_plus(int),X3),D5))) ) )
=> ! [X: int] :
( ! [Xa4: int] :
( pp(member(int,Xa4,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb3: int] :
( pp(member(int,Xb3,A3))
=> ( X != aa(int,int,aa(int,fun(int,int),minus_minus(int),Xb3),Xa4) ) ) )
=> ( ( pp(aa(int,bool,P,X))
| pp(aa(int,bool,Q,X)) )
=> ( pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),plus_plus(int),X),D5)))
| pp(aa(int,bool,Q,aa(int,int,aa(int,fun(int,int),plus_plus(int),X),D5))) ) ) ) ) ) ).
% aset(2)
tff(fact_4554_prod_Onat__diff__reindex,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(nat,fun(nat,A),aTP_Lamp_hr(fun(nat,A),fun(nat,fun(nat,A)),G),N)),aa(nat,set(nat),set_ord_lessThan(nat),N)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),aa(nat,set(nat),set_ord_lessThan(nat),N)) ) ) ).
% prod.nat_diff_reindex
tff(fact_4555_prod_OatLeastAtMost__rev,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),N: nat,M: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,N,M)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(nat,fun(nat,A),aa(nat,fun(nat,fun(nat,A)),aTP_Lamp_hs(fun(nat,A),fun(nat,fun(nat,fun(nat,A))),G),N),M)),set_or1337092689740270186AtMost(nat,N,M)) ) ) ).
% prod.atLeastAtMost_rev
tff(fact_4556_prod_OatLeast0__atMost__Suc,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,zero_zero(nat),aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,zero_zero(nat),N))),aa(nat,A,G,aa(nat,nat,suc,N))) ) ) ).
% prod.atLeast0_atMost_Suc
tff(fact_4557_prod_Onat__ivl__Suc_H,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [M: nat,N: nat,G: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),aa(nat,nat,suc,N)))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,M,aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,G,aa(nat,nat,suc,N))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,M,N))) ) ) ) ).
% prod.nat_ivl_Suc'
tff(fact_4558_prod_OatLeast__Suc__atMost,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [M: nat,N: nat,G: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,M,N)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,G,M)),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,M),N))) ) ) ) ).
% prod.atLeast_Suc_atMost
tff(fact_4559_aset_I10_J,axiom,
! [D2: int,D5: int,A3: set(int),T2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),D2),D5))
=> ! [X: int] :
( ! [Xa4: int] :
( pp(member(int,Xa4,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb3: int] :
( pp(member(int,Xb3,A3))
=> ( X != aa(int,int,aa(int,fun(int,int),minus_minus(int),Xb3),Xa4) ) ) )
=> ( ~ pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),D2),aa(int,int,aa(int,fun(int,int),plus_plus(int),X),T2)))
=> ~ pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),D2),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),X),D5)),T2))) ) ) ) ).
% aset(10)
tff(fact_4560_aset_I9_J,axiom,
! [D2: int,D5: int,A3: set(int),T2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),D2),D5))
=> ! [X: int] :
( ! [Xa4: int] :
( pp(member(int,Xa4,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb3: int] :
( pp(member(int,Xb3,A3))
=> ( X != aa(int,int,aa(int,fun(int,int),minus_minus(int),Xb3),Xa4) ) ) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),D2),aa(int,int,aa(int,fun(int,int),plus_plus(int),X),T2)))
=> pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),D2),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),X),D5)),T2))) ) ) ) ).
% aset(9)
tff(fact_4561_bset_I10_J,axiom,
! [D2: int,D5: int,B4: set(int),T2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),D2),D5))
=> ! [X: int] :
( ! [Xa4: int] :
( pp(member(int,Xa4,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb3: int] :
( pp(member(int,Xb3,B4))
=> ( X != aa(int,int,aa(int,fun(int,int),plus_plus(int),Xb3),Xa4) ) ) )
=> ( ~ pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),D2),aa(int,int,aa(int,fun(int,int),plus_plus(int),X),T2)))
=> ~ pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),D2),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),X),D5)),T2))) ) ) ) ).
% bset(10)
tff(fact_4562_bset_I9_J,axiom,
! [D2: int,D5: int,B4: set(int),T2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),D2),D5))
=> ! [X: int] :
( ! [Xa4: int] :
( pp(member(int,Xa4,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb3: int] :
( pp(member(int,Xb3,B4))
=> ( X != aa(int,int,aa(int,fun(int,int),plus_plus(int),Xb3),Xa4) ) ) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),D2),aa(int,int,aa(int,fun(int,int),plus_plus(int),X),T2)))
=> pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),D2),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),X),D5)),T2))) ) ) ) ).
% bset(9)
tff(fact_4563_prod_OlessThan__Suc__shift,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,G,zero_zero(nat))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aTP_Lamp_ho(fun(nat,A),fun(nat,A),G)),aa(nat,set(nat),set_ord_lessThan(nat),N))) ) ) ).
% prod.lessThan_Suc_shift
tff(fact_4564_prod_OSuc__reindex__ivl,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [M: nat,N: nat,G: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,M,N))),aa(nat,A,G,aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,G,M)),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aTP_Lamp_ho(fun(nat,A),fun(nat,A),G)),set_or1337092689740270186AtMost(nat,M,N))) ) ) ) ).
% prod.Suc_reindex_ivl
tff(fact_4565_prod_OatMost__Suc__shift,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),aa(nat,set(nat),set_ord_atMost(nat),aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,G,zero_zero(nat))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aTP_Lamp_ho(fun(nat,A),fun(nat,A),G)),aa(nat,set(nat),set_ord_atMost(nat),N))) ) ) ).
% prod.atMost_Suc_shift
tff(fact_4566_prod_OatLeast1__atMost__eq,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,zero_zero(nat)),N)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aTP_Lamp_ho(fun(nat,A),fun(nat,A),G)),aa(nat,set(nat),set_ord_lessThan(nat),N)) ) ) ).
% prod.atLeast1_atMost_eq
tff(fact_4567_fact__prod,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [N: nat] : ( semiring_char_0_fact(A,N) = aa(nat,A,semiring_1_of_nat(A),aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7121269368397514597t_prod(nat,nat),aTP_Lamp_gy(nat,nat)),set_or1337092689740270186AtMost(nat,one_one(nat),N))) ) ) ).
% fact_prod
tff(fact_4568_prod_Onested__swap_H,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [A2: fun(nat,fun(nat,A)),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aTP_Lamp_ht(fun(nat,fun(nat,A)),fun(nat,A),A2)),aa(nat,set(nat),set_ord_atMost(nat),N)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(nat,fun(nat,A),aTP_Lamp_hv(fun(nat,fun(nat,A)),fun(nat,fun(nat,A)),A2),N)),aa(nat,set(nat),set_ord_lessThan(nat),N)) ) ) ).
% prod.nested_swap'
tff(fact_4569_prod__atLeastAtMost__code,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [F2: fun(nat,A),A2: nat,B2: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),F2),set_or1337092689740270186AtMost(nat,A2,B2)) = set_fo6178422350223883121st_nat(A,aTP_Lamp_hw(fun(nat,A),fun(nat,fun(A,A)),F2),A2,B2,one_one(A)) ) ) ).
% prod_atLeastAtMost_code
tff(fact_4570_prod_Oub__add__nat,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [M: nat,N: nat,G: fun(nat,A),P2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),one_one(nat))))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,M,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),P2))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,M,N))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),one_one(nat)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),P2)))) ) ) ) ).
% prod.ub_add_nat
tff(fact_4571_periodic__finite__ex,axiom,
! [D2: int,P: fun(int,bool)] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),D2))
=> ( ! [X3: int,K3: int] :
( pp(aa(int,bool,P,X3))
<=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),minus_minus(int),X3),aa(int,int,aa(int,fun(int,int),times_times(int),K3),D2)))) )
=> ( ? [X_12: int] : pp(aa(int,bool,P,X_12))
<=> ? [X4: int] :
( pp(member(int,X4,set_or1337092689740270186AtMost(int,one_one(int),D2)))
& pp(aa(int,bool,P,X4)) ) ) ) ) ).
% periodic_finite_ex
tff(fact_4572_aset_I7_J,axiom,
! [D5: int,A3: set(int),T2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),D5))
=> ! [X: int] :
( ! [Xa4: int] :
( pp(member(int,Xa4,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb3: int] :
( pp(member(int,Xb3,A3))
=> ( X != aa(int,int,aa(int,fun(int,int),minus_minus(int),Xb3),Xa4) ) ) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),T2),X))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),T2),aa(int,int,aa(int,fun(int,int),plus_plus(int),X),D5))) ) ) ) ).
% aset(7)
tff(fact_4573_aset_I5_J,axiom,
! [D5: int,T2: int,A3: set(int)] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),D5))
=> ( pp(member(int,T2,A3))
=> ! [X: int] :
( ! [Xa4: int] :
( pp(member(int,Xa4,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb3: int] :
( pp(member(int,Xb3,A3))
=> ( X != aa(int,int,aa(int,fun(int,int),minus_minus(int),Xb3),Xa4) ) ) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),X),T2))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),X),D5)),T2)) ) ) ) ) ).
% aset(5)
tff(fact_4574_aset_I4_J,axiom,
! [D5: int,T2: int,A3: set(int)] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),D5))
=> ( pp(member(int,T2,A3))
=> ! [X: int] :
( ! [Xa4: int] :
( pp(member(int,Xa4,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb3: int] :
( pp(member(int,Xb3,A3))
=> ( X != aa(int,int,aa(int,fun(int,int),minus_minus(int),Xb3),Xa4) ) ) )
=> ( ( X != T2 )
=> ( aa(int,int,aa(int,fun(int,int),plus_plus(int),X),D5) != T2 ) ) ) ) ) ).
% aset(4)
tff(fact_4575_aset_I3_J,axiom,
! [D5: int,T2: int,A3: set(int)] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),D5))
=> ( pp(member(int,aa(int,int,aa(int,fun(int,int),plus_plus(int),T2),one_one(int)),A3))
=> ! [X: int] :
( ! [Xa4: int] :
( pp(member(int,Xa4,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb3: int] :
( pp(member(int,Xb3,A3))
=> ( X != aa(int,int,aa(int,fun(int,int),minus_minus(int),Xb3),Xa4) ) ) )
=> ( ( X = T2 )
=> ( aa(int,int,aa(int,fun(int,int),plus_plus(int),X),D5) = T2 ) ) ) ) ) ).
% aset(3)
tff(fact_4576_bset_I7_J,axiom,
! [D5: int,T2: int,B4: set(int)] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),D5))
=> ( pp(member(int,T2,B4))
=> ! [X: int] :
( ! [Xa4: int] :
( pp(member(int,Xa4,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb3: int] :
( pp(member(int,Xb3,B4))
=> ( X != aa(int,int,aa(int,fun(int,int),plus_plus(int),Xb3),Xa4) ) ) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),T2),X))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),T2),aa(int,int,aa(int,fun(int,int),minus_minus(int),X),D5))) ) ) ) ) ).
% bset(7)
tff(fact_4577_bset_I5_J,axiom,
! [D5: int,B4: set(int),T2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),D5))
=> ! [X: int] :
( ! [Xa4: int] :
( pp(member(int,Xa4,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb3: int] :
( pp(member(int,Xb3,B4))
=> ( X != aa(int,int,aa(int,fun(int,int),plus_plus(int),Xb3),Xa4) ) ) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),X),T2))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),X),D5)),T2)) ) ) ) ).
% bset(5)
tff(fact_4578_bset_I4_J,axiom,
! [D5: int,T2: int,B4: set(int)] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),D5))
=> ( pp(member(int,T2,B4))
=> ! [X: int] :
( ! [Xa4: int] :
( pp(member(int,Xa4,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb3: int] :
( pp(member(int,Xb3,B4))
=> ( X != aa(int,int,aa(int,fun(int,int),plus_plus(int),Xb3),Xa4) ) ) )
=> ( ( X != T2 )
=> ( aa(int,int,aa(int,fun(int,int),minus_minus(int),X),D5) != T2 ) ) ) ) ) ).
% bset(4)
tff(fact_4579_bset_I3_J,axiom,
! [D5: int,T2: int,B4: set(int)] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),D5))
=> ( pp(member(int,aa(int,int,aa(int,fun(int,int),minus_minus(int),T2),one_one(int)),B4))
=> ! [X: int] :
( ! [Xa4: int] :
( pp(member(int,Xa4,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb3: int] :
( pp(member(int,Xb3,B4))
=> ( X != aa(int,int,aa(int,fun(int,int),plus_plus(int),Xb3),Xa4) ) ) )
=> ( ( X = T2 )
=> ( aa(int,int,aa(int,fun(int,int),minus_minus(int),X),D5) = T2 ) ) ) ) ) ).
% bset(3)
tff(fact_4580_norm__prod__diff,axiom,
! [A: $tType,I6: $tType] :
( ( comm_monoid_mult(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [I5: set(I6),Z: fun(I6,A),W: fun(I6,A)] :
( ! [I3: I6] :
( pp(member(I6,I3,I5))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(I6,A,Z,I3))),one_one(real))) )
=> ( ! [I3: I6] :
( pp(member(I6,I3,I5))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(I6,A,W,I3))),one_one(real))) )
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(set(I6),A,aa(fun(I6,A),fun(set(I6),A),groups7121269368397514597t_prod(I6,A),Z),I5)),aa(set(I6),A,aa(fun(I6,A),fun(set(I6),A),groups7121269368397514597t_prod(I6,A),W),I5)))),aa(set(I6),real,aa(fun(I6,real),fun(set(I6),real),groups7311177749621191930dd_sum(I6,real),aa(fun(I6,A),fun(I6,real),aTP_Lamp_hx(fun(I6,A),fun(fun(I6,A),fun(I6,real)),Z),W)),I5))) ) ) ) ).
% norm_prod_diff
tff(fact_4581_prod_OatMost__shift,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),aa(nat,set(nat),set_ord_atMost(nat),N)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,G,zero_zero(nat))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aTP_Lamp_ho(fun(nat,A),fun(nat,A),G)),aa(nat,set(nat),set_ord_lessThan(nat),N))) ) ) ).
% prod.atMost_shift
tff(fact_4582_fact__eq__fact__times,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> ( semiring_char_0_fact(nat,M) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),semiring_char_0_fact(nat,N)),aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7121269368397514597t_prod(nat,nat),aTP_Lamp_gy(nat,nat)),set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,N),M))) ) ) ).
% fact_eq_fact_times
tff(fact_4583_aset_I8_J,axiom,
! [D5: int,A3: set(int),T2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),D5))
=> ! [X: int] :
( ! [Xa4: int] :
( pp(member(int,Xa4,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb3: int] :
( pp(member(int,Xb3,A3))
=> ( X != aa(int,int,aa(int,fun(int,int),minus_minus(int),Xb3),Xa4) ) ) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),T2),X))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),T2),aa(int,int,aa(int,fun(int,int),plus_plus(int),X),D5))) ) ) ) ).
% aset(8)
tff(fact_4584_aset_I6_J,axiom,
! [D5: int,T2: int,A3: set(int)] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),D5))
=> ( pp(member(int,aa(int,int,aa(int,fun(int,int),plus_plus(int),T2),one_one(int)),A3))
=> ! [X: int] :
( ! [Xa4: int] :
( pp(member(int,Xa4,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb3: int] :
( pp(member(int,Xb3,A3))
=> ( X != aa(int,int,aa(int,fun(int,int),minus_minus(int),Xb3),Xa4) ) ) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),X),T2))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),X),D5)),T2)) ) ) ) ) ).
% aset(6)
tff(fact_4585_bset_I8_J,axiom,
! [D5: int,T2: int,B4: set(int)] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),D5))
=> ( pp(member(int,aa(int,int,aa(int,fun(int,int),minus_minus(int),T2),one_one(int)),B4))
=> ! [X: int] :
( ! [Xa4: int] :
( pp(member(int,Xa4,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb3: int] :
( pp(member(int,Xb3,B4))
=> ( X != aa(int,int,aa(int,fun(int,int),plus_plus(int),Xb3),Xa4) ) ) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),T2),X))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),T2),aa(int,int,aa(int,fun(int,int),minus_minus(int),X),D5))) ) ) ) ) ).
% bset(8)
tff(fact_4586_bset_I6_J,axiom,
! [D5: int,B4: set(int),T2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),D5))
=> ! [X: int] :
( ! [Xa4: int] :
( pp(member(int,Xa4,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb3: int] :
( pp(member(int,Xb3,B4))
=> ( X != aa(int,int,aa(int,fun(int,int),plus_plus(int),Xb3),Xa4) ) ) )
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),X),T2))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),X),D5)),T2)) ) ) ) ).
% bset(6)
tff(fact_4587_cpmi,axiom,
! [D5: int,P: fun(int,bool),P3: fun(int,bool),B4: set(int)] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),D5))
=> ( ? [Z2: int] :
! [X3: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),X3),Z2))
=> ( pp(aa(int,bool,P,X3))
<=> pp(aa(int,bool,P3,X3)) ) )
=> ( ! [X3: int] :
( ! [Xa2: int] :
( pp(member(int,Xa2,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb2: int] :
( pp(member(int,Xb2,B4))
=> ( X3 != aa(int,int,aa(int,fun(int,int),plus_plus(int),Xb2),Xa2) ) ) )
=> ( pp(aa(int,bool,P,X3))
=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),minus_minus(int),X3),D5))) ) )
=> ( ! [X3: int,K3: int] :
( pp(aa(int,bool,P3,X3))
<=> pp(aa(int,bool,P3,aa(int,int,aa(int,fun(int,int),minus_minus(int),X3),aa(int,int,aa(int,fun(int,int),times_times(int),K3),D5)))) )
=> ( ? [X_12: int] : pp(aa(int,bool,P,X_12))
<=> ( ? [X4: int] :
( pp(member(int,X4,set_or1337092689740270186AtMost(int,one_one(int),D5)))
& pp(aa(int,bool,P3,X4)) )
| ? [X4: int] :
( pp(member(int,X4,set_or1337092689740270186AtMost(int,one_one(int),D5)))
& ? [Xa3: int] :
( pp(member(int,Xa3,B4))
& pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),plus_plus(int),Xa3),X4))) ) ) ) ) ) ) ) ) ).
% cpmi
tff(fact_4588_cppi,axiom,
! [D5: int,P: fun(int,bool),P3: fun(int,bool),A3: set(int)] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),D5))
=> ( ? [Z2: int] :
! [X3: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),Z2),X3))
=> ( pp(aa(int,bool,P,X3))
<=> pp(aa(int,bool,P3,X3)) ) )
=> ( ! [X3: int] :
( ! [Xa2: int] :
( pp(member(int,Xa2,set_or1337092689740270186AtMost(int,one_one(int),D5)))
=> ! [Xb2: int] :
( pp(member(int,Xb2,A3))
=> ( X3 != aa(int,int,aa(int,fun(int,int),minus_minus(int),Xb2),Xa2) ) ) )
=> ( pp(aa(int,bool,P,X3))
=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),plus_plus(int),X3),D5))) ) )
=> ( ! [X3: int,K3: int] :
( pp(aa(int,bool,P3,X3))
<=> pp(aa(int,bool,P3,aa(int,int,aa(int,fun(int,int),minus_minus(int),X3),aa(int,int,aa(int,fun(int,int),times_times(int),K3),D5)))) )
=> ( ? [X_12: int] : pp(aa(int,bool,P,X_12))
<=> ( ? [X4: int] :
( pp(member(int,X4,set_or1337092689740270186AtMost(int,one_one(int),D5)))
& pp(aa(int,bool,P3,X4)) )
| ? [X4: int] :
( pp(member(int,X4,set_or1337092689740270186AtMost(int,one_one(int),D5)))
& ? [Xa3: int] :
( pp(member(int,Xa3,A3))
& pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),minus_minus(int),Xa3),X4))) ) ) ) ) ) ) ) ) ).
% cppi
tff(fact_4589_pochhammer__Suc__prod,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [A2: A,N: nat] : ( comm_s3205402744901411588hammer(A,A2,aa(nat,nat,suc,N)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aTP_Lamp_hy(A,fun(nat,A),A2)),set_or1337092689740270186AtMost(nat,zero_zero(nat),N)) ) ) ).
% pochhammer_Suc_prod
tff(fact_4590_pochhammer__prod__rev,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [A2: A,N: nat] : ( comm_s3205402744901411588hammer(A,A2,N) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(nat,fun(nat,A),aTP_Lamp_hz(A,fun(nat,fun(nat,A)),A2),N)),set_or1337092689740270186AtMost(nat,one_one(nat),N)) ) ) ).
% pochhammer_prod_rev
tff(fact_4591_fact__div__fact,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),semiring_char_0_fact(nat,M)),semiring_char_0_fact(nat,N)) = aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7121269368397514597t_prod(nat,nat),aTP_Lamp_gy(nat,nat)),set_or1337092689740270186AtMost(nat,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),one_one(nat)),M)) ) ) ).
% fact_div_fact
tff(fact_4592_prod_Oin__pairs,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),M: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),M),aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aTP_Lamp_ia(fun(nat,A),fun(nat,A),G)),set_or1337092689740270186AtMost(nat,M,N)) ) ) ).
% prod.in_pairs
tff(fact_4593_in__set__product__lists__length,axiom,
! [A: $tType,Xs: list(A),Xss: list(list(A))] :
( pp(member(list(A),Xs,aa(list(list(A)),set(list(A)),set2(list(A)),product_lists(A,Xss))))
=> ( aa(list(A),nat,size_size(list(A)),Xs) = aa(list(list(A)),nat,size_size(list(list(A))),Xss) ) ) ).
% in_set_product_lists_length
tff(fact_4594_prod_Oin__pairs__0,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),aa(nat,set(nat),set_ord_atMost(nat),aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aTP_Lamp_ia(fun(nat,A),fun(nat,A),G)),aa(nat,set(nat),set_ord_atMost(nat),N)) ) ) ).
% prod.in_pairs_0
tff(fact_4595_pochhammer__Suc__prod__rev,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [A2: A,N: nat] : ( comm_s3205402744901411588hammer(A,A2,aa(nat,nat,suc,N)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(nat,fun(nat,A),aTP_Lamp_hz(A,fun(nat,fun(nat,A)),A2),N)),set_or1337092689740270186AtMost(nat,zero_zero(nat),N)) ) ) ).
% pochhammer_Suc_prod_rev
tff(fact_4596_prod_Ozero__middle,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [P2: nat,K: nat,G: fun(nat,A),H: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),one_one(nat)),P2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),P2))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(fun(nat,A),fun(nat,A),aa(fun(nat,A),fun(fun(nat,A),fun(nat,A)),aTP_Lamp_ib(nat,fun(fun(nat,A),fun(fun(nat,A),fun(nat,A))),K),G),H)),aa(nat,set(nat),set_ord_atMost(nat),P2)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(fun(nat,A),fun(nat,A),aa(fun(nat,A),fun(fun(nat,A),fun(nat,A)),aTP_Lamp_ic(nat,fun(fun(nat,A),fun(fun(nat,A),fun(nat,A))),K),G),H)),aa(nat,set(nat),set_ord_atMost(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),P2),aa(nat,nat,suc,zero_zero(nat))))) ) ) ) ) ).
% prod.zero_middle
tff(fact_4597_gbinomial__Suc,axiom,
! [A: $tType] :
( ( semiring_char_0(A)
& semidom_divide(A) )
=> ! [A2: A,K: nat] : ( aa(nat,A,gbinomial(A,A2),aa(nat,nat,suc,K)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aTP_Lamp_id(A,fun(nat,A),A2)),set_or1337092689740270186AtMost(nat,zero_zero(nat),K))),semiring_char_0_fact(A,aa(nat,nat,suc,K))) ) ) ).
% gbinomial_Suc
tff(fact_4598_divmod__step__nat__def,axiom,
! [L: num,Qr: product_prod(nat,nat)] : ( unique1321980374590559556d_step(nat,L,Qr) = aa(product_prod(nat,nat),product_prod(nat,nat),aa(fun(nat,fun(nat,product_prod(nat,nat))),fun(product_prod(nat,nat),product_prod(nat,nat)),product_case_prod(nat,nat,product_prod(nat,nat)),aTP_Lamp_ie(num,fun(nat,fun(nat,product_prod(nat,nat))),L)),Qr) ) ).
% divmod_step_nat_def
tff(fact_4599_divmod__step__int__def,axiom,
! [L: num,Qr: product_prod(int,int)] : ( unique1321980374590559556d_step(int,L,Qr) = aa(product_prod(int,int),product_prod(int,int),aa(fun(int,fun(int,product_prod(int,int))),fun(product_prod(int,int),product_prod(int,int)),product_case_prod(int,int,product_prod(int,int)),aTP_Lamp_if(num,fun(int,fun(int,product_prod(int,int))),L)),Qr) ) ).
% divmod_step_int_def
tff(fact_4600_Sum__Icc__int,axiom,
! [M: int,N: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),M),N))
=> ( aa(set(int),int,aa(fun(int,int),fun(set(int),int),groups7311177749621191930dd_sum(int,int),aTP_Lamp_ig(int,int)),set_or1337092689740270186AtMost(int,M,N)) = aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(int,int,aa(int,fun(int,int),times_times(int),N),aa(int,int,aa(int,fun(int,int),plus_plus(int),N),one_one(int)))),aa(int,int,aa(int,fun(int,int),times_times(int),M),aa(int,int,aa(int,fun(int,int),minus_minus(int),M),one_one(int))))),aa(num,int,numeral_numeral(int),bit0(one2))) ) ) ).
% Sum_Icc_int
tff(fact_4601_divmod__step__def,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [L: num,Qr: product_prod(A,A)] : ( unique1321980374590559556d_step(A,L,Qr) = aa(product_prod(A,A),product_prod(A,A),aa(fun(A,fun(A,product_prod(A,A))),fun(product_prod(A,A),product_prod(A,A)),product_case_prod(A,A,product_prod(A,A)),aTP_Lamp_ih(num,fun(A,fun(A,product_prod(A,A))),L)),Qr) ) ) ).
% divmod_step_def
tff(fact_4602_divmod__nat__if,axiom,
! [N: nat,M: nat] :
( ( ( ( N = zero_zero(nat) )
| pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N)) )
=> ( divmod_nat(M,N) = aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),zero_zero(nat)),M) ) )
& ( ~ ( ( N = zero_zero(nat) )
| pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N)) )
=> ( divmod_nat(M,N) = aa(product_prod(nat,nat),product_prod(nat,nat),aa(fun(nat,fun(nat,product_prod(nat,nat))),fun(product_prod(nat,nat),product_prod(nat,nat)),product_case_prod(nat,nat,product_prod(nat,nat)),aTP_Lamp_ii(nat,fun(nat,product_prod(nat,nat)))),divmod_nat(aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N),N)) ) ) ) ).
% divmod_nat_if
tff(fact_4603_arctan__def,axiom,
! [Y: real] : ( aa(real,real,arctan,Y) = the(real,aTP_Lamp_ij(real,fun(real,bool),Y)) ) ).
% arctan_def
tff(fact_4604_arcsin__def,axiom,
! [Y: real] : ( aa(real,real,arcsin,Y) = the(real,aTP_Lamp_ik(real,fun(real,bool),Y)) ) ).
% arcsin_def
tff(fact_4605_complex__diff__cnj,axiom,
! [Z: complex] : ( aa(complex,complex,aa(complex,fun(complex,complex),minus_minus(complex),Z),cnj(Z)) = aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),real_Vector_of_real(complex,aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),im(Z)))),imaginary_unit) ) ).
% complex_diff_cnj
tff(fact_4606_case__prodI2,axiom,
! [B: $tType,A: $tType,P2: product_prod(A,B),C2: fun(A,fun(B,bool))] :
( ! [A4: A,B3: B] :
( ( P2 = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),A4),B3) )
=> pp(aa(B,bool,aa(A,fun(B,bool),C2,A4),B3)) )
=> pp(aa(product_prod(A,B),bool,aa(fun(A,fun(B,bool)),fun(product_prod(A,B),bool),product_case_prod(A,B,bool),C2),P2)) ) ).
% case_prodI2
tff(fact_4607_case__prodI,axiom,
! [A: $tType,B: $tType,F2: fun(A,fun(B,bool)),A2: A,B2: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),F2,A2),B2))
=> pp(aa(product_prod(A,B),bool,aa(fun(A,fun(B,bool)),fun(product_prod(A,B),bool),product_case_prod(A,B,bool),F2),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),A2),B2))) ) ).
% case_prodI
tff(fact_4608_mem__case__prodI2,axiom,
! [C: $tType,B: $tType,A: $tType,P2: product_prod(A,B),Z: C,C2: fun(A,fun(B,set(C)))] :
( ! [A4: A,B3: B] :
( ( P2 = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),A4),B3) )
=> pp(member(C,Z,aa(B,set(C),aa(A,fun(B,set(C)),C2,A4),B3))) )
=> pp(member(C,Z,aa(product_prod(A,B),set(C),aa(fun(A,fun(B,set(C))),fun(product_prod(A,B),set(C)),product_case_prod(A,B,set(C)),C2),P2))) ) ).
% mem_case_prodI2
tff(fact_4609_mem__case__prodI,axiom,
! [A: $tType,B: $tType,C: $tType,Z: A,C2: fun(B,fun(C,set(A))),A2: B,B2: C] :
( pp(member(A,Z,aa(C,set(A),aa(B,fun(C,set(A)),C2,A2),B2)))
=> pp(member(A,Z,aa(product_prod(B,C),set(A),aa(fun(B,fun(C,set(A))),fun(product_prod(B,C),set(A)),product_case_prod(B,C,set(A)),C2),aa(C,product_prod(B,C),aa(B,fun(C,product_prod(B,C)),product_Pair(B,C),A2),B2)))) ) ).
% mem_case_prodI
tff(fact_4610_case__prodI2_H,axiom,
! [A: $tType,B: $tType,C: $tType,P2: product_prod(A,B),C2: fun(A,fun(B,fun(C,bool))),X2: C] :
( ! [A4: A,B3: B] :
( ( aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),A4),B3) = P2 )
=> pp(aa(C,bool,aa(B,fun(C,bool),aa(A,fun(B,fun(C,bool)),C2,A4),B3),X2)) )
=> pp(aa(C,bool,aa(product_prod(A,B),fun(C,bool),aa(fun(A,fun(B,fun(C,bool))),fun(product_prod(A,B),fun(C,bool)),product_case_prod(A,B,fun(C,bool)),C2),P2),X2)) ) ).
% case_prodI2'
tff(fact_4611_complex__cnj__zero,axiom,
cnj(zero_zero(complex)) = zero_zero(complex) ).
% complex_cnj_zero
tff(fact_4612_complex__cnj__zero__iff,axiom,
! [Z: complex] :
( ( cnj(Z) = zero_zero(complex) )
<=> ( Z = zero_zero(complex) ) ) ).
% complex_cnj_zero_iff
tff(fact_4613_complex__cnj__add,axiom,
! [X2: complex,Y: complex] : ( cnj(aa(complex,complex,aa(complex,fun(complex,complex),plus_plus(complex),X2),Y)) = aa(complex,complex,aa(complex,fun(complex,complex),plus_plus(complex),cnj(X2)),cnj(Y)) ) ).
% complex_cnj_add
tff(fact_4614_complex__cnj__diff,axiom,
! [X2: complex,Y: complex] : ( cnj(aa(complex,complex,aa(complex,fun(complex,complex),minus_minus(complex),X2),Y)) = aa(complex,complex,aa(complex,fun(complex,complex),minus_minus(complex),cnj(X2)),cnj(Y)) ) ).
% complex_cnj_diff
tff(fact_4615_complex__cnj__of__nat,axiom,
! [N: nat] : ( cnj(aa(nat,complex,semiring_1_of_nat(complex),N)) = aa(nat,complex,semiring_1_of_nat(complex),N) ) ).
% complex_cnj_of_nat
tff(fact_4616_complex__In__mult__cnj__zero,axiom,
! [Z: complex] : ( im(aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),Z),cnj(Z))) = zero_zero(real) ) ).
% complex_In_mult_cnj_zero
tff(fact_4617_prod_Otriangle__reindex__eq,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,fun(nat,A)),N: nat] : ( aa(set(product_prod(nat,nat)),A,aa(fun(product_prod(nat,nat),A),fun(set(product_prod(nat,nat)),A),groups7121269368397514597t_prod(product_prod(nat,nat),A),aa(fun(nat,fun(nat,A)),fun(product_prod(nat,nat),A),product_case_prod(nat,nat,A),G)),aa(fun(product_prod(nat,nat),bool),set(product_prod(nat,nat)),collect(product_prod(nat,nat)),aa(fun(nat,fun(nat,bool)),fun(product_prod(nat,nat),bool),product_case_prod(nat,nat,bool),aTP_Lamp_il(nat,fun(nat,fun(nat,bool)),N)))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aTP_Lamp_in(fun(nat,fun(nat,A)),fun(nat,A),G)),aa(nat,set(nat),set_ord_atMost(nat),N)) ) ) ).
% prod.triangle_reindex_eq
tff(fact_4618_int__prod,axiom,
! [B: $tType,F2: fun(B,nat),A3: set(B)] : ( aa(nat,int,semiring_1_of_nat(int),aa(set(B),nat,aa(fun(B,nat),fun(set(B),nat),groups7121269368397514597t_prod(B,nat),F2),A3)) = aa(set(B),int,aa(fun(B,int),fun(set(B),int),groups7121269368397514597t_prod(B,int),aTP_Lamp_fe(fun(B,nat),fun(B,int),F2)),A3) ) ).
% int_prod
tff(fact_4619_case__prodE,axiom,
! [A: $tType,B: $tType,C2: fun(A,fun(B,bool)),P2: product_prod(A,B)] :
( pp(aa(product_prod(A,B),bool,aa(fun(A,fun(B,bool)),fun(product_prod(A,B),bool),product_case_prod(A,B,bool),C2),P2))
=> ~ ! [X3: A,Y3: B] :
( ( P2 = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X3),Y3) )
=> ~ pp(aa(B,bool,aa(A,fun(B,bool),C2,X3),Y3)) ) ) ).
% case_prodE
tff(fact_4620_case__prodD,axiom,
! [A: $tType,B: $tType,F2: fun(A,fun(B,bool)),A2: A,B2: B] :
( pp(aa(product_prod(A,B),bool,aa(fun(A,fun(B,bool)),fun(product_prod(A,B),bool),product_case_prod(A,B,bool),F2),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),A2),B2)))
=> pp(aa(B,bool,aa(A,fun(B,bool),F2,A2),B2)) ) ).
% case_prodD
tff(fact_4621_mem__case__prodE,axiom,
! [B: $tType,A: $tType,C: $tType,Z: A,C2: fun(B,fun(C,set(A))),P2: product_prod(B,C)] :
( pp(member(A,Z,aa(product_prod(B,C),set(A),aa(fun(B,fun(C,set(A))),fun(product_prod(B,C),set(A)),product_case_prod(B,C,set(A)),C2),P2)))
=> ~ ! [X3: B,Y3: C] :
( ( P2 = aa(C,product_prod(B,C),aa(B,fun(C,product_prod(B,C)),product_Pair(B,C),X3),Y3) )
=> ~ pp(member(A,Z,aa(C,set(A),aa(B,fun(C,set(A)),C2,X3),Y3))) ) ) ).
% mem_case_prodE
tff(fact_4622_case__prodE_H,axiom,
! [B: $tType,A: $tType,C: $tType,C2: fun(A,fun(B,fun(C,bool))),P2: product_prod(A,B),Z: C] :
( pp(aa(C,bool,aa(product_prod(A,B),fun(C,bool),aa(fun(A,fun(B,fun(C,bool))),fun(product_prod(A,B),fun(C,bool)),product_case_prod(A,B,fun(C,bool)),C2),P2),Z))
=> ~ ! [X3: A,Y3: B] :
( ( P2 = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X3),Y3) )
=> ~ pp(aa(C,bool,aa(B,fun(C,bool),aa(A,fun(B,fun(C,bool)),C2,X3),Y3),Z)) ) ) ).
% case_prodE'
tff(fact_4623_case__prodD_H,axiom,
! [B: $tType,A: $tType,C: $tType,R2: fun(A,fun(B,fun(C,bool))),A2: A,B2: B,C2: C] :
( pp(aa(C,bool,aa(product_prod(A,B),fun(C,bool),aa(fun(A,fun(B,fun(C,bool))),fun(product_prod(A,B),fun(C,bool)),product_case_prod(A,B,fun(C,bool)),R2),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),A2),B2)),C2))
=> pp(aa(C,bool,aa(B,fun(C,bool),aa(A,fun(B,fun(C,bool)),R2,A2),B2),C2)) ) ).
% case_prodD'
tff(fact_4624_prod_Otriangle__reindex,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,fun(nat,A)),N: nat] : ( aa(set(product_prod(nat,nat)),A,aa(fun(product_prod(nat,nat),A),fun(set(product_prod(nat,nat)),A),groups7121269368397514597t_prod(product_prod(nat,nat),A),aa(fun(nat,fun(nat,A)),fun(product_prod(nat,nat),A),product_case_prod(nat,nat,A),G)),aa(fun(product_prod(nat,nat),bool),set(product_prod(nat,nat)),collect(product_prod(nat,nat)),aa(fun(nat,fun(nat,bool)),fun(product_prod(nat,nat),bool),product_case_prod(nat,nat,bool),aTP_Lamp_io(nat,fun(nat,fun(nat,bool)),N)))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aTP_Lamp_in(fun(nat,fun(nat,A)),fun(nat,A),G)),aa(nat,set(nat),set_ord_lessThan(nat),N)) ) ) ).
% prod.triangle_reindex
tff(fact_4625_cnj_Osimps_I2_J,axiom,
! [Z: complex] : ( im(cnj(Z)) = aa(real,real,uminus_uminus(real),im(Z)) ) ).
% cnj.simps(2)
tff(fact_4626_complex__cnj,axiom,
! [A2: real,B2: real] : ( cnj(complex2(A2,B2)) = complex2(A2,aa(real,real,uminus_uminus(real),B2)) ) ).
% complex_cnj
tff(fact_4627_cis__cnj,axiom,
! [T2: real] : ( cnj(cis(T2)) = cis(aa(real,real,uminus_uminus(real),T2)) ) ).
% cis_cnj
tff(fact_4628_prod__int__eq,axiom,
! [I: nat,J: nat] : ( aa(set(nat),int,aa(fun(nat,int),fun(set(nat),int),groups7121269368397514597t_prod(nat,int),semiring_1_of_nat(int)),set_or1337092689740270186AtMost(nat,I,J)) = aa(set(int),int,aa(fun(int,int),fun(set(int),int),groups7121269368397514597t_prod(int,int),aTP_Lamp_ig(int,int)),set_or1337092689740270186AtMost(int,aa(nat,int,semiring_1_of_nat(int),I),aa(nat,int,semiring_1_of_nat(int),J))) ) ).
% prod_int_eq
tff(fact_4629_sum_Otriangle__reindex__eq,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,fun(nat,A)),N: nat] : ( aa(set(product_prod(nat,nat)),A,aa(fun(product_prod(nat,nat),A),fun(set(product_prod(nat,nat)),A),groups7311177749621191930dd_sum(product_prod(nat,nat),A),aa(fun(nat,fun(nat,A)),fun(product_prod(nat,nat),A),product_case_prod(nat,nat,A),G)),aa(fun(product_prod(nat,nat),bool),set(product_prod(nat,nat)),collect(product_prod(nat,nat)),aa(fun(nat,fun(nat,bool)),fun(product_prod(nat,nat),bool),product_case_prod(nat,nat,bool),aTP_Lamp_il(nat,fun(nat,fun(nat,bool)),N)))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_iq(fun(nat,fun(nat,A)),fun(nat,A),G)),aa(nat,set(nat),set_ord_atMost(nat),N)) ) ) ).
% sum.triangle_reindex_eq
tff(fact_4630_sum_Otriangle__reindex,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,fun(nat,A)),N: nat] : ( aa(set(product_prod(nat,nat)),A,aa(fun(product_prod(nat,nat),A),fun(set(product_prod(nat,nat)),A),groups7311177749621191930dd_sum(product_prod(nat,nat),A),aa(fun(nat,fun(nat,A)),fun(product_prod(nat,nat),A),product_case_prod(nat,nat,A),G)),aa(fun(product_prod(nat,nat),bool),set(product_prod(nat,nat)),collect(product_prod(nat,nat)),aa(fun(nat,fun(nat,bool)),fun(product_prod(nat,nat),bool),product_case_prod(nat,nat,bool),aTP_Lamp_io(nat,fun(nat,fun(nat,bool)),N)))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_iq(fun(nat,fun(nat,A)),fun(nat,A),G)),aa(nat,set(nat),set_ord_lessThan(nat),N)) ) ) ).
% sum.triangle_reindex
tff(fact_4631_prod__int__plus__eq,axiom,
! [I: nat,J: nat] : ( aa(set(nat),int,aa(fun(nat,int),fun(set(nat),int),groups7121269368397514597t_prod(nat,int),semiring_1_of_nat(int)),set_or1337092689740270186AtMost(nat,I,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),J))) = aa(set(int),int,aa(fun(int,int),fun(set(int),int),groups7121269368397514597t_prod(int,int),aTP_Lamp_ig(int,int)),set_or1337092689740270186AtMost(int,aa(nat,int,semiring_1_of_nat(int),I),aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),J)))) ) ).
% prod_int_plus_eq
tff(fact_4632_ln__neg__is__const,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),zero_zero(real)))
=> ( aa(real,real,ln_ln(real),X2) = the(real,aTP_Lamp_ir(real,bool)) ) ) ).
% ln_neg_is_const
tff(fact_4633_cnj_Ocode,axiom,
! [Z: complex] : ( cnj(Z) = complex2(re(Z),aa(real,real,uminus_uminus(real),im(Z))) ) ).
% cnj.code
tff(fact_4634_Re__complex__div__eq__0,axiom,
! [A2: complex,B2: complex] :
( ( re(aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),A2),B2)) = zero_zero(real) )
<=> ( re(aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),A2),cnj(B2))) = zero_zero(real) ) ) ).
% Re_complex_div_eq_0
tff(fact_4635_Im__complex__div__eq__0,axiom,
! [A2: complex,B2: complex] :
( ( im(aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),A2),B2)) = zero_zero(real) )
<=> ( im(aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),A2),cnj(B2))) = zero_zero(real) ) ) ).
% Im_complex_div_eq_0
tff(fact_4636_Re__complex__div__lt__0,axiom,
! [A2: complex,B2: complex] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),re(aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),A2),B2))),zero_zero(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),re(aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),A2),cnj(B2)))),zero_zero(real))) ) ).
% Re_complex_div_lt_0
tff(fact_4637_Re__complex__div__gt__0,axiom,
! [A2: complex,B2: complex] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),re(aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),A2),B2))))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),re(aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),A2),cnj(B2))))) ) ).
% Re_complex_div_gt_0
tff(fact_4638_Re__complex__div__ge__0,axiom,
! [A2: complex,B2: complex] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),re(aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),A2),B2))))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),re(aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),A2),cnj(B2))))) ) ).
% Re_complex_div_ge_0
tff(fact_4639_Re__complex__div__le__0,axiom,
! [A2: complex,B2: complex] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),re(aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),A2),B2))),zero_zero(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),re(aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),A2),cnj(B2)))),zero_zero(real))) ) ).
% Re_complex_div_le_0
tff(fact_4640_Im__complex__div__lt__0,axiom,
! [A2: complex,B2: complex] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),im(aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),A2),B2))),zero_zero(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),im(aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),A2),cnj(B2)))),zero_zero(real))) ) ).
% Im_complex_div_lt_0
tff(fact_4641_Im__complex__div__gt__0,axiom,
! [A2: complex,B2: complex] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),im(aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),A2),B2))))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),im(aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),A2),cnj(B2))))) ) ).
% Im_complex_div_gt_0
tff(fact_4642_Im__complex__div__ge__0,axiom,
! [A2: complex,B2: complex] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),im(aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),A2),B2))))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),im(aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),A2),cnj(B2))))) ) ).
% Im_complex_div_ge_0
tff(fact_4643_Im__complex__div__le__0,axiom,
! [A2: complex,B2: complex] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),im(aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),A2),B2))),zero_zero(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),im(aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),A2),cnj(B2)))),zero_zero(real))) ) ).
% Im_complex_div_le_0
tff(fact_4644_Divides_Oadjust__div__def,axiom,
! [Qr: product_prod(int,int)] : ( adjust_div(Qr) = aa(product_prod(int,int),int,aa(fun(int,fun(int,int)),fun(product_prod(int,int),int),product_case_prod(int,int,int),aTP_Lamp_is(int,fun(int,int))),Qr) ) ).
% Divides.adjust_div_def
tff(fact_4645_complex__mod__mult__cnj,axiom,
! [Z: complex] : ( real_V7770717601297561774m_norm(complex,aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),Z),cnj(Z))) = aa(nat,real,power_power(real,real_V7770717601297561774m_norm(complex,Z)),aa(num,nat,numeral_numeral(nat),bit0(one2))) ) ).
% complex_mod_mult_cnj
tff(fact_4646_arccos__def,axiom,
! [Y: real] : ( aa(real,real,arccos,Y) = the(real,aTP_Lamp_it(real,fun(real,bool),Y)) ) ).
% arccos_def
tff(fact_4647_complex__div__gt__0,axiom,
! [A2: complex,B2: complex] :
( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),re(aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),A2),B2))))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),re(aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),A2),cnj(B2))))) )
& ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),im(aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),A2),B2))))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),im(aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),A2),cnj(B2))))) ) ) ).
% complex_div_gt_0
tff(fact_4648_complex__norm__square,axiom,
! [Z: complex] : ( real_Vector_of_real(complex,aa(nat,real,power_power(real,real_V7770717601297561774m_norm(complex,Z)),aa(num,nat,numeral_numeral(nat),bit0(one2)))) = aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),Z),cnj(Z)) ) ).
% complex_norm_square
tff(fact_4649_divmod__nat__def,axiom,
! [M: nat,N: nat] : ( divmod_nat(M,N) = aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N)),modulo_modulo(nat,M,N)) ) ).
% divmod_nat_def
tff(fact_4650_complex__add__cnj,axiom,
! [Z: complex] : ( aa(complex,complex,aa(complex,fun(complex,complex),plus_plus(complex),Z),cnj(Z)) = real_Vector_of_real(complex,aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),re(Z))) ) ).
% complex_add_cnj
tff(fact_4651_complex__div__cnj,axiom,
! [A2: complex,B2: complex] : ( aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),A2),B2) = aa(complex,complex,aa(complex,fun(complex,complex),divide_divide(complex),aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),A2),cnj(B2))),real_Vector_of_real(complex,aa(nat,real,power_power(real,real_V7770717601297561774m_norm(complex,B2)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ).
% complex_div_cnj
tff(fact_4652_cnj__add__mult__eq__Re,axiom,
! [Z: complex,W: complex] : ( aa(complex,complex,aa(complex,fun(complex,complex),plus_plus(complex),aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),Z),cnj(W))),aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),cnj(Z)),W)) = real_Vector_of_real(complex,aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),re(aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),Z),cnj(W))))) ) ).
% cnj_add_mult_eq_Re
tff(fact_4653_complex__mult__cnj,axiom,
! [Z: complex] : ( aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),Z),cnj(Z)) = real_Vector_of_real(complex,aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,re(Z)),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,power_power(real,im(Z)),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ).
% complex_mult_cnj
tff(fact_4654_pi__half,axiom,
aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))) = the(real,aTP_Lamp_iu(real,bool)) ).
% pi_half
tff(fact_4655_pi__def,axiom,
pi = aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),the(real,aTP_Lamp_iu(real,bool))) ).
% pi_def
tff(fact_4656_of__nat__code__if,axiom,
! [A: $tType] :
( semiring_1(A)
=> ! [N: nat] :
( ( ( N = zero_zero(nat) )
=> ( aa(nat,A,semiring_1_of_nat(A),N) = zero_zero(A) ) )
& ( ( N != zero_zero(nat) )
=> ( aa(nat,A,semiring_1_of_nat(A),N) = aa(product_prod(nat,nat),A,aa(fun(nat,fun(nat,A)),fun(product_prod(nat,nat),A),product_case_prod(nat,nat,A),aTP_Lamp_iv(nat,fun(nat,A))),divmod_nat(N,aa(num,nat,numeral_numeral(nat),bit0(one2)))) ) ) ) ) ).
% of_nat_code_if
tff(fact_4657_int__ge__less__than2__def,axiom,
! [D2: int] : ( int_ge_less_than2(D2) = aa(fun(product_prod(int,int),bool),set(product_prod(int,int)),collect(product_prod(int,int)),aa(fun(int,fun(int,bool)),fun(product_prod(int,int),bool),product_case_prod(int,int,bool),aTP_Lamp_iw(int,fun(int,fun(int,bool)),D2))) ) ).
% int_ge_less_than2_def
tff(fact_4658_int__ge__less__than__def,axiom,
! [D2: int] : ( int_ge_less_than(D2) = aa(fun(product_prod(int,int),bool),set(product_prod(int,int)),collect(product_prod(int,int)),aa(fun(int,fun(int,bool)),fun(product_prod(int,int),bool),product_case_prod(int,int,bool),aTP_Lamp_ix(int,fun(int,fun(int,bool)),D2))) ) ).
% int_ge_less_than_def
tff(fact_4659_Collect__case__prod__mono,axiom,
! [B: $tType,A: $tType,A3: fun(A,fun(B,bool)),B4: fun(A,fun(B,bool))] :
( pp(aa(fun(A,fun(B,bool)),bool,aa(fun(A,fun(B,bool)),fun(fun(A,fun(B,bool)),bool),ord_less_eq(fun(A,fun(B,bool))),A3),B4))
=> pp(aa(set(product_prod(A,B)),bool,aa(set(product_prod(A,B)),fun(set(product_prod(A,B)),bool),ord_less_eq(set(product_prod(A,B))),aa(fun(product_prod(A,B),bool),set(product_prod(A,B)),collect(product_prod(A,B)),aa(fun(A,fun(B,bool)),fun(product_prod(A,B),bool),product_case_prod(A,B,bool),A3))),aa(fun(product_prod(A,B),bool),set(product_prod(A,B)),collect(product_prod(A,B)),aa(fun(A,fun(B,bool)),fun(product_prod(A,B),bool),product_case_prod(A,B,bool),B4)))) ) ).
% Collect_case_prod_mono
tff(fact_4660_set__n__lists,axiom,
! [A: $tType,N: nat,Xs: list(A)] : ( aa(list(list(A)),set(list(A)),set2(list(A)),n_lists(A,N,Xs)) = aa(fun(list(A),bool),set(list(A)),collect(list(A)),aa(list(A),fun(list(A),bool),aTP_Lamp_iy(nat,fun(list(A),fun(list(A),bool)),N),Xs)) ) ).
% set_n_lists
tff(fact_4661_pred__subset__eq,axiom,
! [A: $tType,R2: set(A),S: set(A)] :
( pp(aa(fun(A,bool),bool,aa(fun(A,bool),fun(fun(A,bool),bool),ord_less_eq(fun(A,bool)),aTP_Lamp_a(set(A),fun(A,bool),R2)),aTP_Lamp_a(set(A),fun(A,bool),S)))
<=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),R2),S)) ) ).
% pred_subset_eq
tff(fact_4662_case__prod__Pair__iden,axiom,
! [B: $tType,A: $tType,P2: product_prod(A,B)] : ( aa(product_prod(A,B),product_prod(A,B),aa(fun(A,fun(B,product_prod(A,B))),fun(product_prod(A,B),product_prod(A,B)),product_case_prod(A,B,product_prod(A,B)),product_Pair(A,B)),P2) = P2 ) ).
% case_prod_Pair_iden
tff(fact_4663_predicate2I,axiom,
! [B: $tType,A: $tType,P: fun(A,fun(B,bool)),Q: fun(A,fun(B,bool))] :
( ! [X3: A,Y3: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),P,X3),Y3))
=> pp(aa(B,bool,aa(A,fun(B,bool),Q,X3),Y3)) )
=> pp(aa(fun(A,fun(B,bool)),bool,aa(fun(A,fun(B,bool)),fun(fun(A,fun(B,bool)),bool),ord_less_eq(fun(A,fun(B,bool))),P),Q)) ) ).
% predicate2I
tff(fact_4664_predicate2D,axiom,
! [A: $tType,B: $tType,P: fun(A,fun(B,bool)),Q: fun(A,fun(B,bool)),X2: A,Y: B] :
( pp(aa(fun(A,fun(B,bool)),bool,aa(fun(A,fun(B,bool)),fun(fun(A,fun(B,bool)),bool),ord_less_eq(fun(A,fun(B,bool))),P),Q))
=> ( pp(aa(B,bool,aa(A,fun(B,bool),P,X2),Y))
=> pp(aa(B,bool,aa(A,fun(B,bool),Q,X2),Y)) ) ) ).
% predicate2D
tff(fact_4665_rev__predicate2D,axiom,
! [A: $tType,B: $tType,P: fun(A,fun(B,bool)),X2: A,Y: B,Q: fun(A,fun(B,bool))] :
( pp(aa(B,bool,aa(A,fun(B,bool),P,X2),Y))
=> ( pp(aa(fun(A,fun(B,bool)),bool,aa(fun(A,fun(B,bool)),fun(fun(A,fun(B,bool)),bool),ord_less_eq(fun(A,fun(B,bool))),P),Q))
=> pp(aa(B,bool,aa(A,fun(B,bool),Q,X2),Y)) ) ) ).
% rev_predicate2D
tff(fact_4666_predicate2D__conj,axiom,
! [A: $tType,B: $tType,P: fun(A,fun(B,bool)),Q: fun(A,fun(B,bool)),R2: bool,X2: A,Y: B] :
( ( pp(aa(fun(A,fun(B,bool)),bool,aa(fun(A,fun(B,bool)),fun(fun(A,fun(B,bool)),bool),ord_less_eq(fun(A,fun(B,bool))),P),Q))
& pp(R2) )
=> ( pp(R2)
& ( pp(aa(B,bool,aa(A,fun(B,bool),P,X2),Y))
=> pp(aa(B,bool,aa(A,fun(B,bool),Q,X2),Y)) ) ) ) ).
% predicate2D_conj
tff(fact_4667_eq__subset,axiom,
! [A: $tType,P: fun(A,fun(A,bool))] : pp(aa(fun(A,fun(A,bool)),bool,aa(fun(A,fun(A,bool)),fun(fun(A,fun(A,bool)),bool),ord_less_eq(fun(A,fun(A,bool))),fequal(A)),aTP_Lamp_iz(fun(A,fun(A,bool)),fun(A,fun(A,bool)),P))) ).
% eq_subset
tff(fact_4668_subrelI,axiom,
! [B: $tType,A: $tType,R: set(product_prod(A,B)),S2: set(product_prod(A,B))] :
( ! [X3: A,Y3: B] :
( pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X3),Y3),R))
=> pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X3),Y3),S2)) )
=> pp(aa(set(product_prod(A,B)),bool,aa(set(product_prod(A,B)),fun(set(product_prod(A,B)),bool),ord_less_eq(set(product_prod(A,B))),R),S2)) ) ).
% subrelI
tff(fact_4669_fun__cong__unused__0,axiom,
! [A: $tType,B: $tType,C: $tType] :
( zero(B)
=> ! [F2: fun(fun(A,B),C),G: C] :
( ! [X3: fun(A,B)] : ( aa(fun(A,B),C,F2,X3) = G )
=> ( aa(fun(A,B),C,F2,aTP_Lamp_ja(A,B)) = G ) ) ) ).
% fun_cong_unused_0
tff(fact_4670_pred__equals__eq2,axiom,
! [B: $tType,A: $tType,R2: set(product_prod(A,B)),S: set(product_prod(A,B))] :
( ! [X4: A,Xa3: B] :
( pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X4),Xa3),R2))
<=> pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X4),Xa3),S)) )
<=> ( R2 = S ) ) ).
% pred_equals_eq2
tff(fact_4671_pred__subset__eq2,axiom,
! [B: $tType,A: $tType,R2: set(product_prod(A,B)),S: set(product_prod(A,B))] :
( pp(aa(fun(A,fun(B,bool)),bool,aa(fun(A,fun(B,bool)),fun(fun(A,fun(B,bool)),bool),ord_less_eq(fun(A,fun(B,bool))),aa(set(product_prod(A,B)),fun(A,fun(B,bool)),aTP_Lamp_jb(set(product_prod(A,B)),fun(A,fun(B,bool))),R2)),aa(set(product_prod(A,B)),fun(A,fun(B,bool)),aTP_Lamp_jb(set(product_prod(A,B)),fun(A,fun(B,bool))),S)))
<=> pp(aa(set(product_prod(A,B)),bool,aa(set(product_prod(A,B)),fun(set(product_prod(A,B)),bool),ord_less_eq(set(product_prod(A,B))),R2),S)) ) ).
% pred_subset_eq2
tff(fact_4672_length__n__lists__elem,axiom,
! [A: $tType,Ys: list(A),N: nat,Xs: list(A)] :
( pp(member(list(A),Ys,aa(list(list(A)),set(list(A)),set2(list(A)),n_lists(A,N,Xs))))
=> ( aa(list(A),nat,size_size(list(A)),Ys) = N ) ) ).
% length_n_lists_elem
tff(fact_4673_length__n__lists,axiom,
! [A: $tType,N: nat,Xs: list(A)] : ( aa(list(list(A)),nat,size_size(list(list(A))),n_lists(A,N,Xs)) = aa(nat,nat,power_power(nat,aa(list(A),nat,size_size(list(A)),Xs)),N) ) ).
% length_n_lists
tff(fact_4674_accp__subset,axiom,
! [A: $tType,R1: fun(A,fun(A,bool)),R22: fun(A,fun(A,bool))] :
( pp(aa(fun(A,fun(A,bool)),bool,aa(fun(A,fun(A,bool)),fun(fun(A,fun(A,bool)),bool),ord_less_eq(fun(A,fun(A,bool))),R1),R22))
=> pp(aa(fun(A,bool),bool,aa(fun(A,bool),fun(fun(A,bool),bool),ord_less_eq(fun(A,bool)),accp(A,R22)),accp(A,R1))) ) ).
% accp_subset
tff(fact_4675_set__encode__def,axiom,
nat_set_encode = aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2)))) ).
% set_encode_def
tff(fact_4676_horner__sum__bit__eq__take__bit,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,N: nat] : ( groups4207007520872428315er_sum(bool,A,zero_neq_one_of_bool(A),aa(num,A,numeral_numeral(A),bit0(one2)),aa(list(nat),list(bool),map(nat,bool,bit_se5641148757651400278ts_bit(A,A2)),upt(zero_zero(nat),N))) = aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2) ) ) ).
% horner_sum_bit_eq_take_bit
tff(fact_4677_set__decode__inverse,axiom,
! [N: nat] : ( aa(set(nat),nat,nat_set_encode,nat_set_decode(N)) = N ) ).
% set_decode_inverse
tff(fact_4678_length__upt,axiom,
! [I: nat,J: nat] : ( aa(list(nat),nat,size_size(list(nat)),upt(I,J)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),J),I) ) ).
% length_upt
tff(fact_4679_nth__upt,axiom,
! [I: nat,K: nat,J: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),K)),J))
=> ( aa(nat,nat,nth(nat,upt(I,J)),K) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),K) ) ) ).
% nth_upt
tff(fact_4680_map__Suc__upt,axiom,
! [M: nat,N: nat] : ( aa(list(nat),list(nat),map(nat,nat,suc),upt(M,N)) = upt(aa(nat,nat,suc,M),aa(nat,nat,suc,N)) ) ).
% map_Suc_upt
tff(fact_4681_atLeastAtMost__upt,axiom,
! [N: nat,M: nat] : ( set_or1337092689740270186AtMost(nat,N,M) = aa(list(nat),set(nat),set2(nat),upt(N,aa(nat,nat,suc,M))) ) ).
% atLeastAtMost_upt
tff(fact_4682_atLeast__upt,axiom,
! [N: nat] : ( aa(nat,set(nat),set_ord_lessThan(nat),N) = aa(list(nat),set(nat),set2(nat),upt(zero_zero(nat),N)) ) ).
% atLeast_upt
tff(fact_4683_map__add__upt,axiom,
! [N: nat,M: nat] : ( aa(list(nat),list(nat),map(nat,nat,aTP_Lamp_jc(nat,fun(nat,nat),N)),upt(zero_zero(nat),M)) = upt(N,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N)) ) ).
% map_add_upt
tff(fact_4684_map__replicate__trivial,axiom,
! [A: $tType,X2: A,I: nat] : ( aa(list(nat),list(A),map(nat,A,aTP_Lamp_jd(A,fun(nat,A),X2)),upt(zero_zero(nat),I)) = replicate(A,I,X2) ) ).
% map_replicate_trivial
tff(fact_4685_atMost__upto,axiom,
! [N: nat] : ( aa(nat,set(nat),set_ord_atMost(nat),N) = aa(list(nat),set(nat),set2(nat),upt(zero_zero(nat),aa(nat,nat,suc,N))) ) ).
% atMost_upto
tff(fact_4686_map__decr__upt,axiom,
! [M: nat,N: nat] : ( aa(list(nat),list(nat),map(nat,nat,aTP_Lamp_je(nat,nat)),upt(aa(nat,nat,suc,M),aa(nat,nat,suc,N))) = upt(M,N) ) ).
% map_decr_upt
tff(fact_4687_map__nth,axiom,
! [A: $tType,Xs: list(A)] : ( aa(list(nat),list(A),map(nat,A,nth(A,Xs)),upt(zero_zero(nat),aa(list(A),nat,size_size(list(A)),Xs))) = Xs ) ).
% map_nth
tff(fact_4688_nth__map__upt,axiom,
! [A: $tType,I: nat,N: nat,M: nat,F2: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M)))
=> ( aa(nat,A,nth(A,aa(list(nat),list(A),map(nat,A,F2),upt(M,N))),I) = aa(nat,A,F2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),I)) ) ) ).
% nth_map_upt
tff(fact_4689_map__upt__eqI,axiom,
! [A: $tType,Xs: list(A),N: nat,M: nat,F2: fun(nat,A)] :
( ( aa(list(A),nat,size_size(list(A)),Xs) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M) )
=> ( ! [I3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I3),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( aa(nat,A,nth(A,Xs),I3) = aa(nat,A,F2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),I3)) ) )
=> ( aa(list(nat),list(A),map(nat,A,F2),upt(M,N)) = Xs ) ) ) ).
% map_upt_eqI
tff(fact_4690_accp__subset__induct,axiom,
! [A: $tType,D5: fun(A,bool),R2: fun(A,fun(A,bool)),X2: A,P: fun(A,bool)] :
( pp(aa(fun(A,bool),bool,aa(fun(A,bool),fun(fun(A,bool),bool),ord_less_eq(fun(A,bool)),D5),accp(A,R2)))
=> ( ! [X3: A,Z3: A] :
( pp(aa(A,bool,D5,X3))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),R2,Z3),X3))
=> pp(aa(A,bool,D5,Z3)) ) )
=> ( pp(aa(A,bool,D5,X2))
=> ( ! [X3: A] :
( pp(aa(A,bool,D5,X3))
=> ( ! [Z2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),R2,Z2),X3))
=> pp(aa(A,bool,P,Z2)) )
=> pp(aa(A,bool,P,X3)) ) )
=> pp(aa(A,bool,P,X2)) ) ) ) ) ).
% accp_subset_induct
tff(fact_4691_fold__atLeastAtMost__nat_Opsimps,axiom,
! [A: $tType,F2: fun(nat,fun(A,A)),A2: nat,B2: nat,Acc2: A] :
( pp(aa(product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A))),bool,accp(product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A))),set_fo1817059534552279752at_rel(A)),aa(product_prod(nat,product_prod(nat,A)),product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A))),aa(fun(nat,fun(A,A)),fun(product_prod(nat,product_prod(nat,A)),product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A)))),product_Pair(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A))),F2),aa(product_prod(nat,A),product_prod(nat,product_prod(nat,A)),aa(nat,fun(product_prod(nat,A),product_prod(nat,product_prod(nat,A))),product_Pair(nat,product_prod(nat,A)),A2),aa(A,product_prod(nat,A),aa(nat,fun(A,product_prod(nat,A)),product_Pair(nat,A),B2),Acc2)))))
=> ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),B2),A2))
=> ( set_fo6178422350223883121st_nat(A,F2,A2,B2,Acc2) = Acc2 ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),B2),A2))
=> ( set_fo6178422350223883121st_nat(A,F2,A2,B2,Acc2) = set_fo6178422350223883121st_nat(A,F2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),A2),one_one(nat)),B2,aa(A,A,aa(nat,fun(A,A),F2,A2),Acc2)) ) ) ) ) ).
% fold_atLeastAtMost_nat.psimps
tff(fact_4692_fold__atLeastAtMost__nat_Opelims,axiom,
! [A: $tType,X2: fun(nat,fun(A,A)),Xa: nat,Xb: nat,Xc: A,Y: A] :
( ( set_fo6178422350223883121st_nat(A,X2,Xa,Xb,Xc) = Y )
=> ( pp(aa(product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A))),bool,accp(product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A))),set_fo1817059534552279752at_rel(A)),aa(product_prod(nat,product_prod(nat,A)),product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A))),aa(fun(nat,fun(A,A)),fun(product_prod(nat,product_prod(nat,A)),product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A)))),product_Pair(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A))),X2),aa(product_prod(nat,A),product_prod(nat,product_prod(nat,A)),aa(nat,fun(product_prod(nat,A),product_prod(nat,product_prod(nat,A))),product_Pair(nat,product_prod(nat,A)),Xa),aa(A,product_prod(nat,A),aa(nat,fun(A,product_prod(nat,A)),product_Pair(nat,A),Xb),Xc)))))
=> ~ ( ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Xb),Xa))
=> ( Y = Xc ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Xb),Xa))
=> ( Y = set_fo6178422350223883121st_nat(A,X2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Xa),one_one(nat)),Xb,aa(A,A,aa(nat,fun(A,A),X2,Xa),Xc)) ) ) )
=> ~ pp(aa(product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A))),bool,accp(product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A))),set_fo1817059534552279752at_rel(A)),aa(product_prod(nat,product_prod(nat,A)),product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A))),aa(fun(nat,fun(A,A)),fun(product_prod(nat,product_prod(nat,A)),product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A)))),product_Pair(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A))),X2),aa(product_prod(nat,A),product_prod(nat,product_prod(nat,A)),aa(nat,fun(product_prod(nat,A),product_prod(nat,product_prod(nat,A))),product_Pair(nat,product_prod(nat,A)),Xa),aa(A,product_prod(nat,A),aa(nat,fun(A,product_prod(nat,A)),product_Pair(nat,A),Xb),Xc))))) ) ) ) ).
% fold_atLeastAtMost_nat.pelims
tff(fact_4693_fold__atLeastAtMost__nat_Opinduct,axiom,
! [A: $tType,A0: fun(nat,fun(A,A)),A1: nat,A22: nat,A32: A,P: fun(fun(nat,fun(A,A)),fun(nat,fun(nat,fun(A,bool))))] :
( pp(aa(product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A))),bool,accp(product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A))),set_fo1817059534552279752at_rel(A)),aa(product_prod(nat,product_prod(nat,A)),product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A))),aa(fun(nat,fun(A,A)),fun(product_prod(nat,product_prod(nat,A)),product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A)))),product_Pair(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A))),A0),aa(product_prod(nat,A),product_prod(nat,product_prod(nat,A)),aa(nat,fun(product_prod(nat,A),product_prod(nat,product_prod(nat,A))),product_Pair(nat,product_prod(nat,A)),A1),aa(A,product_prod(nat,A),aa(nat,fun(A,product_prod(nat,A)),product_Pair(nat,A),A22),A32)))))
=> ( ! [F3: fun(nat,fun(A,A)),A4: nat,B3: nat,Acc: A] :
( pp(aa(product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A))),bool,accp(product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A))),set_fo1817059534552279752at_rel(A)),aa(product_prod(nat,product_prod(nat,A)),product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A))),aa(fun(nat,fun(A,A)),fun(product_prod(nat,product_prod(nat,A)),product_prod(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A)))),product_Pair(fun(nat,fun(A,A)),product_prod(nat,product_prod(nat,A))),F3),aa(product_prod(nat,A),product_prod(nat,product_prod(nat,A)),aa(nat,fun(product_prod(nat,A),product_prod(nat,product_prod(nat,A))),product_Pair(nat,product_prod(nat,A)),A4),aa(A,product_prod(nat,A),aa(nat,fun(A,product_prod(nat,A)),product_Pair(nat,A),B3),Acc)))))
=> ( ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),B3),A4))
=> pp(aa(A,bool,aa(nat,fun(A,bool),aa(nat,fun(nat,fun(A,bool)),aa(fun(nat,fun(A,A)),fun(nat,fun(nat,fun(A,bool))),P,F3),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),A4),one_one(nat))),B3),aa(A,A,aa(nat,fun(A,A),F3,A4),Acc))) )
=> pp(aa(A,bool,aa(nat,fun(A,bool),aa(nat,fun(nat,fun(A,bool)),aa(fun(nat,fun(A,A)),fun(nat,fun(nat,fun(A,bool))),P,F3),A4),B3),Acc)) ) )
=> pp(aa(A,bool,aa(nat,fun(A,bool),aa(nat,fun(nat,fun(A,bool)),aa(fun(nat,fun(A,A)),fun(nat,fun(nat,fun(A,bool))),P,A0),A1),A22),A32)) ) ) ).
% fold_atLeastAtMost_nat.pinduct
tff(fact_4694_in__measure,axiom,
! [A: $tType,X2: A,Y: A,F2: fun(A,nat)] :
( pp(member(product_prod(A,A),aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),X2),Y),measure(A,F2)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(A,nat,F2,X2)),aa(A,nat,F2,Y))) ) ).
% in_measure
tff(fact_4695_upto_Opinduct,axiom,
! [A0: int,A1: int,P: fun(int,fun(int,bool))] :
( pp(aa(product_prod(int,int),bool,accp(product_prod(int,int),upto_rel),aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),A0),A1)))
=> ( ! [I3: int,J2: int] :
( pp(aa(product_prod(int,int),bool,accp(product_prod(int,int),upto_rel),aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),I3),J2)))
=> ( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),I3),J2))
=> pp(aa(int,bool,aa(int,fun(int,bool),P,aa(int,int,aa(int,fun(int,int),plus_plus(int),I3),one_one(int))),J2)) )
=> pp(aa(int,bool,aa(int,fun(int,bool),P,I3),J2)) ) )
=> pp(aa(int,bool,aa(int,fun(int,bool),P,A0),A1)) ) ) ).
% upto.pinduct
tff(fact_4696_VEBT_Osize_I3_J,axiom,
! [X11: option(product_prod(nat,nat)),X12: nat,X13: list(vEBT_VEBT),X14: vEBT_VEBT] : ( aa(vEBT_VEBT,nat,size_size(vEBT_VEBT),vEBT_Node(X11,X12,X13,X14)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(list(vEBT_VEBT),nat,size_list(vEBT_VEBT,size_size(vEBT_VEBT)),X13)),aa(vEBT_VEBT,nat,size_size(vEBT_VEBT),X14))),aa(nat,nat,suc,zero_zero(nat))) ) ).
% VEBT.size(3)
tff(fact_4697_size__list__estimation,axiom,
! [A: $tType,X2: A,Xs: list(A),Y: nat,F2: fun(A,nat)] :
( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Y),aa(A,nat,F2,X2)))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Y),aa(list(A),nat,size_list(A,F2),Xs))) ) ) ).
% size_list_estimation
tff(fact_4698_size__list__pointwise,axiom,
! [A: $tType,Xs: list(A),F2: fun(A,nat),G: fun(A,nat)] :
( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),Xs)))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(A,nat,F2,X3)),aa(A,nat,G,X3))) )
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(list(A),nat,size_list(A,F2),Xs)),aa(list(A),nat,size_list(A,G),Xs))) ) ).
% size_list_pointwise
tff(fact_4699_size__list__estimation_H,axiom,
! [A: $tType,X2: A,Xs: list(A),Y: nat,F2: fun(A,nat)] :
( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Y),aa(A,nat,F2,X2)))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Y),aa(list(A),nat,size_list(A,F2),Xs))) ) ) ).
% size_list_estimation'
tff(fact_4700_VEBT_Osize__gen_I1_J,axiom,
! [X11: option(product_prod(nat,nat)),X12: nat,X13: list(vEBT_VEBT),X14: vEBT_VEBT] : ( aa(vEBT_VEBT,nat,vEBT_size_VEBT,vEBT_Node(X11,X12,X13,X14)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(list(vEBT_VEBT),nat,size_list(vEBT_VEBT,vEBT_size_VEBT),X13)),aa(vEBT_VEBT,nat,vEBT_size_VEBT,X14))),aa(nat,nat,suc,zero_zero(nat))) ) ).
% VEBT.size_gen(1)
tff(fact_4701_Sum__Ico__nat,axiom,
! [M: nat,N: nat] : ( aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),aTP_Lamp_gy(nat,nat)),set_or7035219750837199246ssThan(nat,M,N)) = aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat)))),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),one_one(nat))))),aa(num,nat,numeral_numeral(nat),bit0(one2))) ) ).
% Sum_Ico_nat
tff(fact_4702_sum__power2,axiom,
! [K: nat] : ( aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2)))),set_or7035219750837199246ssThan(nat,zero_zero(nat),K)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),K)),one_one(nat)) ) ).
% sum_power2
tff(fact_4703_atLeastLessThan__iff,axiom,
! [A: $tType] :
( ord(A)
=> ! [I: A,L: A,U: A] :
( pp(member(A,I,set_or7035219750837199246ssThan(A,L,U)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L),I))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),I),U)) ) ) ) ).
% atLeastLessThan_iff
tff(fact_4704_ivl__subset,axiom,
! [A: $tType] :
( linorder(A)
=> ! [I: A,J: A,M: A,N: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),set_or7035219750837199246ssThan(A,I,J)),set_or7035219750837199246ssThan(A,M,N)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),J),I))
| ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),M),I))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),J),N)) ) ) ) ) ).
% ivl_subset
tff(fact_4705_ivl__diff,axiom,
! [A: $tType] :
( linorder(A)
=> ! [I: A,N: A,M: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),I),N))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),set_or7035219750837199246ssThan(A,I,M)),set_or7035219750837199246ssThan(A,I,N)) = set_or7035219750837199246ssThan(A,N,M) ) ) ) ).
% ivl_diff
tff(fact_4706_lessThan__minus__lessThan,axiom,
! [A: $tType] :
( linorder(A)
=> ! [N: A,M: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(A,set(A),set_ord_lessThan(A),N)),aa(A,set(A),set_ord_lessThan(A),M)) = set_or7035219750837199246ssThan(A,M,N) ) ) ).
% lessThan_minus_lessThan
tff(fact_4707_sum_Oop__ivl__Suc,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [N: nat,M: nat,G: fun(nat,A)] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or7035219750837199246ssThan(nat,M,aa(nat,nat,suc,N))) = zero_zero(A) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or7035219750837199246ssThan(nat,M,aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or7035219750837199246ssThan(nat,M,N))),aa(nat,A,G,N)) ) ) ) ) ).
% sum.op_ivl_Suc
tff(fact_4708_prod_Oop__ivl__Suc,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [N: nat,M: nat,G: fun(nat,A)] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or7035219750837199246ssThan(nat,M,aa(nat,nat,suc,N))) = one_one(A) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or7035219750837199246ssThan(nat,M,aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or7035219750837199246ssThan(nat,M,N))),aa(nat,A,G,N)) ) ) ) ) ).
% prod.op_ivl_Suc
tff(fact_4709_atLeastLessThan__inj_I2_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( set_or7035219750837199246ssThan(A,A2,B2) = set_or7035219750837199246ssThan(A,C2,D2) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),D2))
=> ( B2 = D2 ) ) ) ) ) ).
% atLeastLessThan_inj(2)
tff(fact_4710_atLeastLessThan__inj_I1_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( set_or7035219750837199246ssThan(A,A2,B2) = set_or7035219750837199246ssThan(A,C2,D2) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),D2))
=> ( A2 = C2 ) ) ) ) ) ).
% atLeastLessThan_inj(1)
tff(fact_4711_atLeastLessThan__eq__iff,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),D2))
=> ( ( set_or7035219750837199246ssThan(A,A2,B2) = set_or7035219750837199246ssThan(A,C2,D2) )
<=> ( ( A2 = C2 )
& ( B2 = D2 ) ) ) ) ) ) ).
% atLeastLessThan_eq_iff
tff(fact_4712_atLeastLessThan__subset__iff,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),set_or7035219750837199246ssThan(A,A2,B2)),set_or7035219750837199246ssThan(A,C2,D2)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
| ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),D2)) ) ) ) ) ).
% atLeastLessThan_subset_iff
tff(fact_4713_all__nat__less__eq,axiom,
! [N: nat,P: fun(nat,bool)] :
( ! [M6: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M6),N))
=> pp(aa(nat,bool,P,M6)) )
<=> ! [X4: nat] :
( pp(member(nat,X4,set_or7035219750837199246ssThan(nat,zero_zero(nat),N)))
=> pp(aa(nat,bool,P,X4)) ) ) ).
% all_nat_less_eq
tff(fact_4714_ex__nat__less__eq,axiom,
! [N: nat,P: fun(nat,bool)] :
( ? [M6: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M6),N))
& pp(aa(nat,bool,P,M6)) )
<=> ? [X4: nat] :
( pp(member(nat,X4,set_or7035219750837199246ssThan(nat,zero_zero(nat),N)))
& pp(aa(nat,bool,P,X4)) ) ) ).
% ex_nat_less_eq
tff(fact_4715_atLeastLessThanSuc__atLeastAtMost,axiom,
! [L: nat,U: nat] : ( set_or7035219750837199246ssThan(nat,L,aa(nat,nat,suc,U)) = set_or1337092689740270186AtMost(nat,L,U) ) ).
% atLeastLessThanSuc_atLeastAtMost
tff(fact_4716_lessThan__atLeast0,axiom,
! [N: nat] : ( aa(nat,set(nat),set_ord_lessThan(nat),N) = set_or7035219750837199246ssThan(nat,zero_zero(nat),N) ) ).
% lessThan_atLeast0
tff(fact_4717_sum_Oshift__bounds__Suc__ivl,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),M: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or7035219750837199246ssThan(nat,aa(nat,nat,suc,M),aa(nat,nat,suc,N))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_df(fun(nat,A),fun(nat,A),G)),set_or7035219750837199246ssThan(nat,M,N)) ) ) ).
% sum.shift_bounds_Suc_ivl
tff(fact_4718_sum_Oshift__bounds__nat__ivl,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),M: nat,K: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or7035219750837199246ssThan(nat,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),K),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),K))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aTP_Lamp_gp(fun(nat,A),fun(nat,fun(nat,A)),G),K)),set_or7035219750837199246ssThan(nat,M,N)) ) ) ).
% sum.shift_bounds_nat_ivl
tff(fact_4719_prod_Oshift__bounds__Suc__ivl,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),M: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or7035219750837199246ssThan(nat,aa(nat,nat,suc,M),aa(nat,nat,suc,N))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aTP_Lamp_ho(fun(nat,A),fun(nat,A),G)),set_or7035219750837199246ssThan(nat,M,N)) ) ) ).
% prod.shift_bounds_Suc_ivl
tff(fact_4720_prod_Oshift__bounds__nat__ivl,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),M: nat,K: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or7035219750837199246ssThan(nat,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),K),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),K))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(nat,fun(nat,A),aTP_Lamp_hq(fun(nat,A),fun(nat,fun(nat,A)),G),K)),set_or7035219750837199246ssThan(nat,M,N)) ) ) ).
% prod.shift_bounds_nat_ivl
tff(fact_4721_atLeastLessThan__upt,axiom,
! [I: nat,J: nat] : ( set_or7035219750837199246ssThan(nat,I,J) = aa(list(nat),set(nat),set2(nat),upt(I,J)) ) ).
% atLeastLessThan_upt
tff(fact_4722_sum_Oivl__cong,axiom,
! [A: $tType,B: $tType] :
( ( ord(B)
& comm_monoid_add(A) )
=> ! [A2: B,C2: B,B2: B,D2: B,G: fun(B,A),H: fun(B,A)] :
( ( A2 = C2 )
=> ( ( B2 = D2 )
=> ( ! [X3: B] :
( pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),C2),X3))
=> ( pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),X3),D2))
=> ( aa(B,A,G,X3) = aa(B,A,H,X3) ) ) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),set_or7035219750837199246ssThan(B,A2,B2)) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),H),set_or7035219750837199246ssThan(B,C2,D2)) ) ) ) ) ) ).
% sum.ivl_cong
tff(fact_4723_prod_Oivl__cong,axiom,
! [A: $tType,B: $tType] :
( ( ord(B)
& comm_monoid_mult(A) )
=> ! [A2: B,C2: B,B2: B,D2: B,G: fun(B,A),H: fun(B,A)] :
( ( A2 = C2 )
=> ( ( B2 = D2 )
=> ( ! [X3: B] :
( pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),C2),X3))
=> ( pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),X3),D2))
=> ( aa(B,A,G,X3) = aa(B,A,H,X3) ) ) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),set_or7035219750837199246ssThan(B,A2,B2)) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),H),set_or7035219750837199246ssThan(B,C2,D2)) ) ) ) ) ) ).
% prod.ivl_cong
tff(fact_4724_sum_OatLeastLessThan__concat,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [M: nat,N: nat,P2: nat,G: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),P2))
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or7035219750837199246ssThan(nat,M,N))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or7035219750837199246ssThan(nat,N,P2))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or7035219750837199246ssThan(nat,M,P2)) ) ) ) ) ).
% sum.atLeastLessThan_concat
tff(fact_4725_sum__diff__nat__ivl,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [M: nat,N: nat,P2: nat,F2: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),P2))
=> ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),set_or7035219750837199246ssThan(nat,M,P2))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),set_or7035219750837199246ssThan(nat,M,N))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),set_or7035219750837199246ssThan(nat,N,P2)) ) ) ) ) ).
% sum_diff_nat_ivl
tff(fact_4726_prod_OatLeastLessThan__concat,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [M: nat,N: nat,P2: nat,G: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),P2))
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or7035219750837199246ssThan(nat,M,N))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or7035219750837199246ssThan(nat,N,P2))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or7035219750837199246ssThan(nat,M,P2)) ) ) ) ) ).
% prod.atLeastLessThan_concat
tff(fact_4727_atLeastAtMost__subseteq__atLeastLessThan__iff,axiom,
! [A: $tType] :
( preorder(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),set_or1337092689740270186AtMost(A,A2,B2)),set_or7035219750837199246ssThan(A,C2,D2)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),D2)) ) ) ) ) ).
% atLeastAtMost_subseteq_atLeastLessThan_iff
tff(fact_4728_atLeastLessThan__subseteq__atLeastAtMost__iff,axiom,
! [A: $tType] :
( dense_linorder(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),set_or7035219750837199246ssThan(A,A2,B2)),set_or1337092689740270186AtMost(A,C2,D2)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),D2)) ) ) ) ) ).
% atLeastLessThan_subseteq_atLeastAtMost_iff
tff(fact_4729_sum__shift__lb__Suc0__0__upt,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [F2: fun(nat,A),K: nat] :
( ( aa(nat,A,F2,zero_zero(nat)) = zero_zero(A) )
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),set_or7035219750837199246ssThan(nat,aa(nat,nat,suc,zero_zero(nat)),K)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),set_or7035219750837199246ssThan(nat,zero_zero(nat),K)) ) ) ) ).
% sum_shift_lb_Suc0_0_upt
tff(fact_4730_sum_OatLeast0__lessThan__Suc,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or7035219750837199246ssThan(nat,zero_zero(nat),aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or7035219750837199246ssThan(nat,zero_zero(nat),N))),aa(nat,A,G,N)) ) ) ).
% sum.atLeast0_lessThan_Suc
tff(fact_4731_sum_OatLeast__Suc__lessThan,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [M: nat,N: nat,G: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or7035219750837199246ssThan(nat,M,N)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,G,M)),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or7035219750837199246ssThan(nat,aa(nat,nat,suc,M),N))) ) ) ) ).
% sum.atLeast_Suc_lessThan
tff(fact_4732_sum_OatLeastLessThan__Suc,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [A2: nat,B2: nat,G: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),A2),B2))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or7035219750837199246ssThan(nat,A2,aa(nat,nat,suc,B2))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or7035219750837199246ssThan(nat,A2,B2))),aa(nat,A,G,B2)) ) ) ) ).
% sum.atLeastLessThan_Suc
tff(fact_4733_prod_OatLeast0__lessThan__Suc,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or7035219750837199246ssThan(nat,zero_zero(nat),aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or7035219750837199246ssThan(nat,zero_zero(nat),N))),aa(nat,A,G,N)) ) ) ).
% prod.atLeast0_lessThan_Suc
tff(fact_4734_prod_OatLeast__Suc__lessThan,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [M: nat,N: nat,G: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),N))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or7035219750837199246ssThan(nat,M,N)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,G,M)),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or7035219750837199246ssThan(nat,aa(nat,nat,suc,M),N))) ) ) ) ).
% prod.atLeast_Suc_lessThan
tff(fact_4735_prod_OatLeastLessThan__Suc,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [A2: nat,B2: nat,G: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),A2),B2))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or7035219750837199246ssThan(nat,A2,aa(nat,nat,suc,B2))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or7035219750837199246ssThan(nat,A2,B2))),aa(nat,A,G,B2)) ) ) ) ).
% prod.atLeastLessThan_Suc
tff(fact_4736_sum_Olast__plus,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [M: nat,N: nat,G: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,M,N)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,G,N)),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or7035219750837199246ssThan(nat,M,N))) ) ) ) ).
% sum.last_plus
tff(fact_4737_prod_Olast__plus,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [M: nat,N: nat,G: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,M,N)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,G,N)),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or7035219750837199246ssThan(nat,M,N))) ) ) ) ).
% prod.last_plus
tff(fact_4738_sum__Suc__diff_H,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [M: nat,N: nat,F2: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_fx(fun(nat,A),fun(nat,A),F2)),set_or7035219750837199246ssThan(nat,M,N)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,F2,N)),aa(nat,A,F2,M)) ) ) ) ).
% sum_Suc_diff'
tff(fact_4739_sum_OatLeastLessThan__rev,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),N: nat,M: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or7035219750837199246ssThan(nat,N,M)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aa(nat,fun(nat,fun(nat,A)),aTP_Lamp_jf(fun(nat,A),fun(nat,fun(nat,fun(nat,A))),G),N),M)),set_or7035219750837199246ssThan(nat,N,M)) ) ) ).
% sum.atLeastLessThan_rev
tff(fact_4740_sum_Onested__swap,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [A2: fun(nat,fun(nat,A)),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_jg(fun(nat,fun(nat,A)),fun(nat,A),A2)),set_or1337092689740270186AtMost(nat,zero_zero(nat),N)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aTP_Lamp_gt(fun(nat,fun(nat,A)),fun(nat,fun(nat,A)),A2),N)),set_or7035219750837199246ssThan(nat,zero_zero(nat),N)) ) ) ).
% sum.nested_swap
tff(fact_4741_prod_OatLeastLessThan__rev,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),N: nat,M: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or7035219750837199246ssThan(nat,N,M)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(nat,fun(nat,A),aa(nat,fun(nat,fun(nat,A)),aTP_Lamp_jh(fun(nat,A),fun(nat,fun(nat,fun(nat,A))),G),N),M)),set_or7035219750837199246ssThan(nat,N,M)) ) ) ).
% prod.atLeastLessThan_rev
tff(fact_4742_prod_Onested__swap,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [A2: fun(nat,fun(nat,A)),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aTP_Lamp_ji(fun(nat,fun(nat,A)),fun(nat,A),A2)),set_or1337092689740270186AtMost(nat,zero_zero(nat),N)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(nat,fun(nat,A),aTP_Lamp_hv(fun(nat,fun(nat,A)),fun(nat,fun(nat,A)),A2),N)),set_or7035219750837199246ssThan(nat,zero_zero(nat),N)) ) ) ).
% prod.nested_swap
tff(fact_4743_sum_Onat__group,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),K: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aTP_Lamp_jj(fun(nat,A),fun(nat,fun(nat,A)),G),K)),aa(nat,set(nat),set_ord_lessThan(nat),N)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),K))) ) ) ).
% sum.nat_group
tff(fact_4744_prod_Onat__group,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),K: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(nat,fun(nat,A),aTP_Lamp_jk(fun(nat,A),fun(nat,fun(nat,A)),G),K)),aa(nat,set(nat),set_ord_lessThan(nat),N)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),K))) ) ) ).
% prod.nat_group
tff(fact_4745_prod__Suc__fact,axiom,
! [N: nat] : ( aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7121269368397514597t_prod(nat,nat),suc),set_or7035219750837199246ssThan(nat,zero_zero(nat),N)) = semiring_char_0_fact(nat,N) ) ).
% prod_Suc_fact
tff(fact_4746_prod__Suc__Suc__fact,axiom,
! [N: nat] : ( aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7121269368397514597t_prod(nat,nat),suc),set_or7035219750837199246ssThan(nat,aa(nat,nat,suc,zero_zero(nat)),N)) = semiring_char_0_fact(nat,N) ) ).
% prod_Suc_Suc_fact
tff(fact_4747_sum_Ohead__if,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [N: nat,M: nat,G: fun(nat,A)] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,M,N)) = zero_zero(A) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,M,N)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or7035219750837199246ssThan(nat,M,N))),aa(nat,A,G,N)) ) ) ) ) ).
% sum.head_if
tff(fact_4748_prod_Ohead__if,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [N: nat,M: nat,G: fun(nat,A)] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,M,N)) = one_one(A) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),M))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,M,N)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or7035219750837199246ssThan(nat,M,N))),aa(nat,A,G,N)) ) ) ) ) ).
% prod.head_if
tff(fact_4749_fact__prod__Suc,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [N: nat] : ( semiring_char_0_fact(A,N) = aa(nat,A,semiring_1_of_nat(A),aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7121269368397514597t_prod(nat,nat),suc),set_or7035219750837199246ssThan(nat,zero_zero(nat),N))) ) ) ).
% fact_prod_Suc
tff(fact_4750_sum_OatLeastLessThan__rev__at__least__Suc__atMost,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),N: nat,M: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or7035219750837199246ssThan(nat,N,M)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aa(nat,fun(nat,fun(nat,A)),aTP_Lamp_gq(fun(nat,A),fun(nat,fun(nat,fun(nat,A))),G),N),M)),set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,N),M)) ) ) ).
% sum.atLeastLessThan_rev_at_least_Suc_atMost
tff(fact_4751_prod_OatLeastLessThan__rev__at__least__Suc__atMost,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),N: nat,M: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or7035219750837199246ssThan(nat,N,M)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(nat,fun(nat,A),aa(nat,fun(nat,fun(nat,A)),aTP_Lamp_hs(fun(nat,A),fun(nat,fun(nat,fun(nat,A))),G),N),M)),set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,N),M)) ) ) ).
% prod.atLeastLessThan_rev_at_least_Suc_atMost
tff(fact_4752_pochhammer__prod,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [A2: A,N: nat] : ( comm_s3205402744901411588hammer(A,A2,N) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aTP_Lamp_hy(A,fun(nat,A),A2)),set_or7035219750837199246ssThan(nat,zero_zero(nat),N)) ) ) ).
% pochhammer_prod
tff(fact_4753_fact__prod__rev,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [N: nat] : ( semiring_char_0_fact(A,N) = aa(nat,A,semiring_1_of_nat(A),aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7121269368397514597t_prod(nat,nat),aa(nat,fun(nat,nat),minus_minus(nat),N)),set_or7035219750837199246ssThan(nat,zero_zero(nat),N))) ) ) ).
% fact_prod_rev
tff(fact_4754_summable__Cauchy,axiom,
! [A: $tType] :
( real_Vector_banach(A)
=> ! [F2: fun(nat,A)] :
( summable(A,F2)
<=> ! [E4: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),E4))
=> ? [N6: nat] :
! [M6: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N6),M6))
=> ! [N5: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),set_or7035219750837199246ssThan(nat,M6,N5)))),E4)) ) ) ) ) ).
% summable_Cauchy
tff(fact_4755_VEBT_Osize__gen_I2_J,axiom,
! [X21: bool,X222: bool] : ( aa(vEBT_VEBT,nat,vEBT_size_VEBT,vEBT_Leaf(X21,X222)) = zero_zero(nat) ) ).
% VEBT.size_gen(2)
tff(fact_4756_sums__group,axiom,
! [A: $tType] :
( ( comm_monoid_add(A)
& topolo4958980785337419405_space(A) )
=> ! [F2: fun(nat,A),S2: A,K: nat] :
( sums(A,F2,S2)
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),K))
=> sums(A,aa(nat,fun(nat,A),aTP_Lamp_jl(fun(nat,A),fun(nat,fun(nat,A)),F2),K),S2) ) ) ) ).
% sums_group
tff(fact_4757_take__bit__sum,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [N: nat,A2: A] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_jm(A,fun(nat,A),A2)),set_or7035219750837199246ssThan(nat,zero_zero(nat),N)) ) ) ).
% take_bit_sum
tff(fact_4758_fact__split,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [K: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N))
=> ( semiring_char_0_fact(A,N) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7121269368397514597t_prod(nat,nat),suc),set_or7035219750837199246ssThan(nat,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),K),N)))),semiring_char_0_fact(A,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),K))) ) ) ) ).
% fact_split
tff(fact_4759_binomial__altdef__of__nat,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [K: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N))
=> ( aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,binomial(N),K)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(nat,fun(nat,A),aTP_Lamp_jn(nat,fun(nat,fun(nat,A)),K),N)),set_or7035219750837199246ssThan(nat,zero_zero(nat),K)) ) ) ) ).
% binomial_altdef_of_nat
tff(fact_4760_gbinomial__altdef__of__nat,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [A2: A,K: nat] : ( aa(nat,A,gbinomial(A,A2),K) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(nat,fun(nat,A),aTP_Lamp_jo(A,fun(nat,fun(nat,A)),A2),K)),set_or7035219750837199246ssThan(nat,zero_zero(nat),K)) ) ) ).
% gbinomial_altdef_of_nat
tff(fact_4761_gbinomial__mult__fact_H,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [A2: A,K: nat] : ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,gbinomial(A,A2),K)),semiring_char_0_fact(A,K)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aTP_Lamp_jp(A,fun(nat,A),A2)),set_or7035219750837199246ssThan(nat,zero_zero(nat),K)) ) ) ).
% gbinomial_mult_fact'
tff(fact_4762_gbinomial__mult__fact,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [K: nat,A2: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),semiring_char_0_fact(A,K)),aa(nat,A,gbinomial(A,A2),K)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aTP_Lamp_jp(A,fun(nat,A),A2)),set_or7035219750837199246ssThan(nat,zero_zero(nat),K)) ) ) ).
% gbinomial_mult_fact
tff(fact_4763_gbinomial__prod__rev,axiom,
! [A: $tType] :
( ( semiring_char_0(A)
& semidom_divide(A) )
=> ! [A2: A,K: nat] : ( aa(nat,A,gbinomial(A,A2),K) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aTP_Lamp_id(A,fun(nat,A),A2)),set_or7035219750837199246ssThan(nat,zero_zero(nat),K))),semiring_char_0_fact(A,K)) ) ) ).
% gbinomial_prod_rev
tff(fact_4764_horner__sum__eq__sum,axiom,
! [A: $tType,B: $tType] :
( comm_semiring_1(A)
=> ! [F2: fun(B,A),A2: A,Xs: list(B)] : ( groups4207007520872428315er_sum(B,A,F2,A2,Xs) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(list(B),fun(nat,A),aa(A,fun(list(B),fun(nat,A)),aTP_Lamp_jq(fun(B,A),fun(A,fun(list(B),fun(nat,A))),F2),A2),Xs)),set_or7035219750837199246ssThan(nat,zero_zero(nat),aa(list(B),nat,size_size(list(B)),Xs))) ) ) ).
% horner_sum_eq_sum
tff(fact_4765_Chebyshev__sum__upper,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [N: nat,A2: fun(nat,A),B2: fun(nat,A)] :
( ! [I3: nat,J2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I3),J2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J2),N))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,A2,I3)),aa(nat,A,A2,J2))) ) )
=> ( ! [I3: nat,J2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I3),J2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J2),N))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,B2,J2)),aa(nat,A,B2,I3))) ) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),N)),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(fun(nat,A),fun(nat,A),aTP_Lamp_jr(fun(nat,A),fun(fun(nat,A),fun(nat,A)),A2),B2)),set_or7035219750837199246ssThan(nat,zero_zero(nat),N)))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),A2),set_or7035219750837199246ssThan(nat,zero_zero(nat),N))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),B2),set_or7035219750837199246ssThan(nat,zero_zero(nat),N))))) ) ) ) ).
% Chebyshev_sum_upper
tff(fact_4766_Chebyshev__sum__upper__nat,axiom,
! [N: nat,A2: fun(nat,nat),B2: fun(nat,nat)] :
( ! [I3: nat,J2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I3),J2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J2),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,A2,I3)),aa(nat,nat,A2,J2))) ) )
=> ( ! [I3: nat,J2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I3),J2))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J2),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,B2,J2)),aa(nat,nat,B2,I3))) ) )
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),aa(fun(nat,nat),fun(nat,nat),aTP_Lamp_js(fun(nat,nat),fun(fun(nat,nat),fun(nat,nat)),A2),B2)),set_or7035219750837199246ssThan(nat,zero_zero(nat),N)))),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),A2),set_or7035219750837199246ssThan(nat,zero_zero(nat),N))),aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),B2),set_or7035219750837199246ssThan(nat,zero_zero(nat),N))))) ) ) ).
% Chebyshev_sum_upper_nat
tff(fact_4767_int__of__nat__def,axiom,
code_T6385005292777649522of_nat = semiring_1_of_nat(int) ).
% int_of_nat_def
tff(fact_4768_atLeastLessThanPlusOne__atLeastAtMost__int,axiom,
! [L: int,U: int] : ( set_or7035219750837199246ssThan(int,L,aa(int,int,aa(int,fun(int,int),plus_plus(int),U),one_one(int))) = set_or1337092689740270186AtMost(int,L,U) ) ).
% atLeastLessThanPlusOne_atLeastAtMost_int
tff(fact_4769_Code__Target__Int_Opositive__def,axiom,
code_Target_positive = numeral_numeral(int) ).
% Code_Target_Int.positive_def
tff(fact_4770_divmod__step__integer__def,axiom,
! [L: num,Qr: product_prod(code_integer,code_integer)] : ( unique1321980374590559556d_step(code_integer,L,Qr) = aa(product_prod(code_integer,code_integer),product_prod(code_integer,code_integer),aa(fun(code_integer,fun(code_integer,product_prod(code_integer,code_integer))),fun(product_prod(code_integer,code_integer),product_prod(code_integer,code_integer)),product_case_prod(code_integer,code_integer,product_prod(code_integer,code_integer)),aTP_Lamp_jt(num,fun(code_integer,fun(code_integer,product_prod(code_integer,code_integer))),L)),Qr) ) ).
% divmod_step_integer_def
tff(fact_4771_case__nat__add__eq__if,axiom,
! [A: $tType,A2: A,F2: fun(nat,A),V: num,N: nat] : ( case_nat(A,A2,F2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(num,nat,numeral_numeral(nat),V)),N)) = aa(nat,A,F2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),pred_numeral(V)),N)) ) ).
% case_nat_add_eq_if
tff(fact_4772_case__nat__numeral,axiom,
! [A: $tType,A2: A,F2: fun(nat,A),V: num] : ( case_nat(A,A2,F2,aa(num,nat,numeral_numeral(nat),V)) = aa(nat,A,F2,pred_numeral(V)) ) ).
% case_nat_numeral
tff(fact_4773_minus__integer__code_I1_J,axiom,
! [K: code_integer] : ( aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),minus_minus(code_integer),K),zero_zero(code_integer)) = K ) ).
% minus_integer_code(1)
tff(fact_4774_sgn__integer__code,axiom,
! [K: code_integer] :
( ( ( K = zero_zero(code_integer) )
=> ( aa(code_integer,code_integer,sgn_sgn(code_integer),K) = zero_zero(code_integer) ) )
& ( ( K != zero_zero(code_integer) )
=> ( ( pp(aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),ord_less(code_integer),K),zero_zero(code_integer)))
=> ( aa(code_integer,code_integer,sgn_sgn(code_integer),K) = aa(code_integer,code_integer,uminus_uminus(code_integer),one_one(code_integer)) ) )
& ( ~ pp(aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),ord_less(code_integer),K),zero_zero(code_integer)))
=> ( aa(code_integer,code_integer,sgn_sgn(code_integer),K) = one_one(code_integer) ) ) ) ) ) ).
% sgn_integer_code
tff(fact_4775_minus__integer__code_I2_J,axiom,
! [L: code_integer] : ( aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),minus_minus(code_integer),zero_zero(code_integer)),L) = aa(code_integer,code_integer,uminus_uminus(code_integer),L) ) ).
% minus_integer_code(2)
tff(fact_4776_divmod__integer_H__def,axiom,
! [M: num,N: num] : ( unique8689654367752047608divmod(code_integer,M,N) = aa(code_integer,product_prod(code_integer,code_integer),aa(code_integer,fun(code_integer,product_prod(code_integer,code_integer)),product_Pair(code_integer,code_integer),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),divide_divide(code_integer),aa(num,code_integer,numeral_numeral(code_integer),M)),aa(num,code_integer,numeral_numeral(code_integer),N))),modulo_modulo(code_integer,aa(num,code_integer,numeral_numeral(code_integer),M),aa(num,code_integer,numeral_numeral(code_integer),N))) ) ).
% divmod_integer'_def
tff(fact_4777_times__integer__code_I1_J,axiom,
! [K: code_integer] : ( aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),times_times(code_integer),K),zero_zero(code_integer)) = zero_zero(code_integer) ) ).
% times_integer_code(1)
tff(fact_4778_times__integer__code_I2_J,axiom,
! [L: code_integer] : ( aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),times_times(code_integer),zero_zero(code_integer)),L) = zero_zero(code_integer) ) ).
% times_integer_code(2)
tff(fact_4779_plus__integer__code_I2_J,axiom,
! [L: code_integer] : ( aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),plus_plus(code_integer),zero_zero(code_integer)),L) = L ) ).
% plus_integer_code(2)
tff(fact_4780_plus__integer__code_I1_J,axiom,
! [K: code_integer] : ( aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),plus_plus(code_integer),K),zero_zero(code_integer)) = K ) ).
% plus_integer_code(1)
tff(fact_4781_exhaustive__integer_H_Ocases,axiom,
! [X2: product_prod(fun(code_integer,option(product_prod(bool,list(code_term)))),product_prod(code_integer,code_integer))] :
~ ! [F3: fun(code_integer,option(product_prod(bool,list(code_term)))),D3: code_integer,I3: code_integer] : ( X2 != aa(product_prod(code_integer,code_integer),product_prod(fun(code_integer,option(product_prod(bool,list(code_term)))),product_prod(code_integer,code_integer)),aa(fun(code_integer,option(product_prod(bool,list(code_term)))),fun(product_prod(code_integer,code_integer),product_prod(fun(code_integer,option(product_prod(bool,list(code_term)))),product_prod(code_integer,code_integer))),product_Pair(fun(code_integer,option(product_prod(bool,list(code_term)))),product_prod(code_integer,code_integer)),F3),aa(code_integer,product_prod(code_integer,code_integer),aa(code_integer,fun(code_integer,product_prod(code_integer,code_integer)),product_Pair(code_integer,code_integer),D3),I3)) ) ).
% exhaustive_integer'.cases
tff(fact_4782_full__exhaustive__integer_H_Ocases,axiom,
! [X2: product_prod(fun(product_prod(code_integer,fun(product_unit,code_term)),option(product_prod(bool,list(code_term)))),product_prod(code_integer,code_integer))] :
~ ! [F3: fun(product_prod(code_integer,fun(product_unit,code_term)),option(product_prod(bool,list(code_term)))),D3: code_integer,I3: code_integer] : ( X2 != aa(product_prod(code_integer,code_integer),product_prod(fun(product_prod(code_integer,fun(product_unit,code_term)),option(product_prod(bool,list(code_term)))),product_prod(code_integer,code_integer)),aa(fun(product_prod(code_integer,fun(product_unit,code_term)),option(product_prod(bool,list(code_term)))),fun(product_prod(code_integer,code_integer),product_prod(fun(product_prod(code_integer,fun(product_unit,code_term)),option(product_prod(bool,list(code_term)))),product_prod(code_integer,code_integer))),product_Pair(fun(product_prod(code_integer,fun(product_unit,code_term)),option(product_prod(bool,list(code_term)))),product_prod(code_integer,code_integer)),F3),aa(code_integer,product_prod(code_integer,code_integer),aa(code_integer,fun(code_integer,product_prod(code_integer,code_integer)),product_Pair(code_integer,code_integer),D3),I3)) ) ).
% full_exhaustive_integer'.cases
tff(fact_4783_nat_Ocase__distrib,axiom,
! [A: $tType,B: $tType,H: fun(A,B),F1: A,F22: fun(nat,A),Nat: nat] : ( aa(A,B,H,case_nat(A,F1,F22,Nat)) = case_nat(B,aa(A,B,H,F1),aa(fun(nat,A),fun(nat,B),aTP_Lamp_ju(fun(A,B),fun(fun(nat,A),fun(nat,B)),H),F22),Nat) ) ).
% nat.case_distrib
tff(fact_4784_less__eq__integer__code_I1_J,axiom,
pp(aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),ord_less_eq(code_integer),zero_zero(code_integer)),zero_zero(code_integer))) ).
% less_eq_integer_code(1)
tff(fact_4785_old_Onat_Osimps_I5_J,axiom,
! [A: $tType,F1: A,F22: fun(nat,A),X23: nat] : ( case_nat(A,F1,F22,aa(nat,nat,suc,X23)) = aa(nat,A,F22,X23) ) ).
% old.nat.simps(5)
tff(fact_4786_old_Onat_Osimps_I4_J,axiom,
! [A: $tType,F1: A,F22: fun(nat,A)] : ( case_nat(A,F1,F22,zero_zero(nat)) = F1 ) ).
% old.nat.simps(4)
tff(fact_4787_nat_Odisc__eq__case_I2_J,axiom,
! [Nat: nat] :
( ( Nat != zero_zero(nat) )
<=> pp(case_nat(bool,fFalse,aTP_Lamp_jv(nat,bool),Nat)) ) ).
% nat.disc_eq_case(2)
tff(fact_4788_nat_Odisc__eq__case_I1_J,axiom,
! [Nat: nat] :
( ( Nat = zero_zero(nat) )
<=> pp(case_nat(bool,fTrue,aTP_Lamp_jw(nat,bool),Nat)) ) ).
% nat.disc_eq_case(1)
tff(fact_4789_zero__natural_Orsp,axiom,
zero_zero(nat) = zero_zero(nat) ).
% zero_natural.rsp
tff(fact_4790_zero__integer_Orsp,axiom,
zero_zero(int) = zero_zero(int) ).
% zero_integer.rsp
tff(fact_4791_one__integer_Orsp,axiom,
one_one(int) = one_one(int) ).
% one_integer.rsp
tff(fact_4792_one__natural_Orsp,axiom,
one_one(nat) = one_one(nat) ).
% one_natural.rsp
tff(fact_4793_less__eq__nat_Osimps_I2_J,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,suc,M)),N))
<=> pp(case_nat(bool,fFalse,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N)) ) ).
% less_eq_nat.simps(2)
tff(fact_4794_diff__Suc,axiom,
! [M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),aa(nat,nat,suc,N)) = case_nat(nat,zero_zero(nat),aTP_Lamp_gy(nat,nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N)) ) ).
% diff_Suc
tff(fact_4795_bit__numeral__rec_I1_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [W: num,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(num,A,numeral_numeral(A),bit0(W))),N))
<=> pp(case_nat(bool,fFalse,bit_se5641148757651400278ts_bit(A,aa(num,A,numeral_numeral(A),W)),N)) ) ) ).
% bit_numeral_rec(1)
tff(fact_4796_bit__numeral__rec_I2_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [W: num,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(num,A,numeral_numeral(A),aa(num,num,bit1,W))),N))
<=> pp(case_nat(bool,fTrue,bit_se5641148757651400278ts_bit(A,aa(num,A,numeral_numeral(A),W)),N)) ) ) ).
% bit_numeral_rec(2)
tff(fact_4797_Nitpick_Ocase__nat__unfold,axiom,
! [A: $tType,N: nat,X2: A,F2: fun(nat,A)] :
( ( ( N = zero_zero(nat) )
=> ( case_nat(A,X2,F2,N) = X2 ) )
& ( ( N != zero_zero(nat) )
=> ( case_nat(A,X2,F2,N) = aa(nat,A,F2,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat))) ) ) ) ).
% Nitpick.case_nat_unfold
tff(fact_4798_integer__of__int__code,axiom,
! [K: int] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),zero_zero(int)))
=> ( code_integer_of_int(K) = aa(code_integer,code_integer,uminus_uminus(code_integer),code_integer_of_int(aa(int,int,uminus_uminus(int),K))) ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),zero_zero(int)))
=> ( ( ( K = zero_zero(int) )
=> ( code_integer_of_int(K) = zero_zero(code_integer) ) )
& ( ( K != zero_zero(int) )
=> ( code_integer_of_int(K) = if(code_integer,aa(int,bool,aa(int,fun(int,bool),fequal(int),modulo_modulo(int,K,aa(num,int,numeral_numeral(int),bit0(one2)))),zero_zero(int)),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),times_times(code_integer),aa(num,code_integer,numeral_numeral(code_integer),bit0(one2))),code_integer_of_int(aa(int,int,aa(int,fun(int,int),divide_divide(int),K),aa(num,int,numeral_numeral(int),bit0(one2))))),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),plus_plus(code_integer),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),times_times(code_integer),aa(num,code_integer,numeral_numeral(code_integer),bit0(one2))),code_integer_of_int(aa(int,int,aa(int,fun(int,int),divide_divide(int),K),aa(num,int,numeral_numeral(int),bit0(one2)))))),one_one(code_integer))) ) ) ) ) ) ).
% integer_of_int_code
tff(fact_4799_integer__of__num_I3_J,axiom,
! [N: num] : ( code_integer_of_num(aa(num,num,bit1,N)) = aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),plus_plus(code_integer),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),plus_plus(code_integer),code_integer_of_num(N)),code_integer_of_num(N))),one_one(code_integer)) ) ).
% integer_of_num(3)
tff(fact_4800_nat_Osplit__sels_I2_J,axiom,
! [A: $tType,P: fun(A,bool),F1: A,F22: fun(nat,A),Nat: nat] :
( pp(aa(A,bool,P,case_nat(A,F1,F22,Nat)))
<=> ~ ( ( ( Nat = zero_zero(nat) )
& ~ pp(aa(A,bool,P,F1)) )
| ( ( Nat = aa(nat,nat,suc,pred(Nat)) )
& ~ pp(aa(A,bool,P,aa(nat,A,F22,pred(Nat)))) ) ) ) ).
% nat.split_sels(2)
tff(fact_4801_less__integer__code_I1_J,axiom,
~ pp(aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),ord_less(code_integer),zero_zero(code_integer)),zero_zero(code_integer))) ).
% less_integer_code(1)
tff(fact_4802_abs__integer__code,axiom,
! [K: code_integer] :
( ( pp(aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),ord_less(code_integer),K),zero_zero(code_integer)))
=> ( aa(code_integer,code_integer,abs_abs(code_integer),K) = aa(code_integer,code_integer,uminus_uminus(code_integer),K) ) )
& ( ~ pp(aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),ord_less(code_integer),K),zero_zero(code_integer)))
=> ( aa(code_integer,code_integer,abs_abs(code_integer),K) = K ) ) ) ).
% abs_integer_code
tff(fact_4803_uminus__integer_Oabs__eq,axiom,
! [X2: int] : ( aa(code_integer,code_integer,uminus_uminus(code_integer),code_integer_of_int(X2)) = code_integer_of_int(aa(int,int,uminus_uminus(int),X2)) ) ).
% uminus_integer.abs_eq
tff(fact_4804_uminus__integer__code_I1_J,axiom,
aa(code_integer,code_integer,uminus_uminus(code_integer),zero_zero(code_integer)) = zero_zero(code_integer) ).
% uminus_integer_code(1)
tff(fact_4805_divide__integer_Oabs__eq,axiom,
! [Xa: int,X2: int] : ( aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),divide_divide(code_integer),code_integer_of_int(Xa)),code_integer_of_int(X2)) = code_integer_of_int(aa(int,int,aa(int,fun(int,int),divide_divide(int),Xa),X2)) ) ).
% divide_integer.abs_eq
tff(fact_4806_zero__integer__def,axiom,
zero_zero(code_integer) = code_integer_of_int(zero_zero(int)) ).
% zero_integer_def
tff(fact_4807_modulo__integer_Oabs__eq,axiom,
! [Xa: int,X2: int] : ( modulo_modulo(code_integer,code_integer_of_int(Xa),code_integer_of_int(X2)) = code_integer_of_int(modulo_modulo(int,Xa,X2)) ) ).
% modulo_integer.abs_eq
tff(fact_4808_plus__integer_Oabs__eq,axiom,
! [Xa: int,X2: int] : ( aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),plus_plus(code_integer),code_integer_of_int(Xa)),code_integer_of_int(X2)) = code_integer_of_int(aa(int,int,aa(int,fun(int,int),plus_plus(int),Xa),X2)) ) ).
% plus_integer.abs_eq
tff(fact_4809_one__integer__def,axiom,
one_one(code_integer) = code_integer_of_int(one_one(int)) ).
% one_integer_def
tff(fact_4810_less__eq__integer_Oabs__eq,axiom,
! [Xa: int,X2: int] :
( pp(aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),ord_less_eq(code_integer),code_integer_of_int(Xa)),code_integer_of_int(X2)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),Xa),X2)) ) ).
% less_eq_integer.abs_eq
tff(fact_4811_minus__integer_Oabs__eq,axiom,
! [Xa: int,X2: int] : ( aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),minus_minus(code_integer),code_integer_of_int(Xa)),code_integer_of_int(X2)) = code_integer_of_int(aa(int,int,aa(int,fun(int,int),minus_minus(int),Xa),X2)) ) ).
% minus_integer.abs_eq
tff(fact_4812_pred__def,axiom,
! [Nat: nat] : ( pred(Nat) = case_nat(nat,zero_zero(nat),aTP_Lamp_gy(nat,nat),Nat) ) ).
% pred_def
tff(fact_4813_integer__of__num__triv_I1_J,axiom,
code_integer_of_num(one2) = one_one(code_integer) ).
% integer_of_num_triv(1)
tff(fact_4814_integer__of__num_I2_J,axiom,
! [N: num] : ( code_integer_of_num(bit0(N)) = aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),plus_plus(code_integer),code_integer_of_num(N)),code_integer_of_num(N)) ) ).
% integer_of_num(2)
tff(fact_4815_integer__of__num__triv_I2_J,axiom,
code_integer_of_num(bit0(one2)) = aa(num,code_integer,numeral_numeral(code_integer),bit0(one2)) ).
% integer_of_num_triv(2)
tff(fact_4816_nat_Osplit__sels_I1_J,axiom,
! [A: $tType,P: fun(A,bool),F1: A,F22: fun(nat,A),Nat: nat] :
( pp(aa(A,bool,P,case_nat(A,F1,F22,Nat)))
<=> ( ( ( Nat = zero_zero(nat) )
=> pp(aa(A,bool,P,F1)) )
& ( ( Nat = aa(nat,nat,suc,pred(Nat)) )
=> pp(aa(A,bool,P,aa(nat,A,F22,pred(Nat)))) ) ) ) ).
% nat.split_sels(1)
tff(fact_4817_int__of__integer__code,axiom,
! [K: code_integer] :
( ( pp(aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),ord_less(code_integer),K),zero_zero(code_integer)))
=> ( code_int_of_integer(K) = aa(int,int,uminus_uminus(int),code_int_of_integer(aa(code_integer,code_integer,uminus_uminus(code_integer),K))) ) )
& ( ~ pp(aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),ord_less(code_integer),K),zero_zero(code_integer)))
=> ( ( ( K = zero_zero(code_integer) )
=> ( code_int_of_integer(K) = zero_zero(int) ) )
& ( ( K != zero_zero(code_integer) )
=> ( code_int_of_integer(K) = aa(product_prod(code_integer,code_integer),int,aa(fun(code_integer,fun(code_integer,int)),fun(product_prod(code_integer,code_integer),int),product_case_prod(code_integer,code_integer,int),aTP_Lamp_jx(code_integer,fun(code_integer,int))),code_divmod_integer(K,aa(num,code_integer,numeral_numeral(code_integer),bit0(one2)))) ) ) ) ) ) ).
% int_of_integer_code
tff(fact_4818_bit__cut__integer__def,axiom,
! [K: code_integer] : ( code_bit_cut_integer(K) = aa(bool,product_prod(code_integer,bool),aa(code_integer,fun(bool,product_prod(code_integer,bool)),product_Pair(code_integer,bool),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),divide_divide(code_integer),K),aa(num,code_integer,numeral_numeral(code_integer),bit0(one2)))),aa(bool,bool,fNot,aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),dvd_dvd(code_integer),aa(num,code_integer,numeral_numeral(code_integer),bit0(one2))),K))) ) ).
% bit_cut_integer_def
tff(fact_4819_num__of__integer__code,axiom,
! [K: code_integer] :
( ( pp(aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),ord_less_eq(code_integer),K),one_one(code_integer)))
=> ( aa(code_integer,num,code_num_of_integer,K) = one2 ) )
& ( ~ pp(aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),ord_less_eq(code_integer),K),one_one(code_integer)))
=> ( aa(code_integer,num,code_num_of_integer,K) = aa(product_prod(code_integer,code_integer),num,aa(fun(code_integer,fun(code_integer,num)),fun(product_prod(code_integer,code_integer),num),product_case_prod(code_integer,code_integer,num),aTP_Lamp_jy(code_integer,fun(code_integer,num))),code_divmod_integer(K,aa(num,code_integer,numeral_numeral(code_integer),bit0(one2)))) ) ) ) ).
% num_of_integer_code
tff(fact_4820_int__of__integer__of__nat,axiom,
! [N: nat] : ( code_int_of_integer(aa(nat,code_integer,semiring_1_of_nat(code_integer),N)) = aa(nat,int,semiring_1_of_nat(int),N) ) ).
% int_of_integer_of_nat
tff(fact_4821_zero__integer_Orep__eq,axiom,
code_int_of_integer(zero_zero(code_integer)) = zero_zero(int) ).
% zero_integer.rep_eq
tff(fact_4822_int__of__integer__numeral,axiom,
! [K: num] : ( code_int_of_integer(aa(num,code_integer,numeral_numeral(code_integer),K)) = aa(num,int,numeral_numeral(int),K) ) ).
% int_of_integer_numeral
tff(fact_4823_plus__integer_Orep__eq,axiom,
! [X2: code_integer,Xa: code_integer] : ( code_int_of_integer(aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),plus_plus(code_integer),X2),Xa)) = aa(int,int,aa(int,fun(int,int),plus_plus(int),code_int_of_integer(X2)),code_int_of_integer(Xa)) ) ).
% plus_integer.rep_eq
tff(fact_4824_uminus__integer_Orep__eq,axiom,
! [X2: code_integer] : ( code_int_of_integer(aa(code_integer,code_integer,uminus_uminus(code_integer),X2)) = aa(int,int,uminus_uminus(int),code_int_of_integer(X2)) ) ).
% uminus_integer.rep_eq
tff(fact_4825_one__integer_Orep__eq,axiom,
code_int_of_integer(one_one(code_integer)) = one_one(int) ).
% one_integer.rep_eq
tff(fact_4826_minus__integer_Orep__eq,axiom,
! [X2: code_integer,Xa: code_integer] : ( code_int_of_integer(aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),minus_minus(code_integer),X2),Xa)) = aa(int,int,aa(int,fun(int,int),minus_minus(int),code_int_of_integer(X2)),code_int_of_integer(Xa)) ) ).
% minus_integer.rep_eq
tff(fact_4827_divide__integer_Orep__eq,axiom,
! [X2: code_integer,Xa: code_integer] : ( code_int_of_integer(aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),divide_divide(code_integer),X2),Xa)) = aa(int,int,aa(int,fun(int,int),divide_divide(int),code_int_of_integer(X2)),code_int_of_integer(Xa)) ) ).
% divide_integer.rep_eq
tff(fact_4828_modulo__integer_Orep__eq,axiom,
! [X2: code_integer,Xa: code_integer] : ( code_int_of_integer(modulo_modulo(code_integer,X2,Xa)) = modulo_modulo(int,code_int_of_integer(X2),code_int_of_integer(Xa)) ) ).
% modulo_integer.rep_eq
tff(fact_4829_less__eq__integer_Orep__eq,axiom,
! [X2: code_integer,Xa: code_integer] :
( pp(aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),ord_less_eq(code_integer),X2),Xa))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),code_int_of_integer(X2)),code_int_of_integer(Xa))) ) ).
% less_eq_integer.rep_eq
tff(fact_4830_integer__less__eq__iff,axiom,
! [K: code_integer,L: code_integer] :
( pp(aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),ord_less_eq(code_integer),K),L))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),code_int_of_integer(K)),code_int_of_integer(L))) ) ).
% integer_less_eq_iff
tff(fact_4831_divmod__integer__def,axiom,
! [K: code_integer,L: code_integer] : ( code_divmod_integer(K,L) = aa(code_integer,product_prod(code_integer,code_integer),aa(code_integer,fun(code_integer,product_prod(code_integer,code_integer)),product_Pair(code_integer,code_integer),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),divide_divide(code_integer),K),L)),modulo_modulo(code_integer,K,L)) ) ).
% divmod_integer_def
tff(fact_4832_bit__cut__integer__code,axiom,
! [K: code_integer] :
( ( ( K = zero_zero(code_integer) )
=> ( code_bit_cut_integer(K) = aa(bool,product_prod(code_integer,bool),aa(code_integer,fun(bool,product_prod(code_integer,bool)),product_Pair(code_integer,bool),zero_zero(code_integer)),fFalse) ) )
& ( ( K != zero_zero(code_integer) )
=> ( code_bit_cut_integer(K) = aa(product_prod(code_integer,code_integer),product_prod(code_integer,bool),aa(fun(code_integer,fun(code_integer,product_prod(code_integer,bool))),fun(product_prod(code_integer,code_integer),product_prod(code_integer,bool)),product_case_prod(code_integer,code_integer,product_prod(code_integer,bool)),aTP_Lamp_jz(code_integer,fun(code_integer,fun(code_integer,product_prod(code_integer,bool))),K)),code_divmod_abs(K,aa(num,code_integer,numeral_numeral(code_integer),bit0(one2)))) ) ) ) ).
% bit_cut_integer_code
tff(fact_4833_nat__of__integer__code,axiom,
! [K: code_integer] :
( ( pp(aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),ord_less_eq(code_integer),K),zero_zero(code_integer)))
=> ( code_nat_of_integer(K) = zero_zero(nat) ) )
& ( ~ pp(aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),ord_less_eq(code_integer),K),zero_zero(code_integer)))
=> ( code_nat_of_integer(K) = aa(product_prod(code_integer,code_integer),nat,aa(fun(code_integer,fun(code_integer,nat)),fun(product_prod(code_integer,code_integer),nat),product_case_prod(code_integer,code_integer,nat),aTP_Lamp_ka(code_integer,fun(code_integer,nat))),code_divmod_integer(K,aa(num,code_integer,numeral_numeral(code_integer),bit0(one2)))) ) ) ) ).
% nat_of_integer_code
tff(fact_4834_divmod__abs__def,axiom,
! [K: code_integer,L: code_integer] : ( code_divmod_abs(K,L) = aa(code_integer,product_prod(code_integer,code_integer),aa(code_integer,fun(code_integer,product_prod(code_integer,code_integer)),product_Pair(code_integer,code_integer),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),divide_divide(code_integer),aa(code_integer,code_integer,abs_abs(code_integer),K)),aa(code_integer,code_integer,abs_abs(code_integer),L))),modulo_modulo(code_integer,aa(code_integer,code_integer,abs_abs(code_integer),K),aa(code_integer,code_integer,abs_abs(code_integer),L))) ) ).
% divmod_abs_def
tff(fact_4835_nat__of__integer__of__nat,axiom,
! [N: nat] : ( code_nat_of_integer(aa(nat,code_integer,semiring_1_of_nat(code_integer),N)) = N ) ).
% nat_of_integer_of_nat
tff(fact_4836_nat__of__integer__non__positive,axiom,
! [K: code_integer] :
( pp(aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),ord_less_eq(code_integer),K),zero_zero(code_integer)))
=> ( code_nat_of_integer(K) = zero_zero(nat) ) ) ).
% nat_of_integer_non_positive
tff(fact_4837_nat__of__integer__code__post_I1_J,axiom,
code_nat_of_integer(zero_zero(code_integer)) = zero_zero(nat) ).
% nat_of_integer_code_post(1)
tff(fact_4838_nat__of__integer__code__post_I3_J,axiom,
! [K: num] : ( code_nat_of_integer(aa(num,code_integer,numeral_numeral(code_integer),K)) = aa(num,nat,numeral_numeral(nat),K) ) ).
% nat_of_integer_code_post(3)
tff(fact_4839_divmod__abs__code_I6_J,axiom,
! [J: code_integer] : ( code_divmod_abs(zero_zero(code_integer),J) = aa(code_integer,product_prod(code_integer,code_integer),aa(code_integer,fun(code_integer,product_prod(code_integer,code_integer)),product_Pair(code_integer,code_integer),zero_zero(code_integer)),zero_zero(code_integer)) ) ).
% divmod_abs_code(6)
tff(fact_4840_nat__of__integer__code__post_I2_J,axiom,
code_nat_of_integer(one_one(code_integer)) = one_one(nat) ).
% nat_of_integer_code_post(2)
tff(fact_4841_divmod__abs__code_I5_J,axiom,
! [J: code_integer] : ( code_divmod_abs(J,zero_zero(code_integer)) = aa(code_integer,product_prod(code_integer,code_integer),aa(code_integer,fun(code_integer,product_prod(code_integer,code_integer)),product_Pair(code_integer,code_integer),zero_zero(code_integer)),aa(code_integer,code_integer,abs_abs(code_integer),J)) ) ).
% divmod_abs_code(5)
tff(fact_4842_divmod__integer__code,axiom,
! [K: code_integer,L: code_integer] :
( ( ( K = zero_zero(code_integer) )
=> ( code_divmod_integer(K,L) = aa(code_integer,product_prod(code_integer,code_integer),aa(code_integer,fun(code_integer,product_prod(code_integer,code_integer)),product_Pair(code_integer,code_integer),zero_zero(code_integer)),zero_zero(code_integer)) ) )
& ( ( K != zero_zero(code_integer) )
=> ( ( pp(aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),ord_less(code_integer),zero_zero(code_integer)),L))
=> ( ( pp(aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),ord_less(code_integer),zero_zero(code_integer)),K))
=> ( code_divmod_integer(K,L) = code_divmod_abs(K,L) ) )
& ( ~ pp(aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),ord_less(code_integer),zero_zero(code_integer)),K))
=> ( code_divmod_integer(K,L) = aa(product_prod(code_integer,code_integer),product_prod(code_integer,code_integer),aa(fun(code_integer,fun(code_integer,product_prod(code_integer,code_integer))),fun(product_prod(code_integer,code_integer),product_prod(code_integer,code_integer)),product_case_prod(code_integer,code_integer,product_prod(code_integer,code_integer)),aTP_Lamp_kb(code_integer,fun(code_integer,fun(code_integer,product_prod(code_integer,code_integer))),L)),code_divmod_abs(K,L)) ) ) ) )
& ( ~ pp(aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),ord_less(code_integer),zero_zero(code_integer)),L))
=> ( ( ( L = zero_zero(code_integer) )
=> ( code_divmod_integer(K,L) = aa(code_integer,product_prod(code_integer,code_integer),aa(code_integer,fun(code_integer,product_prod(code_integer,code_integer)),product_Pair(code_integer,code_integer),zero_zero(code_integer)),K) ) )
& ( ( L != zero_zero(code_integer) )
=> ( code_divmod_integer(K,L) = aa(product_prod(code_integer,code_integer),product_prod(code_integer,code_integer),aa(fun(code_integer,code_integer),fun(product_prod(code_integer,code_integer),product_prod(code_integer,code_integer)),product_apsnd(code_integer,code_integer,code_integer),uminus_uminus(code_integer)),if(product_prod(code_integer,code_integer),aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),ord_less(code_integer),K),zero_zero(code_integer)),code_divmod_abs(K,L),aa(product_prod(code_integer,code_integer),product_prod(code_integer,code_integer),aa(fun(code_integer,fun(code_integer,product_prod(code_integer,code_integer))),fun(product_prod(code_integer,code_integer),product_prod(code_integer,code_integer)),product_case_prod(code_integer,code_integer,product_prod(code_integer,code_integer)),aTP_Lamp_kc(code_integer,fun(code_integer,fun(code_integer,product_prod(code_integer,code_integer))),L)),code_divmod_abs(K,L)))) ) ) ) ) ) ) ) ).
% divmod_integer_code
tff(fact_4843_rec__nat__add__eq__if,axiom,
! [A: $tType,A2: A,F2: fun(nat,fun(A,A)),V: num,N: nat] : ( aa(nat,A,rec_nat(A,A2,F2),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(num,nat,numeral_numeral(nat),V)),N)) = aa(A,A,aa(nat,fun(A,A),F2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),pred_numeral(V)),N)),aa(nat,A,rec_nat(A,A2,F2),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),pred_numeral(V)),N))) ) ).
% rec_nat_add_eq_if
tff(fact_4844_or__int__rec,axiom,
! [K: int,L: int] : ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),K),L) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(bool,int,zero_neq_one_of_bool(int),fdisj(aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),K)),aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),L))))),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),K),aa(num,int,numeral_numeral(int),bit0(one2)))),aa(int,int,aa(int,fun(int,int),divide_divide(int),L),aa(num,int,numeral_numeral(int),bit0(one2)))))) ) ).
% or_int_rec
tff(fact_4845_or_Oidem,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),A2),A2) = A2 ) ) ).
% or.idem
tff(fact_4846_or_Oleft__idem,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),A2),aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),A2),B2) ) ) ).
% or.left_idem
tff(fact_4847_or_Oright__idem,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),A2),B2)),B2) = aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),A2),B2) ) ) ).
% or.right_idem
tff(fact_4848_or_Oleft__neutral,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),zero_zero(A)),A2) = A2 ) ) ).
% or.left_neutral
tff(fact_4849_or_Oright__neutral,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),A2),zero_zero(A)) = A2 ) ) ).
% or.right_neutral
tff(fact_4850_take__bit__or,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A,B2: A] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2)),aa(A,A,bit_se2584673776208193580ke_bit(A,N),B2)) ) ) ).
% take_bit_or
tff(fact_4851_push__bit__or,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A,B2: A] : ( bit_se4730199178511100633sh_bit(A,N,aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),bit_se4730199178511100633sh_bit(A,N,A2)),bit_se4730199178511100633sh_bit(A,N,B2)) ) ) ).
% push_bit_or
tff(fact_4852_apsnd__conv,axiom,
! [A: $tType,B: $tType,C: $tType,F2: fun(C,B),X2: A,Y: C] : ( aa(product_prod(A,C),product_prod(A,B),aa(fun(C,B),fun(product_prod(A,C),product_prod(A,B)),product_apsnd(C,B,A),F2),aa(C,product_prod(A,C),aa(A,fun(C,product_prod(A,C)),product_Pair(A,C),X2),Y)) = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X2),aa(C,B,F2,Y)) ) ).
% apsnd_conv
tff(fact_4853_old_Onat_Osimps_I7_J,axiom,
! [T: $tType,F1: T,F22: fun(nat,fun(T,T)),Nat: nat] : ( aa(nat,T,rec_nat(T,F1,F22),aa(nat,nat,suc,Nat)) = aa(T,T,aa(nat,fun(T,T),F22,Nat),aa(nat,T,rec_nat(T,F1,F22),Nat)) ) ).
% old.nat.simps(7)
tff(fact_4854_old_Onat_Osimps_I6_J,axiom,
! [T: $tType,F1: T,F22: fun(nat,fun(T,T))] : ( aa(nat,T,rec_nat(T,F1,F22),zero_zero(nat)) = F1 ) ).
% old.nat.simps(6)
tff(fact_4855_bit_Odisj__one__left,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(A,A,uminus_uminus(A),one_one(A))),X2) = aa(A,A,uminus_uminus(A),one_one(A)) ) ) ).
% bit.disj_one_left
tff(fact_4856_bit_Odisj__one__right,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),X2),aa(A,A,uminus_uminus(A),one_one(A))) = aa(A,A,uminus_uminus(A),one_one(A)) ) ) ).
% bit.disj_one_right
tff(fact_4857_or__nonnegative__int__iff,axiom,
! [K: int,L: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),K),L)))
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),L)) ) ) ).
% or_nonnegative_int_iff
tff(fact_4858_or__negative__int__iff,axiom,
! [K: int,L: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),K),L)),zero_zero(int)))
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),zero_zero(int)))
| pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),L),zero_zero(int))) ) ) ).
% or_negative_int_iff
tff(fact_4859_bit_Ode__Morgan__conj,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A,Y: A] : ( aa(A,A,bit_ri4277139882892585799ns_not(A),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(A,A,bit_ri4277139882892585799ns_not(A),X2)),aa(A,A,bit_ri4277139882892585799ns_not(A),Y)) ) ) ).
% bit.de_Morgan_conj
tff(fact_4860_bit_Ode__Morgan__disj,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A,Y: A] : ( aa(A,A,bit_ri4277139882892585799ns_not(A),aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(A,A,bit_ri4277139882892585799ns_not(A),X2)),aa(A,A,bit_ri4277139882892585799ns_not(A),Y)) ) ) ).
% bit.de_Morgan_disj
tff(fact_4861_rec__nat__numeral,axiom,
! [A: $tType,A2: A,F2: fun(nat,fun(A,A)),V: num] : ( aa(nat,A,rec_nat(A,A2,F2),aa(num,nat,numeral_numeral(nat),V)) = aa(A,A,aa(nat,fun(A,A),F2,pred_numeral(V)),aa(nat,A,rec_nat(A,A2,F2),pred_numeral(V))) ) ).
% rec_nat_numeral
tff(fact_4862_or__numerals_I2_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [Y: num] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),one_one(A)),aa(num,A,numeral_numeral(A),aa(num,num,bit1,Y))) = aa(num,A,numeral_numeral(A),aa(num,num,bit1,Y)) ) ) ).
% or_numerals(2)
tff(fact_4863_or__numerals_I8_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [X2: num] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(num,A,numeral_numeral(A),aa(num,num,bit1,X2))),one_one(A)) = aa(num,A,numeral_numeral(A),aa(num,num,bit1,X2)) ) ) ).
% or_numerals(8)
tff(fact_4864_bit_Odisj__cancel__right,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),X2),aa(A,A,bit_ri4277139882892585799ns_not(A),X2)) = aa(A,A,uminus_uminus(A),one_one(A)) ) ) ).
% bit.disj_cancel_right
tff(fact_4865_bit_Odisj__cancel__left,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(A,A,bit_ri4277139882892585799ns_not(A),X2)),X2) = aa(A,A,uminus_uminus(A),one_one(A)) ) ) ).
% bit.disj_cancel_left
tff(fact_4866_or__numerals_I3_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [X2: num,Y: num] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(num,A,numeral_numeral(A),bit0(X2))),aa(num,A,numeral_numeral(A),bit0(Y))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(num,A,numeral_numeral(A),X2)),aa(num,A,numeral_numeral(A),Y))) ) ) ).
% or_numerals(3)
tff(fact_4867_or__numerals_I5_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [X2: num] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(num,A,numeral_numeral(A),bit0(X2))),one_one(A)) = aa(num,A,numeral_numeral(A),aa(num,num,bit1,X2)) ) ) ).
% or_numerals(5)
tff(fact_4868_or__numerals_I1_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [Y: num] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),one_one(A)),aa(num,A,numeral_numeral(A),bit0(Y))) = aa(num,A,numeral_numeral(A),aa(num,num,bit1,Y)) ) ) ).
% or_numerals(1)
tff(fact_4869_or__minus__numerals_I6_J,axiom,
! [N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,N)))),one_one(int)) = aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,N))) ) ).
% or_minus_numerals(6)
tff(fact_4870_or__minus__numerals_I2_J,axiom,
! [N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),one_one(int)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,N)))) = aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,N))) ) ).
% or_minus_numerals(2)
tff(fact_4871_or__minus__minus__numerals,axiom,
! [M: num,N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),M))),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),N))) = aa(int,int,bit_ri4277139882892585799ns_not(int),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(num,int,numeral_numeral(int),M)),one_one(int))),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(num,int,numeral_numeral(int),N)),one_one(int)))) ) ).
% or_minus_minus_numerals
tff(fact_4872_and__minus__minus__numerals,axiom,
! [M: num,N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),M))),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),N))) = aa(int,int,bit_ri4277139882892585799ns_not(int),aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(num,int,numeral_numeral(int),M)),one_one(int))),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(num,int,numeral_numeral(int),N)),one_one(int)))) ) ).
% and_minus_minus_numerals
tff(fact_4873_or__numerals_I7_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [X2: num,Y: num] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(num,A,numeral_numeral(A),aa(num,num,bit1,X2))),aa(num,A,numeral_numeral(A),aa(num,num,bit1,Y))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(num,A,numeral_numeral(A),X2)),aa(num,A,numeral_numeral(A),Y)))) ) ) ).
% or_numerals(7)
tff(fact_4874_or__numerals_I6_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [X2: num,Y: num] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(num,A,numeral_numeral(A),aa(num,num,bit1,X2))),aa(num,A,numeral_numeral(A),bit0(Y))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(num,A,numeral_numeral(A),X2)),aa(num,A,numeral_numeral(A),Y)))) ) ) ).
% or_numerals(6)
tff(fact_4875_or__numerals_I4_J,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [X2: num,Y: num] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(num,A,numeral_numeral(A),bit0(X2))),aa(num,A,numeral_numeral(A),aa(num,num,bit1,Y))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(num,A,numeral_numeral(A),X2)),aa(num,A,numeral_numeral(A),Y)))) ) ) ).
% or_numerals(4)
tff(fact_4876_of__nat__or__eq,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [M: nat,N: nat] : ( aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,aa(nat,fun(nat,nat),bit_se1065995026697491101ons_or(nat),M),N)) = aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(nat,A,semiring_1_of_nat(A),M)),aa(nat,A,semiring_1_of_nat(A),N)) ) ) ).
% of_nat_or_eq
tff(fact_4877_bit_Odisj__zero__right,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),X2),zero_zero(A)) = X2 ) ) ).
% bit.disj_zero_right
tff(fact_4878_or__eq__0__iff,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,B2: A] :
( ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),A2),B2) = zero_zero(A) )
<=> ( ( A2 = zero_zero(A) )
& ( B2 = zero_zero(A) ) ) ) ) ).
% or_eq_0_iff
tff(fact_4879_bit__or__int__iff,axiom,
! [K: int,L: int,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),K),L)),N))
<=> ( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,K),N))
| pp(aa(nat,bool,bit_se5641148757651400278ts_bit(int,L),N)) ) ) ).
% bit_or_int_iff
tff(fact_4880_bit_Odisj__conj__distrib2,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [Y: A,Z: A,X2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),Y),Z)),X2) = aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),Y),X2)),aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),Z),X2)) ) ) ).
% bit.disj_conj_distrib2
tff(fact_4881_bit_Oconj__disj__distrib2,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [Y: A,Z: A,X2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),Y),Z)),X2) = aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),Y),X2)),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),Z),X2)) ) ) ).
% bit.conj_disj_distrib2
tff(fact_4882_bit_Odisj__conj__distrib,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A,Y: A,Z: A] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),X2),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),Y),Z)) = aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),X2),Y)),aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),X2),Z)) ) ) ).
% bit.disj_conj_distrib
tff(fact_4883_bit_Oconj__disj__distrib,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A,Y: A,Z: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),X2),aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),Y),Z)) = aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),X2),Y)),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),X2),Z)) ) ) ).
% bit.conj_disj_distrib
tff(fact_4884_bit__or__iff,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,B2: A,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),A2),B2)),N))
<=> ( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N))
| pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,B2),N)) ) ) ) ).
% bit_or_iff
tff(fact_4885_or_Oassoc,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),A2),aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),B2),C2)) ) ) ).
% or.assoc
tff(fact_4886_or_Ocommute,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),A2),B2) = aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),B2),A2) ) ) ).
% or.commute
tff(fact_4887_or_Oleft__commute,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [B2: A,A2: A,C2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),B2),aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),A2),C2)) = aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),A2),aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),B2),C2)) ) ) ).
% or.left_commute
tff(fact_4888_of__int__or__eq,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [K: int,L: int] : ( aa(int,A,ring_1_of_int(A),aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),K),L)) = aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(int,A,ring_1_of_int(A),K)),aa(int,A,ring_1_of_int(A),L)) ) ) ).
% of_int_or_eq
tff(fact_4889_or__greater__eq,axiom,
! [L: int,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),L))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),K),aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),K),L))) ) ).
% or_greater_eq
tff(fact_4890_OR__lower,axiom,
! [X2: int,Y: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),X2))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Y))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),X2),Y))) ) ) ).
% OR_lower
tff(fact_4891_disjunctive__add,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,B2: A] :
( ! [N3: nat] :
( ~ pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N3))
| ~ pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,B2),N3)) )
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2) = aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),A2),B2) ) ) ) ).
% disjunctive_add
tff(fact_4892_plus__and__or,axiom,
! [X2: int,Y: int] : ( aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),X2),Y)),aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),X2),Y)) = aa(int,int,aa(int,fun(int,int),plus_plus(int),X2),Y) ) ).
% plus_and_or
tff(fact_4893_and__eq__not__not__or,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),B2) = aa(A,A,bit_ri4277139882892585799ns_not(A),aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(A,A,bit_ri4277139882892585799ns_not(A),A2)),aa(A,A,bit_ri4277139882892585799ns_not(A),B2))) ) ) ).
% and_eq_not_not_or
tff(fact_4894_or__eq__not__not__and,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),A2),B2) = aa(A,A,bit_ri4277139882892585799ns_not(A),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(A,A,bit_ri4277139882892585799ns_not(A),A2)),aa(A,A,bit_ri4277139882892585799ns_not(A),B2))) ) ) ).
% or_eq_not_not_and
tff(fact_4895_or__int__def,axiom,
! [K: int,L: int] : ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),K),L) = aa(int,int,bit_ri4277139882892585799ns_not(int),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(int,int,bit_ri4277139882892585799ns_not(int),K)),aa(int,int,bit_ri4277139882892585799ns_not(int),L))) ) ).
% or_int_def
tff(fact_4896_or__not__numerals_I1_J,axiom,
aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),one_one(int)),aa(int,int,bit_ri4277139882892585799ns_not(int),one_one(int))) = aa(int,int,bit_ri4277139882892585799ns_not(int),zero_zero(int)) ).
% or_not_numerals(1)
tff(fact_4897_bit_Oxor__def,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A,Y: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),X2),Y) = aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),X2),aa(A,A,bit_ri4277139882892585799ns_not(A),Y))),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(A,A,bit_ri4277139882892585799ns_not(A),X2)),Y)) ) ) ).
% bit.xor_def
tff(fact_4898_bit_Oxor__def2,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A,Y: A] : ( aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),X2),Y) = aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),X2),Y)),aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(A,A,bit_ri4277139882892585799ns_not(A),X2)),aa(A,A,bit_ri4277139882892585799ns_not(A),Y))) ) ) ).
% bit.xor_def2
tff(fact_4899_set__bit__eq__or,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] : ( aa(A,A,aa(nat,fun(A,A),bit_se5668285175392031749et_bit(A),N),A2) = aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),A2),bit_se4730199178511100633sh_bit(A,N,one_one(A))) ) ) ).
% set_bit_eq_or
tff(fact_4900_xor__int__def,axiom,
! [K: int,L: int] : ( aa(int,int,aa(int,fun(int,int),bit_se5824344971392196577ns_xor(int),K),L) = aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),K),aa(int,int,bit_ri4277139882892585799ns_not(int),L))),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(int,int,bit_ri4277139882892585799ns_not(int),K)),L)) ) ).
% xor_int_def
tff(fact_4901_concat__bit__def,axiom,
! [N: nat,K: int,L: int] : ( aa(int,int,bit_concat_bit(N,K),L) = aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(int,int,bit_se2584673776208193580ke_bit(int,N),K)),bit_se4730199178511100633sh_bit(int,N,L)) ) ).
% concat_bit_def
tff(fact_4902_set__bit__int__def,axiom,
! [N: nat,K: int] : ( aa(int,int,aa(nat,fun(int,int),bit_se5668285175392031749et_bit(int),N),K) = aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),K),bit_se4730199178511100633sh_bit(int,N,one_one(int))) ) ).
% set_bit_int_def
tff(fact_4903_even__or__iff,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),A2),B2)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),B2)) ) ) ) ).
% even_or_iff
tff(fact_4904_bit_Ocomplement__unique,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [A2: A,X2: A,Y: A] :
( ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),X2) = zero_zero(A) )
=> ( ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),A2),X2) = aa(A,A,uminus_uminus(A),one_one(A)) )
=> ( ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),Y) = zero_zero(A) )
=> ( ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),A2),Y) = aa(A,A,uminus_uminus(A),one_one(A)) )
=> ( X2 = Y ) ) ) ) ) ) ).
% bit.complement_unique
tff(fact_4905_or__not__numerals_I2_J,axiom,
! [N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),one_one(int)),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),bit0(N)))) = aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),bit0(N))) ) ).
% or_not_numerals(2)
tff(fact_4906_or__not__numerals_I4_J,axiom,
! [M: num] : ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(num,int,numeral_numeral(int),bit0(M))),aa(int,int,bit_ri4277139882892585799ns_not(int),one_one(int))) = aa(int,int,bit_ri4277139882892585799ns_not(int),one_one(int)) ) ).
% or_not_numerals(4)
tff(fact_4907_bit_Ocompl__unique,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [X2: A,Y: A] :
( ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),X2),Y) = zero_zero(A) )
=> ( ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),X2),Y) = aa(A,A,uminus_uminus(A),one_one(A)) )
=> ( aa(A,A,bit_ri4277139882892585799ns_not(A),X2) = Y ) ) ) ) ).
% bit.compl_unique
tff(fact_4908_or__not__numerals_I3_J,axiom,
! [N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),one_one(int)),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,N)))) = aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),bit0(N))) ) ).
% or_not_numerals(3)
tff(fact_4909_or__not__numerals_I7_J,axiom,
! [M: num] : ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,M))),aa(int,int,bit_ri4277139882892585799ns_not(int),one_one(int))) = aa(int,int,bit_ri4277139882892585799ns_not(int),zero_zero(int)) ) ).
% or_not_numerals(7)
tff(fact_4910_signed__take__bit__eq__if__negative,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [A2: A,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N))
=> ( aa(A,A,bit_ri4674362597316999326ke_bit(A,N),A2) = aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2)),aa(A,A,bit_ri4277139882892585799ns_not(A),bit_se2239418461657761734s_mask(A,N))) ) ) ) ).
% signed_take_bit_eq_if_negative
tff(fact_4911_mask__Suc__exp,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat] : ( bit_se2239418461657761734s_mask(A,aa(nat,nat,suc,N)) = aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)),bit_se2239418461657761734s_mask(A,N)) ) ) ).
% mask_Suc_exp
tff(fact_4912_or__not__numerals_I6_J,axiom,
! [M: num,N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(num,int,numeral_numeral(int),bit0(M))),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,N)))) = aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(num,int,numeral_numeral(int),M)),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),N)))) ) ).
% or_not_numerals(6)
tff(fact_4913_one__or__eq,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),one_one(A)),A2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(bool,A,zero_neq_one_of_bool(A),aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))) ) ) ).
% one_or_eq
tff(fact_4914_or__one__eq,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),A2),one_one(A)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),aa(bool,A,zero_neq_one_of_bool(A),aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),A2))) ) ) ).
% or_one_eq
tff(fact_4915_mask__Suc__double,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat] : ( bit_se2239418461657761734s_mask(A,aa(nat,nat,suc,N)) = aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),one_one(A)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),bit_se2239418461657761734s_mask(A,N))) ) ) ).
% mask_Suc_double
tff(fact_4916_OR__upper,axiom,
! [X2: int,N: nat,Y: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),X2))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),X2),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),Y),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),X2),Y)),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N))) ) ) ) ).
% OR_upper
tff(fact_4917_or__not__numerals_I5_J,axiom,
! [M: num,N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(num,int,numeral_numeral(int),bit0(M))),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),bit0(N)))) = aa(int,int,aa(int,fun(int,int),plus_plus(int),one_one(int)),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(num,int,numeral_numeral(int),M)),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),N))))) ) ).
% or_not_numerals(5)
tff(fact_4918_signed__take__bit__def,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: nat,A2: A] : ( aa(A,A,bit_ri4674362597316999326ke_bit(A,N),A2) = aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(bool,A,zero_neq_one_of_bool(A),aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N))),aa(A,A,bit_ri4277139882892585799ns_not(A),bit_se2239418461657761734s_mask(A,N)))) ) ) ).
% signed_take_bit_def
tff(fact_4919_or__not__numerals_I8_J,axiom,
! [M: num,N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,M))),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),bit0(N)))) = aa(int,int,aa(int,fun(int,int),plus_plus(int),one_one(int)),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(num,int,numeral_numeral(int),M)),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),N))))) ) ).
% or_not_numerals(8)
tff(fact_4920_or__not__numerals_I9_J,axiom,
! [M: num,N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,M))),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,N)))) = aa(int,int,aa(int,fun(int,int),plus_plus(int),one_one(int)),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(num,int,numeral_numeral(int),M)),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),N))))) ) ).
% or_not_numerals(9)
tff(fact_4921_old_Orec__nat__def,axiom,
! [T: $tType,X: T,Xa2: fun(nat,fun(T,T)),Xb2: nat] : ( aa(nat,T,rec_nat(T,X,Xa2),Xb2) = the(T,rec_set_nat(T,X,Xa2,Xb2)) ) ).
% old.rec_nat_def
tff(fact_4922_or__minus__numerals_I5_J,axiom,
! [N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),bit0(N)))),one_one(int)) = aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),bit_or_not_num_neg(one2,bitM(N)))) ) ).
% or_minus_numerals(5)
tff(fact_4923_or__minus__numerals_I1_J,axiom,
! [N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),one_one(int)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),bit0(N)))) = aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),bit_or_not_num_neg(one2,bitM(N)))) ) ).
% or_minus_numerals(1)
tff(fact_4924_The__split__eq,axiom,
! [A: $tType,B: $tType,X2: A,Y: B] : ( the(product_prod(A,B),aa(fun(A,fun(B,bool)),fun(product_prod(A,B),bool),product_case_prod(A,B,bool),aa(B,fun(A,fun(B,bool)),aTP_Lamp_kd(A,fun(B,fun(A,fun(B,bool))),X2),Y))) = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X2),Y) ) ).
% The_split_eq
tff(fact_4925_or__nat__numerals_I4_J,axiom,
! [X2: num] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se1065995026697491101ons_or(nat),aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,X2))),aa(nat,nat,suc,zero_zero(nat))) = aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,X2)) ) ).
% or_nat_numerals(4)
tff(fact_4926_or__nat__numerals_I2_J,axiom,
! [Y: num] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se1065995026697491101ons_or(nat),aa(nat,nat,suc,zero_zero(nat))),aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,Y))) = aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,Y)) ) ).
% or_nat_numerals(2)
tff(fact_4927_or__nat__numerals_I3_J,axiom,
! [X2: num] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se1065995026697491101ons_or(nat),aa(num,nat,numeral_numeral(nat),bit0(X2))),aa(nat,nat,suc,zero_zero(nat))) = aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,X2)) ) ).
% or_nat_numerals(3)
tff(fact_4928_or__nat__numerals_I1_J,axiom,
! [Y: num] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se1065995026697491101ons_or(nat),aa(nat,nat,suc,zero_zero(nat))),aa(num,nat,numeral_numeral(nat),bit0(Y))) = aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,Y)) ) ).
% or_nat_numerals(1)
tff(fact_4929_or__minus__numerals_I8_J,axiom,
! [N: num,M: num] : ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,N)))),aa(num,int,numeral_numeral(int),M)) = aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),bit_or_not_num_neg(M,bit0(N)))) ) ).
% or_minus_numerals(8)
tff(fact_4930_or__minus__numerals_I4_J,axiom,
! [M: num,N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(num,int,numeral_numeral(int),M)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,N)))) = aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),bit_or_not_num_neg(M,bit0(N)))) ) ).
% or_minus_numerals(4)
tff(fact_4931_or__minus__numerals_I3_J,axiom,
! [M: num,N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(num,int,numeral_numeral(int),M)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),bit0(N)))) = aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),bit_or_not_num_neg(M,bitM(N)))) ) ).
% or_minus_numerals(3)
tff(fact_4932_or__minus__numerals_I7_J,axiom,
! [N: num,M: num] : ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),bit0(N)))),aa(num,int,numeral_numeral(int),M)) = aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),bit_or_not_num_neg(M,bitM(N)))) ) ).
% or_minus_numerals(7)
tff(fact_4933_or__not__num__neg_Osimps_I1_J,axiom,
bit_or_not_num_neg(one2,one2) = one2 ).
% or_not_num_neg.simps(1)
tff(fact_4934_set__bit__nat__def,axiom,
! [M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se5668285175392031749et_bit(nat),M),N) = aa(nat,nat,aa(nat,fun(nat,nat),bit_se1065995026697491101ons_or(nat),N),bit_se4730199178511100633sh_bit(nat,M,one_one(nat))) ) ).
% set_bit_nat_def
tff(fact_4935_or__not__num__neg_Osimps_I4_J,axiom,
! [N: num] : ( bit_or_not_num_neg(bit0(N),one2) = bit0(one2) ) ).
% or_not_num_neg.simps(4)
tff(fact_4936_or__not__num__neg_Osimps_I6_J,axiom,
! [N: num,M: num] : ( bit_or_not_num_neg(bit0(N),aa(num,num,bit1,M)) = bit0(bit_or_not_num_neg(N,M)) ) ).
% or_not_num_neg.simps(6)
tff(fact_4937_or__not__num__neg_Osimps_I3_J,axiom,
! [M: num] : ( bit_or_not_num_neg(one2,aa(num,num,bit1,M)) = aa(num,num,bit1,M) ) ).
% or_not_num_neg.simps(3)
tff(fact_4938_or__not__num__neg_Osimps_I7_J,axiom,
! [N: num] : ( bit_or_not_num_neg(aa(num,num,bit1,N),one2) = one2 ) ).
% or_not_num_neg.simps(7)
tff(fact_4939_or__not__num__neg_Osimps_I5_J,axiom,
! [N: num,M: num] : ( bit_or_not_num_neg(bit0(N),bit0(M)) = bitM(bit_or_not_num_neg(N,M)) ) ).
% or_not_num_neg.simps(5)
tff(fact_4940_or__not__num__neg_Osimps_I9_J,axiom,
! [N: num,M: num] : ( bit_or_not_num_neg(aa(num,num,bit1,N),aa(num,num,bit1,M)) = bitM(bit_or_not_num_neg(N,M)) ) ).
% or_not_num_neg.simps(9)
tff(fact_4941_or__nat__def,axiom,
! [M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se1065995026697491101ons_or(nat),M),N) = aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(nat,int,semiring_1_of_nat(int),M)),aa(nat,int,semiring_1_of_nat(int),N))) ) ).
% or_nat_def
tff(fact_4942_or__not__num__neg_Osimps_I2_J,axiom,
! [M: num] : ( bit_or_not_num_neg(one2,bit0(M)) = aa(num,num,bit1,M) ) ).
% or_not_num_neg.simps(2)
tff(fact_4943_or__not__num__neg_Osimps_I8_J,axiom,
! [N: num,M: num] : ( bit_or_not_num_neg(aa(num,num,bit1,N),bit0(M)) = bitM(bit_or_not_num_neg(N,M)) ) ).
% or_not_num_neg.simps(8)
tff(fact_4944_or__not__num__neg_Oelims,axiom,
! [X2: num,Xa: num,Y: num] :
( ( bit_or_not_num_neg(X2,Xa) = Y )
=> ( ( ( X2 = one2 )
=> ( ( Xa = one2 )
=> ( Y != one2 ) ) )
=> ( ( ( X2 = one2 )
=> ! [M3: num] :
( ( Xa = bit0(M3) )
=> ( Y != aa(num,num,bit1,M3) ) ) )
=> ( ( ( X2 = one2 )
=> ! [M3: num] :
( ( Xa = aa(num,num,bit1,M3) )
=> ( Y != aa(num,num,bit1,M3) ) ) )
=> ( ( ? [N3: num] : ( X2 = bit0(N3) )
=> ( ( Xa = one2 )
=> ( Y != bit0(one2) ) ) )
=> ( ! [N3: num] :
( ( X2 = bit0(N3) )
=> ! [M3: num] :
( ( Xa = bit0(M3) )
=> ( Y != bitM(bit_or_not_num_neg(N3,M3)) ) ) )
=> ( ! [N3: num] :
( ( X2 = bit0(N3) )
=> ! [M3: num] :
( ( Xa = aa(num,num,bit1,M3) )
=> ( Y != bit0(bit_or_not_num_neg(N3,M3)) ) ) )
=> ( ( ? [N3: num] : ( X2 = aa(num,num,bit1,N3) )
=> ( ( Xa = one2 )
=> ( Y != one2 ) ) )
=> ( ! [N3: num] :
( ( X2 = aa(num,num,bit1,N3) )
=> ! [M3: num] :
( ( Xa = bit0(M3) )
=> ( Y != bitM(bit_or_not_num_neg(N3,M3)) ) ) )
=> ~ ! [N3: num] :
( ( X2 = aa(num,num,bit1,N3) )
=> ! [M3: num] :
( ( Xa = aa(num,num,bit1,M3) )
=> ( Y != bitM(bit_or_not_num_neg(N3,M3)) ) ) ) ) ) ) ) ) ) ) ) ) ).
% or_not_num_neg.elims
tff(fact_4945_int__numeral__or__not__num__neg,axiom,
! [M: num,N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(num,int,numeral_numeral(int),M)),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),N))) = aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),bit_or_not_num_neg(M,N))) ) ).
% int_numeral_or_not_num_neg
tff(fact_4946_int__numeral__not__or__num__neg,axiom,
! [M: num,N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),M))),aa(num,int,numeral_numeral(int),N)) = aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),bit_or_not_num_neg(N,M))) ) ).
% int_numeral_not_or_num_neg
tff(fact_4947_numeral__or__not__num__eq,axiom,
! [M: num,N: num] : ( aa(num,int,numeral_numeral(int),bit_or_not_num_neg(M,N)) = aa(int,int,uminus_uminus(int),aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(num,int,numeral_numeral(int),M)),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),N)))) ) ).
% numeral_or_not_num_eq
tff(fact_4948_floor__real__def,axiom,
! [X2: real] : ( aa(real,int,archim6421214686448440834_floor(real),X2) = the(int,aTP_Lamp_ke(real,fun(int,bool),X2)) ) ).
% floor_real_def
tff(fact_4949_Suc__0__or__eq,axiom,
! [N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se1065995026697491101ons_or(nat),aa(nat,nat,suc,zero_zero(nat))),N) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),aa(bool,nat,zero_neq_one_of_bool(nat),aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))) ) ).
% Suc_0_or_eq
tff(fact_4950_or__Suc__0__eq,axiom,
! [N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se1065995026697491101ons_or(nat),N),aa(nat,nat,suc,zero_zero(nat))) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),aa(bool,nat,zero_neq_one_of_bool(nat),aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))) ) ).
% or_Suc_0_eq
tff(fact_4951_or__nat__rec,axiom,
! [M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se1065995026697491101ons_or(nat),M),N) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(bool,nat,zero_neq_one_of_bool(nat),fdisj(aa(bool,bool,fNot,aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),M)),aa(bool,bool,fNot,aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))))),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),bit_se1065995026697491101ons_or(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ).
% or_nat_rec
tff(fact_4952_or__not__num__neg_Opelims,axiom,
! [X2: num,Xa: num,Y: num] :
( ( bit_or_not_num_neg(X2,Xa) = Y )
=> ( pp(aa(product_prod(num,num),bool,accp(product_prod(num,num),bit_or3848514188828904588eg_rel),aa(num,product_prod(num,num),aa(num,fun(num,product_prod(num,num)),product_Pair(num,num),X2),Xa)))
=> ( ( ( X2 = one2 )
=> ( ( Xa = one2 )
=> ( ( Y = one2 )
=> ~ pp(aa(product_prod(num,num),bool,accp(product_prod(num,num),bit_or3848514188828904588eg_rel),aa(num,product_prod(num,num),aa(num,fun(num,product_prod(num,num)),product_Pair(num,num),one2),one2))) ) ) )
=> ( ( ( X2 = one2 )
=> ! [M3: num] :
( ( Xa = bit0(M3) )
=> ( ( Y = aa(num,num,bit1,M3) )
=> ~ pp(aa(product_prod(num,num),bool,accp(product_prod(num,num),bit_or3848514188828904588eg_rel),aa(num,product_prod(num,num),aa(num,fun(num,product_prod(num,num)),product_Pair(num,num),one2),bit0(M3)))) ) ) )
=> ( ( ( X2 = one2 )
=> ! [M3: num] :
( ( Xa = aa(num,num,bit1,M3) )
=> ( ( Y = aa(num,num,bit1,M3) )
=> ~ pp(aa(product_prod(num,num),bool,accp(product_prod(num,num),bit_or3848514188828904588eg_rel),aa(num,product_prod(num,num),aa(num,fun(num,product_prod(num,num)),product_Pair(num,num),one2),aa(num,num,bit1,M3)))) ) ) )
=> ( ! [N3: num] :
( ( X2 = bit0(N3) )
=> ( ( Xa = one2 )
=> ( ( Y = bit0(one2) )
=> ~ pp(aa(product_prod(num,num),bool,accp(product_prod(num,num),bit_or3848514188828904588eg_rel),aa(num,product_prod(num,num),aa(num,fun(num,product_prod(num,num)),product_Pair(num,num),bit0(N3)),one2))) ) ) )
=> ( ! [N3: num] :
( ( X2 = bit0(N3) )
=> ! [M3: num] :
( ( Xa = bit0(M3) )
=> ( ( Y = bitM(bit_or_not_num_neg(N3,M3)) )
=> ~ pp(aa(product_prod(num,num),bool,accp(product_prod(num,num),bit_or3848514188828904588eg_rel),aa(num,product_prod(num,num),aa(num,fun(num,product_prod(num,num)),product_Pair(num,num),bit0(N3)),bit0(M3)))) ) ) )
=> ( ! [N3: num] :
( ( X2 = bit0(N3) )
=> ! [M3: num] :
( ( Xa = aa(num,num,bit1,M3) )
=> ( ( Y = bit0(bit_or_not_num_neg(N3,M3)) )
=> ~ pp(aa(product_prod(num,num),bool,accp(product_prod(num,num),bit_or3848514188828904588eg_rel),aa(num,product_prod(num,num),aa(num,fun(num,product_prod(num,num)),product_Pair(num,num),bit0(N3)),aa(num,num,bit1,M3)))) ) ) )
=> ( ! [N3: num] :
( ( X2 = aa(num,num,bit1,N3) )
=> ( ( Xa = one2 )
=> ( ( Y = one2 )
=> ~ pp(aa(product_prod(num,num),bool,accp(product_prod(num,num),bit_or3848514188828904588eg_rel),aa(num,product_prod(num,num),aa(num,fun(num,product_prod(num,num)),product_Pair(num,num),aa(num,num,bit1,N3)),one2))) ) ) )
=> ( ! [N3: num] :
( ( X2 = aa(num,num,bit1,N3) )
=> ! [M3: num] :
( ( Xa = bit0(M3) )
=> ( ( Y = bitM(bit_or_not_num_neg(N3,M3)) )
=> ~ pp(aa(product_prod(num,num),bool,accp(product_prod(num,num),bit_or3848514188828904588eg_rel),aa(num,product_prod(num,num),aa(num,fun(num,product_prod(num,num)),product_Pair(num,num),aa(num,num,bit1,N3)),bit0(M3)))) ) ) )
=> ~ ! [N3: num] :
( ( X2 = aa(num,num,bit1,N3) )
=> ! [M3: num] :
( ( Xa = aa(num,num,bit1,M3) )
=> ( ( Y = bitM(bit_or_not_num_neg(N3,M3)) )
=> ~ pp(aa(product_prod(num,num),bool,accp(product_prod(num,num),bit_or3848514188828904588eg_rel),aa(num,product_prod(num,num),aa(num,fun(num,product_prod(num,num)),product_Pair(num,num),aa(num,num,bit1,N3)),aa(num,num,bit1,M3)))) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% or_not_num_neg.pelims
tff(fact_4953_or__int__unfold,axiom,
! [K: int,L: int] :
( ( ( ( K = aa(int,int,uminus_uminus(int),one_one(int)) )
| ( L = aa(int,int,uminus_uminus(int),one_one(int)) ) )
=> ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),K),L) = aa(int,int,uminus_uminus(int),one_one(int)) ) )
& ( ~ ( ( K = aa(int,int,uminus_uminus(int),one_one(int)) )
| ( L = aa(int,int,uminus_uminus(int),one_one(int)) ) )
=> ( ( ( K = zero_zero(int) )
=> ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),K),L) = L ) )
& ( ( K != zero_zero(int) )
=> ( ( ( L = zero_zero(int) )
=> ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),K),L) = K ) )
& ( ( L != zero_zero(int) )
=> ( aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),K),L) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),ord_max(int),modulo_modulo(int,K,aa(num,int,numeral_numeral(int),bit0(one2)))),modulo_modulo(int,L,aa(num,int,numeral_numeral(int),bit0(one2))))),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),bit_se1065995026697491101ons_or(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),K),aa(num,int,numeral_numeral(int),bit0(one2)))),aa(int,int,aa(int,fun(int,int),divide_divide(int),L),aa(num,int,numeral_numeral(int),bit0(one2)))))) ) ) ) ) ) ) ) ).
% or_int_unfold
tff(fact_4954_bit_Oabstract__boolean__algebra__sym__diff__axioms,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> boolea3799213064322606851m_diff(A,bit_se5824344872417868541ns_and(A),bit_se1065995026697491101ons_or(A),bit_ri4277139882892585799ns_not(A),zero_zero(A),aa(A,A,uminus_uminus(A),one_one(A)),bit_se5824344971392196577ns_xor(A)) ) ).
% bit.abstract_boolean_algebra_sym_diff_axioms
tff(fact_4955_max_Obounded__iff,axiom,
! [A: $tType] :
( linorder(A)
=> ! [B2: A,C2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),ord_max(A),B2),C2)),A2))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),A2)) ) ) ) ).
% max.bounded_iff
tff(fact_4956_max_Oabsorb2,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( aa(A,A,aa(A,fun(A,A),ord_max(A),A2),B2) = B2 ) ) ) ).
% max.absorb2
tff(fact_4957_max_Oabsorb1,axiom,
! [A: $tType] :
( linorder(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
=> ( aa(A,A,aa(A,fun(A,A),ord_max(A),A2),B2) = A2 ) ) ) ).
% max.absorb1
tff(fact_4958_max_Oabsorb3,axiom,
! [A: $tType] :
( linorder(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2))
=> ( aa(A,A,aa(A,fun(A,A),ord_max(A),A2),B2) = A2 ) ) ) ).
% max.absorb3
tff(fact_4959_max_Oabsorb4,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( aa(A,A,aa(A,fun(A,A),ord_max(A),A2),B2) = B2 ) ) ) ).
% max.absorb4
tff(fact_4960_max__less__iff__conj,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X2: A,Y: A,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),ord_max(A),X2),Y)),Z))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Z))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),Z)) ) ) ) ).
% max_less_iff_conj
tff(fact_4961_of__bool__or__iff,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [P: bool,Q: bool] : ( aa(bool,A,zero_neq_one_of_bool(A),fdisj(P,Q)) = aa(A,A,aa(A,fun(A,A),ord_max(A),aa(bool,A,zero_neq_one_of_bool(A),P)),aa(bool,A,zero_neq_one_of_bool(A),Q)) ) ) ).
% of_bool_or_iff
tff(fact_4962_max__number__of_I1_J,axiom,
! [A: $tType] :
( ( numeral(A)
& ord(A) )
=> ! [U: num,V: num] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(num,A,numeral_numeral(A),U)),aa(num,A,numeral_numeral(A),V)))
=> ( aa(A,A,aa(A,fun(A,A),ord_max(A),aa(num,A,numeral_numeral(A),U)),aa(num,A,numeral_numeral(A),V)) = aa(num,A,numeral_numeral(A),V) ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(num,A,numeral_numeral(A),U)),aa(num,A,numeral_numeral(A),V)))
=> ( aa(A,A,aa(A,fun(A,A),ord_max(A),aa(num,A,numeral_numeral(A),U)),aa(num,A,numeral_numeral(A),V)) = aa(num,A,numeral_numeral(A),U) ) ) ) ) ).
% max_number_of(1)
tff(fact_4963_max__0__1_I3_J,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [X2: num] : ( aa(A,A,aa(A,fun(A,A),ord_max(A),zero_zero(A)),aa(num,A,numeral_numeral(A),X2)) = aa(num,A,numeral_numeral(A),X2) ) ) ).
% max_0_1(3)
tff(fact_4964_max__0__1_I4_J,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [X2: num] : ( aa(A,A,aa(A,fun(A,A),ord_max(A),aa(num,A,numeral_numeral(A),X2)),zero_zero(A)) = aa(num,A,numeral_numeral(A),X2) ) ) ).
% max_0_1(4)
tff(fact_4965_max__0__1_I1_J,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ( aa(A,A,aa(A,fun(A,A),ord_max(A),zero_zero(A)),one_one(A)) = one_one(A) ) ) ).
% max_0_1(1)
tff(fact_4966_max__0__1_I2_J,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ( aa(A,A,aa(A,fun(A,A),ord_max(A),one_one(A)),zero_zero(A)) = one_one(A) ) ) ).
% max_0_1(2)
tff(fact_4967_max__0__1_I5_J,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [X2: num] : ( aa(A,A,aa(A,fun(A,A),ord_max(A),one_one(A)),aa(num,A,numeral_numeral(A),X2)) = aa(num,A,numeral_numeral(A),X2) ) ) ).
% max_0_1(5)
tff(fact_4968_max__0__1_I6_J,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [X2: num] : ( aa(A,A,aa(A,fun(A,A),ord_max(A),aa(num,A,numeral_numeral(A),X2)),one_one(A)) = aa(num,A,numeral_numeral(A),X2) ) ) ).
% max_0_1(6)
tff(fact_4969_max__number__of_I4_J,axiom,
! [A: $tType] :
( ( uminus(A)
& numeral(A)
& ord(A) )
=> ! [U: num,V: num] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),U))),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),V))))
=> ( aa(A,A,aa(A,fun(A,A),ord_max(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),U))),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),V))) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),V)) ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),U))),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),V))))
=> ( aa(A,A,aa(A,fun(A,A),ord_max(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),U))),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),V))) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),U)) ) ) ) ) ).
% max_number_of(4)
tff(fact_4970_max__number__of_I3_J,axiom,
! [A: $tType] :
( ( uminus(A)
& numeral(A)
& ord(A) )
=> ! [U: num,V: num] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),U))),aa(num,A,numeral_numeral(A),V)))
=> ( aa(A,A,aa(A,fun(A,A),ord_max(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),U))),aa(num,A,numeral_numeral(A),V)) = aa(num,A,numeral_numeral(A),V) ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),U))),aa(num,A,numeral_numeral(A),V)))
=> ( aa(A,A,aa(A,fun(A,A),ord_max(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),U))),aa(num,A,numeral_numeral(A),V)) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),U)) ) ) ) ) ).
% max_number_of(3)
tff(fact_4971_max__number__of_I2_J,axiom,
! [A: $tType] :
( ( uminus(A)
& numeral(A)
& ord(A) )
=> ! [U: num,V: num] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(num,A,numeral_numeral(A),U)),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),V))))
=> ( aa(A,A,aa(A,fun(A,A),ord_max(A),aa(num,A,numeral_numeral(A),U)),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),V))) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),V)) ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(num,A,numeral_numeral(A),U)),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),V))))
=> ( aa(A,A,aa(A,fun(A,A),ord_max(A),aa(num,A,numeral_numeral(A),U)),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),V))) = aa(num,A,numeral_numeral(A),U) ) ) ) ) ).
% max_number_of(2)
tff(fact_4972_max__def__raw,axiom,
! [A: $tType] :
( ord(A)
=> ! [X: A,Xa2: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X),Xa2))
=> ( aa(A,A,aa(A,fun(A,A),ord_max(A),X),Xa2) = Xa2 ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X),Xa2))
=> ( aa(A,A,aa(A,fun(A,A),ord_max(A),X),Xa2) = X ) ) ) ) ).
% max_def_raw
tff(fact_4973_of__nat__max,axiom,
! [A: $tType] :
( linord181362715937106298miring(A)
=> ! [X2: nat,Y: nat] : ( aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),X2),Y)) = aa(A,A,aa(A,fun(A,A),ord_max(A),aa(nat,A,semiring_1_of_nat(A),X2)),aa(nat,A,semiring_1_of_nat(A),Y)) ) ) ).
% of_nat_max
tff(fact_4974_max_Ostrict__coboundedI2,axiom,
! [A: $tType] :
( linorder(A)
=> ! [C2: A,B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),aa(A,A,aa(A,fun(A,A),ord_max(A),A2),B2))) ) ) ).
% max.strict_coboundedI2
tff(fact_4975_max_Ostrict__coboundedI1,axiom,
! [A: $tType] :
( linorder(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),aa(A,A,aa(A,fun(A,A),ord_max(A),A2),B2))) ) ) ).
% max.strict_coboundedI1
tff(fact_4976_max_Ostrict__order__iff,axiom,
! [A: $tType] :
( linorder(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2))
<=> ( ( A2 = aa(A,A,aa(A,fun(A,A),ord_max(A),A2),B2) )
& ( A2 != B2 ) ) ) ) ).
% max.strict_order_iff
tff(fact_4977_max_Ostrict__boundedE,axiom,
! [A: $tType] :
( linorder(A)
=> ! [B2: A,C2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),ord_max(A),B2),C2)),A2))
=> ~ ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),A2)) ) ) ) ).
% max.strict_boundedE
tff(fact_4978_less__max__iff__disj,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Z: A,X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Z),aa(A,A,aa(A,fun(A,A),ord_max(A),X2),Y)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Z),X2))
| pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Z),Y)) ) ) ) ).
% less_max_iff_disj
tff(fact_4979_abstract__boolean__algebra__sym__diff_Oxor__def,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,Xor: fun(A,fun(A,A)),X2: A,Y: A] :
( boolea3799213064322606851m_diff(A,Conj,Disj,Compl,Zero,One,Xor)
=> ( aa(A,A,aa(A,fun(A,A),Xor,X2),Y) = aa(A,A,aa(A,fun(A,A),Disj,aa(A,A,aa(A,fun(A,A),Conj,X2),aa(A,A,Compl,Y))),aa(A,A,aa(A,fun(A,A),Conj,aa(A,A,Compl,X2)),Y)) ) ) ).
% abstract_boolean_algebra_sym_diff.xor_def
tff(fact_4980_abstract__boolean__algebra__sym__diff_Oxor__def2,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,Xor: fun(A,fun(A,A)),X2: A,Y: A] :
( boolea3799213064322606851m_diff(A,Conj,Disj,Compl,Zero,One,Xor)
=> ( aa(A,A,aa(A,fun(A,A),Xor,X2),Y) = aa(A,A,aa(A,fun(A,A),Conj,aa(A,A,aa(A,fun(A,A),Disj,X2),Y)),aa(A,A,aa(A,fun(A,A),Disj,aa(A,A,Compl,X2)),aa(A,A,Compl,Y))) ) ) ).
% abstract_boolean_algebra_sym_diff.xor_def2
tff(fact_4981_abstract__boolean__algebra__sym__diff_Oxor__self,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,Xor: fun(A,fun(A,A)),X2: A] :
( boolea3799213064322606851m_diff(A,Conj,Disj,Compl,Zero,One,Xor)
=> ( aa(A,A,aa(A,fun(A,A),Xor,X2),X2) = Zero ) ) ).
% abstract_boolean_algebra_sym_diff.xor_self
tff(fact_4982_abstract__boolean__algebra__sym__diff_Oxor__one__left,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,Xor: fun(A,fun(A,A)),X2: A] :
( boolea3799213064322606851m_diff(A,Conj,Disj,Compl,Zero,One,Xor)
=> ( aa(A,A,aa(A,fun(A,A),Xor,One),X2) = aa(A,A,Compl,X2) ) ) ).
% abstract_boolean_algebra_sym_diff.xor_one_left
tff(fact_4983_abstract__boolean__algebra__sym__diff_Oxor__left__self,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,Xor: fun(A,fun(A,A)),X2: A,Y: A] :
( boolea3799213064322606851m_diff(A,Conj,Disj,Compl,Zero,One,Xor)
=> ( aa(A,A,aa(A,fun(A,A),Xor,X2),aa(A,A,aa(A,fun(A,A),Xor,X2),Y)) = Y ) ) ).
% abstract_boolean_algebra_sym_diff.xor_left_self
tff(fact_4984_abstract__boolean__algebra__sym__diff_Oxor__one__right,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,Xor: fun(A,fun(A,A)),X2: A] :
( boolea3799213064322606851m_diff(A,Conj,Disj,Compl,Zero,One,Xor)
=> ( aa(A,A,aa(A,fun(A,A),Xor,X2),One) = aa(A,A,Compl,X2) ) ) ).
% abstract_boolean_algebra_sym_diff.xor_one_right
tff(fact_4985_abstract__boolean__algebra__sym__diff_Oxor__compl__left,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,Xor: fun(A,fun(A,A)),X2: A,Y: A] :
( boolea3799213064322606851m_diff(A,Conj,Disj,Compl,Zero,One,Xor)
=> ( aa(A,A,aa(A,fun(A,A),Xor,aa(A,A,Compl,X2)),Y) = aa(A,A,Compl,aa(A,A,aa(A,fun(A,A),Xor,X2),Y)) ) ) ).
% abstract_boolean_algebra_sym_diff.xor_compl_left
tff(fact_4986_abstract__boolean__algebra__sym__diff_Oxor__cancel__left,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,Xor: fun(A,fun(A,A)),X2: A] :
( boolea3799213064322606851m_diff(A,Conj,Disj,Compl,Zero,One,Xor)
=> ( aa(A,A,aa(A,fun(A,A),Xor,aa(A,A,Compl,X2)),X2) = One ) ) ).
% abstract_boolean_algebra_sym_diff.xor_cancel_left
tff(fact_4987_abstract__boolean__algebra__sym__diff_Oxor__compl__right,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,Xor: fun(A,fun(A,A)),X2: A,Y: A] :
( boolea3799213064322606851m_diff(A,Conj,Disj,Compl,Zero,One,Xor)
=> ( aa(A,A,aa(A,fun(A,A),Xor,X2),aa(A,A,Compl,Y)) = aa(A,A,Compl,aa(A,A,aa(A,fun(A,A),Xor,X2),Y)) ) ) ).
% abstract_boolean_algebra_sym_diff.xor_compl_right
tff(fact_4988_abstract__boolean__algebra__sym__diff_Oconj__xor__distrib,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,Xor: fun(A,fun(A,A)),X2: A,Y: A,Z: A] :
( boolea3799213064322606851m_diff(A,Conj,Disj,Compl,Zero,One,Xor)
=> ( aa(A,A,aa(A,fun(A,A),Conj,X2),aa(A,A,aa(A,fun(A,A),Xor,Y),Z)) = aa(A,A,aa(A,fun(A,A),Xor,aa(A,A,aa(A,fun(A,A),Conj,X2),Y)),aa(A,A,aa(A,fun(A,A),Conj,X2),Z)) ) ) ).
% abstract_boolean_algebra_sym_diff.conj_xor_distrib
tff(fact_4989_abstract__boolean__algebra__sym__diff_Oxor__cancel__right,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,Xor: fun(A,fun(A,A)),X2: A] :
( boolea3799213064322606851m_diff(A,Conj,Disj,Compl,Zero,One,Xor)
=> ( aa(A,A,aa(A,fun(A,A),Xor,X2),aa(A,A,Compl,X2)) = One ) ) ).
% abstract_boolean_algebra_sym_diff.xor_cancel_right
tff(fact_4990_abstract__boolean__algebra__sym__diff_Oconj__xor__distrib2,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,Xor: fun(A,fun(A,A)),Y: A,Z: A,X2: A] :
( boolea3799213064322606851m_diff(A,Conj,Disj,Compl,Zero,One,Xor)
=> ( aa(A,A,aa(A,fun(A,A),Conj,aa(A,A,aa(A,fun(A,A),Xor,Y),Z)),X2) = aa(A,A,aa(A,fun(A,A),Xor,aa(A,A,aa(A,fun(A,A),Conj,Y),X2)),aa(A,A,aa(A,fun(A,A),Conj,Z),X2)) ) ) ).
% abstract_boolean_algebra_sym_diff.conj_xor_distrib2
tff(fact_4991_max__absorb2,axiom,
! [A: $tType] :
( ord(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> ( aa(A,A,aa(A,fun(A,A),ord_max(A),X2),Y) = Y ) ) ) ).
% max_absorb2
tff(fact_4992_max__absorb1,axiom,
! [A: $tType] :
( order(A)
=> ! [Y: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),X2))
=> ( aa(A,A,aa(A,fun(A,A),ord_max(A),X2),Y) = X2 ) ) ) ).
% max_absorb1
tff(fact_4993_max_OcoboundedI2,axiom,
! [A: $tType] :
( linorder(A)
=> ! [C2: A,B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),aa(A,A,aa(A,fun(A,A),ord_max(A),A2),B2))) ) ) ).
% max.coboundedI2
tff(fact_4994_max_OcoboundedI1,axiom,
! [A: $tType] :
( linorder(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),aa(A,A,aa(A,fun(A,A),ord_max(A),A2),B2))) ) ) ).
% max.coboundedI1
tff(fact_4995_max_Oabsorb__iff2,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
<=> ( aa(A,A,aa(A,fun(A,A),ord_max(A),A2),B2) = B2 ) ) ) ).
% max.absorb_iff2
tff(fact_4996_max_Oabsorb__iff1,axiom,
! [A: $tType] :
( linorder(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
<=> ( aa(A,A,aa(A,fun(A,A),ord_max(A),A2),B2) = A2 ) ) ) ).
% max.absorb_iff1
tff(fact_4997_le__max__iff__disj,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Z: A,X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Z),aa(A,A,aa(A,fun(A,A),ord_max(A),X2),Y)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Z),X2))
| pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Z),Y)) ) ) ) ).
% le_max_iff_disj
tff(fact_4998_max_Ocobounded2,axiom,
! [A: $tType] :
( linorder(A)
=> ! [B2: A,A2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),aa(A,A,aa(A,fun(A,A),ord_max(A),A2),B2))) ) ).
% max.cobounded2
tff(fact_4999_max_Ocobounded1,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A2: A,B2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(A,A,aa(A,fun(A,A),ord_max(A),A2),B2))) ) ).
% max.cobounded1
tff(fact_5000_max_Oorder__iff,axiom,
! [A: $tType] :
( linorder(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
<=> ( A2 = aa(A,A,aa(A,fun(A,A),ord_max(A),A2),B2) ) ) ) ).
% max.order_iff
tff(fact_5001_max_OboundedI,axiom,
! [A: $tType] :
( linorder(A)
=> ! [B2: A,A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),ord_max(A),B2),C2)),A2)) ) ) ) ).
% max.boundedI
tff(fact_5002_max_OboundedE,axiom,
! [A: $tType] :
( linorder(A)
=> ! [B2: A,C2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),ord_max(A),B2),C2)),A2))
=> ~ ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),A2)) ) ) ) ).
% max.boundedE
tff(fact_5003_max_OorderI,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A2: A,B2: A] :
( ( A2 = aa(A,A,aa(A,fun(A,A),ord_max(A),A2),B2) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2)) ) ) ).
% max.orderI
tff(fact_5004_max_OorderE,axiom,
! [A: $tType] :
( linorder(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
=> ( A2 = aa(A,A,aa(A,fun(A,A),ord_max(A),A2),B2) ) ) ) ).
% max.orderE
tff(fact_5005_max_Omono,axiom,
! [A: $tType] :
( linorder(A)
=> ! [C2: A,A2: A,D2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),D2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),ord_max(A),C2),D2)),aa(A,A,aa(A,fun(A,A),ord_max(A),A2),B2))) ) ) ) ).
% max.mono
tff(fact_5006_max__def,axiom,
! [A: $tType] :
( ord(A)
=> ! [A2: A,B2: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( aa(A,A,aa(A,fun(A,A),ord_max(A),A2),B2) = B2 ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( aa(A,A,aa(A,fun(A,A),ord_max(A),A2),B2) = A2 ) ) ) ) ).
% max_def
tff(fact_5007_max__add__distrib__right,axiom,
! [A: $tType] :
( ordere2412721322843649153imp_le(A)
=> ! [X2: A,Y: A,Z: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),aa(A,A,aa(A,fun(A,A),ord_max(A),Y),Z)) = aa(A,A,aa(A,fun(A,A),ord_max(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Z)) ) ) ).
% max_add_distrib_right
tff(fact_5008_max__add__distrib__left,axiom,
! [A: $tType] :
( ordere2412721322843649153imp_le(A)
=> ! [X2: A,Y: A,Z: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),ord_max(A),X2),Y)),Z) = aa(A,A,aa(A,fun(A,A),ord_max(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Z)),aa(A,A,aa(A,fun(A,A),plus_plus(A),Y),Z)) ) ) ).
% max_add_distrib_left
tff(fact_5009_max__diff__distrib__left,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [X2: A,Y: A,Z: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),ord_max(A),X2),Y)),Z) = aa(A,A,aa(A,fun(A,A),ord_max(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Z)),aa(A,A,aa(A,fun(A,A),minus_minus(A),Y),Z)) ) ) ).
% max_diff_distrib_left
tff(fact_5010_floor__rat__def,axiom,
! [X2: rat] : ( aa(rat,int,archim6421214686448440834_floor(rat),X2) = the(int,aTP_Lamp_kf(rat,fun(int,bool),X2)) ) ).
% floor_rat_def
tff(fact_5011_rec__nat__0__imp,axiom,
! [A: $tType,F2: fun(nat,A),F1: A,F22: fun(nat,fun(A,A))] :
( ( F2 = rec_nat(A,F1,F22) )
=> ( aa(nat,A,F2,zero_zero(nat)) = F1 ) ) ).
% rec_nat_0_imp
tff(fact_5012_rec__nat__Suc__imp,axiom,
! [A: $tType,F2: fun(nat,A),F1: A,F22: fun(nat,fun(A,A)),N: nat] :
( ( F2 = rec_nat(A,F1,F22) )
=> ( aa(nat,A,F2,aa(nat,nat,suc,N)) = aa(A,A,aa(nat,fun(A,A),F22,N),aa(nat,A,F2,N)) ) ) ).
% rec_nat_Suc_imp
tff(fact_5013_max__enat__simps_I3_J,axiom,
! [Q2: extended_enat] : ( aa(extended_enat,extended_enat,aa(extended_enat,fun(extended_enat,extended_enat),ord_max(extended_enat),zero_zero(extended_enat)),Q2) = Q2 ) ).
% max_enat_simps(3)
tff(fact_5014_max__enat__simps_I2_J,axiom,
! [Q2: extended_enat] : ( aa(extended_enat,extended_enat,aa(extended_enat,fun(extended_enat,extended_enat),ord_max(extended_enat),Q2),zero_zero(extended_enat)) = Q2 ) ).
% max_enat_simps(2)
tff(fact_5015_max__Suc__Suc,axiom,
! [M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),aa(nat,nat,suc,M)),aa(nat,nat,suc,N)) = aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),M),N)) ) ).
% max_Suc_Suc
tff(fact_5016_max__nat_Oeq__neutr__iff,axiom,
! [A2: nat,B2: nat] :
( ( aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),A2),B2) = zero_zero(nat) )
<=> ( ( A2 = zero_zero(nat) )
& ( B2 = zero_zero(nat) ) ) ) ).
% max_nat.eq_neutr_iff
tff(fact_5017_max__nat_Oleft__neutral,axiom,
! [A2: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),zero_zero(nat)),A2) = A2 ) ).
% max_nat.left_neutral
tff(fact_5018_max__nat_Oneutr__eq__iff,axiom,
! [A2: nat,B2: nat] :
( ( zero_zero(nat) = aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),A2),B2) )
<=> ( ( A2 = zero_zero(nat) )
& ( B2 = zero_zero(nat) ) ) ) ).
% max_nat.neutr_eq_iff
tff(fact_5019_max__nat_Oright__neutral,axiom,
! [A2: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),A2),zero_zero(nat)) = A2 ) ).
% max_nat.right_neutral
tff(fact_5020_max__0L,axiom,
! [N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),zero_zero(nat)),N) = N ) ).
% max_0L
tff(fact_5021_max__0R,axiom,
! [N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),N),zero_zero(nat)) = N ) ).
% max_0R
tff(fact_5022_of__nat__of__integer,axiom,
! [K: code_integer] : ( aa(nat,code_integer,semiring_1_of_nat(code_integer),code_nat_of_integer(K)) = aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),ord_max(code_integer),zero_zero(code_integer)),K) ) ).
% of_nat_of_integer
tff(fact_5023_max__numeral__Suc,axiom,
! [K: num,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),aa(num,nat,numeral_numeral(nat),K)),aa(nat,nat,suc,N)) = aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),pred_numeral(K)),N)) ) ).
% max_numeral_Suc
tff(fact_5024_max__Suc__numeral,axiom,
! [N: nat,K: num] : ( aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),aa(nat,nat,suc,N)),aa(num,nat,numeral_numeral(nat),K)) = aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),N),pred_numeral(K))) ) ).
% max_Suc_numeral
tff(fact_5025_nat__add__max__right,axiom,
! [M: nat,N: nat,Q2: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),N),Q2)) = aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),Q2)) ) ).
% nat_add_max_right
tff(fact_5026_nat__add__max__left,axiom,
! [M: nat,N: nat,Q2: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),M),N)),Q2) = aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),Q2)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),Q2)) ) ).
% nat_add_max_left
tff(fact_5027_nat__mult__max__right,axiom,
! [M: nat,N: nat,Q2: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),N),Q2)) = aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),N)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),Q2)) ) ).
% nat_mult_max_right
tff(fact_5028_nat__mult__max__left,axiom,
! [M: nat,N: nat,Q2: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),M),N)),Q2) = aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),Q2)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),N),Q2)) ) ).
% nat_mult_max_left
tff(fact_5029_abs__rat__def,axiom,
! [A2: rat] :
( ( pp(aa(rat,bool,aa(rat,fun(rat,bool),ord_less(rat),A2),zero_zero(rat)))
=> ( aa(rat,rat,abs_abs(rat),A2) = aa(rat,rat,uminus_uminus(rat),A2) ) )
& ( ~ pp(aa(rat,bool,aa(rat,fun(rat,bool),ord_less(rat),A2),zero_zero(rat)))
=> ( aa(rat,rat,abs_abs(rat),A2) = A2 ) ) ) ).
% abs_rat_def
tff(fact_5030_less__eq__rat__def,axiom,
! [X2: rat,Y: rat] :
( pp(aa(rat,bool,aa(rat,fun(rat,bool),ord_less_eq(rat),X2),Y))
<=> ( pp(aa(rat,bool,aa(rat,fun(rat,bool),ord_less(rat),X2),Y))
| ( X2 = Y ) ) ) ).
% less_eq_rat_def
tff(fact_5031_sgn__rat__def,axiom,
! [A2: rat] :
( ( ( A2 = zero_zero(rat) )
=> ( aa(rat,rat,sgn_sgn(rat),A2) = zero_zero(rat) ) )
& ( ( A2 != zero_zero(rat) )
=> ( ( pp(aa(rat,bool,aa(rat,fun(rat,bool),ord_less(rat),zero_zero(rat)),A2))
=> ( aa(rat,rat,sgn_sgn(rat),A2) = one_one(rat) ) )
& ( ~ pp(aa(rat,bool,aa(rat,fun(rat,bool),ord_less(rat),zero_zero(rat)),A2))
=> ( aa(rat,rat,sgn_sgn(rat),A2) = aa(rat,rat,uminus_uminus(rat),one_one(rat)) ) ) ) ) ) ).
% sgn_rat_def
tff(fact_5032_obtain__pos__sum,axiom,
! [R: rat] :
( pp(aa(rat,bool,aa(rat,fun(rat,bool),ord_less(rat),zero_zero(rat)),R))
=> ~ ! [S3: rat] :
( pp(aa(rat,bool,aa(rat,fun(rat,bool),ord_less(rat),zero_zero(rat)),S3))
=> ! [T3: rat] :
( pp(aa(rat,bool,aa(rat,fun(rat,bool),ord_less(rat),zero_zero(rat)),T3))
=> ( R != aa(rat,rat,aa(rat,fun(rat,rat),plus_plus(rat),S3),T3) ) ) ) ) ).
% obtain_pos_sum
tff(fact_5033_nat__minus__add__max,axiom,
! [N: nat,M: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M)),M) = aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),N),M) ) ).
% nat_minus_add_max
tff(fact_5034_max__Suc1,axiom,
! [N: nat,M: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),aa(nat,nat,suc,N)),M) = case_nat(nat,aa(nat,nat,suc,N),aTP_Lamp_kg(nat,fun(nat,nat),N),M) ) ).
% max_Suc1
tff(fact_5035_max__Suc2,axiom,
! [M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),M),aa(nat,nat,suc,N)) = case_nat(nat,aa(nat,nat,suc,N),aTP_Lamp_kh(nat,fun(nat,nat),N),M) ) ).
% max_Suc2
tff(fact_5036_subset__CollectI,axiom,
! [A: $tType,B4: set(A),A3: set(A),Q: fun(A,bool),P: fun(A,bool)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),A3))
=> ( ! [X3: A] :
( pp(member(A,X3,B4))
=> ( pp(aa(A,bool,Q,X3))
=> pp(aa(A,bool,P,X3)) ) )
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(fun(A,bool),set(A),collect(A),aa(fun(A,bool),fun(A,bool),aTP_Lamp_ab(set(A),fun(fun(A,bool),fun(A,bool)),B4),Q))),aa(fun(A,bool),set(A),collect(A),aa(fun(A,bool),fun(A,bool),aTP_Lamp_ab(set(A),fun(fun(A,bool),fun(A,bool)),A3),P)))) ) ) ).
% subset_CollectI
tff(fact_5037_subset__Collect__iff,axiom,
! [A: $tType,B4: set(A),A3: set(A),P: fun(A,bool)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),A3))
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),aa(fun(A,bool),set(A),collect(A),aa(fun(A,bool),fun(A,bool),aTP_Lamp_ab(set(A),fun(fun(A,bool),fun(A,bool)),A3),P))))
<=> ! [X4: A] :
( pp(member(A,X4,B4))
=> pp(aa(A,bool,P,X4)) ) ) ) ).
% subset_Collect_iff
tff(fact_5038_or__nat__unfold,axiom,
! [M: nat,N: nat] :
( ( ( M = zero_zero(nat) )
=> ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se1065995026697491101ons_or(nat),M),N) = N ) )
& ( ( M != zero_zero(nat) )
=> ( ( ( N = zero_zero(nat) )
=> ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se1065995026697491101ons_or(nat),M),N) = M ) )
& ( ( N != zero_zero(nat) )
=> ( aa(nat,nat,aa(nat,fun(nat,nat),bit_se1065995026697491101ons_or(nat),M),N) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),modulo_modulo(nat,M,aa(num,nat,numeral_numeral(nat),bit0(one2)))),modulo_modulo(nat,N,aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),bit_se1065995026697491101ons_or(nat),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),N),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ) ) ) ) ).
% or_nat_unfold
tff(fact_5039_rat__inverse__code,axiom,
! [P2: rat] : ( quotient_of(aa(rat,rat,inverse_inverse(rat),P2)) = aa(product_prod(int,int),product_prod(int,int),aa(fun(int,fun(int,product_prod(int,int))),fun(product_prod(int,int),product_prod(int,int)),product_case_prod(int,int,product_prod(int,int)),aTP_Lamp_ki(int,fun(int,product_prod(int,int)))),quotient_of(P2)) ) ).
% rat_inverse_code
tff(fact_5040_normalize__negative,axiom,
! [Q2: int,P2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),Q2),zero_zero(int)))
=> ( normalize(aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),P2),Q2)) = normalize(aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(int,int,uminus_uminus(int),P2)),aa(int,int,uminus_uminus(int),Q2))) ) ) ).
% normalize_negative
tff(fact_5041_prod__decode__aux_Oelims,axiom,
! [X2: nat,Xa: nat,Y: product_prod(nat,nat)] :
( ( nat_prod_decode_aux(X2,Xa) = Y )
=> ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Xa),X2))
=> ( Y = aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Xa),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),X2),Xa)) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Xa),X2))
=> ( Y = nat_prod_decode_aux(aa(nat,nat,suc,X2),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Xa),aa(nat,nat,suc,X2))) ) ) ) ) ).
% prod_decode_aux.elims
tff(fact_5042_quotient__of__number_I3_J,axiom,
! [K: num] : ( quotient_of(aa(num,rat,numeral_numeral(rat),K)) = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(num,int,numeral_numeral(int),K)),one_one(int)) ) ).
% quotient_of_number(3)
tff(fact_5043_normalize__denom__zero,axiom,
! [P2: int] : ( normalize(aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),P2),zero_zero(int))) = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),zero_zero(int)),one_one(int)) ) ).
% normalize_denom_zero
tff(fact_5044_rat__one__code,axiom,
quotient_of(one_one(rat)) = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),one_one(int)),one_one(int)) ).
% rat_one_code
tff(fact_5045_rat__zero__code,axiom,
quotient_of(zero_zero(rat)) = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),zero_zero(int)),one_one(int)) ).
% rat_zero_code
tff(fact_5046_quotient__of__number_I5_J,axiom,
! [K: num] : ( quotient_of(aa(rat,rat,uminus_uminus(rat),aa(num,rat,numeral_numeral(rat),K))) = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),K))),one_one(int)) ) ).
% quotient_of_number(5)
tff(fact_5047_quotient__of__number_I4_J,axiom,
quotient_of(aa(rat,rat,uminus_uminus(rat),one_one(rat))) = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(int,int,uminus_uminus(int),one_one(int))),one_one(int)) ).
% quotient_of_number(4)
tff(fact_5048_diff__rat__def,axiom,
! [Q2: rat,R: rat] : ( aa(rat,rat,aa(rat,fun(rat,rat),minus_minus(rat),Q2),R) = aa(rat,rat,aa(rat,fun(rat,rat),plus_plus(rat),Q2),aa(rat,rat,uminus_uminus(rat),R)) ) ).
% diff_rat_def
tff(fact_5049_rat__divide__code,axiom,
! [P2: rat,Q2: rat] : ( quotient_of(aa(rat,rat,aa(rat,fun(rat,rat),divide_divide(rat),P2),Q2)) = aa(product_prod(int,int),product_prod(int,int),aa(fun(int,fun(int,product_prod(int,int))),fun(product_prod(int,int),product_prod(int,int)),product_case_prod(int,int,product_prod(int,int)),aTP_Lamp_kk(rat,fun(int,fun(int,product_prod(int,int))),Q2)),quotient_of(P2)) ) ).
% rat_divide_code
tff(fact_5050_rat__times__code,axiom,
! [P2: rat,Q2: rat] : ( quotient_of(aa(rat,rat,aa(rat,fun(rat,rat),times_times(rat),P2),Q2)) = aa(product_prod(int,int),product_prod(int,int),aa(fun(int,fun(int,product_prod(int,int))),fun(product_prod(int,int),product_prod(int,int)),product_case_prod(int,int,product_prod(int,int)),aTP_Lamp_km(rat,fun(int,fun(int,product_prod(int,int))),Q2)),quotient_of(P2)) ) ).
% rat_times_code
tff(fact_5051_quotient__of__div,axiom,
! [R: rat,N: int,D2: int] :
( ( quotient_of(R) = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),N),D2) )
=> ( R = aa(rat,rat,aa(rat,fun(rat,rat),divide_divide(rat),aa(int,rat,ring_1_of_int(rat),N)),aa(int,rat,ring_1_of_int(rat),D2)) ) ) ).
% quotient_of_div
tff(fact_5052_rat__plus__code,axiom,
! [P2: rat,Q2: rat] : ( quotient_of(aa(rat,rat,aa(rat,fun(rat,rat),plus_plus(rat),P2),Q2)) = aa(product_prod(int,int),product_prod(int,int),aa(fun(int,fun(int,product_prod(int,int))),fun(product_prod(int,int),product_prod(int,int)),product_case_prod(int,int,product_prod(int,int)),aTP_Lamp_ko(rat,fun(int,fun(int,product_prod(int,int))),Q2)),quotient_of(P2)) ) ).
% rat_plus_code
tff(fact_5053_rat__minus__code,axiom,
! [P2: rat,Q2: rat] : ( quotient_of(aa(rat,rat,aa(rat,fun(rat,rat),minus_minus(rat),P2),Q2)) = aa(product_prod(int,int),product_prod(int,int),aa(fun(int,fun(int,product_prod(int,int))),fun(product_prod(int,int),product_prod(int,int)),product_case_prod(int,int,product_prod(int,int)),aTP_Lamp_kq(rat,fun(int,fun(int,product_prod(int,int))),Q2)),quotient_of(P2)) ) ).
% rat_minus_code
tff(fact_5054_quotient__of__denom__pos,axiom,
! [R: rat,P2: int,Q2: int] :
( ( quotient_of(R) = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),P2),Q2) )
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),Q2)) ) ).
% quotient_of_denom_pos
tff(fact_5055_rat__uminus__code,axiom,
! [P2: rat] : ( quotient_of(aa(rat,rat,uminus_uminus(rat),P2)) = aa(product_prod(int,int),product_prod(int,int),aa(fun(int,fun(int,product_prod(int,int))),fun(product_prod(int,int),product_prod(int,int)),product_case_prod(int,int,product_prod(int,int)),aTP_Lamp_kr(int,fun(int,product_prod(int,int)))),quotient_of(P2)) ) ).
% rat_uminus_code
tff(fact_5056_rat__abs__code,axiom,
! [P2: rat] : ( quotient_of(aa(rat,rat,abs_abs(rat),P2)) = aa(product_prod(int,int),product_prod(int,int),aa(fun(int,fun(int,product_prod(int,int))),fun(product_prod(int,int),product_prod(int,int)),product_case_prod(int,int,product_prod(int,int)),aTP_Lamp_ks(int,fun(int,product_prod(int,int)))),quotient_of(P2)) ) ).
% rat_abs_code
tff(fact_5057_normalize__denom__pos,axiom,
! [R: product_prod(int,int),P2: int,Q2: int] :
( ( normalize(R) = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),P2),Q2) )
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),Q2)) ) ).
% normalize_denom_pos
tff(fact_5058_normalize__crossproduct,axiom,
! [Q2: int,S2: int,P2: int,R: int] :
( ( Q2 != zero_zero(int) )
=> ( ( S2 != zero_zero(int) )
=> ( ( normalize(aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),P2),Q2)) = normalize(aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),R),S2)) )
=> ( aa(int,int,aa(int,fun(int,int),times_times(int),P2),S2) = aa(int,int,aa(int,fun(int,int),times_times(int),R),Q2) ) ) ) ) ).
% normalize_crossproduct
tff(fact_5059_rat__floor__code,axiom,
! [P2: rat] : ( aa(rat,int,archim6421214686448440834_floor(rat),P2) = aa(product_prod(int,int),int,aa(fun(int,fun(int,int)),fun(product_prod(int,int),int),product_case_prod(int,int,int),divide_divide(int)),quotient_of(P2)) ) ).
% rat_floor_code
tff(fact_5060_rat__less__eq__code,axiom,
! [P2: rat,Q2: rat] :
( pp(aa(rat,bool,aa(rat,fun(rat,bool),ord_less_eq(rat),P2),Q2))
<=> pp(aa(product_prod(int,int),bool,aa(fun(int,fun(int,bool)),fun(product_prod(int,int),bool),product_case_prod(int,int,bool),aTP_Lamp_ku(rat,fun(int,fun(int,bool)),Q2)),quotient_of(P2))) ) ).
% rat_less_eq_code
tff(fact_5061_prod__decode__aux_Osimps,axiom,
! [M: nat,K: nat] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),K))
=> ( nat_prod_decode_aux(K,M) = aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),M),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),K),M)) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),K))
=> ( nat_prod_decode_aux(K,M) = nat_prod_decode_aux(aa(nat,nat,suc,K),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),aa(nat,nat,suc,K))) ) ) ) ).
% prod_decode_aux.simps
tff(fact_5062_prod__decode__aux_Opelims,axiom,
! [X2: nat,Xa: nat,Y: product_prod(nat,nat)] :
( ( nat_prod_decode_aux(X2,Xa) = Y )
=> ( pp(aa(product_prod(nat,nat),bool,accp(product_prod(nat,nat),nat_pr5047031295181774490ux_rel),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),X2),Xa)))
=> ~ ( ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Xa),X2))
=> ( Y = aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Xa),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),X2),Xa)) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Xa),X2))
=> ( Y = nat_prod_decode_aux(aa(nat,nat,suc,X2),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Xa),aa(nat,nat,suc,X2))) ) ) )
=> ~ pp(aa(product_prod(nat,nat),bool,accp(product_prod(nat,nat),nat_pr5047031295181774490ux_rel),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),X2),Xa))) ) ) ) ).
% prod_decode_aux.pelims
tff(fact_5063_quotient__of__int,axiom,
! [A2: int] : ( quotient_of(of_int(A2)) = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),A2),one_one(int)) ) ).
% quotient_of_int
tff(fact_5064_bezw__0,axiom,
! [X2: nat] : ( bezw(X2,zero_zero(nat)) = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),one_one(int)),zero_zero(int)) ) ).
% bezw_0
tff(fact_5065_Frct__code__post_I5_J,axiom,
! [K: num] : ( frct(aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),one_one(int)),aa(num,int,numeral_numeral(int),K))) = aa(rat,rat,aa(rat,fun(rat,rat),divide_divide(rat),one_one(rat)),aa(num,rat,numeral_numeral(rat),K)) ) ).
% Frct_code_post(5)
tff(fact_5066_Frct__code__post_I6_J,axiom,
! [K: num,L: num] : ( frct(aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(num,int,numeral_numeral(int),K)),aa(num,int,numeral_numeral(int),L))) = aa(rat,rat,aa(rat,fun(rat,rat),divide_divide(rat),aa(num,rat,numeral_numeral(rat),K)),aa(num,rat,numeral_numeral(rat),L)) ) ).
% Frct_code_post(6)
tff(fact_5067_sum__zero__power_H,axiom,
! [A: $tType] :
( field(A)
=> ! [A3: set(nat),C2: fun(nat,A),D2: fun(nat,A)] :
( ( ( finite_finite(nat,A3)
& pp(member(nat,zero_zero(nat),A3)) )
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(fun(nat,A),fun(nat,A),aTP_Lamp_kv(fun(nat,A),fun(fun(nat,A),fun(nat,A)),C2),D2)),A3) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(nat,A,C2,zero_zero(nat))),aa(nat,A,D2,zero_zero(nat))) ) )
& ( ~ ( finite_finite(nat,A3)
& pp(member(nat,zero_zero(nat),A3)) )
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(fun(nat,A),fun(nat,A),aTP_Lamp_kv(fun(nat,A),fun(fun(nat,A),fun(nat,A)),C2),D2)),A3) = zero_zero(A) ) ) ) ) ).
% sum_zero_power'
tff(fact_5068_List_Ofinite__set,axiom,
! [A: $tType,Xs: list(A)] : finite_finite(A,aa(list(A),set(A),set2(A),Xs)) ).
% List.finite_set
tff(fact_5069_finite__atLeastAtMost,axiom,
! [L: nat,U: nat] : finite_finite(nat,set_or1337092689740270186AtMost(nat,L,U)) ).
% finite_atLeastAtMost
tff(fact_5070_finite__atLeastLessThan,axiom,
! [L: nat,U: nat] : finite_finite(nat,set_or7035219750837199246ssThan(nat,L,U)) ).
% finite_atLeastLessThan
tff(fact_5071_finite__lessThan,axiom,
! [K: nat] : finite_finite(nat,aa(nat,set(nat),set_ord_lessThan(nat),K)) ).
% finite_lessThan
tff(fact_5072_finite__atMost,axiom,
! [K: nat] : finite_finite(nat,aa(nat,set(nat),set_ord_atMost(nat),K)) ).
% finite_atMost
tff(fact_5073_sum_Oinfinite,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_add(A)
=> ! [A3: set(B),G: fun(B,A)] :
( ~ finite_finite(B,A3)
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),A3) = zero_zero(A) ) ) ) ).
% sum.infinite
tff(fact_5074_sum__eq__0__iff,axiom,
! [B: $tType,A: $tType] :
( canoni5634975068530333245id_add(A)
=> ! [F4: set(B),F2: fun(B,A)] :
( finite_finite(B,F4)
=> ( ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),F4) = zero_zero(A) )
<=> ! [X4: B] :
( pp(member(B,X4,F4))
=> ( aa(B,A,F2,X4) = zero_zero(A) ) ) ) ) ) ).
% sum_eq_0_iff
tff(fact_5075_prod__zero__iff,axiom,
! [B: $tType,A: $tType] :
( semidom(A)
=> ! [A3: set(B),F2: fun(B,A)] :
( finite_finite(B,A3)
=> ( ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),F2),A3) = zero_zero(A) )
<=> ? [X4: B] :
( pp(member(B,X4,A3))
& ( aa(B,A,F2,X4) = zero_zero(A) ) ) ) ) ) ).
% prod_zero_iff
tff(fact_5076_infinite__Icc__iff,axiom,
! [A: $tType] :
( dense_linorder(A)
=> ! [A2: A,B2: A] :
( ~ finite_finite(A,set_or1337092689740270186AtMost(A,A2,B2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) ) ) ).
% infinite_Icc_iff
tff(fact_5077_infinite__Ico__iff,axiom,
! [A: $tType] :
( dense_linorder(A)
=> ! [A2: A,B2: A] :
( ~ finite_finite(A,set_or7035219750837199246ssThan(A,A2,B2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) ) ) ).
% infinite_Ico_iff
tff(fact_5078_prod_Oinfinite,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_mult(A)
=> ! [A3: set(B),G: fun(B,A)] :
( ~ finite_finite(B,A3)
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),A3) = one_one(A) ) ) ) ).
% prod.infinite
tff(fact_5079_sum_Odelta,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_add(A)
=> ! [S: set(B),A2: B,B2: fun(B,A)] :
( finite_finite(B,S)
=> ( ( pp(member(B,A2,S))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aa(fun(B,A),fun(B,A),aTP_Lamp_kw(B,fun(fun(B,A),fun(B,A)),A2),B2)),S) = aa(B,A,B2,A2) ) )
& ( ~ pp(member(B,A2,S))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aa(fun(B,A),fun(B,A),aTP_Lamp_kw(B,fun(fun(B,A),fun(B,A)),A2),B2)),S) = zero_zero(A) ) ) ) ) ) ).
% sum.delta
tff(fact_5080_sum_Odelta_H,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_add(A)
=> ! [S: set(B),A2: B,B2: fun(B,A)] :
( finite_finite(B,S)
=> ( ( pp(member(B,A2,S))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aa(fun(B,A),fun(B,A),aTP_Lamp_kx(B,fun(fun(B,A),fun(B,A)),A2),B2)),S) = aa(B,A,B2,A2) ) )
& ( ~ pp(member(B,A2,S))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aa(fun(B,A),fun(B,A),aTP_Lamp_kx(B,fun(fun(B,A),fun(B,A)),A2),B2)),S) = zero_zero(A) ) ) ) ) ) ).
% sum.delta'
tff(fact_5081_prod__eq__1__iff,axiom,
! [A: $tType,A3: set(A),F2: fun(A,nat)] :
( finite_finite(A,A3)
=> ( ( aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7121269368397514597t_prod(A,nat),F2),A3) = one_one(nat) )
<=> ! [X4: A] :
( pp(member(A,X4,A3))
=> ( aa(A,nat,F2,X4) = one_one(nat) ) ) ) ) ).
% prod_eq_1_iff
tff(fact_5082_prod_Odelta_H,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_mult(A)
=> ! [S: set(B),A2: B,B2: fun(B,A)] :
( finite_finite(B,S)
=> ( ( pp(member(B,A2,S))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),aa(fun(B,A),fun(B,A),aTP_Lamp_ky(B,fun(fun(B,A),fun(B,A)),A2),B2)),S) = aa(B,A,B2,A2) ) )
& ( ~ pp(member(B,A2,S))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),aa(fun(B,A),fun(B,A),aTP_Lamp_ky(B,fun(fun(B,A),fun(B,A)),A2),B2)),S) = one_one(A) ) ) ) ) ) ).
% prod.delta'
tff(fact_5083_prod_Odelta,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_mult(A)
=> ! [S: set(B),A2: B,B2: fun(B,A)] :
( finite_finite(B,S)
=> ( ( pp(member(B,A2,S))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),aa(fun(B,A),fun(B,A),aTP_Lamp_kz(B,fun(fun(B,A),fun(B,A)),A2),B2)),S) = aa(B,A,B2,A2) ) )
& ( ~ pp(member(B,A2,S))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),aa(fun(B,A),fun(B,A),aTP_Lamp_kz(B,fun(fun(B,A),fun(B,A)),A2),B2)),S) = one_one(A) ) ) ) ) ) ).
% prod.delta
tff(fact_5084_summable__If__finite__set,axiom,
! [A: $tType] :
( ( comm_monoid_add(A)
& topolo4958980785337419405_space(A) )
=> ! [A3: set(nat),F2: fun(nat,A)] :
( finite_finite(nat,A3)
=> summable(A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_la(set(nat),fun(fun(nat,A),fun(nat,A)),A3),F2)) ) ) ).
% summable_If_finite_set
tff(fact_5085_summable__If__finite,axiom,
! [A: $tType] :
( ( comm_monoid_add(A)
& topolo4958980785337419405_space(A) )
=> ! [P: fun(nat,bool),F2: fun(nat,A)] :
( finite_finite(nat,aa(fun(nat,bool),set(nat),collect(nat),P))
=> summable(A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_lb(fun(nat,bool),fun(fun(nat,A),fun(nat,A)),P),F2)) ) ) ).
% summable_If_finite
tff(fact_5086_set__encode__inverse,axiom,
! [A3: set(nat)] :
( finite_finite(nat,A3)
=> ( nat_set_decode(aa(set(nat),nat,nat_set_encode,A3)) = A3 ) ) ).
% set_encode_inverse
tff(fact_5087_prod__pos__nat__iff,axiom,
! [A: $tType,A3: set(A),F2: fun(A,nat)] :
( finite_finite(A,A3)
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7121269368397514597t_prod(A,nat),F2),A3)))
<=> ! [X4: A] :
( pp(member(A,X4,A3))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(A,nat,F2,X4))) ) ) ) ).
% prod_pos_nat_iff
tff(fact_5088_sum__zero__power,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [A3: set(nat),C2: fun(nat,A)] :
( ( ( finite_finite(nat,A3)
& pp(member(nat,zero_zero(nat),A3)) )
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_lc(fun(nat,A),fun(nat,A),C2)),A3) = aa(nat,A,C2,zero_zero(nat)) ) )
& ( ~ ( finite_finite(nat,A3)
& pp(member(nat,zero_zero(nat),A3)) )
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aTP_Lamp_lc(fun(nat,A),fun(nat,A),C2)),A3) = zero_zero(A) ) ) ) ) ).
% sum_zero_power
tff(fact_5089_finite__nat__set__iff__bounded__le,axiom,
! [N2: set(nat)] :
( finite_finite(nat,N2)
<=> ? [M6: nat] :
! [X4: nat] :
( pp(member(nat,X4,N2))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),X4),M6)) ) ) ).
% finite_nat_set_iff_bounded_le
tff(fact_5090_bounded__nat__set__is__finite,axiom,
! [N2: set(nat),N: nat] :
( ! [X3: nat] :
( pp(member(nat,X3,N2))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),X3),N)) )
=> finite_finite(nat,N2) ) ).
% bounded_nat_set_is_finite
tff(fact_5091_finite__nat__set__iff__bounded,axiom,
! [N2: set(nat)] :
( finite_finite(nat,N2)
<=> ? [M6: nat] :
! [X4: nat] :
( pp(member(nat,X4,N2))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),X4),M6)) ) ) ).
% finite_nat_set_iff_bounded
tff(fact_5092_finite__M__bounded__by__nat,axiom,
! [P: fun(nat,bool),I: nat] : finite_finite(nat,aa(fun(nat,bool),set(nat),collect(nat),aa(nat,fun(nat,bool),aTP_Lamp_ld(fun(nat,bool),fun(nat,fun(nat,bool)),P),I))) ).
% finite_M_bounded_by_nat
tff(fact_5093_finite__lists__length__eq,axiom,
! [A: $tType,A3: set(A),N: nat] :
( finite_finite(A,A3)
=> finite_finite(list(A),aa(fun(list(A),bool),set(list(A)),collect(list(A)),aa(nat,fun(list(A),bool),aTP_Lamp_le(set(A),fun(nat,fun(list(A),bool)),A3),N))) ) ).
% finite_lists_length_eq
tff(fact_5094_finite__less__ub,axiom,
! [F2: fun(nat,nat),U: nat] :
( ! [N3: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N3),aa(nat,nat,F2,N3)))
=> finite_finite(nat,aa(fun(nat,bool),set(nat),collect(nat),aa(nat,fun(nat,bool),aTP_Lamp_lf(fun(nat,nat),fun(nat,fun(nat,bool)),F2),U))) ) ).
% finite_less_ub
tff(fact_5095_set__encode__eq,axiom,
! [A3: set(nat),B4: set(nat)] :
( finite_finite(nat,A3)
=> ( finite_finite(nat,B4)
=> ( ( aa(set(nat),nat,nat_set_encode,A3) = aa(set(nat),nat,nat_set_encode,B4) )
<=> ( A3 = B4 ) ) ) ) ).
% set_encode_eq
tff(fact_5096_finite__set__decode,axiom,
! [N: nat] : finite_finite(nat,nat_set_decode(N)) ).
% finite_set_decode
tff(fact_5097_infinite__Iic,axiom,
! [A: $tType] :
( ( linorder(A)
& no_bot(A) )
=> ! [A2: A] : ~ finite_finite(A,aa(A,set(A),set_ord_atMost(A),A2)) ) ).
% infinite_Iic
tff(fact_5098_infinite__Iio,axiom,
! [A: $tType] :
( ( linorder(A)
& no_bot(A) )
=> ! [A2: A] : ~ finite_finite(A,aa(A,set(A),set_ord_lessThan(A),A2)) ) ).
% infinite_Iio
tff(fact_5099_finite__list,axiom,
! [A: $tType,A3: set(A)] :
( finite_finite(A,A3)
=> ? [Xs2: list(A)] : ( aa(list(A),set(A),set2(A),Xs2) = A3 ) ) ).
% finite_list
tff(fact_5100_sum__mono__inv,axiom,
! [A: $tType,I6: $tType] :
( ordere8940638589300402666id_add(A)
=> ! [F2: fun(I6,A),I5: set(I6),G: fun(I6,A),I: I6] :
( ( aa(set(I6),A,aa(fun(I6,A),fun(set(I6),A),groups7311177749621191930dd_sum(I6,A),F2),I5) = aa(set(I6),A,aa(fun(I6,A),fun(set(I6),A),groups7311177749621191930dd_sum(I6,A),G),I5) )
=> ( ! [I3: I6] :
( pp(member(I6,I3,I5))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(I6,A,F2,I3)),aa(I6,A,G,I3))) )
=> ( pp(member(I6,I,I5))
=> ( finite_finite(I6,I5)
=> ( aa(I6,A,F2,I) = aa(I6,A,G,I) ) ) ) ) ) ) ).
% sum_mono_inv
tff(fact_5101_prod__zero,axiom,
! [B: $tType,A: $tType] :
( comm_semiring_1(A)
=> ! [A3: set(B),F2: fun(B,A)] :
( finite_finite(B,A3)
=> ( ? [X: B] :
( pp(member(B,X,A3))
& ( aa(B,A,F2,X) = zero_zero(A) ) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),F2),A3) = zero_zero(A) ) ) ) ) ).
% prod_zero
tff(fact_5102_infinite__Icc,axiom,
! [A: $tType] :
( dense_linorder(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ~ finite_finite(A,set_or1337092689740270186AtMost(A,A2,B2)) ) ) ).
% infinite_Icc
tff(fact_5103_infinite__Ico,axiom,
! [A: $tType] :
( dense_linorder(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ~ finite_finite(A,set_or7035219750837199246ssThan(A,A2,B2)) ) ) ).
% infinite_Ico
tff(fact_5104_finite__lists__length__le,axiom,
! [A: $tType,A3: set(A),N: nat] :
( finite_finite(A,A3)
=> finite_finite(list(A),aa(fun(list(A),bool),set(list(A)),collect(list(A)),aa(nat,fun(list(A),bool),aTP_Lamp_lg(set(A),fun(nat,fun(list(A),bool)),A3),N))) ) ).
% finite_lists_length_le
tff(fact_5105_summable__finite,axiom,
! [A: $tType] :
( ( comm_monoid_add(A)
& topolo4958980785337419405_space(A) )
=> ! [N2: set(nat),F2: fun(nat,A)] :
( finite_finite(nat,N2)
=> ( ! [N3: nat] :
( ~ pp(member(nat,N3,N2))
=> ( aa(nat,A,F2,N3) = zero_zero(A) ) )
=> summable(A,F2) ) ) ) ).
% summable_finite
tff(fact_5106_sum_Ofinite__Collect__op,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [I5: set(B),X2: fun(B,A),Y: fun(B,A)] :
( finite_finite(B,aa(fun(B,bool),set(B),collect(B),aa(fun(B,A),fun(B,bool),aTP_Lamp_lh(set(B),fun(fun(B,A),fun(B,bool)),I5),X2)))
=> ( finite_finite(B,aa(fun(B,bool),set(B),collect(B),aa(fun(B,A),fun(B,bool),aTP_Lamp_lh(set(B),fun(fun(B,A),fun(B,bool)),I5),Y)))
=> finite_finite(B,aa(fun(B,bool),set(B),collect(B),aa(fun(B,A),fun(B,bool),aa(fun(B,A),fun(fun(B,A),fun(B,bool)),aTP_Lamp_li(set(B),fun(fun(B,A),fun(fun(B,A),fun(B,bool))),I5),X2),Y))) ) ) ) ).
% sum.finite_Collect_op
tff(fact_5107_prod_Ofinite__Collect__op,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [I5: set(B),X2: fun(B,A),Y: fun(B,A)] :
( finite_finite(B,aa(fun(B,bool),set(B),collect(B),aa(fun(B,A),fun(B,bool),aTP_Lamp_lj(set(B),fun(fun(B,A),fun(B,bool)),I5),X2)))
=> ( finite_finite(B,aa(fun(B,bool),set(B),collect(B),aa(fun(B,A),fun(B,bool),aTP_Lamp_lj(set(B),fun(fun(B,A),fun(B,bool)),I5),Y)))
=> finite_finite(B,aa(fun(B,bool),set(B),collect(B),aa(fun(B,A),fun(B,bool),aa(fun(B,A),fun(fun(B,A),fun(B,bool)),aTP_Lamp_lk(set(B),fun(fun(B,A),fun(fun(B,A),fun(B,bool))),I5),X2),Y))) ) ) ) ).
% prod.finite_Collect_op
tff(fact_5108_sum_Ointer__filter,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [A3: set(B),G: fun(B,A),P: fun(B,bool)] :
( finite_finite(B,A3)
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),aa(fun(B,bool),set(B),collect(B),aa(fun(B,bool),fun(B,bool),aTP_Lamp_ll(set(B),fun(fun(B,bool),fun(B,bool)),A3),P))) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aa(fun(B,bool),fun(B,A),aTP_Lamp_lm(fun(B,A),fun(fun(B,bool),fun(B,A)),G),P)),A3) ) ) ) ).
% sum.inter_filter
tff(fact_5109_set__encode__inf,axiom,
! [A3: set(nat)] :
( ~ finite_finite(nat,A3)
=> ( aa(set(nat),nat,nat_set_encode,A3) = zero_zero(nat) ) ) ).
% set_encode_inf
tff(fact_5110_prod_Ointer__filter,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [A3: set(B),G: fun(B,A),P: fun(B,bool)] :
( finite_finite(B,A3)
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),aa(fun(B,bool),set(B),collect(B),aa(fun(B,bool),fun(B,bool),aTP_Lamp_ll(set(B),fun(fun(B,bool),fun(B,bool)),A3),P))) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),aa(fun(B,bool),fun(B,A),aTP_Lamp_ln(fun(B,A),fun(fun(B,bool),fun(B,A)),G),P)),A3) ) ) ) ).
% prod.inter_filter
tff(fact_5111_finite__int__segment,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [A2: A,B2: A] : finite_finite(A,aa(fun(A,bool),set(A),collect(A),aa(A,fun(A,bool),aTP_Lamp_lo(A,fun(A,fun(A,bool)),A2),B2))) ) ).
% finite_int_segment
tff(fact_5112_sum__nonneg__eq__0__iff,axiom,
! [B: $tType,A: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [A3: set(B),F2: fun(B,A)] :
( finite_finite(B,A3)
=> ( ! [X3: B] :
( pp(member(B,X3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(B,A,F2,X3))) )
=> ( ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),A3) = zero_zero(A) )
<=> ! [X4: B] :
( pp(member(B,X4,A3))
=> ( aa(B,A,F2,X4) = zero_zero(A) ) ) ) ) ) ) ).
% sum_nonneg_eq_0_iff
tff(fact_5113_sum__le__included,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [S2: set(B),T2: set(C),G: fun(C,A),I: fun(C,B),F2: fun(B,A)] :
( finite_finite(B,S2)
=> ( finite_finite(C,T2)
=> ( ! [X3: C] :
( pp(member(C,X3,T2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(C,A,G,X3))) )
=> ( ! [X3: B] :
( pp(member(B,X3,S2))
=> ? [Xa2: C] :
( pp(member(C,Xa2,T2))
& ( aa(C,B,I,Xa2) = X3 )
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,X3)),aa(C,A,G,Xa2))) ) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),S2)),aa(set(C),A,aa(fun(C,A),fun(set(C),A),groups7311177749621191930dd_sum(C,A),G),T2))) ) ) ) ) ) ).
% sum_le_included
tff(fact_5114_sum__strict__mono__ex1,axiom,
! [A: $tType,I6: $tType] :
( ordere8940638589300402666id_add(A)
=> ! [A3: set(I6),F2: fun(I6,A),G: fun(I6,A)] :
( finite_finite(I6,A3)
=> ( ! [X3: I6] :
( pp(member(I6,X3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(I6,A,F2,X3)),aa(I6,A,G,X3))) )
=> ( ? [X: I6] :
( pp(member(I6,X,A3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(I6,A,F2,X)),aa(I6,A,G,X))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(set(I6),A,aa(fun(I6,A),fun(set(I6),A),groups7311177749621191930dd_sum(I6,A),F2),A3)),aa(set(I6),A,aa(fun(I6,A),fun(set(I6),A),groups7311177749621191930dd_sum(I6,A),G),A3))) ) ) ) ) ).
% sum_strict_mono_ex1
tff(fact_5115_sum_Orelated,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [R2: fun(A,fun(A,bool)),S: set(B),H: fun(B,A),G: fun(B,A)] :
( pp(aa(A,bool,aa(A,fun(A,bool),R2,zero_zero(A)),zero_zero(A)))
=> ( ! [X15: A,Y15: A,X22: A,Y23: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),R2,X15),X22))
& pp(aa(A,bool,aa(A,fun(A,bool),R2,Y15),Y23)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),R2,aa(A,A,aa(A,fun(A,A),plus_plus(A),X15),Y15)),aa(A,A,aa(A,fun(A,A),plus_plus(A),X22),Y23))) )
=> ( finite_finite(B,S)
=> ( ! [X3: B] :
( pp(member(B,X3,S))
=> pp(aa(A,bool,aa(A,fun(A,bool),R2,aa(B,A,H,X3)),aa(B,A,G,X3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),R2,aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),H),S)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),S))) ) ) ) ) ) ).
% sum.related
tff(fact_5116_prod_Orelated,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [R2: fun(A,fun(A,bool)),S: set(B),H: fun(B,A),G: fun(B,A)] :
( pp(aa(A,bool,aa(A,fun(A,bool),R2,one_one(A)),one_one(A)))
=> ( ! [X15: A,Y15: A,X22: A,Y23: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),R2,X15),X22))
& pp(aa(A,bool,aa(A,fun(A,bool),R2,Y15),Y23)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),R2,aa(A,A,aa(A,fun(A,A),times_times(A),X15),Y15)),aa(A,A,aa(A,fun(A,A),times_times(A),X22),Y23))) )
=> ( finite_finite(B,S)
=> ( ! [X3: B] :
( pp(member(B,X3,S))
=> pp(aa(A,bool,aa(A,fun(A,bool),R2,aa(B,A,H,X3)),aa(B,A,G,X3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),R2,aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),H),S)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),S))) ) ) ) ) ) ).
% prod.related
tff(fact_5117_sum_Oreindex__bij__witness__not__neutral,axiom,
! [B: $tType,A: $tType,C: $tType] :
( comm_monoid_add(A)
=> ! [S4: set(B),T5: set(C),S: set(B),I: fun(C,B),J: fun(B,C),T6: set(C),G: fun(B,A),H: fun(C,A)] :
( finite_finite(B,S4)
=> ( finite_finite(C,T5)
=> ( ! [A4: B] :
( pp(member(B,A4,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),S),S4)))
=> ( aa(C,B,I,aa(B,C,J,A4)) = A4 ) )
=> ( ! [A4: B] :
( pp(member(B,A4,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),S),S4)))
=> pp(member(C,aa(B,C,J,A4),aa(set(C),set(C),aa(set(C),fun(set(C),set(C)),minus_minus(set(C)),T6),T5))) )
=> ( ! [B3: C] :
( pp(member(C,B3,aa(set(C),set(C),aa(set(C),fun(set(C),set(C)),minus_minus(set(C)),T6),T5)))
=> ( aa(B,C,J,aa(C,B,I,B3)) = B3 ) )
=> ( ! [B3: C] :
( pp(member(C,B3,aa(set(C),set(C),aa(set(C),fun(set(C),set(C)),minus_minus(set(C)),T6),T5)))
=> pp(member(B,aa(C,B,I,B3),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),S),S4))) )
=> ( ! [A4: B] :
( pp(member(B,A4,S4))
=> ( aa(B,A,G,A4) = zero_zero(A) ) )
=> ( ! [B3: C] :
( pp(member(C,B3,T5))
=> ( aa(C,A,H,B3) = zero_zero(A) ) )
=> ( ! [A4: B] :
( pp(member(B,A4,S))
=> ( aa(C,A,H,aa(B,C,J,A4)) = aa(B,A,G,A4) ) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),S) = aa(set(C),A,aa(fun(C,A),fun(set(C),A),groups7311177749621191930dd_sum(C,A),H),T6) ) ) ) ) ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness_not_neutral
tff(fact_5118_prod__dvd__prod__subset,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [B4: set(B),A3: set(B),F2: fun(B,A)] :
( finite_finite(B,B4)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),A3),B4))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),F2),A3)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),F2),B4))) ) ) ) ).
% prod_dvd_prod_subset
tff(fact_5119_prod__dvd__prod__subset2,axiom,
! [A: $tType,B: $tType] :
( comm_semiring_1(A)
=> ! [B4: set(B),A3: set(B),F2: fun(B,A),G: fun(B,A)] :
( finite_finite(B,B4)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),A3),B4))
=> ( ! [A4: B] :
( pp(member(B,A4,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(B,A,F2,A4)),aa(B,A,G,A4))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),F2),A3)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),B4))) ) ) ) ) ).
% prod_dvd_prod_subset2
tff(fact_5120_prod_Oreindex__bij__witness__not__neutral,axiom,
! [B: $tType,A: $tType,C: $tType] :
( comm_monoid_mult(A)
=> ! [S4: set(B),T5: set(C),S: set(B),I: fun(C,B),J: fun(B,C),T6: set(C),G: fun(B,A),H: fun(C,A)] :
( finite_finite(B,S4)
=> ( finite_finite(C,T5)
=> ( ! [A4: B] :
( pp(member(B,A4,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),S),S4)))
=> ( aa(C,B,I,aa(B,C,J,A4)) = A4 ) )
=> ( ! [A4: B] :
( pp(member(B,A4,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),S),S4)))
=> pp(member(C,aa(B,C,J,A4),aa(set(C),set(C),aa(set(C),fun(set(C),set(C)),minus_minus(set(C)),T6),T5))) )
=> ( ! [B3: C] :
( pp(member(C,B3,aa(set(C),set(C),aa(set(C),fun(set(C),set(C)),minus_minus(set(C)),T6),T5)))
=> ( aa(B,C,J,aa(C,B,I,B3)) = B3 ) )
=> ( ! [B3: C] :
( pp(member(C,B3,aa(set(C),set(C),aa(set(C),fun(set(C),set(C)),minus_minus(set(C)),T6),T5)))
=> pp(member(B,aa(C,B,I,B3),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),S),S4))) )
=> ( ! [A4: B] :
( pp(member(B,A4,S4))
=> ( aa(B,A,G,A4) = one_one(A) ) )
=> ( ! [B3: C] :
( pp(member(C,B3,T5))
=> ( aa(C,A,H,B3) = one_one(A) ) )
=> ( ! [A4: B] :
( pp(member(B,A4,S))
=> ( aa(C,A,H,aa(B,C,J,A4)) = aa(B,A,G,A4) ) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),S) = aa(set(C),A,aa(fun(C,A),fun(set(C),A),groups7121269368397514597t_prod(C,A),H),T6) ) ) ) ) ) ) ) ) ) ) ) ).
% prod.reindex_bij_witness_not_neutral
tff(fact_5121_sum__eq__Suc0__iff,axiom,
! [A: $tType,A3: set(A),F2: fun(A,nat)] :
( finite_finite(A,A3)
=> ( ( aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),F2),A3) = aa(nat,nat,suc,zero_zero(nat)) )
<=> ? [X4: A] :
( pp(member(A,X4,A3))
& ( aa(A,nat,F2,X4) = aa(nat,nat,suc,zero_zero(nat)) )
& ! [Xa3: A] :
( pp(member(A,Xa3,A3))
=> ( ( X4 != Xa3 )
=> ( aa(A,nat,F2,Xa3) = zero_zero(nat) ) ) ) ) ) ) ).
% sum_eq_Suc0_iff
tff(fact_5122_sum__eq__1__iff,axiom,
! [A: $tType,A3: set(A),F2: fun(A,nat)] :
( finite_finite(A,A3)
=> ( ( aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),F2),A3) = one_one(nat) )
<=> ? [X4: A] :
( pp(member(A,X4,A3))
& ( aa(A,nat,F2,X4) = one_one(nat) )
& ! [Xa3: A] :
( pp(member(A,Xa3,A3))
=> ( ( X4 != Xa3 )
=> ( aa(A,nat,F2,Xa3) = zero_zero(nat) ) ) ) ) ) ) ).
% sum_eq_1_iff
tff(fact_5123_sum__nonneg__0,axiom,
! [B: $tType,A: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [S2: set(B),F2: fun(B,A),I: B] :
( finite_finite(B,S2)
=> ( ! [I3: B] :
( pp(member(B,I3,S2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(B,A,F2,I3))) )
=> ( ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),S2) = zero_zero(A) )
=> ( pp(member(B,I,S2))
=> ( aa(B,A,F2,I) = zero_zero(A) ) ) ) ) ) ) ).
% sum_nonneg_0
tff(fact_5124_sum__nonneg__leq__bound,axiom,
! [B: $tType,A: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [S2: set(B),F2: fun(B,A),B4: A,I: B] :
( finite_finite(B,S2)
=> ( ! [I3: B] :
( pp(member(B,I3,S2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(B,A,F2,I3))) )
=> ( ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),S2) = B4 )
=> ( pp(member(B,I,S2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,I)),B4)) ) ) ) ) ) ).
% sum_nonneg_leq_bound
tff(fact_5125_sum_Osetdiff__irrelevant,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [A3: set(B),G: fun(B,A)] :
( finite_finite(B,A3)
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),A3),aa(fun(B,bool),set(B),collect(B),aTP_Lamp_lp(fun(B,A),fun(B,bool),G)))) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),A3) ) ) ) ).
% sum.setdiff_irrelevant
tff(fact_5126_prod_Osetdiff__irrelevant,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [A3: set(B),G: fun(B,A)] :
( finite_finite(B,A3)
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),A3),aa(fun(B,bool),set(B),collect(B),aTP_Lamp_lq(fun(B,A),fun(B,bool),G)))) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),A3) ) ) ) ).
% prod.setdiff_irrelevant
tff(fact_5127_finite__divisors__nat,axiom,
! [M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),M))
=> finite_finite(nat,aa(fun(nat,bool),set(nat),collect(nat),aTP_Lamp_lr(nat,fun(nat,bool),M))) ) ).
% finite_divisors_nat
tff(fact_5128_sums__If__finite__set,axiom,
! [A: $tType] :
( ( comm_monoid_add(A)
& topolo4958980785337419405_space(A) )
=> ! [A3: set(nat),F2: fun(nat,A)] :
( finite_finite(nat,A3)
=> sums(A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_la(set(nat),fun(fun(nat,A),fun(nat,A)),A3),F2),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),A3)) ) ) ).
% sums_If_finite_set
tff(fact_5129_sums__If__finite,axiom,
! [A: $tType] :
( ( comm_monoid_add(A)
& topolo4958980785337419405_space(A) )
=> ! [P: fun(nat,bool),F2: fun(nat,A)] :
( finite_finite(nat,aa(fun(nat,bool),set(nat),collect(nat),P))
=> sums(A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_lb(fun(nat,bool),fun(fun(nat,A),fun(nat,A)),P),F2),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),aa(fun(nat,bool),set(nat),collect(nat),P))) ) ) ).
% sums_If_finite
tff(fact_5130_sums__finite,axiom,
! [A: $tType] :
( ( comm_monoid_add(A)
& topolo4958980785337419405_space(A) )
=> ! [N2: set(nat),F2: fun(nat,A)] :
( finite_finite(nat,N2)
=> ( ! [N3: nat] :
( ~ pp(member(nat,N3,N2))
=> ( aa(nat,A,F2,N3) = zero_zero(A) ) )
=> sums(A,F2,aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),N2)) ) ) ) ).
% sums_finite
tff(fact_5131_suminf__finite,axiom,
! [A: $tType] :
( ( comm_monoid_add(A)
& topological_t2_space(A) )
=> ! [N2: set(nat),F2: fun(nat,A)] :
( finite_finite(nat,N2)
=> ( ! [N3: nat] :
( ~ pp(member(nat,N3,N2))
=> ( aa(nat,A,F2,N3) = zero_zero(A) ) )
=> ( suminf(A,F2) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),N2) ) ) ) ) ).
% suminf_finite
tff(fact_5132_finite__abs__int__segment,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [A2: A] : finite_finite(A,aa(fun(A,bool),set(A),collect(A),aTP_Lamp_ls(A,fun(A,bool),A2))) ) ).
% finite_abs_int_segment
tff(fact_5133_subset__eq__atLeast0__atMost__finite,axiom,
! [N2: set(nat),N: nat] :
( pp(aa(set(nat),bool,aa(set(nat),fun(set(nat),bool),ord_less_eq(set(nat)),N2),set_or1337092689740270186AtMost(nat,zero_zero(nat),N)))
=> finite_finite(nat,N2) ) ).
% subset_eq_atLeast0_atMost_finite
tff(fact_5134_subset__eq__atLeast0__lessThan__finite,axiom,
! [N2: set(nat),N: nat] :
( pp(aa(set(nat),bool,aa(set(nat),fun(set(nat),bool),ord_less_eq(set(nat)),N2),set_or7035219750837199246ssThan(nat,zero_zero(nat),N)))
=> finite_finite(nat,N2) ) ).
% subset_eq_atLeast0_lessThan_finite
tff(fact_5135_sum__pos2,axiom,
! [A: $tType,B: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [I5: set(B),I: B,F2: fun(B,A)] :
( finite_finite(B,I5)
=> ( pp(member(B,I,I5))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(B,A,F2,I)))
=> ( ! [I3: B] :
( pp(member(B,I3,I5))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(B,A,F2,I3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),I5))) ) ) ) ) ) ).
% sum_pos2
tff(fact_5136_less__1__prod2,axiom,
! [B: $tType,A: $tType] :
( linordered_idom(B)
=> ! [I5: set(A),I: A,F2: fun(A,B)] :
( finite_finite(A,I5)
=> ( pp(member(A,I,I5))
=> ( pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),one_one(B)),aa(A,B,F2,I)))
=> ( ! [I3: A] :
( pp(member(A,I3,I5))
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),one_one(B)),aa(A,B,F2,I3))) )
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),one_one(B)),aa(set(A),B,aa(fun(A,B),fun(set(A),B),groups7121269368397514597t_prod(A,B),F2),I5))) ) ) ) ) ) ).
% less_1_prod2
tff(fact_5137_sum_Osame__carrier,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [C6: set(B),A3: set(B),B4: set(B),G: fun(B,A),H: fun(B,A)] :
( finite_finite(B,C6)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),A3),C6))
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),B4),C6))
=> ( ! [A4: B] :
( pp(member(B,A4,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),C6),A3)))
=> ( aa(B,A,G,A4) = zero_zero(A) ) )
=> ( ! [B3: B] :
( pp(member(B,B3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),C6),B4)))
=> ( aa(B,A,H,B3) = zero_zero(A) ) )
=> ( ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),A3) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),H),B4) )
<=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),C6) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),H),C6) ) ) ) ) ) ) ) ) ).
% sum.same_carrier
tff(fact_5138_sum_Osame__carrierI,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [C6: set(B),A3: set(B),B4: set(B),G: fun(B,A),H: fun(B,A)] :
( finite_finite(B,C6)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),A3),C6))
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),B4),C6))
=> ( ! [A4: B] :
( pp(member(B,A4,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),C6),A3)))
=> ( aa(B,A,G,A4) = zero_zero(A) ) )
=> ( ! [B3: B] :
( pp(member(B,B3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),C6),B4)))
=> ( aa(B,A,H,B3) = zero_zero(A) ) )
=> ( ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),C6) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),H),C6) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),A3) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),H),B4) ) ) ) ) ) ) ) ) ).
% sum.same_carrierI
tff(fact_5139_sum_Omono__neutral__left,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [T6: set(B),S: set(B),G: fun(B,A)] :
( finite_finite(B,T6)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),S),T6))
=> ( ! [X3: B] :
( pp(member(B,X3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),T6),S)))
=> ( aa(B,A,G,X3) = zero_zero(A) ) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),S) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),T6) ) ) ) ) ) ).
% sum.mono_neutral_left
tff(fact_5140_sum_Omono__neutral__right,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [T6: set(B),S: set(B),G: fun(B,A)] :
( finite_finite(B,T6)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),S),T6))
=> ( ! [X3: B] :
( pp(member(B,X3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),T6),S)))
=> ( aa(B,A,G,X3) = zero_zero(A) ) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),T6) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),S) ) ) ) ) ) ).
% sum.mono_neutral_right
tff(fact_5141_sum_Omono__neutral__cong__left,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [T6: set(B),S: set(B),H: fun(B,A),G: fun(B,A)] :
( finite_finite(B,T6)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),S),T6))
=> ( ! [X3: B] :
( pp(member(B,X3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),T6),S)))
=> ( aa(B,A,H,X3) = zero_zero(A) ) )
=> ( ! [X3: B] :
( pp(member(B,X3,S))
=> ( aa(B,A,G,X3) = aa(B,A,H,X3) ) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),S) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),H),T6) ) ) ) ) ) ) ).
% sum.mono_neutral_cong_left
tff(fact_5142_sum_Omono__neutral__cong__right,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [T6: set(B),S: set(B),G: fun(B,A),H: fun(B,A)] :
( finite_finite(B,T6)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),S),T6))
=> ( ! [X3: B] :
( pp(member(B,X3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),T6),S)))
=> ( aa(B,A,G,X3) = zero_zero(A) ) )
=> ( ! [X3: B] :
( pp(member(B,X3,S))
=> ( aa(B,A,G,X3) = aa(B,A,H,X3) ) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),T6) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),H),S) ) ) ) ) ) ) ).
% sum.mono_neutral_cong_right
tff(fact_5143_sum_Osubset__diff,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [B4: set(B),A3: set(B),G: fun(B,A)] :
( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),B4),A3))
=> ( finite_finite(B,A3)
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),A3) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),A3),B4))),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),B4)) ) ) ) ) ).
% sum.subset_diff
tff(fact_5144_sum__diff,axiom,
! [A: $tType,B: $tType] :
( ab_group_add(A)
=> ! [A3: set(B),B4: set(B),F2: fun(B,A)] :
( finite_finite(B,A3)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),B4),A3))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),A3),B4)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),A3)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),B4)) ) ) ) ) ).
% sum_diff
tff(fact_5145_prod_Osubset__diff,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [B4: set(B),A3: set(B),G: fun(B,A)] :
( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),B4),A3))
=> ( finite_finite(B,A3)
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),A3) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),A3),B4))),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),B4)) ) ) ) ) ).
% prod.subset_diff
tff(fact_5146_prod_Osame__carrier,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [C6: set(B),A3: set(B),B4: set(B),G: fun(B,A),H: fun(B,A)] :
( finite_finite(B,C6)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),A3),C6))
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),B4),C6))
=> ( ! [A4: B] :
( pp(member(B,A4,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),C6),A3)))
=> ( aa(B,A,G,A4) = one_one(A) ) )
=> ( ! [B3: B] :
( pp(member(B,B3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),C6),B4)))
=> ( aa(B,A,H,B3) = one_one(A) ) )
=> ( ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),A3) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),H),B4) )
<=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),C6) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),H),C6) ) ) ) ) ) ) ) ) ).
% prod.same_carrier
tff(fact_5147_prod_Osame__carrierI,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [C6: set(B),A3: set(B),B4: set(B),G: fun(B,A),H: fun(B,A)] :
( finite_finite(B,C6)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),A3),C6))
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),B4),C6))
=> ( ! [A4: B] :
( pp(member(B,A4,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),C6),A3)))
=> ( aa(B,A,G,A4) = one_one(A) ) )
=> ( ! [B3: B] :
( pp(member(B,B3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),C6),B4)))
=> ( aa(B,A,H,B3) = one_one(A) ) )
=> ( ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),C6) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),H),C6) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),A3) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),H),B4) ) ) ) ) ) ) ) ) ).
% prod.same_carrierI
tff(fact_5148_prod_Omono__neutral__left,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [T6: set(B),S: set(B),G: fun(B,A)] :
( finite_finite(B,T6)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),S),T6))
=> ( ! [X3: B] :
( pp(member(B,X3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),T6),S)))
=> ( aa(B,A,G,X3) = one_one(A) ) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),S) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),T6) ) ) ) ) ) ).
% prod.mono_neutral_left
tff(fact_5149_prod_Omono__neutral__right,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [T6: set(B),S: set(B),G: fun(B,A)] :
( finite_finite(B,T6)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),S),T6))
=> ( ! [X3: B] :
( pp(member(B,X3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),T6),S)))
=> ( aa(B,A,G,X3) = one_one(A) ) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),T6) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),S) ) ) ) ) ) ).
% prod.mono_neutral_right
tff(fact_5150_prod_Omono__neutral__cong__left,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [T6: set(B),S: set(B),H: fun(B,A),G: fun(B,A)] :
( finite_finite(B,T6)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),S),T6))
=> ( ! [X3: B] :
( pp(member(B,X3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),T6),S)))
=> ( aa(B,A,H,X3) = one_one(A) ) )
=> ( ! [X3: B] :
( pp(member(B,X3,S))
=> ( aa(B,A,G,X3) = aa(B,A,H,X3) ) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),S) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),H),T6) ) ) ) ) ) ) ).
% prod.mono_neutral_cong_left
tff(fact_5151_prod_Omono__neutral__cong__right,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [T6: set(B),S: set(B),G: fun(B,A),H: fun(B,A)] :
( finite_finite(B,T6)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),S),T6))
=> ( ! [X3: B] :
( pp(member(B,X3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),T6),S)))
=> ( aa(B,A,G,X3) = one_one(A) ) )
=> ( ! [X3: B] :
( pp(member(B,X3,S))
=> ( aa(B,A,G,X3) = aa(B,A,H,X3) ) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),T6) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),H),S) ) ) ) ) ) ) ).
% prod.mono_neutral_cong_right
tff(fact_5152_sum__diff__nat,axiom,
! [A: $tType,B4: set(A),A3: set(A),F2: fun(A,nat)] :
( finite_finite(A,B4)
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),A3))
=> ( aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),F2),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),F2),A3)),aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),F2),B4)) ) ) ) ).
% sum_diff_nat
tff(fact_5153_finite__roots__unity,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra(A)
& idom(A) )
=> ! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),one_one(nat)),N))
=> finite_finite(A,aa(fun(A,bool),set(A),collect(A),aTP_Lamp_lt(nat,fun(A,bool),N))) ) ) ).
% finite_roots_unity
tff(fact_5154_sum_Oreindex__bij__betw__not__neutral,axiom,
! [B: $tType,A: $tType,C: $tType] :
( comm_monoid_add(A)
=> ! [S4: set(B),T5: set(C),H: fun(B,C),S: set(B),T6: set(C),G: fun(C,A)] :
( finite_finite(B,S4)
=> ( finite_finite(C,T5)
=> ( bij_betw(B,C,H,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),S),S4),aa(set(C),set(C),aa(set(C),fun(set(C),set(C)),minus_minus(set(C)),T6),T5))
=> ( ! [A4: B] :
( pp(member(B,A4,S4))
=> ( aa(C,A,G,aa(B,C,H,A4)) = zero_zero(A) ) )
=> ( ! [B3: C] :
( pp(member(C,B3,T5))
=> ( aa(C,A,G,B3) = zero_zero(A) ) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aa(fun(C,A),fun(B,A),aTP_Lamp_lu(fun(B,C),fun(fun(C,A),fun(B,A)),H),G)),S) = aa(set(C),A,aa(fun(C,A),fun(set(C),A),groups7311177749621191930dd_sum(C,A),G),T6) ) ) ) ) ) ) ) ).
% sum.reindex_bij_betw_not_neutral
tff(fact_5155_sums__If__finite__set_H,axiom,
! [A: $tType] :
( ( topolo1287966508704411220up_add(A)
& topological_t2_space(A) )
=> ! [G: fun(nat,A),S: A,A3: set(nat),S4: A,F2: fun(nat,A)] :
( sums(A,G,S)
=> ( finite_finite(nat,A3)
=> ( ( S4 = aa(A,A,aa(A,fun(A,A),plus_plus(A),S),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(fun(nat,A),fun(nat,A),aTP_Lamp_lv(fun(nat,A),fun(fun(nat,A),fun(nat,A)),G),F2)),A3)) )
=> sums(A,aa(fun(nat,A),fun(nat,A),aa(set(nat),fun(fun(nat,A),fun(nat,A)),aTP_Lamp_lw(fun(nat,A),fun(set(nat),fun(fun(nat,A),fun(nat,A))),G),A3),F2),S4) ) ) ) ) ).
% sums_If_finite_set'
tff(fact_5156_prod_Oreindex__bij__betw__not__neutral,axiom,
! [B: $tType,A: $tType,C: $tType] :
( comm_monoid_mult(A)
=> ! [S4: set(B),T5: set(C),H: fun(B,C),S: set(B),T6: set(C),G: fun(C,A)] :
( finite_finite(B,S4)
=> ( finite_finite(C,T5)
=> ( bij_betw(B,C,H,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),S),S4),aa(set(C),set(C),aa(set(C),fun(set(C),set(C)),minus_minus(set(C)),T6),T5))
=> ( ! [A4: B] :
( pp(member(B,A4,S4))
=> ( aa(C,A,G,aa(B,C,H,A4)) = one_one(A) ) )
=> ( ! [B3: C] :
( pp(member(C,B3,T5))
=> ( aa(C,A,G,B3) = one_one(A) ) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),aa(fun(C,A),fun(B,A),aTP_Lamp_lx(fun(B,C),fun(fun(C,A),fun(B,A)),H),G)),S) = aa(set(C),A,aa(fun(C,A),fun(set(C),A),groups7121269368397514597t_prod(C,A),G),T6) ) ) ) ) ) ) ) ).
% prod.reindex_bij_betw_not_neutral
tff(fact_5157_sum__mono2,axiom,
! [A: $tType,B: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [B4: set(B),A3: set(B),F2: fun(B,A)] :
( finite_finite(B,B4)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),A3),B4))
=> ( ! [B3: B] :
( pp(member(B,B3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),B4),A3)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(B,A,F2,B3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),A3)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),B4))) ) ) ) ) ).
% sum_mono2
tff(fact_5158_even__prod__iff,axiom,
! [A: $tType,B: $tType] :
( semiring_parity(A)
=> ! [A3: set(B),F2: fun(B,A)] :
( finite_finite(B,A3)
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),F2),A3)))
<=> ? [X4: B] :
( pp(member(B,X4,A3))
& pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(B,A,F2,X4))) ) ) ) ) ).
% even_prod_iff
tff(fact_5159_sum__le__suminf,axiom,
! [A: $tType] :
( ( ordere6911136660526730532id_add(A)
& topolo1944317154257567458pology(A) )
=> ! [F2: fun(nat,A),I5: set(nat)] :
( summable(A,F2)
=> ( finite_finite(nat,I5)
=> ( ! [N3: nat] :
( pp(member(nat,N3,aa(set(nat),set(nat),uminus_uminus(set(nat)),I5)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(nat,A,F2,N3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),F2),I5)),suminf(A,F2))) ) ) ) ) ).
% sum_le_suminf
tff(fact_5160_Frct__code__post_I2_J,axiom,
! [A2: int] : ( frct(aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),A2),zero_zero(int))) = zero_zero(rat) ) ).
% Frct_code_post(2)
tff(fact_5161_Frct__code__post_I1_J,axiom,
! [A2: int] : ( frct(aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),zero_zero(int)),A2)) = zero_zero(rat) ) ).
% Frct_code_post(1)
tff(fact_5162_Frct__code__post_I7_J,axiom,
! [A2: int,B2: int] : ( frct(aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(int,int,uminus_uminus(int),A2)),B2)) = aa(rat,rat,uminus_uminus(rat),frct(aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),A2),B2))) ) ).
% Frct_code_post(7)
tff(fact_5163_Frct__code__post_I8_J,axiom,
! [A2: int,B2: int] : ( frct(aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),A2),aa(int,int,uminus_uminus(int),B2))) = aa(rat,rat,uminus_uminus(rat),frct(aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),A2),B2))) ) ).
% Frct_code_post(8)
tff(fact_5164_Frct__code__post_I3_J,axiom,
frct(aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),one_one(int)),one_one(int))) = one_one(rat) ).
% Frct_code_post(3)
tff(fact_5165_sum__strict__mono2,axiom,
! [B: $tType,A: $tType] :
( ordere8940638589300402666id_add(B)
=> ! [B4: set(A),A3: set(A),B2: A,F2: fun(A,B)] :
( finite_finite(A,B4)
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> ( pp(member(A,B2,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),B4),A3)))
=> ( pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),zero_zero(B)),aa(A,B,F2,B2)))
=> ( ! [X3: A] :
( pp(member(A,X3,B4))
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),zero_zero(B)),aa(A,B,F2,X3))) )
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),aa(set(A),B,aa(fun(A,B),fun(set(A),B),groups7311177749621191930dd_sum(A,B),F2),A3)),aa(set(A),B,aa(fun(A,B),fun(set(A),B),groups7311177749621191930dd_sum(A,B),F2),B4))) ) ) ) ) ) ) ).
% sum_strict_mono2
tff(fact_5166_prod__mono2,axiom,
! [B: $tType,A: $tType] :
( linordered_idom(B)
=> ! [B4: set(A),A3: set(A),F2: fun(A,B)] :
( finite_finite(A,B4)
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> ( ! [B3: A] :
( pp(member(A,B3,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),B4),A3)))
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),one_one(B)),aa(A,B,F2,B3))) )
=> ( ! [A4: A] :
( pp(member(A,A4,A3))
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),zero_zero(B)),aa(A,B,F2,A4))) )
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),aa(set(A),B,aa(fun(A,B),fun(set(A),B),groups7121269368397514597t_prod(A,B),F2),A3)),aa(set(A),B,aa(fun(A,B),fun(set(A),B),groups7121269368397514597t_prod(A,B),F2),B4))) ) ) ) ) ) ).
% prod_mono2
tff(fact_5167_ln__prod,axiom,
! [A: $tType,I5: set(A),F2: fun(A,real)] :
( finite_finite(A,I5)
=> ( ! [I3: A] :
( pp(member(A,I3,I5))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(A,real,F2,I3))) )
=> ( aa(real,real,ln_ln(real),aa(set(A),real,aa(fun(A,real),fun(set(A),real),groups7121269368397514597t_prod(A,real),F2),I5)) = aa(set(A),real,aa(fun(A,real),fun(set(A),real),groups7311177749621191930dd_sum(A,real),aTP_Lamp_ly(fun(A,real),fun(A,real),F2)),I5) ) ) ) ).
% ln_prod
tff(fact_5168_even__set__encode__iff,axiom,
! [A3: set(nat)] :
( finite_finite(nat,A3)
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(set(nat),nat,nat_set_encode,A3)))
<=> ~ pp(member(nat,zero_zero(nat),A3)) ) ) ).
% even_set_encode_iff
tff(fact_5169_polyfun__roots__finite,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra(A)
& idom(A) )
=> ! [C2: fun(nat,A),K: nat,N: nat] :
( ( aa(nat,A,C2,K) != zero_zero(A) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N))
=> finite_finite(A,aa(fun(A,bool),set(A),collect(A),aa(nat,fun(A,bool),aTP_Lamp_lz(fun(nat,A),fun(nat,fun(A,bool)),C2),N))) ) ) ) ).
% polyfun_roots_finite
tff(fact_5170_polyfun__finite__roots,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra(A)
& idom(A) )
=> ! [C2: fun(nat,A),N: nat] :
( finite_finite(A,aa(fun(A,bool),set(A),collect(A),aa(nat,fun(A,bool),aTP_Lamp_lz(fun(nat,A),fun(nat,fun(A,bool)),C2),N)))
<=> ? [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I4),N))
& ( aa(nat,A,C2,I4) != zero_zero(A) ) ) ) ) ).
% polyfun_finite_roots
tff(fact_5171_Frct__code__post_I4_J,axiom,
! [K: num] : ( frct(aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(num,int,numeral_numeral(int),K)),one_one(int))) = aa(num,rat,numeral_numeral(rat),K) ) ).
% Frct_code_post(4)
tff(fact_5172_finite__Collect__le__nat,axiom,
! [K: nat] : finite_finite(nat,aa(fun(nat,bool),set(nat),collect(nat),aa(nat,fun(nat,bool),aTP_Lamp_ma(nat,fun(nat,bool)),K))) ).
% finite_Collect_le_nat
tff(fact_5173_finite__Collect__less__nat,axiom,
! [K: nat] : finite_finite(nat,aa(fun(nat,bool),set(nat),collect(nat),aa(nat,fun(nat,bool),aTP_Lamp_ew(nat,fun(nat,bool)),K))) ).
% finite_Collect_less_nat
tff(fact_5174_finite__Collect__subsets,axiom,
! [A: $tType,A3: set(A)] :
( finite_finite(A,A3)
=> finite_finite(set(A),aa(fun(set(A),bool),set(set(A)),collect(set(A)),aTP_Lamp_mb(set(A),fun(set(A),bool),A3))) ) ).
% finite_Collect_subsets
tff(fact_5175_finite__atLeastAtMost__int,axiom,
! [L: int,U: int] : finite_finite(int,set_or1337092689740270186AtMost(int,L,U)) ).
% finite_atLeastAtMost_int
tff(fact_5176_finite__atLeastLessThan__int,axiom,
! [L: int,U: int] : finite_finite(int,set_or7035219750837199246ssThan(int,L,U)) ).
% finite_atLeastLessThan_int
tff(fact_5177_finite__interval__int1,axiom,
! [A2: int,B2: int] : finite_finite(int,aa(fun(int,bool),set(int),collect(int),aa(int,fun(int,bool),aTP_Lamp_mc(int,fun(int,fun(int,bool)),A2),B2))) ).
% finite_interval_int1
tff(fact_5178_finite__Diff,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( finite_finite(A,A3)
=> finite_finite(A,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)) ) ).
% finite_Diff
tff(fact_5179_finite__Diff2,axiom,
! [A: $tType,B4: set(A),A3: set(A)] :
( finite_finite(A,B4)
=> ( finite_finite(A,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4))
<=> finite_finite(A,A3) ) ) ).
% finite_Diff2
tff(fact_5180_finite__interval__int2,axiom,
! [A2: int,B2: int] : finite_finite(int,aa(fun(int,bool),set(int),collect(int),aa(int,fun(int,bool),aTP_Lamp_md(int,fun(int,fun(int,bool)),A2),B2))) ).
% finite_interval_int2
tff(fact_5181_finite__interval__int3,axiom,
! [A2: int,B2: int] : finite_finite(int,aa(fun(int,bool),set(int),collect(int),aa(int,fun(int,bool),aTP_Lamp_me(int,fun(int,fun(int,bool)),A2),B2))) ).
% finite_interval_int3
tff(fact_5182_finite__nth__roots,axiom,
! [N: nat,C2: complex] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> finite_finite(complex,aa(fun(complex,bool),set(complex),collect(complex),aa(complex,fun(complex,bool),aTP_Lamp_fg(nat,fun(complex,fun(complex,bool)),N),C2))) ) ).
% finite_nth_roots
tff(fact_5183_finite__maxlen,axiom,
! [A: $tType,M7: set(list(A))] :
( finite_finite(list(A),M7)
=> ? [N3: nat] :
! [X: list(A)] :
( pp(member(list(A),X,M7))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(list(A),nat,size_size(list(A)),X)),N3)) ) ) ).
% finite_maxlen
tff(fact_5184_finite__atLeastZeroLessThan__int,axiom,
! [U: int] : finite_finite(int,set_or7035219750837199246ssThan(int,zero_zero(int),U)) ).
% finite_atLeastZeroLessThan_int
tff(fact_5185_finite__divisors__int,axiom,
! [I: int] :
( ( I != zero_zero(int) )
=> finite_finite(int,aa(fun(int,bool),set(int),collect(int),aTP_Lamp_mf(int,fun(int,bool),I))) ) ).
% finite_divisors_int
tff(fact_5186_finite__has__maximal2,axiom,
! [A: $tType] :
( order(A)
=> ! [A3: set(A),A2: A] :
( finite_finite(A,A3)
=> ( pp(member(A,A2,A3))
=> ? [X3: A] :
( pp(member(A,X3,A3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),X3))
& ! [Xa2: A] :
( pp(member(A,Xa2,A3))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),Xa2))
=> ( X3 = Xa2 ) ) ) ) ) ) ) ).
% finite_has_maximal2
tff(fact_5187_finite__has__minimal2,axiom,
! [A: $tType] :
( order(A)
=> ! [A3: set(A),A2: A] :
( finite_finite(A,A3)
=> ( pp(member(A,A2,A3))
=> ? [X3: A] :
( pp(member(A,X3,A3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),A2))
& ! [Xa2: A] :
( pp(member(A,Xa2,A3))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Xa2),X3))
=> ( X3 = Xa2 ) ) ) ) ) ) ) ).
% finite_has_minimal2
tff(fact_5188_rev__finite__subset,axiom,
! [A: $tType,B4: set(A),A3: set(A)] :
( finite_finite(A,B4)
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> finite_finite(A,A3) ) ) ).
% rev_finite_subset
tff(fact_5189_infinite__super,axiom,
! [A: $tType,S: set(A),T6: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),S),T6))
=> ( ~ finite_finite(A,S)
=> ~ finite_finite(A,T6) ) ) ).
% infinite_super
tff(fact_5190_finite__subset,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> ( finite_finite(A,B4)
=> finite_finite(A,A3) ) ) ).
% finite_subset
tff(fact_5191_Diff__infinite__finite,axiom,
! [A: $tType,T6: set(A),S: set(A)] :
( finite_finite(A,T6)
=> ( ~ finite_finite(A,S)
=> ~ finite_finite(A,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),S),T6)) ) ) ).
% Diff_infinite_finite
tff(fact_5192_finite__nat__iff__bounded__le,axiom,
! [S: set(nat)] :
( finite_finite(nat,S)
<=> ? [K2: nat] : pp(aa(set(nat),bool,aa(set(nat),fun(set(nat),bool),ord_less_eq(set(nat)),S),aa(nat,set(nat),set_ord_atMost(nat),K2))) ) ).
% finite_nat_iff_bounded_le
tff(fact_5193_finite__nat__bounded,axiom,
! [S: set(nat)] :
( finite_finite(nat,S)
=> ? [K3: nat] : pp(aa(set(nat),bool,aa(set(nat),fun(set(nat),bool),ord_less_eq(set(nat)),S),aa(nat,set(nat),set_ord_lessThan(nat),K3))) ) ).
% finite_nat_bounded
tff(fact_5194_finite__nat__iff__bounded,axiom,
! [S: set(nat)] :
( finite_finite(nat,S)
<=> ? [K2: nat] : pp(aa(set(nat),bool,aa(set(nat),fun(set(nat),bool),ord_less_eq(set(nat)),S),aa(nat,set(nat),set_ord_lessThan(nat),K2))) ) ).
% finite_nat_iff_bounded
tff(fact_5195_infinite__int__iff__unbounded__le,axiom,
! [S: set(int)] :
( ~ finite_finite(int,S)
<=> ! [M6: int] :
? [N5: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),M6),aa(int,int,abs_abs(int),N5)))
& pp(member(int,N5,S)) ) ) ).
% infinite_int_iff_unbounded_le
tff(fact_5196_unbounded__k__infinite,axiom,
! [K: nat,S: set(nat)] :
( ! [M3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),K),M3))
=> ? [N7: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M3),N7))
& pp(member(nat,N7,S)) ) )
=> ~ finite_finite(nat,S) ) ).
% unbounded_k_infinite
tff(fact_5197_infinite__nat__iff__unbounded,axiom,
! [S: set(nat)] :
( ~ finite_finite(nat,S)
<=> ! [M6: nat] :
? [N5: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M6),N5))
& pp(member(nat,N5,S)) ) ) ).
% infinite_nat_iff_unbounded
tff(fact_5198_infinite__nat__iff__unbounded__le,axiom,
! [S: set(nat)] :
( ~ finite_finite(nat,S)
<=> ! [M6: nat] :
? [N5: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M6),N5))
& pp(member(nat,N5,S)) ) ) ).
% infinite_nat_iff_unbounded_le
tff(fact_5199_bij__betw__nth__root__unity,axiom,
! [C2: complex,N: nat] :
( ( C2 != zero_zero(complex) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> bij_betw(complex,complex,aa(complex,fun(complex,complex),times_times(complex),aa(complex,complex,aa(complex,fun(complex,complex),times_times(complex),real_Vector_of_real(complex,aa(real,real,root(N),real_V7770717601297561774m_norm(complex,C2)))),cis(aa(real,real,aa(real,fun(real,real),divide_divide(real),arg(C2)),aa(nat,real,semiring_1_of_nat(real),N))))),aa(fun(complex,bool),set(complex),collect(complex),aTP_Lamp_fh(nat,fun(complex,bool),N)),aa(fun(complex,bool),set(complex),collect(complex),aa(nat,fun(complex,bool),aTP_Lamp_mg(complex,fun(nat,fun(complex,bool)),C2),N))) ) ) ).
% bij_betw_nth_root_unity
tff(fact_5200_in__finite__psubset,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( pp(member(product_prod(set(A),set(A)),aa(set(A),product_prod(set(A),set(A)),aa(set(A),fun(set(A),product_prod(set(A),set(A))),product_Pair(set(A),set(A)),A3),B4),finite_psubset(A)))
<=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less(set(A)),A3),B4))
& finite_finite(A,B4) ) ) ).
% in_finite_psubset
tff(fact_5201_sum__count__set,axiom,
! [A: $tType,Xs: list(A),X6: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(list(A),set(A),set2(A),Xs)),X6))
=> ( finite_finite(A,X6)
=> ( aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),count_list(A,Xs)),X6) = aa(list(A),nat,size_size(list(A)),Xs) ) ) ) ).
% sum_count_set
tff(fact_5202_real__root__zero,axiom,
! [N: nat] : ( aa(real,real,root(N),zero_zero(real)) = zero_zero(real) ) ).
% real_root_zero
tff(fact_5203_real__root__Suc__0,axiom,
! [X2: real] : ( aa(real,real,root(aa(nat,nat,suc,zero_zero(nat))),X2) = X2 ) ).
% real_root_Suc_0
tff(fact_5204_root__0,axiom,
! [X2: real] : ( aa(real,real,root(zero_zero(nat)),X2) = zero_zero(real) ) ).
% root_0
tff(fact_5205_real__root__eq__iff,axiom,
! [N: nat,X2: real,Y: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( ( aa(real,real,root(N),X2) = aa(real,real,root(N),Y) )
<=> ( X2 = Y ) ) ) ).
% real_root_eq_iff
tff(fact_5206_count__notin,axiom,
! [A: $tType,X2: A,Xs: list(A)] :
( ~ pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ( aa(A,nat,count_list(A,Xs),X2) = zero_zero(nat) ) ) ).
% count_notin
tff(fact_5207_real__root__eq__0__iff,axiom,
! [N: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( ( aa(real,real,root(N),X2) = zero_zero(real) )
<=> ( X2 = zero_zero(real) ) ) ) ).
% real_root_eq_0_iff
tff(fact_5208_real__root__less__iff,axiom,
! [N: nat,X2: real,Y: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,root(N),X2)),aa(real,real,root(N),Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),Y)) ) ) ).
% real_root_less_iff
tff(fact_5209_real__root__le__iff,axiom,
! [N: nat,X2: real,Y: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,root(N),X2)),aa(real,real,root(N),Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),Y)) ) ) ).
% real_root_le_iff
tff(fact_5210_real__root__eq__1__iff,axiom,
! [N: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( ( aa(real,real,root(N),X2) = one_one(real) )
<=> ( X2 = one_one(real) ) ) ) ).
% real_root_eq_1_iff
tff(fact_5211_real__root__one,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(real,real,root(N),one_one(real)) = one_one(real) ) ) ).
% real_root_one
tff(fact_5212_real__root__gt__0__iff,axiom,
! [N: nat,Y: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,root(N),Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),Y)) ) ) ).
% real_root_gt_0_iff
tff(fact_5213_real__root__lt__0__iff,axiom,
! [N: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,root(N),X2)),zero_zero(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),zero_zero(real))) ) ) ).
% real_root_lt_0_iff
tff(fact_5214_real__root__le__0__iff,axiom,
! [N: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,root(N),X2)),zero_zero(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),zero_zero(real))) ) ) ).
% real_root_le_0_iff
tff(fact_5215_real__root__ge__0__iff,axiom,
! [N: nat,Y: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,root(N),Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y)) ) ) ).
% real_root_ge_0_iff
tff(fact_5216_real__root__lt__1__iff,axiom,
! [N: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,root(N),X2)),one_one(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),one_one(real))) ) ) ).
% real_root_lt_1_iff
tff(fact_5217_real__root__gt__1__iff,axiom,
! [N: nat,Y: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),aa(real,real,root(N),Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),Y)) ) ) ).
% real_root_gt_1_iff
tff(fact_5218_real__root__ge__1__iff,axiom,
! [N: nat,Y: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),aa(real,real,root(N),Y)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),Y)) ) ) ).
% real_root_ge_1_iff
tff(fact_5219_real__root__le__1__iff,axiom,
! [N: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,root(N),X2)),one_one(real)))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),one_one(real))) ) ) ).
% real_root_le_1_iff
tff(fact_5220_real__root__pow__pos2,axiom,
! [N: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( aa(nat,real,power_power(real,aa(real,real,root(N),X2)),N) = X2 ) ) ) ).
% real_root_pow_pos2
tff(fact_5221_real__root__inverse,axiom,
! [N: nat,X2: real] : ( aa(real,real,root(N),aa(real,real,inverse_inverse(real),X2)) = aa(real,real,inverse_inverse(real),aa(real,real,root(N),X2)) ) ).
% real_root_inverse
tff(fact_5222_real__root__commute,axiom,
! [M: nat,N: nat,X2: real] : ( aa(real,real,root(M),aa(real,real,root(N),X2)) = aa(real,real,root(N),aa(real,real,root(M),X2)) ) ).
% real_root_commute
tff(fact_5223_real__root__divide,axiom,
! [N: nat,X2: real,Y: real] : ( aa(real,real,root(N),aa(real,real,aa(real,fun(real,real),divide_divide(real),X2),Y)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,root(N),X2)),aa(real,real,root(N),Y)) ) ).
% real_root_divide
tff(fact_5224_real__root__mult__exp,axiom,
! [M: nat,N: nat,X2: real] : ( aa(real,real,root(aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),N)),X2) = aa(real,real,root(M),aa(real,real,root(N),X2)) ) ).
% real_root_mult_exp
tff(fact_5225_real__root__mult,axiom,
! [N: nat,X2: real,Y: real] : ( aa(real,real,root(N),aa(real,real,aa(real,fun(real,real),times_times(real),X2),Y)) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,root(N),X2)),aa(real,real,root(N),Y)) ) ).
% real_root_mult
tff(fact_5226_real__root__minus,axiom,
! [N: nat,X2: real] : ( aa(real,real,root(N),aa(real,real,uminus_uminus(real),X2)) = aa(real,real,uminus_uminus(real),aa(real,real,root(N),X2)) ) ).
% real_root_minus
tff(fact_5227_real__root__pos__pos__le,axiom,
! [X2: real,N: nat] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,root(N),X2))) ) ).
% real_root_pos_pos_le
tff(fact_5228_real__root__less__mono,axiom,
! [N: nat,X2: real,Y: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),Y))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,root(N),X2)),aa(real,real,root(N),Y))) ) ) ).
% real_root_less_mono
tff(fact_5229_real__root__le__mono,axiom,
! [N: nat,X2: real,Y: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),Y))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,root(N),X2)),aa(real,real,root(N),Y))) ) ) ).
% real_root_le_mono
tff(fact_5230_real__root__power,axiom,
! [N: nat,X2: real,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(real,real,root(N),aa(nat,real,power_power(real,X2),K)) = aa(nat,real,power_power(real,aa(real,real,root(N),X2)),K) ) ) ).
% real_root_power
tff(fact_5231_real__root__abs,axiom,
! [N: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(real,real,root(N),aa(real,real,abs_abs(real),X2)) = aa(real,real,abs_abs(real),aa(real,real,root(N),X2)) ) ) ).
% real_root_abs
tff(fact_5232_sgn__root,axiom,
! [N: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(real,real,sgn_sgn(real),aa(real,real,root(N),X2)) = aa(real,real,sgn_sgn(real),X2) ) ) ).
% sgn_root
tff(fact_5233_real__root__gt__zero,axiom,
! [N: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,root(N),X2))) ) ) ).
% real_root_gt_zero
tff(fact_5234_real__root__strict__decreasing,axiom,
! [N: nat,N2: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),N2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,root(N2),X2)),aa(real,real,root(N),X2))) ) ) ) ).
% real_root_strict_decreasing
tff(fact_5235_sqrt__def,axiom,
sqrt = root(aa(num,nat,numeral_numeral(nat),bit0(one2))) ).
% sqrt_def
tff(fact_5236_root__abs__power,axiom,
! [N: nat,Y: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(real,real,abs_abs(real),aa(real,real,root(N),aa(nat,real,power_power(real,Y),N))) = aa(real,real,abs_abs(real),Y) ) ) ).
% root_abs_power
tff(fact_5237_count__le__length,axiom,
! [A: $tType,Xs: list(A),X2: A] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(A,nat,count_list(A,Xs),X2)),aa(list(A),nat,size_size(list(A)),Xs))) ).
% count_le_length
tff(fact_5238_real__root__pos__pos,axiom,
! [N: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,root(N),X2))) ) ) ).
% real_root_pos_pos
tff(fact_5239_real__root__strict__increasing,axiom,
! [N: nat,N2: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),N2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),one_one(real)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,root(N),X2)),aa(real,real,root(N2),X2))) ) ) ) ) ).
% real_root_strict_increasing
tff(fact_5240_real__root__decreasing,axiom,
! [N: nat,N2: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),N2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),X2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,root(N2),X2)),aa(real,real,root(N),X2))) ) ) ) ).
% real_root_decreasing
tff(fact_5241_real__root__pow__pos,axiom,
! [N: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( aa(nat,real,power_power(real,aa(real,real,root(N),X2)),N) = X2 ) ) ) ).
% real_root_pow_pos
tff(fact_5242_real__root__power__cancel,axiom,
! [N: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( aa(real,real,root(N),aa(nat,real,power_power(real,X2),N)) = X2 ) ) ) ).
% real_root_power_cancel
tff(fact_5243_real__root__pos__unique,axiom,
! [N: nat,Y: real,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y))
=> ( ( aa(nat,real,power_power(real,Y),N) = X2 )
=> ( aa(real,real,root(N),X2) = Y ) ) ) ) ).
% real_root_pos_unique
tff(fact_5244_odd__real__root__power__cancel,axiom,
! [N: nat,X2: real] :
( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( aa(real,real,root(N),aa(nat,real,power_power(real,X2),N)) = X2 ) ) ).
% odd_real_root_power_cancel
tff(fact_5245_odd__real__root__unique,axiom,
! [N: nat,Y: real,X2: real] :
( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( ( aa(nat,real,power_power(real,Y),N) = X2 )
=> ( aa(real,real,root(N),X2) = Y ) ) ) ).
% odd_real_root_unique
tff(fact_5246_odd__real__root__pow,axiom,
! [N: nat,X2: real] :
( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( aa(nat,real,power_power(real,aa(real,real,root(N),X2)),N) = X2 ) ) ).
% odd_real_root_pow
tff(fact_5247_real__root__increasing,axiom,
! [N: nat,N2: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),N2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),one_one(real)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,root(N),X2)),aa(real,real,root(N2),X2))) ) ) ) ) ).
% real_root_increasing
tff(fact_5248_sgn__power__root,axiom,
! [N: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,sgn_sgn(real),aa(real,real,root(N),X2))),aa(nat,real,power_power(real,aa(real,real,abs_abs(real),aa(real,real,root(N),X2))),N)) = X2 ) ) ).
% sgn_power_root
tff(fact_5249_root__sgn__power,axiom,
! [N: nat,Y: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(real,real,root(N),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,sgn_sgn(real),Y)),aa(nat,real,power_power(real,aa(real,real,abs_abs(real),Y)),N))) = Y ) ) ).
% root_sgn_power
tff(fact_5250_ln__root,axiom,
! [N: nat,B2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),B2))
=> ( aa(real,real,ln_ln(real),aa(real,real,root(N),B2)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,ln_ln(real),B2)),aa(nat,real,semiring_1_of_nat(real),N)) ) ) ) ).
% ln_root
tff(fact_5251_log__root,axiom,
! [N: nat,A2: real,B2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),A2))
=> ( aa(real,real,log(B2),aa(real,real,root(N),A2)) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,log(B2),A2)),aa(nat,real,semiring_1_of_nat(real),N)) ) ) ) ).
% log_root
tff(fact_5252_log__base__root,axiom,
! [N: nat,B2: real,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),B2))
=> ( aa(real,real,log(aa(real,real,root(N),B2)),X2) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N)),aa(real,real,log(B2),X2)) ) ) ) ).
% log_base_root
tff(fact_5253_split__root,axiom,
! [P: fun(real,bool),N: nat,X2: real] :
( pp(aa(real,bool,P,aa(real,real,root(N),X2)))
<=> ( ( ( N = zero_zero(nat) )
=> pp(aa(real,bool,P,zero_zero(real))) )
& ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ! [Y2: real] :
( ( aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,sgn_sgn(real),Y2)),aa(nat,real,power_power(real,aa(real,real,abs_abs(real),Y2)),N)) = X2 )
=> pp(aa(real,bool,P,Y2)) ) ) ) ) ).
% split_root
tff(fact_5254_root__powr__inverse,axiom,
! [N: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( aa(real,real,root(N),X2) = powr(real,X2,aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(nat,real,semiring_1_of_nat(real),N))) ) ) ) ).
% root_powr_inverse
tff(fact_5255_set__encode__insert,axiom,
! [A3: set(nat),N: nat] :
( finite_finite(nat,A3)
=> ( ~ pp(member(nat,N,A3))
=> ( aa(set(nat),nat,nat_set_encode,aa(set(nat),set(nat),insert(nat,N),A3)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N)),aa(set(nat),nat,nat_set_encode,A3)) ) ) ) ).
% set_encode_insert
tff(fact_5256_sum__list__map__eq__sum__count2,axiom,
! [A: $tType,Xs: list(A),X6: set(A),F2: fun(A,nat)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(list(A),set(A),set2(A),Xs)),X6))
=> ( finite_finite(A,X6)
=> ( groups8242544230860333062m_list(nat,aa(list(A),list(nat),map(A,nat,F2),Xs)) = aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),aa(fun(A,nat),fun(A,nat),aTP_Lamp_mh(list(A),fun(fun(A,nat),fun(A,nat)),Xs),F2)),X6) ) ) ) ).
% sum_list_map_eq_sum_count2
tff(fact_5257_even__sum__iff,axiom,
! [A: $tType,B: $tType] :
( semiring_parity(A)
=> ! [A3: set(B),F2: fun(B,A)] :
( finite_finite(B,A3)
=> ( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),A3)))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(set(B),nat,finite_card(B),aa(fun(B,bool),set(B),collect(B),aa(fun(B,A),fun(B,bool),aTP_Lamp_mi(set(B),fun(fun(B,A),fun(B,bool)),A3),F2))))) ) ) ) ).
% even_sum_iff
tff(fact_5258_card__lessThan,axiom,
! [U: nat] : ( aa(set(nat),nat,finite_card(nat),aa(nat,set(nat),set_ord_lessThan(nat),U)) = U ) ).
% card_lessThan
tff(fact_5259_card__Collect__less__nat,axiom,
! [N: nat] : ( aa(set(nat),nat,finite_card(nat),aa(fun(nat,bool),set(nat),collect(nat),aa(nat,fun(nat,bool),aTP_Lamp_ew(nat,fun(nat,bool)),N))) = N ) ).
% card_Collect_less_nat
tff(fact_5260_insert__subset,axiom,
! [A: $tType,X2: A,A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(A),set(A),insert(A,X2),A3)),B4))
<=> ( pp(member(A,X2,B4))
& pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4)) ) ) ).
% insert_subset
tff(fact_5261_Diff__insert0,axiom,
! [A: $tType,X2: A,A3: set(A),B4: set(A)] :
( ~ pp(member(A,X2,A3))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,X2),B4)) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4) ) ) ).
% Diff_insert0
tff(fact_5262_insert__Diff1,axiom,
! [A: $tType,X2: A,B4: set(A),A3: set(A)] :
( pp(member(A,X2,B4))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(set(A),set(A),insert(A,X2),A3)),B4) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4) ) ) ).
% insert_Diff1
tff(fact_5263_card__atMost,axiom,
! [U: nat] : ( aa(set(nat),nat,finite_card(nat),aa(nat,set(nat),set_ord_atMost(nat),U)) = aa(nat,nat,suc,U) ) ).
% card_atMost
tff(fact_5264_card__atLeastLessThan,axiom,
! [L: nat,U: nat] : ( aa(set(nat),nat,finite_card(nat),set_or7035219750837199246ssThan(nat,L,U)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),U),L) ) ).
% card_atLeastLessThan
tff(fact_5265_card__Collect__le__nat,axiom,
! [N: nat] : ( aa(set(nat),nat,finite_card(nat),aa(fun(nat,bool),set(nat),collect(nat),aa(nat,fun(nat,bool),aTP_Lamp_ma(nat,fun(nat,bool)),N))) = aa(nat,nat,suc,N) ) ).
% card_Collect_le_nat
tff(fact_5266_card_Oinfinite,axiom,
! [A: $tType,A3: set(A)] :
( ~ finite_finite(A,A3)
=> ( aa(set(A),nat,finite_card(A),A3) = zero_zero(nat) ) ) ).
% card.infinite
tff(fact_5267_finite__Diff__insert,axiom,
! [A: $tType,A3: set(A),A2: A,B4: set(A)] :
( finite_finite(A,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,A2),B4)))
<=> finite_finite(A,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)) ) ).
% finite_Diff_insert
tff(fact_5268_card__atLeastAtMost,axiom,
! [L: nat,U: nat] : ( aa(set(nat),nat,finite_card(nat),set_or1337092689740270186AtMost(nat,L,U)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,suc,U)),L) ) ).
% card_atLeastAtMost
tff(fact_5269_sum__list__eq__0__iff,axiom,
! [A: $tType] :
( canoni5634975068530333245id_add(A)
=> ! [Ns: list(A)] :
( ( groups8242544230860333062m_list(A,Ns) = zero_zero(A) )
<=> ! [X4: A] :
( pp(member(A,X4,aa(list(A),set(A),set2(A),Ns)))
=> ( X4 = zero_zero(A) ) ) ) ) ).
% sum_list_eq_0_iff
tff(fact_5270_prod__constant,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [Y: A,A3: set(B)] : ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),aTP_Lamp_mj(A,fun(B,A),Y)),A3) = aa(nat,A,power_power(A,Y),aa(set(B),nat,finite_card(B),A3)) ) ) ).
% prod_constant
tff(fact_5271_card__atLeastLessThan__int,axiom,
! [L: int,U: int] : ( aa(set(int),nat,finite_card(int),set_or7035219750837199246ssThan(int,L,U)) = aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),minus_minus(int),U),L)) ) ).
% card_atLeastLessThan_int
tff(fact_5272_sum__list__0,axiom,
! [B: $tType,A: $tType] :
( monoid_add(A)
=> ! [Xs: list(B)] : ( groups8242544230860333062m_list(A,aa(list(B),list(A),map(B,A,aTP_Lamp_mk(B,A)),Xs)) = zero_zero(A) ) ) ).
% sum_list_0
tff(fact_5273_sum_Oinsert,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [A3: set(B),X2: B,G: fun(B,A)] :
( finite_finite(B,A3)
=> ( ~ pp(member(B,X2,A3))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),aa(set(B),set(B),insert(B,X2),A3)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(B,A,G,X2)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),A3)) ) ) ) ) ).
% sum.insert
tff(fact_5274_prod_Oinsert,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [A3: set(B),X2: B,G: fun(B,A)] :
( finite_finite(B,A3)
=> ( ~ pp(member(B,X2,A3))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),aa(set(B),set(B),insert(B,X2),A3)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(B,A,G,X2)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),A3)) ) ) ) ) ).
% prod.insert
tff(fact_5275_card__insert__disjoint,axiom,
! [A: $tType,A3: set(A),X2: A] :
( finite_finite(A,A3)
=> ( ~ pp(member(A,X2,A3))
=> ( aa(set(A),nat,finite_card(A),aa(set(A),set(A),insert(A,X2),A3)) = aa(nat,nat,suc,aa(set(A),nat,finite_card(A),A3)) ) ) ) ).
% card_insert_disjoint
tff(fact_5276_sum__constant,axiom,
! [B: $tType,A: $tType] :
( semiring_1(A)
=> ! [Y: A,A3: set(B)] : ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aTP_Lamp_ml(A,fun(B,A),Y)),A3) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),aa(set(B),nat,finite_card(B),A3))),Y) ) ) ).
% sum_constant
tff(fact_5277_card__Diff__insert,axiom,
! [A: $tType,A2: A,A3: set(A),B4: set(A)] :
( pp(member(A,A2,A3))
=> ( ~ pp(member(A,A2,B4))
=> ( aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,A2),B4))) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4))),one_one(nat)) ) ) ) ).
% card_Diff_insert
tff(fact_5278_card__atLeastAtMost__int,axiom,
! [L: int,U: int] : ( aa(set(int),nat,finite_card(int),set_or1337092689740270186AtMost(int,L,U)) = aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),U),L)),one_one(int))) ) ).
% card_atLeastAtMost_int
tff(fact_5279_sum__list__upt,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( groups8242544230860333062m_list(nat,upt(M,N)) = aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),aTP_Lamp_gy(nat,nat)),set_or7035219750837199246ssThan(nat,M,N)) ) ) ).
% sum_list_upt
tff(fact_5280_card__insert__le,axiom,
! [A: $tType,A3: set(A),X2: A] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(A),nat,finite_card(A),A3)),aa(set(A),nat,finite_card(A),aa(set(A),set(A),insert(A,X2),A3)))) ).
% card_insert_le
tff(fact_5281_insert__Diff__if,axiom,
! [A: $tType,X2: A,B4: set(A),A3: set(A)] :
( ( pp(member(A,X2,B4))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(set(A),set(A),insert(A,X2),A3)),B4) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4) ) )
& ( ~ pp(member(A,X2,B4))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(set(A),set(A),insert(A,X2),A3)),B4) = aa(set(A),set(A),insert(A,X2),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)) ) ) ) ).
% insert_Diff_if
tff(fact_5282_subset__insertI2,axiom,
! [A: $tType,A3: set(A),B4: set(A),B2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),aa(set(A),set(A),insert(A,B2),B4))) ) ).
% subset_insertI2
tff(fact_5283_subset__insertI,axiom,
! [A: $tType,B4: set(A),A2: A] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),aa(set(A),set(A),insert(A,A2),B4))) ).
% subset_insertI
tff(fact_5284_subset__insert,axiom,
! [A: $tType,X2: A,A3: set(A),B4: set(A)] :
( ~ pp(member(A,X2,A3))
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),aa(set(A),set(A),insert(A,X2),B4)))
<=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4)) ) ) ).
% subset_insert
tff(fact_5285_insert__mono,axiom,
! [A: $tType,C6: set(A),D5: set(A),A2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),C6),D5))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(A),set(A),insert(A,A2),C6)),aa(set(A),set(A),insert(A,A2),D5))) ) ).
% insert_mono
tff(fact_5286_card__Suc__eq__finite,axiom,
! [A: $tType,A3: set(A),K: nat] :
( ( aa(set(A),nat,finite_card(A),A3) = aa(nat,nat,suc,K) )
<=> ? [B5: A,B9: set(A)] :
( ( A3 = aa(set(A),set(A),insert(A,B5),B9) )
& ~ pp(member(A,B5,B9))
& ( aa(set(A),nat,finite_card(A),B9) = K )
& finite_finite(A,B9) ) ) ).
% card_Suc_eq_finite
tff(fact_5287_card__insert__if,axiom,
! [A: $tType,A3: set(A),X2: A] :
( finite_finite(A,A3)
=> ( ( pp(member(A,X2,A3))
=> ( aa(set(A),nat,finite_card(A),aa(set(A),set(A),insert(A,X2),A3)) = aa(set(A),nat,finite_card(A),A3) ) )
& ( ~ pp(member(A,X2,A3))
=> ( aa(set(A),nat,finite_card(A),aa(set(A),set(A),insert(A,X2),A3)) = aa(nat,nat,suc,aa(set(A),nat,finite_card(A),A3)) ) ) ) ) ).
% card_insert_if
tff(fact_5288_n__subsets,axiom,
! [A: $tType,A3: set(A),K: nat] :
( finite_finite(A,A3)
=> ( aa(set(set(A)),nat,finite_card(set(A)),aa(fun(set(A),bool),set(set(A)),collect(set(A)),aa(nat,fun(set(A),bool),aTP_Lamp_mm(set(A),fun(nat,fun(set(A),bool)),A3),K))) = aa(nat,nat,binomial(aa(set(A),nat,finite_card(A),A3)),K) ) ) ).
% n_subsets
tff(fact_5289_card__le__Suc__iff,axiom,
! [A: $tType,N: nat,A3: set(A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,suc,N)),aa(set(A),nat,finite_card(A),A3)))
<=> ? [A5: A,B9: set(A)] :
( ( A3 = aa(set(A),set(A),insert(A,A5),B9) )
& ~ pp(member(A,A5,B9))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),aa(set(A),nat,finite_card(A),B9)))
& finite_finite(A,B9) ) ) ).
% card_le_Suc_iff
tff(fact_5290_infinite__arbitrarily__large,axiom,
! [A: $tType,A3: set(A),N: nat] :
( ~ finite_finite(A,A3)
=> ? [B8: set(A)] :
( finite_finite(A,B8)
& ( aa(set(A),nat,finite_card(A),B8) = N )
& pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B8),A3)) ) ) ).
% infinite_arbitrarily_large
tff(fact_5291_card__subset__eq,axiom,
! [A: $tType,B4: set(A),A3: set(A)] :
( finite_finite(A,B4)
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> ( ( aa(set(A),nat,finite_card(A),A3) = aa(set(A),nat,finite_card(A),B4) )
=> ( A3 = B4 ) ) ) ) ).
% card_subset_eq
tff(fact_5292_card__le__if__inj__on__rel,axiom,
! [B: $tType,A: $tType,B4: set(A),A3: set(B),R: fun(B,fun(A,bool))] :
( finite_finite(A,B4)
=> ( ! [A4: B] :
( pp(member(B,A4,A3))
=> ? [B10: A] :
( pp(member(A,B10,B4))
& pp(aa(A,bool,aa(B,fun(A,bool),R,A4),B10)) ) )
=> ( ! [A12: B,A23: B,B3: A] :
( pp(member(B,A12,A3))
=> ( pp(member(B,A23,A3))
=> ( pp(member(A,B3,B4))
=> ( pp(aa(A,bool,aa(B,fun(A,bool),R,A12),B3))
=> ( pp(aa(A,bool,aa(B,fun(A,bool),R,A23),B3))
=> ( A12 = A23 ) ) ) ) ) )
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(B),nat,finite_card(B),A3)),aa(set(A),nat,finite_card(A),B4))) ) ) ) ).
% card_le_if_inj_on_rel
tff(fact_5293_finite__same__card__bij,axiom,
! [A: $tType,B: $tType,A3: set(A),B4: set(B)] :
( finite_finite(A,A3)
=> ( finite_finite(B,B4)
=> ( ( aa(set(A),nat,finite_card(A),A3) = aa(set(B),nat,finite_card(B),B4) )
=> ? [H3: fun(A,B)] : bij_betw(A,B,H3,A3,B4) ) ) ) ).
% finite_same_card_bij
tff(fact_5294_bij__betw__iff__card,axiom,
! [A: $tType,B: $tType,A3: set(A),B4: set(B)] :
( finite_finite(A,A3)
=> ( finite_finite(B,B4)
=> ( ? [F5: fun(A,B)] : bij_betw(A,B,F5,A3,B4)
<=> ( aa(set(A),nat,finite_card(A),A3) = aa(set(B),nat,finite_card(B),B4) ) ) ) ) ).
% bij_betw_iff_card
tff(fact_5295_subset__Diff__insert,axiom,
! [A: $tType,A3: set(A),B4: set(A),X2: A,C6: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),B4),aa(set(A),set(A),insert(A,X2),C6))))
<=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),B4),C6)))
& ~ pp(member(A,X2,A3)) ) ) ).
% subset_Diff_insert
tff(fact_5296_member__le__sum__list,axiom,
! [A: $tType] :
( canoni5634975068530333245id_add(A)
=> ! [X2: A,Xs: list(A)] :
( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),groups8242544230860333062m_list(A,Xs))) ) ) ).
% member_le_sum_list
tff(fact_5297_lessThan__Suc,axiom,
! [K: nat] : ( aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,suc,K)) = aa(set(nat),set(nat),insert(nat,K),aa(nat,set(nat),set_ord_lessThan(nat),K)) ) ).
% lessThan_Suc
tff(fact_5298_atMost__Suc,axiom,
! [K: nat] : ( aa(nat,set(nat),set_ord_atMost(nat),aa(nat,nat,suc,K)) = aa(set(nat),set(nat),insert(nat,aa(nat,nat,suc,K)),aa(nat,set(nat),set_ord_atMost(nat),K)) ) ).
% atMost_Suc
tff(fact_5299_card__insert__le__m1,axiom,
! [A: $tType,N: nat,Y: set(A),X2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(A),nat,finite_card(A),Y)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat))))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(A),nat,finite_card(A),aa(set(A),set(A),insert(A,X2),Y))),N)) ) ) ).
% card_insert_le_m1
tff(fact_5300_card__lists__length__eq,axiom,
! [A: $tType,A3: set(A),N: nat] :
( finite_finite(A,A3)
=> ( aa(set(list(A)),nat,finite_card(list(A)),aa(fun(list(A),bool),set(list(A)),collect(list(A)),aa(nat,fun(list(A),bool),aTP_Lamp_le(set(A),fun(nat,fun(list(A),bool)),A3),N))) = aa(nat,nat,power_power(nat,aa(set(A),nat,finite_card(A),A3)),N) ) ) ).
% card_lists_length_eq
tff(fact_5301_sum__list__const__mult,axiom,
! [A: $tType,B: $tType] :
( semiring_0(A)
=> ! [C2: A,F2: fun(B,A),Xs: list(B)] : ( groups8242544230860333062m_list(A,aa(list(B),list(A),map(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_fi(A,fun(fun(B,A),fun(B,A)),C2),F2)),Xs)) = aa(A,A,aa(A,fun(A,A),times_times(A),C2),groups8242544230860333062m_list(A,aa(list(B),list(A),map(B,A,F2),Xs))) ) ) ).
% sum_list_const_mult
tff(fact_5302_sum__list__mult__const,axiom,
! [B: $tType,A: $tType] :
( semiring_0(A)
=> ! [F2: fun(B,A),C2: A,Xs: list(B)] : ( groups8242544230860333062m_list(A,aa(list(B),list(A),map(B,A,aa(A,fun(B,A),aTP_Lamp_fj(fun(B,A),fun(A,fun(B,A)),F2),C2)),Xs)) = aa(A,A,aa(A,fun(A,A),times_times(A),groups8242544230860333062m_list(A,aa(list(B),list(A),map(B,A,F2),Xs))),C2) ) ) ).
% sum_list_mult_const
tff(fact_5303_card__eq__sum,axiom,
! [A: $tType,A3: set(A)] : ( aa(set(A),nat,finite_card(A),A3) = aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),aTP_Lamp_mn(A,nat)),A3) ) ).
% card_eq_sum
tff(fact_5304_sum__list__addf,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [F2: fun(B,A),G: fun(B,A),Xs: list(B)] : ( groups8242544230860333062m_list(A,aa(list(B),list(A),map(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_fm(fun(B,A),fun(fun(B,A),fun(B,A)),F2),G)),Xs)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),groups8242544230860333062m_list(A,aa(list(B),list(A),map(B,A,F2),Xs))),groups8242544230860333062m_list(A,aa(list(B),list(A),map(B,A,G),Xs))) ) ) ).
% sum_list_addf
tff(fact_5305_sum__list__subtractf,axiom,
! [A: $tType,B: $tType] :
( ab_group_add(A)
=> ! [F2: fun(B,A),G: fun(B,A),Xs: list(B)] : ( groups8242544230860333062m_list(A,aa(list(B),list(A),map(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_fn(fun(B,A),fun(fun(B,A),fun(B,A)),F2),G)),Xs)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),groups8242544230860333062m_list(A,aa(list(B),list(A),map(B,A,F2),Xs))),groups8242544230860333062m_list(A,aa(list(B),list(A),map(B,A,G),Xs))) ) ) ).
% sum_list_subtractf
tff(fact_5306_card__length__sum__list__rec,axiom,
! [M: nat,N2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),one_one(nat)),M))
=> ( aa(set(list(nat)),nat,finite_card(list(nat)),aa(fun(list(nat),bool),set(list(nat)),collect(list(nat)),aa(nat,fun(list(nat),bool),aTP_Lamp_mo(nat,fun(nat,fun(list(nat),bool)),M),N2))) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(set(list(nat)),nat,finite_card(list(nat)),aa(fun(list(nat),bool),set(list(nat)),collect(list(nat)),aa(nat,fun(list(nat),bool),aTP_Lamp_mp(nat,fun(nat,fun(list(nat),bool)),M),N2)))),aa(set(list(nat)),nat,finite_card(list(nat)),aa(fun(list(nat),bool),set(list(nat)),collect(list(nat)),aa(nat,fun(list(nat),bool),aTP_Lamp_mq(nat,fun(nat,fun(list(nat),bool)),M),N2)))) ) ) ).
% card_length_sum_list_rec
tff(fact_5307_card__length__sum__list,axiom,
! [M: nat,N2: nat] : ( aa(set(list(nat)),nat,finite_card(list(nat)),aa(fun(list(nat),bool),set(list(nat)),collect(list(nat)),aa(nat,fun(list(nat),bool),aTP_Lamp_mo(nat,fun(nat,fun(list(nat),bool)),M),N2))) = aa(nat,nat,binomial(aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N2),M)),one_one(nat))),N2) ) ).
% card_length_sum_list
tff(fact_5308_card__2__iff_H,axiom,
! [A: $tType,S: set(A)] :
( ( aa(set(A),nat,finite_card(A),S) = aa(num,nat,numeral_numeral(nat),bit0(one2)) )
<=> ? [X4: A] :
( pp(member(A,X4,S))
& ? [Xa3: A] :
( pp(member(A,Xa3,S))
& ( X4 != Xa3 )
& ! [Xb4: A] :
( pp(member(A,Xb4,S))
=> ( ( Xb4 = X4 )
| ( Xb4 = Xa3 ) ) ) ) ) ) ).
% card_2_iff'
tff(fact_5309_card__ge__0__finite,axiom,
! [A: $tType,A3: set(A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(set(A),nat,finite_card(A),A3)))
=> finite_finite(A,A3) ) ).
% card_ge_0_finite
tff(fact_5310_obtain__subset__with__card__n,axiom,
! [A: $tType,N: nat,S: set(A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),aa(set(A),nat,finite_card(A),S)))
=> ~ ! [T7: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),T7),S))
=> ( ( aa(set(A),nat,finite_card(A),T7) = N )
=> ~ finite_finite(A,T7) ) ) ) ).
% obtain_subset_with_card_n
tff(fact_5311_card__mono,axiom,
! [A: $tType,B4: set(A),A3: set(A)] :
( finite_finite(A,B4)
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(A),nat,finite_card(A),A3)),aa(set(A),nat,finite_card(A),B4))) ) ) ).
% card_mono
tff(fact_5312_card__seteq,axiom,
! [A: $tType,B4: set(A),A3: set(A)] :
( finite_finite(A,B4)
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(A),nat,finite_card(A),B4)),aa(set(A),nat,finite_card(A),A3)))
=> ( A3 = B4 ) ) ) ) ).
% card_seteq
tff(fact_5313_finite__if__finite__subsets__card__bdd,axiom,
! [A: $tType,F4: set(A),C6: nat] :
( ! [G4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),G4),F4))
=> ( finite_finite(A,G4)
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(A),nat,finite_card(A),G4)),C6)) ) )
=> ( finite_finite(A,F4)
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(A),nat,finite_card(A),F4)),C6)) ) ) ).
% finite_if_finite_subsets_card_bdd
tff(fact_5314_card__less__sym__Diff,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( finite_finite(A,A3)
=> ( finite_finite(A,B4)
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(set(A),nat,finite_card(A),A3)),aa(set(A),nat,finite_card(A),B4)))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4))),aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),B4),A3)))) ) ) ) ).
% card_less_sym_Diff
tff(fact_5315_card__le__sym__Diff,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( finite_finite(A,A3)
=> ( finite_finite(A,B4)
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(A),nat,finite_card(A),A3)),aa(set(A),nat,finite_card(A),B4)))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4))),aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),B4),A3)))) ) ) ) ).
% card_le_sym_Diff
tff(fact_5316_card__length,axiom,
! [A: $tType,Xs: list(A)] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(A),nat,finite_card(A),aa(list(A),set(A),set2(A),Xs))),aa(list(A),nat,size_size(list(A)),Xs))) ).
% card_length
tff(fact_5317_ex__bij__betw__finite__nat,axiom,
! [A: $tType,M7: set(A)] :
( finite_finite(A,M7)
=> ? [H3: fun(A,nat)] : bij_betw(A,nat,H3,M7,set_or7035219750837199246ssThan(nat,zero_zero(nat),aa(set(A),nat,finite_card(A),M7))) ) ).
% ex_bij_betw_finite_nat
tff(fact_5318_psubset__card__mono,axiom,
! [A: $tType,B4: set(A),A3: set(A)] :
( finite_finite(A,B4)
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less(set(A)),A3),B4))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(set(A),nat,finite_card(A),A3)),aa(set(A),nat,finite_card(A),B4))) ) ) ).
% psubset_card_mono
tff(fact_5319_sum_Oinsert__if,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [A3: set(B),X2: B,G: fun(B,A)] :
( finite_finite(B,A3)
=> ( ( pp(member(B,X2,A3))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),aa(set(B),set(B),insert(B,X2),A3)) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),A3) ) )
& ( ~ pp(member(B,X2,A3))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),aa(set(B),set(B),insert(B,X2),A3)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(B,A,G,X2)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),A3)) ) ) ) ) ) ).
% sum.insert_if
tff(fact_5320_prod_Oinsert__if,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [A3: set(B),X2: B,G: fun(B,A)] :
( finite_finite(B,A3)
=> ( ( pp(member(B,X2,A3))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),aa(set(B),set(B),insert(B,X2),A3)) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),A3) ) )
& ( ~ pp(member(B,X2,A3))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),aa(set(B),set(B),insert(B,X2),A3)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(B,A,G,X2)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),A3)) ) ) ) ) ) ).
% prod.insert_if
tff(fact_5321_Groups__List_Osum__list__nonneg,axiom,
! [A: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [Xs: list(A)] :
( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),Xs)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X3)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),groups8242544230860333062m_list(A,Xs))) ) ) ).
% Groups_List.sum_list_nonneg
tff(fact_5322_sum__list__nonneg__eq__0__iff,axiom,
! [A: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [Xs: list(A)] :
( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),Xs)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),X3)) )
=> ( ( groups8242544230860333062m_list(A,Xs) = zero_zero(A) )
<=> ! [X4: A] :
( pp(member(A,X4,aa(list(A),set(A),set2(A),Xs)))
=> ( X4 = zero_zero(A) ) ) ) ) ) ).
% sum_list_nonneg_eq_0_iff
tff(fact_5323_sum__list__nonpos,axiom,
! [A: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [Xs: list(A)] :
( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),Xs)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),zero_zero(A))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),groups8242544230860333062m_list(A,Xs)),zero_zero(A))) ) ) ).
% sum_list_nonpos
tff(fact_5324_atLeast0__atMost__Suc,axiom,
! [N: nat] : ( set_or1337092689740270186AtMost(nat,zero_zero(nat),aa(nat,nat,suc,N)) = aa(set(nat),set(nat),insert(nat,aa(nat,nat,suc,N)),set_or1337092689740270186AtMost(nat,zero_zero(nat),N)) ) ).
% atLeast0_atMost_Suc
tff(fact_5325_atLeast0__lessThan__Suc,axiom,
! [N: nat] : ( set_or7035219750837199246ssThan(nat,zero_zero(nat),aa(nat,nat,suc,N)) = aa(set(nat),set(nat),insert(nat,N),set_or7035219750837199246ssThan(nat,zero_zero(nat),N)) ) ).
% atLeast0_lessThan_Suc
tff(fact_5326_atLeastAtMost__insertL,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( aa(set(nat),set(nat),insert(nat,M),set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,M),N)) = set_or1337092689740270186AtMost(nat,M,N) ) ) ).
% atLeastAtMost_insertL
tff(fact_5327_atLeastAtMostSuc__conv,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),aa(nat,nat,suc,N)))
=> ( set_or1337092689740270186AtMost(nat,M,aa(nat,nat,suc,N)) = aa(set(nat),set(nat),insert(nat,aa(nat,nat,suc,N)),set_or1337092689740270186AtMost(nat,M,N)) ) ) ).
% atLeastAtMostSuc_conv
tff(fact_5328_Icc__eq__insert__lb__nat,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( set_or1337092689740270186AtMost(nat,M,N) = aa(set(nat),set(nat),insert(nat,M),set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,M),N)) ) ) ).
% Icc_eq_insert_lb_nat
tff(fact_5329_sum__list__abs,axiom,
! [A: $tType] :
( ordere166539214618696060dd_abs(A)
=> ! [Xs: list(A)] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),groups8242544230860333062m_list(A,Xs))),groups8242544230860333062m_list(A,aa(list(A),list(A),map(A,A,abs_abs(A)),Xs)))) ) ).
% sum_list_abs
tff(fact_5330_sum__list_Oeq__foldr,axiom,
! [A: $tType] :
( monoid_add(A)
=> ! [Xs: list(A)] : ( groups8242544230860333062m_list(A,Xs) = aa(A,A,foldr(A,A,plus_plus(A),Xs),zero_zero(A)) ) ) ).
% sum_list.eq_foldr
tff(fact_5331_sum__list__replicate,axiom,
! [A: $tType] :
( semiring_1(A)
=> ! [N: nat,C2: A] : ( groups8242544230860333062m_list(A,replicate(A,N,C2)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),N)),C2) ) ) ).
% sum_list_replicate
tff(fact_5332_lessThan__nat__numeral,axiom,
! [K: num] : ( aa(nat,set(nat),set_ord_lessThan(nat),aa(num,nat,numeral_numeral(nat),K)) = aa(set(nat),set(nat),insert(nat,pred_numeral(K)),aa(nat,set(nat),set_ord_lessThan(nat),pred_numeral(K))) ) ).
% lessThan_nat_numeral
tff(fact_5333_card__less__Suc2,axiom,
! [M7: set(nat),I: nat] :
( ~ pp(member(nat,zero_zero(nat),M7))
=> ( aa(set(nat),nat,finite_card(nat),aa(fun(nat,bool),set(nat),collect(nat),aa(nat,fun(nat,bool),aTP_Lamp_mr(set(nat),fun(nat,fun(nat,bool)),M7),I))) = aa(set(nat),nat,finite_card(nat),aa(fun(nat,bool),set(nat),collect(nat),aa(nat,fun(nat,bool),aTP_Lamp_ms(set(nat),fun(nat,fun(nat,bool)),M7),I))) ) ) ).
% card_less_Suc2
tff(fact_5334_card__less__Suc,axiom,
! [M7: set(nat),I: nat] :
( pp(member(nat,zero_zero(nat),M7))
=> ( aa(nat,nat,suc,aa(set(nat),nat,finite_card(nat),aa(fun(nat,bool),set(nat),collect(nat),aa(nat,fun(nat,bool),aTP_Lamp_mr(set(nat),fun(nat,fun(nat,bool)),M7),I)))) = aa(set(nat),nat,finite_card(nat),aa(fun(nat,bool),set(nat),collect(nat),aa(nat,fun(nat,bool),aTP_Lamp_ms(set(nat),fun(nat,fun(nat,bool)),M7),I))) ) ) ).
% card_less_Suc
tff(fact_5335_card__less,axiom,
! [M7: set(nat),I: nat] :
( pp(member(nat,zero_zero(nat),M7))
=> ( aa(set(nat),nat,finite_card(nat),aa(fun(nat,bool),set(nat),collect(nat),aa(nat,fun(nat,bool),aTP_Lamp_ms(set(nat),fun(nat,fun(nat,bool)),M7),I))) != zero_zero(nat) ) ) ).
% card_less
tff(fact_5336_atMost__nat__numeral,axiom,
! [K: num] : ( aa(nat,set(nat),set_ord_atMost(nat),aa(num,nat,numeral_numeral(nat),K)) = aa(set(nat),set(nat),insert(nat,aa(num,nat,numeral_numeral(nat),K)),aa(nat,set(nat),set_ord_atMost(nat),pred_numeral(K))) ) ).
% atMost_nat_numeral
tff(fact_5337_card__atLeastZeroLessThan__int,axiom,
! [U: int] : ( aa(set(int),nat,finite_card(int),set_or7035219750837199246ssThan(int,zero_zero(int),U)) = aa(int,nat,nat2,U) ) ).
% card_atLeastZeroLessThan_int
tff(fact_5338_sum__constant__scaleR,axiom,
! [C: $tType,A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [Y: A,A3: set(C)] : ( aa(set(C),A,aa(fun(C,A),fun(set(C),A),groups7311177749621191930dd_sum(C,A),aTP_Lamp_mt(A,fun(C,A),Y)),A3) = aa(A,A,real_V8093663219630862766scaleR(A,aa(nat,real,semiring_1_of_nat(real),aa(set(C),nat,finite_card(C),A3))),Y) ) ) ).
% sum_constant_scaleR
tff(fact_5339_sum__Suc,axiom,
! [A: $tType,F2: fun(A,nat),A3: set(A)] : ( aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),aTP_Lamp_mu(fun(A,nat),fun(A,nat),F2)),A3) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),F2),A3)),aa(set(A),nat,finite_card(A),A3)) ) ).
% sum_Suc
tff(fact_5340_sum__multicount,axiom,
! [A: $tType,B: $tType,S: set(A),T6: set(B),R2: fun(A,fun(B,bool)),K: nat] :
( finite_finite(A,S)
=> ( finite_finite(B,T6)
=> ( ! [X3: B] :
( pp(member(B,X3,T6))
=> ( aa(set(A),nat,finite_card(A),aa(fun(A,bool),set(A),collect(A),aa(B,fun(A,bool),aa(fun(A,fun(B,bool)),fun(B,fun(A,bool)),aTP_Lamp_mv(set(A),fun(fun(A,fun(B,bool)),fun(B,fun(A,bool))),S),R2),X3))) = K ) )
=> ( aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),aa(fun(A,fun(B,bool)),fun(A,nat),aTP_Lamp_mx(set(B),fun(fun(A,fun(B,bool)),fun(A,nat)),T6),R2)),S) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),aa(set(B),nat,finite_card(B),T6)) ) ) ) ) ).
% sum_multicount
tff(fact_5341_subset__card__intvl__is__intvl,axiom,
! [A3: set(nat),K: nat] :
( pp(aa(set(nat),bool,aa(set(nat),fun(set(nat),bool),ord_less_eq(set(nat)),A3),set_or7035219750837199246ssThan(nat,K,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),K),aa(set(nat),nat,finite_card(nat),A3)))))
=> ( A3 = set_or7035219750837199246ssThan(nat,K,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),K),aa(set(nat),nat,finite_card(nat),A3))) ) ) ).
% subset_card_intvl_is_intvl
tff(fact_5342_sum__list__mono,axiom,
! [B: $tType,A: $tType] :
( ( monoid_add(B)
& ordere6658533253407199908up_add(B) )
=> ! [Xs: list(A),F2: fun(A,B),G: fun(A,B)] :
( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),Xs)))
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),aa(A,B,F2,X3)),aa(A,B,G,X3))) )
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),groups8242544230860333062m_list(B,aa(list(A),list(B),map(A,B,F2),Xs))),groups8242544230860333062m_list(B,aa(list(A),list(B),map(A,B,G),Xs)))) ) ) ).
% sum_list_mono
tff(fact_5343_real__of__card,axiom,
! [A: $tType,A3: set(A)] : ( aa(nat,real,semiring_1_of_nat(real),aa(set(A),nat,finite_card(A),A3)) = aa(set(A),real,aa(fun(A,real),fun(set(A),real),groups7311177749621191930dd_sum(A,real),aTP_Lamp_my(A,real)),A3) ) ).
% real_of_card
tff(fact_5344_length__concat,axiom,
! [B: $tType,Xss: list(list(B))] : ( aa(list(B),nat,size_size(list(B)),concat(B,Xss)) = groups8242544230860333062m_list(nat,aa(list(list(B)),list(nat),map(list(B),nat,size_size(list(B))),Xss)) ) ).
% length_concat
tff(fact_5345_sum__bounded__below,axiom,
! [A: $tType,B: $tType] :
( ( ordere6911136660526730532id_add(A)
& semiring_1(A) )
=> ! [A3: set(B),K5: A,F2: fun(B,A)] :
( ! [I3: B] :
( pp(member(B,I3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),K5),aa(B,A,F2,I3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),aa(set(B),nat,finite_card(B),A3))),K5)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),A3))) ) ) ).
% sum_bounded_below
tff(fact_5346_sum__bounded__above,axiom,
! [B: $tType,A: $tType] :
( ( ordere6911136660526730532id_add(A)
& semiring_1(A) )
=> ! [A3: set(B),F2: fun(B,A),K5: A] :
( ! [I3: B] :
( pp(member(B,I3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,I3)),K5)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),A3)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),aa(set(B),nat,finite_card(B),A3))),K5))) ) ) ).
% sum_bounded_above
tff(fact_5347_card__le__Suc0__iff__eq,axiom,
! [A: $tType,A3: set(A)] :
( finite_finite(A,A3)
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(A),nat,finite_card(A),A3)),aa(nat,nat,suc,zero_zero(nat))))
<=> ! [X4: A] :
( pp(member(A,X4,A3))
=> ! [Xa3: A] :
( pp(member(A,Xa3,A3))
=> ( X4 = Xa3 ) ) ) ) ) ).
% card_le_Suc0_iff_eq
tff(fact_5348_card__Diff__subset,axiom,
! [A: $tType,B4: set(A),A3: set(A)] :
( finite_finite(A,B4)
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),A3))
=> ( aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(set(A),nat,finite_card(A),A3)),aa(set(A),nat,finite_card(A),B4)) ) ) ) ).
% card_Diff_subset
tff(fact_5349_card__psubset,axiom,
! [A: $tType,B4: set(A),A3: set(A)] :
( finite_finite(A,B4)
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(set(A),nat,finite_card(A),A3)),aa(set(A),nat,finite_card(A),B4)))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less(set(A)),A3),B4)) ) ) ) ).
% card_psubset
tff(fact_5350_diff__card__le__card__Diff,axiom,
! [A: $tType,B4: set(A),A3: set(A)] :
( finite_finite(A,B4)
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(set(A),nat,finite_card(A),A3)),aa(set(A),nat,finite_card(A),B4))),aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)))) ) ).
% diff_card_le_card_Diff
tff(fact_5351_card__lists__length__le,axiom,
! [A: $tType,A3: set(A),N: nat] :
( finite_finite(A,A3)
=> ( aa(set(list(A)),nat,finite_card(list(A)),aa(fun(list(A),bool),set(list(A)),collect(list(A)),aa(nat,fun(list(A),bool),aTP_Lamp_lg(set(A),fun(nat,fun(list(A),bool)),A3),N))) = aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),power_power(nat,aa(set(A),nat,finite_card(A),A3))),aa(nat,set(nat),set_ord_atMost(nat),N)) ) ) ).
% card_lists_length_le
tff(fact_5352_ex__bij__betw__nat__finite,axiom,
! [A: $tType,M7: set(A)] :
( finite_finite(A,M7)
=> ? [H3: fun(nat,A)] : bij_betw(nat,A,H3,set_or7035219750837199246ssThan(nat,zero_zero(nat),aa(set(A),nat,finite_card(A),M7)),M7) ) ).
% ex_bij_betw_nat_finite
tff(fact_5353_elem__le__sum__list,axiom,
! [A: $tType] :
( canoni5634975068530333245id_add(A)
=> ! [K: nat,Ns: list(A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),K),aa(list(A),nat,size_size(list(A)),Ns)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,nth(A,Ns),K)),groups8242544230860333062m_list(A,Ns))) ) ) ).
% elem_le_sum_list
tff(fact_5354_ex__bij__betw__nat__finite__1,axiom,
! [A: $tType,M7: set(A)] :
( finite_finite(A,M7)
=> ? [H3: fun(nat,A)] : bij_betw(nat,A,H3,set_or1337092689740270186AtMost(nat,one_one(nat),aa(set(A),nat,finite_card(A),M7)),M7) ) ).
% ex_bij_betw_nat_finite_1
tff(fact_5355_card__roots__unity,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra(A)
& idom(A) )
=> ! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),one_one(nat)),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(A),nat,finite_card(A),aa(fun(A,bool),set(A),collect(A),aTP_Lamp_lt(nat,fun(A,bool),N)))),N)) ) ) ).
% card_roots_unity
tff(fact_5356_subset__eq__atLeast0__lessThan__card,axiom,
! [N2: set(nat),N: nat] :
( pp(aa(set(nat),bool,aa(set(nat),fun(set(nat),bool),ord_less_eq(set(nat)),N2),set_or7035219750837199246ssThan(nat,zero_zero(nat),N)))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(nat),nat,finite_card(nat),N2)),N)) ) ).
% subset_eq_atLeast0_lessThan_card
tff(fact_5357_size__list__conv__sum__list,axiom,
! [B: $tType,F2: fun(B,nat),Xs: list(B)] : ( aa(list(B),nat,size_list(B,F2),Xs) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),groups8242544230860333062m_list(nat,aa(list(B),list(nat),map(B,nat,F2),Xs))),aa(list(B),nat,size_size(list(B)),Xs)) ) ).
% size_list_conv_sum_list
tff(fact_5358_card__sum__le__nat__sum,axiom,
! [S: set(nat)] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),aTP_Lamp_gy(nat,nat)),set_or7035219750837199246ssThan(nat,zero_zero(nat),aa(set(nat),nat,finite_card(nat),S)))),aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),aTP_Lamp_gy(nat,nat)),S))) ).
% card_sum_le_nat_sum
tff(fact_5359_sum__list__Suc,axiom,
! [A: $tType,F2: fun(A,nat),Xs: list(A)] : ( groups8242544230860333062m_list(nat,aa(list(A),list(nat),map(A,nat,aTP_Lamp_mu(fun(A,nat),fun(A,nat),F2)),Xs)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),groups8242544230860333062m_list(nat,aa(list(A),list(nat),map(A,nat,F2),Xs))),aa(list(A),nat,size_size(list(A)),Xs)) ) ).
% sum_list_Suc
tff(fact_5360_sum__list__triv,axiom,
! [C: $tType,B: $tType] :
( semiring_1(B)
=> ! [R: B,Xs: list(C)] : ( groups8242544230860333062m_list(B,aa(list(C),list(B),map(C,B,aTP_Lamp_mz(B,fun(C,B),R)),Xs)) = aa(B,B,aa(B,fun(B,B),times_times(B),aa(nat,B,semiring_1_of_nat(B),aa(list(C),nat,size_size(list(C)),Xs))),R) ) ) ).
% sum_list_triv
tff(fact_5361_card__nth__roots,axiom,
! [C2: complex,N: nat] :
( ( C2 != zero_zero(complex) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(set(complex),nat,finite_card(complex),aa(fun(complex,bool),set(complex),collect(complex),aa(nat,fun(complex,bool),aTP_Lamp_mg(complex,fun(nat,fun(complex,bool)),C2),N))) = N ) ) ) ).
% card_nth_roots
tff(fact_5362_card__roots__unity__eq,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(set(complex),nat,finite_card(complex),aa(fun(complex,bool),set(complex),collect(complex),aTP_Lamp_fh(nat,fun(complex,bool),N))) = N ) ) ).
% card_roots_unity_eq
tff(fact_5363_sum__norm__bound,axiom,
! [A: $tType,B: $tType] :
( real_V822414075346904944vector(A)
=> ! [S: set(B),F2: fun(B,A),K5: real] :
( ! [X3: B] :
( pp(member(B,X3,S))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(B,A,F2,X3))),K5)) )
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),S))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),aa(set(B),nat,finite_card(B),S))),K5))) ) ) ).
% sum_norm_bound
tff(fact_5364_prod__le__power,axiom,
! [B: $tType,A: $tType] :
( linordered_semidom(A)
=> ! [A3: set(B),F2: fun(B,A),N: A,K: nat] :
( ! [I3: B] :
( pp(member(B,I3,A3))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(B,A,F2,I3)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,I3)),N)) ) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(B),nat,finite_card(B),A3)),K))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),one_one(A)),N))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),F2),A3)),aa(nat,A,power_power(A,N),K))) ) ) ) ) ).
% prod_le_power
tff(fact_5365_sum__bounded__above__strict,axiom,
! [B: $tType,A: $tType] :
( ( ordere8940638589300402666id_add(A)
& semiring_1(A) )
=> ! [A3: set(B),F2: fun(B,A),K5: A] :
( ! [I3: B] :
( pp(member(B,I3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(B,A,F2,I3)),K5)) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(set(B),nat,finite_card(B),A3)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),A3)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),aa(set(B),nat,finite_card(B),A3))),K5))) ) ) ) ).
% sum_bounded_above_strict
tff(fact_5366_sum__list__sum__nth,axiom,
! [B: $tType] :
( comm_monoid_add(B)
=> ! [Xs: list(B)] : ( groups8242544230860333062m_list(B,Xs) = aa(set(nat),B,aa(fun(nat,B),fun(set(nat),B),groups7311177749621191930dd_sum(nat,B),nth(B,Xs)),set_or7035219750837199246ssThan(nat,zero_zero(nat),aa(list(B),nat,size_size(list(B)),Xs))) ) ) ).
% sum_list_sum_nth
tff(fact_5367_sum__list__map__eq__sum__count,axiom,
! [A: $tType,F2: fun(A,nat),Xs: list(A)] : ( groups8242544230860333062m_list(nat,aa(list(A),list(nat),map(A,nat,F2),Xs)) = aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),aa(list(A),fun(A,nat),aTP_Lamp_na(fun(A,nat),fun(list(A),fun(A,nat)),F2),Xs)),aa(list(A),set(A),set2(A),Xs)) ) ).
% sum_list_map_eq_sum_count
tff(fact_5368_polyfun__roots__card,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra(A)
& idom(A) )
=> ! [C2: fun(nat,A),K: nat,N: nat] :
( ( aa(nat,A,C2,K) != zero_zero(A) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(A),nat,finite_card(A),aa(fun(A,bool),set(A),collect(A),aa(nat,fun(A,bool),aTP_Lamp_lz(fun(nat,A),fun(nat,fun(A,bool)),C2),N)))),N)) ) ) ) ).
% polyfun_roots_card
tff(fact_5369_prod__gen__delta,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [S: set(B),A2: B,B2: fun(B,A),C2: A] :
( finite_finite(B,S)
=> ( ( pp(member(B,A2,S))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),aa(A,fun(B,A),aa(fun(B,A),fun(A,fun(B,A)),aTP_Lamp_nb(B,fun(fun(B,A),fun(A,fun(B,A))),A2),B2),C2)),S) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(B,A,B2,A2)),aa(nat,A,power_power(A,C2),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(set(B),nat,finite_card(B),S)),one_one(nat)))) ) )
& ( ~ pp(member(B,A2,S))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),aa(A,fun(B,A),aa(fun(B,A),fun(A,fun(B,A)),aTP_Lamp_nb(B,fun(fun(B,A),fun(A,fun(B,A))),A2),B2),C2)),S) = aa(nat,A,power_power(A,C2),aa(set(B),nat,finite_card(B),S)) ) ) ) ) ) ).
% prod_gen_delta
tff(fact_5370_set__decode__plus__power__2,axiom,
! [N: nat,Z: nat] :
( ~ pp(member(nat,N,nat_set_decode(Z)))
=> ( nat_set_decode(aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N)),Z)) = aa(set(nat),set(nat),insert(nat,N),nat_set_decode(Z)) ) ) ).
% set_decode_plus_power_2
tff(fact_5371_polyfun__rootbound,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra(A)
& idom(A) )
=> ! [C2: fun(nat,A),K: nat,N: nat] :
( ( aa(nat,A,C2,K) != zero_zero(A) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N))
=> ( finite_finite(A,aa(fun(A,bool),set(A),collect(A),aa(nat,fun(A,bool),aTP_Lamp_lz(fun(nat,A),fun(nat,fun(A,bool)),C2),N)))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(A),nat,finite_card(A),aa(fun(A,bool),set(A),collect(A),aa(nat,fun(A,bool),aTP_Lamp_lz(fun(nat,A),fun(nat,fun(A,bool)),C2),N)))),N)) ) ) ) ) ).
% polyfun_rootbound
tff(fact_5372_card__lists__distinct__length__eq,axiom,
! [A: $tType,A3: set(A),K: nat] :
( finite_finite(A,A3)
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),aa(set(A),nat,finite_card(A),A3)))
=> ( aa(set(list(A)),nat,finite_card(list(A)),aa(fun(list(A),bool),set(list(A)),collect(list(A)),aa(nat,fun(list(A),bool),aTP_Lamp_nc(set(A),fun(nat,fun(list(A),bool)),A3),K))) = aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7121269368397514597t_prod(nat,nat),aTP_Lamp_gy(nat,nat)),set_or1337092689740270186AtMost(nat,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(set(A),nat,finite_card(A),A3)),K)),one_one(nat)),aa(set(A),nat,finite_card(A),A3))) ) ) ) ).
% card_lists_distinct_length_eq
tff(fact_5373_card__lists__distinct__length__eq_H,axiom,
! [A: $tType,K: nat,A3: set(A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),K),aa(set(A),nat,finite_card(A),A3)))
=> ( aa(set(list(A)),nat,finite_card(list(A)),aa(fun(list(A),bool),set(list(A)),collect(list(A)),aa(set(A),fun(list(A),bool),aTP_Lamp_nd(nat,fun(set(A),fun(list(A),bool)),K),A3))) = aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7121269368397514597t_prod(nat,nat),aTP_Lamp_gy(nat,nat)),set_or1337092689740270186AtMost(nat,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(set(A),nat,finite_card(A),A3)),K)),one_one(nat)),aa(set(A),nat,finite_card(A),A3))) ) ) ).
% card_lists_distinct_length_eq'
tff(fact_5374_sorted__wrt__less__sum__mono__lowerbound,axiom,
! [B: $tType] :
( ordere6911136660526730532id_add(B)
=> ! [F2: fun(nat,B),Ns: list(nat)] :
( ! [X3: nat,Y3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),X3),Y3))
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),aa(nat,B,F2,X3)),aa(nat,B,F2,Y3))) )
=> ( sorted_wrt(nat,ord_less(nat),Ns)
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),aa(set(nat),B,aa(fun(nat,B),fun(set(nat),B),groups7311177749621191930dd_sum(nat,B),F2),set_or7035219750837199246ssThan(nat,zero_zero(nat),aa(list(nat),nat,size_size(list(nat)),Ns)))),groups8242544230860333062m_list(B,aa(list(nat),list(B),map(nat,B,F2),Ns)))) ) ) ) ).
% sorted_wrt_less_sum_mono_lowerbound
tff(fact_5375_finite__lists__distinct__length__eq,axiom,
! [A: $tType,A3: set(A),N: nat] :
( finite_finite(A,A3)
=> finite_finite(list(A),aa(fun(list(A),bool),set(list(A)),collect(list(A)),aa(nat,fun(list(A),bool),aTP_Lamp_nc(set(A),fun(nat,fun(list(A),bool)),A3),N))) ) ).
% finite_lists_distinct_length_eq
tff(fact_5376_finite__sorted__distinct__unique,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A)] :
( finite_finite(A,A3)
=> ? [X3: list(A)] :
( ( aa(list(A),set(A),set2(A),X3) = A3 )
& sorted_wrt(A,ord_less_eq(A),X3)
& distinct(A,X3)
& ! [Y4: list(A)] :
( ( ( aa(list(A),set(A),set2(A),Y4) = A3 )
& sorted_wrt(A,ord_less_eq(A),Y4)
& distinct(A,Y4) )
=> ( Y4 = X3 ) ) ) ) ) ).
% finite_sorted_distinct_unique
tff(fact_5377_sorted__replicate,axiom,
! [A: $tType] :
( linorder(A)
=> ! [N: nat,X2: A] : sorted_wrt(A,ord_less_eq(A),replicate(A,N,X2)) ) ).
% sorted_replicate
tff(fact_5378_distinct__set__subseqs,axiom,
! [A: $tType,Xs: list(A)] :
( distinct(A,Xs)
=> distinct(set(A),aa(list(list(A)),list(set(A)),map(list(A),set(A),set2(A)),subseqs(A,Xs))) ) ).
% distinct_set_subseqs
tff(fact_5379_distinct__product__lists,axiom,
! [A: $tType,Xss: list(list(A))] :
( ! [X3: list(A)] :
( pp(member(list(A),X3,aa(list(list(A)),set(list(A)),set2(list(A)),Xss)))
=> distinct(A,X3) )
=> distinct(list(A),product_lists(A,Xss)) ) ).
% distinct_product_lists
tff(fact_5380_sorted__wrt__mono__rel,axiom,
! [A: $tType,Xs: list(A),P: fun(A,fun(A,bool)),Q: fun(A,fun(A,bool))] :
( ! [X3: A,Y3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),Xs)))
=> ( pp(member(A,Y3,aa(list(A),set(A),set2(A),Xs)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),P,X3),Y3))
=> pp(aa(A,bool,aa(A,fun(A,bool),Q,X3),Y3)) ) ) )
=> ( sorted_wrt(A,P,Xs)
=> sorted_wrt(A,Q,Xs) ) ) ).
% sorted_wrt_mono_rel
tff(fact_5381_sorted__list__of__set_Odistinct__if__distinct__map,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Xs: list(A)] :
( distinct(A,Xs)
=> distinct(A,Xs) ) ) ).
% sorted_list_of_set.distinct_if_distinct_map
tff(fact_5382_distinct__product,axiom,
! [A: $tType,B: $tType,Xs: list(A),Ys: list(B)] :
( distinct(A,Xs)
=> ( distinct(B,Ys)
=> distinct(product_prod(A,B),product(A,B,Xs,Ys)) ) ) ).
% distinct_product
tff(fact_5383_distinct__upt,axiom,
! [I: nat,J: nat] : distinct(nat,upt(I,J)) ).
% distinct_upt
tff(fact_5384_sorted__wrt__true,axiom,
! [A: $tType,Xs: list(A)] : sorted_wrt(A,aTP_Lamp_ne(A,fun(A,bool)),Xs) ).
% sorted_wrt_true
tff(fact_5385_sorted__wrt__map,axiom,
! [A: $tType,B: $tType,R2: fun(A,fun(A,bool)),F2: fun(B,A),Xs: list(B)] :
( sorted_wrt(A,R2,aa(list(B),list(A),map(B,A,F2),Xs))
<=> sorted_wrt(B,aa(fun(B,A),fun(B,fun(B,bool)),aTP_Lamp_nf(fun(A,fun(A,bool)),fun(fun(B,A),fun(B,fun(B,bool))),R2),F2),Xs) ) ).
% sorted_wrt_map
tff(fact_5386_strict__sorted__equal,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Xs: list(A),Ys: list(A)] :
( sorted_wrt(A,ord_less(A),Xs)
=> ( sorted_wrt(A,ord_less(A),Ys)
=> ( ( aa(list(A),set(A),set2(A),Ys) = aa(list(A),set(A),set2(A),Xs) )
=> ( Ys = Xs ) ) ) ) ) ).
% strict_sorted_equal
tff(fact_5387_strict__sorted__iff,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: list(A)] :
( sorted_wrt(A,ord_less(A),L)
<=> ( sorted_wrt(A,ord_less_eq(A),L)
& distinct(A,L) ) ) ) ).
% strict_sorted_iff
tff(fact_5388_sorted__distinct__set__unique,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Xs: list(A),Ys: list(A)] :
( sorted_wrt(A,ord_less_eq(A),Xs)
=> ( distinct(A,Xs)
=> ( sorted_wrt(A,ord_less_eq(A),Ys)
=> ( distinct(A,Ys)
=> ( ( aa(list(A),set(A),set2(A),Xs) = aa(list(A),set(A),set2(A),Ys) )
=> ( Xs = Ys ) ) ) ) ) ) ) ).
% sorted_distinct_set_unique
tff(fact_5389_strict__sorted__imp__sorted,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Xs: list(A)] :
( sorted_wrt(A,ord_less(A),Xs)
=> sorted_wrt(A,ord_less_eq(A),Xs) ) ) ).
% strict_sorted_imp_sorted
tff(fact_5390_finite__distinct__list,axiom,
! [A: $tType,A3: set(A)] :
( finite_finite(A,A3)
=> ? [Xs2: list(A)] :
( ( aa(list(A),set(A),set2(A),Xs2) = A3 )
& distinct(A,Xs2) ) ) ).
% finite_distinct_list
tff(fact_5391_sorted__wrt__upt,axiom,
! [M: nat,N: nat] : sorted_wrt(nat,ord_less(nat),upt(M,N)) ).
% sorted_wrt_upt
tff(fact_5392_sorted__upt,axiom,
! [M: nat,N: nat] : sorted_wrt(nat,ord_less_eq(nat),upt(M,N)) ).
% sorted_upt
tff(fact_5393_sorted__map,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [F2: fun(B,A),Xs: list(B)] :
( sorted_wrt(A,ord_less_eq(A),aa(list(B),list(A),map(B,A,F2),Xs))
<=> sorted_wrt(B,aTP_Lamp_ng(fun(B,A),fun(B,fun(B,bool)),F2),Xs) ) ) ).
% sorted_map
tff(fact_5394_subseqs__distinctD,axiom,
! [A: $tType,Ys: list(A),Xs: list(A)] :
( pp(member(list(A),Ys,aa(list(list(A)),set(list(A)),set2(list(A)),subseqs(A,Xs))))
=> ( distinct(A,Xs)
=> distinct(A,Ys) ) ) ).
% subseqs_distinctD
tff(fact_5395_sorted__wrt__nth__less,axiom,
! [A: $tType,P: fun(A,fun(A,bool)),Xs: list(A),I: nat,J: nat] :
( sorted_wrt(A,P,Xs)
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),J))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J),aa(list(A),nat,size_size(list(A)),Xs)))
=> pp(aa(A,bool,aa(A,fun(A,bool),P,aa(nat,A,nth(A,Xs),I)),aa(nat,A,nth(A,Xs),J))) ) ) ) ).
% sorted_wrt_nth_less
tff(fact_5396_sorted__wrt__iff__nth__less,axiom,
! [A: $tType,P: fun(A,fun(A,bool)),Xs: list(A)] :
( sorted_wrt(A,P,Xs)
<=> ! [I4: nat,J3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I4),J3))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J3),aa(list(A),nat,size_size(list(A)),Xs)))
=> pp(aa(A,bool,aa(A,fun(A,bool),P,aa(nat,A,nth(A,Xs),I4)),aa(nat,A,nth(A,Xs),J3))) ) ) ) ).
% sorted_wrt_iff_nth_less
tff(fact_5397_sorted__wrt01,axiom,
! [A: $tType,Xs: list(A),P: fun(A,fun(A,bool))] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(list(A),nat,size_size(list(A)),Xs)),one_one(nat)))
=> sorted_wrt(A,P,Xs) ) ).
% sorted_wrt01
tff(fact_5398_distinct__card,axiom,
! [A: $tType,Xs: list(A)] :
( distinct(A,Xs)
=> ( aa(set(A),nat,finite_card(A),aa(list(A),set(A),set2(A),Xs)) = aa(list(A),nat,size_size(list(A)),Xs) ) ) ).
% distinct_card
tff(fact_5399_card__distinct,axiom,
! [A: $tType,Xs: list(A)] :
( ( aa(set(A),nat,finite_card(A),aa(list(A),set(A),set2(A),Xs)) = aa(list(A),nat,size_size(list(A)),Xs) )
=> distinct(A,Xs) ) ).
% card_distinct
tff(fact_5400_distinct__conv__nth,axiom,
! [A: $tType,Xs: list(A)] :
( distinct(A,Xs)
<=> ! [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I4),aa(list(A),nat,size_size(list(A)),Xs)))
=> ! [J3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J3),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( ( I4 != J3 )
=> ( aa(nat,A,nth(A,Xs),I4) != aa(nat,A,nth(A,Xs),J3) ) ) ) ) ) ).
% distinct_conv_nth
tff(fact_5401_nth__eq__iff__index__eq,axiom,
! [A: $tType,Xs: list(A),I: nat,J: nat] :
( distinct(A,Xs)
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( ( aa(nat,A,nth(A,Xs),I) = aa(nat,A,nth(A,Xs),J) )
<=> ( I = J ) ) ) ) ) ).
% nth_eq_iff_index_eq
tff(fact_5402_distinct__sum__list__conv__Sum,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [Xs: list(A)] :
( distinct(A,Xs)
=> ( groups8242544230860333062m_list(A,Xs) = aa(set(A),A,aa(fun(A,A),fun(set(A),A),groups7311177749621191930dd_sum(A,A),aTP_Lamp_nh(A,A)),aa(list(A),set(A),set2(A),Xs)) ) ) ) ).
% distinct_sum_list_conv_Sum
tff(fact_5403_sorted__iff__nth__mono__less,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Xs: list(A)] :
( sorted_wrt(A,ord_less_eq(A),Xs)
<=> ! [I4: nat,J3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I4),J3))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J3),aa(list(A),nat,size_size(list(A)),Xs)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,nth(A,Xs),I4)),aa(nat,A,nth(A,Xs),J3))) ) ) ) ) ).
% sorted_iff_nth_mono_less
tff(fact_5404_sorted01,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Xs: list(A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(list(A),nat,size_size(list(A)),Xs)),one_one(nat)))
=> sorted_wrt(A,ord_less_eq(A),Xs) ) ) ).
% sorted01
tff(fact_5405_distinct__Ex1,axiom,
! [A: $tType,Xs: list(A),X2: A] :
( distinct(A,Xs)
=> ( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ? [X3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),X3),aa(list(A),nat,size_size(list(A)),Xs)))
& ( aa(nat,A,nth(A,Xs),X3) = X2 )
& ! [Y4: nat] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Y4),aa(list(A),nat,size_size(list(A)),Xs)))
& ( aa(nat,A,nth(A,Xs),Y4) = X2 ) )
=> ( Y4 = X3 ) ) ) ) ) ).
% distinct_Ex1
tff(fact_5406_sum_Odistinct__set__conv__list,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [Xs: list(B),G: fun(B,A)] :
( distinct(B,Xs)
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),aa(list(B),set(B),set2(B),Xs)) = groups8242544230860333062m_list(A,aa(list(B),list(A),map(B,A,G),Xs)) ) ) ) ).
% sum.distinct_set_conv_list
tff(fact_5407_sum__list__distinct__conv__sum__set,axiom,
! [C: $tType,B: $tType] :
( comm_monoid_add(C)
=> ! [Xs: list(B),F2: fun(B,C)] :
( distinct(B,Xs)
=> ( groups8242544230860333062m_list(C,aa(list(B),list(C),map(B,C,F2),Xs)) = aa(set(B),C,aa(fun(B,C),fun(set(B),C),groups7311177749621191930dd_sum(B,C),F2),aa(list(B),set(B),set2(B),Xs)) ) ) ) ).
% sum_list_distinct_conv_sum_set
tff(fact_5408_atLeastAtMostPlus1__int__conv,axiom,
! [M: int,N: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),M),aa(int,int,aa(int,fun(int,int),plus_plus(int),one_one(int)),N)))
=> ( set_or1337092689740270186AtMost(int,M,aa(int,int,aa(int,fun(int,int),plus_plus(int),one_one(int)),N)) = aa(set(int),set(int),insert(int,aa(int,int,aa(int,fun(int,int),plus_plus(int),one_one(int)),N)),set_or1337092689740270186AtMost(int,M,N)) ) ) ).
% atLeastAtMostPlus1_int_conv
tff(fact_5409_sorted__wrt__less__idx,axiom,
! [Ns: list(nat),I: nat] :
( sorted_wrt(nat,ord_less(nat),Ns)
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),aa(list(nat),nat,size_size(list(nat)),Ns)))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),aa(nat,nat,nth(nat,Ns),I))) ) ) ).
% sorted_wrt_less_idx
tff(fact_5410_sorted__iff__nth__Suc,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Xs: list(A)] :
( sorted_wrt(A,ord_less_eq(A),Xs)
<=> ! [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,I4)),aa(list(A),nat,size_size(list(A)),Xs)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,nth(A,Xs),I4)),aa(nat,A,nth(A,Xs),aa(nat,nat,suc,I4)))) ) ) ) ).
% sorted_iff_nth_Suc
tff(fact_5411_sorted__list__of__set_Ofinite__set__strict__sorted,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A)] :
( finite_finite(A,A3)
=> ~ ! [L2: list(A)] :
( sorted_wrt(A,ord_less(A),L2)
=> ( ( aa(list(A),set(A),set2(A),L2) = A3 )
=> ( aa(list(A),nat,size_size(list(A)),L2) != aa(set(A),nat,finite_card(A),A3) ) ) ) ) ) ).
% sorted_list_of_set.finite_set_strict_sorted
tff(fact_5412_sorted__iff__nth__mono,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Xs: list(A)] :
( sorted_wrt(A,ord_less_eq(A),Xs)
<=> ! [I4: nat,J3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I4),J3))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J3),aa(list(A),nat,size_size(list(A)),Xs)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,nth(A,Xs),I4)),aa(nat,A,nth(A,Xs),J3))) ) ) ) ) ).
% sorted_iff_nth_mono
tff(fact_5413_sorted__nth__mono,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Xs: list(A),I: nat,J: nat] :
( sorted_wrt(A,ord_less_eq(A),Xs)
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),J))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J),aa(list(A),nat,size_size(list(A)),Xs)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,nth(A,Xs),I)),aa(nat,A,nth(A,Xs),J))) ) ) ) ) ).
% sorted_nth_mono
tff(fact_5414_bij__betw__nth,axiom,
! [A: $tType,Xs: list(A),A3: set(nat),B4: set(A)] :
( distinct(A,Xs)
=> ( ( A3 = aa(nat,set(nat),set_ord_lessThan(nat),aa(list(A),nat,size_size(list(A)),Xs)) )
=> ( ( B4 = aa(list(A),set(A),set2(A),Xs) )
=> bij_betw(nat,A,nth(A,Xs),A3,B4) ) ) ) ).
% bij_betw_nth
tff(fact_5415_and__int_Osimps,axiom,
! [K: int,L: int] :
( ( ( pp(member(int,K,aa(set(int),set(int),insert(int,zero_zero(int)),aa(set(int),set(int),insert(int,aa(int,int,uminus_uminus(int),one_one(int))),bot_bot(set(int))))))
& pp(member(int,L,aa(set(int),set(int),insert(int,zero_zero(int)),aa(set(int),set(int),insert(int,aa(int,int,uminus_uminus(int),one_one(int))),bot_bot(set(int)))))) )
=> ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),K),L) = aa(int,int,uminus_uminus(int),aa(bool,int,zero_neq_one_of_bool(int),fconj(aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),K)),aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),L))))) ) )
& ( ~ ( pp(member(int,K,aa(set(int),set(int),insert(int,zero_zero(int)),aa(set(int),set(int),insert(int,aa(int,int,uminus_uminus(int),one_one(int))),bot_bot(set(int))))))
& pp(member(int,L,aa(set(int),set(int),insert(int,zero_zero(int)),aa(set(int),set(int),insert(int,aa(int,int,uminus_uminus(int),one_one(int))),bot_bot(set(int)))))) )
=> ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),K),L) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(bool,int,zero_neq_one_of_bool(int),fconj(aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),K)),aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),L))))),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),K),aa(num,int,numeral_numeral(int),bit0(one2)))),aa(int,int,aa(int,fun(int,int),divide_divide(int),L),aa(num,int,numeral_numeral(int),bit0(one2)))))) ) ) ) ).
% and_int.simps
tff(fact_5416_and__int_Oelims,axiom,
! [X2: int,Xa: int,Y: int] :
( ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),X2),Xa) = Y )
=> ( ( ( pp(member(int,X2,aa(set(int),set(int),insert(int,zero_zero(int)),aa(set(int),set(int),insert(int,aa(int,int,uminus_uminus(int),one_one(int))),bot_bot(set(int))))))
& pp(member(int,Xa,aa(set(int),set(int),insert(int,zero_zero(int)),aa(set(int),set(int),insert(int,aa(int,int,uminus_uminus(int),one_one(int))),bot_bot(set(int)))))) )
=> ( Y = aa(int,int,uminus_uminus(int),aa(bool,int,zero_neq_one_of_bool(int),fconj(aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),X2)),aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),Xa))))) ) )
& ( ~ ( pp(member(int,X2,aa(set(int),set(int),insert(int,zero_zero(int)),aa(set(int),set(int),insert(int,aa(int,int,uminus_uminus(int),one_one(int))),bot_bot(set(int))))))
& pp(member(int,Xa,aa(set(int),set(int),insert(int,zero_zero(int)),aa(set(int),set(int),insert(int,aa(int,int,uminus_uminus(int),one_one(int))),bot_bot(set(int)))))) )
=> ( Y = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(bool,int,zero_neq_one_of_bool(int),fconj(aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),X2)),aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),Xa))))),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),X2),aa(num,int,numeral_numeral(int),bit0(one2)))),aa(int,int,aa(int,fun(int,int),divide_divide(int),Xa),aa(num,int,numeral_numeral(int),bit0(one2)))))) ) ) ) ) ).
% and_int.elims
tff(fact_5417_and__int_Opsimps,axiom,
! [K: int,L: int] :
( pp(aa(product_prod(int,int),bool,accp(product_prod(int,int),bit_and_int_rel),aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),K),L)))
=> ( ( ( pp(member(int,K,aa(set(int),set(int),insert(int,zero_zero(int)),aa(set(int),set(int),insert(int,aa(int,int,uminus_uminus(int),one_one(int))),bot_bot(set(int))))))
& pp(member(int,L,aa(set(int),set(int),insert(int,zero_zero(int)),aa(set(int),set(int),insert(int,aa(int,int,uminus_uminus(int),one_one(int))),bot_bot(set(int)))))) )
=> ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),K),L) = aa(int,int,uminus_uminus(int),aa(bool,int,zero_neq_one_of_bool(int),fconj(aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),K)),aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),L))))) ) )
& ( ~ ( pp(member(int,K,aa(set(int),set(int),insert(int,zero_zero(int)),aa(set(int),set(int),insert(int,aa(int,int,uminus_uminus(int),one_one(int))),bot_bot(set(int))))))
& pp(member(int,L,aa(set(int),set(int),insert(int,zero_zero(int)),aa(set(int),set(int),insert(int,aa(int,int,uminus_uminus(int),one_one(int))),bot_bot(set(int)))))) )
=> ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),K),L) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(bool,int,zero_neq_one_of_bool(int),fconj(aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),K)),aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),L))))),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),K),aa(num,int,numeral_numeral(int),bit0(one2)))),aa(int,int,aa(int,fun(int,int),divide_divide(int),L),aa(num,int,numeral_numeral(int),bit0(one2)))))) ) ) ) ) ).
% and_int.psimps
tff(fact_5418_empty__subsetI,axiom,
! [A: $tType,A3: set(A)] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),bot_bot(set(A))),A3)) ).
% empty_subsetI
tff(fact_5419_subset__empty,axiom,
! [A: $tType,A3: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),bot_bot(set(A))))
<=> ( A3 = bot_bot(set(A)) ) ) ).
% subset_empty
tff(fact_5420_Diff__empty,axiom,
! [A: $tType,A3: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),bot_bot(set(A))) = A3 ) ).
% Diff_empty
tff(fact_5421_empty__Diff,axiom,
! [A: $tType,A3: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),bot_bot(set(A))),A3) = bot_bot(set(A)) ) ).
% empty_Diff
tff(fact_5422_Diff__cancel,axiom,
! [A: $tType,A3: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),A3) = bot_bot(set(A)) ) ).
% Diff_cancel
tff(fact_5423_sum_Oempty,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(B,A)] : ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),bot_bot(set(B))) = zero_zero(A) ) ) ).
% sum.empty
tff(fact_5424_atLeastatMost__empty__iff2,axiom,
! [A: $tType] :
( preorder(A)
=> ! [A2: A,B2: A] :
( ( bot_bot(set(A)) = set_or1337092689740270186AtMost(A,A2,B2) )
<=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) ) ) ).
% atLeastatMost_empty_iff2
tff(fact_5425_atLeastatMost__empty__iff,axiom,
! [A: $tType] :
( preorder(A)
=> ! [A2: A,B2: A] :
( ( set_or1337092689740270186AtMost(A,A2,B2) = bot_bot(set(A)) )
<=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) ) ) ).
% atLeastatMost_empty_iff
tff(fact_5426_atLeastatMost__empty,axiom,
! [A: $tType] :
( order(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2))
=> ( set_or1337092689740270186AtMost(A,A2,B2) = bot_bot(set(A)) ) ) ) ).
% atLeastatMost_empty
tff(fact_5427_singleton__insert__inj__eq_H,axiom,
! [A: $tType,A2: A,A3: set(A),B2: A] :
( ( aa(set(A),set(A),insert(A,A2),A3) = aa(set(A),set(A),insert(A,B2),bot_bot(set(A))) )
<=> ( ( A2 = B2 )
& pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),aa(set(A),set(A),insert(A,B2),bot_bot(set(A))))) ) ) ).
% singleton_insert_inj_eq'
tff(fact_5428_singleton__insert__inj__eq,axiom,
! [A: $tType,B2: A,A2: A,A3: set(A)] :
( ( aa(set(A),set(A),insert(A,B2),bot_bot(set(A))) = aa(set(A),set(A),insert(A,A2),A3) )
<=> ( ( A2 = B2 )
& pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),aa(set(A),set(A),insert(A,B2),bot_bot(set(A))))) ) ) ).
% singleton_insert_inj_eq
tff(fact_5429_atLeastLessThan__empty,axiom,
! [A: $tType] :
( order(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
=> ( set_or7035219750837199246ssThan(A,A2,B2) = bot_bot(set(A)) ) ) ) ).
% atLeastLessThan_empty
tff(fact_5430_atLeastLessThan__empty__iff2,axiom,
! [A: $tType] :
( preorder(A)
=> ! [A2: A,B2: A] :
( ( bot_bot(set(A)) = set_or7035219750837199246ssThan(A,A2,B2) )
<=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) ) ) ).
% atLeastLessThan_empty_iff2
tff(fact_5431_atLeastLessThan__empty__iff,axiom,
! [A: $tType] :
( preorder(A)
=> ! [A2: A,B2: A] :
( ( set_or7035219750837199246ssThan(A,A2,B2) = bot_bot(set(A)) )
<=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) ) ) ).
% atLeastLessThan_empty_iff
tff(fact_5432_prod_Oempty,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(B,A)] : ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),bot_bot(set(B))) = one_one(A) ) ) ).
% prod.empty
tff(fact_5433_Diff__eq__empty__iff,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4) = bot_bot(set(A)) )
<=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4)) ) ).
% Diff_eq_empty_iff
tff(fact_5434_card_Oempty,axiom,
! [A: $tType] : ( aa(set(A),nat,finite_card(A),bot_bot(set(A))) = zero_zero(nat) ) ).
% card.empty
tff(fact_5435_atLeastAtMost__singleton__iff,axiom,
! [A: $tType] :
( order(A)
=> ! [A2: A,B2: A,C2: A] :
( ( set_or1337092689740270186AtMost(A,A2,B2) = aa(set(A),set(A),insert(A,C2),bot_bot(set(A))) )
<=> ( ( A2 = B2 )
& ( B2 = C2 ) ) ) ) ).
% atLeastAtMost_singleton_iff
tff(fact_5436_atLeastAtMost__singleton,axiom,
! [A: $tType] :
( order(A)
=> ! [A2: A] : ( set_or1337092689740270186AtMost(A,A2,A2) = aa(set(A),set(A),insert(A,A2),bot_bot(set(A))) ) ) ).
% atLeastAtMost_singleton
tff(fact_5437_insert__Diff__single,axiom,
! [A: $tType,A2: A,A3: set(A)] : ( aa(set(A),set(A),insert(A,A2),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,A2),bot_bot(set(A))))) = aa(set(A),set(A),insert(A,A2),A3) ) ).
% insert_Diff_single
tff(fact_5438_card__0__eq,axiom,
! [A: $tType,A3: set(A)] :
( finite_finite(A,A3)
=> ( ( aa(set(A),nat,finite_card(A),A3) = zero_zero(nat) )
<=> ( A3 = bot_bot(set(A)) ) ) ) ).
% card_0_eq
tff(fact_5439_single__Diff__lessThan,axiom,
! [A: $tType] :
( preorder(A)
=> ! [K: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(set(A),set(A),insert(A,K),bot_bot(set(A)))),aa(A,set(A),set_ord_lessThan(A),K)) = aa(set(A),set(A),insert(A,K),bot_bot(set(A))) ) ) ).
% single_Diff_lessThan
tff(fact_5440_subset__Compl__singleton,axiom,
! [A: $tType,A3: set(A),B2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),aa(set(A),set(A),uminus_uminus(set(A)),aa(set(A),set(A),insert(A,B2),bot_bot(set(A))))))
<=> ~ pp(member(A,B2,A3)) ) ).
% subset_Compl_singleton
tff(fact_5441_set__replicate,axiom,
! [A: $tType,N: nat,X2: A] :
( ( N != zero_zero(nat) )
=> ( aa(list(A),set(A),set2(A),replicate(A,N,X2)) = aa(set(A),set(A),insert(A,X2),bot_bot(set(A))) ) ) ).
% set_replicate
tff(fact_5442_diff__shunt__var,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A,Y: A] :
( ( aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y) = bot_bot(A) )
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y)) ) ) ).
% diff_shunt_var
tff(fact_5443_bot_Oextremum,axiom,
! [A: $tType] :
( order_bot(A)
=> ! [A2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),bot_bot(A)),A2)) ) ).
% bot.extremum
tff(fact_5444_bot_Oextremum__unique,axiom,
! [A: $tType] :
( order_bot(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),bot_bot(A)))
<=> ( A2 = bot_bot(A) ) ) ) ).
% bot.extremum_unique
tff(fact_5445_bot_Oextremum__uniqueI,axiom,
! [A: $tType] :
( order_bot(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),bot_bot(A)))
=> ( A2 = bot_bot(A) ) ) ) ).
% bot.extremum_uniqueI
tff(fact_5446_bot_Onot__eq__extremum,axiom,
! [A: $tType] :
( order_bot(A)
=> ! [A2: A] :
( ( A2 != bot_bot(A) )
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),bot_bot(A)),A2)) ) ) ).
% bot.not_eq_extremum
tff(fact_5447_bot_Oextremum__strict,axiom,
! [A: $tType] :
( order_bot(A)
=> ! [A2: A] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),bot_bot(A))) ) ).
% bot.extremum_strict
tff(fact_5448_not__empty__eq__Iic__eq__empty,axiom,
! [A: $tType] :
( preorder(A)
=> ! [H: A] : ( bot_bot(set(A)) != aa(A,set(A),set_ord_atMost(A),H) ) ) ).
% not_empty_eq_Iic_eq_empty
tff(fact_5449_lessThan__non__empty,axiom,
! [A: $tType] :
( no_bot(A)
=> ! [X2: A] : ( aa(A,set(A),set_ord_lessThan(A),X2) != bot_bot(set(A)) ) ) ).
% lessThan_non_empty
tff(fact_5450_Iio__eq__empty__iff,axiom,
! [A: $tType] :
( ( linorder(A)
& order_bot(A) )
=> ! [N: A] :
( ( aa(A,set(A),set_ord_lessThan(A),N) = bot_bot(set(A)) )
<=> ( N = bot_bot(A) ) ) ) ).
% Iio_eq_empty_iff
tff(fact_5451_finite__has__minimal,axiom,
! [A: $tType] :
( order(A)
=> ! [A3: set(A)] :
( finite_finite(A,A3)
=> ( ( A3 != bot_bot(set(A)) )
=> ? [X3: A] :
( pp(member(A,X3,A3))
& ! [Xa2: A] :
( pp(member(A,Xa2,A3))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Xa2),X3))
=> ( X3 = Xa2 ) ) ) ) ) ) ) ).
% finite_has_minimal
tff(fact_5452_finite__has__maximal,axiom,
! [A: $tType] :
( order(A)
=> ! [A3: set(A)] :
( finite_finite(A,A3)
=> ( ( A3 != bot_bot(set(A)) )
=> ? [X3: A] :
( pp(member(A,X3,A3))
& ! [Xa2: A] :
( pp(member(A,Xa2,A3))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),Xa2))
=> ( X3 = Xa2 ) ) ) ) ) ) ) ).
% finite_has_maximal
tff(fact_5453_infinite__growing,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X6: set(A)] :
( ( X6 != bot_bot(set(A)) )
=> ( ! [X3: A] :
( pp(member(A,X3,X6))
=> ? [Xa2: A] :
( pp(member(A,Xa2,X6))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X3),Xa2)) ) )
=> ~ finite_finite(A,X6) ) ) ) ).
% infinite_growing
tff(fact_5454_ex__min__if__finite,axiom,
! [A: $tType] :
( order(A)
=> ! [S: set(A)] :
( finite_finite(A,S)
=> ( ( S != bot_bot(set(A)) )
=> ? [X3: A] :
( pp(member(A,X3,S))
& ~ ? [Xa2: A] :
( pp(member(A,Xa2,S))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Xa2),X3)) ) ) ) ) ) ).
% ex_min_if_finite
tff(fact_5455_subset__singleton__iff,axiom,
! [A: $tType,X6: set(A),A2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),X6),aa(set(A),set(A),insert(A,A2),bot_bot(set(A)))))
<=> ( ( X6 = bot_bot(set(A)) )
| ( X6 = aa(set(A),set(A),insert(A,A2),bot_bot(set(A))) ) ) ) ).
% subset_singleton_iff
tff(fact_5456_subset__singletonD,axiom,
! [A: $tType,A3: set(A),X2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))))
=> ( ( A3 = bot_bot(set(A)) )
| ( A3 = aa(set(A),set(A),insert(A,X2),bot_bot(set(A))) ) ) ) ).
% subset_singletonD
tff(fact_5457_atLeastAtMost__singleton_H,axiom,
! [A: $tType] :
( order(A)
=> ! [A2: A,B2: A] :
( ( A2 = B2 )
=> ( set_or1337092689740270186AtMost(A,A2,B2) = aa(set(A),set(A),insert(A,A2),bot_bot(set(A))) ) ) ) ).
% atLeastAtMost_singleton'
tff(fact_5458_Diff__insert,axiom,
! [A: $tType,A3: set(A),A2: A,B4: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,A2),B4)) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)),aa(set(A),set(A),insert(A,A2),bot_bot(set(A)))) ) ).
% Diff_insert
tff(fact_5459_insert__Diff,axiom,
! [A: $tType,A2: A,A3: set(A)] :
( pp(member(A,A2,A3))
=> ( aa(set(A),set(A),insert(A,A2),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,A2),bot_bot(set(A))))) = A3 ) ) ).
% insert_Diff
tff(fact_5460_Diff__insert2,axiom,
! [A: $tType,A3: set(A),A2: A,B4: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,A2),B4)) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,A2),bot_bot(set(A))))),B4) ) ).
% Diff_insert2
tff(fact_5461_Diff__insert__absorb,axiom,
! [A: $tType,X2: A,A3: set(A)] :
( ~ pp(member(A,X2,A3))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(set(A),set(A),insert(A,X2),A3)),aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))) = A3 ) ) ).
% Diff_insert_absorb
tff(fact_5462_subset__Compl__self__eq,axiom,
! [A: $tType,A3: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),aa(set(A),set(A),uminus_uminus(set(A)),A3)))
<=> ( A3 = bot_bot(set(A)) ) ) ).
% subset_Compl_self_eq
tff(fact_5463_finite__ranking__induct,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [S: set(B),P: fun(set(B),bool),F2: fun(B,A)] :
( finite_finite(B,S)
=> ( pp(aa(set(B),bool,P,bot_bot(set(B))))
=> ( ! [X3: B,S5: set(B)] :
( finite_finite(B,S5)
=> ( ! [Y4: B] :
( pp(member(B,Y4,S5))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,Y4)),aa(B,A,F2,X3))) )
=> ( pp(aa(set(B),bool,P,S5))
=> pp(aa(set(B),bool,P,aa(set(B),set(B),insert(B,X3),S5))) ) ) )
=> pp(aa(set(B),bool,P,S)) ) ) ) ) ).
% finite_ranking_induct
tff(fact_5464_finite__linorder__min__induct,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),P: fun(set(A),bool)] :
( finite_finite(A,A3)
=> ( pp(aa(set(A),bool,P,bot_bot(set(A))))
=> ( ! [B3: A,A7: set(A)] :
( finite_finite(A,A7)
=> ( ! [X: A] :
( pp(member(A,X,A7))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B3),X)) )
=> ( pp(aa(set(A),bool,P,A7))
=> pp(aa(set(A),bool,P,aa(set(A),set(A),insert(A,B3),A7))) ) ) )
=> pp(aa(set(A),bool,P,A3)) ) ) ) ) ).
% finite_linorder_min_induct
tff(fact_5465_finite__linorder__max__induct,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),P: fun(set(A),bool)] :
( finite_finite(A,A3)
=> ( pp(aa(set(A),bool,P,bot_bot(set(A))))
=> ( ! [B3: A,A7: set(A)] :
( finite_finite(A,A7)
=> ( ! [X: A] :
( pp(member(A,X,A7))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X),B3)) )
=> ( pp(aa(set(A),bool,P,A7))
=> pp(aa(set(A),bool,P,aa(set(A),set(A),insert(A,B3),A7))) ) ) )
=> pp(aa(set(A),bool,P,A3)) ) ) ) ) ).
% finite_linorder_max_induct
tff(fact_5466_sum__strict__mono,axiom,
! [A: $tType,B: $tType] :
( strict7427464778891057005id_add(A)
=> ! [A3: set(B),F2: fun(B,A),G: fun(B,A)] :
( finite_finite(B,A3)
=> ( ( A3 != bot_bot(set(B)) )
=> ( ! [X3: B] :
( pp(member(B,X3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(B,A,F2,X3)),aa(B,A,G,X3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),A3)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),A3))) ) ) ) ) ).
% sum_strict_mono
tff(fact_5467_finite__subset__induct_H,axiom,
! [A: $tType,F4: set(A),A3: set(A),P: fun(set(A),bool)] :
( finite_finite(A,F4)
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),F4),A3))
=> ( pp(aa(set(A),bool,P,bot_bot(set(A))))
=> ( ! [A4: A,F6: set(A)] :
( finite_finite(A,F6)
=> ( pp(member(A,A4,A3))
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),F6),A3))
=> ( ~ pp(member(A,A4,F6))
=> ( pp(aa(set(A),bool,P,F6))
=> pp(aa(set(A),bool,P,aa(set(A),set(A),insert(A,A4),F6))) ) ) ) ) )
=> pp(aa(set(A),bool,P,F4)) ) ) ) ) ).
% finite_subset_induct'
tff(fact_5468_finite__subset__induct,axiom,
! [A: $tType,F4: set(A),A3: set(A),P: fun(set(A),bool)] :
( finite_finite(A,F4)
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),F4),A3))
=> ( pp(aa(set(A),bool,P,bot_bot(set(A))))
=> ( ! [A4: A,F6: set(A)] :
( finite_finite(A,F6)
=> ( pp(member(A,A4,A3))
=> ( ~ pp(member(A,A4,F6))
=> ( pp(aa(set(A),bool,P,F6))
=> pp(aa(set(A),bool,P,aa(set(A),set(A),insert(A,A4),F6))) ) ) ) )
=> pp(aa(set(A),bool,P,F4)) ) ) ) ) ).
% finite_subset_induct
tff(fact_5469_card__eq__0__iff,axiom,
! [A: $tType,A3: set(A)] :
( ( aa(set(A),nat,finite_card(A),A3) = zero_zero(nat) )
<=> ( ( A3 = bot_bot(set(A)) )
| ~ finite_finite(A,A3) ) ) ).
% card_eq_0_iff
tff(fact_5470_infinite__remove,axiom,
! [A: $tType,S: set(A),A2: A] :
( ~ finite_finite(A,S)
=> ~ finite_finite(A,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),S),aa(set(A),set(A),insert(A,A2),bot_bot(set(A))))) ) ).
% infinite_remove
tff(fact_5471_infinite__coinduct,axiom,
! [A: $tType,X6: fun(set(A),bool),A3: set(A)] :
( pp(aa(set(A),bool,X6,A3))
=> ( ! [A7: set(A)] :
( pp(aa(set(A),bool,X6,A7))
=> ? [X: A] :
( pp(member(A,X,A7))
& ( pp(aa(set(A),bool,X6,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A7),aa(set(A),set(A),insert(A,X),bot_bot(set(A))))))
| ~ finite_finite(A,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A7),aa(set(A),set(A),insert(A,X),bot_bot(set(A))))) ) ) )
=> ~ finite_finite(A,A3) ) ) ).
% infinite_coinduct
tff(fact_5472_finite__empty__induct,axiom,
! [A: $tType,A3: set(A),P: fun(set(A),bool)] :
( finite_finite(A,A3)
=> ( pp(aa(set(A),bool,P,A3))
=> ( ! [A4: A,A7: set(A)] :
( finite_finite(A,A7)
=> ( pp(member(A,A4,A7))
=> ( pp(aa(set(A),bool,P,A7))
=> pp(aa(set(A),bool,P,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A7),aa(set(A),set(A),insert(A,A4),bot_bot(set(A)))))) ) ) )
=> pp(aa(set(A),bool,P,bot_bot(set(A)))) ) ) ) ).
% finite_empty_induct
tff(fact_5473_Diff__single__insert,axiom,
! [A: $tType,A3: set(A),X2: A,B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,X2),bot_bot(set(A))))),B4))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),aa(set(A),set(A),insert(A,X2),B4))) ) ).
% Diff_single_insert
tff(fact_5474_subset__insert__iff,axiom,
! [A: $tType,A3: set(A),X2: A,B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),aa(set(A),set(A),insert(A,X2),B4)))
<=> ( ( pp(member(A,X2,A3))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,X2),bot_bot(set(A))))),B4)) )
& ( ~ pp(member(A,X2,A3))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4)) ) ) ) ).
% subset_insert_iff
tff(fact_5475_card__1__singletonE,axiom,
! [A: $tType,A3: set(A)] :
( ( aa(set(A),nat,finite_card(A),A3) = one_one(nat) )
=> ~ ! [X3: A] : ( A3 != aa(set(A),set(A),insert(A,X3),bot_bot(set(A))) ) ) ).
% card_1_singletonE
tff(fact_5476_Compl__insert,axiom,
! [A: $tType,X2: A,A3: set(A)] : ( aa(set(A),set(A),uminus_uminus(set(A)),aa(set(A),set(A),insert(A,X2),A3)) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(set(A),set(A),uminus_uminus(set(A)),A3)),aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))) ) ).
% Compl_insert
tff(fact_5477_sum__pos,axiom,
! [A: $tType,B: $tType] :
( ordere6911136660526730532id_add(A)
=> ! [I5: set(B),F2: fun(B,A)] :
( finite_finite(B,I5)
=> ( ( I5 != bot_bot(set(B)) )
=> ( ! [I3: B] :
( pp(member(B,I3,I5))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(B,A,F2,I3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),I5))) ) ) ) ) ).
% sum_pos
tff(fact_5478_less__1__prod,axiom,
! [B: $tType,A: $tType] :
( linordered_idom(B)
=> ! [I5: set(A),F2: fun(A,B)] :
( finite_finite(A,I5)
=> ( ( I5 != bot_bot(set(A)) )
=> ( ! [I3: A] :
( pp(member(A,I3,I5))
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),one_one(B)),aa(A,B,F2,I3))) )
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),one_one(B)),aa(set(A),B,aa(fun(A,B),fun(set(A),B),groups7121269368397514597t_prod(A,B),F2),I5))) ) ) ) ) ).
% less_1_prod
tff(fact_5479_card__gt__0__iff,axiom,
! [A: $tType,A3: set(A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(set(A),nat,finite_card(A),A3)))
<=> ( ( A3 != bot_bot(set(A)) )
& finite_finite(A,A3) ) ) ).
% card_gt_0_iff
tff(fact_5480_card__1__singleton__iff,axiom,
! [A: $tType,A3: set(A)] :
( ( aa(set(A),nat,finite_card(A),A3) = aa(nat,nat,suc,zero_zero(nat)) )
<=> ? [X4: A] : ( A3 = aa(set(A),set(A),insert(A,X4),bot_bot(set(A))) ) ) ).
% card_1_singleton_iff
tff(fact_5481_card__eq__SucD,axiom,
! [A: $tType,A3: set(A),K: nat] :
( ( aa(set(A),nat,finite_card(A),A3) = aa(nat,nat,suc,K) )
=> ? [B3: A,B8: set(A)] :
( ( A3 = aa(set(A),set(A),insert(A,B3),B8) )
& ~ pp(member(A,B3,B8))
& ( aa(set(A),nat,finite_card(A),B8) = K )
& ( ( K = zero_zero(nat) )
=> ( B8 = bot_bot(set(A)) ) ) ) ) ).
% card_eq_SucD
tff(fact_5482_card__Suc__eq,axiom,
! [A: $tType,A3: set(A),K: nat] :
( ( aa(set(A),nat,finite_card(A),A3) = aa(nat,nat,suc,K) )
<=> ? [B5: A,B9: set(A)] :
( ( A3 = aa(set(A),set(A),insert(A,B5),B9) )
& ~ pp(member(A,B5,B9))
& ( aa(set(A),nat,finite_card(A),B9) = K )
& ( ( K = zero_zero(nat) )
=> ( B9 = bot_bot(set(A)) ) ) ) ) ).
% card_Suc_eq
tff(fact_5483_finite__remove__induct,axiom,
! [A: $tType,B4: set(A),P: fun(set(A),bool)] :
( finite_finite(A,B4)
=> ( pp(aa(set(A),bool,P,bot_bot(set(A))))
=> ( ! [A7: set(A)] :
( finite_finite(A,A7)
=> ( ( A7 != bot_bot(set(A)) )
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A7),B4))
=> ( ! [X: A] :
( pp(member(A,X,A7))
=> pp(aa(set(A),bool,P,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A7),aa(set(A),set(A),insert(A,X),bot_bot(set(A)))))) )
=> pp(aa(set(A),bool,P,A7)) ) ) ) )
=> pp(aa(set(A),bool,P,B4)) ) ) ) ).
% finite_remove_induct
tff(fact_5484_remove__induct,axiom,
! [A: $tType,P: fun(set(A),bool),B4: set(A)] :
( pp(aa(set(A),bool,P,bot_bot(set(A))))
=> ( ( ~ finite_finite(A,B4)
=> pp(aa(set(A),bool,P,B4)) )
=> ( ! [A7: set(A)] :
( finite_finite(A,A7)
=> ( ( A7 != bot_bot(set(A)) )
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A7),B4))
=> ( ! [X: A] :
( pp(member(A,X,A7))
=> pp(aa(set(A),bool,P,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A7),aa(set(A),set(A),insert(A,X),bot_bot(set(A)))))) )
=> pp(aa(set(A),bool,P,A7)) ) ) ) )
=> pp(aa(set(A),bool,P,B4)) ) ) ) ).
% remove_induct
tff(fact_5485_card__Diff1__le,axiom,
! [A: $tType,A3: set(A),X2: A] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))))),aa(set(A),nat,finite_card(A),A3))) ).
% card_Diff1_le
tff(fact_5486_finite__induct__select,axiom,
! [A: $tType,S: set(A),P: fun(set(A),bool)] :
( finite_finite(A,S)
=> ( pp(aa(set(A),bool,P,bot_bot(set(A))))
=> ( ! [T7: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less(set(A)),T7),S))
=> ( pp(aa(set(A),bool,P,T7))
=> ? [X: A] :
( pp(member(A,X,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),S),T7)))
& pp(aa(set(A),bool,P,aa(set(A),set(A),insert(A,X),T7))) ) ) )
=> pp(aa(set(A),bool,P,S)) ) ) ) ).
% finite_induct_select
tff(fact_5487_psubset__insert__iff,axiom,
! [A: $tType,A3: set(A),X2: A,B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less(set(A)),A3),aa(set(A),set(A),insert(A,X2),B4)))
<=> ( ( pp(member(A,X2,B4))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less(set(A)),A3),B4)) )
& ( ~ pp(member(A,X2,B4))
=> ( ( pp(member(A,X2,A3))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,X2),bot_bot(set(A))))),B4)) )
& ( ~ pp(member(A,X2,A3))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4)) ) ) ) ) ) ).
% psubset_insert_iff
tff(fact_5488_atLeastLessThan__eq__atLeastAtMost__diff,axiom,
! [A: $tType] :
( order(A)
=> ! [A2: A,B2: A] : ( set_or7035219750837199246ssThan(A,A2,B2) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),set_or1337092689740270186AtMost(A,A2,B2)),aa(set(A),set(A),insert(A,B2),bot_bot(set(A)))) ) ) ).
% atLeastLessThan_eq_atLeastAtMost_diff
tff(fact_5489_set__replicate__Suc,axiom,
! [A: $tType,N: nat,X2: A] : ( aa(list(A),set(A),set2(A),replicate(A,aa(nat,nat,suc,N),X2)) = aa(set(A),set(A),insert(A,X2),bot_bot(set(A))) ) ).
% set_replicate_Suc
tff(fact_5490_set__replicate__conv__if,axiom,
! [A: $tType,N: nat,X2: A] :
( ( ( N = zero_zero(nat) )
=> ( aa(list(A),set(A),set2(A),replicate(A,N,X2)) = bot_bot(set(A)) ) )
& ( ( N != zero_zero(nat) )
=> ( aa(list(A),set(A),set2(A),replicate(A,N,X2)) = aa(set(A),set(A),insert(A,X2),bot_bot(set(A))) ) ) ) ).
% set_replicate_conv_if
tff(fact_5491_sum__diff1__nat,axiom,
! [A: $tType,A2: A,A3: set(A),F2: fun(A,nat)] :
( ( pp(member(A,A2,A3))
=> ( aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),F2),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,A2),bot_bot(set(A))))) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),F2),A3)),aa(A,nat,F2,A2)) ) )
& ( ~ pp(member(A,A2,A3))
=> ( aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),F2),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,A2),bot_bot(set(A))))) = aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),F2),A3) ) ) ) ).
% sum_diff1_nat
tff(fact_5492_simp__from__to,axiom,
! [J: int,I: int] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),J),I))
=> ( set_or1337092689740270186AtMost(int,I,J) = bot_bot(set(int)) ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),J),I))
=> ( set_or1337092689740270186AtMost(int,I,J) = aa(set(int),set(int),insert(int,I),set_or1337092689740270186AtMost(int,aa(int,int,aa(int,fun(int,int),plus_plus(int),I),one_one(int)),J)) ) ) ) ).
% simp_from_to
tff(fact_5493_prod__mono__strict,axiom,
! [A: $tType,B: $tType] :
( linordered_semidom(A)
=> ! [A3: set(B),F2: fun(B,A),G: fun(B,A)] :
( finite_finite(B,A3)
=> ( ! [I3: B] :
( pp(member(B,I3,A3))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),aa(B,A,F2,I3)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(B,A,F2,I3)),aa(B,A,G,I3))) ) )
=> ( ( A3 != bot_bot(set(B)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),F2),A3)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),A3))) ) ) ) ) ).
% prod_mono_strict
tff(fact_5494_card__2__iff,axiom,
! [A: $tType,S: set(A)] :
( ( aa(set(A),nat,finite_card(A),S) = aa(num,nat,numeral_numeral(nat),bit0(one2)) )
<=> ? [X4: A,Y2: A] :
( ( S = aa(set(A),set(A),insert(A,X4),aa(set(A),set(A),insert(A,Y2),bot_bot(set(A)))) )
& ( X4 != Y2 ) ) ) ).
% card_2_iff
tff(fact_5495_sum_Oremove,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [A3: set(B),X2: B,G: fun(B,A)] :
( finite_finite(B,A3)
=> ( pp(member(B,X2,A3))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),A3) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(B,A,G,X2)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),A3),aa(set(B),set(B),insert(B,X2),bot_bot(set(B)))))) ) ) ) ) ).
% sum.remove
tff(fact_5496_sum_Oinsert__remove,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [A3: set(B),G: fun(B,A),X2: B] :
( finite_finite(B,A3)
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),aa(set(B),set(B),insert(B,X2),A3)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(B,A,G,X2)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),A3),aa(set(B),set(B),insert(B,X2),bot_bot(set(B)))))) ) ) ) ).
% sum.insert_remove
tff(fact_5497_sum__diff1,axiom,
! [A: $tType,B: $tType] :
( ab_group_add(A)
=> ! [A3: set(B),A2: B,F2: fun(B,A)] :
( finite_finite(B,A3)
=> ( ( pp(member(B,A2,A3))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),A3),aa(set(B),set(B),insert(B,A2),bot_bot(set(B))))) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),A3)),aa(B,A,F2,A2)) ) )
& ( ~ pp(member(B,A2,A3))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),A3),aa(set(B),set(B),insert(B,A2),bot_bot(set(B))))) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),A3) ) ) ) ) ) ).
% sum_diff1
tff(fact_5498_card__3__iff,axiom,
! [A: $tType,S: set(A)] :
( ( aa(set(A),nat,finite_card(A),S) = aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,one2)) )
<=> ? [X4: A,Y2: A,Z5: A] :
( ( S = aa(set(A),set(A),insert(A,X4),aa(set(A),set(A),insert(A,Y2),aa(set(A),set(A),insert(A,Z5),bot_bot(set(A))))) )
& ( X4 != Y2 )
& ( Y2 != Z5 )
& ( X4 != Z5 ) ) ) ).
% card_3_iff
tff(fact_5499_odd__card__imp__not__empty,axiom,
! [A: $tType,A3: set(A)] :
( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(set(A),nat,finite_card(A),A3)))
=> ( A3 != bot_bot(set(A)) ) ) ).
% odd_card_imp_not_empty
tff(fact_5500_prod_Oremove,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [A3: set(B),X2: B,G: fun(B,A)] :
( finite_finite(B,A3)
=> ( pp(member(B,X2,A3))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),A3) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(B,A,G,X2)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),A3),aa(set(B),set(B),insert(B,X2),bot_bot(set(B)))))) ) ) ) ) ).
% prod.remove
tff(fact_5501_prod_Oinsert__remove,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [A3: set(B),G: fun(B,A),X2: B] :
( finite_finite(B,A3)
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),aa(set(B),set(B),insert(B,X2),A3)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(B,A,G,X2)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),A3),aa(set(B),set(B),insert(B,X2),bot_bot(set(B)))))) ) ) ) ).
% prod.insert_remove
tff(fact_5502_card__Suc__Diff1,axiom,
! [A: $tType,A3: set(A),X2: A] :
( finite_finite(A,A3)
=> ( pp(member(A,X2,A3))
=> ( aa(nat,nat,suc,aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))))) = aa(set(A),nat,finite_card(A),A3) ) ) ) ).
% card_Suc_Diff1
tff(fact_5503_card_Oinsert__remove,axiom,
! [A: $tType,A3: set(A),X2: A] :
( finite_finite(A,A3)
=> ( aa(set(A),nat,finite_card(A),aa(set(A),set(A),insert(A,X2),A3)) = aa(nat,nat,suc,aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))))) ) ) ).
% card.insert_remove
tff(fact_5504_card_Oremove,axiom,
! [A: $tType,A3: set(A),X2: A] :
( finite_finite(A,A3)
=> ( pp(member(A,X2,A3))
=> ( aa(set(A),nat,finite_card(A),A3) = aa(nat,nat,suc,aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))))) ) ) ) ).
% card.remove
tff(fact_5505_card__Diff1__less,axiom,
! [A: $tType,A3: set(A),X2: A] :
( finite_finite(A,A3)
=> ( pp(member(A,X2,A3))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))))),aa(set(A),nat,finite_card(A),A3))) ) ) ).
% card_Diff1_less
tff(fact_5506_card__Diff2__less,axiom,
! [A: $tType,A3: set(A),X2: A,Y: A] :
( finite_finite(A,A3)
=> ( pp(member(A,X2,A3))
=> ( pp(member(A,Y,A3))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,X2),bot_bot(set(A))))),aa(set(A),set(A),insert(A,Y),bot_bot(set(A)))))),aa(set(A),nat,finite_card(A),A3))) ) ) ) ).
% card_Diff2_less
tff(fact_5507_card__Diff1__less__iff,axiom,
! [A: $tType,A3: set(A),X2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))))),aa(set(A),nat,finite_card(A),A3)))
<=> ( finite_finite(A,A3)
& pp(member(A,X2,A3)) ) ) ).
% card_Diff1_less_iff
tff(fact_5508_card__Diff__singleton__if,axiom,
! [A: $tType,X2: A,A3: set(A)] :
( ( pp(member(A,X2,A3))
=> ( aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,X2),bot_bot(set(A))))) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(set(A),nat,finite_card(A),A3)),one_one(nat)) ) )
& ( ~ pp(member(A,X2,A3))
=> ( aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,X2),bot_bot(set(A))))) = aa(set(A),nat,finite_card(A),A3) ) ) ) ).
% card_Diff_singleton_if
tff(fact_5509_card__Diff__singleton,axiom,
! [A: $tType,X2: A,A3: set(A)] :
( pp(member(A,X2,A3))
=> ( aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,X2),bot_bot(set(A))))) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(set(A),nat,finite_card(A),A3)),one_one(nat)) ) ) ).
% card_Diff_singleton
tff(fact_5510_sum_Odelta__remove,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [S: set(B),A2: B,B2: fun(B,A),C2: fun(B,A)] :
( finite_finite(B,S)
=> ( ( pp(member(B,A2,S))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aa(fun(B,A),fun(B,A),aa(fun(B,A),fun(fun(B,A),fun(B,A)),aTP_Lamp_ni(B,fun(fun(B,A),fun(fun(B,A),fun(B,A))),A2),B2),C2)),S) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(B,A,B2,A2)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),C2),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),S),aa(set(B),set(B),insert(B,A2),bot_bot(set(B)))))) ) )
& ( ~ pp(member(B,A2,S))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aa(fun(B,A),fun(B,A),aa(fun(B,A),fun(fun(B,A),fun(B,A)),aTP_Lamp_ni(B,fun(fun(B,A),fun(fun(B,A),fun(B,A))),A2),B2),C2)),S) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),C2),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),S),aa(set(B),set(B),insert(B,A2),bot_bot(set(B))))) ) ) ) ) ) ).
% sum.delta_remove
tff(fact_5511_prod_Odelta__remove,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [S: set(B),A2: B,B2: fun(B,A),C2: fun(B,A)] :
( finite_finite(B,S)
=> ( ( pp(member(B,A2,S))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),aa(fun(B,A),fun(B,A),aa(fun(B,A),fun(fun(B,A),fun(B,A)),aTP_Lamp_nj(B,fun(fun(B,A),fun(fun(B,A),fun(B,A))),A2),B2),C2)),S) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(B,A,B2,A2)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),C2),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),S),aa(set(B),set(B),insert(B,A2),bot_bot(set(B)))))) ) )
& ( ~ pp(member(B,A2,S))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),aa(fun(B,A),fun(B,A),aa(fun(B,A),fun(fun(B,A),fun(B,A)),aTP_Lamp_nj(B,fun(fun(B,A),fun(fun(B,A),fun(B,A))),A2),B2),C2)),S) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),C2),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),S),aa(set(B),set(B),insert(B,A2),bot_bot(set(B))))) ) ) ) ) ) ).
% prod.delta_remove
tff(fact_5512_member__le__sum,axiom,
! [B: $tType,C: $tType] :
( ( ordere6911136660526730532id_add(B)
& semiring_1(B) )
=> ! [I: C,A3: set(C),F2: fun(C,B)] :
( pp(member(C,I,A3))
=> ( ! [X3: C] :
( pp(member(C,X3,aa(set(C),set(C),aa(set(C),fun(set(C),set(C)),minus_minus(set(C)),A3),aa(set(C),set(C),insert(C,I),bot_bot(set(C))))))
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),zero_zero(B)),aa(C,B,F2,X3))) )
=> ( finite_finite(C,A3)
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),aa(C,B,F2,I)),aa(set(C),B,aa(fun(C,B),fun(set(C),B),groups7311177749621191930dd_sum(C,B),F2),A3))) ) ) ) ) ).
% member_le_sum
tff(fact_5513_sum__bounded__above__divide,axiom,
! [B: $tType,A: $tType] :
( linordered_field(A)
=> ! [A3: set(B),F2: fun(B,A),K5: A] :
( ! [I3: B] :
( pp(member(B,I3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,I3)),aa(A,A,aa(A,fun(A,A),divide_divide(A),K5),aa(nat,A,semiring_1_of_nat(A),aa(set(B),nat,finite_card(B),A3))))) )
=> ( finite_finite(B,A3)
=> ( ( A3 != bot_bot(set(B)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),A3)),K5)) ) ) ) ) ).
% sum_bounded_above_divide
tff(fact_5514_prod__diff1,axiom,
! [A: $tType,B: $tType] :
( semidom_divide(A)
=> ! [A3: set(B),F2: fun(B,A),A2: B] :
( finite_finite(B,A3)
=> ( ( aa(B,A,F2,A2) != zero_zero(A) )
=> ( ( pp(member(B,A2,A3))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),F2),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),A3),aa(set(B),set(B),insert(B,A2),bot_bot(set(B))))) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),F2),A3)),aa(B,A,F2,A2)) ) )
& ( ~ pp(member(B,A2,A3))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),F2),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),A3),aa(set(B),set(B),insert(B,A2),bot_bot(set(B))))) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),F2),A3) ) ) ) ) ) ) ).
% prod_diff1
tff(fact_5515_sinh__zero__iff,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] :
( ( sinh(A,X2) = zero_zero(A) )
<=> pp(member(A,aa(A,A,exp(A),X2),aa(set(A),set(A),insert(A,one_one(A)),aa(set(A),set(A),insert(A,aa(A,A,uminus_uminus(A),one_one(A))),bot_bot(set(A)))))) ) ) ).
% sinh_zero_iff
tff(fact_5516_and__int_Opinduct,axiom,
! [A0: int,A1: int,P: fun(int,fun(int,bool))] :
( pp(aa(product_prod(int,int),bool,accp(product_prod(int,int),bit_and_int_rel),aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),A0),A1)))
=> ( ! [K3: int,L2: int] :
( pp(aa(product_prod(int,int),bool,accp(product_prod(int,int),bit_and_int_rel),aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),K3),L2)))
=> ( ( ~ ( pp(member(int,K3,aa(set(int),set(int),insert(int,zero_zero(int)),aa(set(int),set(int),insert(int,aa(int,int,uminus_uminus(int),one_one(int))),bot_bot(set(int))))))
& pp(member(int,L2,aa(set(int),set(int),insert(int,zero_zero(int)),aa(set(int),set(int),insert(int,aa(int,int,uminus_uminus(int),one_one(int))),bot_bot(set(int)))))) )
=> pp(aa(int,bool,aa(int,fun(int,bool),P,aa(int,int,aa(int,fun(int,int),divide_divide(int),K3),aa(num,int,numeral_numeral(int),bit0(one2)))),aa(int,int,aa(int,fun(int,int),divide_divide(int),L2),aa(num,int,numeral_numeral(int),bit0(one2))))) )
=> pp(aa(int,bool,aa(int,fun(int,bool),P,K3),L2)) ) )
=> pp(aa(int,bool,aa(int,fun(int,bool),P,A0),A1)) ) ) ).
% and_int.pinduct
tff(fact_5517_and__int_Opelims,axiom,
! [X2: int,Xa: int,Y: int] :
( ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),X2),Xa) = Y )
=> ( pp(aa(product_prod(int,int),bool,accp(product_prod(int,int),bit_and_int_rel),aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),X2),Xa)))
=> ~ ( ( ( ( pp(member(int,X2,aa(set(int),set(int),insert(int,zero_zero(int)),aa(set(int),set(int),insert(int,aa(int,int,uminus_uminus(int),one_one(int))),bot_bot(set(int))))))
& pp(member(int,Xa,aa(set(int),set(int),insert(int,zero_zero(int)),aa(set(int),set(int),insert(int,aa(int,int,uminus_uminus(int),one_one(int))),bot_bot(set(int)))))) )
=> ( Y = aa(int,int,uminus_uminus(int),aa(bool,int,zero_neq_one_of_bool(int),fconj(aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),X2)),aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),Xa))))) ) )
& ( ~ ( pp(member(int,X2,aa(set(int),set(int),insert(int,zero_zero(int)),aa(set(int),set(int),insert(int,aa(int,int,uminus_uminus(int),one_one(int))),bot_bot(set(int))))))
& pp(member(int,Xa,aa(set(int),set(int),insert(int,zero_zero(int)),aa(set(int),set(int),insert(int,aa(int,int,uminus_uminus(int),one_one(int))),bot_bot(set(int)))))) )
=> ( Y = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(bool,int,zero_neq_one_of_bool(int),fconj(aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),X2)),aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),aa(num,int,numeral_numeral(int),bit0(one2))),Xa))))),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(int,int,aa(int,fun(int,int),divide_divide(int),X2),aa(num,int,numeral_numeral(int),bit0(one2)))),aa(int,int,aa(int,fun(int,int),divide_divide(int),Xa),aa(num,int,numeral_numeral(int),bit0(one2)))))) ) ) )
=> ~ pp(aa(product_prod(int,int),bool,accp(product_prod(int,int),bit_and_int_rel),aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),X2),Xa))) ) ) ) ).
% and_int.pelims
tff(fact_5518_infinite__imp__bij__betw,axiom,
! [A: $tType,A3: set(A),A2: A] :
( ~ finite_finite(A,A3)
=> ? [H3: fun(A,A)] : bij_betw(A,A,H3,A3,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,A2),bot_bot(set(A))))) ) ).
% infinite_imp_bij_betw
tff(fact_5519_folding__insort__key_Ofinite__set__strict__sorted,axiom,
! [A: $tType,B: $tType,Less_eq: fun(A,fun(A,bool)),Less: fun(A,fun(A,bool)),S: set(B),F2: fun(B,A),A3: set(B)] :
( folding_insort_key(A,B,Less_eq,Less,S,F2)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),A3),S))
=> ( finite_finite(B,A3)
=> ~ ! [L2: list(B)] :
( sorted_wrt(A,Less,aa(list(B),list(A),map(B,A,F2),L2))
=> ( ( aa(list(B),set(B),set2(B),L2) = A3 )
=> ( aa(list(B),nat,size_size(list(B)),L2) != aa(set(B),nat,finite_card(B),A3) ) ) ) ) ) ) ).
% folding_insort_key.finite_set_strict_sorted
tff(fact_5520_sum__diff1_H__aux,axiom,
! [B: $tType,A: $tType] :
( ab_group_add(B)
=> ! [F4: set(A),I5: set(A),F2: fun(A,B),I: A] :
( finite_finite(A,F4)
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(fun(A,bool),set(A),collect(A),aa(fun(A,B),fun(A,bool),aTP_Lamp_nk(set(A),fun(fun(A,B),fun(A,bool)),I5),F2))),F4))
=> ( ( pp(member(A,I,I5))
=> ( groups1027152243600224163dd_sum(A,B,F2,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),I5),aa(set(A),set(A),insert(A,I),bot_bot(set(A))))) = aa(B,B,aa(B,fun(B,B),minus_minus(B),groups1027152243600224163dd_sum(A,B,F2,I5)),aa(A,B,F2,I)) ) )
& ( ~ pp(member(A,I,I5))
=> ( groups1027152243600224163dd_sum(A,B,F2,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),I5),aa(set(A),set(A),insert(A,I),bot_bot(set(A))))) = groups1027152243600224163dd_sum(A,B,F2,I5) ) ) ) ) ) ) ).
% sum_diff1'_aux
tff(fact_5521_bit__0__eq,axiom,
! [A: $tType] :
( bit_semiring_bits(A)
=> ( bit_se5641148757651400278ts_bit(A,zero_zero(A)) = bot_bot(fun(nat,bool)) ) ) ).
% bit_0_eq
tff(fact_5522_lessThan__0,axiom,
aa(nat,set(nat),set_ord_lessThan(nat),zero_zero(nat)) = bot_bot(set(nat)) ).
% lessThan_0
tff(fact_5523_set__decode__zero,axiom,
nat_set_decode(zero_zero(nat)) = bot_bot(set(nat)) ).
% set_decode_zero
tff(fact_5524_set__encode__empty,axiom,
aa(set(nat),nat,nat_set_encode,bot_bot(set(nat))) = zero_zero(nat) ).
% set_encode_empty
tff(fact_5525_sum_Oempty_H,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_add(A)
=> ! [P2: fun(B,A)] : ( groups1027152243600224163dd_sum(B,A,P2,bot_bot(set(B))) = zero_zero(A) ) ) ).
% sum.empty'
tff(fact_5526_atLeastLessThan__singleton,axiom,
! [M: nat] : ( set_or7035219750837199246ssThan(nat,M,aa(nat,nat,suc,M)) = aa(set(nat),set(nat),insert(nat,M),bot_bot(set(nat))) ) ).
% atLeastLessThan_singleton
tff(fact_5527_atMost__0,axiom,
aa(nat,set(nat),set_ord_atMost(nat),zero_zero(nat)) = aa(set(nat),set(nat),insert(nat,zero_zero(nat)),bot_bot(set(nat))) ).
% atMost_0
tff(fact_5528_sum_Oinsert_H,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [I5: set(B),P2: fun(B,A),I: B] :
( finite_finite(B,aa(fun(B,bool),set(B),collect(B),aa(fun(B,A),fun(B,bool),aTP_Lamp_lh(set(B),fun(fun(B,A),fun(B,bool)),I5),P2)))
=> ( ( pp(member(B,I,I5))
=> ( groups1027152243600224163dd_sum(B,A,P2,aa(set(B),set(B),insert(B,I),I5)) = groups1027152243600224163dd_sum(B,A,P2,I5) ) )
& ( ~ pp(member(B,I,I5))
=> ( groups1027152243600224163dd_sum(B,A,P2,aa(set(B),set(B),insert(B,I),I5)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(B,A,P2,I)),groups1027152243600224163dd_sum(B,A,P2,I5)) ) ) ) ) ) ).
% sum.insert'
tff(fact_5529_bot__empty__eq2,axiom,
! [B: $tType,A: $tType,X: A,Xa2: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),bot_bot(fun(A,fun(B,bool))),X),Xa2))
<=> pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X),Xa2),bot_bot(set(product_prod(A,B))))) ) ).
% bot_empty_eq2
tff(fact_5530_bot__enat__def,axiom,
bot_bot(extended_enat) = zero_zero(extended_enat) ).
% bot_enat_def
tff(fact_5531_bot__nat__def,axiom,
bot_bot(nat) = zero_zero(nat) ).
% bot_nat_def
tff(fact_5532_sum_Onon__neutral_H,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(B,A),I5: set(B)] : ( groups1027152243600224163dd_sum(B,A,G,aa(fun(B,bool),set(B),collect(B),aa(set(B),fun(B,bool),aTP_Lamp_nl(fun(B,A),fun(set(B),fun(B,bool)),G),I5))) = groups1027152243600224163dd_sum(B,A,G,I5) ) ) ).
% sum.non_neutral'
tff(fact_5533_atLeastLessThan0,axiom,
! [M: nat] : ( set_or7035219750837199246ssThan(nat,M,zero_zero(nat)) = bot_bot(set(nat)) ) ).
% atLeastLessThan0
tff(fact_5534_lessThan__empty__iff,axiom,
! [N: nat] :
( ( aa(nat,set(nat),set_ord_lessThan(nat),N) = bot_bot(set(nat)) )
<=> ( N = zero_zero(nat) ) ) ).
% lessThan_empty_iff
tff(fact_5535_sum_Odistrib__triv_H,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [I5: set(B),G: fun(B,A),H: fun(B,A)] :
( finite_finite(B,I5)
=> ( groups1027152243600224163dd_sum(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_fm(fun(B,A),fun(fun(B,A),fun(B,A)),G),H),I5) = aa(A,A,aa(A,fun(A,A),plus_plus(A),groups1027152243600224163dd_sum(B,A,G,I5)),groups1027152243600224163dd_sum(B,A,H,I5)) ) ) ) ).
% sum.distrib_triv'
tff(fact_5536_folding__insort__key_Odistinct__if__distinct__map,axiom,
! [A: $tType,B: $tType,Less_eq: fun(A,fun(A,bool)),Less: fun(A,fun(A,bool)),S: set(B),F2: fun(B,A),Xs: list(B)] :
( folding_insort_key(A,B,Less_eq,Less,S,F2)
=> ( distinct(A,aa(list(B),list(A),map(B,A,F2),Xs))
=> distinct(B,Xs) ) ) ).
% folding_insort_key.distinct_if_distinct_map
tff(fact_5537_sum_Omono__neutral__cong__right_H,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [S: set(B),T6: set(B),G: fun(B,A),H: fun(B,A)] :
( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),S),T6))
=> ( ! [X3: B] :
( pp(member(B,X3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),T6),S)))
=> ( aa(B,A,G,X3) = zero_zero(A) ) )
=> ( ! [X3: B] :
( pp(member(B,X3,S))
=> ( aa(B,A,G,X3) = aa(B,A,H,X3) ) )
=> ( groups1027152243600224163dd_sum(B,A,G,T6) = groups1027152243600224163dd_sum(B,A,H,S) ) ) ) ) ) ).
% sum.mono_neutral_cong_right'
tff(fact_5538_sum_Omono__neutral__cong__left_H,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [S: set(B),T6: set(B),H: fun(B,A),G: fun(B,A)] :
( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),S),T6))
=> ( ! [I3: B] :
( pp(member(B,I3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),T6),S)))
=> ( aa(B,A,H,I3) = zero_zero(A) ) )
=> ( ! [X3: B] :
( pp(member(B,X3,S))
=> ( aa(B,A,G,X3) = aa(B,A,H,X3) ) )
=> ( groups1027152243600224163dd_sum(B,A,G,S) = groups1027152243600224163dd_sum(B,A,H,T6) ) ) ) ) ) ).
% sum.mono_neutral_cong_left'
tff(fact_5539_sum_Omono__neutral__right_H,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [S: set(B),T6: set(B),G: fun(B,A)] :
( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),S),T6))
=> ( ! [X3: B] :
( pp(member(B,X3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),T6),S)))
=> ( aa(B,A,G,X3) = zero_zero(A) ) )
=> ( groups1027152243600224163dd_sum(B,A,G,T6) = groups1027152243600224163dd_sum(B,A,G,S) ) ) ) ) ).
% sum.mono_neutral_right'
tff(fact_5540_sum_Omono__neutral__left_H,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [S: set(B),T6: set(B),G: fun(B,A)] :
( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),S),T6))
=> ( ! [X3: B] :
( pp(member(B,X3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),T6),S)))
=> ( aa(B,A,G,X3) = zero_zero(A) ) )
=> ( groups1027152243600224163dd_sum(B,A,G,S) = groups1027152243600224163dd_sum(B,A,G,T6) ) ) ) ) ).
% sum.mono_neutral_left'
tff(fact_5541_sum_Odistrib_H,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [I5: set(B),G: fun(B,A),H: fun(B,A)] :
( finite_finite(B,aa(fun(B,bool),set(B),collect(B),aa(fun(B,A),fun(B,bool),aTP_Lamp_lh(set(B),fun(fun(B,A),fun(B,bool)),I5),G)))
=> ( finite_finite(B,aa(fun(B,bool),set(B),collect(B),aa(fun(B,A),fun(B,bool),aTP_Lamp_lh(set(B),fun(fun(B,A),fun(B,bool)),I5),H)))
=> ( groups1027152243600224163dd_sum(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_fm(fun(B,A),fun(fun(B,A),fun(B,A)),G),H),I5) = aa(A,A,aa(A,fun(A,A),plus_plus(A),groups1027152243600224163dd_sum(B,A,G,I5)),groups1027152243600224163dd_sum(B,A,H,I5)) ) ) ) ) ).
% sum.distrib'
tff(fact_5542_sum_OG__def,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_add(A)
=> ! [I5: set(B),P2: fun(B,A)] :
( ( finite_finite(B,aa(fun(B,bool),set(B),collect(B),aa(fun(B,A),fun(B,bool),aTP_Lamp_lh(set(B),fun(fun(B,A),fun(B,bool)),I5),P2)))
=> ( groups1027152243600224163dd_sum(B,A,P2,I5) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),P2),aa(fun(B,bool),set(B),collect(B),aa(fun(B,A),fun(B,bool),aTP_Lamp_lh(set(B),fun(fun(B,A),fun(B,bool)),I5),P2))) ) )
& ( ~ finite_finite(B,aa(fun(B,bool),set(B),collect(B),aa(fun(B,A),fun(B,bool),aTP_Lamp_lh(set(B),fun(fun(B,A),fun(B,bool)),I5),P2)))
=> ( groups1027152243600224163dd_sum(B,A,P2,I5) = zero_zero(A) ) ) ) ) ).
% sum.G_def
tff(fact_5543_atLeastLessThanSuc,axiom,
! [M: nat,N: nat] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( set_or7035219750837199246ssThan(nat,M,aa(nat,nat,suc,N)) = aa(set(nat),set(nat),insert(nat,N),set_or7035219750837199246ssThan(nat,M,N)) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( set_or7035219750837199246ssThan(nat,M,aa(nat,nat,suc,N)) = bot_bot(set(nat)) ) ) ) ).
% atLeastLessThanSuc
tff(fact_5544_atLeast1__lessThan__eq__remove0,axiom,
! [N: nat] : ( set_or7035219750837199246ssThan(nat,aa(nat,nat,suc,zero_zero(nat)),N) = aa(set(nat),set(nat),aa(set(nat),fun(set(nat),set(nat)),minus_minus(set(nat)),aa(nat,set(nat),set_ord_lessThan(nat),N)),aa(set(nat),set(nat),insert(nat,zero_zero(nat)),bot_bot(set(nat)))) ) ).
% atLeast1_lessThan_eq_remove0
tff(fact_5545_atLeast1__atMost__eq__remove0,axiom,
! [N: nat] : ( set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,zero_zero(nat)),N) = aa(set(nat),set(nat),aa(set(nat),fun(set(nat),set(nat)),minus_minus(set(nat)),aa(nat,set(nat),set_ord_atMost(nat),N)),aa(set(nat),set(nat),insert(nat,zero_zero(nat)),bot_bot(set(nat)))) ) ).
% atLeast1_atMost_eq_remove0
tff(fact_5546_atLeastLessThan__nat__numeral,axiom,
! [M: nat,K: num] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),pred_numeral(K)))
=> ( set_or7035219750837199246ssThan(nat,M,aa(num,nat,numeral_numeral(nat),K)) = aa(set(nat),set(nat),insert(nat,pred_numeral(K)),set_or7035219750837199246ssThan(nat,M,pred_numeral(K))) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),pred_numeral(K)))
=> ( set_or7035219750837199246ssThan(nat,M,aa(num,nat,numeral_numeral(nat),K)) = bot_bot(set(nat)) ) ) ) ).
% atLeastLessThan_nat_numeral
tff(fact_5547_dependent__nat__choice,axiom,
! [A: $tType,P: fun(nat,fun(A,bool)),Q: fun(nat,fun(A,fun(A,bool)))] :
( ? [X_1: A] : pp(aa(A,bool,aa(nat,fun(A,bool),P,zero_zero(nat)),X_1))
=> ( ! [X3: A,N3: nat] :
( pp(aa(A,bool,aa(nat,fun(A,bool),P,N3),X3))
=> ? [Y4: A] :
( pp(aa(A,bool,aa(nat,fun(A,bool),P,aa(nat,nat,suc,N3)),Y4))
& pp(aa(A,bool,aa(A,fun(A,bool),aa(nat,fun(A,fun(A,bool)),Q,N3),X3),Y4)) ) )
=> ? [F3: fun(nat,A)] :
! [N7: nat] :
( pp(aa(A,bool,aa(nat,fun(A,bool),P,N7),aa(nat,A,F3,N7)))
& pp(aa(A,bool,aa(A,fun(A,bool),aa(nat,fun(A,fun(A,bool)),Q,N7),aa(nat,A,F3,N7)),aa(nat,A,F3,aa(nat,nat,suc,N7)))) ) ) ) ).
% dependent_nat_choice
tff(fact_5548_sum__diff1_H,axiom,
! [B: $tType,A: $tType] :
( ab_group_add(B)
=> ! [I5: set(A),F2: fun(A,B),I: A] :
( finite_finite(A,aa(fun(A,bool),set(A),collect(A),aa(fun(A,B),fun(A,bool),aTP_Lamp_nk(set(A),fun(fun(A,B),fun(A,bool)),I5),F2)))
=> ( ( pp(member(A,I,I5))
=> ( groups1027152243600224163dd_sum(A,B,F2,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),I5),aa(set(A),set(A),insert(A,I),bot_bot(set(A))))) = aa(B,B,aa(B,fun(B,B),minus_minus(B),groups1027152243600224163dd_sum(A,B,F2,I5)),aa(A,B,F2,I)) ) )
& ( ~ pp(member(A,I,I5))
=> ( groups1027152243600224163dd_sum(A,B,F2,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),I5),aa(set(A),set(A),insert(A,I),bot_bot(set(A))))) = groups1027152243600224163dd_sum(A,B,F2,I5) ) ) ) ) ) ).
% sum_diff1'
tff(fact_5549_folding__insort__key_Osorted__key__list__of__set__unique,axiom,
! [A: $tType,B: $tType,Less_eq: fun(A,fun(A,bool)),Less: fun(A,fun(A,bool)),S: set(B),F2: fun(B,A),A3: set(B),L: list(B)] :
( folding_insort_key(A,B,Less_eq,Less,S,F2)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),A3),S))
=> ( finite_finite(B,A3)
=> ( ( sorted_wrt(A,Less,aa(list(B),list(A),map(B,A,F2),L))
& ( aa(list(B),set(B),set2(B),L) = A3 )
& ( aa(list(B),nat,size_size(list(B)),L) = aa(set(B),nat,finite_card(B),A3) ) )
<=> ( aa(set(B),list(B),aa(fun(B,A),fun(set(B),list(B)),sorted8670434370408473282of_set(A,B,Less_eq),F2),A3) = L ) ) ) ) ) ).
% folding_insort_key.sorted_key_list_of_set_unique
tff(fact_5550_folding__insort__key_Oidem__if__sorted__distinct,axiom,
! [A: $tType,B: $tType,Less_eq: fun(A,fun(A,bool)),Less: fun(A,fun(A,bool)),S: set(B),F2: fun(B,A),Xs: list(B)] :
( folding_insort_key(A,B,Less_eq,Less,S,F2)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),aa(list(B),set(B),set2(B),Xs)),S))
=> ( sorted_wrt(A,Less_eq,aa(list(B),list(A),map(B,A,F2),Xs))
=> ( distinct(B,Xs)
=> ( aa(set(B),list(B),aa(fun(B,A),fun(set(B),list(B)),sorted8670434370408473282of_set(A,B,Less_eq),F2),aa(list(B),set(B),set2(B),Xs)) = Xs ) ) ) ) ) ).
% folding_insort_key.idem_if_sorted_distinct
tff(fact_5551_distinct__union,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] :
( distinct(A,union(A,Xs,Ys))
<=> distinct(A,Ys) ) ).
% distinct_union
tff(fact_5552_linorder_Osorted__key__list__of__set_Ocong,axiom,
! [B: $tType,A: $tType,Less_eq: fun(A,fun(A,bool))] : ( sorted8670434370408473282of_set(A,B,Less_eq) = sorted8670434370408473282of_set(A,B,Less_eq) ) ).
% linorder.sorted_key_list_of_set.cong
tff(fact_5553_folding__insort__key_Osorted__key__list__of__set__inject,axiom,
! [A: $tType,B: $tType,Less_eq: fun(A,fun(A,bool)),Less: fun(A,fun(A,bool)),S: set(B),F2: fun(B,A),A3: set(B),B4: set(B)] :
( folding_insort_key(A,B,Less_eq,Less,S,F2)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),A3),S))
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),B4),S))
=> ( ( aa(set(B),list(B),aa(fun(B,A),fun(set(B),list(B)),sorted8670434370408473282of_set(A,B,Less_eq),F2),A3) = aa(set(B),list(B),aa(fun(B,A),fun(set(B),list(B)),sorted8670434370408473282of_set(A,B,Less_eq),F2),B4) )
=> ( finite_finite(B,A3)
=> ( finite_finite(B,B4)
=> ( A3 = B4 ) ) ) ) ) ) ) ).
% folding_insort_key.sorted_key_list_of_set_inject
tff(fact_5554_folding__insort__key_Oset__sorted__key__list__of__set,axiom,
! [A: $tType,B: $tType,Less_eq: fun(A,fun(A,bool)),Less: fun(A,fun(A,bool)),S: set(B),F2: fun(B,A),A3: set(B)] :
( folding_insort_key(A,B,Less_eq,Less,S,F2)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),A3),S))
=> ( finite_finite(B,A3)
=> ( aa(list(B),set(B),set2(B),aa(set(B),list(B),aa(fun(B,A),fun(set(B),list(B)),sorted8670434370408473282of_set(A,B,Less_eq),F2),A3)) = A3 ) ) ) ) ).
% folding_insort_key.set_sorted_key_list_of_set
tff(fact_5555_folding__insort__key_Olength__sorted__key__list__of__set,axiom,
! [A: $tType,B: $tType,Less_eq: fun(A,fun(A,bool)),Less: fun(A,fun(A,bool)),S: set(B),F2: fun(B,A),A3: set(B)] :
( folding_insort_key(A,B,Less_eq,Less,S,F2)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),A3),S))
=> ( aa(list(B),nat,size_size(list(B)),aa(set(B),list(B),aa(fun(B,A),fun(set(B),list(B)),sorted8670434370408473282of_set(A,B,Less_eq),F2),A3)) = aa(set(B),nat,finite_card(B),A3) ) ) ) ).
% folding_insort_key.length_sorted_key_list_of_set
tff(fact_5556_folding__insort__key_Odistinct__sorted__key__list__of__set,axiom,
! [A: $tType,B: $tType,Less_eq: fun(A,fun(A,bool)),Less: fun(A,fun(A,bool)),S: set(B),F2: fun(B,A),A3: set(B)] :
( folding_insort_key(A,B,Less_eq,Less,S,F2)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),A3),S))
=> distinct(A,aa(list(B),list(A),map(B,A,F2),aa(set(B),list(B),aa(fun(B,A),fun(set(B),list(B)),sorted8670434370408473282of_set(A,B,Less_eq),F2),A3))) ) ) ).
% folding_insort_key.distinct_sorted_key_list_of_set
tff(fact_5557_folding__insort__key_Osorted__sorted__key__list__of__set,axiom,
! [A: $tType,B: $tType,Less_eq: fun(A,fun(A,bool)),Less: fun(A,fun(A,bool)),S: set(B),F2: fun(B,A),A3: set(B)] :
( folding_insort_key(A,B,Less_eq,Less,S,F2)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),A3),S))
=> sorted_wrt(A,Less_eq,aa(list(B),list(A),map(B,A,F2),aa(set(B),list(B),aa(fun(B,A),fun(set(B),list(B)),sorted8670434370408473282of_set(A,B,Less_eq),F2),A3))) ) ) ).
% folding_insort_key.sorted_sorted_key_list_of_set
tff(fact_5558_folding__insort__key_Ostrict__sorted__key__list__of__set,axiom,
! [A: $tType,B: $tType,Less_eq: fun(A,fun(A,bool)),Less: fun(A,fun(A,bool)),S: set(B),F2: fun(B,A),A3: set(B)] :
( folding_insort_key(A,B,Less_eq,Less,S,F2)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),A3),S))
=> sorted_wrt(A,Less,aa(list(B),list(A),map(B,A,F2),aa(set(B),list(B),aa(fun(B,A),fun(set(B),list(B)),sorted8670434370408473282of_set(A,B,Less_eq),F2),A3))) ) ) ).
% folding_insort_key.strict_sorted_key_list_of_set
tff(fact_5559_folding__insort__key_Osorted__key__list__of__set__insert__remove,axiom,
! [A: $tType,B: $tType,Less_eq: fun(A,fun(A,bool)),Less: fun(A,fun(A,bool)),S: set(B),F2: fun(B,A),X2: B,A3: set(B)] :
( folding_insort_key(A,B,Less_eq,Less,S,F2)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),aa(set(B),set(B),insert(B,X2),A3)),S))
=> ( finite_finite(B,A3)
=> ( aa(set(B),list(B),aa(fun(B,A),fun(set(B),list(B)),sorted8670434370408473282of_set(A,B,Less_eq),F2),aa(set(B),set(B),insert(B,X2),A3)) = aa(list(B),list(B),aa(B,fun(list(B),list(B)),aa(fun(B,A),fun(B,fun(list(B),list(B))),insort_key(A,B,Less_eq),F2),X2),aa(set(B),list(B),aa(fun(B,A),fun(set(B),list(B)),sorted8670434370408473282of_set(A,B,Less_eq),F2),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),A3),aa(set(B),set(B),insert(B,X2),bot_bot(set(B)))))) ) ) ) ) ).
% folding_insort_key.sorted_key_list_of_set_insert_remove
tff(fact_5560_folding__insort__key_Osorted__key__list__of__set__insert,axiom,
! [A: $tType,B: $tType,Less_eq: fun(A,fun(A,bool)),Less: fun(A,fun(A,bool)),S: set(B),F2: fun(B,A),X2: B,A3: set(B)] :
( folding_insort_key(A,B,Less_eq,Less,S,F2)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),aa(set(B),set(B),insert(B,X2),A3)),S))
=> ( finite_finite(B,A3)
=> ( ~ pp(member(B,X2,A3))
=> ( aa(set(B),list(B),aa(fun(B,A),fun(set(B),list(B)),sorted8670434370408473282of_set(A,B,Less_eq),F2),aa(set(B),set(B),insert(B,X2),A3)) = aa(list(B),list(B),aa(B,fun(list(B),list(B)),aa(fun(B,A),fun(B,fun(list(B),list(B))),insort_key(A,B,Less_eq),F2),X2),aa(set(B),list(B),aa(fun(B,A),fun(set(B),list(B)),sorted8670434370408473282of_set(A,B,Less_eq),F2),A3)) ) ) ) ) ) ).
% folding_insort_key.sorted_key_list_of_set_insert
tff(fact_5561_folding__insort__key_Osorted__key__list__of__set__remove,axiom,
! [A: $tType,B: $tType,Less_eq: fun(A,fun(A,bool)),Less: fun(A,fun(A,bool)),S: set(B),F2: fun(B,A),X2: B,A3: set(B)] :
( folding_insort_key(A,B,Less_eq,Less,S,F2)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),aa(set(B),set(B),insert(B,X2),A3)),S))
=> ( finite_finite(B,A3)
=> ( aa(set(B),list(B),aa(fun(B,A),fun(set(B),list(B)),sorted8670434370408473282of_set(A,B,Less_eq),F2),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),A3),aa(set(B),set(B),insert(B,X2),bot_bot(set(B))))) = remove1(B,X2,aa(set(B),list(B),aa(fun(B,A),fun(set(B),list(B)),sorted8670434370408473282of_set(A,B,Less_eq),F2),A3)) ) ) ) ) ).
% folding_insort_key.sorted_key_list_of_set_remove
tff(fact_5562_in__set__remove1,axiom,
! [A: $tType,A2: A,B2: A,Xs: list(A)] :
( ( A2 != B2 )
=> ( pp(member(A,A2,aa(list(A),set(A),set2(A),remove1(A,B2,Xs))))
<=> pp(member(A,A2,aa(list(A),set(A),set2(A),Xs))) ) ) ).
% in_set_remove1
tff(fact_5563_set__remove1__eq,axiom,
! [A: $tType,Xs: list(A),X2: A] :
( distinct(A,Xs)
=> ( aa(list(A),set(A),set2(A),remove1(A,X2,Xs)) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(list(A),set(A),set2(A),Xs)),aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))) ) ) ).
% set_remove1_eq
tff(fact_5564_distinct__remove1,axiom,
! [A: $tType,Xs: list(A),X2: A] :
( distinct(A,Xs)
=> distinct(A,remove1(A,X2,Xs)) ) ).
% distinct_remove1
tff(fact_5565_remove1__idem,axiom,
! [A: $tType,X2: A,Xs: list(A)] :
( ~ pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ( remove1(A,X2,Xs) = Xs ) ) ).
% remove1_idem
tff(fact_5566_notin__set__remove1,axiom,
! [A: $tType,X2: A,Xs: list(A),Y: A] :
( ~ pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ~ pp(member(A,X2,aa(list(A),set(A),set2(A),remove1(A,Y,Xs)))) ) ).
% notin_set_remove1
tff(fact_5567_remove1__commute,axiom,
! [A: $tType,X2: A,Y: A,Zs: list(A)] : ( remove1(A,X2,remove1(A,Y,Zs)) = remove1(A,Y,remove1(A,X2,Zs)) ) ).
% remove1_commute
tff(fact_5568_linorder_Oinsort__key_Ocong,axiom,
! [B: $tType,A: $tType,Less_eq: fun(A,fun(A,bool))] : ( insort_key(A,B,Less_eq) = insort_key(A,B,Less_eq) ) ).
% linorder.insort_key.cong
tff(fact_5569_set__remove1__subset,axiom,
! [A: $tType,X2: A,Xs: list(A)] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(list(A),set(A),set2(A),remove1(A,X2,Xs))),aa(list(A),set(A),set2(A),Xs))) ).
% set_remove1_subset
tff(fact_5570_sorted__remove1,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Xs: list(A),A2: A] :
( sorted_wrt(A,ord_less_eq(A),Xs)
=> sorted_wrt(A,ord_less_eq(A),remove1(A,A2,Xs)) ) ) ).
% sorted_remove1
tff(fact_5571_sorted__map__remove1,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [F2: fun(B,A),Xs: list(B),X2: B] :
( sorted_wrt(A,ord_less_eq(A),aa(list(B),list(A),map(B,A,F2),Xs))
=> sorted_wrt(A,ord_less_eq(A),aa(list(B),list(A),map(B,A,F2),remove1(B,X2,Xs))) ) ) ).
% sorted_map_remove1
tff(fact_5572_length__remove1,axiom,
! [A: $tType,X2: A,Xs: list(A)] :
( ( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ( aa(list(A),nat,size_size(list(A)),remove1(A,X2,Xs)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(list(A),nat,size_size(list(A)),Xs)),one_one(nat)) ) )
& ( ~ pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ( aa(list(A),nat,size_size(list(A)),remove1(A,X2,Xs)) = aa(list(A),nat,size_size(list(A)),Xs) ) ) ) ).
% length_remove1
tff(fact_5573_sum__list__map__remove1,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [X2: B,Xs: list(B),F2: fun(B,A)] :
( pp(member(B,X2,aa(list(B),set(B),set2(B),Xs)))
=> ( groups8242544230860333062m_list(A,aa(list(B),list(A),map(B,A,F2),Xs)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(B,A,F2,X2)),groups8242544230860333062m_list(A,aa(list(B),list(A),map(B,A,F2),remove1(B,X2,Xs)))) ) ) ) ).
% sum_list_map_remove1
tff(fact_5574_set__update__distinct,axiom,
! [A: $tType,Xs: list(A),N: nat,X2: A] :
( distinct(A,Xs)
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( aa(list(A),set(A),set2(A),list_update(A,Xs,N,X2)) = aa(set(A),set(A),insert(A,X2),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(list(A),set(A),set2(A),Xs)),aa(set(A),set(A),insert(A,aa(nat,A,nth(A,Xs),N)),bot_bot(set(A))))) ) ) ) ).
% set_update_distinct
tff(fact_5575_sorted__list__of__set_Osorted__key__list__of__set__unique,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),L: list(A)] :
( finite_finite(A,A3)
=> ( ( sorted_wrt(A,ord_less(A),L)
& ( aa(list(A),set(A),set2(A),L) = A3 )
& ( aa(list(A),nat,size_size(list(A)),L) = aa(set(A),nat,finite_card(A),A3) ) )
<=> ( aa(set(A),list(A),linord4507533701916653071of_set(A),A3) = L ) ) ) ) ).
% sorted_list_of_set.sorted_key_list_of_set_unique
tff(fact_5576_card__Pow,axiom,
! [A: $tType,A3: set(A)] :
( finite_finite(A,A3)
=> ( aa(set(set(A)),nat,finite_card(set(A)),pow2(A,A3)) = aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(set(A),nat,finite_card(A),A3)) ) ) ).
% card_Pow
tff(fact_5577_list__update__overwrite,axiom,
! [A: $tType,Xs: list(A),I: nat,X2: A,Y: A] : ( list_update(A,list_update(A,Xs,I,X2),I,Y) = list_update(A,Xs,I,Y) ) ).
% list_update_overwrite
tff(fact_5578_Pow__iff,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( pp(member(set(A),A3,pow2(A,B4)))
<=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4)) ) ).
% Pow_iff
tff(fact_5579_PowI,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> pp(member(set(A),A3,pow2(A,B4))) ) ).
% PowI
tff(fact_5580_length__list__update,axiom,
! [A: $tType,Xs: list(A),I: nat,X2: A] : ( aa(list(A),nat,size_size(list(A)),list_update(A,Xs,I,X2)) = aa(list(A),nat,size_size(list(A)),Xs) ) ).
% length_list_update
tff(fact_5581_list__update__id,axiom,
! [A: $tType,Xs: list(A),I: nat] : ( list_update(A,Xs,I,aa(nat,A,nth(A,Xs),I)) = Xs ) ).
% list_update_id
tff(fact_5582_nth__list__update__neq,axiom,
! [A: $tType,I: nat,J: nat,Xs: list(A),X2: A] :
( ( I != J )
=> ( aa(nat,A,nth(A,list_update(A,Xs,I,X2)),J) = aa(nat,A,nth(A,Xs),J) ) ) ).
% nth_list_update_neq
tff(fact_5583_sorted__list__of__set__range,axiom,
! [M: nat,N: nat] : ( aa(set(nat),list(nat),linord4507533701916653071of_set(nat),set_or7035219750837199246ssThan(nat,M,N)) = upt(M,N) ) ).
% sorted_list_of_set_range
tff(fact_5584_list__update__beyond,axiom,
! [A: $tType,Xs: list(A),I: nat,X2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(list(A),nat,size_size(list(A)),Xs)),I))
=> ( list_update(A,Xs,I,X2) = Xs ) ) ).
% list_update_beyond
tff(fact_5585_sorted__list__of__set_Oset__sorted__key__list__of__set,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A)] :
( finite_finite(A,A3)
=> ( aa(list(A),set(A),set2(A),aa(set(A),list(A),linord4507533701916653071of_set(A),A3)) = A3 ) ) ) ).
% sorted_list_of_set.set_sorted_key_list_of_set
tff(fact_5586_sorted__list__of__set_Olength__sorted__key__list__of__set,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A)] : ( aa(list(A),nat,size_size(list(A)),aa(set(A),list(A),linord4507533701916653071of_set(A),A3)) = aa(set(A),nat,finite_card(A),A3) ) ) ).
% sorted_list_of_set.length_sorted_key_list_of_set
tff(fact_5587_nth__list__update__eq,axiom,
! [A: $tType,I: nat,Xs: list(A),X2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( aa(nat,A,nth(A,list_update(A,Xs,I,X2)),I) = X2 ) ) ).
% nth_list_update_eq
tff(fact_5588_set__swap,axiom,
! [A: $tType,I: nat,Xs: list(A),J: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( aa(list(A),set(A),set2(A),list_update(A,list_update(A,Xs,I,aa(nat,A,nth(A,Xs),J)),J,aa(nat,A,nth(A,Xs),I))) = aa(list(A),set(A),set2(A),Xs) ) ) ) ).
% set_swap
tff(fact_5589_distinct__swap,axiom,
! [A: $tType,I: nat,Xs: list(A),J: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( distinct(A,list_update(A,list_update(A,Xs,I,aa(nat,A,nth(A,Xs),J)),J,aa(nat,A,nth(A,Xs),I)))
<=> distinct(A,Xs) ) ) ) ).
% distinct_swap
tff(fact_5590_Pow__mono,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> pp(aa(set(set(A)),bool,aa(set(set(A)),fun(set(set(A)),bool),ord_less_eq(set(set(A))),pow2(A,A3)),pow2(A,B4))) ) ).
% Pow_mono
tff(fact_5591_PowD,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( pp(member(set(A),A3,pow2(A,B4)))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4)) ) ).
% PowD
tff(fact_5592_Pow__def,axiom,
! [A: $tType,A3: set(A)] : ( pow2(A,A3) = aa(fun(set(A),bool),set(set(A)),collect(set(A)),aTP_Lamp_mb(set(A),fun(set(A),bool),A3)) ) ).
% Pow_def
tff(fact_5593_list__update__swap,axiom,
! [A: $tType,I: nat,I7: nat,Xs: list(A),X2: A,X5: A] :
( ( I != I7 )
=> ( list_update(A,list_update(A,Xs,I,X2),I7,X5) = list_update(A,list_update(A,Xs,I7,X5),I,X2) ) ) ).
% list_update_swap
tff(fact_5594_sorted__list__of__set_Osorted__key__list__of__set__inject,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),B4: set(A)] :
( ( aa(set(A),list(A),linord4507533701916653071of_set(A),A3) = aa(set(A),list(A),linord4507533701916653071of_set(A),B4) )
=> ( finite_finite(A,A3)
=> ( finite_finite(A,B4)
=> ( A3 = B4 ) ) ) ) ) ).
% sorted_list_of_set.sorted_key_list_of_set_inject
tff(fact_5595_map__update,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),Xs: list(B),K: nat,Y: B] : ( aa(list(B),list(A),map(B,A,F2),list_update(B,Xs,K,Y)) = list_update(A,aa(list(B),list(A),map(B,A,F2),Xs),K,aa(B,A,F2,Y)) ) ).
% map_update
tff(fact_5596_sorted__list__of__set_Odistinct__sorted__key__list__of__set,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A)] : distinct(A,aa(set(A),list(A),linord4507533701916653071of_set(A),A3)) ) ).
% sorted_list_of_set.distinct_sorted_key_list_of_set
tff(fact_5597_set__update__subsetI,axiom,
! [A: $tType,Xs: list(A),A3: set(A),X2: A,I: nat] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(list(A),set(A),set2(A),Xs)),A3))
=> ( pp(member(A,X2,A3))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(list(A),set(A),set2(A),list_update(A,Xs,I,X2))),A3)) ) ) ).
% set_update_subsetI
tff(fact_5598_sorted__list__of__set_Osorted__sorted__key__list__of__set,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A)] : sorted_wrt(A,ord_less_eq(A),aa(set(A),list(A),linord4507533701916653071of_set(A),A3)) ) ).
% sorted_list_of_set.sorted_sorted_key_list_of_set
tff(fact_5599_sorted__list__of__set_Ostrict__sorted__key__list__of__set,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A)] : sorted_wrt(A,ord_less(A),aa(set(A),list(A),linord4507533701916653071of_set(A),A3)) ) ).
% sorted_list_of_set.strict_sorted_key_list_of_set
tff(fact_5600_set__update__subset__insert,axiom,
! [A: $tType,Xs: list(A),I: nat,X2: A] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(list(A),set(A),set2(A),list_update(A,Xs,I,X2))),aa(set(A),set(A),insert(A,X2),aa(list(A),set(A),set2(A),Xs)))) ).
% set_update_subset_insert
tff(fact_5601_set__update__memI,axiom,
! [A: $tType,N: nat,Xs: list(A),X2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(list(A),nat,size_size(list(A)),Xs)))
=> pp(member(A,X2,aa(list(A),set(A),set2(A),list_update(A,Xs,N,X2)))) ) ).
% set_update_memI
tff(fact_5602_list__update__same__conv,axiom,
! [A: $tType,I: nat,Xs: list(A),X2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( ( list_update(A,Xs,I,X2) = Xs )
<=> ( aa(nat,A,nth(A,Xs),I) = X2 ) ) ) ).
% list_update_same_conv
tff(fact_5603_nth__list__update,axiom,
! [A: $tType,I: nat,Xs: list(A),J: nat,X2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( ( ( I = J )
=> ( aa(nat,A,nth(A,list_update(A,Xs,I,X2)),J) = X2 ) )
& ( ( I != J )
=> ( aa(nat,A,nth(A,list_update(A,Xs,I,X2)),J) = aa(nat,A,nth(A,Xs),J) ) ) ) ) ).
% nth_list_update
tff(fact_5604_binomial__def,axiom,
! [N: nat,K: nat] : ( aa(nat,nat,binomial(N),K) = aa(set(set(nat)),nat,finite_card(set(nat)),aa(fun(set(nat),bool),set(set(nat)),collect(set(nat)),aa(nat,fun(set(nat),bool),aTP_Lamp_nm(nat,fun(nat,fun(set(nat),bool)),N),K))) ) ).
% binomial_def
tff(fact_5605_sorted__list__of__set_Oidem__if__sorted__distinct,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Xs: list(A)] :
( sorted_wrt(A,ord_less_eq(A),Xs)
=> ( distinct(A,Xs)
=> ( aa(set(A),list(A),linord4507533701916653071of_set(A),aa(list(A),set(A),set2(A),Xs)) = Xs ) ) ) ) ).
% sorted_list_of_set.idem_if_sorted_distinct
tff(fact_5606_sum__list__update,axiom,
! [A: $tType] :
( ordere1170586879665033532d_diff(A)
=> ! [K: nat,Xs: list(A),X2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),K),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( groups8242544230860333062m_list(A,list_update(A,Xs,K,X2)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),groups8242544230860333062m_list(A,Xs)),X2)),aa(nat,A,nth(A,Xs),K)) ) ) ) ).
% sum_list_update
tff(fact_5607_distinct__list__update,axiom,
! [A: $tType,Xs: list(A),A2: A,I: nat] :
( distinct(A,Xs)
=> ( ~ pp(member(A,A2,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(list(A),set(A),set2(A),Xs)),aa(set(A),set(A),insert(A,aa(nat,A,nth(A,Xs),I)),bot_bot(set(A))))))
=> distinct(A,list_update(A,Xs,I,A2)) ) ) ).
% distinct_list_update
tff(fact_5608_sorted__list__of__set_Osorted__key__list__of__set__remove,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),X2: A] :
( finite_finite(A,A3)
=> ( aa(set(A),list(A),linord4507533701916653071of_set(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,X2),bot_bot(set(A))))) = remove1(A,X2,aa(set(A),list(A),linord4507533701916653071of_set(A),A3)) ) ) ) ).
% sorted_list_of_set.sorted_key_list_of_set_remove
tff(fact_5609_Suc__0__div__numeral,axiom,
! [K: num] : ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,suc,zero_zero(nat))),aa(num,nat,numeral_numeral(nat),K)) = aa(product_prod(nat,nat),nat,product_fst(nat,nat),unique8689654367752047608divmod(nat,one2,K)) ) ).
% Suc_0_div_numeral
tff(fact_5610_Suc__0__mod__numeral,axiom,
! [K: num] : ( modulo_modulo(nat,aa(nat,nat,suc,zero_zero(nat)),aa(num,nat,numeral_numeral(nat),K)) = aa(product_prod(nat,nat),nat,product_snd(nat,nat),unique8689654367752047608divmod(nat,one2,K)) ) ).
% Suc_0_mod_numeral
tff(fact_5611_drop__bit__numeral__minus__bit1,axiom,
! [L: num,K: num] : ( bit_se4197421643247451524op_bit(int,aa(num,nat,numeral_numeral(nat),L),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,K)))) = bit_se4197421643247451524op_bit(int,pred_numeral(L),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),inc(K)))) ) ).
% drop_bit_numeral_minus_bit1
tff(fact_5612_drop__bit__of__0,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat] : ( bit_se4197421643247451524op_bit(A,N,zero_zero(A)) = zero_zero(A) ) ) ).
% drop_bit_of_0
tff(fact_5613_drop__bit__drop__bit,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [M: nat,N: nat,A2: A] : ( bit_se4197421643247451524op_bit(A,M,bit_se4197421643247451524op_bit(A,N,A2)) = bit_se4197421643247451524op_bit(A,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N),A2) ) ) ).
% drop_bit_drop_bit
tff(fact_5614_drop__bit__and,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A,B2: A] : ( bit_se4197421643247451524op_bit(A,N,aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),bit_se4197421643247451524op_bit(A,N,A2)),bit_se4197421643247451524op_bit(A,N,B2)) ) ) ).
% drop_bit_and
tff(fact_5615_drop__bit__or,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A,B2: A] : ( bit_se4197421643247451524op_bit(A,N,aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),bit_se1065995026697491101ons_or(A),bit_se4197421643247451524op_bit(A,N,A2)),bit_se4197421643247451524op_bit(A,N,B2)) ) ) ).
% drop_bit_or
tff(fact_5616_drop__bit__xor,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A,B2: A] : ( bit_se4197421643247451524op_bit(A,N,aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),A2),B2)) = aa(A,A,aa(A,fun(A,A),bit_se5824344971392196577ns_xor(A),bit_se4197421643247451524op_bit(A,N,A2)),bit_se4197421643247451524op_bit(A,N,B2)) ) ) ).
% drop_bit_xor
tff(fact_5617_prod_Ocollapse,axiom,
! [B: $tType,A: $tType,Prod: product_prod(A,B)] : ( aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),aa(product_prod(A,B),A,product_fst(A,B),Prod)),aa(product_prod(A,B),B,product_snd(A,B),Prod)) = Prod ) ).
% prod.collapse
tff(fact_5618_drop__bit__of__bool,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,B2: bool] : ( bit_se4197421643247451524op_bit(A,N,aa(bool,A,zero_neq_one_of_bool(A),B2)) = aa(bool,A,zero_neq_one_of_bool(A),fconj(aa(nat,bool,aa(nat,fun(nat,bool),fequal(nat),N),zero_zero(nat)),B2)) ) ) ).
% drop_bit_of_bool
tff(fact_5619_drop__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),bit_se4197421643247451524op_bit(int,N,K)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),K)) ) ).
% drop_bit_nonnegative_int_iff
tff(fact_5620_drop__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),bit_se4197421643247451524op_bit(int,N,K)),zero_zero(int)))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),K),zero_zero(int))) ) ).
% drop_bit_negative_int_iff
tff(fact_5621_drop__bit__minus__one,axiom,
! [N: nat] : ( bit_se4197421643247451524op_bit(int,N,aa(int,int,uminus_uminus(int),one_one(int))) = aa(int,int,uminus_uminus(int),one_one(int)) ) ).
% drop_bit_minus_one
tff(fact_5622_drop__bit__Suc__bit0,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [N: nat,K: num] : ( bit_se4197421643247451524op_bit(A,aa(nat,nat,suc,N),aa(num,A,numeral_numeral(A),bit0(K))) = bit_se4197421643247451524op_bit(A,N,aa(num,A,numeral_numeral(A),K)) ) ) ).
% drop_bit_Suc_bit0
tff(fact_5623_drop__bit__Suc__bit1,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [N: nat,K: num] : ( bit_se4197421643247451524op_bit(A,aa(nat,nat,suc,N),aa(num,A,numeral_numeral(A),aa(num,num,bit1,K))) = bit_se4197421643247451524op_bit(A,N,aa(num,A,numeral_numeral(A),K)) ) ) ).
% drop_bit_Suc_bit1
tff(fact_5624_drop__bit__of__1,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat] : ( bit_se4197421643247451524op_bit(A,N,one_one(A)) = aa(bool,A,zero_neq_one_of_bool(A),aa(nat,bool,aa(nat,fun(nat,bool),fequal(nat),N),zero_zero(nat))) ) ) ).
% drop_bit_of_1
tff(fact_5625_numeral__div__numeral,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [K: num,L: num] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(num,A,numeral_numeral(A),K)),aa(num,A,numeral_numeral(A),L)) = aa(product_prod(A,A),A,product_fst(A,A),unique8689654367752047608divmod(A,K,L)) ) ) ).
% numeral_div_numeral
tff(fact_5626_numeral__mod__numeral,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [K: num,L: num] : ( modulo_modulo(A,aa(num,A,numeral_numeral(A),K),aa(num,A,numeral_numeral(A),L)) = aa(product_prod(A,A),A,product_snd(A,A),unique8689654367752047608divmod(A,K,L)) ) ) ).
% numeral_mod_numeral
tff(fact_5627_fst__divmod__nat,axiom,
! [M: nat,N: nat] : ( aa(product_prod(nat,nat),nat,product_fst(nat,nat),divmod_nat(M,N)) = aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N) ) ).
% fst_divmod_nat
tff(fact_5628_snd__divmod__nat,axiom,
! [M: nat,N: nat] : ( aa(product_prod(nat,nat),nat,product_snd(nat,nat),divmod_nat(M,N)) = modulo_modulo(nat,M,N) ) ).
% snd_divmod_nat
tff(fact_5629_drop__bit__numeral__bit0,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [L: num,K: num] : ( bit_se4197421643247451524op_bit(A,aa(num,nat,numeral_numeral(nat),L),aa(num,A,numeral_numeral(A),bit0(K))) = bit_se4197421643247451524op_bit(A,pred_numeral(L),aa(num,A,numeral_numeral(A),K)) ) ) ).
% drop_bit_numeral_bit0
tff(fact_5630_drop__bit__numeral__bit1,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [L: num,K: num] : ( bit_se4197421643247451524op_bit(A,aa(num,nat,numeral_numeral(nat),L),aa(num,A,numeral_numeral(A),aa(num,num,bit1,K))) = bit_se4197421643247451524op_bit(A,pred_numeral(L),aa(num,A,numeral_numeral(A),K)) ) ) ).
% drop_bit_numeral_bit1
tff(fact_5631_drop__bit__Suc__minus__bit0,axiom,
! [N: nat,K: num] : ( bit_se4197421643247451524op_bit(int,aa(nat,nat,suc,N),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),bit0(K)))) = bit_se4197421643247451524op_bit(int,N,aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),K))) ) ).
% drop_bit_Suc_minus_bit0
tff(fact_5632_one__div__numeral,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [N: num] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(num,A,numeral_numeral(A),N)) = aa(product_prod(A,A),A,product_fst(A,A),unique8689654367752047608divmod(A,one2,N)) ) ) ).
% one_div_numeral
tff(fact_5633_one__mod__numeral,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [N: num] : ( modulo_modulo(A,one_one(A),aa(num,A,numeral_numeral(A),N)) = aa(product_prod(A,A),A,product_snd(A,A),unique8689654367752047608divmod(A,one2,N)) ) ) ).
% one_mod_numeral
tff(fact_5634_drop__bit__numeral__minus__bit0,axiom,
! [L: num,K: num] : ( bit_se4197421643247451524op_bit(int,aa(num,nat,numeral_numeral(nat),L),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),bit0(K)))) = bit_se4197421643247451524op_bit(int,pred_numeral(L),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),K))) ) ).
% drop_bit_numeral_minus_bit0
tff(fact_5635_drop__bit__Suc__minus__bit1,axiom,
! [N: nat,K: num] : ( bit_se4197421643247451524op_bit(int,aa(nat,nat,suc,N),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,K)))) = bit_se4197421643247451524op_bit(int,N,aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),inc(K)))) ) ).
% drop_bit_Suc_minus_bit1
tff(fact_5636_pair__list__eqI,axiom,
! [B: $tType,A: $tType,Xs: list(product_prod(A,B)),Ys: list(product_prod(A,B))] :
( ( aa(list(product_prod(A,B)),list(A),map(product_prod(A,B),A,product_fst(A,B)),Xs) = aa(list(product_prod(A,B)),list(A),map(product_prod(A,B),A,product_fst(A,B)),Ys) )
=> ( ( aa(list(product_prod(A,B)),list(B),map(product_prod(A,B),B,product_snd(A,B)),Xs) = aa(list(product_prod(A,B)),list(B),map(product_prod(A,B),B,product_snd(A,B)),Ys) )
=> ( Xs = Ys ) ) ) ).
% pair_list_eqI
tff(fact_5637_of__nat__drop__bit,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [M: nat,N: nat] : ( aa(nat,A,semiring_1_of_nat(A),bit_se4197421643247451524op_bit(nat,M,N)) = bit_se4197421643247451524op_bit(A,M,aa(nat,A,semiring_1_of_nat(A),N)) ) ) ).
% of_nat_drop_bit
tff(fact_5638_drop__bit__of__nat,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [N: nat,M: nat] : ( bit_se4197421643247451524op_bit(A,N,aa(nat,A,semiring_1_of_nat(A),M)) = aa(nat,A,semiring_1_of_nat(A),bit_se4197421643247451524op_bit(nat,N,M)) ) ) ).
% drop_bit_of_nat
tff(fact_5639_BNF__Greatest__Fixpoint_Osubst__Pair,axiom,
! [B: $tType,A: $tType,P: fun(A,fun(B,bool)),X2: A,Y: B,A2: product_prod(A,B)] :
( pp(aa(B,bool,aa(A,fun(B,bool),P,X2),Y))
=> ( ( A2 = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X2),Y) )
=> pp(aa(B,bool,aa(A,fun(B,bool),P,aa(product_prod(A,B),A,product_fst(A,B),A2)),aa(product_prod(A,B),B,product_snd(A,B),A2))) ) ) ).
% BNF_Greatest_Fixpoint.subst_Pair
tff(fact_5640_prod_Osplit__sel,axiom,
! [C: $tType,B: $tType,A: $tType,P: fun(C,bool),F2: fun(A,fun(B,C)),Prod: product_prod(A,B)] :
( pp(aa(C,bool,P,aa(product_prod(A,B),C,aa(fun(A,fun(B,C)),fun(product_prod(A,B),C),product_case_prod(A,B,C),F2),Prod)))
<=> ( ( Prod = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),aa(product_prod(A,B),A,product_fst(A,B),Prod)),aa(product_prod(A,B),B,product_snd(A,B),Prod)) )
=> pp(aa(C,bool,P,aa(B,C,aa(A,fun(B,C),F2,aa(product_prod(A,B),A,product_fst(A,B),Prod)),aa(product_prod(A,B),B,product_snd(A,B),Prod)))) ) ) ).
% prod.split_sel
tff(fact_5641_prod_Osplit__sel__asm,axiom,
! [C: $tType,B: $tType,A: $tType,P: fun(C,bool),F2: fun(A,fun(B,C)),Prod: product_prod(A,B)] :
( pp(aa(C,bool,P,aa(product_prod(A,B),C,aa(fun(A,fun(B,C)),fun(product_prod(A,B),C),product_case_prod(A,B,C),F2),Prod)))
<=> ~ ( ( Prod = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),aa(product_prod(A,B),A,product_fst(A,B),Prod)),aa(product_prod(A,B),B,product_snd(A,B),Prod)) )
& ~ pp(aa(C,bool,P,aa(B,C,aa(A,fun(B,C),F2,aa(product_prod(A,B),A,product_fst(A,B),Prod)),aa(product_prod(A,B),B,product_snd(A,B),Prod)))) ) ) ).
% prod.split_sel_asm
tff(fact_5642_prod_Oexhaust__sel,axiom,
! [B: $tType,A: $tType,Prod: product_prod(A,B)] : ( Prod = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),aa(product_prod(A,B),A,product_fst(A,B),Prod)),aa(product_prod(A,B),B,product_snd(A,B),Prod)) ) ).
% prod.exhaust_sel
tff(fact_5643_surjective__pairing,axiom,
! [B: $tType,A: $tType,T2: product_prod(A,B)] : ( T2 = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),aa(product_prod(A,B),A,product_fst(A,B),T2)),aa(product_prod(A,B),B,product_snd(A,B),T2)) ) ).
% surjective_pairing
tff(fact_5644_fst__conv,axiom,
! [B: $tType,A: $tType,X1: A,X23: B] : ( aa(product_prod(A,B),A,product_fst(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X1),X23)) = X1 ) ).
% fst_conv
tff(fact_5645_fst__eqD,axiom,
! [B: $tType,A: $tType,X2: A,Y: B,A2: A] :
( ( aa(product_prod(A,B),A,product_fst(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X2),Y)) = A2 )
=> ( X2 = A2 ) ) ).
% fst_eqD
tff(fact_5646_snd__conv,axiom,
! [Aa: $tType,A: $tType,X1: Aa,X23: A] : ( aa(product_prod(Aa,A),A,product_snd(Aa,A),aa(A,product_prod(Aa,A),aa(Aa,fun(A,product_prod(Aa,A)),product_Pair(Aa,A),X1),X23)) = X23 ) ).
% snd_conv
tff(fact_5647_snd__eqD,axiom,
! [B: $tType,A: $tType,X2: B,Y: A,A2: A] :
( ( aa(product_prod(B,A),A,product_snd(B,A),aa(A,product_prod(B,A),aa(B,fun(A,product_prod(B,A)),product_Pair(B,A),X2),Y)) = A2 )
=> ( Y = A2 ) ) ).
% snd_eqD
tff(fact_5648_take__bit__eq__self__iff__drop__bit__eq__0,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] :
( ( aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2) = A2 )
<=> ( bit_se4197421643247451524op_bit(A,N,A2) = zero_zero(A) ) ) ) ).
% take_bit_eq_self_iff_drop_bit_eq_0
tff(fact_5649_drop__bit__push__bit__int,axiom,
! [M: nat,N: nat,K: int] : ( bit_se4197421643247451524op_bit(int,M,bit_se4730199178511100633sh_bit(int,N,K)) = bit_se4197421643247451524op_bit(int,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N),bit_se4730199178511100633sh_bit(int,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M),K)) ) ).
% drop_bit_push_bit_int
tff(fact_5650_take__bit__drop__bit,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [M: nat,N: nat,A2: A] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,M),bit_se4197421643247451524op_bit(A,N,A2)) = bit_se4197421643247451524op_bit(A,N,aa(A,A,bit_se2584673776208193580ke_bit(A,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N)),A2)) ) ) ).
% take_bit_drop_bit
tff(fact_5651_drop__bit__take__bit,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [M: nat,N: nat,A2: A] : ( bit_se4197421643247451524op_bit(A,M,aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2)) = aa(A,A,bit_se2584673776208193580ke_bit(A,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M)),bit_se4197421643247451524op_bit(A,M,A2)) ) ) ).
% drop_bit_take_bit
tff(fact_5652_divides__aux__def,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [Qr: product_prod(A,A)] :
( unique5940410009612947441es_aux(A,Qr)
<=> ( aa(product_prod(A,A),A,product_snd(A,A),Qr) = zero_zero(A) ) ) ) ).
% divides_aux_def
tff(fact_5653_fst__divmod,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [M: num,N: num] : ( aa(product_prod(A,A),A,product_fst(A,A),unique8689654367752047608divmod(A,M,N)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(num,A,numeral_numeral(A),M)),aa(num,A,numeral_numeral(A),N)) ) ) ).
% fst_divmod
tff(fact_5654_snd__divmod,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [M: num,N: num] : ( aa(product_prod(A,A),A,product_snd(A,A),unique8689654367752047608divmod(A,M,N)) = modulo_modulo(A,aa(num,A,numeral_numeral(A),M),aa(num,A,numeral_numeral(A),N)) ) ) ).
% snd_divmod
tff(fact_5655_div__push__bit__of__1__eq__drop__bit,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,N: nat] : ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),bit_se4730199178511100633sh_bit(A,N,one_one(A))) = bit_se4197421643247451524op_bit(A,N,A2) ) ) ).
% div_push_bit_of_1_eq_drop_bit
tff(fact_5656_bit__iff__and__drop__bit__eq__1,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N))
<=> ( aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),bit_se4197421643247451524op_bit(A,N,A2)),one_one(A)) = one_one(A) ) ) ) ).
% bit_iff_and_drop_bit_eq_1
tff(fact_5657_bits__ident,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),bit_se4730199178511100633sh_bit(A,N,bit_se4197421643247451524op_bit(A,N,A2))),aa(A,A,bit_se2584673776208193580ke_bit(A,N),A2)) = A2 ) ) ).
% bits_ident
tff(fact_5658_stable__imp__drop__bit__eq,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,N: nat] :
( ( aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2))) = A2 )
=> ( bit_se4197421643247451524op_bit(A,N,A2) = A2 ) ) ) ).
% stable_imp_drop_bit_eq
tff(fact_5659_drop__bit__half,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] : ( bit_se4197421643247451524op_bit(A,N,aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2)))) = aa(A,A,aa(A,fun(A,A),divide_divide(A),bit_se4197421643247451524op_bit(A,N,A2)),aa(num,A,numeral_numeral(A),bit0(one2))) ) ) ).
% drop_bit_half
tff(fact_5660_drop__bit__int__def,axiom,
! [N: nat,K: int] : ( bit_se4197421643247451524op_bit(int,N,K) = aa(int,int,aa(int,fun(int,int),divide_divide(int),K),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),N)) ) ).
% drop_bit_int_def
tff(fact_5661_drop__bit__eq__div,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] : ( bit_se4197421643247451524op_bit(A,N,A2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),N)) ) ) ).
% drop_bit_eq_div
tff(fact_5662_drop__bit__Suc,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] : ( bit_se4197421643247451524op_bit(A,aa(nat,nat,suc,N),A2) = bit_se4197421643247451524op_bit(A,N,aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2)))) ) ) ).
% drop_bit_Suc
tff(fact_5663_even__drop__bit__iff__not__bit,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),bit_se4197421643247451524op_bit(A,N,A2)))
<=> ~ pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N)) ) ) ).
% even_drop_bit_iff_not_bit
tff(fact_5664_bit__iff__odd__drop__bit,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [A2: A,N: nat] :
( pp(aa(nat,bool,bit_se5641148757651400278ts_bit(A,A2),N))
<=> ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),bit_se4197421643247451524op_bit(A,N,A2))) ) ) ).
% bit_iff_odd_drop_bit
tff(fact_5665_slice__eq__mask,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: nat,M: nat,A2: A] : ( bit_se4730199178511100633sh_bit(A,N,aa(A,A,bit_se2584673776208193580ke_bit(A,M),bit_se4197421643247451524op_bit(A,N,A2))) = aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),A2),aa(A,A,aa(A,fun(A,A),bit_se5824344872417868541ns_and(A),bit_se2239418461657761734s_mask(A,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N))),aa(A,A,bit_ri4277139882892585799ns_not(A),bit_se2239418461657761734s_mask(A,N)))) ) ) ).
% slice_eq_mask
tff(fact_5666_drop__bit__rec,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] :
( ( ( N = zero_zero(nat) )
=> ( bit_se4197421643247451524op_bit(A,N,A2) = A2 ) )
& ( ( N != zero_zero(nat) )
=> ( bit_se4197421643247451524op_bit(A,N,A2) = bit_se4197421643247451524op_bit(A,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat)),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),aa(num,A,numeral_numeral(A),bit0(one2)))) ) ) ) ) ).
% drop_bit_rec
tff(fact_5667_eq__key__imp__eq__value,axiom,
! [A: $tType,B: $tType,Xs: list(product_prod(A,B)),K: A,V1: B,V22: B] :
( distinct(A,aa(list(product_prod(A,B)),list(A),map(product_prod(A,B),A,product_fst(A,B)),Xs))
=> ( pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),K),V1),aa(list(product_prod(A,B)),set(product_prod(A,B)),set2(product_prod(A,B)),Xs)))
=> ( pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),K),V22),aa(list(product_prod(A,B)),set(product_prod(A,B)),set2(product_prod(A,B)),Xs)))
=> ( V1 = V22 ) ) ) ) ).
% eq_key_imp_eq_value
tff(fact_5668_in__set__enumerate__eq,axiom,
! [A: $tType,P2: product_prod(nat,A),N: nat,Xs: list(A)] :
( pp(member(product_prod(nat,A),P2,aa(list(product_prod(nat,A)),set(product_prod(nat,A)),set2(product_prod(nat,A)),enumerate(A,N,Xs))))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),aa(product_prod(nat,A),nat,product_fst(nat,A),P2)))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(product_prod(nat,A),nat,product_fst(nat,A),P2)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(list(A),nat,size_size(list(A)),Xs)),N)))
& ( aa(nat,A,nth(A,Xs),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(product_prod(nat,A),nat,product_fst(nat,A),P2)),N)) = aa(product_prod(nat,A),A,product_snd(nat,A),P2) ) ) ) ).
% in_set_enumerate_eq
tff(fact_5669_exI__realizer,axiom,
! [B: $tType,A: $tType,P: fun(A,fun(B,bool)),Y: A,X2: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),P,Y),X2))
=> pp(aa(B,bool,aa(A,fun(B,bool),P,aa(product_prod(B,A),A,product_snd(B,A),aa(A,product_prod(B,A),aa(B,fun(A,product_prod(B,A)),product_Pair(B,A),X2),Y))),aa(product_prod(B,A),B,product_fst(B,A),aa(A,product_prod(B,A),aa(B,fun(A,product_prod(B,A)),product_Pair(B,A),X2),Y)))) ) ).
% exI_realizer
tff(fact_5670_length__enumerate,axiom,
! [A: $tType,N: nat,Xs: list(A)] : ( aa(list(product_prod(nat,A)),nat,size_size(list(product_prod(nat,A))),enumerate(A,N,Xs)) = aa(list(A),nat,size_size(list(A)),Xs) ) ).
% length_enumerate
tff(fact_5671_snd__divmod__integer,axiom,
! [K: code_integer,L: code_integer] : ( aa(product_prod(code_integer,code_integer),code_integer,product_snd(code_integer,code_integer),code_divmod_integer(K,L)) = modulo_modulo(code_integer,K,L) ) ).
% snd_divmod_integer
tff(fact_5672_map__snd__enumerate,axiom,
! [A: $tType,N: nat,Xs: list(A)] : ( aa(list(product_prod(nat,A)),list(A),map(product_prod(nat,A),A,product_snd(nat,A)),enumerate(A,N,Xs)) = Xs ) ).
% map_snd_enumerate
tff(fact_5673_snd__divmod__abs,axiom,
! [K: code_integer,L: code_integer] : ( aa(product_prod(code_integer,code_integer),code_integer,product_snd(code_integer,code_integer),code_divmod_abs(K,L)) = modulo_modulo(code_integer,aa(code_integer,code_integer,abs_abs(code_integer),K),aa(code_integer,code_integer,abs_abs(code_integer),L)) ) ).
% snd_divmod_abs
tff(fact_5674_drop__bit__of__Suc__0,axiom,
! [N: nat] : ( bit_se4197421643247451524op_bit(nat,N,aa(nat,nat,suc,zero_zero(nat))) = aa(bool,nat,zero_neq_one_of_bool(nat),aa(nat,bool,aa(nat,fun(nat,bool),fequal(nat),N),zero_zero(nat))) ) ).
% drop_bit_of_Suc_0
tff(fact_5675_map__fst__enumerate,axiom,
! [A: $tType,N: nat,Xs: list(A)] : ( aa(list(product_prod(nat,A)),list(nat),map(product_prod(nat,A),nat,product_fst(nat,A)),enumerate(A,N,Xs)) = upt(N,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),aa(list(A),nat,size_size(list(A)),Xs))) ) ).
% map_fst_enumerate
tff(fact_5676_distinct__enumerate,axiom,
! [A: $tType,N: nat,Xs: list(A)] : distinct(product_prod(nat,A),enumerate(A,N,Xs)) ).
% distinct_enumerate
tff(fact_5677_drop__bit__nat__eq,axiom,
! [N: nat,K: int] : ( bit_se4197421643247451524op_bit(nat,N,aa(int,nat,nat2,K)) = aa(int,nat,nat2,bit_se4197421643247451524op_bit(int,N,K)) ) ).
% drop_bit_nat_eq
tff(fact_5678_quotient__of__denom__pos_H,axiom,
! [R: rat] : pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),aa(product_prod(int,int),int,product_snd(int,int),quotient_of(R)))) ).
% quotient_of_denom_pos'
tff(fact_5679_bezw__non__0,axiom,
! [Y: nat,X2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),Y))
=> ( bezw(X2,Y) = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(product_prod(int,int),int,product_snd(int,int),bezw(Y,modulo_modulo(nat,X2,Y)))),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(product_prod(int,int),int,product_fst(int,int),bezw(Y,modulo_modulo(nat,X2,Y)))),aa(int,int,aa(int,fun(int,int),times_times(int),aa(product_prod(int,int),int,product_snd(int,int),bezw(Y,modulo_modulo(nat,X2,Y)))),aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),X2),Y))))) ) ) ).
% bezw_non_0
tff(fact_5680_bezw_Osimps,axiom,
! [Y: nat,X2: nat] :
( ( ( Y = zero_zero(nat) )
=> ( bezw(X2,Y) = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),one_one(int)),zero_zero(int)) ) )
& ( ( Y != zero_zero(nat) )
=> ( bezw(X2,Y) = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(product_prod(int,int),int,product_snd(int,int),bezw(Y,modulo_modulo(nat,X2,Y)))),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(product_prod(int,int),int,product_fst(int,int),bezw(Y,modulo_modulo(nat,X2,Y)))),aa(int,int,aa(int,fun(int,int),times_times(int),aa(product_prod(int,int),int,product_snd(int,int),bezw(Y,modulo_modulo(nat,X2,Y)))),aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),X2),Y))))) ) ) ) ).
% bezw.simps
tff(fact_5681_bezw_Oelims,axiom,
! [X2: nat,Xa: nat,Y: product_prod(int,int)] :
( ( bezw(X2,Xa) = Y )
=> ( ( ( Xa = zero_zero(nat) )
=> ( Y = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),one_one(int)),zero_zero(int)) ) )
& ( ( Xa != zero_zero(nat) )
=> ( Y = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(product_prod(int,int),int,product_snd(int,int),bezw(Xa,modulo_modulo(nat,X2,Xa)))),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(product_prod(int,int),int,product_fst(int,int),bezw(Xa,modulo_modulo(nat,X2,Xa)))),aa(int,int,aa(int,fun(int,int),times_times(int),aa(product_prod(int,int),int,product_snd(int,int),bezw(Xa,modulo_modulo(nat,X2,Xa)))),aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),X2),Xa))))) ) ) ) ) ).
% bezw.elims
tff(fact_5682_drop__bit__nat__def,axiom,
! [N: nat,M: nat] : ( bit_se4197421643247451524op_bit(nat,N,M) = aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),N)) ) ).
% drop_bit_nat_def
tff(fact_5683_enumerate__map__upt,axiom,
! [A: $tType,N: nat,F2: fun(nat,A),M: nat] : ( enumerate(A,N,aa(list(nat),list(A),map(nat,A,F2),upt(N,M))) = aa(list(nat),list(product_prod(nat,A)),map(nat,product_prod(nat,A),aTP_Lamp_nn(fun(nat,A),fun(nat,product_prod(nat,A)),F2)),upt(N,M)) ) ).
% enumerate_map_upt
tff(fact_5684_sorted__enumerate,axiom,
! [A: $tType,N: nat,Xs: list(A)] : sorted_wrt(nat,ord_less_eq(nat),aa(list(product_prod(nat,A)),list(nat),map(product_prod(nat,A),nat,product_fst(nat,A)),enumerate(A,N,Xs))) ).
% sorted_enumerate
tff(fact_5685_rat__sgn__code,axiom,
! [P2: rat] : ( quotient_of(aa(rat,rat,sgn_sgn(rat),P2)) = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(int,int,sgn_sgn(int),aa(product_prod(int,int),int,product_fst(int,int),quotient_of(P2)))),one_one(int)) ) ).
% rat_sgn_code
tff(fact_5686_enumerate__replicate__eq,axiom,
! [A: $tType,N: nat,M: nat,A2: A] : ( enumerate(A,N,replicate(A,M,A2)) = aa(list(nat),list(product_prod(nat,A)),map(nat,product_prod(nat,A),aTP_Lamp_no(A,fun(nat,product_prod(nat,A)),A2)),upt(N,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),M))) ) ).
% enumerate_replicate_eq
tff(fact_5687_nth__enumerate__eq,axiom,
! [A: $tType,M: nat,Xs: list(A),N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( aa(nat,product_prod(nat,A),nth(product_prod(nat,A),enumerate(A,N,Xs)),M) = aa(A,product_prod(nat,A),aa(nat,fun(A,product_prod(nat,A)),product_Pair(nat,A),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),M)),aa(nat,A,nth(A,Xs),M)) ) ) ).
% nth_enumerate_eq
tff(fact_5688_conjI__realizer,axiom,
! [A: $tType,B: $tType,P: fun(A,bool),P2: A,Q: fun(B,bool),Q2: B] :
( pp(aa(A,bool,P,P2))
=> ( pp(aa(B,bool,Q,Q2))
=> ( pp(aa(A,bool,P,aa(product_prod(A,B),A,product_fst(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),P2),Q2))))
& pp(aa(B,bool,Q,aa(product_prod(A,B),B,product_snd(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),P2),Q2)))) ) ) ) ).
% conjI_realizer
tff(fact_5689_bezw_Opelims,axiom,
! [X2: nat,Xa: nat,Y: product_prod(int,int)] :
( ( bezw(X2,Xa) = Y )
=> ( pp(aa(product_prod(nat,nat),bool,accp(product_prod(nat,nat),bezw_rel),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),X2),Xa)))
=> ~ ( ( ( ( Xa = zero_zero(nat) )
=> ( Y = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),one_one(int)),zero_zero(int)) ) )
& ( ( Xa != zero_zero(nat) )
=> ( Y = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(product_prod(int,int),int,product_snd(int,int),bezw(Xa,modulo_modulo(nat,X2,Xa)))),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(product_prod(int,int),int,product_fst(int,int),bezw(Xa,modulo_modulo(nat,X2,Xa)))),aa(int,int,aa(int,fun(int,int),times_times(int),aa(product_prod(int,int),int,product_snd(int,int),bezw(Xa,modulo_modulo(nat,X2,Xa)))),aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),X2),Xa))))) ) ) )
=> ~ pp(aa(product_prod(nat,nat),bool,accp(product_prod(nat,nat),bezw_rel),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),X2),Xa))) ) ) ) ).
% bezw.pelims
tff(fact_5690_minus__one__mod__numeral,axiom,
! [N: num] : ( modulo_modulo(int,aa(int,int,uminus_uminus(int),one_one(int)),aa(num,int,numeral_numeral(int),N)) = adjust_mod(aa(num,int,numeral_numeral(int),N),aa(product_prod(int,int),int,product_snd(int,int),unique8689654367752047608divmod(int,one2,N))) ) ).
% minus_one_mod_numeral
tff(fact_5691_one__mod__minus__numeral,axiom,
! [N: num] : ( modulo_modulo(int,one_one(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),N))) = aa(int,int,uminus_uminus(int),adjust_mod(aa(num,int,numeral_numeral(int),N),aa(product_prod(int,int),int,product_snd(int,int),unique8689654367752047608divmod(int,one2,N)))) ) ).
% one_mod_minus_numeral
tff(fact_5692_numeral__mod__minus__numeral,axiom,
! [M: num,N: num] : ( modulo_modulo(int,aa(num,int,numeral_numeral(int),M),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),N))) = aa(int,int,uminus_uminus(int),adjust_mod(aa(num,int,numeral_numeral(int),N),aa(product_prod(int,int),int,product_snd(int,int),unique8689654367752047608divmod(int,M,N)))) ) ).
% numeral_mod_minus_numeral
tff(fact_5693_minus__numeral__mod__numeral,axiom,
! [M: num,N: num] : ( modulo_modulo(int,aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),M)),aa(num,int,numeral_numeral(int),N)) = adjust_mod(aa(num,int,numeral_numeral(int),N),aa(product_prod(int,int),int,product_snd(int,int),unique8689654367752047608divmod(int,M,N))) ) ).
% minus_numeral_mod_numeral
tff(fact_5694_Divides_Oadjust__mod__def,axiom,
! [R: int,L: int] :
( ( ( R = zero_zero(int) )
=> ( adjust_mod(L,R) = zero_zero(int) ) )
& ( ( R != zero_zero(int) )
=> ( adjust_mod(L,R) = aa(int,int,aa(int,fun(int,int),minus_minus(int),L),R) ) ) ) ).
% Divides.adjust_mod_def
tff(fact_5695_normalize__def,axiom,
! [P2: product_prod(int,int)] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),aa(product_prod(int,int),int,product_snd(int,int),P2)))
=> ( normalize(P2) = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(product_prod(int,int),int,product_fst(int,int),P2)),aa(int,int,aa(int,fun(int,int),gcd_gcd(int),aa(product_prod(int,int),int,product_fst(int,int),P2)),aa(product_prod(int,int),int,product_snd(int,int),P2)))),aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(product_prod(int,int),int,product_snd(int,int),P2)),aa(int,int,aa(int,fun(int,int),gcd_gcd(int),aa(product_prod(int,int),int,product_fst(int,int),P2)),aa(product_prod(int,int),int,product_snd(int,int),P2)))) ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),aa(product_prod(int,int),int,product_snd(int,int),P2)))
=> ( ( ( aa(product_prod(int,int),int,product_snd(int,int),P2) = zero_zero(int) )
=> ( normalize(P2) = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),zero_zero(int)),one_one(int)) ) )
& ( ( aa(product_prod(int,int),int,product_snd(int,int),P2) != zero_zero(int) )
=> ( normalize(P2) = aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(product_prod(int,int),int,product_fst(int,int),P2)),aa(int,int,uminus_uminus(int),aa(int,int,aa(int,fun(int,int),gcd_gcd(int),aa(product_prod(int,int),int,product_fst(int,int),P2)),aa(product_prod(int,int),int,product_snd(int,int),P2))))),aa(int,int,aa(int,fun(int,int),divide_divide(int),aa(product_prod(int,int),int,product_snd(int,int),P2)),aa(int,int,uminus_uminus(int),aa(int,int,aa(int,fun(int,int),gcd_gcd(int),aa(product_prod(int,int),int,product_fst(int,int),P2)),aa(product_prod(int,int),int,product_snd(int,int),P2))))) ) ) ) ) ) ).
% normalize_def
tff(fact_5696_map__of__is__SomeI,axiom,
! [A: $tType,B: $tType,Xys: list(product_prod(A,B)),X2: A,Y: B] :
( distinct(A,aa(list(product_prod(A,B)),list(A),map(product_prod(A,B),A,product_fst(A,B)),Xys))
=> ( pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X2),Y),aa(list(product_prod(A,B)),set(product_prod(A,B)),set2(product_prod(A,B)),Xys)))
=> ( aa(A,option(B),map_of(A,B,Xys),X2) = aa(B,option(B),some(B),Y) ) ) ) ).
% map_of_is_SomeI
tff(fact_5697_Some__eq__map__of__iff,axiom,
! [B: $tType,A: $tType,Xys: list(product_prod(A,B)),Y: B,X2: A] :
( distinct(A,aa(list(product_prod(A,B)),list(A),map(product_prod(A,B),A,product_fst(A,B)),Xys))
=> ( ( aa(B,option(B),some(B),Y) = aa(A,option(B),map_of(A,B,Xys),X2) )
<=> pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X2),Y),aa(list(product_prod(A,B)),set(product_prod(A,B)),set2(product_prod(A,B)),Xys))) ) ) ).
% Some_eq_map_of_iff
tff(fact_5698_gcd__eq__0__iff,axiom,
! [A: $tType] :
( semiring_gcd(A)
=> ! [A2: A,B2: A] :
( ( aa(A,A,aa(A,fun(A,A),gcd_gcd(A),A2),B2) = zero_zero(A) )
<=> ( ( A2 = zero_zero(A) )
& ( B2 = zero_zero(A) ) ) ) ) ).
% gcd_eq_0_iff
tff(fact_5699_gcd__add2,axiom,
! [A: $tType] :
( semiring_gcd(A)
=> ! [M: A,N: A] : ( aa(A,A,aa(A,fun(A,A),gcd_gcd(A),M),aa(A,A,aa(A,fun(A,A),plus_plus(A),M),N)) = aa(A,A,aa(A,fun(A,A),gcd_gcd(A),M),N) ) ) ).
% gcd_add2
tff(fact_5700_gcd__add1,axiom,
! [A: $tType] :
( semiring_gcd(A)
=> ! [M: A,N: A] : ( aa(A,A,aa(A,fun(A,A),gcd_gcd(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),M),N)),N) = aa(A,A,aa(A,fun(A,A),gcd_gcd(A),M),N) ) ) ).
% gcd_add1
tff(fact_5701_gcd_Obottom__left__bottom,axiom,
! [A: $tType] :
( semiring_gcd(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),gcd_gcd(A),one_one(A)),A2) = one_one(A) ) ) ).
% gcd.bottom_left_bottom
tff(fact_5702_gcd_Obottom__right__bottom,axiom,
! [A: $tType] :
( semiring_gcd(A)
=> ! [A2: A] : ( aa(A,A,aa(A,fun(A,A),gcd_gcd(A),A2),one_one(A)) = one_one(A) ) ) ).
% gcd.bottom_right_bottom
tff(fact_5703_gcd__neg1,axiom,
! [A: $tType] :
( ring_gcd(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),gcd_gcd(A),aa(A,A,uminus_uminus(A),A2)),B2) = aa(A,A,aa(A,fun(A,A),gcd_gcd(A),A2),B2) ) ) ).
% gcd_neg1
tff(fact_5704_gcd__neg2,axiom,
! [A: $tType] :
( ring_gcd(A)
=> ! [A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),gcd_gcd(A),A2),aa(A,A,uminus_uminus(A),B2)) = aa(A,A,aa(A,fun(A,A),gcd_gcd(A),A2),B2) ) ) ).
% gcd_neg2
tff(fact_5705_gcd__exp,axiom,
! [A: $tType] :
( semiri6843258321239162965malize(A)
=> ! [A2: A,N: nat,B2: A] : ( aa(A,A,aa(A,fun(A,A),gcd_gcd(A),aa(nat,A,power_power(A,A2),N)),aa(nat,A,power_power(A,B2),N)) = aa(nat,A,power_power(A,aa(A,A,aa(A,fun(A,A),gcd_gcd(A),A2),B2)),N) ) ) ).
% gcd_exp
tff(fact_5706_gcd__1__int,axiom,
! [M: int] : ( aa(int,int,aa(int,fun(int,int),gcd_gcd(int),M),one_one(int)) = one_one(int) ) ).
% gcd_1_int
tff(fact_5707_gcd__neg1__int,axiom,
! [X2: int,Y: int] : ( aa(int,int,aa(int,fun(int,int),gcd_gcd(int),aa(int,int,uminus_uminus(int),X2)),Y) = aa(int,int,aa(int,fun(int,int),gcd_gcd(int),X2),Y) ) ).
% gcd_neg1_int
tff(fact_5708_gcd__neg2__int,axiom,
! [X2: int,Y: int] : ( aa(int,int,aa(int,fun(int,int),gcd_gcd(int),X2),aa(int,int,uminus_uminus(int),Y)) = aa(int,int,aa(int,fun(int,int),gcd_gcd(int),X2),Y) ) ).
% gcd_neg2_int
tff(fact_5709_gcd__neg__numeral__1,axiom,
! [A: $tType] :
( ring_gcd(A)
=> ! [N: num,A2: A] : ( aa(A,A,aa(A,fun(A,A),gcd_gcd(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N))),A2) = aa(A,A,aa(A,fun(A,A),gcd_gcd(A),aa(num,A,numeral_numeral(A),N)),A2) ) ) ).
% gcd_neg_numeral_1
tff(fact_5710_gcd__neg__numeral__2,axiom,
! [A: $tType] :
( ring_gcd(A)
=> ! [A2: A,N: num] : ( aa(A,A,aa(A,fun(A,A),gcd_gcd(A),A2),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N))) = aa(A,A,aa(A,fun(A,A),gcd_gcd(A),A2),aa(num,A,numeral_numeral(A),N)) ) ) ).
% gcd_neg_numeral_2
tff(fact_5711_is__unit__gcd__iff,axiom,
! [A: $tType] :
( semiring_gcd(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,aa(A,fun(A,A),gcd_gcd(A),A2),B2)),one_one(A)))
<=> ( aa(A,A,aa(A,fun(A,A),gcd_gcd(A),A2),B2) = one_one(A) ) ) ) ).
% is_unit_gcd_iff
tff(fact_5712_gcd__pos__int,axiom,
! [M: int,N: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),aa(int,int,aa(int,fun(int,int),gcd_gcd(int),M),N)))
<=> ( ( M != zero_zero(int) )
| ( N != zero_zero(int) ) ) ) ).
% gcd_pos_int
tff(fact_5713_gcd__neg__numeral__1__int,axiom,
! [N: num,X2: int] : ( aa(int,int,aa(int,fun(int,int),gcd_gcd(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),N))),X2) = aa(int,int,aa(int,fun(int,int),gcd_gcd(int),aa(num,int,numeral_numeral(int),N)),X2) ) ).
% gcd_neg_numeral_1_int
tff(fact_5714_gcd__neg__numeral__2__int,axiom,
! [X2: int,N: num] : ( aa(int,int,aa(int,fun(int,int),gcd_gcd(int),X2),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),N))) = aa(int,int,aa(int,fun(int,int),gcd_gcd(int),X2),aa(num,int,numeral_numeral(int),N)) ) ).
% gcd_neg_numeral_2_int
tff(fact_5715_gcd__0__left__int,axiom,
! [X2: int] : ( aa(int,int,aa(int,fun(int,int),gcd_gcd(int),zero_zero(int)),X2) = aa(int,int,abs_abs(int),X2) ) ).
% gcd_0_left_int
tff(fact_5716_gcd__0__int,axiom,
! [X2: int] : ( aa(int,int,aa(int,fun(int,int),gcd_gcd(int),X2),zero_zero(int)) = aa(int,int,abs_abs(int),X2) ) ).
% gcd_0_int
tff(fact_5717_map__of__eq__Some__iff,axiom,
! [B: $tType,A: $tType,Xys: list(product_prod(A,B)),X2: A,Y: B] :
( distinct(A,aa(list(product_prod(A,B)),list(A),map(product_prod(A,B),A,product_fst(A,B)),Xys))
=> ( ( aa(A,option(B),map_of(A,B,Xys),X2) = aa(B,option(B),some(B),Y) )
<=> pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X2),Y),aa(list(product_prod(A,B)),set(product_prod(A,B)),set2(product_prod(A,B)),Xys))) ) ) ).
% map_of_eq_Some_iff
tff(fact_5718_gcd__ge__0__int,axiom,
! [X2: int,Y: int] : pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),aa(int,int,aa(int,fun(int,int),gcd_gcd(int),X2),Y))) ).
% gcd_ge_0_int
tff(fact_5719_gcd__add__mult,axiom,
! [A: $tType] :
( semiring_gcd(A)
=> ! [M: A,K: A,N: A] : ( aa(A,A,aa(A,fun(A,A),gcd_gcd(A),M),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),K),M)),N)) = aa(A,A,aa(A,fun(A,A),gcd_gcd(A),M),N) ) ) ).
% gcd_add_mult
tff(fact_5720_gcd__red__int,axiom,
! [X2: int,Y: int] : ( aa(int,int,aa(int,fun(int,int),gcd_gcd(int),X2),Y) = aa(int,int,aa(int,fun(int,int),gcd_gcd(int),Y),modulo_modulo(int,X2,Y)) ) ).
% gcd_red_int
tff(fact_5721_gcd__dvd__prod,axiom,
! [A: $tType] :
( semiring_gcd(A)
=> ! [A2: A,B2: A,K: A] : pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(A,A,aa(A,fun(A,A),gcd_gcd(A),A2),B2)),aa(A,A,aa(A,fun(A,A),times_times(A),K),B2))) ) ).
% gcd_dvd_prod
tff(fact_5722_gcd__diff1,axiom,
! [A: $tType] :
( ring_gcd(A)
=> ! [M: A,N: A] : ( aa(A,A,aa(A,fun(A,A),gcd_gcd(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),M),N)),N) = aa(A,A,aa(A,fun(A,A),gcd_gcd(A),M),N) ) ) ).
% gcd_diff1
tff(fact_5723_gcd__diff2,axiom,
! [A: $tType] :
( ring_gcd(A)
=> ! [N: A,M: A] : ( aa(A,A,aa(A,fun(A,A),gcd_gcd(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),N),M)),N) = aa(A,A,aa(A,fun(A,A),gcd_gcd(A),M),N) ) ) ).
% gcd_diff2
tff(fact_5724_bezout__int,axiom,
! [X2: int,Y: int] :
? [U2: int,V3: int] : ( aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),U2),X2)),aa(int,int,aa(int,fun(int,int),times_times(int),V3),Y)) = aa(int,int,aa(int,fun(int,int),gcd_gcd(int),X2),Y) ) ).
% bezout_int
tff(fact_5725_gcd__mult__unit1,axiom,
! [A: $tType] :
( semiring_gcd(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),one_one(A)))
=> ( aa(A,A,aa(A,fun(A,A),gcd_gcd(A),aa(A,A,aa(A,fun(A,A),times_times(A),B2),A2)),C2) = aa(A,A,aa(A,fun(A,A),gcd_gcd(A),B2),C2) ) ) ) ).
% gcd_mult_unit1
tff(fact_5726_gcd__mult__unit2,axiom,
! [A: $tType] :
( semiring_gcd(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),one_one(A)))
=> ( aa(A,A,aa(A,fun(A,A),gcd_gcd(A),B2),aa(A,A,aa(A,fun(A,A),times_times(A),C2),A2)) = aa(A,A,aa(A,fun(A,A),gcd_gcd(A),B2),C2) ) ) ) ).
% gcd_mult_unit2
tff(fact_5727_gcd__div__unit2,axiom,
! [A: $tType] :
( semiring_gcd(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),one_one(A)))
=> ( aa(A,A,aa(A,fun(A,A),gcd_gcd(A),B2),aa(A,A,aa(A,fun(A,A),divide_divide(A),C2),A2)) = aa(A,A,aa(A,fun(A,A),gcd_gcd(A),B2),C2) ) ) ) ).
% gcd_div_unit2
tff(fact_5728_gcd__div__unit1,axiom,
! [A: $tType] :
( semiring_gcd(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),one_one(A)))
=> ( aa(A,A,aa(A,fun(A,A),gcd_gcd(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),A2)),C2) = aa(A,A,aa(A,fun(A,A),gcd_gcd(A),B2),C2) ) ) ) ).
% gcd_div_unit1
tff(fact_5729_gcd__le1__int,axiom,
! [A2: int,B2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),A2))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),gcd_gcd(int),A2),B2)),A2)) ) ).
% gcd_le1_int
tff(fact_5730_gcd__le2__int,axiom,
! [B2: int,A2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),B2))
=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),gcd_gcd(int),A2),B2)),B2)) ) ).
% gcd_le2_int
tff(fact_5731_gcd__cases__int,axiom,
! [X2: int,Y: int,P: fun(int,bool)] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),X2))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Y))
=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),gcd_gcd(int),X2),Y))) ) )
=> ( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),X2))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),Y),zero_zero(int)))
=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),gcd_gcd(int),X2),aa(int,int,uminus_uminus(int),Y)))) ) )
=> ( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),X2),zero_zero(int)))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),Y))
=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),gcd_gcd(int),aa(int,int,uminus_uminus(int),X2)),Y))) ) )
=> ( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),X2),zero_zero(int)))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),Y),zero_zero(int)))
=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),gcd_gcd(int),aa(int,int,uminus_uminus(int),X2)),aa(int,int,uminus_uminus(int),Y)))) ) )
=> pp(aa(int,bool,P,aa(int,int,aa(int,fun(int,int),gcd_gcd(int),X2),Y))) ) ) ) ) ).
% gcd_cases_int
tff(fact_5732_gcd__unique__int,axiom,
! [D2: int,A2: int,B2: int] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),D2))
& pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),D2),A2))
& pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),D2),B2))
& ! [E4: int] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),E4),A2))
& pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),E4),B2)) )
=> pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),E4),D2)) ) )
<=> ( D2 = aa(int,int,aa(int,fun(int,int),gcd_gcd(int),A2),B2) ) ) ).
% gcd_unique_int
tff(fact_5733_gcd__non__0__int,axiom,
! [Y: int,X2: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),zero_zero(int)),Y))
=> ( aa(int,int,aa(int,fun(int,int),gcd_gcd(int),X2),Y) = aa(int,int,aa(int,fun(int,int),gcd_gcd(int),Y),modulo_modulo(int,X2,Y)) ) ) ).
% gcd_non_0_int
tff(fact_5734_gcd__code__int,axiom,
! [K: int,L: int] : ( aa(int,int,aa(int,fun(int,int),gcd_gcd(int),K),L) = aa(int,int,abs_abs(int),if(int,aa(int,bool,aa(int,fun(int,bool),fequal(int),L),zero_zero(int)),K,aa(int,int,aa(int,fun(int,int),gcd_gcd(int),L),modulo_modulo(int,aa(int,int,abs_abs(int),K),aa(int,int,abs_abs(int),L))))) ) ).
% gcd_code_int
tff(fact_5735_map__of__SomeD,axiom,
! [A: $tType,B: $tType,Xs: list(product_prod(B,A)),K: B,Y: A] :
( ( aa(B,option(A),map_of(B,A,Xs),K) = aa(A,option(A),some(A),Y) )
=> pp(member(product_prod(B,A),aa(A,product_prod(B,A),aa(B,fun(A,product_prod(B,A)),product_Pair(B,A),K),Y),aa(list(product_prod(B,A)),set(product_prod(B,A)),set2(product_prod(B,A)),Xs))) ) ).
% map_of_SomeD
tff(fact_5736_weak__map__of__SomeI,axiom,
! [A: $tType,B: $tType,K: A,X2: B,L: list(product_prod(A,B))] :
( pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),K),X2),aa(list(product_prod(A,B)),set(product_prod(A,B)),set2(product_prod(A,B)),L)))
=> ? [X3: B] : ( aa(A,option(B),map_of(A,B,L),K) = aa(B,option(B),some(B),X3) ) ) ).
% weak_map_of_SomeI
tff(fact_5737_map__of__eqI,axiom,
! [B: $tType,A: $tType,Xs: list(product_prod(A,B)),Ys: list(product_prod(A,B))] :
( ( aa(list(A),set(A),set2(A),aa(list(product_prod(A,B)),list(A),map(product_prod(A,B),A,product_fst(A,B)),Xs)) = aa(list(A),set(A),set2(A),aa(list(product_prod(A,B)),list(A),map(product_prod(A,B),A,product_fst(A,B)),Ys)) )
=> ( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),aa(list(product_prod(A,B)),list(A),map(product_prod(A,B),A,product_fst(A,B)),Xs))))
=> ( aa(A,option(B),map_of(A,B,Xs),X3) = aa(A,option(B),map_of(A,B,Ys),X3) ) )
=> ( map_of(A,B,Xs) = map_of(A,B,Ys) ) ) ) ).
% map_of_eqI
tff(fact_5738_set__map__of__compr,axiom,
! [B: $tType,A: $tType,Xs: list(product_prod(A,B))] :
( distinct(A,aa(list(product_prod(A,B)),list(A),map(product_prod(A,B),A,product_fst(A,B)),Xs))
=> ( aa(list(product_prod(A,B)),set(product_prod(A,B)),set2(product_prod(A,B)),Xs) = aa(fun(product_prod(A,B),bool),set(product_prod(A,B)),collect(product_prod(A,B)),aa(fun(A,fun(B,bool)),fun(product_prod(A,B),bool),product_case_prod(A,B,bool),aTP_Lamp_np(list(product_prod(A,B)),fun(A,fun(B,bool)),Xs))) ) ) ).
% set_map_of_compr
tff(fact_5739_size__prod__simp,axiom,
! [A: $tType,B: $tType,F2: fun(A,nat),G: fun(B,nat),P2: product_prod(A,B)] : ( basic_BNF_size_prod(A,B,F2,G,P2) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(A,nat,F2,aa(product_prod(A,B),A,product_fst(A,B),P2))),aa(B,nat,G,aa(product_prod(A,B),B,product_snd(A,B),P2)))),aa(nat,nat,suc,zero_zero(nat))) ) ).
% size_prod_simp
tff(fact_5740_finite__enumerate,axiom,
! [S: set(nat)] :
( finite_finite(nat,S)
=> ? [R4: fun(nat,nat)] :
( strict_mono_on(nat,nat,R4,aa(nat,set(nat),set_ord_lessThan(nat),aa(set(nat),nat,finite_card(nat),S)))
& ! [N7: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N7),aa(set(nat),nat,finite_card(nat),S)))
=> pp(member(nat,aa(nat,nat,R4,N7),S)) ) ) ) ).
% finite_enumerate
tff(fact_5741_divmod__integer__eq__cases,axiom,
! [K: code_integer,L: code_integer] :
( ( ( K = zero_zero(code_integer) )
=> ( code_divmod_integer(K,L) = aa(code_integer,product_prod(code_integer,code_integer),aa(code_integer,fun(code_integer,product_prod(code_integer,code_integer)),product_Pair(code_integer,code_integer),zero_zero(code_integer)),zero_zero(code_integer)) ) )
& ( ( K != zero_zero(code_integer) )
=> ( ( ( L = zero_zero(code_integer) )
=> ( code_divmod_integer(K,L) = aa(code_integer,product_prod(code_integer,code_integer),aa(code_integer,fun(code_integer,product_prod(code_integer,code_integer)),product_Pair(code_integer,code_integer),zero_zero(code_integer)),K) ) )
& ( ( L != zero_zero(code_integer) )
=> ( code_divmod_integer(K,L) = aa(product_prod(code_integer,code_integer),product_prod(code_integer,code_integer),aa(code_integer,fun(product_prod(code_integer,code_integer),product_prod(code_integer,code_integer)),aa(fun(code_integer,code_integer),fun(code_integer,fun(product_prod(code_integer,code_integer),product_prod(code_integer,code_integer))),comp(code_integer,fun(product_prod(code_integer,code_integer),product_prod(code_integer,code_integer)),code_integer,aa(fun(code_integer,fun(code_integer,code_integer)),fun(code_integer,fun(product_prod(code_integer,code_integer),product_prod(code_integer,code_integer))),comp(fun(code_integer,code_integer),fun(product_prod(code_integer,code_integer),product_prod(code_integer,code_integer)),code_integer,product_apsnd(code_integer,code_integer,code_integer)),times_times(code_integer))),sgn_sgn(code_integer)),L),if(product_prod(code_integer,code_integer),aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),fequal(code_integer),aa(code_integer,code_integer,sgn_sgn(code_integer),K)),aa(code_integer,code_integer,sgn_sgn(code_integer),L)),code_divmod_abs(K,L),aa(product_prod(code_integer,code_integer),product_prod(code_integer,code_integer),aa(fun(code_integer,fun(code_integer,product_prod(code_integer,code_integer))),fun(product_prod(code_integer,code_integer),product_prod(code_integer,code_integer)),product_case_prod(code_integer,code_integer,product_prod(code_integer,code_integer)),aTP_Lamp_nq(code_integer,fun(code_integer,fun(code_integer,product_prod(code_integer,code_integer))),L)),code_divmod_abs(K,L)))) ) ) ) ) ) ).
% divmod_integer_eq_cases
tff(fact_5742_gcd__nat_Oeq__neutr__iff,axiom,
! [A2: nat,B2: nat] :
( ( aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),A2),B2) = zero_zero(nat) )
<=> ( ( A2 = zero_zero(nat) )
& ( B2 = zero_zero(nat) ) ) ) ).
% gcd_nat.eq_neutr_iff
tff(fact_5743_gcd__nat_Oleft__neutral,axiom,
! [A2: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),zero_zero(nat)),A2) = A2 ) ).
% gcd_nat.left_neutral
tff(fact_5744_gcd__nat_Oneutr__eq__iff,axiom,
! [A2: nat,B2: nat] :
( ( zero_zero(nat) = aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),A2),B2) )
<=> ( ( A2 = zero_zero(nat) )
& ( B2 = zero_zero(nat) ) ) ) ).
% gcd_nat.neutr_eq_iff
tff(fact_5745_gcd__nat_Oright__neutral,axiom,
! [A2: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),A2),zero_zero(nat)) = A2 ) ).
% gcd_nat.right_neutral
tff(fact_5746_gcd__0__nat,axiom,
! [X2: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),X2),zero_zero(nat)) = X2 ) ).
% gcd_0_nat
tff(fact_5747_gcd__0__left__nat,axiom,
! [X2: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),zero_zero(nat)),X2) = X2 ) ).
% gcd_0_left_nat
tff(fact_5748_gcd__1__nat,axiom,
! [M: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),M),one_one(nat)) = one_one(nat) ) ).
% gcd_1_nat
tff(fact_5749_gcd__Suc__0,axiom,
! [M: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),M),aa(nat,nat,suc,zero_zero(nat))) = aa(nat,nat,suc,zero_zero(nat)) ) ).
% gcd_Suc_0
tff(fact_5750_gcd__pos__nat,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),M),N)))
<=> ( ( M != zero_zero(nat) )
| ( N != zero_zero(nat) ) ) ) ).
% gcd_pos_nat
tff(fact_5751_List_Omap_Ocomp,axiom,
! [C: $tType,B: $tType,A: $tType,F2: fun(B,C),G: fun(A,B)] : ( aa(fun(list(A),list(B)),fun(list(A),list(C)),comp(list(B),list(C),list(A),map(B,C,F2)),map(A,B,G)) = map(A,C,aa(fun(A,B),fun(A,C),comp(B,C,A,F2),G)) ) ).
% List.map.comp
tff(fact_5752_list_Omap__comp,axiom,
! [B: $tType,C: $tType,A: $tType,G: fun(B,C),F2: fun(A,B),V: list(A)] : ( aa(list(B),list(C),map(B,C,G),aa(list(A),list(B),map(A,B,F2),V)) = aa(list(A),list(C),map(A,C,aa(fun(A,B),fun(A,C),comp(B,C,A,G),F2)),V) ) ).
% list.map_comp
tff(fact_5753_List_Omap_Ocompositionality,axiom,
! [B: $tType,C: $tType,A: $tType,F2: fun(B,C),G: fun(A,B),List: list(A)] : ( aa(list(B),list(C),map(B,C,F2),aa(list(A),list(B),map(A,B,G),List)) = aa(list(A),list(C),map(A,C,aa(fun(A,B),fun(A,C),comp(B,C,A,F2),G)),List) ) ).
% List.map.compositionality
tff(fact_5754_map__map,axiom,
! [B: $tType,A: $tType,C: $tType,F2: fun(B,A),G: fun(C,B),Xs: list(C)] : ( aa(list(B),list(A),map(B,A,F2),aa(list(C),list(B),map(C,B,G),Xs)) = aa(list(C),list(A),map(C,A,aa(fun(C,B),fun(C,A),comp(B,A,C,F2),G)),Xs) ) ).
% map_map
tff(fact_5755_map__comp__map,axiom,
! [B: $tType,C: $tType,A: $tType,F2: fun(C,B),G: fun(A,C)] : ( aa(fun(list(A),list(C)),fun(list(A),list(B)),comp(list(C),list(B),list(A),map(C,B,F2)),map(A,C,G)) = map(A,B,aa(fun(A,C),fun(A,B),comp(C,B,A,F2),G)) ) ).
% map_comp_map
tff(fact_5756_gcd__int__int__eq,axiom,
! [M: nat,N: nat] : ( aa(int,int,aa(int,fun(int,int),gcd_gcd(int),aa(nat,int,semiring_1_of_nat(int),M)),aa(nat,int,semiring_1_of_nat(int),N)) = aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),M),N)) ) ).
% gcd_int_int_eq
tff(fact_5757_gcd__nat__abs__left__eq,axiom,
! [K: int,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),aa(int,nat,nat2,aa(int,int,abs_abs(int),K))),N) = aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),gcd_gcd(int),K),aa(nat,int,semiring_1_of_nat(int),N))) ) ).
% gcd_nat_abs_left_eq
tff(fact_5758_gcd__nat__abs__right__eq,axiom,
! [N: nat,K: int] : ( aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),N),aa(int,nat,nat2,aa(int,int,abs_abs(int),K))) = aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),gcd_gcd(int),aa(nat,int,semiring_1_of_nat(int),N)),K)) ) ).
% gcd_nat_abs_right_eq
tff(fact_5759_gcd__diff1__nat,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),M))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),M),N)),N) = aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),M),N) ) ) ).
% gcd_diff1_nat
tff(fact_5760_gcd__diff2__nat,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M)),N) = aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),M),N) ) ) ).
% gcd_diff2_nat
tff(fact_5761_gcd__le2__nat,axiom,
! [B2: nat,A2: nat] :
( ( B2 != zero_zero(nat) )
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),A2),B2)),B2)) ) ).
% gcd_le2_nat
tff(fact_5762_gcd__le1__nat,axiom,
! [A2: nat,B2: nat] :
( ( A2 != zero_zero(nat) )
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),A2),B2)),A2)) ) ).
% gcd_le1_nat
tff(fact_5763_gcd__nat_Oelims,axiom,
! [X2: nat,Xa: nat,Y: nat] :
( ( aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),X2),Xa) = Y )
=> ( ( ( Xa = zero_zero(nat) )
=> ( Y = X2 ) )
& ( ( Xa != zero_zero(nat) )
=> ( Y = aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),Xa),modulo_modulo(nat,X2,Xa)) ) ) ) ) ).
% gcd_nat.elims
tff(fact_5764_gcd__nat_Osimps,axiom,
! [Y: nat,X2: nat] :
( ( ( Y = zero_zero(nat) )
=> ( aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),X2),Y) = X2 ) )
& ( ( Y != zero_zero(nat) )
=> ( aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),X2),Y) = aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),Y),modulo_modulo(nat,X2,Y)) ) ) ) ).
% gcd_nat.simps
tff(fact_5765_gcd__non__0__nat,axiom,
! [Y: nat,X2: nat] :
( ( Y != zero_zero(nat) )
=> ( aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),X2),Y) = aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),Y),modulo_modulo(nat,X2,Y)) ) ) ).
% gcd_non_0_nat
tff(fact_5766_gcd__mult__distrib__nat,axiom,
! [K: nat,M: nat,N: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),M),N)) = aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),M)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),N)) ) ).
% gcd_mult_distrib_nat
tff(fact_5767_gcd__red__nat,axiom,
! [X2: nat,Y: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),X2),Y) = aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),Y),modulo_modulo(nat,X2,Y)) ) ).
% gcd_red_nat
tff(fact_5768_foldr__map,axiom,
! [C: $tType,B: $tType,A: $tType,G: fun(B,fun(A,A)),F2: fun(C,B),Xs: list(C),A2: A] : ( aa(A,A,foldr(B,A,G,aa(list(C),list(B),map(C,B,F2),Xs)),A2) = aa(A,A,foldr(C,A,aa(fun(C,B),fun(C,fun(A,A)),comp(B,fun(A,A),C,G),F2),Xs),A2) ) ).
% foldr_map
tff(fact_5769_sum__comp__morphism,axiom,
! [A: $tType,B: $tType,C: $tType] :
( ( comm_monoid_add(B)
& comm_monoid_add(A) )
=> ! [H: fun(B,A),G: fun(C,B),A3: set(C)] :
( ( aa(B,A,H,zero_zero(B)) = zero_zero(A) )
=> ( ! [X3: B,Y3: B] : ( aa(B,A,H,aa(B,B,aa(B,fun(B,B),plus_plus(B),X3),Y3)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(B,A,H,X3)),aa(B,A,H,Y3)) )
=> ( aa(set(C),A,aa(fun(C,A),fun(set(C),A),groups7311177749621191930dd_sum(C,A),aa(fun(C,B),fun(C,A),comp(B,A,C,H),G)),A3) = aa(B,A,H,aa(set(C),B,aa(fun(C,B),fun(set(C),B),groups7311177749621191930dd_sum(C,B),G),A3)) ) ) ) ) ).
% sum_comp_morphism
tff(fact_5770_bezout__nat,axiom,
! [A2: nat,B2: nat] :
( ( A2 != zero_zero(nat) )
=> ? [X3: nat,Y3: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),A2),X3) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),B2),Y3)),aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),A2),B2)) ) ) ).
% bezout_nat
tff(fact_5771_uminus__sum__list__map,axiom,
! [A: $tType,B: $tType] :
( ab_group_add(A)
=> ! [F2: fun(B,A),Xs: list(B)] : ( aa(A,A,uminus_uminus(A),groups8242544230860333062m_list(A,aa(list(B),list(A),map(B,A,F2),Xs))) = groups8242544230860333062m_list(A,aa(list(B),list(A),map(B,A,aa(fun(B,A),fun(B,A),comp(A,A,B,uminus_uminus(A)),F2)),Xs)) ) ) ).
% uminus_sum_list_map
tff(fact_5772_bezout__gcd__nat_H,axiom,
! [B2: nat,A2: nat] :
? [X3: nat,Y3: nat] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),B2),Y3)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),A2),X3)))
& ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),A2),X3)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),B2),Y3)) = aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),A2),B2) ) )
| ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),A2),Y3)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),B2),X3)))
& ( aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),B2),X3)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),A2),Y3)) = aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),A2),B2) ) ) ) ).
% bezout_gcd_nat'
tff(fact_5773_gcd__code__integer,axiom,
! [K: code_integer,L: code_integer] : ( aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),gcd_gcd(code_integer),K),L) = aa(code_integer,code_integer,abs_abs(code_integer),if(code_integer,aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),fequal(code_integer),L),zero_zero(code_integer)),K,aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),gcd_gcd(code_integer),L),modulo_modulo(code_integer,aa(code_integer,code_integer,abs_abs(code_integer),K),aa(code_integer,code_integer,abs_abs(code_integer),L))))) ) ).
% gcd_code_integer
tff(fact_5774_gcd__int__def,axiom,
! [X2: int,Y: int] : ( aa(int,int,aa(int,fun(int,int),gcd_gcd(int),X2),Y) = aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),aa(int,nat,nat2,aa(int,int,abs_abs(int),X2))),aa(int,nat,nat2,aa(int,int,abs_abs(int),Y)))) ) ).
% gcd_int_def
tff(fact_5775_bezw__aux,axiom,
! [X2: nat,Y: nat] : ( aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),X2),Y)) = aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(product_prod(int,int),int,product_fst(int,int),bezw(X2,Y))),aa(nat,int,semiring_1_of_nat(int),X2))),aa(int,int,aa(int,fun(int,int),times_times(int),aa(product_prod(int,int),int,product_snd(int,int),bezw(X2,Y))),aa(nat,int,semiring_1_of_nat(int),Y))) ) ).
% bezw_aux
tff(fact_5776_split__cong,axiom,
! [C: $tType,B: $tType,A: $tType,Q2: product_prod(A,B),F2: fun(A,fun(B,C)),G: fun(A,fun(B,C)),P2: product_prod(A,B)] :
( ! [X3: A,Y3: B] :
( ( aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X3),Y3) = Q2 )
=> ( aa(B,C,aa(A,fun(B,C),F2,X3),Y3) = aa(B,C,aa(A,fun(B,C),G,X3),Y3) ) )
=> ( ( P2 = Q2 )
=> ( aa(product_prod(A,B),C,aa(fun(A,fun(B,C)),fun(product_prod(A,B),C),product_case_prod(A,B,C),F2),P2) = aa(product_prod(A,B),C,aa(fun(A,fun(B,C)),fun(product_prod(A,B),C),product_case_prod(A,B,C),G),Q2) ) ) ) ).
% split_cong
tff(fact_5777_nat__descend__induct,axiom,
! [N: nat,P: fun(nat,bool),M: nat] :
( ! [K3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),K3))
=> pp(aa(nat,bool,P,K3)) )
=> ( ! [K3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K3),N))
=> ( ! [I2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),K3),I2))
=> pp(aa(nat,bool,P,I2)) )
=> pp(aa(nat,bool,P,K3)) ) )
=> pp(aa(nat,bool,P,M)) ) ) ).
% nat_descend_induct
tff(fact_5778_less__by__empty,axiom,
! [A: $tType,A3: set(product_prod(A,A)),B4: set(product_prod(A,A))] :
( ( A3 = bot_bot(set(product_prod(A,A))) )
=> pp(aa(set(product_prod(A,A)),bool,aa(set(product_prod(A,A)),fun(set(product_prod(A,A)),bool),ord_less_eq(set(product_prod(A,A))),A3),B4)) ) ).
% less_by_empty
tff(fact_5779_gcd__nat_Opelims,axiom,
! [X2: nat,Xa: nat,Y: nat] :
( ( aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),X2),Xa) = Y )
=> ( pp(aa(product_prod(nat,nat),bool,accp(product_prod(nat,nat),gcd_nat_rel),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),X2),Xa)))
=> ~ ( ( ( ( Xa = zero_zero(nat) )
=> ( Y = X2 ) )
& ( ( Xa != zero_zero(nat) )
=> ( Y = aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),Xa),modulo_modulo(nat,X2,Xa)) ) ) )
=> ~ pp(aa(product_prod(nat,nat),bool,accp(product_prod(nat,nat),gcd_nat_rel),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),X2),Xa))) ) ) ) ).
% gcd_nat.pelims
tff(fact_5780_strict__mono__on__def,axiom,
! [B: $tType,A: $tType] :
( ( ord(A)
& ord(B) )
=> ! [F2: fun(A,B),A3: set(A)] :
( strict_mono_on(A,B,F2,A3)
<=> ! [R5: A,S6: A] :
( ( pp(member(A,R5,A3))
& pp(member(A,S6,A3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),R5),S6)) )
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),aa(A,B,F2,R5)),aa(A,B,F2,S6))) ) ) ) ).
% strict_mono_on_def
tff(fact_5781_strict__mono__onI,axiom,
! [B: $tType,A: $tType] :
( ( ord(A)
& ord(B) )
=> ! [A3: set(A),F2: fun(A,B)] :
( ! [R4: A,S3: A] :
( pp(member(A,R4,A3))
=> ( pp(member(A,S3,A3))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),R4),S3))
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),aa(A,B,F2,R4)),aa(A,B,F2,S3))) ) ) )
=> strict_mono_on(A,B,F2,A3) ) ) ).
% strict_mono_onI
tff(fact_5782_size__list__map,axiom,
! [A: $tType,B: $tType,F2: fun(A,nat),G: fun(B,A),Xs: list(B)] : ( aa(list(A),nat,size_list(A,F2),aa(list(B),list(A),map(B,A,G),Xs)) = aa(list(B),nat,size_list(B,aa(fun(B,A),fun(B,nat),comp(A,nat,B,F2),G)),Xs) ) ).
% size_list_map
tff(fact_5783_card_Ocomp__fun__commute__on,axiom,
aa(fun(nat,nat),fun(nat,nat),comp(nat,nat,nat,suc),suc) = aa(fun(nat,nat),fun(nat,nat),comp(nat,nat,nat,suc),suc) ).
% card.comp_fun_commute_on
tff(fact_5784_list_Osize__gen__o__map,axiom,
! [B: $tType,A: $tType,F2: fun(B,nat),G: fun(A,B)] : ( aa(fun(list(A),list(B)),fun(list(A),nat),comp(list(B),nat,list(A),size_list(B,F2)),map(A,B,G)) = size_list(A,aa(fun(A,B),fun(A,nat),comp(B,nat,A,F2),G)) ) ).
% list.size_gen_o_map
tff(fact_5785_fst__diag__fst,axiom,
! [B: $tType,A: $tType] : ( aa(fun(product_prod(A,B),product_prod(A,A)),fun(product_prod(A,B),A),comp(product_prod(A,A),A,product_prod(A,B),product_fst(A,A)),aa(fun(product_prod(A,B),A),fun(product_prod(A,B),product_prod(A,A)),comp(A,product_prod(A,A),product_prod(A,B),aTP_Lamp_nr(A,product_prod(A,A))),product_fst(A,B))) = product_fst(A,B) ) ).
% fst_diag_fst
tff(fact_5786_fst__diag__snd,axiom,
! [B: $tType,A: $tType] : ( aa(fun(product_prod(A,B),product_prod(B,B)),fun(product_prod(A,B),B),comp(product_prod(B,B),B,product_prod(A,B),product_fst(B,B)),aa(fun(product_prod(A,B),B),fun(product_prod(A,B),product_prod(B,B)),comp(B,product_prod(B,B),product_prod(A,B),aTP_Lamp_ns(B,product_prod(B,B))),product_snd(A,B))) = product_snd(A,B) ) ).
% fst_diag_snd
tff(fact_5787_snd__diag__fst,axiom,
! [B: $tType,A: $tType] : ( aa(fun(product_prod(A,B),product_prod(A,A)),fun(product_prod(A,B),A),comp(product_prod(A,A),A,product_prod(A,B),product_snd(A,A)),aa(fun(product_prod(A,B),A),fun(product_prod(A,B),product_prod(A,A)),comp(A,product_prod(A,A),product_prod(A,B),aTP_Lamp_nr(A,product_prod(A,A))),product_fst(A,B))) = product_fst(A,B) ) ).
% snd_diag_fst
tff(fact_5788_snd__diag__snd,axiom,
! [B: $tType,A: $tType] : ( aa(fun(product_prod(A,B),product_prod(B,B)),fun(product_prod(A,B),B),comp(product_prod(B,B),B,product_prod(A,B),product_snd(B,B)),aa(fun(product_prod(A,B),B),fun(product_prod(A,B),product_prod(B,B)),comp(B,product_prod(B,B),product_prod(A,B),aTP_Lamp_ns(B,product_prod(B,B))),product_snd(A,B))) = product_snd(A,B) ) ).
% snd_diag_snd
tff(fact_5789_folding__insort__key_Oinsort__key__commute,axiom,
! [A: $tType,B: $tType,Less_eq: fun(A,fun(A,bool)),Less: fun(A,fun(A,bool)),S: set(B),F2: fun(B,A),X2: B,Y: B] :
( folding_insort_key(A,B,Less_eq,Less,S,F2)
=> ( pp(member(B,X2,S))
=> ( pp(member(B,Y,S))
=> ( aa(fun(list(B),list(B)),fun(list(B),list(B)),comp(list(B),list(B),list(B),aa(B,fun(list(B),list(B)),aa(fun(B,A),fun(B,fun(list(B),list(B))),insort_key(A,B,Less_eq),F2),Y)),aa(B,fun(list(B),list(B)),aa(fun(B,A),fun(B,fun(list(B),list(B))),insort_key(A,B,Less_eq),F2),X2)) = aa(fun(list(B),list(B)),fun(list(B),list(B)),comp(list(B),list(B),list(B),aa(B,fun(list(B),list(B)),aa(fun(B,A),fun(B,fun(list(B),list(B))),insort_key(A,B,Less_eq),F2),X2)),aa(B,fun(list(B),list(B)),aa(fun(B,A),fun(B,fun(list(B),list(B))),insort_key(A,B,Less_eq),F2),Y)) ) ) ) ) ).
% folding_insort_key.insort_key_commute
tff(fact_5790_sum_OatLeast__Suc__atMost__Suc__shift,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),M: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,M),aa(nat,nat,suc,N))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(fun(nat,nat),fun(nat,A),comp(nat,A,nat,G),suc)),set_or1337092689740270186AtMost(nat,M,N)) ) ) ).
% sum.atLeast_Suc_atMost_Suc_shift
tff(fact_5791_sum_OatLeast__Suc__lessThan__Suc__shift,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),M: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or7035219750837199246ssThan(nat,aa(nat,nat,suc,M),aa(nat,nat,suc,N))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(fun(nat,nat),fun(nat,A),comp(nat,A,nat,G),suc)),set_or7035219750837199246ssThan(nat,M,N)) ) ) ).
% sum.atLeast_Suc_lessThan_Suc_shift
tff(fact_5792_sum_OatLeastAtMost__shift__bounds,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),M: nat,K: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),K),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),K))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(fun(nat,nat),fun(nat,A),comp(nat,A,nat,G),aa(nat,fun(nat,nat),plus_plus(nat),K))),set_or1337092689740270186AtMost(nat,M,N)) ) ) ).
% sum.atLeastAtMost_shift_bounds
tff(fact_5793_sum_OatLeastLessThan__shift__bounds,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),M: nat,K: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or7035219750837199246ssThan(nat,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),K),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),K))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(fun(nat,nat),fun(nat,A),comp(nat,A,nat,G),aa(nat,fun(nat,nat),plus_plus(nat),K))),set_or7035219750837199246ssThan(nat,M,N)) ) ) ).
% sum.atLeastLessThan_shift_bounds
tff(fact_5794_prod_OatLeast__Suc__atMost__Suc__shift,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),M: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,M),aa(nat,nat,suc,N))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(fun(nat,nat),fun(nat,A),comp(nat,A,nat,G),suc)),set_or1337092689740270186AtMost(nat,M,N)) ) ) ).
% prod.atLeast_Suc_atMost_Suc_shift
tff(fact_5795_prod_OatLeast__Suc__lessThan__Suc__shift,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),M: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or7035219750837199246ssThan(nat,aa(nat,nat,suc,M),aa(nat,nat,suc,N))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(fun(nat,nat),fun(nat,A),comp(nat,A,nat,G),suc)),set_or7035219750837199246ssThan(nat,M,N)) ) ) ).
% prod.atLeast_Suc_lessThan_Suc_shift
tff(fact_5796_prod_OatLeastAtMost__shift__bounds,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),M: nat,K: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),K),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),K))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(fun(nat,nat),fun(nat,A),comp(nat,A,nat,G),aa(nat,fun(nat,nat),plus_plus(nat),K))),set_or1337092689740270186AtMost(nat,M,N)) ) ) ).
% prod.atLeastAtMost_shift_bounds
tff(fact_5797_prod_OatLeastLessThan__shift__bounds,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),M: nat,K: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or7035219750837199246ssThan(nat,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),K),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),K))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(fun(nat,nat),fun(nat,A),comp(nat,A,nat,G),aa(nat,fun(nat,nat),plus_plus(nat),K))),set_or7035219750837199246ssThan(nat,M,N)) ) ) ).
% prod.atLeastLessThan_shift_bounds
tff(fact_5798_bit__drop__bit__eq,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [N: nat,A2: A] : ( bit_se5641148757651400278ts_bit(A,bit_se4197421643247451524op_bit(A,N,A2)) = aa(fun(nat,nat),fun(nat,bool),comp(nat,bool,nat,bit_se5641148757651400278ts_bit(A,A2)),aa(nat,fun(nat,nat),plus_plus(nat),N)) ) ) ).
% bit_drop_bit_eq
tff(fact_5799_summable__inverse__divide,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(nat,A),C2: A] :
( summable(A,aa(fun(nat,A),fun(nat,A),comp(A,A,nat,inverse_inverse(A)),F2))
=> summable(A,aa(A,fun(nat,A),aTP_Lamp_nt(fun(nat,A),fun(A,fun(nat,A)),F2),C2)) ) ) ).
% summable_inverse_divide
tff(fact_5800_sum_OatLeast0__atMost__Suc__shift,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,zero_zero(nat),aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,G,zero_zero(nat))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(fun(nat,nat),fun(nat,A),comp(nat,A,nat,G),suc)),set_or1337092689740270186AtMost(nat,zero_zero(nat),N))) ) ) ).
% sum.atLeast0_atMost_Suc_shift
tff(fact_5801_sum_OatLeast0__lessThan__Suc__shift,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or7035219750837199246ssThan(nat,zero_zero(nat),aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,G,zero_zero(nat))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(fun(nat,nat),fun(nat,A),comp(nat,A,nat,G),suc)),set_or7035219750837199246ssThan(nat,zero_zero(nat),N))) ) ) ).
% sum.atLeast0_lessThan_Suc_shift
tff(fact_5802_prod_OatLeast0__atMost__Suc__shift,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,zero_zero(nat),aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,G,zero_zero(nat))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(fun(nat,nat),fun(nat,A),comp(nat,A,nat,G),suc)),set_or1337092689740270186AtMost(nat,zero_zero(nat),N))) ) ) ).
% prod.atLeast0_atMost_Suc_shift
tff(fact_5803_prod_OatLeast0__lessThan__Suc__shift,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or7035219750837199246ssThan(nat,zero_zero(nat),aa(nat,nat,suc,N))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,G,zero_zero(nat))),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(fun(nat,nat),fun(nat,A),comp(nat,A,nat,G),suc)),set_or7035219750837199246ssThan(nat,zero_zero(nat),N))) ) ) ).
% prod.atLeast0_lessThan_Suc_shift
tff(fact_5804_sum_OatLeastLessThan__shift__0,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),M: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or7035219750837199246ssThan(nat,M,N)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(fun(nat,nat),fun(nat,A),comp(nat,A,nat,G),aa(nat,fun(nat,nat),plus_plus(nat),M))),set_or7035219750837199246ssThan(nat,zero_zero(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M))) ) ) ).
% sum.atLeastLessThan_shift_0
tff(fact_5805_prod_OatLeastLessThan__shift__0,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),M: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or7035219750837199246ssThan(nat,M,N)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(fun(nat,nat),fun(nat,A),comp(nat,A,nat,G),aa(nat,fun(nat,nat),plus_plus(nat),M))),set_or7035219750837199246ssThan(nat,zero_zero(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M))) ) ) ).
% prod.atLeastLessThan_shift_0
tff(fact_5806_sum_OatLeastAtMost__reindex,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_add(A)
& ord(B) )
=> ! [H: fun(nat,B),M: nat,N: nat,G: fun(B,A)] :
( bij_betw(nat,B,H,set_or1337092689740270186AtMost(nat,M,N),set_or1337092689740270186AtMost(B,aa(nat,B,H,M),aa(nat,B,H,N)))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),set_or1337092689740270186AtMost(B,aa(nat,B,H,M),aa(nat,B,H,N))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(fun(nat,B),fun(nat,A),comp(B,A,nat,G),H)),set_or1337092689740270186AtMost(nat,M,N)) ) ) ) ).
% sum.atLeastAtMost_reindex
tff(fact_5807_sum_OatLeastLessThan__reindex,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_add(A)
& ord(B) )
=> ! [H: fun(nat,B),M: nat,N: nat,G: fun(B,A)] :
( bij_betw(nat,B,H,set_or7035219750837199246ssThan(nat,M,N),set_or7035219750837199246ssThan(B,aa(nat,B,H,M),aa(nat,B,H,N)))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),set_or7035219750837199246ssThan(B,aa(nat,B,H,M),aa(nat,B,H,N))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(fun(nat,B),fun(nat,A),comp(B,A,nat,G),H)),set_or7035219750837199246ssThan(nat,M,N)) ) ) ) ).
% sum.atLeastLessThan_reindex
tff(fact_5808_prod_OatLeastAtMost__reindex,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_mult(A)
& ord(B) )
=> ! [H: fun(nat,B),M: nat,N: nat,G: fun(B,A)] :
( bij_betw(nat,B,H,set_or1337092689740270186AtMost(nat,M,N),set_or1337092689740270186AtMost(B,aa(nat,B,H,M),aa(nat,B,H,N)))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),set_or1337092689740270186AtMost(B,aa(nat,B,H,M),aa(nat,B,H,N))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(fun(nat,B),fun(nat,A),comp(B,A,nat,G),H)),set_or1337092689740270186AtMost(nat,M,N)) ) ) ) ).
% prod.atLeastAtMost_reindex
tff(fact_5809_prod_OatLeastLessThan__reindex,axiom,
! [B: $tType,A: $tType] :
( ( comm_monoid_mult(A)
& ord(B) )
=> ! [H: fun(nat,B),M: nat,N: nat,G: fun(B,A)] :
( bij_betw(nat,B,H,set_or7035219750837199246ssThan(nat,M,N),set_or7035219750837199246ssThan(B,aa(nat,B,H,M),aa(nat,B,H,N)))
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),set_or7035219750837199246ssThan(B,aa(nat,B,H,M),aa(nat,B,H,N))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(fun(nat,B),fun(nat,A),comp(B,A,nat,G),H)),set_or7035219750837199246ssThan(nat,M,N)) ) ) ) ).
% prod.atLeastLessThan_reindex
tff(fact_5810_sum_OatLeast__atMost__pred__shift,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),M: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(fun(nat,nat),fun(nat,A),comp(nat,A,nat,G),aTP_Lamp_je(nat,nat))),set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,M),aa(nat,nat,suc,N))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,M,N)) ) ) ).
% sum.atLeast_atMost_pred_shift
tff(fact_5811_sum_OatLeast__lessThan__pred__shift,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(nat,A),M: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(fun(nat,nat),fun(nat,A),comp(nat,A,nat,G),aTP_Lamp_je(nat,nat))),set_or7035219750837199246ssThan(nat,aa(nat,nat,suc,M),aa(nat,nat,suc,N))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or7035219750837199246ssThan(nat,M,N)) ) ) ).
% sum.atLeast_lessThan_pred_shift
tff(fact_5812_prod_OatLeast__atMost__pred__shift,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),M: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(fun(nat,nat),fun(nat,A),comp(nat,A,nat,G),aTP_Lamp_je(nat,nat))),set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,M),aa(nat,nat,suc,N))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,M,N)) ) ) ).
% prod.atLeast_atMost_pred_shift
tff(fact_5813_prod_OatLeast__lessThan__pred__shift,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(nat,A),M: nat,N: nat] : ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(fun(nat,nat),fun(nat,A),comp(nat,A,nat,G),aTP_Lamp_je(nat,nat))),set_or7035219750837199246ssThan(nat,aa(nat,nat,suc,M),aa(nat,nat,suc,N))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or7035219750837199246ssThan(nat,M,N)) ) ) ).
% prod.atLeast_lessThan_pred_shift
tff(fact_5814_sum_OatLeast__int__atMost__int__shift,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(int,A),M: nat,N: nat] : ( aa(set(int),A,aa(fun(int,A),fun(set(int),A),groups7311177749621191930dd_sum(int,A),G),set_or1337092689740270186AtMost(int,aa(nat,int,semiring_1_of_nat(int),M),aa(nat,int,semiring_1_of_nat(int),N))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(fun(nat,int),fun(nat,A),comp(int,A,nat,G),semiring_1_of_nat(int))),set_or1337092689740270186AtMost(nat,M,N)) ) ) ).
% sum.atLeast_int_atMost_int_shift
tff(fact_5815_prod_OatLeast__int__atMost__int__shift,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(int,A),M: nat,N: nat] : ( aa(set(int),A,aa(fun(int,A),fun(set(int),A),groups7121269368397514597t_prod(int,A),G),set_or1337092689740270186AtMost(int,aa(nat,int,semiring_1_of_nat(int),M),aa(nat,int,semiring_1_of_nat(int),N))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(fun(nat,int),fun(nat,A),comp(int,A,nat,G),semiring_1_of_nat(int))),set_or1337092689740270186AtMost(nat,M,N)) ) ) ).
% prod.atLeast_int_atMost_int_shift
tff(fact_5816_sum_OatLeast__int__lessThan__int__shift,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(int,A),M: nat,N: nat] : ( aa(set(int),A,aa(fun(int,A),fun(set(int),A),groups7311177749621191930dd_sum(int,A),G),set_or7035219750837199246ssThan(int,aa(nat,int,semiring_1_of_nat(int),M),aa(nat,int,semiring_1_of_nat(int),N))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(fun(nat,int),fun(nat,A),comp(int,A,nat,G),semiring_1_of_nat(int))),set_or7035219750837199246ssThan(nat,M,N)) ) ) ).
% sum.atLeast_int_lessThan_int_shift
tff(fact_5817_sum_OatLeastAtMost__shift__0,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [M: nat,N: nat,G: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,M,N)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(fun(nat,nat),fun(nat,A),comp(nat,A,nat,G),aa(nat,fun(nat,nat),plus_plus(nat),M))),set_or1337092689740270186AtMost(nat,zero_zero(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M))) ) ) ) ).
% sum.atLeastAtMost_shift_0
tff(fact_5818_prod_OatLeastAtMost__shift__0,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [M: nat,N: nat,G: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,M,N)) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(fun(nat,nat),fun(nat,A),comp(nat,A,nat,G),aa(nat,fun(nat,nat),plus_plus(nat),M))),set_or1337092689740270186AtMost(nat,zero_zero(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),M))) ) ) ) ).
% prod.atLeastAtMost_shift_0
tff(fact_5819_prod_OatLeast__int__lessThan__int__shift,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(int,A),M: nat,N: nat] : ( aa(set(int),A,aa(fun(int,A),fun(set(int),A),groups7121269368397514597t_prod(int,A),G),set_or7035219750837199246ssThan(int,aa(nat,int,semiring_1_of_nat(int),M),aa(nat,int,semiring_1_of_nat(int),N))) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(fun(nat,int),fun(nat,A),comp(int,A,nat,G),semiring_1_of_nat(int))),set_or7035219750837199246ssThan(nat,M,N)) ) ) ).
% prod.atLeast_int_lessThan_int_shift
tff(fact_5820_strict__mono__on__leD,axiom,
! [B: $tType,A: $tType] :
( ( linorder(A)
& preorder(B) )
=> ! [F2: fun(A,B),A3: set(A),X2: A,Y: A] :
( strict_mono_on(A,B,F2,A3)
=> ( pp(member(A,X2,A3))
=> ( pp(member(A,Y,A3))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),aa(A,B,F2,X2)),aa(A,B,F2,Y))) ) ) ) ) ) ).
% strict_mono_on_leD
tff(fact_5821_strict__mono__onD,axiom,
! [B: $tType,A: $tType] :
( ( ord(A)
& ord(B) )
=> ! [F2: fun(A,B),A3: set(A),R: A,S2: A] :
( strict_mono_on(A,B,F2,A3)
=> ( pp(member(A,R,A3))
=> ( pp(member(A,S2,A3))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),R),S2))
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),aa(A,B,F2,R)),aa(A,B,F2,S2))) ) ) ) ) ) ).
% strict_mono_onD
tff(fact_5822_snd__fst__flip,axiom,
! [A: $tType,B: $tType,Xy: product_prod(B,A)] : ( aa(product_prod(B,A),A,product_snd(B,A),Xy) = aa(product_prod(B,A),A,aa(fun(product_prod(B,A),product_prod(A,B)),fun(product_prod(B,A),A),comp(product_prod(A,B),A,product_prod(B,A),product_fst(A,B)),aa(fun(B,fun(A,product_prod(A,B))),fun(product_prod(B,A),product_prod(A,B)),product_case_prod(B,A,product_prod(A,B)),aTP_Lamp_nu(B,fun(A,product_prod(A,B))))),Xy) ) ).
% snd_fst_flip
tff(fact_5823_fst__snd__flip,axiom,
! [B: $tType,A: $tType,Xy: product_prod(A,B)] : ( aa(product_prod(A,B),A,product_fst(A,B),Xy) = aa(product_prod(A,B),A,aa(fun(product_prod(A,B),product_prod(B,A)),fun(product_prod(A,B),A),comp(product_prod(B,A),A,product_prod(A,B),product_snd(B,A)),aa(fun(A,fun(B,product_prod(B,A))),fun(product_prod(A,B),product_prod(B,A)),product_case_prod(A,B,product_prod(B,A)),aTP_Lamp_nv(A,fun(B,product_prod(B,A))))),Xy) ) ).
% fst_snd_flip
tff(fact_5824_Code__Target__Int_Onegative__def,axiom,
code_Target_negative = aa(fun(num,int),fun(num,int),comp(int,int,num,uminus_uminus(int)),numeral_numeral(int)) ).
% Code_Target_Int.negative_def
tff(fact_5825_ge__eq__refl,axiom,
! [A: $tType,R2: fun(A,fun(A,bool)),X2: A] :
( pp(aa(fun(A,fun(A,bool)),bool,aa(fun(A,fun(A,bool)),fun(fun(A,fun(A,bool)),bool),ord_less_eq(fun(A,fun(A,bool))),fequal(A)),R2))
=> pp(aa(A,bool,aa(A,fun(A,bool),R2,X2),X2)) ) ).
% ge_eq_refl
tff(fact_5826_refl__ge__eq,axiom,
! [A: $tType,R2: fun(A,fun(A,bool))] :
( ! [X3: A] : pp(aa(A,bool,aa(A,fun(A,bool),R2,X3),X3))
=> pp(aa(fun(A,fun(A,bool)),bool,aa(fun(A,fun(A,bool)),fun(fun(A,fun(A,bool)),bool),ord_less_eq(fun(A,fun(A,bool))),fequal(A)),R2)) ) ).
% refl_ge_eq
tff(fact_5827_fstI,axiom,
! [B: $tType,A: $tType,X2: product_prod(A,B),Y: A,Z: B] :
( ( X2 = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),Y),Z) )
=> ( aa(product_prod(A,B),A,product_fst(A,B),X2) = Y ) ) ).
% fstI
tff(fact_5828_sndI,axiom,
! [A: $tType,B: $tType,X2: product_prod(A,B),Y: A,Z: B] :
( ( X2 = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),Y),Z) )
=> ( aa(product_prod(A,B),B,product_snd(A,B),X2) = Z ) ) ).
% sndI
tff(fact_5829_nth__rotate1,axiom,
! [A: $tType,N: nat,Xs: list(A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( aa(nat,A,nth(A,rotate1(A,Xs)),N) = aa(nat,A,nth(A,Xs),modulo_modulo(nat,aa(nat,nat,suc,N),aa(list(A),nat,size_size(list(A)),Xs))) ) ) ).
% nth_rotate1
tff(fact_5830_card__greaterThanLessThan__int,axiom,
! [L: int,U: int] : ( aa(set(int),nat,finite_card(int),set_or5935395276787703475ssThan(int,L,U)) = aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),minus_minus(int),U),aa(int,int,aa(int,fun(int,int),plus_plus(int),L),one_one(int)))) ) ).
% card_greaterThanLessThan_int
tff(fact_5831_xor__minus__numerals_I2_J,axiom,
! [K: int,N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se5824344971392196577ns_xor(int),K),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),N))) = aa(int,int,bit_ri4277139882892585799ns_not(int),aa(int,int,aa(int,fun(int,int),bit_se5824344971392196577ns_xor(int),K),neg_numeral_sub(int,N,one2))) ) ).
% xor_minus_numerals(2)
tff(fact_5832_greaterThanLessThan__iff,axiom,
! [A: $tType] :
( ord(A)
=> ! [I: A,L: A,U: A] :
( pp(member(A,I,set_or5935395276787703475ssThan(A,L,U)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),L),I))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),I),U)) ) ) ) ).
% greaterThanLessThan_iff
tff(fact_5833_set__rotate1,axiom,
! [A: $tType,Xs: list(A)] : ( aa(list(A),set(A),set2(A),rotate1(A,Xs)) = aa(list(A),set(A),set2(A),Xs) ) ).
% set_rotate1
tff(fact_5834_length__rotate1,axiom,
! [A: $tType,Xs: list(A)] : ( aa(list(A),nat,size_size(list(A)),rotate1(A,Xs)) = aa(list(A),nat,size_size(list(A)),Xs) ) ).
% length_rotate1
tff(fact_5835_distinct1__rotate,axiom,
! [A: $tType,Xs: list(A)] :
( distinct(A,rotate1(A,Xs))
<=> distinct(A,Xs) ) ).
% distinct1_rotate
tff(fact_5836_finite__greaterThanLessThan__int,axiom,
! [L: int,U: int] : finite_finite(int,set_or5935395276787703475ssThan(int,L,U)) ).
% finite_greaterThanLessThan_int
tff(fact_5837_greaterThanLessThan__empty,axiom,
! [A: $tType] :
( order(A)
=> ! [L: A,K: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L),K))
=> ( set_or5935395276787703475ssThan(A,K,L) = bot_bot(set(A)) ) ) ) ).
% greaterThanLessThan_empty
tff(fact_5838_greaterThanLessThan__empty__iff,axiom,
! [A: $tType] :
( dense_linorder(A)
=> ! [A2: A,B2: A] :
( ( set_or5935395276787703475ssThan(A,A2,B2) = bot_bot(set(A)) )
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2)) ) ) ).
% greaterThanLessThan_empty_iff
tff(fact_5839_greaterThanLessThan__empty__iff2,axiom,
! [A: $tType] :
( dense_linorder(A)
=> ! [A2: A,B2: A] :
( ( bot_bot(set(A)) = set_or5935395276787703475ssThan(A,A2,B2) )
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2)) ) ) ).
% greaterThanLessThan_empty_iff2
tff(fact_5840_infinite__Ioo__iff,axiom,
! [A: $tType] :
( dense_linorder(A)
=> ! [A2: A,B2: A] :
( ~ finite_finite(A,set_or5935395276787703475ssThan(A,A2,B2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) ) ) ).
% infinite_Ioo_iff
tff(fact_5841_sub__num__simps_I1_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ( neg_numeral_sub(A,one2,one2) = zero_zero(A) ) ) ).
% sub_num_simps(1)
tff(fact_5842_diff__numeral__simps_I1_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [M: num,N: num] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(num,A,numeral_numeral(A),M)),aa(num,A,numeral_numeral(A),N)) = neg_numeral_sub(A,M,N) ) ) ).
% diff_numeral_simps(1)
tff(fact_5843_sub__num__simps_I6_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [K: num,L: num] : ( neg_numeral_sub(A,bit0(K),bit0(L)) = neg_numeral_dbl(A,neg_numeral_sub(A,K,L)) ) ) ).
% sub_num_simps(6)
tff(fact_5844_sub__num__simps_I9_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [K: num,L: num] : ( neg_numeral_sub(A,aa(num,num,bit1,K),aa(num,num,bit1,L)) = neg_numeral_dbl(A,neg_numeral_sub(A,K,L)) ) ) ).
% sub_num_simps(9)
tff(fact_5845_add__neg__numeral__simps_I1_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [M: num,N: num] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(num,A,numeral_numeral(A),M)),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N))) = neg_numeral_sub(A,M,N) ) ) ).
% add_neg_numeral_simps(1)
tff(fact_5846_add__neg__numeral__simps_I2_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [M: num,N: num] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M))),aa(num,A,numeral_numeral(A),N)) = neg_numeral_sub(A,N,M) ) ) ).
% add_neg_numeral_simps(2)
tff(fact_5847_semiring__norm_I166_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [V: num,W: num,Y: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(num,A,numeral_numeral(A),V)),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W))),Y)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),neg_numeral_sub(A,V,W)),Y) ) ) ).
% semiring_norm(166)
tff(fact_5848_semiring__norm_I167_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [V: num,W: num,Y: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),V))),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(num,A,numeral_numeral(A),W)),Y)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),neg_numeral_sub(A,W,V)),Y) ) ) ).
% semiring_norm(167)
tff(fact_5849_diff__numeral__simps_I4_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [M: num,N: num] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M))),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N))) = neg_numeral_sub(A,N,M) ) ) ).
% diff_numeral_simps(4)
tff(fact_5850_rotate1__length01,axiom,
! [A: $tType,Xs: list(A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(list(A),nat,size_size(list(A)),Xs)),one_one(nat)))
=> ( rotate1(A,Xs) = Xs ) ) ).
% rotate1_length01
tff(fact_5851_sub__num__simps_I7_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [K: num,L: num] : ( neg_numeral_sub(A,bit0(K),aa(num,num,bit1,L)) = neg_numeral_dbl_dec(A,neg_numeral_sub(A,K,L)) ) ) ).
% sub_num_simps(7)
tff(fact_5852_sub__num__simps_I8_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [K: num,L: num] : ( neg_numeral_sub(A,aa(num,num,bit1,K),bit0(L)) = neg_numeral_dbl_inc(A,neg_numeral_sub(A,K,L)) ) ) ).
% sub_num_simps(8)
tff(fact_5853_diff__numeral__special_I2_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [M: num] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(num,A,numeral_numeral(A),M)),one_one(A)) = neg_numeral_sub(A,M,one2) ) ) ).
% diff_numeral_special(2)
tff(fact_5854_diff__numeral__special_I1_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [N: num] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),one_one(A)),aa(num,A,numeral_numeral(A),N)) = neg_numeral_sub(A,one2,N) ) ) ).
% diff_numeral_special(1)
tff(fact_5855_sub__num__simps_I5_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [K: num] : ( neg_numeral_sub(A,aa(num,num,bit1,K),one2) = aa(num,A,numeral_numeral(A),bit0(K)) ) ) ).
% sub_num_simps(5)
tff(fact_5856_not__minus__numeral__eq,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: num] : ( aa(A,A,bit_ri4277139882892585799ns_not(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N))) = neg_numeral_sub(A,N,one2) ) ) ).
% not_minus_numeral_eq
tff(fact_5857_sub__num__simps_I4_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [K: num] : ( neg_numeral_sub(A,bit0(K),one2) = aa(num,A,numeral_numeral(A),bitM(K)) ) ) ).
% sub_num_simps(4)
tff(fact_5858_add__neg__numeral__special_I4_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [N: num] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),one_one(A))),aa(num,A,numeral_numeral(A),N)) = neg_numeral_sub(A,N,one2) ) ) ).
% add_neg_numeral_special(4)
tff(fact_5859_add__neg__numeral__special_I3_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [M: num] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(num,A,numeral_numeral(A),M)),aa(A,A,uminus_uminus(A),one_one(A))) = neg_numeral_sub(A,M,one2) ) ) ).
% add_neg_numeral_special(3)
tff(fact_5860_add__neg__numeral__special_I2_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [M: num] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M))),one_one(A)) = neg_numeral_sub(A,one2,M) ) ) ).
% add_neg_numeral_special(2)
tff(fact_5861_add__neg__numeral__special_I1_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [M: num] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M))) = neg_numeral_sub(A,one2,M) ) ) ).
% add_neg_numeral_special(1)
tff(fact_5862_diff__numeral__special_I8_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [M: num] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M))),aa(A,A,uminus_uminus(A),one_one(A))) = neg_numeral_sub(A,one2,M) ) ) ).
% diff_numeral_special(8)
tff(fact_5863_diff__numeral__special_I7_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [N: num] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,uminus_uminus(A),one_one(A))),aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N))) = neg_numeral_sub(A,N,one2) ) ) ).
% diff_numeral_special(7)
tff(fact_5864_minus__sub__one__diff__one,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [M: num] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,uminus_uminus(A),neg_numeral_sub(A,M,one2))),one_one(A)) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),M)) ) ) ).
% minus_sub_one_diff_one
tff(fact_5865_sub__num__simps_I3_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [L: num] : ( neg_numeral_sub(A,one2,aa(num,num,bit1,L)) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),bit0(L))) ) ) ).
% sub_num_simps(3)
tff(fact_5866_sub__num__simps_I2_J,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [L: num] : ( neg_numeral_sub(A,one2,bit0(L)) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),bitM(L))) ) ) ).
% sub_num_simps(2)
tff(fact_5867_xor__minus__numerals_I1_J,axiom,
! [N: num,K: int] : ( aa(int,int,aa(int,fun(int,int),bit_se5824344971392196577ns_xor(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),N))),K) = aa(int,int,bit_ri4277139882892585799ns_not(int),aa(int,int,aa(int,fun(int,int),bit_se5824344971392196577ns_xor(int),neg_numeral_sub(int,N,one2)),K)) ) ).
% xor_minus_numerals(1)
tff(fact_5868_rotate1__map,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),Xs: list(B)] : ( rotate1(A,aa(list(B),list(A),map(B,A,F2),Xs)) = aa(list(B),list(A),map(B,A,F2),rotate1(B,Xs)) ) ).
% rotate1_map
tff(fact_5869_infinite__Ioo,axiom,
! [A: $tType] :
( dense_linorder(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ~ finite_finite(A,set_or5935395276787703475ssThan(A,A2,B2)) ) ) ).
% infinite_Ioo
tff(fact_5870_neg__numeral__class_Osub__def,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [K: num,L: num] : ( neg_numeral_sub(A,K,L) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(num,A,numeral_numeral(A),K)),aa(num,A,numeral_numeral(A),L)) ) ) ).
% neg_numeral_class.sub_def
tff(fact_5871_greaterThanLessThan__subseteq__greaterThanLessThan,axiom,
! [A: $tType] :
( dense_linorder(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),set_or5935395276787703475ssThan(A,A2,B2)),set_or5935395276787703475ssThan(A,C2,D2)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),D2)) ) ) ) ) ).
% greaterThanLessThan_subseteq_greaterThanLessThan
tff(fact_5872_atLeastPlusOneLessThan__greaterThanLessThan__int,axiom,
! [L: int,U: int] : ( set_or7035219750837199246ssThan(int,aa(int,int,aa(int,fun(int,int),plus_plus(int),L),one_one(int)),U) = set_or5935395276787703475ssThan(int,L,U) ) ).
% atLeastPlusOneLessThan_greaterThanLessThan_int
tff(fact_5873_sub__non__positive,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [N: num,M: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),neg_numeral_sub(A,N,M)),zero_zero(A)))
<=> pp(aa(num,bool,aa(num,fun(num,bool),ord_less_eq(num),N),M)) ) ) ).
% sub_non_positive
tff(fact_5874_sub__non__negative,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [N: num,M: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),neg_numeral_sub(A,N,M)))
<=> pp(aa(num,bool,aa(num,fun(num,bool),ord_less_eq(num),M),N)) ) ) ).
% sub_non_negative
tff(fact_5875_sub__negative,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [N: num,M: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),neg_numeral_sub(A,N,M)),zero_zero(A)))
<=> pp(aa(num,bool,aa(num,fun(num,bool),ord_less(num),N),M)) ) ) ).
% sub_negative
tff(fact_5876_sub__positive,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [N: num,M: num] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),neg_numeral_sub(A,N,M)))
<=> pp(aa(num,bool,aa(num,fun(num,bool),ord_less(num),M),N)) ) ) ).
% sub_positive
tff(fact_5877_sub__inc__One__eq,axiom,
! [A: $tType] :
( neg_numeral(A)
=> ! [N: num] : ( neg_numeral_sub(A,inc(N),one2) = aa(num,A,numeral_numeral(A),N) ) ) ).
% sub_inc_One_eq
tff(fact_5878_greaterThanLessThan__subseteq__atLeastAtMost__iff,axiom,
! [A: $tType] :
( dense_linorder(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),set_or5935395276787703475ssThan(A,A2,B2)),set_or1337092689740270186AtMost(A,C2,D2)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),D2)) ) ) ) ) ).
% greaterThanLessThan_subseteq_atLeastAtMost_iff
tff(fact_5879_greaterThanLessThan__subseteq__atLeastLessThan__iff,axiom,
! [A: $tType] :
( dense_linorder(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),set_or5935395276787703475ssThan(A,A2,B2)),set_or7035219750837199246ssThan(A,C2,D2)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),D2)) ) ) ) ) ).
% greaterThanLessThan_subseteq_atLeastLessThan_iff
tff(fact_5880_atLeastAtMost__diff__ends,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A2: A,B2: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),set_or1337092689740270186AtMost(A,A2,B2)),aa(set(A),set(A),insert(A,A2),aa(set(A),set(A),insert(A,B2),bot_bot(set(A))))) = set_or5935395276787703475ssThan(A,A2,B2) ) ) ).
% atLeastAtMost_diff_ends
tff(fact_5881_minus__numeral__eq__not__sub__one,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> ! [N: num] : ( aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),N)) = aa(A,A,bit_ri4277139882892585799ns_not(A),neg_numeral_sub(A,N,one2)) ) ) ).
% minus_numeral_eq_not_sub_one
tff(fact_5882_sub__BitM__One__eq,axiom,
! [N: num] : ( neg_numeral_sub(int,bitM(N),one2) = aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),neg_numeral_sub(int,N,one2)) ) ).
% sub_BitM_One_eq
tff(fact_5883_div__add__self2__no__field,axiom,
! [B: $tType,A: $tType] :
( ( euclid4440199948858584721cancel(A)
& field(B) )
=> ! [X2: B,B2: A,A2: A] :
( nO_MATCH(B,A,X2,B2)
=> ( ( B2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),B2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),one_one(A)) ) ) ) ) ).
% div_add_self2_no_field
tff(fact_5884_div__add__self1__no__field,axiom,
! [B: $tType,A: $tType] :
( ( euclid4440199948858584721cancel(A)
& field(B) )
=> ! [X2: B,B2: A,A2: A] :
( nO_MATCH(B,A,X2,B2)
=> ( ( B2 != zero_zero(A) )
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),A2)),B2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),one_one(A)) ) ) ) ) ).
% div_add_self1_no_field
tff(fact_5885_bounded__linear__axioms_Ointro,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B)] :
( ? [K8: real] :
! [X3: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(B,aa(A,B,F2,X3))),aa(real,real,aa(real,fun(real,real),times_times(real),real_V7770717601297561774m_norm(A,X3)),K8)))
=> real_V4916620083959148203axioms(A,B,F2) ) ) ).
% bounded_linear_axioms.intro
tff(fact_5886_finite__greaterThanLessThan,axiom,
! [L: nat,U: nat] : finite_finite(nat,set_or5935395276787703475ssThan(nat,L,U)) ).
% finite_greaterThanLessThan
tff(fact_5887_card__greaterThanLessThan,axiom,
! [L: nat,U: nat] : ( aa(set(nat),nat,finite_card(nat),set_or5935395276787703475ssThan(nat,L,U)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),U),aa(nat,nat,suc,L)) ) ).
% card_greaterThanLessThan
tff(fact_5888_atLeastSucLessThan__greaterThanLessThan,axiom,
! [L: nat,U: nat] : ( set_or7035219750837199246ssThan(nat,aa(nat,nat,suc,L),U) = set_or5935395276787703475ssThan(nat,L,U) ) ).
% atLeastSucLessThan_greaterThanLessThan
tff(fact_5889_tanh__real__bounds,axiom,
! [X2: real] : pp(member(real,aa(real,real,tanh(real),X2),set_or5935395276787703475ssThan(real,aa(real,real,uminus_uminus(real),one_one(real)),one_one(real)))) ).
% tanh_real_bounds
tff(fact_5890_greaterThanLessThan__upt,axiom,
! [N: nat,M: nat] : ( set_or5935395276787703475ssThan(nat,N,M) = aa(list(nat),set(nat),set2(nat),upt(aa(nat,nat,suc,N),M)) ) ).
% greaterThanLessThan_upt
tff(fact_5891_scale__right__distrib__NO__MATCH,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [X2: A,Y: A,A2: real] :
( nO_MATCH(A,real,aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y),A2)
=> ( aa(A,A,real_V8093663219630862766scaleR(A,A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,real_V8093663219630862766scaleR(A,A2),X2)),aa(A,A,real_V8093663219630862766scaleR(A,A2),Y)) ) ) ) ).
% scale_right_distrib_NO_MATCH
tff(fact_5892_scale__right__diff__distrib__NO__MATCH,axiom,
! [A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [X2: A,Y: A,A2: real] :
( nO_MATCH(A,real,aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y),A2)
=> ( aa(A,A,real_V8093663219630862766scaleR(A,A2),aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,real_V8093663219630862766scaleR(A,A2),X2)),aa(A,A,real_V8093663219630862766scaleR(A,A2),Y)) ) ) ) ).
% scale_right_diff_distrib_NO_MATCH
tff(fact_5893_distrib__right__NO__MATCH,axiom,
! [B: $tType,A: $tType] :
( semiring(A)
=> ! [X2: B,Y: B,C2: A,A2: A,B2: A] :
( nO_MATCH(B,A,aa(B,B,aa(B,fun(B,B),divide_divide(B),X2),Y),C2)
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)) ) ) ) ).
% distrib_right_NO_MATCH
tff(fact_5894_distrib__left__NO__MATCH,axiom,
! [B: $tType,A: $tType] :
( semiring(A)
=> ! [X2: B,Y: B,A2: A,B2: A,C2: A] :
( nO_MATCH(B,A,aa(B,B,aa(B,fun(B,B),divide_divide(B),X2),Y),A2)
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)) ) ) ) ).
% distrib_left_NO_MATCH
tff(fact_5895_right__diff__distrib__NO__MATCH,axiom,
! [B: $tType,A: $tType] :
( ring(A)
=> ! [X2: B,Y: B,A2: A,B2: A,C2: A] :
( nO_MATCH(B,A,aa(B,B,aa(B,fun(B,B),divide_divide(B),X2),Y),A2)
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),A2),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),C2)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)) ) ) ) ).
% right_diff_distrib_NO_MATCH
tff(fact_5896_left__diff__distrib__NO__MATCH,axiom,
! [B: $tType,A: $tType] :
( ring(A)
=> ! [X2: B,Y: B,C2: A,A2: A,B2: A] :
( nO_MATCH(B,A,aa(B,B,aa(B,fun(B,B),divide_divide(B),X2),Y),C2)
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)),C2) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),A2),C2)),aa(A,A,aa(A,fun(A,A),times_times(A),B2),C2)) ) ) ) ).
% left_diff_distrib_NO_MATCH
tff(fact_5897_power__minus_H,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [X2: A,N: nat] :
( nO_MATCH(A,A,one_one(A),X2)
=> ( aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),X2)),N) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),N)),aa(nat,A,power_power(A,X2),N)) ) ) ) ).
% power_minus'
tff(fact_5898_scale__left__distrib__NO__MATCH,axiom,
! [C: $tType,A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [X2: A,Y: A,C2: C,A2: real,B2: real] :
( nO_MATCH(A,C,aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y),C2)
=> ( aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,aa(real,fun(real,real),plus_plus(real),A2),B2)),X2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,real_V8093663219630862766scaleR(A,A2),X2)),aa(A,A,real_V8093663219630862766scaleR(A,B2),X2)) ) ) ) ).
% scale_left_distrib_NO_MATCH
tff(fact_5899_scale__left__diff__distrib__NO__MATCH,axiom,
! [C: $tType,A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [X2: A,Y: A,C2: C,A2: real,B2: real] :
( nO_MATCH(A,C,aa(A,A,aa(A,fun(A,A),divide_divide(A),X2),Y),C2)
=> ( aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,aa(real,fun(real,real),minus_minus(real),A2),B2)),X2) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,real_V8093663219630862766scaleR(A,A2),X2)),aa(A,A,real_V8093663219630862766scaleR(A,B2),X2)) ) ) ) ).
% scale_left_diff_distrib_NO_MATCH
tff(fact_5900_nth__sorted__list__of__set__greaterThanLessThan,axiom,
! [N: nat,J: nat,I: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),J),aa(nat,nat,suc,I))))
=> ( aa(nat,nat,nth(nat,aa(set(nat),list(nat),linord4507533701916653071of_set(nat),set_or5935395276787703475ssThan(nat,I,J))),N) = aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),N)) ) ) ).
% nth_sorted_list_of_set_greaterThanLessThan
tff(fact_5901_bounded__linear__axioms__def,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B)] :
( real_V4916620083959148203axioms(A,B,F2)
<=> ? [K6: real] :
! [X4: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(B,aa(A,B,F2,X4))),aa(real,real,aa(real,fun(real,real),times_times(real),real_V7770717601297561774m_norm(A,X4)),K6))) ) ) ).
% bounded_linear_axioms_def
tff(fact_5902_horner__sum__eq__sum__funpow,axiom,
! [A: $tType,B: $tType] :
( comm_semiring_0(A)
=> ! [F2: fun(B,A),A2: A,Xs: list(B)] : ( groups4207007520872428315er_sum(B,A,F2,A2,Xs) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(list(B),fun(nat,A),aa(A,fun(list(B),fun(nat,A)),aTP_Lamp_nw(fun(B,A),fun(A,fun(list(B),fun(nat,A))),F2),A2),Xs)),set_or7035219750837199246ssThan(nat,zero_zero(nat),aa(list(B),nat,size_size(list(B)),Xs))) ) ) ).
% horner_sum_eq_sum_funpow
tff(fact_5903_distinct__concat,axiom,
! [A: $tType,Xs: list(list(A))] :
( distinct(list(A),Xs)
=> ( ! [Ys3: list(A)] :
( pp(member(list(A),Ys3,aa(list(list(A)),set(list(A)),set2(list(A)),Xs)))
=> distinct(A,Ys3) )
=> ( ! [Ys3: list(A),Zs2: list(A)] :
( pp(member(list(A),Ys3,aa(list(list(A)),set(list(A)),set2(list(A)),Xs)))
=> ( pp(member(list(A),Zs2,aa(list(list(A)),set(list(A)),set2(list(A)),Xs)))
=> ( ( Ys3 != Zs2 )
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(list(A),set(A),set2(A),Ys3)),aa(list(A),set(A),set2(A),Zs2)) = bot_bot(set(A)) ) ) ) )
=> distinct(A,concat(A,Xs)) ) ) ) ).
% distinct_concat
tff(fact_5904_sorted__list__of__set_Osorted__key__list__of__set__insert__remove,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),X2: A] :
( finite_finite(A,A3)
=> ( aa(set(A),list(A),linord4507533701916653071of_set(A),aa(set(A),set(A),insert(A,X2),A3)) = aa(list(A),list(A),linorder_insort_key(A,A,aTP_Lamp_nx(A,A),X2),aa(set(A),list(A),linord4507533701916653071of_set(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))))) ) ) ) ).
% sorted_list_of_set.sorted_key_list_of_set_insert_remove
tff(fact_5905_inf_Obounded__iff,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(A,A,aa(A,fun(A,A),inf_inf(A),B2),C2)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),C2)) ) ) ) ).
% inf.bounded_iff
tff(fact_5906_le__inf__iff,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [X2: A,Y: A,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(A,A,aa(A,fun(A,A),inf_inf(A),Y),Z)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Z)) ) ) ) ).
% le_inf_iff
tff(fact_5907_boolean__algebra_Oconj__zero__right,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),bot_bot(A)) = bot_bot(A) ) ) ).
% boolean_algebra.conj_zero_right
tff(fact_5908_boolean__algebra_Oconj__zero__left,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),inf_inf(A),bot_bot(A)),X2) = bot_bot(A) ) ) ).
% boolean_algebra.conj_zero_left
tff(fact_5909_Suc__funpow,axiom,
! [N: nat] : ( aa(fun(nat,nat),fun(nat,nat),aa(nat,fun(fun(nat,nat),fun(nat,nat)),compow(fun(nat,nat)),N),suc) = aa(nat,fun(nat,nat),plus_plus(nat),N) ) ).
% Suc_funpow
tff(fact_5910_Int__subset__iff,axiom,
! [A: $tType,C6: set(A),A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),C6),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),B4)))
<=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),C6),A3))
& pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),C6),B4)) ) ) ).
% Int_subset_iff
tff(fact_5911_funpow__0,axiom,
! [A: $tType,F2: fun(A,A),X2: A] : ( aa(A,A,aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),zero_zero(nat)),F2),X2) = X2 ) ).
% funpow_0
tff(fact_5912_remove1__insort__key,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [X2: B,F2: fun(B,A),Xs: list(B)] : ( remove1(B,X2,aa(list(B),list(B),linorder_insort_key(B,A,F2,X2),Xs)) = Xs ) ) ).
% remove1_insort_key
tff(fact_5913_inf__compl__bot__left1,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A,Y: A] : ( aa(A,A,aa(A,fun(A,A),inf_inf(A),aa(A,A,uminus_uminus(A),X2)),aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),Y)) = bot_bot(A) ) ) ).
% inf_compl_bot_left1
tff(fact_5914_inf__compl__bot__left2,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A,Y: A] : ( aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),aa(A,A,aa(A,fun(A,A),inf_inf(A),aa(A,A,uminus_uminus(A),X2)),Y)) = bot_bot(A) ) ) ).
% inf_compl_bot_left2
tff(fact_5915_inf__compl__bot__right,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A,Y: A] : ( aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),aa(A,A,aa(A,fun(A,A),inf_inf(A),Y),aa(A,A,uminus_uminus(A),X2))) = bot_bot(A) ) ) ).
% inf_compl_bot_right
tff(fact_5916_boolean__algebra_Oconj__cancel__left,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),inf_inf(A),aa(A,A,uminus_uminus(A),X2)),X2) = bot_bot(A) ) ) ).
% boolean_algebra.conj_cancel_left
tff(fact_5917_boolean__algebra_Oconj__cancel__right,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),aa(A,A,uminus_uminus(A),X2)) = bot_bot(A) ) ) ).
% boolean_algebra.conj_cancel_right
tff(fact_5918_Diff__disjoint,axiom,
! [A: $tType,A3: set(A),B4: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),B4),A3)) = bot_bot(set(A)) ) ).
% Diff_disjoint
tff(fact_5919_Diff__Compl,axiom,
! [A: $tType,A3: set(A),B4: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),uminus_uminus(set(A)),B4)) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),B4) ) ).
% Diff_Compl
tff(fact_5920_length__insort,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [F2: fun(B,A),X2: B,Xs: list(B)] : ( aa(list(B),nat,size_size(list(B)),aa(list(B),list(B),linorder_insort_key(B,A,F2,X2),Xs)) = aa(nat,nat,suc,aa(list(B),nat,size_size(list(B)),Xs)) ) ) ).
% length_insort
tff(fact_5921_foldr__replicate,axiom,
! [A: $tType,B: $tType,F2: fun(B,fun(A,A)),N: nat,X2: B] : ( foldr(B,A,F2,replicate(B,N,X2)) = aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),N),aa(B,fun(A,A),F2,X2)) ) ).
% foldr_replicate
tff(fact_5922_sorted__list__of__set_Osorted__key__list__of__set__insert,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),X2: A] :
( finite_finite(A,A3)
=> ( ~ pp(member(A,X2,A3))
=> ( aa(set(A),list(A),linord4507533701916653071of_set(A),aa(set(A),set(A),insert(A,X2),A3)) = aa(list(A),list(A),linorder_insort_key(A,A,aTP_Lamp_nx(A,A),X2),aa(set(A),list(A),linord4507533701916653071of_set(A),A3)) ) ) ) ) ).
% sorted_list_of_set.sorted_key_list_of_set_insert
tff(fact_5923_sum__of__bool__mult__eq,axiom,
! [A: $tType,B: $tType] :
( semiring_1(A)
=> ! [A3: set(B),P: fun(B,bool),F2: fun(B,A)] :
( finite_finite(B,A3)
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aa(fun(B,A),fun(B,A),aTP_Lamp_ny(fun(B,bool),fun(fun(B,A),fun(B,A)),P),F2)),A3) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),aa(fun(B,bool),set(B),collect(B),P))) ) ) ) ).
% sum_of_bool_mult_eq
tff(fact_5924_sum__mult__of__bool__eq,axiom,
! [A: $tType,B: $tType] :
( semiring_1(A)
=> ! [A3: set(B),F2: fun(B,A),P: fun(B,bool)] :
( finite_finite(B,A3)
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aa(fun(B,bool),fun(B,A),aTP_Lamp_nz(fun(B,A),fun(fun(B,bool),fun(B,A)),F2),P)),A3) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),aa(fun(B,bool),set(B),collect(B),P))) ) ) ) ).
% sum_mult_of_bool_eq
tff(fact_5925_sum__of__bool__eq,axiom,
! [A: $tType,B: $tType] :
( semiring_1(A)
=> ! [A3: set(B),P: fun(B,bool)] :
( finite_finite(B,A3)
=> ( finite_finite(B,A3)
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aTP_Lamp_oa(fun(B,bool),fun(B,A),P)),A3) = aa(nat,A,semiring_1_of_nat(A),aa(set(B),nat,finite_card(B),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),aa(fun(B,bool),set(B),collect(B),P)))) ) ) ) ) ).
% sum_of_bool_eq
tff(fact_5926_funpow__add,axiom,
! [A: $tType,M: nat,N: nat,F2: fun(A,A)] : ( aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N)),F2) = aa(fun(A,A),fun(A,A),comp(A,A,A,aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),M),F2)),aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),N),F2)) ) ).
% funpow_add
tff(fact_5927_funpow_Osimps_I2_J,axiom,
! [A: $tType,N: nat,F2: fun(A,A)] : ( aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),aa(nat,nat,suc,N)),F2) = aa(fun(A,A),fun(A,A),comp(A,A,A,F2),aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),N),F2)) ) ).
% funpow.simps(2)
tff(fact_5928_funpow__Suc__right,axiom,
! [A: $tType,N: nat,F2: fun(A,A)] : ( aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),aa(nat,nat,suc,N)),F2) = aa(fun(A,A),fun(A,A),comp(A,A,A,aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),N),F2)),F2) ) ).
% funpow_Suc_right
tff(fact_5929_comp__funpow,axiom,
! [B: $tType,A: $tType,N: nat,F2: fun(A,A)] : ( aa(fun(fun(B,A),fun(B,A)),fun(fun(B,A),fun(B,A)),aa(nat,fun(fun(fun(B,A),fun(B,A)),fun(fun(B,A),fun(B,A))),compow(fun(fun(B,A),fun(B,A))),N),comp(A,A,B,F2)) = comp(A,A,B,aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),N),F2)) ) ).
% comp_funpow
tff(fact_5930_sorted__list__of__set_Ofold__insort__key_Ocomp__fun__commute__on,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Y: A,X2: A] : ( aa(fun(list(A),list(A)),fun(list(A),list(A)),comp(list(A),list(A),list(A),linorder_insort_key(A,A,aTP_Lamp_nx(A,A),Y)),linorder_insort_key(A,A,aTP_Lamp_nx(A,A),X2)) = aa(fun(list(A),list(A)),fun(list(A),list(A)),comp(list(A),list(A),list(A),linorder_insort_key(A,A,aTP_Lamp_nx(A,A),X2)),linorder_insort_key(A,A,aTP_Lamp_nx(A,A),Y)) ) ) ).
% sorted_list_of_set.fold_insort_key.comp_fun_commute_on
tff(fact_5931_ivl__disj__int__two_I3_J,axiom,
! [A: $tType] :
( order(A)
=> ! [L: A,M: A,U: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),set_or7035219750837199246ssThan(A,L,M)),set_or7035219750837199246ssThan(A,M,U)) = bot_bot(set(A)) ) ) ).
% ivl_disj_int_two(3)
tff(fact_5932_Int__Diff__disjoint,axiom,
! [A: $tType,A3: set(A),B4: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),B4)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)) = bot_bot(set(A)) ) ).
% Int_Diff_disjoint
tff(fact_5933_Diff__triv,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),B4) = bot_bot(set(A)) )
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4) = A3 ) ) ).
% Diff_triv
tff(fact_5934_inf_OcoboundedI2,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [B2: A,C2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2)),C2)) ) ) ).
% inf.coboundedI2
tff(fact_5935_inf_OcoboundedI1,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [A2: A,C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2)),C2)) ) ) ).
% inf.coboundedI1
tff(fact_5936_inf_Oabsorb__iff2,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
<=> ( aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2) = B2 ) ) ) ).
% inf.absorb_iff2
tff(fact_5937_inf_Oabsorb__iff1,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
<=> ( aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2) = A2 ) ) ) ).
% inf.absorb_iff1
tff(fact_5938_inf_Ocobounded2,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [A2: A,B2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2)),B2)) ) ).
% inf.cobounded2
tff(fact_5939_inf_Ocobounded1,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [A2: A,B2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2)),A2)) ) ).
% inf.cobounded1
tff(fact_5940_inf_Oorder__iff,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
<=> ( A2 = aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2) ) ) ) ).
% inf.order_iff
tff(fact_5941_inf__greatest,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [X2: A,Y: A,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Z))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(A,A,aa(A,fun(A,A),inf_inf(A),Y),Z))) ) ) ) ).
% inf_greatest
tff(fact_5942_inf_OboundedI,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(A,A,aa(A,fun(A,A),inf_inf(A),B2),C2))) ) ) ) ).
% inf.boundedI
tff(fact_5943_inf_OboundedE,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(A,A,aa(A,fun(A,A),inf_inf(A),B2),C2)))
=> ~ ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),C2)) ) ) ) ).
% inf.boundedE
tff(fact_5944_inf__absorb2,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [Y: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),X2))
=> ( aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),Y) = Y ) ) ) ).
% inf_absorb2
tff(fact_5945_inf__absorb1,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> ( aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),Y) = X2 ) ) ) ).
% inf_absorb1
tff(fact_5946_inf_Oabsorb2,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
=> ( aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2) = B2 ) ) ) ).
% inf.absorb2
tff(fact_5947_inf_Oabsorb1,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2) = A2 ) ) ) ).
% inf.absorb1
tff(fact_5948_le__iff__inf,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
<=> ( aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),Y) = X2 ) ) ) ).
% le_iff_inf
tff(fact_5949_inf__unique,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [F2: fun(A,fun(A,A)),X2: A,Y: A] :
( ! [X3: A,Y3: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),F2,X3),Y3)),X3))
=> ( ! [X3: A,Y3: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),F2,X3),Y3)),Y3))
=> ( ! [X3: A,Y3: A,Z3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),Y3))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),Z3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),aa(A,A,aa(A,fun(A,A),F2,Y3),Z3))) ) )
=> ( aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),Y) = aa(A,A,aa(A,fun(A,A),F2,X2),Y) ) ) ) ) ) ).
% inf_unique
tff(fact_5950_inf_OorderI,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [A2: A,B2: A] :
( ( A2 = aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2)) ) ) ).
% inf.orderI
tff(fact_5951_inf_OorderE,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( A2 = aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2) ) ) ) ).
% inf.orderE
tff(fact_5952_le__infI2,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [B2: A,X2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),X2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2)),X2)) ) ) ).
% le_infI2
tff(fact_5953_le__infI1,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [A2: A,X2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),X2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2)),X2)) ) ) ).
% le_infI1
tff(fact_5954_inf__mono,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [A2: A,C2: A,B2: A,D2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),D2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2)),aa(A,A,aa(A,fun(A,A),inf_inf(A),C2),D2))) ) ) ) ).
% inf_mono
tff(fact_5955_le__infI,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [X2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2))) ) ) ) ).
% le_infI
tff(fact_5956_le__infE,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [X2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2)))
=> ~ ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),A2))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),B2)) ) ) ) ).
% le_infE
tff(fact_5957_inf__le2,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [X2: A,Y: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),Y)),Y)) ) ).
% inf_le2
tff(fact_5958_inf__le1,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [X2: A,Y: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),Y)),X2)) ) ).
% inf_le1
tff(fact_5959_inf__sup__ord_I1_J,axiom,
! [A: $tType] :
( lattice(A)
=> ! [X2: A,Y: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),Y)),X2)) ) ).
% inf_sup_ord(1)
tff(fact_5960_inf__sup__ord_I2_J,axiom,
! [A: $tType] :
( lattice(A)
=> ! [X2: A,Y: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),Y)),Y)) ) ).
% inf_sup_ord(2)
tff(fact_5961_Int__mono,axiom,
! [A: $tType,A3: set(A),C6: set(A),B4: set(A),D5: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),C6))
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),D5))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),B4)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),C6),D5))) ) ) ).
% Int_mono
tff(fact_5962_Int__lower1,axiom,
! [A: $tType,A3: set(A),B4: set(A)] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),B4)),A3)) ).
% Int_lower1
tff(fact_5963_Int__lower2,axiom,
! [A: $tType,A3: set(A),B4: set(A)] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),B4)),B4)) ).
% Int_lower2
tff(fact_5964_Int__absorb1,axiom,
! [A: $tType,B4: set(A),A3: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),A3))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),B4) = B4 ) ) ).
% Int_absorb1
tff(fact_5965_Int__absorb2,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),B4) = A3 ) ) ).
% Int_absorb2
tff(fact_5966_Int__greatest,axiom,
! [A: $tType,C6: set(A),A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),C6),A3))
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),C6),B4))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),C6),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),B4))) ) ) ).
% Int_greatest
tff(fact_5967_Int__Collect__mono,axiom,
! [A: $tType,A3: set(A),B4: set(A),P: fun(A,bool),Q: fun(A,bool)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> ( ! [X3: A] :
( pp(member(A,X3,A3))
=> ( pp(aa(A,bool,P,X3))
=> pp(aa(A,bool,Q,X3)) ) )
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),aa(fun(A,bool),set(A),collect(A),P))),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),B4),aa(fun(A,bool),set(A),collect(A),Q)))) ) ) ).
% Int_Collect_mono
tff(fact_5968_bij__betw__funpow,axiom,
! [A: $tType,F2: fun(A,A),S: set(A),N: nat] :
( bij_betw(A,A,F2,S,S)
=> bij_betw(A,A,aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),N),F2),S,S) ) ).
% bij_betw_funpow
tff(fact_5969_funpow__mult,axiom,
! [A: $tType,N: nat,M: nat,F2: fun(A,A)] : ( aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),N),aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),M),F2)) = aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),M),N)),F2) ) ).
% funpow_mult
tff(fact_5970_inf_Ostrict__coboundedI2,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [B2: A,C2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2)),C2)) ) ) ).
% inf.strict_coboundedI2
tff(fact_5971_inf_Ostrict__coboundedI1,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [A2: A,C2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),C2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2)),C2)) ) ) ).
% inf.strict_coboundedI1
tff(fact_5972_inf_Ostrict__order__iff,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
<=> ( ( A2 = aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2) )
& ( A2 != B2 ) ) ) ) ).
% inf.strict_order_iff
tff(fact_5973_inf_Ostrict__boundedE,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [A2: A,B2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(A,A,aa(A,fun(A,A),inf_inf(A),B2),C2)))
=> ~ ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),C2)) ) ) ) ).
% inf.strict_boundedE
tff(fact_5974_inf_Oabsorb4,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2))
=> ( aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2) = B2 ) ) ) ).
% inf.absorb4
tff(fact_5975_inf_Oabsorb3,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2) = A2 ) ) ) ).
% inf.absorb3
tff(fact_5976_less__infI2,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [B2: A,X2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),X2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2)),X2)) ) ) ).
% less_infI2
tff(fact_5977_less__infI1,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [A2: A,X2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),X2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2)),X2)) ) ) ).
% less_infI1
tff(fact_5978_insort__left__comm,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X2: A,Y: A,Xs: list(A)] : ( aa(list(A),list(A),linorder_insort_key(A,A,aTP_Lamp_nx(A,A),X2),aa(list(A),list(A),linorder_insort_key(A,A,aTP_Lamp_nx(A,A),Y),Xs)) = aa(list(A),list(A),linorder_insort_key(A,A,aTP_Lamp_nx(A,A),Y),aa(list(A),list(A),linorder_insort_key(A,A,aTP_Lamp_nx(A,A),X2),Xs)) ) ) ).
% insort_left_comm
tff(fact_5979_funpow__mod__eq,axiom,
! [A: $tType,N: nat,F2: fun(A,A),X2: A,M: nat] :
( ( aa(A,A,aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),N),F2),X2) = X2 )
=> ( aa(A,A,aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),modulo_modulo(nat,M,N)),F2),X2) = aa(A,A,aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),M),F2),X2) ) ) ).
% funpow_mod_eq
tff(fact_5980_funpow__swap1,axiom,
! [A: $tType,F2: fun(A,A),N: nat,X2: A] : ( aa(A,A,F2,aa(A,A,aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),N),F2),X2)) = aa(A,A,aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),N),F2),aa(A,A,F2,X2)) ) ).
% funpow_swap1
tff(fact_5981_insort__key__left__comm,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [F2: fun(B,A),X2: B,Y: B,Xs: list(B)] :
( ( aa(B,A,F2,X2) != aa(B,A,F2,Y) )
=> ( aa(list(B),list(B),linorder_insort_key(B,A,F2,Y),aa(list(B),list(B),linorder_insort_key(B,A,F2,X2),Xs)) = aa(list(B),list(B),linorder_insort_key(B,A,F2,X2),aa(list(B),list(B),linorder_insort_key(B,A,F2,Y),Xs)) ) ) ) ).
% insort_key_left_comm
tff(fact_5982_boolean__algebra__cancel_Oinf1,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [A3: A,K: A,A2: A,B2: A] :
( ( A3 = aa(A,A,aa(A,fun(A,A),inf_inf(A),K),A2) )
=> ( aa(A,A,aa(A,fun(A,A),inf_inf(A),A3),B2) = aa(A,A,aa(A,fun(A,A),inf_inf(A),K),aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2)) ) ) ) ).
% boolean_algebra_cancel.inf1
tff(fact_5983_boolean__algebra__cancel_Oinf2,axiom,
! [A: $tType] :
( semilattice_inf(A)
=> ! [B4: A,K: A,B2: A,A2: A] :
( ( B4 = aa(A,A,aa(A,fun(A,A),inf_inf(A),K),B2) )
=> ( aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B4) = aa(A,A,aa(A,fun(A,A),inf_inf(A),K),aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),B2)) ) ) ) ).
% boolean_algebra_cancel.inf2
tff(fact_5984_funpow__times__power,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [F2: fun(A,nat),X2: A] : ( aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),aa(A,nat,F2,X2)),aa(A,fun(A,A),times_times(A),X2)) = aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,X2),aa(A,nat,F2,X2))) ) ) ).
% funpow_times_power
tff(fact_5985_Diff__Int__distrib2,axiom,
! [A: $tType,A3: set(A),B4: set(A),C6: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)),C6) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),C6)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),B4),C6)) ) ).
% Diff_Int_distrib2
tff(fact_5986_Diff__Int__distrib,axiom,
! [A: $tType,C6: set(A),A3: set(A),B4: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),C6),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),C6),A3)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),C6),B4)) ) ).
% Diff_Int_distrib
tff(fact_5987_Diff__Diff__Int,axiom,
! [A: $tType,A3: set(A),B4: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),B4) ) ).
% Diff_Diff_Int
tff(fact_5988_Diff__Int2,axiom,
! [A: $tType,A3: set(A),C6: set(A),B4: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),C6)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),B4),C6)) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),C6)),B4) ) ).
% Diff_Int2
tff(fact_5989_Int__Diff,axiom,
! [A: $tType,A3: set(A),B4: set(A),C6: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),B4)),C6) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),B4),C6)) ) ).
% Int_Diff
tff(fact_5990_diff__eq,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A,Y: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y) = aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),aa(A,A,uminus_uminus(A),Y)) ) ) ).
% diff_eq
tff(fact_5991_inf__cancel__left2,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A,A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),inf_inf(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),aa(A,A,uminus_uminus(A),X2)),A2)),aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),B2)) = bot_bot(A) ) ) ).
% inf_cancel_left2
tff(fact_5992_inf__cancel__left1,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A,A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),inf_inf(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),A2)),aa(A,A,aa(A,fun(A,A),inf_inf(A),aa(A,A,uminus_uminus(A),X2)),B2)) = bot_bot(A) ) ) ).
% inf_cancel_left1
tff(fact_5993_set__insort__key,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [F2: fun(B,A),X2: B,Xs: list(B)] : ( aa(list(B),set(B),set2(B),aa(list(B),list(B),linorder_insort_key(B,A,F2,X2),Xs)) = aa(set(B),set(B),insert(B,X2),aa(list(B),set(B),set2(B),Xs)) ) ) ).
% set_insort_key
tff(fact_5994_Diff__eq,axiom,
! [A: $tType,A3: set(A),B4: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),aa(set(A),set(A),uminus_uminus(set(A)),B4)) ) ).
% Diff_eq
tff(fact_5995_distinct__insort,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [F2: fun(B,A),X2: B,Xs: list(B)] :
( distinct(B,aa(list(B),list(B),linorder_insort_key(B,A,F2,X2),Xs))
<=> ( ~ pp(member(B,X2,aa(list(B),set(B),set2(B),Xs)))
& distinct(B,Xs) ) ) ) ).
% distinct_insort
tff(fact_5996_sorted__insort,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X2: A,Xs: list(A)] :
( sorted_wrt(A,ord_less_eq(A),aa(list(A),list(A),linorder_insort_key(A,A,aTP_Lamp_nx(A,A),X2),Xs))
<=> sorted_wrt(A,ord_less_eq(A),Xs) ) ) ).
% sorted_insort
tff(fact_5997_inf__shunt,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A,Y: A] :
( ( aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),Y) = bot_bot(A) )
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(A,A,uminus_uminus(A),Y))) ) ) ).
% inf_shunt
tff(fact_5998_ivl__disj__int__two_I7_J,axiom,
! [A: $tType] :
( order(A)
=> ! [L: A,M: A,U: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),set_or7035219750837199246ssThan(A,L,M)),set_or1337092689740270186AtMost(A,M,U)) = bot_bot(set(A)) ) ) ).
% ivl_disj_int_two(7)
tff(fact_5999_ivl__disj__int__one_I4_J,axiom,
! [A: $tType] :
( order(A)
=> ! [L: A,U: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(A,set(A),set_ord_lessThan(A),L)),set_or1337092689740270186AtMost(A,L,U)) = bot_bot(set(A)) ) ) ).
% ivl_disj_int_one(4)
tff(fact_6000_ivl__disj__int__one_I2_J,axiom,
! [A: $tType] :
( order(A)
=> ! [L: A,U: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(A,set(A),set_ord_lessThan(A),L)),set_or7035219750837199246ssThan(A,L,U)) = bot_bot(set(A)) ) ) ).
% ivl_disj_int_one(2)
tff(fact_6001_disjoint__eq__subset__Compl,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),B4) = bot_bot(set(A)) )
<=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),aa(set(A),set(A),uminus_uminus(set(A)),B4))) ) ).
% disjoint_eq_subset_Compl
tff(fact_6002_ivl__disj__int__two_I5_J,axiom,
! [A: $tType] :
( order(A)
=> ! [L: A,M: A,U: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),set_or5935395276787703475ssThan(A,L,M)),set_or1337092689740270186AtMost(A,M,U)) = bot_bot(set(A)) ) ) ).
% ivl_disj_int_two(5)
tff(fact_6003_ivl__disj__int__two_I4_J,axiom,
! [A: $tType] :
( order(A)
=> ! [L: A,M: A,U: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),set_or1337092689740270186AtMost(A,L,M)),set_or5935395276787703475ssThan(A,M,U)) = bot_bot(set(A)) ) ) ).
% ivl_disj_int_two(4)
tff(fact_6004_ivl__disj__int__two_I1_J,axiom,
! [A: $tType] :
( order(A)
=> ! [L: A,M: A,U: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),set_or5935395276787703475ssThan(A,L,M)),set_or7035219750837199246ssThan(A,M,U)) = bot_bot(set(A)) ) ) ).
% ivl_disj_int_two(1)
tff(fact_6005_ivl__disj__int__one_I1_J,axiom,
! [A: $tType] :
( order(A)
=> ! [L: A,U: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(A,set(A),set_ord_atMost(A),L)),set_or5935395276787703475ssThan(A,L,U)) = bot_bot(set(A)) ) ) ).
% ivl_disj_int_one(1)
tff(fact_6006_sorted__insort__key,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [F2: fun(B,A),X2: B,Xs: list(B)] :
( sorted_wrt(A,ord_less_eq(A),aa(list(B),list(A),map(B,A,F2),aa(list(B),list(B),linorder_insort_key(B,A,F2,X2),Xs)))
<=> sorted_wrt(A,ord_less_eq(A),aa(list(B),list(A),map(B,A,F2),Xs)) ) ) ).
% sorted_insort_key
tff(fact_6007_sum_Ointer__restrict,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [A3: set(B),G: fun(B,A),B4: set(B)] :
( finite_finite(B,A3)
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),B4)) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aa(set(B),fun(B,A),aTP_Lamp_ob(fun(B,A),fun(set(B),fun(B,A)),G),B4)),A3) ) ) ) ).
% sum.inter_restrict
tff(fact_6008_prod_Ointer__restrict,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [A3: set(B),G: fun(B,A),B4: set(B)] :
( finite_finite(B,A3)
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),B4)) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),aa(set(B),fun(B,A),aTP_Lamp_oc(fun(B,A),fun(set(B),fun(B,A)),G),B4)),A3) ) ) ) ).
% prod.inter_restrict
tff(fact_6009_of__nat__def,axiom,
! [A: $tType] :
( semiring_1(A)
=> ! [N: nat] : ( aa(nat,A,semiring_1_of_nat(A),N) = aa(A,A,aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),N),aa(A,fun(A,A),plus_plus(A),one_one(A))),zero_zero(A)) ) ) ).
% of_nat_def
tff(fact_6010_numeral__add__unfold__funpow,axiom,
! [A: $tType] :
( semiring_numeral(A)
=> ! [K: num,A2: A] : ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(num,A,numeral_numeral(A),K)),A2) = aa(A,A,aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),aa(num,nat,numeral_numeral(nat),K)),aa(A,fun(A,A),plus_plus(A),one_one(A))),A2) ) ) ).
% numeral_add_unfold_funpow
tff(fact_6011_sum_Omono__neutral__cong,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [T6: set(B),S: set(B),H: fun(B,A),G: fun(B,A)] :
( finite_finite(B,T6)
=> ( finite_finite(B,S)
=> ( ! [I3: B] :
( pp(member(B,I3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),T6),S)))
=> ( aa(B,A,H,I3) = zero_zero(A) ) )
=> ( ! [I3: B] :
( pp(member(B,I3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),S),T6)))
=> ( aa(B,A,G,I3) = zero_zero(A) ) )
=> ( ! [X3: B] :
( pp(member(B,X3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),S),T6)))
=> ( aa(B,A,G,X3) = aa(B,A,H,X3) ) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),S) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),H),T6) ) ) ) ) ) ) ) ).
% sum.mono_neutral_cong
tff(fact_6012_Iio__Int__singleton,axiom,
! [A: $tType] :
( order(A)
=> ! [X2: A,K: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),K))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(A,set(A),set_ord_lessThan(A),K)),aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))) = aa(set(A),set(A),insert(A,X2),bot_bot(set(A))) ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),K))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(A,set(A),set_ord_lessThan(A),K)),aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))) = bot_bot(set(A)) ) ) ) ) ).
% Iio_Int_singleton
tff(fact_6013_sum_OInt__Diff,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [A3: set(B),G: fun(B,A),B4: set(B)] :
( finite_finite(B,A3)
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),A3) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),B4))),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),A3),B4))) ) ) ) ).
% sum.Int_Diff
tff(fact_6014_prod_OInt__Diff,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [A3: set(B),G: fun(B,A),B4: set(B)] :
( finite_finite(B,A3)
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),A3) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),B4))),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),A3),B4))) ) ) ) ).
% prod.Int_Diff
tff(fact_6015_prod_Omono__neutral__cong,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [T6: set(B),S: set(B),H: fun(B,A),G: fun(B,A)] :
( finite_finite(B,T6)
=> ( finite_finite(B,S)
=> ( ! [I3: B] :
( pp(member(B,I3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),T6),S)))
=> ( aa(B,A,H,I3) = one_one(A) ) )
=> ( ! [I3: B] :
( pp(member(B,I3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),S),T6)))
=> ( aa(B,A,G,I3) = one_one(A) ) )
=> ( ! [X3: B] :
( pp(member(B,X3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),S),T6)))
=> ( aa(B,A,G,X3) = aa(B,A,H,X3) ) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),S) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),H),T6) ) ) ) ) ) ) ) ).
% prod.mono_neutral_cong
tff(fact_6016_card__Diff__subset__Int,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( finite_finite(A,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),B4))
=> ( aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(set(A),nat,finite_card(A),A3)),aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),B4))) ) ) ).
% card_Diff_subset_Int
tff(fact_6017_sum_OIf__cases,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [A3: set(B),P: fun(B,bool),H: fun(B,A),G: fun(B,A)] :
( finite_finite(B,A3)
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aa(fun(B,A),fun(B,A),aa(fun(B,A),fun(fun(B,A),fun(B,A)),aTP_Lamp_od(fun(B,bool),fun(fun(B,A),fun(fun(B,A),fun(B,A))),P),H),G)),A3) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),H),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),aa(fun(B,bool),set(B),collect(B),P)))),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),aa(set(B),set(B),uminus_uminus(set(B)),aa(fun(B,bool),set(B),collect(B),P))))) ) ) ) ).
% sum.If_cases
tff(fact_6018_prod_OIf__cases,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [A3: set(B),P: fun(B,bool),H: fun(B,A),G: fun(B,A)] :
( finite_finite(B,A3)
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),aa(fun(B,A),fun(B,A),aa(fun(B,A),fun(fun(B,A),fun(B,A)),aTP_Lamp_oe(fun(B,bool),fun(fun(B,A),fun(fun(B,A),fun(B,A))),P),H),G)),A3) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),H),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),aa(fun(B,bool),set(B),collect(B),P)))),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),aa(set(B),set(B),uminus_uminus(set(B)),aa(fun(B,bool),set(B),collect(B),P))))) ) ) ) ).
% prod.If_cases
tff(fact_6019_numeral__unfold__funpow,axiom,
! [A: $tType] :
( semiring_1(A)
=> ! [K: num] : ( aa(num,A,numeral_numeral(A),K) = aa(A,A,aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),aa(num,nat,numeral_numeral(nat),K)),aa(A,fun(A,A),plus_plus(A),one_one(A))),zero_zero(A)) ) ) ).
% numeral_unfold_funpow
tff(fact_6020_insort__remove1,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A2: A,Xs: list(A)] :
( pp(member(A,A2,aa(list(A),set(A),set2(A),Xs)))
=> ( sorted_wrt(A,ord_less_eq(A),Xs)
=> ( aa(list(A),list(A),linorder_insort_key(A,A,aTP_Lamp_nx(A,A),A2),remove1(A,A2,Xs)) = Xs ) ) ) ) ).
% insort_remove1
tff(fact_6021_sum__div__partition,axiom,
! [B: $tType,A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [A3: set(B),F2: fun(B,A),B2: A] :
( finite_finite(B,A3)
=> ( aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),A3)),B2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aa(A,fun(B,A),aTP_Lamp_of(fun(B,A),fun(A,fun(B,A)),F2),B2)),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),aa(fun(B,bool),set(B),collect(B),aa(A,fun(B,bool),aTP_Lamp_og(fun(B,A),fun(A,fun(B,bool)),F2),B2))))),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),aa(fun(B,bool),set(B),collect(B),aa(A,fun(B,bool),aTP_Lamp_oh(fun(B,A),fun(A,fun(B,bool)),F2),B2))))),B2)) ) ) ) ).
% sum_div_partition
tff(fact_6022_sorted__list__of__set_Ofold__insort__key_Oremove,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),X2: A] :
( finite_finite(A,A3)
=> ( pp(member(A,X2,A3))
=> ( aa(set(A),list(A),linord4507533701916653071of_set(A),A3) = aa(list(A),list(A),linorder_insort_key(A,A,aTP_Lamp_nx(A,A),X2),aa(set(A),list(A),linord4507533701916653071of_set(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))))) ) ) ) ) ).
% sorted_list_of_set.fold_insort_key.remove
tff(fact_6023_relpowp__bot,axiom,
! [A: $tType,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(fun(A,fun(A,bool)),fun(A,fun(A,bool)),aa(nat,fun(fun(A,fun(A,bool)),fun(A,fun(A,bool))),compow(fun(A,fun(A,bool))),N),bot_bot(fun(A,fun(A,bool)))) = bot_bot(fun(A,fun(A,bool))) ) ) ).
% relpowp_bot
tff(fact_6024_relpowp__fun__conv,axiom,
! [A: $tType,N: nat,P: fun(A,fun(A,bool)),X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),aa(fun(A,fun(A,bool)),fun(A,fun(A,bool)),aa(nat,fun(fun(A,fun(A,bool)),fun(A,fun(A,bool))),compow(fun(A,fun(A,bool))),N),P),X2),Y))
<=> ? [F5: fun(nat,A)] :
( ( aa(nat,A,F5,zero_zero(nat)) = X2 )
& ( aa(nat,A,F5,N) = Y )
& ! [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I4),N))
=> pp(aa(A,bool,aa(A,fun(A,bool),P,aa(nat,A,F5,I4)),aa(nat,A,F5,aa(nat,nat,suc,I4)))) ) ) ) ).
% relpowp_fun_conv
tff(fact_6025_relpowp__1,axiom,
! [A: $tType,P: fun(A,fun(A,bool))] : ( aa(fun(A,fun(A,bool)),fun(A,fun(A,bool)),aa(nat,fun(fun(A,fun(A,bool)),fun(A,fun(A,bool))),compow(fun(A,fun(A,bool))),one_one(nat)),P) = P ) ).
% relpowp_1
tff(fact_6026_inf__Int__eq2,axiom,
! [B: $tType,A: $tType,R2: set(product_prod(A,B)),S: set(product_prod(A,B)),X: A,Xa2: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),aa(fun(A,fun(B,bool)),fun(A,fun(B,bool)),aa(fun(A,fun(B,bool)),fun(fun(A,fun(B,bool)),fun(A,fun(B,bool))),inf_inf(fun(A,fun(B,bool))),aa(set(product_prod(A,B)),fun(A,fun(B,bool)),aTP_Lamp_jb(set(product_prod(A,B)),fun(A,fun(B,bool))),R2)),aa(set(product_prod(A,B)),fun(A,fun(B,bool)),aTP_Lamp_jb(set(product_prod(A,B)),fun(A,fun(B,bool))),S)),X),Xa2))
<=> pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X),Xa2),aa(set(product_prod(A,B)),set(product_prod(A,B)),aa(set(product_prod(A,B)),fun(set(product_prod(A,B)),set(product_prod(A,B))),inf_inf(set(product_prod(A,B))),R2),S))) ) ).
% inf_Int_eq2
tff(fact_6027_relpowp__Suc__I2,axiom,
! [A: $tType,P: fun(A,fun(A,bool)),X2: A,Y: A,N: nat,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),P,X2),Y))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),aa(fun(A,fun(A,bool)),fun(A,fun(A,bool)),aa(nat,fun(fun(A,fun(A,bool)),fun(A,fun(A,bool))),compow(fun(A,fun(A,bool))),N),P),Y),Z))
=> pp(aa(A,bool,aa(A,fun(A,bool),aa(fun(A,fun(A,bool)),fun(A,fun(A,bool)),aa(nat,fun(fun(A,fun(A,bool)),fun(A,fun(A,bool))),compow(fun(A,fun(A,bool))),aa(nat,nat,suc,N)),P),X2),Z)) ) ) ).
% relpowp_Suc_I2
tff(fact_6028_relpowp__Suc__E2,axiom,
! [A: $tType,N: nat,P: fun(A,fun(A,bool)),X2: A,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),aa(fun(A,fun(A,bool)),fun(A,fun(A,bool)),aa(nat,fun(fun(A,fun(A,bool)),fun(A,fun(A,bool))),compow(fun(A,fun(A,bool))),aa(nat,nat,suc,N)),P),X2),Z))
=> ~ ! [Y3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),P,X2),Y3))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),aa(fun(A,fun(A,bool)),fun(A,fun(A,bool)),aa(nat,fun(fun(A,fun(A,bool)),fun(A,fun(A,bool))),compow(fun(A,fun(A,bool))),N),P),Y3),Z)) ) ) ).
% relpowp_Suc_E2
tff(fact_6029_relpowp__Suc__D2,axiom,
! [A: $tType,N: nat,P: fun(A,fun(A,bool)),X2: A,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),aa(fun(A,fun(A,bool)),fun(A,fun(A,bool)),aa(nat,fun(fun(A,fun(A,bool)),fun(A,fun(A,bool))),compow(fun(A,fun(A,bool))),aa(nat,nat,suc,N)),P),X2),Z))
=> ? [Y3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),P,X2),Y3))
& pp(aa(A,bool,aa(A,fun(A,bool),aa(fun(A,fun(A,bool)),fun(A,fun(A,bool)),aa(nat,fun(fun(A,fun(A,bool)),fun(A,fun(A,bool))),compow(fun(A,fun(A,bool))),N),P),Y3),Z)) ) ) ).
% relpowp_Suc_D2
tff(fact_6030_relpowp__Suc__I,axiom,
! [A: $tType,N: nat,P: fun(A,fun(A,bool)),X2: A,Y: A,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),aa(fun(A,fun(A,bool)),fun(A,fun(A,bool)),aa(nat,fun(fun(A,fun(A,bool)),fun(A,fun(A,bool))),compow(fun(A,fun(A,bool))),N),P),X2),Y))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),P,Y),Z))
=> pp(aa(A,bool,aa(A,fun(A,bool),aa(fun(A,fun(A,bool)),fun(A,fun(A,bool)),aa(nat,fun(fun(A,fun(A,bool)),fun(A,fun(A,bool))),compow(fun(A,fun(A,bool))),aa(nat,nat,suc,N)),P),X2),Z)) ) ) ).
% relpowp_Suc_I
tff(fact_6031_relpowp__Suc__E,axiom,
! [A: $tType,N: nat,P: fun(A,fun(A,bool)),X2: A,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),aa(fun(A,fun(A,bool)),fun(A,fun(A,bool)),aa(nat,fun(fun(A,fun(A,bool)),fun(A,fun(A,bool))),compow(fun(A,fun(A,bool))),aa(nat,nat,suc,N)),P),X2),Z))
=> ~ ! [Y3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),aa(fun(A,fun(A,bool)),fun(A,fun(A,bool)),aa(nat,fun(fun(A,fun(A,bool)),fun(A,fun(A,bool))),compow(fun(A,fun(A,bool))),N),P),X2),Y3))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),P,Y3),Z)) ) ) ).
% relpowp_Suc_E
tff(fact_6032_relpowp_Osimps_I1_J,axiom,
! [A: $tType,R2: fun(A,fun(A,bool))] : ( aa(fun(A,fun(A,bool)),fun(A,fun(A,bool)),aa(nat,fun(fun(A,fun(A,bool)),fun(A,fun(A,bool))),compow(fun(A,fun(A,bool))),zero_zero(nat)),R2) = fequal(A) ) ).
% relpowp.simps(1)
tff(fact_6033_relpowp__0__E,axiom,
! [A: $tType,P: fun(A,fun(A,bool)),X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),aa(fun(A,fun(A,bool)),fun(A,fun(A,bool)),aa(nat,fun(fun(A,fun(A,bool)),fun(A,fun(A,bool))),compow(fun(A,fun(A,bool))),zero_zero(nat)),P),X2),Y))
=> ( X2 = Y ) ) ).
% relpowp_0_E
tff(fact_6034_relpowp__0__I,axiom,
! [A: $tType,P: fun(A,fun(A,bool)),X2: A] : pp(aa(A,bool,aa(A,fun(A,bool),aa(fun(A,fun(A,bool)),fun(A,fun(A,bool)),aa(nat,fun(fun(A,fun(A,bool)),fun(A,fun(A,bool))),compow(fun(A,fun(A,bool))),zero_zero(nat)),P),X2),X2)) ).
% relpowp_0_I
tff(fact_6035_relpowp__E,axiom,
! [A: $tType,N: nat,P: fun(A,fun(A,bool)),X2: A,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),aa(fun(A,fun(A,bool)),fun(A,fun(A,bool)),aa(nat,fun(fun(A,fun(A,bool)),fun(A,fun(A,bool))),compow(fun(A,fun(A,bool))),N),P),X2),Z))
=> ( ( ( N = zero_zero(nat) )
=> ( X2 != Z ) )
=> ~ ! [Y3: A,M3: nat] :
( ( N = aa(nat,nat,suc,M3) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),aa(fun(A,fun(A,bool)),fun(A,fun(A,bool)),aa(nat,fun(fun(A,fun(A,bool)),fun(A,fun(A,bool))),compow(fun(A,fun(A,bool))),M3),P),X2),Y3))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),P,Y3),Z)) ) ) ) ) ).
% relpowp_E
tff(fact_6036_relpowp__E2,axiom,
! [A: $tType,N: nat,P: fun(A,fun(A,bool)),X2: A,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),aa(fun(A,fun(A,bool)),fun(A,fun(A,bool)),aa(nat,fun(fun(A,fun(A,bool)),fun(A,fun(A,bool))),compow(fun(A,fun(A,bool))),N),P),X2),Z))
=> ( ( ( N = zero_zero(nat) )
=> ( X2 != Z ) )
=> ~ ! [Y3: A,M3: nat] :
( ( N = aa(nat,nat,suc,M3) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),P,X2),Y3))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),aa(fun(A,fun(A,bool)),fun(A,fun(A,bool)),aa(nat,fun(fun(A,fun(A,bool)),fun(A,fun(A,bool))),compow(fun(A,fun(A,bool))),M3),P),Y3),Z)) ) ) ) ) ).
% relpowp_E2
tff(fact_6037_Nat_Ofunpow__code__def,axiom,
! [A: $tType] : ( funpow(A) = compow(fun(A,A)) ) ).
% Nat.funpow_code_def
tff(fact_6038_card__disjoint__shuffles,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] :
( ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(list(A),set(A),set2(A),Xs)),aa(list(A),set(A),set2(A),Ys)) = bot_bot(set(A)) )
=> ( aa(set(list(A)),nat,finite_card(list(A)),shuffles(A,Xs,Ys)) = aa(nat,nat,binomial(aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(list(A),nat,size_size(list(A)),Xs)),aa(list(A),nat,size_size(list(A)),Ys))),aa(list(A),nat,size_size(list(A)),Xs)) ) ) ).
% card_disjoint_shuffles
tff(fact_6039_inf2I,axiom,
! [A: $tType,B: $tType,A3: fun(A,fun(B,bool)),X2: A,Y: B,B4: fun(A,fun(B,bool))] :
( pp(aa(B,bool,aa(A,fun(B,bool),A3,X2),Y))
=> ( pp(aa(B,bool,aa(A,fun(B,bool),B4,X2),Y))
=> pp(aa(B,bool,aa(A,fun(B,bool),aa(fun(A,fun(B,bool)),fun(A,fun(B,bool)),aa(fun(A,fun(B,bool)),fun(fun(A,fun(B,bool)),fun(A,fun(B,bool))),inf_inf(fun(A,fun(B,bool))),A3),B4),X2),Y)) ) ) ).
% inf2I
tff(fact_6040_finite__shuffles,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] : finite_finite(list(A),shuffles(A,Xs,Ys)) ).
% finite_shuffles
tff(fact_6041_inf2E,axiom,
! [A: $tType,B: $tType,A3: fun(A,fun(B,bool)),B4: fun(A,fun(B,bool)),X2: A,Y: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),aa(fun(A,fun(B,bool)),fun(A,fun(B,bool)),aa(fun(A,fun(B,bool)),fun(fun(A,fun(B,bool)),fun(A,fun(B,bool))),inf_inf(fun(A,fun(B,bool))),A3),B4),X2),Y))
=> ~ ( pp(aa(B,bool,aa(A,fun(B,bool),A3,X2),Y))
=> ~ pp(aa(B,bool,aa(A,fun(B,bool),B4,X2),Y)) ) ) ).
% inf2E
tff(fact_6042_inf2D1,axiom,
! [A: $tType,B: $tType,A3: fun(A,fun(B,bool)),B4: fun(A,fun(B,bool)),X2: A,Y: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),aa(fun(A,fun(B,bool)),fun(A,fun(B,bool)),aa(fun(A,fun(B,bool)),fun(fun(A,fun(B,bool)),fun(A,fun(B,bool))),inf_inf(fun(A,fun(B,bool))),A3),B4),X2),Y))
=> pp(aa(B,bool,aa(A,fun(B,bool),A3,X2),Y)) ) ).
% inf2D1
tff(fact_6043_inf2D2,axiom,
! [A: $tType,B: $tType,A3: fun(A,fun(B,bool)),B4: fun(A,fun(B,bool)),X2: A,Y: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),aa(fun(A,fun(B,bool)),fun(A,fun(B,bool)),aa(fun(A,fun(B,bool)),fun(fun(A,fun(B,bool)),fun(A,fun(B,bool))),inf_inf(fun(A,fun(B,bool))),A3),B4),X2),Y))
=> pp(aa(B,bool,aa(A,fun(B,bool),B4,X2),Y)) ) ).
% inf2D2
tff(fact_6044_length__shuffles,axiom,
! [A: $tType,Zs: list(A),Xs: list(A),Ys: list(A)] :
( pp(member(list(A),Zs,shuffles(A,Xs,Ys)))
=> ( aa(list(A),nat,size_size(list(A)),Zs) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(list(A),nat,size_size(list(A)),Xs)),aa(list(A),nat,size_size(list(A)),Ys)) ) ) ).
% length_shuffles
tff(fact_6045_shuffles__commutes,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] : ( shuffles(A,Xs,Ys) = shuffles(A,Ys,Xs) ) ).
% shuffles_commutes
tff(fact_6046_distinct__disjoint__shuffles,axiom,
! [A: $tType,Xs: list(A),Ys: list(A),Zs: list(A)] :
( distinct(A,Xs)
=> ( distinct(A,Ys)
=> ( ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(list(A),set(A),set2(A),Xs)),aa(list(A),set(A),set2(A),Ys)) = bot_bot(set(A)) )
=> ( pp(member(list(A),Zs,shuffles(A,Xs,Ys)))
=> distinct(A,Zs) ) ) ) ) ).
% distinct_disjoint_shuffles
tff(fact_6047_card__partition,axiom,
! [A: $tType,C6: set(set(A)),K: nat] :
( finite_finite(set(A),C6)
=> ( finite_finite(A,complete_Sup_Sup(set(A),C6))
=> ( ! [C4: set(A)] :
( pp(member(set(A),C4,C6))
=> ( aa(set(A),nat,finite_card(A),C4) = K ) )
=> ( ! [C1: set(A),C22: set(A)] :
( pp(member(set(A),C1,C6))
=> ( pp(member(set(A),C22,C6))
=> ( ( C1 != C22 )
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),C1),C22) = bot_bot(set(A)) ) ) ) )
=> ( aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),K),aa(set(set(A)),nat,finite_card(set(A)),C6)) = aa(set(A),nat,finite_card(A),complete_Sup_Sup(set(A),C6)) ) ) ) ) ) ).
% card_partition
tff(fact_6048_max__nat_Osemilattice__neutr__order__axioms,axiom,
semila1105856199041335345_order(nat,ord_max(nat),zero_zero(nat),aTP_Lamp_ma(nat,fun(nat,bool)),aTP_Lamp_ew(nat,fun(nat,bool))) ).
% max_nat.semilattice_neutr_order_axioms
tff(fact_6049_Sup__lessThan,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice(A)
& dense_linorder(A) )
=> ! [Y: A] : ( complete_Sup_Sup(A,aa(A,set(A),set_ord_lessThan(A),Y)) = Y ) ) ).
% Sup_lessThan
tff(fact_6050_Sup__atMost,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [Y: A] : ( complete_Sup_Sup(A,aa(A,set(A),set_ord_atMost(A),Y)) = Y ) ) ).
% Sup_atMost
tff(fact_6051_Sup__atLeastAtMost,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> ( complete_Sup_Sup(A,set_or1337092689740270186AtMost(A,X2,Y)) = Y ) ) ) ).
% Sup_atLeastAtMost
tff(fact_6052_Sup__atLeastLessThan,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice(A)
& dense_linorder(A) )
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ( complete_Sup_Sup(A,set_or7035219750837199246ssThan(A,X2,Y)) = Y ) ) ) ).
% Sup_atLeastLessThan
tff(fact_6053_Sup__greaterThanLessThan,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice(A)
& dense_linorder(A) )
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ( complete_Sup_Sup(A,set_or5935395276787703475ssThan(A,X2,Y)) = Y ) ) ) ).
% Sup_greaterThanLessThan
tff(fact_6054_card__Union__le__sum__card,axiom,
! [A: $tType,U3: set(set(A))] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(A),nat,finite_card(A),complete_Sup_Sup(set(A),U3))),aa(set(set(A)),nat,aa(fun(set(A),nat),fun(set(set(A)),nat),groups7311177749621191930dd_sum(set(A),nat),finite_card(A)),U3))) ).
% card_Union_le_sum_card
tff(fact_6055_sum_OUnion__comp,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [B4: set(set(B)),G: fun(B,A)] :
( ! [X3: set(B)] :
( pp(member(set(B),X3,B4))
=> finite_finite(B,X3) )
=> ( ! [A13: set(B)] :
( pp(member(set(B),A13,B4))
=> ! [A24: set(B)] :
( pp(member(set(B),A24,B4))
=> ( ( A13 != A24 )
=> ! [X3: B] :
( pp(member(B,X3,A13))
=> ( pp(member(B,X3,A24))
=> ( aa(B,A,G,X3) = zero_zero(A) ) ) ) ) ) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),complete_Sup_Sup(set(B),B4)) = aa(set(set(B)),A,aa(fun(B,A),fun(set(set(B)),A),aa(fun(fun(B,A),fun(set(B),A)),fun(fun(B,A),fun(set(set(B)),A)),comp(fun(set(B),A),fun(set(set(B)),A),fun(B,A),groups7311177749621191930dd_sum(set(B),A)),groups7311177749621191930dd_sum(B,A)),G),B4) ) ) ) ) ).
% sum.Union_comp
tff(fact_6056_prod_OUnion__comp,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [B4: set(set(B)),G: fun(B,A)] :
( ! [X3: set(B)] :
( pp(member(set(B),X3,B4))
=> finite_finite(B,X3) )
=> ( ! [A13: set(B)] :
( pp(member(set(B),A13,B4))
=> ! [A24: set(B)] :
( pp(member(set(B),A24,B4))
=> ( ( A13 != A24 )
=> ! [X3: B] :
( pp(member(B,X3,A13))
=> ( pp(member(B,X3,A24))
=> ( aa(B,A,G,X3) = one_one(A) ) ) ) ) ) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),complete_Sup_Sup(set(B),B4)) = aa(set(set(B)),A,aa(fun(B,A),fun(set(set(B)),A),aa(fun(fun(B,A),fun(set(B),A)),fun(fun(B,A),fun(set(set(B)),A)),comp(fun(set(B),A),fun(set(set(B)),A),fun(B,A),groups7121269368397514597t_prod(set(B),A)),groups7121269368397514597t_prod(B,A)),G),B4) ) ) ) ) ).
% prod.Union_comp
tff(fact_6057_card__Union__le__sum__card__weak,axiom,
! [A: $tType,U3: set(set(A))] :
( ! [X3: set(A)] :
( pp(member(set(A),X3,U3))
=> finite_finite(A,X3) )
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(A),nat,finite_card(A),complete_Sup_Sup(set(A),U3))),aa(set(set(A)),nat,aa(fun(set(A),nat),fun(set(set(A)),nat),groups7311177749621191930dd_sum(set(A),nat),finite_card(A)),U3))) ) ).
% card_Union_le_sum_card_weak
tff(fact_6058_cSup__asclose,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder(A)
& linordered_idom(A) )
=> ! [S: set(A),L: A,E: A] :
( ( S != bot_bot(set(A)) )
=> ( ! [X3: A] :
( pp(member(A,X3,S))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X3),L))),E)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),complete_Sup_Sup(A,S)),L))),E)) ) ) ) ).
% cSup_asclose
tff(fact_6059_finite__subset__Union,axiom,
! [A: $tType,A3: set(A),B11: set(set(A))] :
( finite_finite(A,A3)
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),complete_Sup_Sup(set(A),B11)))
=> ~ ! [F7: set(set(A))] :
( finite_finite(set(A),F7)
=> ( pp(aa(set(set(A)),bool,aa(set(set(A)),fun(set(set(A)),bool),ord_less_eq(set(set(A))),F7),B11))
=> ~ pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),complete_Sup_Sup(set(A),F7))) ) ) ) ) ).
% finite_subset_Union
tff(fact_6060_gcd__nat_Osemilattice__neutr__order__axioms,axiom,
semila1105856199041335345_order(nat,gcd_gcd(nat),zero_zero(nat),dvd_dvd(nat),aTP_Lamp_oi(nat,fun(nat,bool))) ).
% gcd_nat.semilattice_neutr_order_axioms
tff(fact_6061_cSup__greaterThanLessThan,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder(A)
& dense_linorder(A) )
=> ! [Y: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X2))
=> ( complete_Sup_Sup(A,set_or5935395276787703475ssThan(A,Y,X2)) = X2 ) ) ) ).
% cSup_greaterThanLessThan
tff(fact_6062_cSup__atLeastLessThan,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder(A)
& dense_linorder(A) )
=> ! [Y: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X2))
=> ( complete_Sup_Sup(A,set_or7035219750837199246ssThan(A,Y,X2)) = X2 ) ) ) ).
% cSup_atLeastLessThan
tff(fact_6063_Sup__nat__empty,axiom,
complete_Sup_Sup(nat,bot_bot(set(nat))) = zero_zero(nat) ).
% Sup_nat_empty
tff(fact_6064_cSup__atLeastAtMost,axiom,
! [A: $tType] :
( condit1219197933456340205attice(A)
=> ! [Y: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),X2))
=> ( complete_Sup_Sup(A,set_or1337092689740270186AtMost(A,Y,X2)) = X2 ) ) ) ).
% cSup_atLeastAtMost
tff(fact_6065_ex__gt__or__lt,axiom,
! [A: $tType] :
( condit5016429287641298734tinuum(A)
=> ! [A2: A] :
? [B3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B3))
| pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B3),A2)) ) ) ).
% ex_gt_or_lt
tff(fact_6066_complete__interval,axiom,
! [A: $tType] :
( condit6923001295902523014norder(A)
=> ! [A2: A,B2: A,P: fun(A,bool)] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,P,A2))
=> ( ~ pp(aa(A,bool,P,B2))
=> ? [C4: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),C4))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C4),B2))
& ! [X: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),X))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X),C4)) )
=> pp(aa(A,bool,P,X)) )
& ! [D6: A] :
( ! [X3: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),X3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X3),D6)) )
=> pp(aa(A,bool,P,X3)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),D6),C4)) ) ) ) ) ) ) ).
% complete_interval
tff(fact_6067_cSup__eq__maximum,axiom,
! [A: $tType] :
( condit1219197933456340205attice(A)
=> ! [Z: A,X6: set(A)] :
( pp(member(A,Z,X6))
=> ( ! [X3: A] :
( pp(member(A,X3,X6))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),Z)) )
=> ( complete_Sup_Sup(A,X6) = Z ) ) ) ) ).
% cSup_eq_maximum
tff(fact_6068_cSup__eq,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice(A)
& no_bot(A) )
=> ! [X6: set(A),A2: A] :
( ! [X3: A] :
( pp(member(A,X3,X6))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),A2)) )
=> ( ! [Y3: A] :
( ! [X: A] :
( pp(member(A,X,X6))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X),Y3)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),Y3)) )
=> ( complete_Sup_Sup(A,X6) = A2 ) ) ) ) ).
% cSup_eq
tff(fact_6069_cSup__least,axiom,
! [A: $tType] :
( condit1219197933456340205attice(A)
=> ! [X6: set(A),Z: A] :
( ( X6 != bot_bot(set(A)) )
=> ( ! [X3: A] :
( pp(member(A,X3,X6))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),Z)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Sup_Sup(A,X6)),Z)) ) ) ) ).
% cSup_least
tff(fact_6070_cSup__eq__non__empty,axiom,
! [A: $tType] :
( condit1219197933456340205attice(A)
=> ! [X6: set(A),A2: A] :
( ( X6 != bot_bot(set(A)) )
=> ( ! [X3: A] :
( pp(member(A,X3,X6))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),A2)) )
=> ( ! [Y3: A] :
( ! [X: A] :
( pp(member(A,X,X6))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X),Y3)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),Y3)) )
=> ( complete_Sup_Sup(A,X6) = A2 ) ) ) ) ) ).
% cSup_eq_non_empty
tff(fact_6071_le__cSup__finite,axiom,
! [A: $tType] :
( condit1219197933456340205attice(A)
=> ! [X6: set(A),X2: A] :
( finite_finite(A,X6)
=> ( pp(member(A,X2,X6))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),complete_Sup_Sup(A,X6))) ) ) ) ).
% le_cSup_finite
tff(fact_6072_less__cSupD,axiom,
! [A: $tType] :
( condit6923001295902523014norder(A)
=> ! [X6: set(A),Z: A] :
( ( X6 != bot_bot(set(A)) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Z),complete_Sup_Sup(A,X6)))
=> ? [X3: A] :
( pp(member(A,X3,X6))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Z),X3)) ) ) ) ) ).
% less_cSupD
tff(fact_6073_less__cSupE,axiom,
! [A: $tType] :
( condit6923001295902523014norder(A)
=> ! [Y: A,X6: set(A)] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),complete_Sup_Sup(A,X6)))
=> ( ( X6 != bot_bot(set(A)) )
=> ~ ! [X3: A] :
( pp(member(A,X3,X6))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X3)) ) ) ) ) ).
% less_cSupE
tff(fact_6074_finite__imp__Sup__less,axiom,
! [A: $tType] :
( condit6923001295902523014norder(A)
=> ! [X6: set(A),X2: A,A2: A] :
( finite_finite(A,X6)
=> ( pp(member(A,X2,X6))
=> ( ! [X3: A] :
( pp(member(A,X3,X6))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X3),A2)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),complete_Sup_Sup(A,X6)),A2)) ) ) ) ) ).
% finite_imp_Sup_less
tff(fact_6075_finite__Sup__less__iff,axiom,
! [A: $tType] :
( condit6923001295902523014norder(A)
=> ! [X6: set(A),A2: A] :
( finite_finite(A,X6)
=> ( ( X6 != bot_bot(set(A)) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),complete_Sup_Sup(A,X6)),A2))
<=> ! [X4: A] :
( pp(member(A,X4,X6))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X4),A2)) ) ) ) ) ) ).
% finite_Sup_less_iff
tff(fact_6076_cSup__abs__le,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder(A)
& linordered_idom(A) )
=> ! [S: set(A),A2: A] :
( ( S != bot_bot(set(A)) )
=> ( ! [X3: A] :
( pp(member(A,X3,S))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),X3)),A2)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),complete_Sup_Sup(A,S))),A2)) ) ) ) ).
% cSup_abs_le
tff(fact_6077_card__UNION,axiom,
! [A: $tType,A3: set(set(A))] :
( finite_finite(set(A),A3)
=> ( ! [X3: set(A)] :
( pp(member(set(A),X3,A3))
=> finite_finite(A,X3) )
=> ( aa(set(A),nat,finite_card(A),complete_Sup_Sup(set(A),A3)) = aa(int,nat,nat2,aa(set(set(set(A))),int,aa(fun(set(set(A)),int),fun(set(set(set(A))),int),groups7311177749621191930dd_sum(set(set(A)),int),aTP_Lamp_oj(set(set(A)),int)),aa(fun(set(set(A)),bool),set(set(set(A))),collect(set(set(A))),aTP_Lamp_ok(set(set(A)),fun(set(set(A)),bool),A3)))) ) ) ) ).
% card_UNION
tff(fact_6078_Sup__inter__less__eq,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [A3: set(A),B4: set(A)] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Sup_Sup(A,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),B4))),aa(A,A,aa(A,fun(A,A),inf_inf(A),complete_Sup_Sup(A,A3)),complete_Sup_Sup(A,B4)))) ) ).
% Sup_inter_less_eq
tff(fact_6079_Inf__eq__bot__iff,axiom,
! [A: $tType] :
( comple5582772986160207858norder(A)
=> ! [A3: set(A)] :
( ( complete_Inf_Inf(A,A3) = bot_bot(A) )
<=> ! [X4: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),bot_bot(A)),X4))
=> ? [Xa3: A] :
( pp(member(A,Xa3,A3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Xa3),X4)) ) ) ) ) ).
% Inf_eq_bot_iff
tff(fact_6080_Inf__atLeastAtMost,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> ( complete_Inf_Inf(A,set_or1337092689740270186AtMost(A,X2,Y)) = X2 ) ) ) ).
% Inf_atLeastAtMost
tff(fact_6081_cInf__atLeastAtMost,axiom,
! [A: $tType] :
( condit1219197933456340205attice(A)
=> ! [Y: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),X2))
=> ( complete_Inf_Inf(A,set_or1337092689740270186AtMost(A,Y,X2)) = Y ) ) ) ).
% cInf_atLeastAtMost
tff(fact_6082_Inf__atLeastLessThan,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ( complete_Inf_Inf(A,set_or7035219750837199246ssThan(A,X2,Y)) = X2 ) ) ) ).
% Inf_atLeastLessThan
tff(fact_6083_cInf__atLeastLessThan,axiom,
! [A: $tType] :
( condit1219197933456340205attice(A)
=> ! [Y: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X2))
=> ( complete_Inf_Inf(A,set_or7035219750837199246ssThan(A,Y,X2)) = Y ) ) ) ).
% cInf_atLeastLessThan
tff(fact_6084_Inf__atMost,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [X2: A] : ( complete_Inf_Inf(A,aa(A,set(A),set_ord_atMost(A),X2)) = bot_bot(A) ) ) ).
% Inf_atMost
tff(fact_6085_Inf__greaterThanLessThan,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice(A)
& dense_linorder(A) )
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ( complete_Inf_Inf(A,set_or5935395276787703475ssThan(A,X2,Y)) = X2 ) ) ) ).
% Inf_greaterThanLessThan
tff(fact_6086_cInf__greaterThanLessThan,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder(A)
& dense_linorder(A) )
=> ! [Y: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X2))
=> ( complete_Inf_Inf(A,set_or5935395276787703475ssThan(A,Y,X2)) = Y ) ) ) ).
% cInf_greaterThanLessThan
tff(fact_6087_Inf__le__Sup,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [A3: set(A)] :
( ( A3 != bot_bot(set(A)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Inf_Inf(A,A3)),complete_Sup_Sup(A,A3))) ) ) ).
% Inf_le_Sup
tff(fact_6088_cInf__greatest,axiom,
! [A: $tType] :
( condit1219197933456340205attice(A)
=> ! [X6: set(A),Z: A] :
( ( X6 != bot_bot(set(A)) )
=> ( ! [X3: A] :
( pp(member(A,X3,X6))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Z),X3)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Z),complete_Inf_Inf(A,X6))) ) ) ) ).
% cInf_greatest
tff(fact_6089_cInf__eq__non__empty,axiom,
! [A: $tType] :
( condit1219197933456340205attice(A)
=> ! [X6: set(A),A2: A] :
( ( X6 != bot_bot(set(A)) )
=> ( ! [X3: A] :
( pp(member(A,X3,X6))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),X3)) )
=> ( ! [Y3: A] :
( ! [X: A] :
( pp(member(A,X,X6))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y3),X)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y3),A2)) )
=> ( complete_Inf_Inf(A,X6) = A2 ) ) ) ) ) ).
% cInf_eq_non_empty
tff(fact_6090_cInf__le__finite,axiom,
! [A: $tType] :
( condit1219197933456340205attice(A)
=> ! [X6: set(A),X2: A] :
( finite_finite(A,X6)
=> ( pp(member(A,X2,X6))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Inf_Inf(A,X6)),X2)) ) ) ) ).
% cInf_le_finite
tff(fact_6091_cInf__eq__minimum,axiom,
! [A: $tType] :
( condit1219197933456340205attice(A)
=> ! [Z: A,X6: set(A)] :
( pp(member(A,Z,X6))
=> ( ! [X3: A] :
( pp(member(A,X3,X6))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Z),X3)) )
=> ( complete_Inf_Inf(A,X6) = Z ) ) ) ) ).
% cInf_eq_minimum
tff(fact_6092_cInf__eq,axiom,
! [A: $tType] :
( ( condit1219197933456340205attice(A)
& no_top(A) )
=> ! [X6: set(A),A2: A] :
( ! [X3: A] :
( pp(member(A,X3,X6))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),X3)) )
=> ( ! [Y3: A] :
( ! [X: A] :
( pp(member(A,X,X6))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y3),X)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y3),A2)) )
=> ( complete_Inf_Inf(A,X6) = A2 ) ) ) ) ).
% cInf_eq
tff(fact_6093_finite__imp__less__Inf,axiom,
! [A: $tType] :
( condit6923001295902523014norder(A)
=> ! [X6: set(A),X2: A,A2: A] :
( finite_finite(A,X6)
=> ( pp(member(A,X2,X6))
=> ( ! [X3: A] :
( pp(member(A,X3,X6))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),X3)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),complete_Inf_Inf(A,X6))) ) ) ) ) ).
% finite_imp_less_Inf
tff(fact_6094_cInf__lessD,axiom,
! [A: $tType] :
( condit6923001295902523014norder(A)
=> ! [X6: set(A),Z: A] :
( ( X6 != bot_bot(set(A)) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),complete_Inf_Inf(A,X6)),Z))
=> ? [X3: A] :
( pp(member(A,X3,X6))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X3),Z)) ) ) ) ) ).
% cInf_lessD
tff(fact_6095_Inf__less__iff,axiom,
! [A: $tType] :
( comple5582772986160207858norder(A)
=> ! [S: set(A),A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),complete_Inf_Inf(A,S)),A2))
<=> ? [X4: A] :
( pp(member(A,X4,S))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X4),A2)) ) ) ) ).
% Inf_less_iff
tff(fact_6096_Inter__lower,axiom,
! [A: $tType,B4: set(A),A3: set(set(A))] :
( pp(member(set(A),B4,A3))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),complete_Inf_Inf(set(A),A3)),B4)) ) ).
% Inter_lower
tff(fact_6097_Inter__greatest,axiom,
! [A: $tType,A3: set(set(A)),C6: set(A)] :
( ! [X7: set(A)] :
( pp(member(set(A),X7,A3))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),C6),X7)) )
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),C6),complete_Inf_Inf(set(A),A3))) ) ).
% Inter_greatest
tff(fact_6098_Inter__anti__mono,axiom,
! [A: $tType,B4: set(set(A)),A3: set(set(A))] :
( pp(aa(set(set(A)),bool,aa(set(set(A)),fun(set(set(A)),bool),ord_less_eq(set(set(A))),B4),A3))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),complete_Inf_Inf(set(A),A3)),complete_Inf_Inf(set(A),B4))) ) ).
% Inter_anti_mono
tff(fact_6099_Inf__greatest,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [A3: set(A),Z: A] :
( ! [X3: A] :
( pp(member(A,X3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Z),X3)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Z),complete_Inf_Inf(A,A3))) ) ) ).
% Inf_greatest
tff(fact_6100_le__Inf__iff,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [B2: A,A3: set(A)] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),complete_Inf_Inf(A,A3)))
<=> ! [X4: A] :
( pp(member(A,X4,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),X4)) ) ) ) ).
% le_Inf_iff
tff(fact_6101_Inf__lower2,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [U: A,A3: set(A),V: A] :
( pp(member(A,U,A3))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),U),V))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Inf_Inf(A,A3)),V)) ) ) ) ).
% Inf_lower2
tff(fact_6102_Inf__lower,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [X2: A,A3: set(A)] :
( pp(member(A,X2,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Inf_Inf(A,A3)),X2)) ) ) ).
% Inf_lower
tff(fact_6103_Inf__mono,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [B4: set(A),A3: set(A)] :
( ! [B3: A] :
( pp(member(A,B3,B4))
=> ? [X: A] :
( pp(member(A,X,A3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X),B3)) ) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Inf_Inf(A,A3)),complete_Inf_Inf(A,B4))) ) ) ).
% Inf_mono
tff(fact_6104_Inf__eqI,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [A3: set(A),X2: A] :
( ! [I3: A] :
( pp(member(A,I3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),I3)) )
=> ( ! [Y3: A] :
( ! [I2: A] :
( pp(member(A,I2,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y3),I2)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y3),X2)) )
=> ( complete_Inf_Inf(A,A3) = X2 ) ) ) ) ).
% Inf_eqI
tff(fact_6105_Inf__superset__mono,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [B4: set(A),A3: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Inf_Inf(A,A3)),complete_Inf_Inf(A,B4))) ) ) ).
% Inf_superset_mono
tff(fact_6106_Inf__le__iff,axiom,
! [A: $tType] :
( comple5582772986160207858norder(A)
=> ! [A3: set(A),X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Inf_Inf(A,A3)),X2))
<=> ! [Y2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y2))
=> ? [X4: A] :
( pp(member(A,X4,A3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X4),Y2)) ) ) ) ) ).
% Inf_le_iff
tff(fact_6107_Inter__subset,axiom,
! [A: $tType,A3: set(set(A)),B4: set(A)] :
( ! [X7: set(A)] :
( pp(member(set(A),X7,A3))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),X7),B4)) )
=> ( ( A3 != bot_bot(set(set(A))) )
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),complete_Inf_Inf(set(A),A3)),B4)) ) ) ).
% Inter_subset
tff(fact_6108_Inf__less__eq,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [A3: set(A),U: A] :
( ! [V3: A] :
( pp(member(A,V3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),V3),U)) )
=> ( ( A3 != bot_bot(set(A)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Inf_Inf(A,A3)),U)) ) ) ) ).
% Inf_less_eq
tff(fact_6109_finite__less__Inf__iff,axiom,
! [A: $tType] :
( condit6923001295902523014norder(A)
=> ! [X6: set(A),A2: A] :
( finite_finite(A,X6)
=> ( ( X6 != bot_bot(set(A)) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),complete_Inf_Inf(A,X6)))
<=> ! [X4: A] :
( pp(member(A,X4,X6))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),X4)) ) ) ) ) ) ).
% finite_less_Inf_iff
tff(fact_6110_cInf__abs__ge,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder(A)
& linordered_idom(A) )
=> ! [S: set(A),A2: A] :
( ( S != bot_bot(set(A)) )
=> ( ! [X3: A] :
( pp(member(A,X3,S))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),X3)),A2)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),complete_Inf_Inf(A,S))),A2)) ) ) ) ).
% cInf_abs_ge
tff(fact_6111_cInf__asclose,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder(A)
& linordered_idom(A) )
=> ! [S: set(A),L: A,E: A] :
( ( S != bot_bot(set(A)) )
=> ( ! [X3: A] :
( pp(member(A,X3,S))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),X3),L))),E)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),complete_Inf_Inf(A,S)),L))),E)) ) ) ) ).
% cInf_asclose
tff(fact_6112_Sup__upper2,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [U: A,A3: set(A),V: A] :
( pp(member(A,U,A3))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),V),U))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),V),complete_Sup_Sup(A,A3))) ) ) ) ).
% Sup_upper2
tff(fact_6113_Sup__le__iff,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [A3: set(A),B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Sup_Sup(A,A3)),B2))
<=> ! [X4: A] :
( pp(member(A,X4,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X4),B2)) ) ) ) ).
% Sup_le_iff
tff(fact_6114_Sup__upper,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [X2: A,A3: set(A)] :
( pp(member(A,X2,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),complete_Sup_Sup(A,A3))) ) ) ).
% Sup_upper
tff(fact_6115_Sup__least,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [A3: set(A),Z: A] :
( ! [X3: A] :
( pp(member(A,X3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),Z)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Sup_Sup(A,A3)),Z)) ) ) ).
% Sup_least
tff(fact_6116_Sup__mono,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [A3: set(A),B4: set(A)] :
( ! [A4: A] :
( pp(member(A,A4,A3))
=> ? [X: A] :
( pp(member(A,X,B4))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A4),X)) ) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Sup_Sup(A,A3)),complete_Sup_Sup(A,B4))) ) ) ).
% Sup_mono
tff(fact_6117_Sup__eqI,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [A3: set(A),X2: A] :
( ! [Y3: A] :
( pp(member(A,Y3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y3),X2)) )
=> ( ! [Y3: A] :
( ! [Z2: A] :
( pp(member(A,Z2,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Z2),Y3)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y3)) )
=> ( complete_Sup_Sup(A,A3) = X2 ) ) ) ) ).
% Sup_eqI
tff(fact_6118_less__Sup__iff,axiom,
! [A: $tType] :
( comple5582772986160207858norder(A)
=> ! [A2: A,S: set(A)] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),complete_Sup_Sup(A,S)))
<=> ? [X4: A] :
( pp(member(A,X4,S))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),X4)) ) ) ) ).
% less_Sup_iff
tff(fact_6119_Union__least,axiom,
! [A: $tType,A3: set(set(A)),C6: set(A)] :
( ! [X7: set(A)] :
( pp(member(set(A),X7,A3))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),X7),C6)) )
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),complete_Sup_Sup(set(A),A3)),C6)) ) ).
% Union_least
tff(fact_6120_Union__upper,axiom,
! [A: $tType,B4: set(A),A3: set(set(A))] :
( pp(member(set(A),B4,A3))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),complete_Sup_Sup(set(A),A3))) ) ).
% Union_upper
tff(fact_6121_Union__subsetI,axiom,
! [A: $tType,A3: set(set(A)),B4: set(set(A))] :
( ! [X3: set(A)] :
( pp(member(set(A),X3,A3))
=> ? [Y4: set(A)] :
( pp(member(set(A),Y4,B4))
& pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),X3),Y4)) ) )
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),complete_Sup_Sup(set(A),A3)),complete_Sup_Sup(set(A),B4))) ) ).
% Union_subsetI
tff(fact_6122_le__Sup__iff,axiom,
! [A: $tType] :
( comple5582772986160207858norder(A)
=> ! [X2: A,A3: set(A)] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),complete_Sup_Sup(A,A3)))
<=> ! [Y2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y2),X2))
=> ? [X4: A] :
( pp(member(A,X4,A3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y2),X4)) ) ) ) ) ).
% le_Sup_iff
tff(fact_6123_less__eq__Sup,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [A3: set(A),U: A] :
( ! [V3: A] :
( pp(member(A,V3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),U),V3)) )
=> ( ( A3 != bot_bot(set(A)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),U),complete_Sup_Sup(A,A3))) ) ) ) ).
% less_eq_Sup
tff(fact_6124_Sup__subset__mono,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Sup_Sup(A,A3)),complete_Sup_Sup(A,B4))) ) ) ).
% Sup_subset_mono
tff(fact_6125_Union__Int__subset,axiom,
! [A: $tType,A3: set(set(A)),B4: set(set(A))] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),complete_Sup_Sup(set(A),aa(set(set(A)),set(set(A)),aa(set(set(A)),fun(set(set(A)),set(set(A))),inf_inf(set(set(A))),A3),B4))),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),complete_Sup_Sup(set(A),A3)),complete_Sup_Sup(set(A),B4)))) ).
% Union_Int_subset
tff(fact_6126_Union__mono,axiom,
! [A: $tType,A3: set(set(A)),B4: set(set(A))] :
( pp(aa(set(set(A)),bool,aa(set(set(A)),fun(set(set(A)),bool),ord_less_eq(set(set(A))),A3),B4))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),complete_Sup_Sup(set(A),A3)),complete_Sup_Sup(set(A),B4))) ) ).
% Union_mono
tff(fact_6127_subset__Pow__Union,axiom,
! [A: $tType,A3: set(set(A))] : pp(aa(set(set(A)),bool,aa(set(set(A)),fun(set(set(A)),bool),ord_less_eq(set(set(A))),A3),pow2(A,complete_Sup_Sup(set(A),A3)))) ).
% subset_Pow_Union
tff(fact_6128_apfst__apsnd,axiom,
! [A: $tType,B: $tType,D: $tType,C: $tType,F2: fun(C,A),G: fun(D,B),X2: product_prod(C,D)] : ( aa(product_prod(C,B),product_prod(A,B),product_apfst(C,A,B,F2),aa(product_prod(C,D),product_prod(C,B),aa(fun(D,B),fun(product_prod(C,D),product_prod(C,B)),product_apsnd(D,B,C),G),X2)) = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),aa(C,A,F2,aa(product_prod(C,D),C,product_fst(C,D),X2))),aa(D,B,G,aa(product_prod(C,D),D,product_snd(C,D),X2))) ) ).
% apfst_apsnd
tff(fact_6129_apsnd__apfst,axiom,
! [A: $tType,B: $tType,C: $tType,D: $tType,F2: fun(C,B),G: fun(D,A),X2: product_prod(D,C)] : ( aa(product_prod(A,C),product_prod(A,B),aa(fun(C,B),fun(product_prod(A,C),product_prod(A,B)),product_apsnd(C,B,A),F2),aa(product_prod(D,C),product_prod(A,C),product_apfst(D,A,C,G),X2)) = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),aa(D,A,G,aa(product_prod(D,C),D,product_fst(D,C),X2))),aa(C,B,F2,aa(product_prod(D,C),C,product_snd(D,C),X2))) ) ).
% apsnd_apfst
tff(fact_6130_apfst__conv,axiom,
! [C: $tType,A: $tType,B: $tType,F2: fun(C,A),X2: C,Y: B] : ( aa(product_prod(C,B),product_prod(A,B),product_apfst(C,A,B,F2),aa(B,product_prod(C,B),aa(C,fun(B,product_prod(C,B)),product_Pair(C,B),X2),Y)) = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),aa(C,A,F2,X2)),Y) ) ).
% apfst_conv
tff(fact_6131_enumerate__Suc__eq,axiom,
! [A: $tType,N: nat,Xs: list(A)] : ( enumerate(A,aa(nat,nat,suc,N),Xs) = aa(list(product_prod(nat,A)),list(product_prod(nat,A)),map(product_prod(nat,A),product_prod(nat,A),product_apfst(nat,nat,A,suc)),enumerate(A,N,Xs)) ) ).
% enumerate_Suc_eq
tff(fact_6132_apfst__convE,axiom,
! [C: $tType,A: $tType,B: $tType,Q2: product_prod(A,B),F2: fun(C,A),P2: product_prod(C,B)] :
( ( Q2 = aa(product_prod(C,B),product_prod(A,B),product_apfst(C,A,B,F2),P2) )
=> ~ ! [X3: C,Y3: B] :
( ( P2 = aa(B,product_prod(C,B),aa(C,fun(B,product_prod(C,B)),product_Pair(C,B),X3),Y3) )
=> ( Q2 != aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),aa(C,A,F2,X3)),Y3) ) ) ) ).
% apfst_convE
tff(fact_6133_set__removeAll,axiom,
! [A: $tType,X2: A,Xs: list(A)] : ( aa(list(A),set(A),set2(A),aa(list(A),list(A),removeAll(A,X2),Xs)) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(list(A),set(A),set2(A),Xs)),aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))) ) ).
% set_removeAll
tff(fact_6134_removeAll__id,axiom,
! [A: $tType,X2: A,Xs: list(A)] :
( ~ pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ( aa(list(A),list(A),removeAll(A,X2),Xs) = Xs ) ) ).
% removeAll_id
tff(fact_6135_distinct__removeAll,axiom,
! [A: $tType,Xs: list(A),X2: A] :
( distinct(A,Xs)
=> distinct(A,aa(list(A),list(A),removeAll(A,X2),Xs)) ) ).
% distinct_removeAll
tff(fact_6136_length__removeAll__less__eq,axiom,
! [A: $tType,X2: A,Xs: list(A)] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(list(A),nat,size_size(list(A)),aa(list(A),list(A),removeAll(A,X2),Xs))),aa(list(A),nat,size_size(list(A)),Xs))) ).
% length_removeAll_less_eq
tff(fact_6137_distinct__remove1__removeAll,axiom,
! [A: $tType,Xs: list(A),X2: A] :
( distinct(A,Xs)
=> ( remove1(A,X2,Xs) = aa(list(A),list(A),removeAll(A,X2),Xs) ) ) ).
% distinct_remove1_removeAll
tff(fact_6138_length__removeAll__less,axiom,
! [A: $tType,X2: A,Xs: list(A)] :
( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(list(A),nat,size_size(list(A)),aa(list(A),list(A),removeAll(A,X2),Xs))),aa(list(A),nat,size_size(list(A)),Xs))) ) ).
% length_removeAll_less
tff(fact_6139_distinct__concat__iff,axiom,
! [A: $tType,Xs: list(list(A))] :
( distinct(A,concat(A,Xs))
<=> ( distinct(list(A),aa(list(list(A)),list(list(A)),removeAll(list(A),nil(A)),Xs))
& ! [Ys4: list(A)] :
( pp(member(list(A),Ys4,aa(list(list(A)),set(list(A)),set2(list(A)),Xs)))
=> distinct(A,Ys4) )
& ! [Ys4: list(A),Zs3: list(A)] :
( ( pp(member(list(A),Ys4,aa(list(list(A)),set(list(A)),set2(list(A)),Xs)))
& pp(member(list(A),Zs3,aa(list(list(A)),set(list(A)),set2(list(A)),Xs)))
& ( Ys4 != Zs3 ) )
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(list(A),set(A),set2(A),Ys4)),aa(list(A),set(A),set2(A),Zs3)) = bot_bot(set(A)) ) ) ) ) ).
% distinct_concat_iff
tff(fact_6140_bit_Oabstract__boolean__algebra__axioms,axiom,
! [A: $tType] :
( bit_ri3973907225187159222ations(A)
=> boolea2506097494486148201lgebra(A,bit_se5824344872417868541ns_and(A),bit_se1065995026697491101ons_or(A),bit_ri4277139882892585799ns_not(A),zero_zero(A),aa(A,A,uminus_uminus(A),one_one(A))) ) ).
% bit.abstract_boolean_algebra_axioms
tff(fact_6141_list_Omap__disc__iff,axiom,
! [B: $tType,A: $tType,F2: fun(A,B),A2: list(A)] :
( ( aa(list(A),list(B),map(A,B,F2),A2) = nil(B) )
<=> ( A2 = nil(A) ) ) ).
% list.map_disc_iff
tff(fact_6142_Nil__is__map__conv,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),Xs: list(B)] :
( ( nil(A) = aa(list(B),list(A),map(B,A,F2),Xs) )
<=> ( Xs = nil(B) ) ) ).
% Nil_is_map_conv
tff(fact_6143_map__is__Nil__conv,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),Xs: list(B)] :
( ( aa(list(B),list(A),map(B,A,F2),Xs) = nil(A) )
<=> ( Xs = nil(B) ) ) ).
% map_is_Nil_conv
tff(fact_6144_upt__conv__Nil,axiom,
! [J: nat,I: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),J),I))
=> ( upt(I,J) = nil(nat) ) ) ).
% upt_conv_Nil
tff(fact_6145_list__update__nonempty,axiom,
! [A: $tType,Xs: list(A),K: nat,X2: A] :
( ( list_update(A,Xs,K,X2) = nil(A) )
<=> ( Xs = nil(A) ) ) ).
% list_update_nonempty
tff(fact_6146_concat__replicate__trivial,axiom,
! [A: $tType,I: nat] : ( concat(A,replicate(list(A),I,nil(A))) = nil(A) ) ).
% concat_replicate_trivial
tff(fact_6147_Nil__in__shuffles,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] :
( pp(member(list(A),nil(A),shuffles(A,Xs,Ys)))
<=> ( ( Xs = nil(A) )
& ( Ys = nil(A) ) ) ) ).
% Nil_in_shuffles
tff(fact_6148_map__of__eq__empty__iff,axiom,
! [B: $tType,A: $tType,Xys: list(product_prod(A,B))] :
( ! [X4: A] : ( aa(A,option(B),map_of(A,B,Xys),X4) = none(B) )
<=> ( Xys = nil(product_prod(A,B)) ) ) ).
% map_of_eq_empty_iff
tff(fact_6149_enumerate__simps_I1_J,axiom,
! [A: $tType,N: nat] : ( enumerate(A,N,nil(A)) = nil(product_prod(nat,A)) ) ).
% enumerate_simps(1)
tff(fact_6150_rotate1__is__Nil__conv,axiom,
! [A: $tType,Xs: list(A)] :
( ( rotate1(A,Xs) = nil(A) )
<=> ( Xs = nil(A) ) ) ).
% rotate1_is_Nil_conv
tff(fact_6151_empty__eq__map__of__iff,axiom,
! [B: $tType,A: $tType,Xys: list(product_prod(A,B))] :
( ( aTP_Lamp_ol(A,option(B)) = map_of(A,B,Xys) )
<=> ( Xys = nil(product_prod(A,B)) ) ) ).
% empty_eq_map_of_iff
tff(fact_6152_set__empty,axiom,
! [A: $tType,Xs: list(A)] :
( ( aa(list(A),set(A),set2(A),Xs) = bot_bot(set(A)) )
<=> ( Xs = nil(A) ) ) ).
% set_empty
tff(fact_6153_set__empty2,axiom,
! [A: $tType,Xs: list(A)] :
( ( bot_bot(set(A)) = aa(list(A),set(A),set2(A),Xs) )
<=> ( Xs = nil(A) ) ) ).
% set_empty2
tff(fact_6154_length__0__conv,axiom,
! [A: $tType,Xs: list(A)] :
( ( aa(list(A),nat,size_size(list(A)),Xs) = zero_zero(nat) )
<=> ( Xs = nil(A) ) ) ).
% length_0_conv
tff(fact_6155_sum__list_ONil,axiom,
! [A: $tType] :
( monoid_add(A)
=> ( groups8242544230860333062m_list(A,nil(A)) = zero_zero(A) ) ) ).
% sum_list.Nil
tff(fact_6156_replicate__empty,axiom,
! [A: $tType,N: nat,X2: A] :
( ( replicate(A,N,X2) = nil(A) )
<=> ( N = zero_zero(nat) ) ) ).
% replicate_empty
tff(fact_6157_empty__replicate,axiom,
! [A: $tType,N: nat,X2: A] :
( ( nil(A) = replicate(A,N,X2) )
<=> ( N = zero_zero(nat) ) ) ).
% empty_replicate
tff(fact_6158_upt__eq__Nil__conv,axiom,
! [I: nat,J: nat] :
( ( upt(I,J) = nil(nat) )
<=> ( ( J = zero_zero(nat) )
| pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),J),I)) ) ) ).
% upt_eq_Nil_conv
tff(fact_6159_sorted__list__of__set_Osorted__key__list__of__set__empty,axiom,
! [A: $tType] :
( linorder(A)
=> ( aa(set(A),list(A),linord4507533701916653071of_set(A),bot_bot(set(A))) = nil(A) ) ) ).
% sorted_list_of_set.sorted_key_list_of_set_empty
tff(fact_6160_sorted__list__of__set_Ofold__insort__key_Oinfinite,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A)] :
( ~ finite_finite(A,A3)
=> ( aa(set(A),list(A),linord4507533701916653071of_set(A),A3) = nil(A) ) ) ) ).
% sorted_list_of_set.fold_insort_key.infinite
tff(fact_6161_horner__sum__simps_I1_J,axiom,
! [B: $tType,A: $tType] :
( comm_semiring_0(A)
=> ! [F2: fun(B,A),A2: A] : ( groups4207007520872428315er_sum(B,A,F2,A2,nil(B)) = zero_zero(A) ) ) ).
% horner_sum_simps(1)
tff(fact_6162_Nil__eq__concat__conv,axiom,
! [A: $tType,Xss: list(list(A))] :
( ( nil(A) = concat(A,Xss) )
<=> ! [X4: list(A)] :
( pp(member(list(A),X4,aa(list(list(A)),set(list(A)),set2(list(A)),Xss)))
=> ( X4 = nil(A) ) ) ) ).
% Nil_eq_concat_conv
tff(fact_6163_concat__eq__Nil__conv,axiom,
! [A: $tType,Xss: list(list(A))] :
( ( concat(A,Xss) = nil(A) )
<=> ! [X4: list(A)] :
( pp(member(list(A),X4,aa(list(list(A)),set(list(A)),set2(list(A)),Xss)))
=> ( X4 = nil(A) ) ) ) ).
% concat_eq_Nil_conv
tff(fact_6164_length__greater__0__conv,axiom,
! [A: $tType,Xs: list(A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(list(A),nat,size_size(list(A)),Xs)))
<=> ( Xs != nil(A) ) ) ).
% length_greater_0_conv
tff(fact_6165_sorted__list__of__set_Osorted__key__list__of__set__eq__Nil__iff,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A)] :
( finite_finite(A,A3)
=> ( ( aa(set(A),list(A),linord4507533701916653071of_set(A),A3) = nil(A) )
<=> ( A3 = bot_bot(set(A)) ) ) ) ) ).
% sorted_list_of_set.sorted_key_list_of_set_eq_Nil_iff
tff(fact_6166_removeAll_Osimps_I1_J,axiom,
! [A: $tType,X2: A] : ( aa(list(A),list(A),removeAll(A,X2),nil(A)) = nil(A) ) ).
% removeAll.simps(1)
tff(fact_6167_list_Osimps_I8_J,axiom,
! [A: $tType,B: $tType,F2: fun(A,B)] : ( aa(list(A),list(B),map(A,B,F2),nil(A)) = nil(B) ) ).
% list.simps(8)
tff(fact_6168_shuffles_Osimps_I1_J,axiom,
! [A: $tType,Ys: list(A)] : ( shuffles(A,nil(A),Ys) = aa(set(list(A)),set(list(A)),insert(list(A),Ys),bot_bot(set(list(A)))) ) ).
% shuffles.simps(1)
tff(fact_6169_shuffles_Osimps_I2_J,axiom,
! [A: $tType,Xs: list(A)] : ( shuffles(A,Xs,nil(A)) = aa(set(list(A)),set(list(A)),insert(list(A),Xs),bot_bot(set(list(A)))) ) ).
% shuffles.simps(2)
tff(fact_6170_empty__set,axiom,
! [A: $tType] : ( bot_bot(set(A)) = aa(list(A),set(A),set2(A),nil(A)) ) ).
% empty_set
tff(fact_6171_sorted0,axiom,
! [A: $tType] :
( linorder(A)
=> sorted_wrt(A,ord_less_eq(A),nil(A)) ) ).
% sorted0
tff(fact_6172_strict__sorted__simps_I1_J,axiom,
! [A: $tType] :
( linorder(A)
=> sorted_wrt(A,ord_less(A),nil(A)) ) ).
% strict_sorted_simps(1)
tff(fact_6173_list_Osize_I3_J,axiom,
! [A: $tType] : ( aa(list(A),nat,size_size(list(A)),nil(A)) = zero_zero(nat) ) ).
% list.size(3)
tff(fact_6174_distinct_Osimps_I1_J,axiom,
! [A: $tType] : distinct(A,nil(A)) ).
% distinct.simps(1)
tff(fact_6175_remove1_Osimps_I1_J,axiom,
! [A: $tType,X2: A] : ( remove1(A,X2,nil(A)) = nil(A) ) ).
% remove1.simps(1)
tff(fact_6176_product_Osimps_I1_J,axiom,
! [B: $tType,A: $tType,Uu2: list(B)] : ( product(A,B,nil(A),Uu2) = nil(product_prod(A,B)) ) ).
% product.simps(1)
tff(fact_6177_abstract__boolean__algebra_Ocompl__one,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A] :
( boolea2506097494486148201lgebra(A,Conj,Disj,Compl,Zero,One)
=> ( aa(A,A,Compl,One) = Zero ) ) ).
% abstract_boolean_algebra.compl_one
tff(fact_6178_abstract__boolean__algebra_Ocompl__zero,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A] :
( boolea2506097494486148201lgebra(A,Conj,Disj,Compl,Zero,One)
=> ( aa(A,A,Compl,Zero) = One ) ) ).
% abstract_boolean_algebra.compl_zero
tff(fact_6179_abstract__boolean__algebra_Ocompl__unique,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,X2: A,Y: A] :
( boolea2506097494486148201lgebra(A,Conj,Disj,Compl,Zero,One)
=> ( ( aa(A,A,aa(A,fun(A,A),Conj,X2),Y) = Zero )
=> ( ( aa(A,A,aa(A,fun(A,A),Disj,X2),Y) = One )
=> ( aa(A,A,Compl,X2) = Y ) ) ) ) ).
% abstract_boolean_algebra.compl_unique
tff(fact_6180_abstract__boolean__algebra_Odouble__compl,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,X2: A] :
( boolea2506097494486148201lgebra(A,Conj,Disj,Compl,Zero,One)
=> ( aa(A,A,Compl,aa(A,A,Compl,X2)) = X2 ) ) ).
% abstract_boolean_algebra.double_compl
tff(fact_6181_abstract__boolean__algebra_Odisj__one__left,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,X2: A] :
( boolea2506097494486148201lgebra(A,Conj,Disj,Compl,Zero,One)
=> ( aa(A,A,aa(A,fun(A,A),Disj,One),X2) = One ) ) ).
% abstract_boolean_algebra.disj_one_left
tff(fact_6182_abstract__boolean__algebra_Oconj__one__right,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,X2: A] :
( boolea2506097494486148201lgebra(A,Conj,Disj,Compl,Zero,One)
=> ( aa(A,A,aa(A,fun(A,A),Conj,X2),One) = X2 ) ) ).
% abstract_boolean_algebra.conj_one_right
tff(fact_6183_abstract__boolean__algebra_Oconj__zero__left,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,X2: A] :
( boolea2506097494486148201lgebra(A,Conj,Disj,Compl,Zero,One)
=> ( aa(A,A,aa(A,fun(A,A),Conj,Zero),X2) = Zero ) ) ).
% abstract_boolean_algebra.conj_zero_left
tff(fact_6184_abstract__boolean__algebra_Ode__Morgan__conj,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,X2: A,Y: A] :
( boolea2506097494486148201lgebra(A,Conj,Disj,Compl,Zero,One)
=> ( aa(A,A,Compl,aa(A,A,aa(A,fun(A,A),Conj,X2),Y)) = aa(A,A,aa(A,fun(A,A),Disj,aa(A,A,Compl,X2)),aa(A,A,Compl,Y)) ) ) ).
% abstract_boolean_algebra.de_Morgan_conj
tff(fact_6185_abstract__boolean__algebra_Ode__Morgan__disj,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,X2: A,Y: A] :
( boolea2506097494486148201lgebra(A,Conj,Disj,Compl,Zero,One)
=> ( aa(A,A,Compl,aa(A,A,aa(A,fun(A,A),Disj,X2),Y)) = aa(A,A,aa(A,fun(A,A),Conj,aa(A,A,Compl,X2)),aa(A,A,Compl,Y)) ) ) ).
% abstract_boolean_algebra.de_Morgan_disj
tff(fact_6186_abstract__boolean__algebra_Odisj__one__right,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,X2: A] :
( boolea2506097494486148201lgebra(A,Conj,Disj,Compl,Zero,One)
=> ( aa(A,A,aa(A,fun(A,A),Disj,X2),One) = One ) ) ).
% abstract_boolean_algebra.disj_one_right
tff(fact_6187_abstract__boolean__algebra_Oconj__zero__right,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,X2: A] :
( boolea2506097494486148201lgebra(A,Conj,Disj,Compl,Zero,One)
=> ( aa(A,A,aa(A,fun(A,A),Conj,X2),Zero) = Zero ) ) ).
% abstract_boolean_algebra.conj_zero_right
tff(fact_6188_abstract__boolean__algebra_Odisj__zero__right,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,X2: A] :
( boolea2506097494486148201lgebra(A,Conj,Disj,Compl,Zero,One)
=> ( aa(A,A,aa(A,fun(A,A),Disj,X2),Zero) = X2 ) ) ).
% abstract_boolean_algebra.disj_zero_right
tff(fact_6189_abstract__boolean__algebra_Oconj__cancel__left,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,X2: A] :
( boolea2506097494486148201lgebra(A,Conj,Disj,Compl,Zero,One)
=> ( aa(A,A,aa(A,fun(A,A),Conj,aa(A,A,Compl,X2)),X2) = Zero ) ) ).
% abstract_boolean_algebra.conj_cancel_left
tff(fact_6190_abstract__boolean__algebra_Odisj__cancel__left,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,X2: A] :
( boolea2506097494486148201lgebra(A,Conj,Disj,Compl,Zero,One)
=> ( aa(A,A,aa(A,fun(A,A),Disj,aa(A,A,Compl,X2)),X2) = One ) ) ).
% abstract_boolean_algebra.disj_cancel_left
tff(fact_6191_abstract__boolean__algebra_Ocomplement__unique,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,A2: A,X2: A,Y: A] :
( boolea2506097494486148201lgebra(A,Conj,Disj,Compl,Zero,One)
=> ( ( aa(A,A,aa(A,fun(A,A),Conj,A2),X2) = Zero )
=> ( ( aa(A,A,aa(A,fun(A,A),Disj,A2),X2) = One )
=> ( ( aa(A,A,aa(A,fun(A,A),Conj,A2),Y) = Zero )
=> ( ( aa(A,A,aa(A,fun(A,A),Disj,A2),Y) = One )
=> ( X2 = Y ) ) ) ) ) ) ).
% abstract_boolean_algebra.complement_unique
tff(fact_6192_abstract__boolean__algebra_Oconj__cancel__right,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,X2: A] :
( boolea2506097494486148201lgebra(A,Conj,Disj,Compl,Zero,One)
=> ( aa(A,A,aa(A,fun(A,A),Conj,X2),aa(A,A,Compl,X2)) = Zero ) ) ).
% abstract_boolean_algebra.conj_cancel_right
tff(fact_6193_abstract__boolean__algebra_Oconj__disj__distrib,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,X2: A,Y: A,Z: A] :
( boolea2506097494486148201lgebra(A,Conj,Disj,Compl,Zero,One)
=> ( aa(A,A,aa(A,fun(A,A),Conj,X2),aa(A,A,aa(A,fun(A,A),Disj,Y),Z)) = aa(A,A,aa(A,fun(A,A),Disj,aa(A,A,aa(A,fun(A,A),Conj,X2),Y)),aa(A,A,aa(A,fun(A,A),Conj,X2),Z)) ) ) ).
% abstract_boolean_algebra.conj_disj_distrib
tff(fact_6194_abstract__boolean__algebra_Odisj__cancel__right,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,X2: A] :
( boolea2506097494486148201lgebra(A,Conj,Disj,Compl,Zero,One)
=> ( aa(A,A,aa(A,fun(A,A),Disj,X2),aa(A,A,Compl,X2)) = One ) ) ).
% abstract_boolean_algebra.disj_cancel_right
tff(fact_6195_abstract__boolean__algebra_Odisj__conj__distrib,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,X2: A,Y: A,Z: A] :
( boolea2506097494486148201lgebra(A,Conj,Disj,Compl,Zero,One)
=> ( aa(A,A,aa(A,fun(A,A),Disj,X2),aa(A,A,aa(A,fun(A,A),Conj,Y),Z)) = aa(A,A,aa(A,fun(A,A),Conj,aa(A,A,aa(A,fun(A,A),Disj,X2),Y)),aa(A,A,aa(A,fun(A,A),Disj,X2),Z)) ) ) ).
% abstract_boolean_algebra.disj_conj_distrib
tff(fact_6196_abstract__boolean__algebra_Ocompl__eq__compl__iff,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,X2: A,Y: A] :
( boolea2506097494486148201lgebra(A,Conj,Disj,Compl,Zero,One)
=> ( ( aa(A,A,Compl,X2) = aa(A,A,Compl,Y) )
<=> ( X2 = Y ) ) ) ).
% abstract_boolean_algebra.compl_eq_compl_iff
tff(fact_6197_abstract__boolean__algebra_Oconj__disj__distrib2,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,Y: A,Z: A,X2: A] :
( boolea2506097494486148201lgebra(A,Conj,Disj,Compl,Zero,One)
=> ( aa(A,A,aa(A,fun(A,A),Conj,aa(A,A,aa(A,fun(A,A),Disj,Y),Z)),X2) = aa(A,A,aa(A,fun(A,A),Disj,aa(A,A,aa(A,fun(A,A),Conj,Y),X2)),aa(A,A,aa(A,fun(A,A),Conj,Z),X2)) ) ) ).
% abstract_boolean_algebra.conj_disj_distrib2
tff(fact_6198_abstract__boolean__algebra_Odisj__conj__distrib2,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,Y: A,Z: A,X2: A] :
( boolea2506097494486148201lgebra(A,Conj,Disj,Compl,Zero,One)
=> ( aa(A,A,aa(A,fun(A,A),Disj,aa(A,A,aa(A,fun(A,A),Conj,Y),Z)),X2) = aa(A,A,aa(A,fun(A,A),Conj,aa(A,A,aa(A,fun(A,A),Disj,Y),X2)),aa(A,A,aa(A,fun(A,A),Disj,Z),X2)) ) ) ).
% abstract_boolean_algebra.disj_conj_distrib2
tff(fact_6199_concat_Osimps_I1_J,axiom,
! [A: $tType] : ( concat(A,nil(list(A))) = nil(A) ) ).
% concat.simps(1)
tff(fact_6200_abstract__boolean__algebra__sym__diff_Oaxioms_I1_J,axiom,
! [A: $tType,Conj: fun(A,fun(A,A)),Disj: fun(A,fun(A,A)),Compl: fun(A,A),Zero: A,One: A,Xor: fun(A,fun(A,A))] :
( boolea3799213064322606851m_diff(A,Conj,Disj,Compl,Zero,One,Xor)
=> boolea2506097494486148201lgebra(A,Conj,Disj,Compl,Zero,One) ) ).
% abstract_boolean_algebra_sym_diff.axioms(1)
tff(fact_6201_sorted__wrt_Osimps_I1_J,axiom,
! [A: $tType,P: fun(A,fun(A,bool))] : sorted_wrt(A,P,nil(A)) ).
% sorted_wrt.simps(1)
tff(fact_6202_list__update_Osimps_I1_J,axiom,
! [A: $tType,I: nat,V: A] : ( list_update(A,nil(A),I,V) = nil(A) ) ).
% list_update.simps(1)
tff(fact_6203_list__update__code_I1_J,axiom,
! [A: $tType,I: nat,Y: A] : ( list_update(A,nil(A),I,Y) = nil(A) ) ).
% list_update_code(1)
tff(fact_6204_rotate1_Osimps_I1_J,axiom,
! [A: $tType] : ( rotate1(A,nil(A)) = nil(A) ) ).
% rotate1.simps(1)
tff(fact_6205_insort__not__Nil,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [F2: fun(B,A),A2: B,Xs: list(B)] : ( aa(list(B),list(B),linorder_insort_key(B,A,F2,A2),Xs) != nil(B) ) ) ).
% insort_not_Nil
tff(fact_6206_Nil__in__shufflesI,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] :
( ( Xs = nil(A) )
=> ( ( Ys = nil(A) )
=> pp(member(list(A),nil(A),shuffles(A,Xs,Ys))) ) ) ).
% Nil_in_shufflesI
tff(fact_6207_upt__0,axiom,
! [I: nat] : ( upt(I,zero_zero(nat)) = nil(nat) ) ).
% upt_0
tff(fact_6208_replicate__0,axiom,
! [A: $tType,X2: A] : ( replicate(A,zero_zero(nat),X2) = nil(A) ) ).
% replicate_0
tff(fact_6209_map__of_Osimps_I1_J,axiom,
! [A: $tType,B: $tType,X: A] : ( aa(A,option(B),map_of(A,B,nil(product_prod(A,B))),X) = none(B) ) ).
% map_of.simps(1)
tff(fact_6210_map__of__Cons__code_I1_J,axiom,
! [B: $tType,A: $tType,K: B] : ( aa(B,option(A),map_of(B,A,nil(product_prod(B,A))),K) = none(A) ) ).
% map_of_Cons_code(1)
tff(fact_6211_list_Osize__gen_I1_J,axiom,
! [A: $tType,X2: fun(A,nat)] : ( aa(list(A),nat,size_list(A,X2),nil(A)) = zero_zero(nat) ) ).
% list.size_gen(1)
tff(fact_6212_count__list_Osimps_I1_J,axiom,
! [A: $tType,Y: A] : ( aa(A,nat,count_list(A,nil(A)),Y) = zero_zero(nat) ) ).
% count_list.simps(1)
tff(fact_6213_folding__insort__key_Osorted__key__list__of__set__empty,axiom,
! [A: $tType,B: $tType,Less_eq: fun(A,fun(A,bool)),Less: fun(A,fun(A,bool)),S: set(B),F2: fun(B,A)] :
( folding_insort_key(A,B,Less_eq,Less,S,F2)
=> ( aa(set(B),list(B),aa(fun(B,A),fun(set(B),list(B)),sorted8670434370408473282of_set(A,B,Less_eq),F2),bot_bot(set(B))) = nil(B) ) ) ).
% folding_insort_key.sorted_key_list_of_set_empty
tff(fact_6214_sum__list__strict__mono,axiom,
! [B: $tType,A: $tType] :
( ( monoid_add(B)
& strict9044650504122735259up_add(B) )
=> ! [Xs: list(A),F2: fun(A,B),G: fun(A,B)] :
( ( Xs != nil(A) )
=> ( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),Xs)))
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),aa(A,B,F2,X3)),aa(A,B,G,X3))) )
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),groups8242544230860333062m_list(B,aa(list(A),list(B),map(A,B,F2),Xs))),groups8242544230860333062m_list(B,aa(list(A),list(B),map(A,B,G),Xs)))) ) ) ) ).
% sum_list_strict_mono
tff(fact_6215_Pow__set_I1_J,axiom,
! [A: $tType] : ( pow2(A,aa(list(A),set(A),set2(A),nil(A))) = aa(set(set(A)),set(set(A)),insert(set(A),bot_bot(set(A))),bot_bot(set(set(A)))) ) ).
% Pow_set(1)
tff(fact_6216_folding__insort__key_Osorted__key__list__of__set__eq__Nil__iff,axiom,
! [A: $tType,B: $tType,Less_eq: fun(A,fun(A,bool)),Less: fun(A,fun(A,bool)),S: set(B),F2: fun(B,A),A3: set(B)] :
( folding_insort_key(A,B,Less_eq,Less,S,F2)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),A3),S))
=> ( finite_finite(B,A3)
=> ( ( aa(set(B),list(B),aa(fun(B,A),fun(set(B),list(B)),sorted8670434370408473282of_set(A,B,Less_eq),F2),A3) = nil(B) )
<=> ( A3 = bot_bot(set(B)) ) ) ) ) ) ).
% folding_insort_key.sorted_key_list_of_set_eq_Nil_iff
tff(fact_6217_transpose__rectangle,axiom,
! [A: $tType,Xs: list(list(A)),N: nat] :
( ( ( Xs = nil(list(A)) )
=> ( N = zero_zero(nat) ) )
=> ( ! [I3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I3),aa(list(list(A)),nat,size_size(list(list(A))),Xs)))
=> ( aa(list(A),nat,size_size(list(A)),aa(nat,list(A),nth(list(A),Xs),I3)) = N ) )
=> ( transpose(A,Xs) = aa(list(nat),list(list(A)),map(nat,list(A),aTP_Lamp_on(list(list(A)),fun(nat,list(A)),Xs)),upt(zero_zero(nat),N)) ) ) ) ).
% transpose_rectangle
tff(fact_6218_arg__min__if__finite_I2_J,axiom,
! [B: $tType,A: $tType] :
( order(B)
=> ! [S: set(A),F2: fun(A,B)] :
( finite_finite(A,S)
=> ( ( S != bot_bot(set(A)) )
=> ~ ? [X: A] :
( pp(member(A,X,S))
& pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),aa(A,B,F2,X)),aa(A,B,F2,lattic7623131987881927897min_on(A,B,F2,S)))) ) ) ) ) ).
% arg_min_if_finite(2)
tff(fact_6219_transpose_Osimps_I1_J,axiom,
! [A: $tType] : ( transpose(A,nil(list(A))) = nil(list(A)) ) ).
% transpose.simps(1)
tff(fact_6220_transpose__empty,axiom,
! [A: $tType,Xs: list(list(A))] :
( ( transpose(A,Xs) = nil(list(A)) )
<=> ! [X4: list(A)] :
( pp(member(list(A),X4,aa(list(list(A)),set(list(A)),set2(list(A)),Xs)))
=> ( X4 = nil(A) ) ) ) ).
% transpose_empty
tff(fact_6221_transpose__map__map,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),Xs: list(list(B))] : ( transpose(A,aa(list(list(B)),list(list(A)),map(list(B),list(A),map(B,A,F2)),Xs)) = aa(list(list(B)),list(list(A)),map(list(B),list(A),map(B,A,F2)),transpose(B,Xs)) ) ).
% transpose_map_map
tff(fact_6222_arg__min__if__finite_I1_J,axiom,
! [B: $tType,A: $tType] :
( order(B)
=> ! [S: set(A),F2: fun(A,B)] :
( finite_finite(A,S)
=> ( ( S != bot_bot(set(A)) )
=> pp(member(A,lattic7623131987881927897min_on(A,B,F2,S),S)) ) ) ) ).
% arg_min_if_finite(1)
tff(fact_6223_length__transpose,axiom,
! [A: $tType,Xs: list(list(A))] : ( aa(list(list(A)),nat,size_size(list(list(A))),transpose(A,Xs)) = aa(nat,nat,foldr(list(A),nat,aTP_Lamp_oo(list(A),fun(nat,nat)),Xs),zero_zero(nat)) ) ).
% length_transpose
tff(fact_6224_arg__min__least,axiom,
! [B: $tType,A: $tType] :
( linorder(B)
=> ! [S: set(A),Y: A,F2: fun(A,B)] :
( finite_finite(A,S)
=> ( ( S != bot_bot(set(A)) )
=> ( pp(member(A,Y,S))
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),aa(A,B,F2,lattic7623131987881927897min_on(A,B,F2,S))),aa(A,B,F2,Y))) ) ) ) ) ).
% arg_min_least
tff(fact_6225_length__transpose__sorted,axiom,
! [A: $tType,Xs: list(list(A))] :
( sorted_wrt(nat,ord_less_eq(nat),aa(list(nat),list(nat),rev(nat),aa(list(list(A)),list(nat),map(list(A),nat,size_size(list(A))),Xs)))
=> ( ( ( Xs = nil(list(A)) )
=> ( aa(list(list(A)),nat,size_size(list(list(A))),transpose(A,Xs)) = zero_zero(nat) ) )
& ( ( Xs != nil(list(A)) )
=> ( aa(list(list(A)),nat,size_size(list(list(A))),transpose(A,Xs)) = aa(list(A),nat,size_size(list(A)),aa(nat,list(A),nth(list(A),Xs),zero_zero(nat))) ) ) ) ) ).
% length_transpose_sorted
tff(fact_6226_listset_Osimps_I1_J,axiom,
! [A: $tType] : ( listset(A,nil(set(A))) = aa(set(list(A)),set(list(A)),insert(list(A),nil(A)),bot_bot(set(list(A)))) ) ).
% listset.simps(1)
tff(fact_6227_rev__rev__ident,axiom,
! [A: $tType,Xs: list(A)] : ( aa(list(A),list(A),rev(A),aa(list(A),list(A),rev(A),Xs)) = Xs ) ).
% rev_rev_ident
tff(fact_6228_rev__is__rev__conv,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] :
( ( aa(list(A),list(A),rev(A),Xs) = aa(list(A),list(A),rev(A),Ys) )
<=> ( Xs = Ys ) ) ).
% rev_is_rev_conv
tff(fact_6229_Nil__is__rev__conv,axiom,
! [A: $tType,Xs: list(A)] :
( ( nil(A) = aa(list(A),list(A),rev(A),Xs) )
<=> ( Xs = nil(A) ) ) ).
% Nil_is_rev_conv
tff(fact_6230_rev__is__Nil__conv,axiom,
! [A: $tType,Xs: list(A)] :
( ( aa(list(A),list(A),rev(A),Xs) = nil(A) )
<=> ( Xs = nil(A) ) ) ).
% rev_is_Nil_conv
tff(fact_6231_set__rev,axiom,
! [A: $tType,Xs: list(A)] : ( aa(list(A),set(A),set2(A),aa(list(A),list(A),rev(A),Xs)) = aa(list(A),set(A),set2(A),Xs) ) ).
% set_rev
tff(fact_6232_length__rev,axiom,
! [A: $tType,Xs: list(A)] : ( aa(list(A),nat,size_size(list(A)),aa(list(A),list(A),rev(A),Xs)) = aa(list(A),nat,size_size(list(A)),Xs) ) ).
% length_rev
tff(fact_6233_distinct__rev,axiom,
! [A: $tType,Xs: list(A)] :
( distinct(A,aa(list(A),list(A),rev(A),Xs))
<=> distinct(A,Xs) ) ).
% distinct_rev
tff(fact_6234_rev__replicate,axiom,
! [A: $tType,N: nat,X2: A] : ( aa(list(A),list(A),rev(A),replicate(A,N,X2)) = replicate(A,N,X2) ) ).
% rev_replicate
tff(fact_6235_rev_Osimps_I1_J,axiom,
! [A: $tType] : ( aa(list(A),list(A),rev(A),nil(A)) = nil(A) ) ).
% rev.simps(1)
tff(fact_6236_rev__concat,axiom,
! [A: $tType,Xs: list(list(A))] : ( aa(list(A),list(A),rev(A),concat(A,Xs)) = concat(A,aa(list(list(A)),list(list(A)),map(list(A),list(A),rev(A)),aa(list(list(A)),list(list(A)),rev(list(A)),Xs))) ) ).
% rev_concat
tff(fact_6237_rev__map,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),Xs: list(B)] : ( aa(list(A),list(A),rev(A),aa(list(B),list(A),map(B,A,F2),Xs)) = aa(list(B),list(A),map(B,A,F2),aa(list(B),list(B),rev(B),Xs)) ) ).
% rev_map
tff(fact_6238_rev__swap,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] :
( ( aa(list(A),list(A),rev(A),Xs) = Ys )
<=> ( Xs = aa(list(A),list(A),rev(A),Ys) ) ) ).
% rev_swap
tff(fact_6239_sorted__wrt__rev,axiom,
! [A: $tType,P: fun(A,fun(A,bool)),Xs: list(A)] :
( sorted_wrt(A,P,aa(list(A),list(A),rev(A),Xs))
<=> sorted_wrt(A,aTP_Lamp_op(fun(A,fun(A,bool)),fun(A,fun(A,bool)),P),Xs) ) ).
% sorted_wrt_rev
tff(fact_6240_rev__nth,axiom,
! [A: $tType,N: nat,Xs: list(A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( aa(nat,A,nth(A,aa(list(A),list(A),rev(A),Xs)),N) = aa(nat,A,nth(A,Xs),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(list(A),nat,size_size(list(A)),Xs)),aa(nat,nat,suc,N))) ) ) ).
% rev_nth
tff(fact_6241_rev__update,axiom,
! [A: $tType,K: nat,Xs: list(A),Y: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),K),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( aa(list(A),list(A),rev(A),list_update(A,Xs,K,Y)) = list_update(A,aa(list(A),list(A),rev(A),Xs),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(list(A),nat,size_size(list(A)),Xs)),K)),one_one(nat)),Y) ) ) ).
% rev_update
tff(fact_6242_sorted__transpose,axiom,
! [A: $tType,Xs: list(list(A))] : sorted_wrt(nat,ord_less_eq(nat),aa(list(nat),list(nat),rev(nat),aa(list(list(A)),list(nat),map(list(A),nat,size_size(list(A))),transpose(A,Xs)))) ).
% sorted_transpose
tff(fact_6243_sorted__rev__iff__nth__Suc,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Xs: list(A)] :
( sorted_wrt(A,ord_less_eq(A),aa(list(A),list(A),rev(A),Xs))
<=> ! [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,I4)),aa(list(A),nat,size_size(list(A)),Xs)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,nth(A,Xs),aa(nat,nat,suc,I4))),aa(nat,A,nth(A,Xs),I4))) ) ) ) ).
% sorted_rev_iff_nth_Suc
tff(fact_6244_sorted__rev__nth__mono,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Xs: list(A),I: nat,J: nat] :
( sorted_wrt(A,ord_less_eq(A),aa(list(A),list(A),rev(A),Xs))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),J))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J),aa(list(A),nat,size_size(list(A)),Xs)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,nth(A,Xs),J)),aa(nat,A,nth(A,Xs),I))) ) ) ) ) ).
% sorted_rev_nth_mono
tff(fact_6245_sorted__rev__iff__nth__mono,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Xs: list(A)] :
( sorted_wrt(A,ord_less_eq(A),aa(list(A),list(A),rev(A),Xs))
<=> ! [I4: nat,J3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I4),J3))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J3),aa(list(A),nat,size_size(list(A)),Xs)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,nth(A,Xs),J3)),aa(nat,A,nth(A,Xs),I4))) ) ) ) ) ).
% sorted_rev_iff_nth_mono
tff(fact_6246_foldr__max__sorted,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Xs: list(A),Y: A] :
( sorted_wrt(A,ord_less_eq(A),aa(list(A),list(A),rev(A),Xs))
=> ( ( ( Xs = nil(A) )
=> ( aa(A,A,foldr(A,A,ord_max(A),Xs),Y) = Y ) )
& ( ( Xs != nil(A) )
=> ( aa(A,A,foldr(A,A,ord_max(A),Xs),Y) = aa(A,A,aa(A,fun(A,A),ord_max(A),aa(nat,A,nth(A,Xs),zero_zero(nat))),Y) ) ) ) ) ) ).
% foldr_max_sorted
tff(fact_6247_nth__nth__transpose__sorted,axiom,
! [A: $tType,Xs: list(list(A)),I: nat,J: nat] :
( sorted_wrt(nat,ord_less_eq(nat),aa(list(nat),list(nat),rev(nat),aa(list(list(A)),list(nat),map(list(A),nat,size_size(list(A))),Xs)))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),aa(list(list(A)),nat,size_size(list(list(A))),transpose(A,Xs))))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J),aa(list(list(A)),nat,size_size(list(list(A))),aa(list(list(A)),list(list(A)),filter2(list(A),aTP_Lamp_oq(nat,fun(list(A),bool),I)),Xs))))
=> ( aa(nat,A,nth(A,aa(nat,list(A),nth(list(A),transpose(A,Xs)),I)),J) = aa(nat,A,nth(A,aa(nat,list(A),nth(list(A),Xs),J)),I) ) ) ) ) ).
% nth_nth_transpose_sorted
tff(fact_6248_transpose__column,axiom,
! [A: $tType,Xs: list(list(A)),I: nat] :
( sorted_wrt(nat,ord_less_eq(nat),aa(list(nat),list(nat),rev(nat),aa(list(list(A)),list(nat),map(list(A),nat,size_size(list(A))),Xs)))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),aa(list(list(A)),nat,size_size(list(list(A))),Xs)))
=> ( aa(list(list(A)),list(A),map(list(A),A,aTP_Lamp_or(nat,fun(list(A),A),I)),aa(list(list(A)),list(list(A)),filter2(list(A),aTP_Lamp_oq(nat,fun(list(A),bool),I)),transpose(A,Xs))) = aa(nat,list(A),nth(list(A),Xs),I) ) ) ) ).
% transpose_column
tff(fact_6249_filter__filter,axiom,
! [A: $tType,P: fun(A,bool),Q: fun(A,bool),Xs: list(A)] : ( aa(list(A),list(A),filter2(A,P),aa(list(A),list(A),filter2(A,Q),Xs)) = aa(list(A),list(A),filter2(A,aa(fun(A,bool),fun(A,bool),aTP_Lamp_os(fun(A,bool),fun(fun(A,bool),fun(A,bool)),P),Q)),Xs) ) ).
% filter_filter
tff(fact_6250_filter__True,axiom,
! [A: $tType,Xs: list(A),P: fun(A,bool)] :
( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),Xs)))
=> pp(aa(A,bool,P,X3)) )
=> ( aa(list(A),list(A),filter2(A,P),Xs) = Xs ) ) ).
% filter_True
tff(fact_6251_remove1__filter__not,axiom,
! [A: $tType,P: fun(A,bool),X2: A,Xs: list(A)] :
( ~ pp(aa(A,bool,P,X2))
=> ( remove1(A,X2,aa(list(A),list(A),filter2(A,P),Xs)) = aa(list(A),list(A),filter2(A,P),Xs) ) ) ).
% remove1_filter_not
tff(fact_6252_removeAll__filter__not,axiom,
! [A: $tType,P: fun(A,bool),X2: A,Xs: list(A)] :
( ~ pp(aa(A,bool,P,X2))
=> ( aa(list(A),list(A),removeAll(A,X2),aa(list(A),list(A),filter2(A,P),Xs)) = aa(list(A),list(A),filter2(A,P),Xs) ) ) ).
% removeAll_filter_not
tff(fact_6253_set__filter,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] : ( aa(list(A),set(A),set2(A),aa(list(A),list(A),filter2(A,P),Xs)) = aa(fun(A,bool),set(A),collect(A),aa(list(A),fun(A,bool),aTP_Lamp_ot(fun(A,bool),fun(list(A),fun(A,bool)),P),Xs)) ) ).
% set_filter
tff(fact_6254_filter__False,axiom,
! [A: $tType,Xs: list(A),P: fun(A,bool)] :
( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),Xs)))
=> ~ pp(aa(A,bool,P,X3)) )
=> ( aa(list(A),list(A),filter2(A,P),Xs) = nil(A) ) ) ).
% filter_False
tff(fact_6255_length__concat__rev,axiom,
! [A: $tType,Xs: list(list(A))] : ( aa(list(A),nat,size_size(list(A)),concat(A,aa(list(list(A)),list(list(A)),rev(list(A)),Xs))) = aa(list(A),nat,size_size(list(A)),concat(A,Xs)) ) ).
% length_concat_rev
tff(fact_6256_length__filter__map,axiom,
! [A: $tType,B: $tType,P: fun(A,bool),F2: fun(B,A),Xs: list(B)] : ( aa(list(A),nat,size_size(list(A)),aa(list(A),list(A),filter2(A,P),aa(list(B),list(A),map(B,A,F2),Xs))) = aa(list(B),nat,size_size(list(B)),aa(list(B),list(B),filter2(B,aa(fun(B,A),fun(B,bool),comp(A,bool,B,P),F2)),Xs)) ) ).
% length_filter_map
tff(fact_6257_filter__replicate,axiom,
! [A: $tType,P: fun(A,bool),X2: A,N: nat] :
( ( pp(aa(A,bool,P,X2))
=> ( aa(list(A),list(A),filter2(A,P),replicate(A,N,X2)) = replicate(A,N,X2) ) )
& ( ~ pp(aa(A,bool,P,X2))
=> ( aa(list(A),list(A),filter2(A,P),replicate(A,N,X2)) = nil(A) ) ) ) ).
% filter_replicate
tff(fact_6258_filter_Osimps_I1_J,axiom,
! [A: $tType,P: fun(A,bool)] : ( aa(list(A),list(A),filter2(A,P),nil(A)) = nil(A) ) ).
% filter.simps(1)
tff(fact_6259_filter__empty__conv,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] :
( ( aa(list(A),list(A),filter2(A,P),Xs) = nil(A) )
<=> ! [X4: A] :
( pp(member(A,X4,aa(list(A),set(A),set2(A),Xs)))
=> ~ pp(aa(A,bool,P,X4)) ) ) ).
% filter_empty_conv
tff(fact_6260_empty__filter__conv,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] :
( ( nil(A) = aa(list(A),list(A),filter2(A,P),Xs) )
<=> ! [X4: A] :
( pp(member(A,X4,aa(list(A),set(A),set2(A),Xs)))
=> ~ pp(aa(A,bool,P,X4)) ) ) ).
% empty_filter_conv
tff(fact_6261_rev__filter,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] : ( aa(list(A),list(A),rev(A),aa(list(A),list(A),filter2(A,P),Xs)) = aa(list(A),list(A),filter2(A,P),aa(list(A),list(A),rev(A),Xs)) ) ).
% rev_filter
tff(fact_6262_removeAll__filter__not__eq,axiom,
! [A: $tType,X2: A] : ( removeAll(A,X2) = filter2(A,aTP_Lamp_ou(A,fun(A,bool),X2)) ) ).
% removeAll_filter_not_eq
tff(fact_6263_inter__set__filter,axiom,
! [A: $tType,A3: set(A),Xs: list(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),aa(list(A),set(A),set2(A),Xs)) = aa(list(A),set(A),set2(A),aa(list(A),list(A),filter2(A,aTP_Lamp_a(set(A),fun(A,bool),A3)),Xs)) ) ).
% inter_set_filter
tff(fact_6264_partition__in__shuffles,axiom,
! [A: $tType,Xs: list(A),P: fun(A,bool)] : pp(member(list(A),Xs,shuffles(A,aa(list(A),list(A),filter2(A,P),Xs),aa(list(A),list(A),filter2(A,aTP_Lamp_ov(fun(A,bool),fun(A,bool),P)),Xs)))) ).
% partition_in_shuffles
tff(fact_6265_filter__insort__triv,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [P: fun(B,bool),X2: B,F2: fun(B,A),Xs: list(B)] :
( ~ pp(aa(B,bool,P,X2))
=> ( aa(list(B),list(B),filter2(B,P),aa(list(B),list(B),linorder_insort_key(B,A,F2,X2),Xs)) = aa(list(B),list(B),filter2(B,P),Xs) ) ) ) ).
% filter_insort_triv
tff(fact_6266_sorted__same,axiom,
! [A: $tType] :
( linorder(A)
=> ! [G: fun(list(A),A),Xs: list(A)] : sorted_wrt(A,ord_less_eq(A),aa(list(A),list(A),filter2(A,aa(list(A),fun(A,bool),aTP_Lamp_ow(fun(list(A),A),fun(list(A),fun(A,bool)),G),Xs)),Xs)) ) ).
% sorted_same
tff(fact_6267_filter__is__subset,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(list(A),set(A),set2(A),aa(list(A),list(A),filter2(A,P),Xs))),aa(list(A),set(A),set2(A),Xs))) ).
% filter_is_subset
tff(fact_6268_filter__id__conv,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] :
( ( aa(list(A),list(A),filter2(A,P),Xs) = Xs )
<=> ! [X4: A] :
( pp(member(A,X4,aa(list(A),set(A),set2(A),Xs)))
=> pp(aa(A,bool,P,X4)) ) ) ).
% filter_id_conv
tff(fact_6269_filter__cong,axiom,
! [A: $tType,Xs: list(A),Ys: list(A),P: fun(A,bool),Q: fun(A,bool)] :
( ( Xs = Ys )
=> ( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),Ys)))
=> ( pp(aa(A,bool,P,X3))
<=> pp(aa(A,bool,Q,X3)) ) )
=> ( aa(list(A),list(A),filter2(A,P),Xs) = aa(list(A),list(A),filter2(A,Q),Ys) ) ) ) ).
% filter_cong
tff(fact_6270_sorted__wrt__filter,axiom,
! [A: $tType,F2: fun(A,fun(A,bool)),Xs: list(A),P: fun(A,bool)] :
( sorted_wrt(A,F2,Xs)
=> sorted_wrt(A,F2,aa(list(A),list(A),filter2(A,P),Xs)) ) ).
% sorted_wrt_filter
tff(fact_6271_filter__remove1,axiom,
! [A: $tType,Q: fun(A,bool),X2: A,Xs: list(A)] : ( aa(list(A),list(A),filter2(A,Q),remove1(A,X2,Xs)) = remove1(A,X2,aa(list(A),list(A),filter2(A,Q),Xs)) ) ).
% filter_remove1
tff(fact_6272_length__filter__le,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(list(A),nat,size_size(list(A)),aa(list(A),list(A),filter2(A,P),Xs))),aa(list(A),nat,size_size(list(A)),Xs))) ).
% length_filter_le
tff(fact_6273_distinct__filter,axiom,
! [A: $tType,Xs: list(A),P: fun(A,bool)] :
( distinct(A,Xs)
=> distinct(A,aa(list(A),list(A),filter2(A,P),Xs)) ) ).
% distinct_filter
tff(fact_6274_sum__length__filter__compl,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] : ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(list(A),nat,size_size(list(A)),aa(list(A),list(A),filter2(A,P),Xs))),aa(list(A),nat,size_size(list(A)),aa(list(A),list(A),filter2(A,aTP_Lamp_ov(fun(A,bool),fun(A,bool),P)),Xs))) = aa(list(A),nat,size_size(list(A)),Xs) ) ).
% sum_length_filter_compl
tff(fact_6275_filter__map,axiom,
! [A: $tType,B: $tType,P: fun(A,bool),F2: fun(B,A),Xs: list(B)] : ( aa(list(A),list(A),filter2(A,P),aa(list(B),list(A),map(B,A,F2),Xs)) = aa(list(B),list(A),map(B,A,F2),aa(list(B),list(B),filter2(B,aa(fun(B,A),fun(B,bool),comp(A,bool,B,P),F2)),Xs)) ) ).
% filter_map
tff(fact_6276_filter__concat,axiom,
! [A: $tType,P2: fun(A,bool),Xs: list(list(A))] : ( aa(list(A),list(A),filter2(A,P2),concat(A,Xs)) = concat(A,aa(list(list(A)),list(list(A)),map(list(A),list(A),filter2(A,P2)),Xs)) ) ).
% filter_concat
tff(fact_6277_distinct__map__filter,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),Xs: list(B),P: fun(B,bool)] :
( distinct(A,aa(list(B),list(A),map(B,A,F2),Xs))
=> distinct(A,aa(list(B),list(A),map(B,A,F2),aa(list(B),list(B),filter2(B,P),Xs))) ) ).
% distinct_map_filter
tff(fact_6278_replicate__length__filter,axiom,
! [A: $tType,X2: A,Xs: list(A)] : ( replicate(A,aa(list(A),nat,size_size(list(A)),aa(list(A),list(A),filter2(A,aa(A,fun(A,bool),fequal(A),X2)),Xs)),X2) = aa(list(A),list(A),filter2(A,aa(A,fun(A,bool),fequal(A),X2)),Xs) ) ).
% replicate_length_filter
tff(fact_6279_length__filter__less,axiom,
! [A: $tType,X2: A,Xs: list(A),P: fun(A,bool)] :
( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ( ~ pp(aa(A,bool,P,X2))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(list(A),nat,size_size(list(A)),aa(list(A),list(A),filter2(A,P),Xs))),aa(list(A),nat,size_size(list(A)),Xs))) ) ) ).
% length_filter_less
tff(fact_6280_sorted__filter,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [F2: fun(B,A),Xs: list(B),P: fun(B,bool)] :
( sorted_wrt(A,ord_less_eq(A),aa(list(B),list(A),map(B,A,F2),Xs))
=> sorted_wrt(A,ord_less_eq(A),aa(list(B),list(A),map(B,A,F2),aa(list(B),list(B),filter2(B,P),Xs))) ) ) ).
% sorted_filter
tff(fact_6281_sorted__map__same,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [F2: fun(B,A),G: fun(list(B),A),Xs: list(B)] : sorted_wrt(A,ord_less_eq(A),aa(list(B),list(A),map(B,A,F2),aa(list(B),list(B),filter2(B,aa(list(B),fun(B,bool),aa(fun(list(B),A),fun(list(B),fun(B,bool)),aTP_Lamp_ox(fun(B,A),fun(fun(list(B),A),fun(list(B),fun(B,bool))),F2),G),Xs)),Xs))) ) ).
% sorted_map_same
tff(fact_6282_sum__list__map__filter_H,axiom,
! [A: $tType,B: $tType] :
( monoid_add(A)
=> ! [F2: fun(B,A),P: fun(B,bool),Xs: list(B)] : ( groups8242544230860333062m_list(A,aa(list(B),list(A),map(B,A,F2),aa(list(B),list(B),filter2(B,P),Xs))) = groups8242544230860333062m_list(A,aa(list(B),list(A),map(B,A,aa(fun(B,bool),fun(B,A),aTP_Lamp_oy(fun(B,A),fun(fun(B,bool),fun(B,A)),F2),P)),Xs)) ) ) ).
% sum_list_map_filter'
tff(fact_6283_sum__list__filter__le__nat,axiom,
! [A: $tType,F2: fun(A,nat),P: fun(A,bool),Xs: list(A)] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),groups8242544230860333062m_list(nat,aa(list(A),list(nat),map(A,nat,F2),aa(list(A),list(A),filter2(A,P),Xs)))),groups8242544230860333062m_list(nat,aa(list(A),list(nat),map(A,nat,F2),Xs)))) ).
% sum_list_filter_le_nat
tff(fact_6284_sum__list__map__filter,axiom,
! [A: $tType,B: $tType] :
( monoid_add(A)
=> ! [Xs: list(B),P: fun(B,bool),F2: fun(B,A)] :
( ! [X3: B] :
( pp(member(B,X3,aa(list(B),set(B),set2(B),Xs)))
=> ( ~ pp(aa(B,bool,P,X3))
=> ( aa(B,A,F2,X3) = zero_zero(A) ) ) )
=> ( groups8242544230860333062m_list(A,aa(list(B),list(A),map(B,A,F2),aa(list(B),list(B),filter2(B,P),Xs))) = groups8242544230860333062m_list(A,aa(list(B),list(A),map(B,A,F2),Xs)) ) ) ) ).
% sum_list_map_filter
tff(fact_6285_filter__insort,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [F2: fun(B,A),Xs: list(B),P: fun(B,bool),X2: B] :
( sorted_wrt(A,ord_less_eq(A),aa(list(B),list(A),map(B,A,F2),Xs))
=> ( pp(aa(B,bool,P,X2))
=> ( aa(list(B),list(B),filter2(B,P),aa(list(B),list(B),linorder_insort_key(B,A,F2,X2),Xs)) = aa(list(B),list(B),linorder_insort_key(B,A,F2,X2),aa(list(B),list(B),filter2(B,P),Xs)) ) ) ) ) ).
% filter_insort
tff(fact_6286_set__minus__filter__out,axiom,
! [A: $tType,Xs: list(A),Y: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(list(A),set(A),set2(A),Xs)),aa(set(A),set(A),insert(A,Y),bot_bot(set(A)))) = aa(list(A),set(A),set2(A),aa(list(A),list(A),filter2(A,aTP_Lamp_oz(A,fun(A,bool),Y)),Xs)) ) ).
% set_minus_filter_out
tff(fact_6287_filter__shuffles__disjoint2_I1_J,axiom,
! [A: $tType,Xs: list(A),Ys: list(A),Zs: list(A)] :
( ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(list(A),set(A),set2(A),Xs)),aa(list(A),set(A),set2(A),Ys)) = bot_bot(set(A)) )
=> ( pp(member(list(A),Zs,shuffles(A,Xs,Ys)))
=> ( aa(list(A),list(A),filter2(A,aTP_Lamp_pa(list(A),fun(A,bool),Ys)),Zs) = Ys ) ) ) ).
% filter_shuffles_disjoint2(1)
tff(fact_6288_filter__shuffles__disjoint2_I2_J,axiom,
! [A: $tType,Xs: list(A),Ys: list(A),Zs: list(A)] :
( ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(list(A),set(A),set2(A),Xs)),aa(list(A),set(A),set2(A),Ys)) = bot_bot(set(A)) )
=> ( pp(member(list(A),Zs,shuffles(A,Xs,Ys)))
=> ( aa(list(A),list(A),filter2(A,aTP_Lamp_pb(list(A),fun(A,bool),Ys)),Zs) = Xs ) ) ) ).
% filter_shuffles_disjoint2(2)
tff(fact_6289_filter__shuffles__disjoint1_I1_J,axiom,
! [A: $tType,Xs: list(A),Ys: list(A),Zs: list(A)] :
( ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(list(A),set(A),set2(A),Xs)),aa(list(A),set(A),set2(A),Ys)) = bot_bot(set(A)) )
=> ( pp(member(list(A),Zs,shuffles(A,Xs,Ys)))
=> ( aa(list(A),list(A),filter2(A,aTP_Lamp_pa(list(A),fun(A,bool),Xs)),Zs) = Xs ) ) ) ).
% filter_shuffles_disjoint1(1)
tff(fact_6290_filter__shuffles__disjoint1_I2_J,axiom,
! [A: $tType,Xs: list(A),Ys: list(A),Zs: list(A)] :
( ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(list(A),set(A),set2(A),Xs)),aa(list(A),set(A),set2(A),Ys)) = bot_bot(set(A)) )
=> ( pp(member(list(A),Zs,shuffles(A,Xs,Ys)))
=> ( aa(list(A),list(A),filter2(A,aTP_Lamp_pb(list(A),fun(A,bool),Xs)),Zs) = Ys ) ) ) ).
% filter_shuffles_disjoint1(2)
tff(fact_6291_length__filter__conv__card,axiom,
! [A: $tType,P2: fun(A,bool),Xs: list(A)] : ( aa(list(A),nat,size_size(list(A)),aa(list(A),list(A),filter2(A,P2),Xs)) = aa(set(nat),nat,finite_card(nat),aa(fun(nat,bool),set(nat),collect(nat),aa(list(A),fun(nat,bool),aTP_Lamp_pc(fun(A,bool),fun(list(A),fun(nat,bool)),P2),Xs))) ) ).
% length_filter_conv_card
tff(fact_6292_distinct__length__filter,axiom,
! [A: $tType,Xs: list(A),P: fun(A,bool)] :
( distinct(A,Xs)
=> ( aa(list(A),nat,size_size(list(A)),aa(list(A),list(A),filter2(A,P),Xs)) = aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(fun(A,bool),set(A),collect(A),P)),aa(list(A),set(A),set2(A),Xs))) ) ) ).
% distinct_length_filter
tff(fact_6293_transpose__aux__max,axiom,
! [A: $tType,B: $tType,Xs: list(A),Xss: list(list(B))] : ( aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),aa(nat,nat,suc,aa(list(A),nat,size_size(list(A)),Xs))),aa(nat,nat,foldr(list(B),nat,aTP_Lamp_pd(list(B),fun(nat,nat)),Xss),zero_zero(nat))) = aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),aa(list(A),nat,size_size(list(A)),Xs)),aa(nat,nat,foldr(list(B),nat,aTP_Lamp_pe(list(B),fun(nat,nat)),aa(list(list(B)),list(list(B)),filter2(list(B),aTP_Lamp_pf(list(B),bool)),Xss)),zero_zero(nat)))) ) ).
% transpose_aux_max
tff(fact_6294_nth__transpose,axiom,
! [A: $tType,I: nat,Xs: list(list(A))] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),aa(list(list(A)),nat,size_size(list(list(A))),transpose(A,Xs))))
=> ( aa(nat,list(A),nth(list(A),transpose(A,Xs)),I) = aa(list(list(A)),list(A),map(list(A),A,aTP_Lamp_or(nat,fun(list(A),A),I)),aa(list(list(A)),list(list(A)),filter2(list(A),aTP_Lamp_oq(nat,fun(list(A),bool),I)),Xs)) ) ) ).
% nth_transpose
tff(fact_6295_transpose__max__length,axiom,
! [A: $tType,Xs: list(list(A))] : ( aa(nat,nat,foldr(list(A),nat,aTP_Lamp_oo(list(A),fun(nat,nat)),transpose(A,Xs)),zero_zero(nat)) = aa(list(list(A)),nat,size_size(list(list(A))),aa(list(list(A)),list(list(A)),filter2(list(A),aTP_Lamp_pg(list(A),bool)),Xs)) ) ).
% transpose_max_length
tff(fact_6296_transpose__column__length,axiom,
! [A: $tType,Xs: list(list(A)),I: nat] :
( sorted_wrt(nat,ord_less_eq(nat),aa(list(nat),list(nat),rev(nat),aa(list(list(A)),list(nat),map(list(A),nat,size_size(list(A))),Xs)))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),aa(list(list(A)),nat,size_size(list(list(A))),Xs)))
=> ( aa(list(list(A)),nat,size_size(list(list(A))),aa(list(list(A)),list(list(A)),filter2(list(A),aTP_Lamp_oq(nat,fun(list(A),bool),I)),transpose(A,Xs))) = aa(list(A),nat,size_size(list(A)),aa(nat,list(A),nth(list(A),Xs),I)) ) ) ) ).
% transpose_column_length
tff(fact_6297_map__filter__map__filter,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),P: fun(B,bool),Xs: list(B)] : ( aa(list(B),list(A),map(B,A,F2),aa(list(B),list(B),filter2(B,P),Xs)) = map_filter(B,A,aa(fun(B,bool),fun(B,option(A)),aTP_Lamp_ph(fun(B,A),fun(fun(B,bool),fun(B,option(A))),F2),P),Xs) ) ).
% map_filter_map_filter
tff(fact_6298_transpose__transpose,axiom,
! [A: $tType,Xs: list(list(A))] :
( sorted_wrt(nat,ord_less_eq(nat),aa(list(nat),list(nat),rev(nat),aa(list(list(A)),list(nat),map(list(A),nat,size_size(list(A))),Xs)))
=> ( transpose(A,transpose(A,Xs)) = takeWhile(list(A),aTP_Lamp_pg(list(A),bool),Xs) ) ) ).
% transpose_transpose
tff(fact_6299_takeWhile__idem,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] : ( takeWhile(A,P,takeWhile(A,P,Xs)) = takeWhile(A,P,Xs) ) ).
% takeWhile_idem
tff(fact_6300_takeWhile__eq__all__conv,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] :
( ( takeWhile(A,P,Xs) = Xs )
<=> ! [X4: A] :
( pp(member(A,X4,aa(list(A),set(A),set2(A),Xs)))
=> pp(aa(A,bool,P,X4)) ) ) ).
% takeWhile_eq_all_conv
tff(fact_6301_takeWhile__replicate,axiom,
! [A: $tType,P: fun(A,bool),X2: A,N: nat] :
( ( pp(aa(A,bool,P,X2))
=> ( takeWhile(A,P,replicate(A,N,X2)) = replicate(A,N,X2) ) )
& ( ~ pp(aa(A,bool,P,X2))
=> ( takeWhile(A,P,replicate(A,N,X2)) = nil(A) ) ) ) ).
% takeWhile_replicate
tff(fact_6302_sorted__takeWhile,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Xs: list(A),P: fun(A,bool)] :
( sorted_wrt(A,ord_less_eq(A),Xs)
=> sorted_wrt(A,ord_less_eq(A),takeWhile(A,P,Xs)) ) ) ).
% sorted_takeWhile
tff(fact_6303_length__takeWhile__le,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(list(A),nat,size_size(list(A)),takeWhile(A,P,Xs))),aa(list(A),nat,size_size(list(A)),Xs))) ).
% length_takeWhile_le
tff(fact_6304_distinct__takeWhile,axiom,
! [A: $tType,Xs: list(A),P: fun(A,bool)] :
( distinct(A,Xs)
=> distinct(A,takeWhile(A,P,Xs)) ) ).
% distinct_takeWhile
tff(fact_6305_set__takeWhileD,axiom,
! [A: $tType,X2: A,P: fun(A,bool),Xs: list(A)] :
( pp(member(A,X2,aa(list(A),set(A),set2(A),takeWhile(A,P,Xs))))
=> ( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
& pp(aa(A,bool,P,X2)) ) ) ).
% set_takeWhileD
tff(fact_6306_takeWhile__cong,axiom,
! [A: $tType,L: list(A),K: list(A),P: fun(A,bool),Q: fun(A,bool)] :
( ( L = K )
=> ( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),L)))
=> ( pp(aa(A,bool,P,X3))
<=> pp(aa(A,bool,Q,X3)) ) )
=> ( takeWhile(A,P,L) = takeWhile(A,Q,K) ) ) ) ).
% takeWhile_cong
tff(fact_6307_takeWhile_Osimps_I1_J,axiom,
! [A: $tType,P: fun(A,bool)] : ( takeWhile(A,P,nil(A)) = nil(A) ) ).
% takeWhile.simps(1)
tff(fact_6308_takeWhile__map,axiom,
! [A: $tType,B: $tType,P: fun(A,bool),F2: fun(B,A),Xs: list(B)] : ( takeWhile(A,P,aa(list(B),list(A),map(B,A,F2),Xs)) = aa(list(B),list(A),map(B,A,F2),takeWhile(B,aa(fun(B,A),fun(B,bool),comp(A,bool,B,P),F2),Xs)) ) ).
% takeWhile_map
tff(fact_6309_map__filter__simps_I2_J,axiom,
! [B: $tType,A: $tType,F2: fun(B,option(A))] : ( map_filter(B,A,F2,nil(B)) = nil(A) ) ).
% map_filter_simps(2)
tff(fact_6310_map__of__filter__in,axiom,
! [B: $tType,A: $tType,Xs: list(product_prod(B,A)),K: B,Z: A,P: fun(B,fun(A,bool))] :
( ( aa(B,option(A),map_of(B,A,Xs),K) = aa(A,option(A),some(A),Z) )
=> ( pp(aa(A,bool,aa(B,fun(A,bool),P,K),Z))
=> ( aa(B,option(A),map_of(B,A,aa(list(product_prod(B,A)),list(product_prod(B,A)),filter2(product_prod(B,A),aa(fun(B,fun(A,bool)),fun(product_prod(B,A),bool),product_case_prod(B,A,bool),P)),Xs)),K) = aa(A,option(A),some(A),Z) ) ) ) ).
% map_of_filter_in
tff(fact_6311_nth__length__takeWhile,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(list(A),nat,size_size(list(A)),takeWhile(A,P,Xs))),aa(list(A),nat,size_size(list(A)),Xs)))
=> ~ pp(aa(A,bool,P,aa(nat,A,nth(A,Xs),aa(list(A),nat,size_size(list(A)),takeWhile(A,P,Xs))))) ) ).
% nth_length_takeWhile
tff(fact_6312_takeWhile__nth,axiom,
! [A: $tType,J: nat,P: fun(A,bool),Xs: list(A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J),aa(list(A),nat,size_size(list(A)),takeWhile(A,P,Xs))))
=> ( aa(nat,A,nth(A,takeWhile(A,P,Xs)),J) = aa(nat,A,nth(A,Xs),J) ) ) ).
% takeWhile_nth
tff(fact_6313_length__takeWhile__less__P__nth,axiom,
! [A: $tType,J: nat,P: fun(A,bool),Xs: list(A)] :
( ! [I3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I3),J))
=> pp(aa(A,bool,P,aa(nat,A,nth(A,Xs),I3))) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),J),aa(list(A),nat,size_size(list(A)),Xs)))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),J),aa(list(A),nat,size_size(list(A)),takeWhile(A,P,Xs)))) ) ) ).
% length_takeWhile_less_P_nth
tff(fact_6314_filter__equals__takeWhile__sorted__rev,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [F2: fun(B,A),Xs: list(B),T2: A] :
( sorted_wrt(A,ord_less_eq(A),aa(list(A),list(A),rev(A),aa(list(B),list(A),map(B,A,F2),Xs)))
=> ( aa(list(B),list(B),filter2(B,aa(A,fun(B,bool),aTP_Lamp_pi(fun(B,A),fun(A,fun(B,bool)),F2),T2)),Xs) = takeWhile(B,aa(A,fun(B,bool),aTP_Lamp_pi(fun(B,A),fun(A,fun(B,bool)),F2),T2),Xs) ) ) ) ).
% filter_equals_takeWhile_sorted_rev
tff(fact_6315_shuffles_Opsimps_I2_J,axiom,
! [A: $tType,Xs: list(A)] :
( pp(aa(product_prod(list(A),list(A)),bool,accp(product_prod(list(A),list(A)),shuffles_rel(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),Xs),nil(A))))
=> ( shuffles(A,Xs,nil(A)) = aa(set(list(A)),set(list(A)),insert(list(A),Xs),bot_bot(set(list(A)))) ) ) ).
% shuffles.psimps(2)
tff(fact_6316_shuffles_Opsimps_I1_J,axiom,
! [A: $tType,Ys: list(A)] :
( pp(aa(product_prod(list(A),list(A)),bool,accp(product_prod(list(A),list(A)),shuffles_rel(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),nil(A)),Ys)))
=> ( shuffles(A,nil(A),Ys) = aa(set(list(A)),set(list(A)),insert(list(A),Ys),bot_bot(set(list(A)))) ) ) ).
% shuffles.psimps(1)
tff(fact_6317_insort__key__remove1,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [A2: B,Xs: list(B),F2: fun(B,A)] :
( pp(member(B,A2,aa(list(B),set(B),set2(B),Xs)))
=> ( sorted_wrt(A,ord_less_eq(A),aa(list(B),list(A),map(B,A,F2),Xs))
=> ( ( aa(list(B),B,hd(B),aa(list(B),list(B),filter2(B,aa(fun(B,A),fun(B,bool),aTP_Lamp_pj(B,fun(fun(B,A),fun(B,bool)),A2),F2)),Xs)) = A2 )
=> ( aa(list(B),list(B),linorder_insort_key(B,A,F2,A2),remove1(B,A2,Xs)) = Xs ) ) ) ) ) ).
% insort_key_remove1
tff(fact_6318_times__int_Oabs__eq,axiom,
! [Xa: product_prod(nat,nat),X2: product_prod(nat,nat)] : ( aa(int,int,aa(int,fun(int,int),times_times(int),aa(product_prod(nat,nat),int,abs_Integ,Xa)),aa(product_prod(nat,nat),int,abs_Integ,X2)) = aa(product_prod(nat,nat),int,abs_Integ,aa(product_prod(nat,nat),product_prod(nat,nat),aa(product_prod(nat,nat),fun(product_prod(nat,nat),product_prod(nat,nat)),aa(fun(nat,fun(nat,fun(product_prod(nat,nat),product_prod(nat,nat)))),fun(product_prod(nat,nat),fun(product_prod(nat,nat),product_prod(nat,nat))),product_case_prod(nat,nat,fun(product_prod(nat,nat),product_prod(nat,nat))),aTP_Lamp_pl(nat,fun(nat,fun(product_prod(nat,nat),product_prod(nat,nat))))),Xa),X2)) ) ).
% times_int.abs_eq
tff(fact_6319_hd__upt,axiom,
! [I: nat,J: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),J))
=> ( aa(list(nat),nat,hd(nat),upt(I,J)) = I ) ) ).
% hd_upt
tff(fact_6320_hd__replicate,axiom,
! [A: $tType,N: nat,X2: A] :
( ( N != zero_zero(nat) )
=> ( aa(list(A),A,hd(A),replicate(A,N,X2)) = X2 ) ) ).
% hd_replicate
tff(fact_6321_takeWhile__eq__Nil__iff,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] :
( ( takeWhile(A,P,Xs) = nil(A) )
<=> ( ( Xs = nil(A) )
| ~ pp(aa(A,bool,P,aa(list(A),A,hd(A),Xs))) ) ) ).
% takeWhile_eq_Nil_iff
tff(fact_6322_eq__Abs__Integ,axiom,
! [Z: int] :
~ ! [X3: nat,Y3: nat] : ( Z != aa(product_prod(nat,nat),int,abs_Integ,aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),X3),Y3)) ) ).
% eq_Abs_Integ
tff(fact_6323_list_Omap__sel_I1_J,axiom,
! [B: $tType,A: $tType,A2: list(A),F2: fun(A,B)] :
( ( A2 != nil(A) )
=> ( aa(list(B),B,hd(B),aa(list(A),list(B),map(A,B,F2),A2)) = aa(A,B,F2,aa(list(A),A,hd(A),A2)) ) ) ).
% list.map_sel(1)
tff(fact_6324_hd__map,axiom,
! [B: $tType,A: $tType,Xs: list(A),F2: fun(A,B)] :
( ( Xs != nil(A) )
=> ( aa(list(B),B,hd(B),aa(list(A),list(B),map(A,B,F2),Xs)) = aa(A,B,F2,aa(list(A),A,hd(A),Xs)) ) ) ).
% hd_map
tff(fact_6325_list_Oset__sel_I1_J,axiom,
! [A: $tType,A2: list(A)] :
( ( A2 != nil(A) )
=> pp(member(A,aa(list(A),A,hd(A),A2),aa(list(A),set(A),set2(A),A2))) ) ).
% list.set_sel(1)
tff(fact_6326_hd__in__set,axiom,
! [A: $tType,Xs: list(A)] :
( ( Xs != nil(A) )
=> pp(member(A,aa(list(A),A,hd(A),Xs),aa(list(A),set(A),set2(A),Xs))) ) ).
% hd_in_set
tff(fact_6327_hd__concat,axiom,
! [A: $tType,Xs: list(list(A))] :
( ( Xs != nil(list(A)) )
=> ( ( aa(list(list(A)),list(A),hd(list(A)),Xs) != nil(A) )
=> ( aa(list(A),A,hd(A),concat(A,Xs)) = aa(list(A),A,hd(A),aa(list(list(A)),list(A),hd(list(A)),Xs)) ) ) ) ).
% hd_concat
tff(fact_6328_nat_Oabs__eq,axiom,
! [X2: product_prod(nat,nat)] : ( aa(int,nat,nat2,aa(product_prod(nat,nat),int,abs_Integ,X2)) = aa(product_prod(nat,nat),nat,aa(fun(nat,fun(nat,nat)),fun(product_prod(nat,nat),nat),product_case_prod(nat,nat,nat),minus_minus(nat)),X2) ) ).
% nat.abs_eq
tff(fact_6329_hd__conv__nth,axiom,
! [A: $tType,Xs: list(A)] :
( ( Xs != nil(A) )
=> ( aa(list(A),A,hd(A),Xs) = aa(nat,A,nth(A,Xs),zero_zero(nat)) ) ) ).
% hd_conv_nth
tff(fact_6330_zero__int__def,axiom,
zero_zero(int) = aa(product_prod(nat,nat),int,abs_Integ,aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),zero_zero(nat)),zero_zero(nat))) ).
% zero_int_def
tff(fact_6331_int__def,axiom,
! [N: nat] : ( aa(nat,int,semiring_1_of_nat(int),N) = aa(product_prod(nat,nat),int,abs_Integ,aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),N),zero_zero(nat))) ) ).
% int_def
tff(fact_6332_uminus__int_Oabs__eq,axiom,
! [X2: product_prod(nat,nat)] : ( aa(int,int,uminus_uminus(int),aa(product_prod(nat,nat),int,abs_Integ,X2)) = aa(product_prod(nat,nat),int,abs_Integ,aa(product_prod(nat,nat),product_prod(nat,nat),aa(fun(nat,fun(nat,product_prod(nat,nat))),fun(product_prod(nat,nat),product_prod(nat,nat)),product_case_prod(nat,nat,product_prod(nat,nat)),aTP_Lamp_pm(nat,fun(nat,product_prod(nat,nat)))),X2)) ) ).
% uminus_int.abs_eq
tff(fact_6333_one__int__def,axiom,
one_one(int) = aa(product_prod(nat,nat),int,abs_Integ,aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),one_one(nat)),zero_zero(nat))) ).
% one_int_def
tff(fact_6334_of__int_Oabs__eq,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [X2: product_prod(nat,nat)] : ( aa(int,A,ring_1_of_int(A),aa(product_prod(nat,nat),int,abs_Integ,X2)) = aa(product_prod(nat,nat),A,aa(fun(nat,fun(nat,A)),fun(product_prod(nat,nat),A),product_case_prod(nat,nat,A),aTP_Lamp_pn(nat,fun(nat,A))),X2) ) ) ).
% of_int.abs_eq
tff(fact_6335_less__int_Oabs__eq,axiom,
! [Xa: product_prod(nat,nat),X2: product_prod(nat,nat)] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),aa(product_prod(nat,nat),int,abs_Integ,Xa)),aa(product_prod(nat,nat),int,abs_Integ,X2)))
<=> pp(aa(product_prod(nat,nat),bool,aa(product_prod(nat,nat),fun(product_prod(nat,nat),bool),aa(fun(nat,fun(nat,fun(product_prod(nat,nat),bool))),fun(product_prod(nat,nat),fun(product_prod(nat,nat),bool)),product_case_prod(nat,nat,fun(product_prod(nat,nat),bool)),aTP_Lamp_pp(nat,fun(nat,fun(product_prod(nat,nat),bool)))),Xa),X2)) ) ).
% less_int.abs_eq
tff(fact_6336_less__eq__int_Oabs__eq,axiom,
! [Xa: product_prod(nat,nat),X2: product_prod(nat,nat)] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(product_prod(nat,nat),int,abs_Integ,Xa)),aa(product_prod(nat,nat),int,abs_Integ,X2)))
<=> pp(aa(product_prod(nat,nat),bool,aa(product_prod(nat,nat),fun(product_prod(nat,nat),bool),aa(fun(nat,fun(nat,fun(product_prod(nat,nat),bool))),fun(product_prod(nat,nat),fun(product_prod(nat,nat),bool)),product_case_prod(nat,nat,fun(product_prod(nat,nat),bool)),aTP_Lamp_pr(nat,fun(nat,fun(product_prod(nat,nat),bool)))),Xa),X2)) ) ).
% less_eq_int.abs_eq
tff(fact_6337_plus__int_Oabs__eq,axiom,
! [Xa: product_prod(nat,nat),X2: product_prod(nat,nat)] : ( aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(product_prod(nat,nat),int,abs_Integ,Xa)),aa(product_prod(nat,nat),int,abs_Integ,X2)) = aa(product_prod(nat,nat),int,abs_Integ,aa(product_prod(nat,nat),product_prod(nat,nat),aa(product_prod(nat,nat),fun(product_prod(nat,nat),product_prod(nat,nat)),aa(fun(nat,fun(nat,fun(product_prod(nat,nat),product_prod(nat,nat)))),fun(product_prod(nat,nat),fun(product_prod(nat,nat),product_prod(nat,nat))),product_case_prod(nat,nat,fun(product_prod(nat,nat),product_prod(nat,nat))),aTP_Lamp_pt(nat,fun(nat,fun(product_prod(nat,nat),product_prod(nat,nat))))),Xa),X2)) ) ).
% plus_int.abs_eq
tff(fact_6338_minus__int_Oabs__eq,axiom,
! [Xa: product_prod(nat,nat),X2: product_prod(nat,nat)] : ( aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(product_prod(nat,nat),int,abs_Integ,Xa)),aa(product_prod(nat,nat),int,abs_Integ,X2)) = aa(product_prod(nat,nat),int,abs_Integ,aa(product_prod(nat,nat),product_prod(nat,nat),aa(product_prod(nat,nat),fun(product_prod(nat,nat),product_prod(nat,nat)),aa(fun(nat,fun(nat,fun(product_prod(nat,nat),product_prod(nat,nat)))),fun(product_prod(nat,nat),fun(product_prod(nat,nat),product_prod(nat,nat))),product_case_prod(nat,nat,fun(product_prod(nat,nat),product_prod(nat,nat))),aTP_Lamp_pv(nat,fun(nat,fun(product_prod(nat,nat),product_prod(nat,nat))))),Xa),X2)) ) ).
% minus_int.abs_eq
tff(fact_6339_Gcd__remove0__nat,axiom,
! [M7: set(nat)] :
( finite_finite(nat,M7)
=> ( gcd_Gcd(nat,M7) = gcd_Gcd(nat,aa(set(nat),set(nat),aa(set(nat),fun(set(nat),set(nat)),minus_minus(set(nat)),M7),aa(set(nat),set(nat),insert(nat,zero_zero(nat)),bot_bot(set(nat))))) ) ) ).
% Gcd_remove0_nat
tff(fact_6340_eq__snd__iff,axiom,
! [B: $tType,A: $tType,B2: A,P2: product_prod(B,A)] :
( ( B2 = aa(product_prod(B,A),A,product_snd(B,A),P2) )
<=> ? [A5: B] : ( P2 = aa(A,product_prod(B,A),aa(B,fun(A,product_prod(B,A)),product_Pair(B,A),A5),B2) ) ) ).
% eq_snd_iff
tff(fact_6341_Gcd__empty,axiom,
! [A: $tType] :
( semiring_Gcd(A)
=> ( gcd_Gcd(A,bot_bot(set(A))) = zero_zero(A) ) ) ).
% Gcd_empty
tff(fact_6342_Gcd__0__iff,axiom,
! [A: $tType] :
( semiring_Gcd(A)
=> ! [A3: set(A)] :
( ( gcd_Gcd(A,A3) = zero_zero(A) )
<=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),aa(set(A),set(A),insert(A,zero_zero(A)),bot_bot(set(A))))) ) ) ).
% Gcd_0_iff
tff(fact_6343_Gcd__nat__eq__one,axiom,
! [N2: set(nat)] :
( pp(member(nat,one_one(nat),N2))
=> ( gcd_Gcd(nat,N2) = one_one(nat) ) ) ).
% Gcd_nat_eq_one
tff(fact_6344_Gcd__1,axiom,
! [A: $tType] :
( semiring_Gcd(A)
=> ! [A3: set(A)] :
( pp(member(A,one_one(A),A3))
=> ( gcd_Gcd(A,A3) = one_one(A) ) ) ) ).
% Gcd_1
tff(fact_6345_Gcd__eq__1__I,axiom,
! [A: $tType] :
( semiring_Gcd(A)
=> ! [A2: A,A3: set(A)] :
( pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),A2),one_one(A)))
=> ( pp(member(A,A2,A3))
=> ( gcd_Gcd(A,A3) = one_one(A) ) ) ) ) ).
% Gcd_eq_1_I
tff(fact_6346_sum_Osize__neq,axiom,
! [A: $tType,B: $tType,X2: sum_sum(A,B)] : ( aa(sum_sum(A,B),nat,size_size(sum_sum(A,B)),X2) != zero_zero(nat) ) ).
% sum.size_neq
tff(fact_6347_prod_Osize__neq,axiom,
! [A: $tType,B: $tType,X2: product_prod(A,B)] : ( aa(product_prod(A,B),nat,size_size(product_prod(A,B)),X2) != zero_zero(nat) ) ).
% prod.size_neq
tff(fact_6348_eq__fst__iff,axiom,
! [A: $tType,B: $tType,A2: A,P2: product_prod(A,B)] :
( ( A2 = aa(product_prod(A,B),A,product_fst(A,B),P2) )
<=> ? [B5: B] : ( P2 = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),A2),B5) ) ) ).
% eq_fst_iff
tff(fact_6349_less__eq__int_Orep__eq,axiom,
! [X2: int,Xa: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),X2),Xa))
<=> pp(aa(product_prod(nat,nat),bool,aa(product_prod(nat,nat),fun(product_prod(nat,nat),bool),aa(fun(nat,fun(nat,fun(product_prod(nat,nat),bool))),fun(product_prod(nat,nat),fun(product_prod(nat,nat),bool)),product_case_prod(nat,nat,fun(product_prod(nat,nat),bool)),aTP_Lamp_pr(nat,fun(nat,fun(product_prod(nat,nat),bool)))),aa(int,product_prod(nat,nat),rep_Integ,X2)),aa(int,product_prod(nat,nat),rep_Integ,Xa))) ) ).
% less_eq_int.rep_eq
tff(fact_6350_less__int_Orep__eq,axiom,
! [X2: int,Xa: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),X2),Xa))
<=> pp(aa(product_prod(nat,nat),bool,aa(product_prod(nat,nat),fun(product_prod(nat,nat),bool),aa(fun(nat,fun(nat,fun(product_prod(nat,nat),bool))),fun(product_prod(nat,nat),fun(product_prod(nat,nat),bool)),product_case_prod(nat,nat,fun(product_prod(nat,nat),bool)),aTP_Lamp_pp(nat,fun(nat,fun(product_prod(nat,nat),bool)))),aa(int,product_prod(nat,nat),rep_Integ,X2)),aa(int,product_prod(nat,nat),rep_Integ,Xa))) ) ).
% less_int.rep_eq
tff(fact_6351_Gcd__int__greater__eq__0,axiom,
! [K5: set(int)] : pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),gcd_Gcd(int,K5))) ).
% Gcd_int_greater_eq_0
tff(fact_6352_nat_Orep__eq,axiom,
! [X2: int] : ( aa(int,nat,nat2,X2) = aa(product_prod(nat,nat),nat,aa(fun(nat,fun(nat,nat)),fun(product_prod(nat,nat),nat),product_case_prod(nat,nat,nat),minus_minus(nat)),aa(int,product_prod(nat,nat),rep_Integ,X2)) ) ).
% nat.rep_eq
tff(fact_6353_of__int_Orep__eq,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [X2: int] : ( aa(int,A,ring_1_of_int(A),X2) = aa(product_prod(nat,nat),A,aa(fun(nat,fun(nat,A)),fun(product_prod(nat,nat),A),product_case_prod(nat,nat,A),aTP_Lamp_pn(nat,fun(nat,A))),aa(int,product_prod(nat,nat),rep_Integ,X2)) ) ) ).
% of_int.rep_eq
tff(fact_6354_lex__prod__def,axiom,
! [A: $tType,B: $tType,Ra: set(product_prod(A,A)),Rb: set(product_prod(B,B))] : ( lex_prod(A,B,Ra,Rb) = aa(fun(product_prod(product_prod(A,B),product_prod(A,B)),bool),set(product_prod(product_prod(A,B),product_prod(A,B))),collect(product_prod(product_prod(A,B),product_prod(A,B))),aa(fun(product_prod(A,B),fun(product_prod(A,B),bool)),fun(product_prod(product_prod(A,B),product_prod(A,B)),bool),product_case_prod(product_prod(A,B),product_prod(A,B),bool),aa(fun(A,fun(B,fun(product_prod(A,B),bool))),fun(product_prod(A,B),fun(product_prod(A,B),bool)),product_case_prod(A,B,fun(product_prod(A,B),bool)),aa(set(product_prod(B,B)),fun(A,fun(B,fun(product_prod(A,B),bool))),aTP_Lamp_px(set(product_prod(A,A)),fun(set(product_prod(B,B)),fun(A,fun(B,fun(product_prod(A,B),bool)))),Ra),Rb)))) ) ).
% lex_prod_def
tff(fact_6355_semiring__char__def,axiom,
! [A: $tType] :
( semiring_1(A)
=> ! [Uu2: itself(A)] : ( semiri4206861660011772517g_char(A,Uu2) = gcd_Gcd(nat,aa(fun(nat,bool),set(nat),collect(nat),aTP_Lamp_py(nat,bool))) ) ) ).
% semiring_char_def
tff(fact_6356_in__lex__prod,axiom,
! [A: $tType,B: $tType,A2: A,B2: B,A6: A,B6: B,R: set(product_prod(A,A)),S2: set(product_prod(B,B))] :
( pp(member(product_prod(product_prod(A,B),product_prod(A,B)),aa(product_prod(A,B),product_prod(product_prod(A,B),product_prod(A,B)),aa(product_prod(A,B),fun(product_prod(A,B),product_prod(product_prod(A,B),product_prod(A,B))),product_Pair(product_prod(A,B),product_prod(A,B)),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),A2),B2)),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),A6),B6)),lex_prod(A,B,R,S2)))
<=> ( pp(member(product_prod(A,A),aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),A2),A6),R))
| ( ( A2 = A6 )
& pp(member(product_prod(B,B),aa(B,product_prod(B,B),aa(B,fun(B,product_prod(B,B)),product_Pair(B,B),B2),B6),S2)) ) ) ) ).
% in_lex_prod
tff(fact_6357_same__fst__def,axiom,
! [B: $tType,A: $tType,P: fun(A,bool),R2: fun(A,set(product_prod(B,B)))] : ( same_fst(A,B,P,R2) = aa(fun(product_prod(product_prod(A,B),product_prod(A,B)),bool),set(product_prod(product_prod(A,B),product_prod(A,B))),collect(product_prod(product_prod(A,B),product_prod(A,B))),aa(fun(product_prod(A,B),fun(product_prod(A,B),bool)),fun(product_prod(product_prod(A,B),product_prod(A,B)),bool),product_case_prod(product_prod(A,B),product_prod(A,B),bool),aa(fun(A,fun(B,fun(product_prod(A,B),bool))),fun(product_prod(A,B),fun(product_prod(A,B),bool)),product_case_prod(A,B,fun(product_prod(A,B),bool)),aa(fun(A,set(product_prod(B,B))),fun(A,fun(B,fun(product_prod(A,B),bool))),aTP_Lamp_qa(fun(A,bool),fun(fun(A,set(product_prod(B,B))),fun(A,fun(B,fun(product_prod(A,B),bool)))),P),R2)))) ) ).
% same_fst_def
tff(fact_6358_uminus__int__def,axiom,
uminus_uminus(int) = aa(fun(product_prod(nat,nat),product_prod(nat,nat)),fun(int,int),map_fun(int,product_prod(nat,nat),product_prod(nat,nat),int,rep_Integ,abs_Integ),aa(fun(nat,fun(nat,product_prod(nat,nat))),fun(product_prod(nat,nat),product_prod(nat,nat)),product_case_prod(nat,nat,product_prod(nat,nat)),aTP_Lamp_pm(nat,fun(nat,product_prod(nat,nat))))) ).
% uminus_int_def
tff(fact_6359_same__fstI,axiom,
! [B: $tType,A: $tType,P: fun(A,bool),X2: A,Y5: B,Y: B,R2: fun(A,set(product_prod(B,B)))] :
( pp(aa(A,bool,P,X2))
=> ( pp(member(product_prod(B,B),aa(B,product_prod(B,B),aa(B,fun(B,product_prod(B,B)),product_Pair(B,B),Y5),Y),aa(A,set(product_prod(B,B)),R2,X2)))
=> pp(member(product_prod(product_prod(A,B),product_prod(A,B)),aa(product_prod(A,B),product_prod(product_prod(A,B),product_prod(A,B)),aa(product_prod(A,B),fun(product_prod(A,B),product_prod(product_prod(A,B),product_prod(A,B))),product_Pair(product_prod(A,B),product_prod(A,B)),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X2),Y5)),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X2),Y)),same_fst(A,B,P,R2))) ) ) ).
% same_fstI
tff(fact_6360_times__int__def,axiom,
times_times(int) = aa(fun(product_prod(nat,nat),fun(product_prod(nat,nat),product_prod(nat,nat))),fun(int,fun(int,int)),map_fun(int,product_prod(nat,nat),fun(product_prod(nat,nat),product_prod(nat,nat)),fun(int,int),rep_Integ,map_fun(int,product_prod(nat,nat),product_prod(nat,nat),int,rep_Integ,abs_Integ)),aa(fun(nat,fun(nat,fun(product_prod(nat,nat),product_prod(nat,nat)))),fun(product_prod(nat,nat),fun(product_prod(nat,nat),product_prod(nat,nat))),product_case_prod(nat,nat,fun(product_prod(nat,nat),product_prod(nat,nat))),aTP_Lamp_pl(nat,fun(nat,fun(product_prod(nat,nat),product_prod(nat,nat)))))) ).
% times_int_def
tff(fact_6361_minus__int__def,axiom,
minus_minus(int) = aa(fun(product_prod(nat,nat),fun(product_prod(nat,nat),product_prod(nat,nat))),fun(int,fun(int,int)),map_fun(int,product_prod(nat,nat),fun(product_prod(nat,nat),product_prod(nat,nat)),fun(int,int),rep_Integ,map_fun(int,product_prod(nat,nat),product_prod(nat,nat),int,rep_Integ,abs_Integ)),aa(fun(nat,fun(nat,fun(product_prod(nat,nat),product_prod(nat,nat)))),fun(product_prod(nat,nat),fun(product_prod(nat,nat),product_prod(nat,nat))),product_case_prod(nat,nat,fun(product_prod(nat,nat),product_prod(nat,nat))),aTP_Lamp_pv(nat,fun(nat,fun(product_prod(nat,nat),product_prod(nat,nat)))))) ).
% minus_int_def
tff(fact_6362_plus__int__def,axiom,
plus_plus(int) = aa(fun(product_prod(nat,nat),fun(product_prod(nat,nat),product_prod(nat,nat))),fun(int,fun(int,int)),map_fun(int,product_prod(nat,nat),fun(product_prod(nat,nat),product_prod(nat,nat)),fun(int,int),rep_Integ,map_fun(int,product_prod(nat,nat),product_prod(nat,nat),int,rep_Integ,abs_Integ)),aa(fun(nat,fun(nat,fun(product_prod(nat,nat),product_prod(nat,nat)))),fun(product_prod(nat,nat),fun(product_prod(nat,nat),product_prod(nat,nat))),product_case_prod(nat,nat,fun(product_prod(nat,nat),product_prod(nat,nat))),aTP_Lamp_pt(nat,fun(nat,fun(product_prod(nat,nat),product_prod(nat,nat)))))) ).
% plus_int_def
tff(fact_6363_prod__encode__def,axiom,
nat_prod_encode = aa(fun(nat,fun(nat,nat)),fun(product_prod(nat,nat),nat),product_case_prod(nat,nat,nat),aTP_Lamp_qb(nat,fun(nat,nat))) ).
% prod_encode_def
tff(fact_6364_listrel1__iff__update,axiom,
! [A: $tType,Xs: list(A),Ys: list(A),R: set(product_prod(A,A))] :
( pp(member(product_prod(list(A),list(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),Xs),Ys),listrel1(A,R)))
<=> ? [Y2: A,N5: nat] :
( pp(member(product_prod(A,A),aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),aa(nat,A,nth(A,Xs),N5)),Y2),R))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N5),aa(list(A),nat,size_size(list(A)),Xs)))
& ( Ys = list_update(A,Xs,N5,Y2) ) ) ) ).
% listrel1_iff_update
tff(fact_6365_prod__encode__eq,axiom,
! [X2: product_prod(nat,nat),Y: product_prod(nat,nat)] :
( ( aa(product_prod(nat,nat),nat,nat_prod_encode,X2) = aa(product_prod(nat,nat),nat,nat_prod_encode,Y) )
<=> ( X2 = Y ) ) ).
% prod_encode_eq
tff(fact_6366_listrel1__mono,axiom,
! [A: $tType,R: set(product_prod(A,A)),S2: set(product_prod(A,A))] :
( pp(aa(set(product_prod(A,A)),bool,aa(set(product_prod(A,A)),fun(set(product_prod(A,A)),bool),ord_less_eq(set(product_prod(A,A))),R),S2))
=> pp(aa(set(product_prod(list(A),list(A))),bool,aa(set(product_prod(list(A),list(A))),fun(set(product_prod(list(A),list(A))),bool),ord_less_eq(set(product_prod(list(A),list(A)))),listrel1(A,R)),listrel1(A,S2))) ) ).
% listrel1_mono
tff(fact_6367_listrel1__eq__len,axiom,
! [A: $tType,Xs: list(A),Ys: list(A),R: set(product_prod(A,A))] :
( pp(member(product_prod(list(A),list(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),Xs),Ys),listrel1(A,R)))
=> ( aa(list(A),nat,size_size(list(A)),Xs) = aa(list(A),nat,size_size(list(A)),Ys) ) ) ).
% listrel1_eq_len
tff(fact_6368_not__Nil__listrel1,axiom,
! [A: $tType,Xs: list(A),R: set(product_prod(A,A))] : ~ pp(member(product_prod(list(A),list(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),nil(A)),Xs),listrel1(A,R))) ).
% not_Nil_listrel1
tff(fact_6369_not__listrel1__Nil,axiom,
! [A: $tType,Xs: list(A),R: set(product_prod(A,A))] : ~ pp(member(product_prod(list(A),list(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),Xs),nil(A)),listrel1(A,R))) ).
% not_listrel1_Nil
tff(fact_6370_le__prod__encode__1,axiom,
! [A2: nat,B2: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),A2),aa(product_prod(nat,nat),nat,nat_prod_encode,aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),A2),B2)))) ).
% le_prod_encode_1
tff(fact_6371_le__prod__encode__2,axiom,
! [B2: nat,A2: nat] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),B2),aa(product_prod(nat,nat),nat,nat_prod_encode,aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),A2),B2)))) ).
% le_prod_encode_2
tff(fact_6372_prod__encode__prod__decode__aux,axiom,
! [K: nat,M: nat] : ( aa(product_prod(nat,nat),nat,nat_prod_encode,nat_prod_decode_aux(K,M)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),nat_triangle(K)),M) ) ).
% prod_encode_prod_decode_aux
tff(fact_6373_listrel1p__def,axiom,
! [A: $tType,R: fun(A,fun(A,bool)),Xs: list(A),Ys: list(A)] :
( listrel1p(A,R,Xs,Ys)
<=> pp(member(product_prod(list(A),list(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),Xs),Ys),listrel1(A,aa(fun(product_prod(A,A),bool),set(product_prod(A,A)),collect(product_prod(A,A)),aa(fun(A,fun(A,bool)),fun(product_prod(A,A),bool),product_case_prod(A,A,bool),R))))) ) ).
% listrel1p_def
tff(fact_6374_nth__sorted__list__of__set__greaterThanAtMost,axiom,
! [N: nat,J: nat,I: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),J),I)))
=> ( aa(nat,nat,nth(nat,aa(set(nat),list(nat),linord4507533701916653071of_set(nat),set_or3652927894154168847AtMost(nat,I,J))),N) = aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),N)) ) ) ).
% nth_sorted_list_of_set_greaterThanAtMost
tff(fact_6375_finite__greaterThanAtMost,axiom,
! [L: nat,U: nat] : finite_finite(nat,set_or3652927894154168847AtMost(nat,L,U)) ).
% finite_greaterThanAtMost
tff(fact_6376_greaterThanAtMost__iff,axiom,
! [A: $tType] :
( ord(A)
=> ! [I: A,L: A,U: A] :
( pp(member(A,I,set_or3652927894154168847AtMost(A,L,U)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),L),I))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),I),U)) ) ) ) ).
% greaterThanAtMost_iff
tff(fact_6377_greaterThanAtMost__empty,axiom,
! [A: $tType] :
( order(A)
=> ! [L: A,K: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L),K))
=> ( set_or3652927894154168847AtMost(A,K,L) = bot_bot(set(A)) ) ) ) ).
% greaterThanAtMost_empty
tff(fact_6378_greaterThanAtMost__empty__iff,axiom,
! [A: $tType] :
( preorder(A)
=> ! [K: A,L: A] :
( ( set_or3652927894154168847AtMost(A,K,L) = bot_bot(set(A)) )
<=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),K),L)) ) ) ).
% greaterThanAtMost_empty_iff
tff(fact_6379_greaterThanAtMost__empty__iff2,axiom,
! [A: $tType] :
( preorder(A)
=> ! [K: A,L: A] :
( ( bot_bot(set(A)) = set_or3652927894154168847AtMost(A,K,L) )
<=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),K),L)) ) ) ).
% greaterThanAtMost_empty_iff2
tff(fact_6380_infinite__Ioc__iff,axiom,
! [A: $tType] :
( dense_linorder(A)
=> ! [A2: A,B2: A] :
( ~ finite_finite(A,set_or3652927894154168847AtMost(A,A2,B2))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2)) ) ) ).
% infinite_Ioc_iff
tff(fact_6381_Sup__greaterThanAtMost,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ( complete_Sup_Sup(A,set_or3652927894154168847AtMost(A,X2,Y)) = Y ) ) ) ).
% Sup_greaterThanAtMost
tff(fact_6382_cSup__greaterThanAtMost,axiom,
! [A: $tType] :
( condit1219197933456340205attice(A)
=> ! [Y: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X2))
=> ( complete_Sup_Sup(A,set_or3652927894154168847AtMost(A,Y,X2)) = X2 ) ) ) ).
% cSup_greaterThanAtMost
tff(fact_6383_cInf__greaterThanAtMost,axiom,
! [A: $tType] :
( ( condit6923001295902523014norder(A)
& dense_linorder(A) )
=> ! [Y: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X2))
=> ( complete_Inf_Inf(A,set_or3652927894154168847AtMost(A,Y,X2)) = Y ) ) ) ).
% cInf_greaterThanAtMost
tff(fact_6384_Inf__greaterThanAtMost,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice(A)
& dense_linorder(A) )
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ( complete_Inf_Inf(A,set_or3652927894154168847AtMost(A,X2,Y)) = X2 ) ) ) ).
% Inf_greaterThanAtMost
tff(fact_6385_card__greaterThanAtMost,axiom,
! [L: nat,U: nat] : ( aa(set(nat),nat,finite_card(nat),set_or3652927894154168847AtMost(nat,L,U)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),U),L) ) ).
% card_greaterThanAtMost
tff(fact_6386_Ioc__inj,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( set_or3652927894154168847AtMost(A,A2,B2) = set_or3652927894154168847AtMost(A,C2,D2) )
<=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),D2),C2)) )
| ( ( A2 = C2 )
& ( B2 = D2 ) ) ) ) ) ).
% Ioc_inj
tff(fact_6387_infinite__Ioc,axiom,
! [A: $tType] :
( dense_linorder(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ~ finite_finite(A,set_or3652927894154168847AtMost(A,A2,B2)) ) ) ).
% infinite_Ioc
tff(fact_6388_Ioc__subset__iff,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),set_or3652927894154168847AtMost(A,A2,B2)),set_or3652927894154168847AtMost(A,C2,D2)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
| ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),D2)) ) ) ) ) ).
% Ioc_subset_iff
tff(fact_6389_atLeastSucAtMost__greaterThanAtMost,axiom,
! [L: nat,U: nat] : ( set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,L),U) = set_or3652927894154168847AtMost(nat,L,U) ) ).
% atLeastSucAtMost_greaterThanAtMost
tff(fact_6390_ivl__disj__int__two_I6_J,axiom,
! [A: $tType] :
( order(A)
=> ! [L: A,M: A,U: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),set_or3652927894154168847AtMost(A,L,M)),set_or3652927894154168847AtMost(A,M,U)) = bot_bot(set(A)) ) ) ).
% ivl_disj_int_two(6)
tff(fact_6391_Ioc__disjoint,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),set_or3652927894154168847AtMost(A,A2,B2)),set_or3652927894154168847AtMost(A,C2,D2)) = bot_bot(set(A)) )
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
| pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),D2),C2))
| pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),C2))
| pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),D2),A2)) ) ) ) ).
% Ioc_disjoint
tff(fact_6392_ivl__disj__int__two_I8_J,axiom,
! [A: $tType] :
( order(A)
=> ! [L: A,M: A,U: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),set_or1337092689740270186AtMost(A,L,M)),set_or3652927894154168847AtMost(A,M,U)) = bot_bot(set(A)) ) ) ).
% ivl_disj_int_two(8)
tff(fact_6393_ivl__disj__int__one_I3_J,axiom,
! [A: $tType] :
( order(A)
=> ! [L: A,U: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(A,set(A),set_ord_atMost(A),L)),set_or3652927894154168847AtMost(A,L,U)) = bot_bot(set(A)) ) ) ).
% ivl_disj_int_one(3)
tff(fact_6394_ivl__disj__int__two_I2_J,axiom,
! [A: $tType] :
( order(A)
=> ! [L: A,M: A,U: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),set_or3652927894154168847AtMost(A,L,M)),set_or5935395276787703475ssThan(A,M,U)) = bot_bot(set(A)) ) ) ).
% ivl_disj_int_two(2)
tff(fact_6395_greaterThanAtMost__upt,axiom,
! [N: nat,M: nat] : ( set_or3652927894154168847AtMost(nat,N,M) = aa(list(nat),set(nat),set2(nat),upt(aa(nat,nat,suc,N),aa(nat,nat,suc,M))) ) ).
% greaterThanAtMost_upt
tff(fact_6396_sum_Ohead,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [M: nat,N: nat,G: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or1337092689740270186AtMost(nat,M,N)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,G,M)),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),G),set_or3652927894154168847AtMost(nat,M,N))) ) ) ) ).
% sum.head
tff(fact_6397_prod_Ohead,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [M: nat,N: nat,G: fun(nat,A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M),N))
=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or1337092689740270186AtMost(nat,M,N)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,G,M)),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),G),set_or3652927894154168847AtMost(nat,M,N))) ) ) ) ).
% prod.head
tff(fact_6398_greaterThanAtMost__subseteq__atLeastAtMost__iff,axiom,
! [A: $tType] :
( dense_linorder(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),set_or3652927894154168847AtMost(A,A2,B2)),set_or1337092689740270186AtMost(A,C2,D2)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),D2)) ) ) ) ) ).
% greaterThanAtMost_subseteq_atLeastAtMost_iff
tff(fact_6399_greaterThanAtMost__subseteq__atLeastLessThan__iff,axiom,
! [A: $tType] :
( dense_linorder(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),set_or3652927894154168847AtMost(A,A2,B2)),set_or7035219750837199246ssThan(A,C2,D2)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),D2)) ) ) ) ) ).
% greaterThanAtMost_subseteq_atLeastLessThan_iff
tff(fact_6400_greaterThanLessThan__subseteq__greaterThanAtMost__iff,axiom,
! [A: $tType] :
( dense_linorder(A)
=> ! [A2: A,B2: A,C2: A,D2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),set_or5935395276787703475ssThan(A,A2,B2)),set_or3652927894154168847AtMost(A,C2,D2)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),D2)) ) ) ) ) ).
% greaterThanLessThan_subseteq_greaterThanAtMost_iff
tff(fact_6401_greaterThanAtMost__eq__atLeastAtMost__diff,axiom,
! [A: $tType] :
( order(A)
=> ! [A2: A,B2: A] : ( set_or3652927894154168847AtMost(A,A2,B2) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),set_or1337092689740270186AtMost(A,A2,B2)),aa(set(A),set(A),insert(A,A2),bot_bot(set(A)))) ) ) ).
% greaterThanAtMost_eq_atLeastAtMost_diff
tff(fact_6402_insert__subsetI,axiom,
! [A: $tType,X2: A,A3: set(A),X6: set(A)] :
( pp(member(A,X2,A3))
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),X6),A3))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(A),set(A),insert(A,X2),X6)),A3)) ) ) ).
% insert_subsetI
tff(fact_6403_num__of__nat_Osimps_I2_J,axiom,
! [N: nat] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(nat,num,num_of_nat,aa(nat,nat,suc,N)) = inc(aa(nat,num,num_of_nat,N)) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(nat,num,num_of_nat,aa(nat,nat,suc,N)) = one2 ) ) ) ).
% num_of_nat.simps(2)
tff(fact_6404_finite__greaterThanAtMost__int,axiom,
! [L: int,U: int] : finite_finite(int,set_or3652927894154168847AtMost(int,L,U)) ).
% finite_greaterThanAtMost_int
tff(fact_6405_num__of__nat__numeral__eq,axiom,
! [Q2: num] : ( aa(nat,num,num_of_nat,aa(num,nat,numeral_numeral(nat),Q2)) = Q2 ) ).
% num_of_nat_numeral_eq
tff(fact_6406_card__greaterThanAtMost__int,axiom,
! [L: int,U: int] : ( aa(set(int),nat,finite_card(int),set_or3652927894154168847AtMost(int,L,U)) = aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),minus_minus(int),U),L)) ) ).
% card_greaterThanAtMost_int
tff(fact_6407_num__of__nat_Osimps_I1_J,axiom,
aa(nat,num,num_of_nat,zero_zero(nat)) = one2 ).
% num_of_nat.simps(1)
tff(fact_6408_ssubst__Pair__rhs,axiom,
! [B: $tType,A: $tType,R: A,S2: B,R2: set(product_prod(A,B)),S7: B] :
( pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),R),S2),R2))
=> ( ( S7 = S2 )
=> pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),R),S7),R2)) ) ) ).
% ssubst_Pair_rhs
tff(fact_6409_atLeastPlusOneAtMost__greaterThanAtMost__int,axiom,
! [L: int,U: int] : ( set_or1337092689740270186AtMost(int,aa(int,int,aa(int,fun(int,int),plus_plus(int),L),one_one(int)),U) = set_or3652927894154168847AtMost(int,L,U) ) ).
% atLeastPlusOneAtMost_greaterThanAtMost_int
tff(fact_6410_numeral__num__of__nat,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(num,nat,numeral_numeral(nat),aa(nat,num,num_of_nat,N)) = N ) ) ).
% numeral_num_of_nat
tff(fact_6411_num__of__nat__One,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),one_one(nat)))
=> ( aa(nat,num,num_of_nat,N) = one2 ) ) ).
% num_of_nat_One
tff(fact_6412_num__of__nat__code,axiom,
num_of_nat = aa(fun(nat,code_integer),fun(nat,num),comp(code_integer,num,nat,code_num_of_integer),semiring_1_of_nat(code_integer)) ).
% num_of_nat_code
tff(fact_6413_Collect__restrict,axiom,
! [A: $tType,X6: set(A),P: fun(A,bool)] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(fun(A,bool),set(A),collect(A),aa(fun(A,bool),fun(A,bool),aTP_Lamp_ab(set(A),fun(fun(A,bool),fun(A,bool)),X6),P))),X6)) ).
% Collect_restrict
tff(fact_6414_prop__restrict,axiom,
! [A: $tType,X2: A,Z6: set(A),X6: set(A),P: fun(A,bool)] :
( pp(member(A,X2,Z6))
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),Z6),aa(fun(A,bool),set(A),collect(A),aa(fun(A,bool),fun(A,bool),aTP_Lamp_ab(set(A),fun(fun(A,bool),fun(A,bool)),X6),P))))
=> pp(aa(A,bool,P,X2)) ) ) ).
% prop_restrict
tff(fact_6415_numeral__num__of__nat__unfold,axiom,
! [A: $tType] :
( semiring_1(A)
=> ! [N: nat] :
( ( ( N = zero_zero(nat) )
=> ( aa(num,A,numeral_numeral(A),aa(nat,num,num_of_nat,N)) = one_one(A) ) )
& ( ( N != zero_zero(nat) )
=> ( aa(num,A,numeral_numeral(A),aa(nat,num,num_of_nat,N)) = aa(nat,A,semiring_1_of_nat(A),N) ) ) ) ) ).
% numeral_num_of_nat_unfold
tff(fact_6416_num__of__nat__double,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(nat,num,num_of_nat,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),N)) = bit0(aa(nat,num,num_of_nat,N)) ) ) ).
% num_of_nat_double
tff(fact_6417_num__of__nat__plus__distrib,axiom,
! [M: nat,N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),M))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(nat,num,num_of_nat,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N)) = aa(num,num,aa(num,fun(num,num),plus_plus(num),aa(nat,num,num_of_nat,M)),aa(nat,num,num_of_nat,N)) ) ) ) ).
% num_of_nat_plus_distrib
tff(fact_6418_subset__emptyI,axiom,
! [A: $tType,A3: set(A)] :
( ! [X3: A] : ~ pp(member(A,X3,A3))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),bot_bot(set(A)))) ) ).
% subset_emptyI
tff(fact_6419_pred__nat__def,axiom,
pred_nat = aa(fun(product_prod(nat,nat),bool),set(product_prod(nat,nat)),collect(product_prod(nat,nat)),aa(fun(nat,fun(nat,bool)),fun(product_prod(nat,nat),bool),product_case_prod(nat,nat,bool),aTP_Lamp_qc(nat,fun(nat,bool)))) ).
% pred_nat_def
tff(fact_6420_nths__shift__lemma,axiom,
! [A: $tType,A3: set(nat),Xs: list(A),I: nat] : ( aa(list(product_prod(A,nat)),list(A),map(product_prod(A,nat),A,product_fst(A,nat)),aa(list(product_prod(A,nat)),list(product_prod(A,nat)),filter2(product_prod(A,nat),aTP_Lamp_qd(set(nat),fun(product_prod(A,nat),bool),A3)),zip(A,nat,Xs,upt(I,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),aa(list(A),nat,size_size(list(A)),Xs)))))) = aa(list(product_prod(A,nat)),list(A),map(product_prod(A,nat),A,product_fst(A,nat)),aa(list(product_prod(A,nat)),list(product_prod(A,nat)),filter2(product_prod(A,nat),aa(nat,fun(product_prod(A,nat),bool),aTP_Lamp_qe(set(nat),fun(nat,fun(product_prod(A,nat),bool)),A3),I)),zip(A,nat,Xs,upt(zero_zero(nat),aa(list(A),nat,size_size(list(A)),Xs))))) ) ).
% nths_shift_lemma
tff(fact_6421_zip__Nil,axiom,
! [B: $tType,A: $tType,Ys: list(B)] : ( zip(A,B,nil(A),Ys) = nil(product_prod(A,B)) ) ).
% zip_Nil
tff(fact_6422_Nil__eq__zip__iff,axiom,
! [A: $tType,B: $tType,Xs: list(A),Ys: list(B)] :
( ( nil(product_prod(A,B)) = zip(A,B,Xs,Ys) )
<=> ( ( Xs = nil(A) )
| ( Ys = nil(B) ) ) ) ).
% Nil_eq_zip_iff
tff(fact_6423_zip__eq__Nil__iff,axiom,
! [A: $tType,B: $tType,Xs: list(A),Ys: list(B)] :
( ( zip(A,B,Xs,Ys) = nil(product_prod(A,B)) )
<=> ( ( Xs = nil(A) )
| ( Ys = nil(B) ) ) ) ).
% zip_eq_Nil_iff
tff(fact_6424_map__fst__zip,axiom,
! [B: $tType,A: $tType,Xs: list(A),Ys: list(B)] :
( ( aa(list(A),nat,size_size(list(A)),Xs) = aa(list(B),nat,size_size(list(B)),Ys) )
=> ( aa(list(product_prod(A,B)),list(A),map(product_prod(A,B),A,product_fst(A,B)),zip(A,B,Xs,Ys)) = Xs ) ) ).
% map_fst_zip
tff(fact_6425_map__snd__zip,axiom,
! [A: $tType,B: $tType,Xs: list(A),Ys: list(B)] :
( ( aa(list(A),nat,size_size(list(A)),Xs) = aa(list(B),nat,size_size(list(B)),Ys) )
=> ( aa(list(product_prod(A,B)),list(B),map(product_prod(A,B),B,product_snd(A,B)),zip(A,B,Xs,Ys)) = Ys ) ) ).
% map_snd_zip
tff(fact_6426_map__of__zip__is__None,axiom,
! [B: $tType,A: $tType,Xs: list(A),Ys: list(B),X2: A] :
( ( aa(list(A),nat,size_size(list(A)),Xs) = aa(list(B),nat,size_size(list(B)),Ys) )
=> ( ( aa(A,option(B),map_of(A,B,zip(A,B,Xs,Ys)),X2) = none(B) )
<=> ~ pp(member(A,X2,aa(list(A),set(A),set2(A),Xs))) ) ) ).
% map_of_zip_is_None
tff(fact_6427_nth__zip,axiom,
! [A: $tType,B: $tType,I: nat,Xs: list(A),Ys: list(B)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),aa(list(B),nat,size_size(list(B)),Ys)))
=> ( aa(nat,product_prod(A,B),nth(product_prod(A,B),zip(A,B,Xs,Ys)),I) = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),aa(nat,A,nth(A,Xs),I)),aa(nat,B,nth(B,Ys),I)) ) ) ) ).
% nth_zip
tff(fact_6428_zip__assoc,axiom,
! [B: $tType,A: $tType,C: $tType,Xs: list(A),Ys: list(B),Zs: list(C)] : ( zip(A,product_prod(B,C),Xs,zip(B,C,Ys,Zs)) = aa(list(product_prod(product_prod(A,B),C)),list(product_prod(A,product_prod(B,C))),map(product_prod(product_prod(A,B),C),product_prod(A,product_prod(B,C)),aa(fun(product_prod(A,B),fun(C,product_prod(A,product_prod(B,C)))),fun(product_prod(product_prod(A,B),C),product_prod(A,product_prod(B,C))),product_case_prod(product_prod(A,B),C,product_prod(A,product_prod(B,C))),aa(fun(A,fun(B,fun(C,product_prod(A,product_prod(B,C))))),fun(product_prod(A,B),fun(C,product_prod(A,product_prod(B,C)))),product_case_prod(A,B,fun(C,product_prod(A,product_prod(B,C)))),aTP_Lamp_qf(A,fun(B,fun(C,product_prod(A,product_prod(B,C)))))))),zip(product_prod(A,B),C,zip(A,B,Xs,Ys),Zs)) ) ).
% zip_assoc
tff(fact_6429_zip__left__commute,axiom,
! [B: $tType,A: $tType,C: $tType,Xs: list(A),Ys: list(B),Zs: list(C)] : ( zip(A,product_prod(B,C),Xs,zip(B,C,Ys,Zs)) = aa(list(product_prod(B,product_prod(A,C))),list(product_prod(A,product_prod(B,C))),map(product_prod(B,product_prod(A,C)),product_prod(A,product_prod(B,C)),aa(fun(B,fun(product_prod(A,C),product_prod(A,product_prod(B,C)))),fun(product_prod(B,product_prod(A,C)),product_prod(A,product_prod(B,C))),product_case_prod(B,product_prod(A,C),product_prod(A,product_prod(B,C))),aTP_Lamp_qh(B,fun(product_prod(A,C),product_prod(A,product_prod(B,C)))))),zip(B,product_prod(A,C),Ys,zip(A,C,Xs,Zs))) ) ).
% zip_left_commute
tff(fact_6430_zip__same__conv__map,axiom,
! [A: $tType,Xs: list(A)] : ( zip(A,A,Xs,Xs) = aa(list(A),list(product_prod(A,A)),map(A,product_prod(A,A),aTP_Lamp_nr(A,product_prod(A,A))),Xs) ) ).
% zip_same_conv_map
tff(fact_6431_zip__update,axiom,
! [A: $tType,B: $tType,Xs: list(A),I: nat,X2: A,Ys: list(B),Y: B] : ( zip(A,B,list_update(A,Xs,I,X2),list_update(B,Ys,I,Y)) = list_update(product_prod(A,B),zip(A,B,Xs,Ys),I,aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X2),Y)) ) ).
% zip_update
tff(fact_6432_zip__rev,axiom,
! [A: $tType,B: $tType,Xs: list(A),Ys: list(B)] :
( ( aa(list(A),nat,size_size(list(A)),Xs) = aa(list(B),nat,size_size(list(B)),Ys) )
=> ( zip(A,B,aa(list(A),list(A),rev(A),Xs),aa(list(B),list(B),rev(B),Ys)) = aa(list(product_prod(A,B)),list(product_prod(A,B)),rev(product_prod(A,B)),zip(A,B,Xs,Ys)) ) ) ).
% zip_rev
tff(fact_6433_zip_Osimps_I1_J,axiom,
! [B: $tType,A: $tType,Xs: list(A)] : ( zip(A,B,Xs,nil(B)) = nil(product_prod(A,B)) ) ).
% zip.simps(1)
tff(fact_6434_zip__takeWhile__fst,axiom,
! [A: $tType,B: $tType,P: fun(A,bool),Xs: list(A),Ys: list(B)] : ( zip(A,B,takeWhile(A,P,Xs),Ys) = takeWhile(product_prod(A,B),aa(fun(product_prod(A,B),A),fun(product_prod(A,B),bool),comp(A,bool,product_prod(A,B),P),product_fst(A,B)),zip(A,B,Xs,Ys)) ) ).
% zip_takeWhile_fst
tff(fact_6435_zip__takeWhile__snd,axiom,
! [A: $tType,B: $tType,Xs: list(A),P: fun(B,bool),Ys: list(B)] : ( zip(A,B,Xs,takeWhile(B,P,Ys)) = takeWhile(product_prod(A,B),aa(fun(product_prod(A,B),B),fun(product_prod(A,B),bool),comp(B,bool,product_prod(A,B),P),product_snd(A,B)),zip(A,B,Xs,Ys)) ) ).
% zip_takeWhile_snd
tff(fact_6436_distinct__zipI1,axiom,
! [A: $tType,B: $tType,Xs: list(A),Ys: list(B)] :
( distinct(A,Xs)
=> distinct(product_prod(A,B),zip(A,B,Xs,Ys)) ) ).
% distinct_zipI1
tff(fact_6437_distinct__zipI2,axiom,
! [B: $tType,A: $tType,Ys: list(A),Xs: list(B)] :
( distinct(A,Ys)
=> distinct(product_prod(B,A),zip(B,A,Xs,Ys)) ) ).
% distinct_zipI2
tff(fact_6438_hd__zip,axiom,
! [A: $tType,B: $tType,Xs: list(A),Ys: list(B)] :
( ( Xs != nil(A) )
=> ( ( Ys != nil(B) )
=> ( aa(list(product_prod(A,B)),product_prod(A,B),hd(product_prod(A,B)),zip(A,B,Xs,Ys)) = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),aa(list(A),A,hd(A),Xs)),aa(list(B),B,hd(B),Ys)) ) ) ) ).
% hd_zip
tff(fact_6439_zip__same,axiom,
! [A: $tType,A2: A,B2: A,Xs: list(A)] :
( pp(member(product_prod(A,A),aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),A2),B2),aa(list(product_prod(A,A)),set(product_prod(A,A)),set2(product_prod(A,A)),zip(A,A,Xs,Xs))))
<=> ( pp(member(A,A2,aa(list(A),set(A),set2(A),Xs)))
& ( A2 = B2 ) ) ) ).
% zip_same
tff(fact_6440_in__set__zipE,axiom,
! [A: $tType,B: $tType,X2: A,Y: B,Xs: list(A),Ys: list(B)] :
( pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X2),Y),aa(list(product_prod(A,B)),set(product_prod(A,B)),set2(product_prod(A,B)),zip(A,B,Xs,Ys))))
=> ~ ( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ~ pp(member(B,Y,aa(list(B),set(B),set2(B),Ys))) ) ) ).
% in_set_zipE
tff(fact_6441_set__zip__leftD,axiom,
! [B: $tType,A: $tType,X2: A,Y: B,Xs: list(A),Ys: list(B)] :
( pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X2),Y),aa(list(product_prod(A,B)),set(product_prod(A,B)),set2(product_prod(A,B)),zip(A,B,Xs,Ys))))
=> pp(member(A,X2,aa(list(A),set(A),set2(A),Xs))) ) ).
% set_zip_leftD
tff(fact_6442_set__zip__rightD,axiom,
! [A: $tType,B: $tType,X2: A,Y: B,Xs: list(A),Ys: list(B)] :
( pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X2),Y),aa(list(product_prod(A,B)),set(product_prod(A,B)),set2(product_prod(A,B)),zip(A,B,Xs,Ys))))
=> pp(member(B,Y,aa(list(B),set(B),set2(B),Ys))) ) ).
% set_zip_rightD
tff(fact_6443_update__zip,axiom,
! [B: $tType,A: $tType,Xs: list(A),Ys: list(B),I: nat,Xy: product_prod(A,B)] : ( list_update(product_prod(A,B),zip(A,B,Xs,Ys),I,Xy) = zip(A,B,list_update(A,Xs,I,aa(product_prod(A,B),A,product_fst(A,B),Xy)),list_update(B,Ys,I,aa(product_prod(A,B),B,product_snd(A,B),Xy))) ) ).
% update_zip
tff(fact_6444_zip__map__fst__snd,axiom,
! [B: $tType,A: $tType,Zs: list(product_prod(A,B))] : ( zip(A,B,aa(list(product_prod(A,B)),list(A),map(product_prod(A,B),A,product_fst(A,B)),Zs),aa(list(product_prod(A,B)),list(B),map(product_prod(A,B),B,product_snd(A,B)),Zs)) = Zs ) ).
% zip_map_fst_snd
tff(fact_6445_map__of__zip__inject,axiom,
! [B: $tType,A: $tType,Ys: list(A),Xs: list(B),Zs: list(A)] :
( ( aa(list(A),nat,size_size(list(A)),Ys) = aa(list(B),nat,size_size(list(B)),Xs) )
=> ( ( aa(list(A),nat,size_size(list(A)),Zs) = aa(list(B),nat,size_size(list(B)),Xs) )
=> ( distinct(B,Xs)
=> ( ( map_of(B,A,zip(B,A,Xs,Ys)) = map_of(B,A,zip(B,A,Xs,Zs)) )
=> ( Ys = Zs ) ) ) ) ) ).
% map_of_zip_inject
tff(fact_6446_map2__map__map,axiom,
! [C: $tType,A: $tType,B: $tType,D: $tType,H: fun(B,fun(C,A)),F2: fun(D,B),Xs: list(D),G: fun(D,C)] : ( aa(list(product_prod(B,C)),list(A),map(product_prod(B,C),A,aa(fun(B,fun(C,A)),fun(product_prod(B,C),A),product_case_prod(B,C,A),H)),zip(B,C,aa(list(D),list(B),map(D,B,F2),Xs),aa(list(D),list(C),map(D,C,G),Xs))) = aa(list(D),list(A),map(D,A,aa(fun(D,C),fun(D,A),aa(fun(D,B),fun(fun(D,C),fun(D,A)),aTP_Lamp_qi(fun(B,fun(C,A)),fun(fun(D,B),fun(fun(D,C),fun(D,A))),H),F2),G)),Xs) ) ).
% map2_map_map
tff(fact_6447_zip__commute,axiom,
! [B: $tType,A: $tType,Xs: list(A),Ys: list(B)] : ( zip(A,B,Xs,Ys) = aa(list(product_prod(B,A)),list(product_prod(A,B)),map(product_prod(B,A),product_prod(A,B),aa(fun(B,fun(A,product_prod(A,B))),fun(product_prod(B,A),product_prod(A,B)),product_case_prod(B,A,product_prod(A,B)),aTP_Lamp_nu(B,fun(A,product_prod(A,B))))),zip(B,A,Ys,Xs)) ) ).
% zip_commute
tff(fact_6448_in__set__impl__in__set__zip1,axiom,
! [A: $tType,B: $tType,Xs: list(A),Ys: list(B),X2: A] :
( ( aa(list(A),nat,size_size(list(A)),Xs) = aa(list(B),nat,size_size(list(B)),Ys) )
=> ( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ~ ! [Y3: B] : ~ pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X2),Y3),aa(list(product_prod(A,B)),set(product_prod(A,B)),set2(product_prod(A,B)),zip(A,B,Xs,Ys)))) ) ) ).
% in_set_impl_in_set_zip1
tff(fact_6449_in__set__impl__in__set__zip2,axiom,
! [A: $tType,B: $tType,Xs: list(A),Ys: list(B),Y: B] :
( ( aa(list(A),nat,size_size(list(A)),Xs) = aa(list(B),nat,size_size(list(B)),Ys) )
=> ( pp(member(B,Y,aa(list(B),set(B),set2(B),Ys)))
=> ~ ! [X3: A] : ~ pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X3),Y),aa(list(product_prod(A,B)),set(product_prod(A,B)),set2(product_prod(A,B)),zip(A,B,Xs,Ys)))) ) ) ).
% in_set_impl_in_set_zip2
tff(fact_6450_map__of__zip__is__Some,axiom,
! [A: $tType,B: $tType,Xs: list(A),Ys: list(B),X2: A] :
( ( aa(list(A),nat,size_size(list(A)),Xs) = aa(list(B),nat,size_size(list(B)),Ys) )
=> ( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
<=> ? [Y2: B] : ( aa(A,option(B),map_of(A,B,zip(A,B,Xs,Ys)),X2) = aa(B,option(B),some(B),Y2) ) ) ) ).
% map_of_zip_is_Some
tff(fact_6451_zip__eq__conv,axiom,
! [A: $tType,B: $tType,Xs: list(A),Ys: list(B),Zs: list(product_prod(A,B))] :
( ( aa(list(A),nat,size_size(list(A)),Xs) = aa(list(B),nat,size_size(list(B)),Ys) )
=> ( ( zip(A,B,Xs,Ys) = Zs )
<=> ( ( aa(list(product_prod(A,B)),list(A),map(product_prod(A,B),A,product_fst(A,B)),Zs) = Xs )
& ( aa(list(product_prod(A,B)),list(B),map(product_prod(A,B),B,product_snd(A,B)),Zs) = Ys ) ) ) ) ).
% zip_eq_conv
tff(fact_6452_map__zip__map,axiom,
! [B: $tType,A: $tType,D: $tType,C: $tType,F2: fun(product_prod(B,C),A),G: fun(D,B),Xs: list(D),Ys: list(C)] : ( aa(list(product_prod(B,C)),list(A),map(product_prod(B,C),A,F2),zip(B,C,aa(list(D),list(B),map(D,B,G),Xs),Ys)) = aa(list(product_prod(D,C)),list(A),map(product_prod(D,C),A,aa(fun(D,fun(C,A)),fun(product_prod(D,C),A),product_case_prod(D,C,A),aa(fun(D,B),fun(D,fun(C,A)),aTP_Lamp_qj(fun(product_prod(B,C),A),fun(fun(D,B),fun(D,fun(C,A))),F2),G))),zip(D,C,Xs,Ys)) ) ).
% map_zip_map
tff(fact_6453_map__zip__map2,axiom,
! [C: $tType,A: $tType,B: $tType,D: $tType,F2: fun(product_prod(B,C),A),Xs: list(B),G: fun(D,C),Ys: list(D)] : ( aa(list(product_prod(B,C)),list(A),map(product_prod(B,C),A,F2),zip(B,C,Xs,aa(list(D),list(C),map(D,C,G),Ys))) = aa(list(product_prod(B,D)),list(A),map(product_prod(B,D),A,aa(fun(B,fun(D,A)),fun(product_prod(B,D),A),product_case_prod(B,D,A),aa(fun(D,C),fun(B,fun(D,A)),aTP_Lamp_qk(fun(product_prod(B,C),A),fun(fun(D,C),fun(B,fun(D,A))),F2),G))),zip(B,D,Xs,Ys)) ) ).
% map_zip_map2
tff(fact_6454_zip__map1,axiom,
! [A: $tType,C: $tType,B: $tType,F2: fun(C,A),Xs: list(C),Ys: list(B)] : ( zip(A,B,aa(list(C),list(A),map(C,A,F2),Xs),Ys) = aa(list(product_prod(C,B)),list(product_prod(A,B)),map(product_prod(C,B),product_prod(A,B),aa(fun(C,fun(B,product_prod(A,B))),fun(product_prod(C,B),product_prod(A,B)),product_case_prod(C,B,product_prod(A,B)),aTP_Lamp_ql(fun(C,A),fun(C,fun(B,product_prod(A,B))),F2))),zip(C,B,Xs,Ys)) ) ).
% zip_map1
tff(fact_6455_zip__map2,axiom,
! [B: $tType,A: $tType,C: $tType,Xs: list(A),F2: fun(C,B),Ys: list(C)] : ( zip(A,B,Xs,aa(list(C),list(B),map(C,B,F2),Ys)) = aa(list(product_prod(A,C)),list(product_prod(A,B)),map(product_prod(A,C),product_prod(A,B),aa(fun(A,fun(C,product_prod(A,B))),fun(product_prod(A,C),product_prod(A,B)),product_case_prod(A,C,product_prod(A,B)),aTP_Lamp_qm(fun(C,B),fun(A,fun(C,product_prod(A,B))),F2))),zip(A,C,Xs,Ys)) ) ).
% zip_map2
tff(fact_6456_zip__map__map,axiom,
! [B: $tType,A: $tType,C: $tType,D: $tType,F2: fun(C,A),Xs: list(C),G: fun(D,B),Ys: list(D)] : ( zip(A,B,aa(list(C),list(A),map(C,A,F2),Xs),aa(list(D),list(B),map(D,B,G),Ys)) = aa(list(product_prod(C,D)),list(product_prod(A,B)),map(product_prod(C,D),product_prod(A,B),aa(fun(C,fun(D,product_prod(A,B))),fun(product_prod(C,D),product_prod(A,B)),product_case_prod(C,D,product_prod(A,B)),aa(fun(D,B),fun(C,fun(D,product_prod(A,B))),aTP_Lamp_qn(fun(C,A),fun(fun(D,B),fun(C,fun(D,product_prod(A,B)))),F2),G))),zip(C,D,Xs,Ys)) ) ).
% zip_map_map
tff(fact_6457_map__of__zip__map,axiom,
! [A: $tType,B: $tType,Xs: list(A),F2: fun(A,B),X: A] :
( ( pp(member(A,X,aa(list(A),set(A),set2(A),Xs)))
=> ( aa(A,option(B),map_of(A,B,zip(A,B,Xs,aa(list(A),list(B),map(A,B,F2),Xs))),X) = aa(B,option(B),some(B),aa(A,B,F2,X)) ) )
& ( ~ pp(member(A,X,aa(list(A),set(A),set2(A),Xs)))
=> ( aa(A,option(B),map_of(A,B,zip(A,B,Xs,aa(list(A),list(B),map(A,B,F2),Xs))),X) = none(B) ) ) ) ).
% map_of_zip_map
tff(fact_6458_nths__shift__lemma__Suc,axiom,
! [A: $tType,P: fun(nat,bool),Xs: list(A),Is: list(nat)] : ( aa(list(product_prod(A,nat)),list(A),map(product_prod(A,nat),A,product_fst(A,nat)),aa(list(product_prod(A,nat)),list(product_prod(A,nat)),filter2(product_prod(A,nat),aTP_Lamp_qo(fun(nat,bool),fun(product_prod(A,nat),bool),P)),zip(A,nat,Xs,Is))) = aa(list(product_prod(A,nat)),list(A),map(product_prod(A,nat),A,product_fst(A,nat)),aa(list(product_prod(A,nat)),list(product_prod(A,nat)),filter2(product_prod(A,nat),aTP_Lamp_qp(fun(nat,bool),fun(product_prod(A,nat),bool),P)),zip(A,nat,Xs,aa(list(nat),list(nat),map(nat,nat,suc),Is)))) ) ).
% nths_shift_lemma_Suc
tff(fact_6459_in__set__zip,axiom,
! [A: $tType,B: $tType,P2: product_prod(A,B),Xs: list(A),Ys: list(B)] :
( pp(member(product_prod(A,B),P2,aa(list(product_prod(A,B)),set(product_prod(A,B)),set2(product_prod(A,B)),zip(A,B,Xs,Ys))))
<=> ? [N5: nat] :
( ( aa(nat,A,nth(A,Xs),N5) = aa(product_prod(A,B),A,product_fst(A,B),P2) )
& ( aa(nat,B,nth(B,Ys),N5) = aa(product_prod(A,B),B,product_snd(A,B),P2) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N5),aa(list(A),nat,size_size(list(A)),Xs)))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N5),aa(list(B),nat,size_size(list(B)),Ys))) ) ) ).
% in_set_zip
tff(fact_6460_map__of__zip__nth,axiom,
! [A: $tType,B: $tType,Xs: list(A),Ys: list(B),I: nat] :
( ( aa(list(A),nat,size_size(list(A)),Xs) = aa(list(B),nat,size_size(list(B)),Ys) )
=> ( distinct(A,Xs)
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),aa(list(B),nat,size_size(list(B)),Ys)))
=> ( aa(A,option(B),map_of(A,B,zip(A,B,Xs,Ys)),aa(nat,A,nth(A,Xs),I)) = aa(B,option(B),some(B),aa(nat,B,nth(B,Ys),I)) ) ) ) ) ).
% map_of_zip_nth
tff(fact_6461_nths__def,axiom,
! [A: $tType,Xs: list(A),A3: set(nat)] : ( nths(A,Xs,A3) = aa(list(product_prod(A,nat)),list(A),map(product_prod(A,nat),A,product_fst(A,nat)),aa(list(product_prod(A,nat)),list(product_prod(A,nat)),filter2(product_prod(A,nat),aTP_Lamp_qd(set(nat),fun(product_prod(A,nat),bool),A3)),zip(A,nat,Xs,upt(zero_zero(nat),aa(list(A),nat,size_size(list(A)),Xs))))) ) ).
% nths_def
tff(fact_6462_ran__map__of__zip,axiom,
! [A: $tType,B: $tType,Xs: list(A),Ys: list(B)] :
( ( aa(list(A),nat,size_size(list(A)),Xs) = aa(list(B),nat,size_size(list(B)),Ys) )
=> ( distinct(A,Xs)
=> ( ran(A,B,map_of(A,B,zip(A,B,Xs,Ys))) = aa(list(B),set(B),set2(B),Ys) ) ) ) ).
% ran_map_of_zip
tff(fact_6463_nths__nil,axiom,
! [A: $tType,A3: set(nat)] : ( nths(A,nil(A),A3) = nil(A) ) ).
% nths_nil
tff(fact_6464_nths__empty,axiom,
! [A: $tType,Xs: list(A)] : ( nths(A,Xs,bot_bot(set(nat))) = nil(A) ) ).
% nths_empty
tff(fact_6465_ran__empty,axiom,
! [B: $tType,A: $tType] : ( ran(B,A,aTP_Lamp_qq(B,option(A))) = bot_bot(set(A)) ) ).
% ran_empty
tff(fact_6466_nths__map,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),Xs: list(B),I5: set(nat)] : ( nths(A,aa(list(B),list(A),map(B,A,F2),Xs),I5) = aa(list(B),list(A),map(B,A,F2),nths(B,Xs,I5)) ) ).
% nths_map
tff(fact_6467_distinct__nthsI,axiom,
! [A: $tType,Xs: list(A),I5: set(nat)] :
( distinct(A,Xs)
=> distinct(A,nths(A,Xs,I5)) ) ).
% distinct_nthsI
tff(fact_6468_notin__set__nthsI,axiom,
! [A: $tType,X2: A,Xs: list(A),I5: set(nat)] :
( ~ pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ~ pp(member(A,X2,aa(list(A),set(A),set2(A),nths(A,Xs,I5)))) ) ).
% notin_set_nthsI
tff(fact_6469_in__set__nthsD,axiom,
! [A: $tType,X2: A,Xs: list(A),I5: set(nat)] :
( pp(member(A,X2,aa(list(A),set(A),set2(A),nths(A,Xs,I5))))
=> pp(member(A,X2,aa(list(A),set(A),set2(A),Xs))) ) ).
% in_set_nthsD
tff(fact_6470_ranI,axiom,
! [A: $tType,B: $tType,M: fun(B,option(A)),A2: B,B2: A] :
( ( aa(B,option(A),M,A2) = aa(A,option(A),some(A),B2) )
=> pp(member(A,B2,ran(B,A,M))) ) ).
% ranI
tff(fact_6471_set__nths__subset,axiom,
! [A: $tType,Xs: list(A),I5: set(nat)] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(list(A),set(A),set2(A),nths(A,Xs,I5))),aa(list(A),set(A),set2(A),Xs))) ).
% set_nths_subset
tff(fact_6472_nths__all,axiom,
! [A: $tType,Xs: list(A),I5: set(nat)] :
( ! [I3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I3),aa(list(A),nat,size_size(list(A)),Xs)))
=> pp(member(nat,I3,I5)) )
=> ( nths(A,Xs,I5) = Xs ) ) ).
% nths_all
tff(fact_6473_sorted__nths,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Xs: list(A),I5: set(nat)] :
( sorted_wrt(A,ord_less_eq(A),Xs)
=> sorted_wrt(A,ord_less_eq(A),nths(A,Xs,I5)) ) ) ).
% sorted_nths
tff(fact_6474_enumerate__eq__zip,axiom,
! [A: $tType,N: nat,Xs: list(A)] : ( enumerate(A,N,Xs) = zip(nat,A,upt(N,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),aa(list(A),nat,size_size(list(A)),Xs))),Xs) ) ).
% enumerate_eq_zip
tff(fact_6475_filter__in__nths,axiom,
! [A: $tType,Xs: list(A),S2: set(nat)] :
( distinct(A,Xs)
=> ( aa(list(A),list(A),filter2(A,aa(set(nat),fun(A,bool),aTP_Lamp_qr(list(A),fun(set(nat),fun(A,bool)),Xs),S2)),Xs) = nths(A,Xs,S2) ) ) ).
% filter_in_nths
tff(fact_6476_length__nths,axiom,
! [A: $tType,Xs: list(A),I5: set(nat)] : ( aa(list(A),nat,size_size(list(A)),nths(A,Xs,I5)) = aa(set(nat),nat,finite_card(nat),aa(fun(nat,bool),set(nat),collect(nat),aa(set(nat),fun(nat,bool),aTP_Lamp_qs(list(A),fun(set(nat),fun(nat,bool)),Xs),I5))) ) ).
% length_nths
tff(fact_6477_filter__eq__nths,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] : ( aa(list(A),list(A),filter2(A,P),Xs) = nths(A,Xs,aa(fun(nat,bool),set(nat),collect(nat),aa(list(A),fun(nat,bool),aTP_Lamp_pc(fun(A,bool),fun(list(A),fun(nat,bool)),P),Xs))) ) ).
% filter_eq_nths
tff(fact_6478_eq__numeral__iff__iszero_I7_J,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [X2: num] :
( ( aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),X2)) = one_one(A) )
<=> ring_1_iszero(A,aa(num,A,numeral_numeral(A),aa(num,num,aa(num,fun(num,num),plus_plus(num),X2),one2))) ) ) ).
% eq_numeral_iff_iszero(7)
tff(fact_6479_eq__numeral__iff__iszero_I8_J,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [Y: num] :
( ( one_one(A) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),Y)) )
<=> ring_1_iszero(A,aa(num,A,numeral_numeral(A),aa(num,num,aa(num,fun(num,num),plus_plus(num),one2),Y))) ) ) ).
% eq_numeral_iff_iszero(8)
tff(fact_6480_iszero__neg__numeral,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [W: num] :
( ring_1_iszero(A,aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),W)))
<=> ring_1_iszero(A,aa(num,A,numeral_numeral(A),W)) ) ) ).
% iszero_neg_numeral
tff(fact_6481_eq__iff__iszero__diff,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [X2: A,Y: A] :
( ( X2 = Y )
<=> ring_1_iszero(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y)) ) ) ).
% eq_iff_iszero_diff
tff(fact_6482_iszero__0,axiom,
! [A: $tType] :
( ring_1(A)
=> ring_1_iszero(A,zero_zero(A)) ) ).
% iszero_0
tff(fact_6483_iszero__def,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [Z: A] :
( ring_1_iszero(A,Z)
<=> ( Z = zero_zero(A) ) ) ) ).
% iszero_def
tff(fact_6484_not__iszero__1,axiom,
! [A: $tType] :
( ring_1(A)
=> ~ ring_1_iszero(A,one_one(A)) ) ).
% not_iszero_1
tff(fact_6485_not__iszero__numeral,axiom,
! [A: $tType] :
( ring_char_0(A)
=> ! [W: num] : ~ ring_1_iszero(A,aa(num,A,numeral_numeral(A),W)) ) ).
% not_iszero_numeral
tff(fact_6486_eq__numeral__iff__iszero_I10_J,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [Y: num] :
( ( zero_zero(A) = aa(num,A,numeral_numeral(A),Y) )
<=> ring_1_iszero(A,aa(num,A,numeral_numeral(A),Y)) ) ) ).
% eq_numeral_iff_iszero(10)
tff(fact_6487_eq__numeral__iff__iszero_I9_J,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [X2: num] :
( ( aa(num,A,numeral_numeral(A),X2) = zero_zero(A) )
<=> ring_1_iszero(A,aa(num,A,numeral_numeral(A),X2)) ) ) ).
% eq_numeral_iff_iszero(9)
tff(fact_6488_not__iszero__Numeral1,axiom,
! [A: $tType] :
( ring_1(A)
=> ~ ring_1_iszero(A,aa(num,A,numeral_numeral(A),one2)) ) ).
% not_iszero_Numeral1
tff(fact_6489_not__iszero__neg__1,axiom,
! [A: $tType] :
( ring_1(A)
=> ~ ring_1_iszero(A,aa(A,A,uminus_uminus(A),one_one(A))) ) ).
% not_iszero_neg_1
tff(fact_6490_eq__numeral__iff__iszero_I1_J,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [X2: num,Y: num] :
( ( aa(num,A,numeral_numeral(A),X2) = aa(num,A,numeral_numeral(A),Y) )
<=> ring_1_iszero(A,neg_numeral_sub(A,X2,Y)) ) ) ).
% eq_numeral_iff_iszero(1)
tff(fact_6491_eq__numeral__iff__iszero_I11_J,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [X2: num] :
( ( aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),X2)) = zero_zero(A) )
<=> ring_1_iszero(A,aa(num,A,numeral_numeral(A),X2)) ) ) ).
% eq_numeral_iff_iszero(11)
tff(fact_6492_eq__numeral__iff__iszero_I12_J,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [Y: num] :
( ( zero_zero(A) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),Y)) )
<=> ring_1_iszero(A,aa(num,A,numeral_numeral(A),Y)) ) ) ).
% eq_numeral_iff_iszero(12)
tff(fact_6493_not__iszero__neg__Numeral1,axiom,
! [A: $tType] :
( ring_1(A)
=> ~ ring_1_iszero(A,aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),one2))) ) ).
% not_iszero_neg_Numeral1
tff(fact_6494_eq__numeral__iff__iszero_I3_J,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [X2: num,Y: num] :
( ( aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),X2)) = aa(num,A,numeral_numeral(A),Y) )
<=> ring_1_iszero(A,aa(num,A,numeral_numeral(A),aa(num,num,aa(num,fun(num,num),plus_plus(num),X2),Y))) ) ) ).
% eq_numeral_iff_iszero(3)
tff(fact_6495_eq__numeral__iff__iszero_I2_J,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [X2: num,Y: num] :
( ( aa(num,A,numeral_numeral(A),X2) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),Y)) )
<=> ring_1_iszero(A,aa(num,A,numeral_numeral(A),aa(num,num,aa(num,fun(num,num),plus_plus(num),X2),Y))) ) ) ).
% eq_numeral_iff_iszero(2)
tff(fact_6496_eq__numeral__iff__iszero_I4_J,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [X2: num,Y: num] :
( ( aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),X2)) = aa(A,A,uminus_uminus(A),aa(num,A,numeral_numeral(A),Y)) )
<=> ring_1_iszero(A,neg_numeral_sub(A,Y,X2)) ) ) ).
% eq_numeral_iff_iszero(4)
tff(fact_6497_eq__numeral__iff__iszero_I6_J,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [Y: num] :
( ( one_one(A) = aa(num,A,numeral_numeral(A),Y) )
<=> ring_1_iszero(A,neg_numeral_sub(A,one2,Y)) ) ) ).
% eq_numeral_iff_iszero(6)
tff(fact_6498_eq__numeral__iff__iszero_I5_J,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [X2: num] :
( ( aa(num,A,numeral_numeral(A),X2) = one_one(A) )
<=> ring_1_iszero(A,neg_numeral_sub(A,X2,one2)) ) ) ).
% eq_numeral_iff_iszero(5)
tff(fact_6499_map__of__map__restrict,axiom,
! [B: $tType,A: $tType,F2: fun(A,B),Ks: list(A)] : ( map_of(A,B,aa(list(A),list(product_prod(A,B)),map(A,product_prod(A,B),aTP_Lamp_qt(fun(A,B),fun(A,product_prod(A,B)),F2)),Ks)) = restrict_map(A,B,aa(fun(A,B),fun(A,option(B)),comp(B,option(B),A,some(B)),F2),aa(list(A),set(A),set2(A),Ks)) ) ).
% map_of_map_restrict
tff(fact_6500_prod_Oinsert_H,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [I5: set(B),P2: fun(B,A),I: B] :
( finite_finite(B,aa(fun(B,bool),set(B),collect(B),aa(fun(B,A),fun(B,bool),aTP_Lamp_lj(set(B),fun(fun(B,A),fun(B,bool)),I5),P2)))
=> ( ( pp(member(B,I,I5))
=> ( groups1962203154675924110t_prod(B,A,P2,aa(set(B),set(B),insert(B,I),I5)) = groups1962203154675924110t_prod(B,A,P2,I5) ) )
& ( ~ pp(member(B,I,I5))
=> ( groups1962203154675924110t_prod(B,A,P2,aa(set(B),set(B),insert(B,I),I5)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(B,A,P2,I)),groups1962203154675924110t_prod(B,A,P2,I5)) ) ) ) ) ) ).
% prod.insert'
tff(fact_6501_restrict__out,axiom,
! [A: $tType,B: $tType,X2: A,A3: set(A),M: fun(A,option(B))] :
( ~ pp(member(A,X2,A3))
=> ( aa(A,option(B),restrict_map(A,B,M,A3),X2) = none(B) ) ) ).
% restrict_out
tff(fact_6502_restrict__map__empty,axiom,
! [A: $tType,B: $tType,D5: set(A),X: A] : ( aa(A,option(B),restrict_map(A,B,aTP_Lamp_ol(A,option(B)),D5),X) = none(B) ) ).
% restrict_map_empty
tff(fact_6503_prod_Oempty_H,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_mult(A)
=> ! [P2: fun(B,A)] : ( groups1962203154675924110t_prod(B,A,P2,bot_bot(set(B))) = one_one(A) ) ) ).
% prod.empty'
tff(fact_6504_restrict__map__to__empty,axiom,
! [A: $tType,B: $tType,M: fun(A,option(B)),X: A] : ( aa(A,option(B),restrict_map(A,B,M,bot_bot(set(A))),X) = none(B) ) ).
% restrict_map_to_empty
tff(fact_6505_prod_Onon__neutral_H,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [G: fun(B,A),I5: set(B)] : ( groups1962203154675924110t_prod(B,A,G,aa(fun(B,bool),set(B),collect(B),aa(set(B),fun(B,bool),aTP_Lamp_qu(fun(B,A),fun(set(B),fun(B,bool)),G),I5))) = groups1962203154675924110t_prod(B,A,G,I5) ) ) ).
% prod.non_neutral'
tff(fact_6506_restrict__map__def,axiom,
! [A: $tType,B: $tType,A3: set(A),M: fun(A,option(B)),X: A] :
( ( pp(member(A,X,A3))
=> ( aa(A,option(B),restrict_map(A,B,M,A3),X) = aa(A,option(B),M,X) ) )
& ( ~ pp(member(A,X,A3))
=> ( aa(A,option(B),restrict_map(A,B,M,A3),X) = none(B) ) ) ) ).
% restrict_map_def
tff(fact_6507_ran__restrictD,axiom,
! [B: $tType,A: $tType,Y: A,M: fun(B,option(A)),A3: set(B)] :
( pp(member(A,Y,ran(B,A,restrict_map(B,A,M,A3))))
=> ? [X3: B] :
( pp(member(B,X3,A3))
& ( aa(B,option(A),M,X3) = aa(A,option(A),some(A),Y) ) ) ) ).
% ran_restrictD
tff(fact_6508_prod_Odistrib__triv_H,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [I5: set(B),G: fun(B,A),H: fun(B,A)] :
( finite_finite(B,I5)
=> ( groups1962203154675924110t_prod(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_hj(fun(B,A),fun(fun(B,A),fun(B,A)),G),H),I5) = aa(A,A,aa(A,fun(A,A),times_times(A),groups1962203154675924110t_prod(B,A,G,I5)),groups1962203154675924110t_prod(B,A,H,I5)) ) ) ) ).
% prod.distrib_triv'
tff(fact_6509_prod_Omono__neutral__cong__right_H,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [S: set(B),T6: set(B),G: fun(B,A),H: fun(B,A)] :
( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),S),T6))
=> ( ! [X3: B] :
( pp(member(B,X3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),T6),S)))
=> ( aa(B,A,G,X3) = one_one(A) ) )
=> ( ! [X3: B] :
( pp(member(B,X3,S))
=> ( aa(B,A,G,X3) = aa(B,A,H,X3) ) )
=> ( groups1962203154675924110t_prod(B,A,G,T6) = groups1962203154675924110t_prod(B,A,H,S) ) ) ) ) ) ).
% prod.mono_neutral_cong_right'
tff(fact_6510_prod_Omono__neutral__cong__left_H,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [S: set(B),T6: set(B),H: fun(B,A),G: fun(B,A)] :
( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),S),T6))
=> ( ! [I3: B] :
( pp(member(B,I3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),T6),S)))
=> ( aa(B,A,H,I3) = one_one(A) ) )
=> ( ! [X3: B] :
( pp(member(B,X3,S))
=> ( aa(B,A,G,X3) = aa(B,A,H,X3) ) )
=> ( groups1962203154675924110t_prod(B,A,G,S) = groups1962203154675924110t_prod(B,A,H,T6) ) ) ) ) ) ).
% prod.mono_neutral_cong_left'
tff(fact_6511_prod_Omono__neutral__right_H,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [S: set(B),T6: set(B),G: fun(B,A)] :
( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),S),T6))
=> ( ! [X3: B] :
( pp(member(B,X3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),T6),S)))
=> ( aa(B,A,G,X3) = one_one(A) ) )
=> ( groups1962203154675924110t_prod(B,A,G,T6) = groups1962203154675924110t_prod(B,A,G,S) ) ) ) ) ).
% prod.mono_neutral_right'
tff(fact_6512_prod_Omono__neutral__left_H,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [S: set(B),T6: set(B),G: fun(B,A)] :
( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),S),T6))
=> ( ! [X3: B] :
( pp(member(B,X3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),T6),S)))
=> ( aa(B,A,G,X3) = one_one(A) ) )
=> ( groups1962203154675924110t_prod(B,A,G,S) = groups1962203154675924110t_prod(B,A,G,T6) ) ) ) ) ).
% prod.mono_neutral_left'
tff(fact_6513_prod_Odistrib_H,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [I5: set(B),G: fun(B,A),H: fun(B,A)] :
( finite_finite(B,aa(fun(B,bool),set(B),collect(B),aa(fun(B,A),fun(B,bool),aTP_Lamp_lj(set(B),fun(fun(B,A),fun(B,bool)),I5),G)))
=> ( finite_finite(B,aa(fun(B,bool),set(B),collect(B),aa(fun(B,A),fun(B,bool),aTP_Lamp_lj(set(B),fun(fun(B,A),fun(B,bool)),I5),H)))
=> ( groups1962203154675924110t_prod(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_hj(fun(B,A),fun(fun(B,A),fun(B,A)),G),H),I5) = aa(A,A,aa(A,fun(A,A),times_times(A),groups1962203154675924110t_prod(B,A,G,I5)),groups1962203154675924110t_prod(B,A,H,I5)) ) ) ) ) ).
% prod.distrib'
tff(fact_6514_prod_OG__def,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_mult(A)
=> ! [I5: set(B),P2: fun(B,A)] :
( ( finite_finite(B,aa(fun(B,bool),set(B),collect(B),aa(fun(B,A),fun(B,bool),aTP_Lamp_lj(set(B),fun(fun(B,A),fun(B,bool)),I5),P2)))
=> ( groups1962203154675924110t_prod(B,A,P2,I5) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),P2),aa(fun(B,bool),set(B),collect(B),aa(fun(B,A),fun(B,bool),aTP_Lamp_lj(set(B),fun(fun(B,A),fun(B,bool)),I5),P2))) ) )
& ( ~ finite_finite(B,aa(fun(B,bool),set(B),collect(B),aa(fun(B,A),fun(B,bool),aTP_Lamp_lj(set(B),fun(fun(B,A),fun(B,bool)),I5),P2)))
=> ( groups1962203154675924110t_prod(B,A,P2,I5) = one_one(A) ) ) ) ) ).
% prod.G_def
tff(fact_6515_restrict__map__upds,axiom,
! [A: $tType,B: $tType,Xs: list(A),Ys: list(B),D5: set(A),M: fun(A,option(B))] :
( ( aa(list(A),nat,size_size(list(A)),Xs) = aa(list(B),nat,size_size(list(B)),Ys) )
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(list(A),set(A),set2(A),Xs)),D5))
=> ( restrict_map(A,B,map_upds(A,B,M,Xs,Ys),D5) = map_upds(A,B,restrict_map(A,B,M,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),D5),aa(list(A),set(A),set2(A),Xs))),Xs,Ys) ) ) ) ).
% restrict_map_upds
tff(fact_6516_pow_Osimps_I3_J,axiom,
! [X2: num,Y: num] : ( pow(X2,aa(num,num,bit1,Y)) = aa(num,num,aa(num,fun(num,num),times_times(num),sqr(pow(X2,Y))),X2) ) ).
% pow.simps(3)
tff(fact_6517_map__upds__apply__nontin,axiom,
! [B: $tType,A: $tType,X2: A,Xs: list(A),F2: fun(A,option(B)),Ys: list(B)] :
( ~ pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ( aa(A,option(B),map_upds(A,B,F2,Xs,Ys),X2) = aa(A,option(B),F2,X2) ) ) ).
% map_upds_apply_nontin
tff(fact_6518_map__upds__list__update2__drop,axiom,
! [A: $tType,B: $tType,Xs: list(A),I: nat,M: fun(A,option(B)),Ys: list(B),Y: B] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(list(A),nat,size_size(list(A)),Xs)),I))
=> ( map_upds(A,B,M,Xs,list_update(B,Ys,I,Y)) = map_upds(A,B,M,Xs,Ys) ) ) ).
% map_upds_list_update2_drop
tff(fact_6519_sqr__conv__mult,axiom,
! [X2: num] : ( sqr(X2) = aa(num,num,aa(num,fun(num,num),times_times(num),X2),X2) ) ).
% sqr_conv_mult
tff(fact_6520_sqr_Osimps_I2_J,axiom,
! [N: num] : ( sqr(bit0(N)) = bit0(bit0(sqr(N))) ) ).
% sqr.simps(2)
tff(fact_6521_sqr_Osimps_I1_J,axiom,
sqr(one2) = one2 ).
% sqr.simps(1)
tff(fact_6522_numeral__sqr,axiom,
! [A: $tType] :
( semiring_numeral(A)
=> ! [K: num] : ( aa(num,A,numeral_numeral(A),sqr(K)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),K)),aa(num,A,numeral_numeral(A),K)) ) ) ).
% numeral_sqr
tff(fact_6523_pow_Osimps_I2_J,axiom,
! [X2: num,Y: num] : ( pow(X2,bit0(Y)) = sqr(pow(X2,Y)) ) ).
% pow.simps(2)
tff(fact_6524_sqr_Osimps_I3_J,axiom,
! [N: num] : ( sqr(aa(num,num,bit1,N)) = aa(num,num,bit1,bit0(aa(num,num,aa(num,fun(num,num),plus_plus(num),sqr(N)),N))) ) ).
% sqr.simps(3)
tff(fact_6525_sorted__list__of__set__def,axiom,
! [A: $tType] :
( linorder(A)
=> ( linord4507533701916653071of_set(A) = linord144544945434240204of_set(A,A,aTP_Lamp_nx(A,A)) ) ) ).
% sorted_list_of_set_def
tff(fact_6526_image__minus__const__atLeastLessThan__nat,axiom,
! [C2: nat,Y: nat,X2: nat] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),C2),Y))
=> ( aa(set(nat),set(nat),image(nat,nat,aTP_Lamp_qv(nat,fun(nat,nat),C2)),set_or7035219750837199246ssThan(nat,X2,Y)) = set_or7035219750837199246ssThan(nat,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),X2),C2),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Y),C2)) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),C2),Y))
=> ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),X2),Y))
=> ( aa(set(nat),set(nat),image(nat,nat,aTP_Lamp_qv(nat,fun(nat,nat),C2)),set_or7035219750837199246ssThan(nat,X2,Y)) = aa(set(nat),set(nat),insert(nat,zero_zero(nat)),bot_bot(set(nat))) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),X2),Y))
=> ( aa(set(nat),set(nat),image(nat,nat,aTP_Lamp_qv(nat,fun(nat,nat),C2)),set_or7035219750837199246ssThan(nat,X2,Y)) = bot_bot(set(nat)) ) ) ) ) ) ).
% image_minus_const_atLeastLessThan_nat
tff(fact_6527_bij__betw__Suc,axiom,
! [M7: set(nat),N2: set(nat)] :
( bij_betw(nat,nat,suc,M7,N2)
<=> ( aa(set(nat),set(nat),image(nat,nat,suc),M7) = N2 ) ) ).
% bij_betw_Suc
tff(fact_6528_image__add__0,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [S: set(A)] : ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),plus_plus(A),zero_zero(A))),S) = S ) ) ).
% image_add_0
tff(fact_6529_image__add__atLeastAtMost,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [K: A,I: A,J: A] : ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),plus_plus(A),K)),set_or1337092689740270186AtMost(A,I,J)) = set_or1337092689740270186AtMost(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),I),K),aa(A,A,aa(A,fun(A,A),plus_plus(A),J),K)) ) ) ).
% image_add_atLeastAtMost
tff(fact_6530_image__diff__atLeastAtMost,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [D2: A,A2: A,B2: A] : ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),minus_minus(A),D2)),set_or1337092689740270186AtMost(A,A2,B2)) = set_or1337092689740270186AtMost(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),D2),B2),aa(A,A,aa(A,fun(A,A),minus_minus(A),D2),A2)) ) ) ).
% image_diff_atLeastAtMost
tff(fact_6531_image__uminus__atLeastAtMost,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [X2: A,Y: A] : ( aa(set(A),set(A),image(A,A,uminus_uminus(A)),set_or1337092689740270186AtMost(A,X2,Y)) = set_or1337092689740270186AtMost(A,aa(A,A,uminus_uminus(A),Y),aa(A,A,uminus_uminus(A),X2)) ) ) ).
% image_uminus_atLeastAtMost
tff(fact_6532_image__add__atLeastLessThan,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [K: A,I: A,J: A] : ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),plus_plus(A),K)),set_or7035219750837199246ssThan(A,I,J)) = set_or7035219750837199246ssThan(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),I),K),aa(A,A,aa(A,fun(A,A),plus_plus(A),J),K)) ) ) ).
% image_add_atLeastLessThan
tff(fact_6533_image__add__atMost,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [C2: A,A2: A] : ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),plus_plus(A),C2)),aa(A,set(A),set_ord_atMost(A),A2)) = aa(A,set(A),set_ord_atMost(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),A2)) ) ) ).
% image_add_atMost
tff(fact_6534_list_Oset__map,axiom,
! [B: $tType,A: $tType,F2: fun(A,B),V: list(A)] : ( aa(list(B),set(B),set2(B),aa(list(A),list(B),map(A,B,F2),V)) = aa(set(A),set(B),image(A,B,F2),aa(list(A),set(A),set2(A),V)) ) ).
% list.set_map
tff(fact_6535_bij__betw__add,axiom,
! [A: $tType] :
( cancel_semigroup_add(A)
=> ! [A2: A,A3: set(A),B4: set(A)] :
( bij_betw(A,A,aa(A,fun(A,A),plus_plus(A),A2),A3,B4)
<=> ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),plus_plus(A),A2)),A3) = B4 ) ) ) ).
% bij_betw_add
tff(fact_6536_image__add__greaterThanAtMost,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [C2: A,A2: A,B2: A] : ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),plus_plus(A),C2)),set_or3652927894154168847AtMost(A,A2,B2)) = set_or3652927894154168847AtMost(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),B2)) ) ) ).
% image_add_greaterThanAtMost
tff(fact_6537_image__uminus__greaterThanLessThan,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [X2: A,Y: A] : ( aa(set(A),set(A),image(A,A,uminus_uminus(A)),set_or5935395276787703475ssThan(A,X2,Y)) = set_or5935395276787703475ssThan(A,aa(A,A,uminus_uminus(A),Y),aa(A,A,uminus_uminus(A),X2)) ) ) ).
% image_uminus_greaterThanLessThan
tff(fact_6538_image__Suc__atLeastAtMost,axiom,
! [I: nat,J: nat] : ( aa(set(nat),set(nat),image(nat,nat,suc),set_or1337092689740270186AtMost(nat,I,J)) = set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,I),aa(nat,nat,suc,J)) ) ).
% image_Suc_atLeastAtMost
tff(fact_6539_image__Suc__atLeastLessThan,axiom,
! [I: nat,J: nat] : ( aa(set(nat),set(nat),image(nat,nat,suc),set_or7035219750837199246ssThan(nat,I,J)) = set_or7035219750837199246ssThan(nat,aa(nat,nat,suc,I),aa(nat,nat,suc,J)) ) ).
% image_Suc_atLeastLessThan
tff(fact_6540_bij__betw__of__nat,axiom,
! [A: $tType] :
( semiring_char_0(A)
=> ! [N2: set(nat),A3: set(A)] :
( bij_betw(nat,A,semiring_1_of_nat(A),N2,A3)
<=> ( aa(set(nat),set(A),image(nat,A,semiring_1_of_nat(A)),N2) = A3 ) ) ) ).
% bij_betw_of_nat
tff(fact_6541_image__add__atLeastAtMost_H,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [K: A,I: A,J: A] : ( aa(set(A),set(A),image(A,A,aTP_Lamp_qw(A,fun(A,A),K)),set_or1337092689740270186AtMost(A,I,J)) = set_or1337092689740270186AtMost(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),I),K),aa(A,A,aa(A,fun(A,A),plus_plus(A),J),K)) ) ) ).
% image_add_atLeastAtMost'
tff(fact_6542_image__minus__const__atLeastAtMost_H,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [D2: A,A2: A,B2: A] : ( aa(set(A),set(A),image(A,A,aTP_Lamp_qx(A,fun(A,A),D2)),set_or1337092689740270186AtMost(A,A2,B2)) = set_or1337092689740270186AtMost(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),D2),aa(A,A,aa(A,fun(A,A),minus_minus(A),B2),D2)) ) ) ).
% image_minus_const_atLeastAtMost'
tff(fact_6543_image__add__atLeastLessThan_H,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [K: A,I: A,J: A] : ( aa(set(A),set(A),image(A,A,aTP_Lamp_qw(A,fun(A,A),K)),set_or7035219750837199246ssThan(A,I,J)) = set_or7035219750837199246ssThan(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),I),K),aa(A,A,aa(A,fun(A,A),plus_plus(A),J),K)) ) ) ).
% image_add_atLeastLessThan'
tff(fact_6544_image__diff__atLeastLessThan,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [C2: A,A2: A,B2: A] : ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),minus_minus(A),C2)),set_or7035219750837199246ssThan(A,A2,B2)) = set_or3652927894154168847AtMost(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),C2),B2),aa(A,A,aa(A,fun(A,A),minus_minus(A),C2),A2)) ) ) ).
% image_diff_atLeastLessThan
tff(fact_6545_image__minus__const__greaterThanAtMost,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [C2: A,A2: A,B2: A] : ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),minus_minus(A),C2)),set_or3652927894154168847AtMost(A,A2,B2)) = set_or7035219750837199246ssThan(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),C2),B2),aa(A,A,aa(A,fun(A,A),minus_minus(A),C2),A2)) ) ) ).
% image_minus_const_greaterThanAtMost
tff(fact_6546_image__uminus__atLeastLessThan,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [X2: A,Y: A] : ( aa(set(A),set(A),image(A,A,uminus_uminus(A)),set_or7035219750837199246ssThan(A,X2,Y)) = set_or3652927894154168847AtMost(A,aa(A,A,uminus_uminus(A),Y),aa(A,A,uminus_uminus(A),X2)) ) ) ).
% image_uminus_atLeastLessThan
tff(fact_6547_image__uminus__greaterThanAtMost,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [X2: A,Y: A] : ( aa(set(A),set(A),image(A,A,uminus_uminus(A)),set_or3652927894154168847AtMost(A,X2,Y)) = set_or7035219750837199246ssThan(A,aa(A,A,uminus_uminus(A),Y),aa(A,A,uminus_uminus(A),X2)) ) ) ).
% image_uminus_greaterThanAtMost
tff(fact_6548_INF__eq__bot__iff,axiom,
! [B: $tType,A: $tType] :
( comple5582772986160207858norder(A)
=> ! [F2: fun(B,A),A3: set(B)] :
( ( complete_Inf_Inf(A,aa(set(B),set(A),image(B,A,F2),A3)) = bot_bot(A) )
<=> ! [X4: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),bot_bot(A)),X4))
=> ? [Xa3: B] :
( pp(member(B,Xa3,A3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(B,A,F2,Xa3)),X4)) ) ) ) ) ).
% INF_eq_bot_iff
tff(fact_6549_image__mult__atLeastAtMost,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [D2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),D2))
=> ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),times_times(A),D2)),set_or1337092689740270186AtMost(A,A2,B2)) = set_or1337092689740270186AtMost(A,aa(A,A,aa(A,fun(A,A),times_times(A),D2),A2),aa(A,A,aa(A,fun(A,A),times_times(A),D2),B2)) ) ) ) ).
% image_mult_atLeastAtMost
tff(fact_6550_image__divide__atLeastAtMost,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [D2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),D2))
=> ( aa(set(A),set(A),image(A,A,aTP_Lamp_qy(A,fun(A,A),D2)),set_or1337092689740270186AtMost(A,A2,B2)) = set_or1337092689740270186AtMost(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),D2),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),D2)) ) ) ) ).
% image_divide_atLeastAtMost
tff(fact_6551_INF__eq,axiom,
! [B: $tType,A: $tType,C: $tType] :
( comple6319245703460814977attice(A)
=> ! [A3: set(B),B4: set(C),G: fun(C,A),F2: fun(B,A)] :
( ! [I3: B] :
( pp(member(B,I3,A3))
=> ? [X: C] :
( pp(member(C,X,B4))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(C,A,G,X)),aa(B,A,F2,I3))) ) )
=> ( ! [J2: C] :
( pp(member(C,J2,B4))
=> ? [X: B] :
( pp(member(B,X,A3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,X)),aa(C,A,G,J2))) ) )
=> ( complete_Inf_Inf(A,aa(set(B),set(A),image(B,A,F2),A3)) = complete_Inf_Inf(A,aa(set(C),set(A),image(C,A,G),B4)) ) ) ) ) ).
% INF_eq
tff(fact_6552_image__Int__subset,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),A3: set(B),B4: set(B)] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(B),set(A),image(B,A,F2),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),B4))),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(set(B),set(A),image(B,A,F2),A3)),aa(set(B),set(A),image(B,A,F2),B4)))) ).
% image_Int_subset
tff(fact_6553_SUP__eqI,axiom,
! [B: $tType,A: $tType] :
( comple6319245703460814977attice(A)
=> ! [A3: set(B),F2: fun(B,A),X2: A] :
( ! [I3: B] :
( pp(member(B,I3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,I3)),X2)) )
=> ( ! [Y3: A] :
( ! [I2: B] :
( pp(member(B,I2,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,I2)),Y3)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y3)) )
=> ( complete_Sup_Sup(A,aa(set(B),set(A),image(B,A,F2),A3)) = X2 ) ) ) ) ).
% SUP_eqI
tff(fact_6554_SUP__mono,axiom,
! [B: $tType,A: $tType,C: $tType] :
( comple6319245703460814977attice(A)
=> ! [A3: set(B),B4: set(C),F2: fun(B,A),G: fun(C,A)] :
( ! [N3: B] :
( pp(member(B,N3,A3))
=> ? [X: C] :
( pp(member(C,X,B4))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,N3)),aa(C,A,G,X))) ) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Sup_Sup(A,aa(set(B),set(A),image(B,A,F2),A3))),complete_Sup_Sup(A,aa(set(C),set(A),image(C,A,G),B4)))) ) ) ).
% SUP_mono
tff(fact_6555_SUP__least,axiom,
! [B: $tType,A: $tType] :
( comple6319245703460814977attice(A)
=> ! [A3: set(B),F2: fun(B,A),U: A] :
( ! [I3: B] :
( pp(member(B,I3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,I3)),U)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Sup_Sup(A,aa(set(B),set(A),image(B,A,F2),A3))),U)) ) ) ).
% SUP_least
tff(fact_6556_SUP__mono_H,axiom,
! [A: $tType,B: $tType] :
( comple6319245703460814977attice(A)
=> ! [F2: fun(B,A),G: fun(B,A),A3: set(B)] :
( ! [X3: B] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,X3)),aa(B,A,G,X3)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Sup_Sup(A,aa(set(B),set(A),image(B,A,F2),A3))),complete_Sup_Sup(A,aa(set(B),set(A),image(B,A,G),A3)))) ) ) ).
% SUP_mono'
tff(fact_6557_SUP__upper,axiom,
! [A: $tType,B: $tType] :
( comple6319245703460814977attice(A)
=> ! [I: B,A3: set(B),F2: fun(B,A)] :
( pp(member(B,I,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,I)),complete_Sup_Sup(A,aa(set(B),set(A),image(B,A,F2),A3)))) ) ) ).
% SUP_upper
tff(fact_6558_SUP__le__iff,axiom,
! [B: $tType,A: $tType] :
( comple6319245703460814977attice(A)
=> ! [F2: fun(B,A),A3: set(B),U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Sup_Sup(A,aa(set(B),set(A),image(B,A,F2),A3))),U))
<=> ! [X4: B] :
( pp(member(B,X4,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,X4)),U)) ) ) ) ).
% SUP_le_iff
tff(fact_6559_SUP__upper2,axiom,
! [A: $tType,B: $tType] :
( comple6319245703460814977attice(A)
=> ! [I: B,A3: set(B),U: A,F2: fun(B,A)] :
( pp(member(B,I,A3))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),U),aa(B,A,F2,I)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),U),complete_Sup_Sup(A,aa(set(B),set(A),image(B,A,F2),A3)))) ) ) ) ).
% SUP_upper2
tff(fact_6560_bij__betw__byWitness,axiom,
! [A: $tType,B: $tType,A3: set(A),F8: fun(B,A),F2: fun(A,B),A8: set(B)] :
( ! [X3: A] :
( pp(member(A,X3,A3))
=> ( aa(B,A,F8,aa(A,B,F2,X3)) = X3 ) )
=> ( ! [X3: B] :
( pp(member(B,X3,A8))
=> ( aa(A,B,F2,aa(B,A,F8,X3)) = X3 ) )
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),aa(set(A),set(B),image(A,B,F2),A3)),A8))
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(B),set(A),image(B,A,F8),A8)),A3))
=> bij_betw(A,B,F2,A3,A8) ) ) ) ) ).
% bij_betw_byWitness
tff(fact_6561_bij__betw__subset,axiom,
! [A: $tType,B: $tType,F2: fun(A,B),A3: set(A),A8: set(B),B4: set(A),B12: set(B)] :
( bij_betw(A,B,F2,A3,A8)
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),A3))
=> ( ( aa(set(A),set(B),image(A,B,F2),B4) = B12 )
=> bij_betw(A,B,F2,B4,B12) ) ) ) ).
% bij_betw_subset
tff(fact_6562_all__subset__image,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),A3: set(B),P: fun(set(A),bool)] :
( ! [B9: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B9),aa(set(B),set(A),image(B,A,F2),A3)))
=> pp(aa(set(A),bool,P,B9)) )
<=> ! [B9: set(B)] :
( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),B9),A3))
=> pp(aa(set(A),bool,P,aa(set(B),set(A),image(B,A,F2),B9))) ) ) ).
% all_subset_image
tff(fact_6563_subset__image__iff,axiom,
! [A: $tType,B: $tType,B4: set(A),F2: fun(B,A),A3: set(B)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),aa(set(B),set(A),image(B,A,F2),A3)))
<=> ? [AA: set(B)] :
( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),AA),A3))
& ( B4 = aa(set(B),set(A),image(B,A,F2),AA) ) ) ) ).
% subset_image_iff
tff(fact_6564_image__subset__iff,axiom,
! [B: $tType,A: $tType,F2: fun(B,A),A3: set(B),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(B),set(A),image(B,A,F2),A3)),B4))
<=> ! [X4: B] :
( pp(member(B,X4,A3))
=> pp(member(A,aa(B,A,F2,X4),B4)) ) ) ).
% image_subset_iff
tff(fact_6565_subset__imageE,axiom,
! [A: $tType,B: $tType,B4: set(A),F2: fun(B,A),A3: set(B)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),aa(set(B),set(A),image(B,A,F2),A3)))
=> ~ ! [C7: set(B)] :
( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),C7),A3))
=> ( B4 != aa(set(B),set(A),image(B,A,F2),C7) ) ) ) ).
% subset_imageE
tff(fact_6566_image__subsetI,axiom,
! [A: $tType,B: $tType,A3: set(A),F2: fun(A,B),B4: set(B)] :
( ! [X3: A] :
( pp(member(A,X3,A3))
=> pp(member(B,aa(A,B,F2,X3),B4)) )
=> pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),aa(set(A),set(B),image(A,B,F2),A3)),B4)) ) ).
% image_subsetI
tff(fact_6567_image__mono,axiom,
! [B: $tType,A: $tType,A3: set(A),B4: set(A),F2: fun(A,B)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),aa(set(A),set(B),image(A,B,F2),A3)),aa(set(A),set(B),image(A,B,F2),B4))) ) ).
% image_mono
tff(fact_6568_finite__surj,axiom,
! [A: $tType,B: $tType,A3: set(A),B4: set(B),F2: fun(A,B)] :
( finite_finite(A,A3)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),B4),aa(set(A),set(B),image(A,B,F2),A3)))
=> finite_finite(B,B4) ) ) ).
% finite_surj
tff(fact_6569_finite__subset__image,axiom,
! [A: $tType,B: $tType,B4: set(A),F2: fun(B,A),A3: set(B)] :
( finite_finite(A,B4)
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),aa(set(B),set(A),image(B,A,F2),A3)))
=> ? [C7: set(B)] :
( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),C7),A3))
& finite_finite(B,C7)
& ( B4 = aa(set(B),set(A),image(B,A,F2),C7) ) ) ) ) ).
% finite_subset_image
tff(fact_6570_ex__finite__subset__image,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),A3: set(B),P: fun(set(A),bool)] :
( ? [B9: set(A)] :
( finite_finite(A,B9)
& pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B9),aa(set(B),set(A),image(B,A,F2),A3)))
& pp(aa(set(A),bool,P,B9)) )
<=> ? [B9: set(B)] :
( finite_finite(B,B9)
& pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),B9),A3))
& pp(aa(set(A),bool,P,aa(set(B),set(A),image(B,A,F2),B9))) ) ) ).
% ex_finite_subset_image
tff(fact_6571_all__finite__subset__image,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),A3: set(B),P: fun(set(A),bool)] :
( ! [B9: set(A)] :
( ( finite_finite(A,B9)
& pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B9),aa(set(B),set(A),image(B,A,F2),A3))) )
=> pp(aa(set(A),bool,P,B9)) )
<=> ! [B9: set(B)] :
( ( finite_finite(B,B9)
& pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),B9),A3)) )
=> pp(aa(set(A),bool,P,aa(set(B),set(A),image(B,A,F2),B9))) ) ) ).
% all_finite_subset_image
tff(fact_6572_image__diff__subset,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),A3: set(B),B4: set(B)] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(set(B),set(A),image(B,A,F2),A3)),aa(set(B),set(A),image(B,A,F2),B4))),aa(set(B),set(A),image(B,A,F2),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),A3),B4)))) ).
% image_diff_subset
tff(fact_6573_image__Pow__mono,axiom,
! [B: $tType,A: $tType,F2: fun(B,A),A3: set(B),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(B),set(A),image(B,A,F2),A3)),B4))
=> pp(aa(set(set(A)),bool,aa(set(set(A)),fun(set(set(A)),bool),ord_less_eq(set(set(A))),aa(set(set(B)),set(set(A)),image(set(B),set(A),image(B,A,F2)),pow2(B,A3))),pow2(A,B4))) ) ).
% image_Pow_mono
tff(fact_6574_SUP__eq,axiom,
! [B: $tType,A: $tType,C: $tType] :
( comple6319245703460814977attice(A)
=> ! [A3: set(B),B4: set(C),F2: fun(B,A),G: fun(C,A)] :
( ! [I3: B] :
( pp(member(B,I3,A3))
=> ? [X: C] :
( pp(member(C,X,B4))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,I3)),aa(C,A,G,X))) ) )
=> ( ! [J2: C] :
( pp(member(C,J2,B4))
=> ? [X: B] :
( pp(member(B,X,A3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(C,A,G,J2)),aa(B,A,F2,X))) ) )
=> ( complete_Sup_Sup(A,aa(set(B),set(A),image(B,A,F2),A3)) = complete_Sup_Sup(A,aa(set(C),set(A),image(C,A,G),B4)) ) ) ) ) ).
% SUP_eq
tff(fact_6575_INF__eqI,axiom,
! [B: $tType,A: $tType] :
( comple6319245703460814977attice(A)
=> ! [A3: set(B),X2: A,F2: fun(B,A)] :
( ! [I3: B] :
( pp(member(B,I3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(B,A,F2,I3))) )
=> ( ! [Y3: A] :
( ! [I2: B] :
( pp(member(B,I2,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y3),aa(B,A,F2,I2))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y3),X2)) )
=> ( complete_Inf_Inf(A,aa(set(B),set(A),image(B,A,F2),A3)) = X2 ) ) ) ) ).
% INF_eqI
tff(fact_6576_INF__mono,axiom,
! [C: $tType,A: $tType,B: $tType] :
( comple6319245703460814977attice(A)
=> ! [B4: set(B),A3: set(C),F2: fun(C,A),G: fun(B,A)] :
( ! [M3: B] :
( pp(member(B,M3,B4))
=> ? [X: C] :
( pp(member(C,X,A3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(C,A,F2,X)),aa(B,A,G,M3))) ) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Inf_Inf(A,aa(set(C),set(A),image(C,A,F2),A3))),complete_Inf_Inf(A,aa(set(B),set(A),image(B,A,G),B4)))) ) ) ).
% INF_mono
tff(fact_6577_INF__lower,axiom,
! [A: $tType,B: $tType] :
( comple6319245703460814977attice(A)
=> ! [I: B,A3: set(B),F2: fun(B,A)] :
( pp(member(B,I,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Inf_Inf(A,aa(set(B),set(A),image(B,A,F2),A3))),aa(B,A,F2,I))) ) ) ).
% INF_lower
tff(fact_6578_INF__mono_H,axiom,
! [A: $tType,B: $tType] :
( comple6319245703460814977attice(A)
=> ! [F2: fun(B,A),G: fun(B,A),A3: set(B)] :
( ! [X3: B] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,X3)),aa(B,A,G,X3)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Inf_Inf(A,aa(set(B),set(A),image(B,A,F2),A3))),complete_Inf_Inf(A,aa(set(B),set(A),image(B,A,G),A3)))) ) ) ).
% INF_mono'
tff(fact_6579_INF__lower2,axiom,
! [B: $tType,A: $tType] :
( comple6319245703460814977attice(A)
=> ! [I: B,A3: set(B),F2: fun(B,A),U: A] :
( pp(member(B,I,A3))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,I)),U))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Inf_Inf(A,aa(set(B),set(A),image(B,A,F2),A3))),U)) ) ) ) ).
% INF_lower2
tff(fact_6580_le__INF__iff,axiom,
! [A: $tType,B: $tType] :
( comple6319245703460814977attice(A)
=> ! [U: A,F2: fun(B,A),A3: set(B)] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),U),complete_Inf_Inf(A,aa(set(B),set(A),image(B,A,F2),A3))))
<=> ! [X4: B] :
( pp(member(B,X4,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),U),aa(B,A,F2,X4))) ) ) ) ).
% le_INF_iff
tff(fact_6581_INF__greatest,axiom,
! [A: $tType,B: $tType] :
( comple6319245703460814977attice(A)
=> ! [A3: set(B),U: A,F2: fun(B,A)] :
( ! [I3: B] :
( pp(member(B,I3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),U),aa(B,A,F2,I3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),U),complete_Inf_Inf(A,aa(set(B),set(A),image(B,A,F2),A3)))) ) ) ).
% INF_greatest
tff(fact_6582_less__INF__D,axiom,
! [A: $tType,B: $tType] :
( comple6319245703460814977attice(A)
=> ! [Y: A,F2: fun(B,A),A3: set(B),I: B] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),complete_Inf_Inf(A,aa(set(B),set(A),image(B,A,F2),A3))))
=> ( pp(member(B,I,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),aa(B,A,F2,I))) ) ) ) ).
% less_INF_D
tff(fact_6583_INF__less__iff,axiom,
! [B: $tType,A: $tType] :
( comple5582772986160207858norder(A)
=> ! [F2: fun(B,A),A3: set(B),A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),complete_Inf_Inf(A,aa(set(B),set(A),image(B,A,F2),A3))),A2))
<=> ? [X4: B] :
( pp(member(B,X4,A3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(B,A,F2,X4)),A2)) ) ) ) ).
% INF_less_iff
tff(fact_6584_finite__conv__nat__seg__image,axiom,
! [A: $tType,A3: set(A)] :
( finite_finite(A,A3)
<=> ? [N5: nat,F5: fun(nat,A)] : ( A3 = aa(set(nat),set(A),image(nat,A,F5),aa(fun(nat,bool),set(nat),collect(nat),aa(nat,fun(nat,bool),aTP_Lamp_ew(nat,fun(nat,bool)),N5))) ) ) ).
% finite_conv_nat_seg_image
tff(fact_6585_nat__seg__image__imp__finite,axiom,
! [A: $tType,A3: set(A),F2: fun(nat,A),N: nat] :
( ( A3 = aa(set(nat),set(A),image(nat,A,F2),aa(fun(nat,bool),set(nat),collect(nat),aa(nat,fun(nat,bool),aTP_Lamp_ew(nat,fun(nat,bool)),N))) )
=> finite_finite(A,A3) ) ).
% nat_seg_image_imp_finite
tff(fact_6586_translation__subtract__Int,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [A2: A,S2: set(A),T2: set(A)] : ( aa(set(A),set(A),image(A,A,aTP_Lamp_qz(A,fun(A,A),A2)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),S2),T2)) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(set(A),set(A),image(A,A,aTP_Lamp_qz(A,fun(A,A),A2)),S2)),aa(set(A),set(A),image(A,A,aTP_Lamp_qz(A,fun(A,A),A2)),T2)) ) ) ).
% translation_subtract_Int
tff(fact_6587_translation__subtract__diff,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [A2: A,S2: set(A),T2: set(A)] : ( aa(set(A),set(A),image(A,A,aTP_Lamp_qz(A,fun(A,A),A2)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),S2),T2)) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(set(A),set(A),image(A,A,aTP_Lamp_qz(A,fun(A,A),A2)),S2)),aa(set(A),set(A),image(A,A,aTP_Lamp_qz(A,fun(A,A),A2)),T2)) ) ) ).
% translation_subtract_diff
tff(fact_6588_zero__notin__Suc__image,axiom,
! [A3: set(nat)] : ~ pp(member(nat,zero_zero(nat),aa(set(nat),set(nat),image(nat,nat,suc),A3))) ).
% zero_notin_Suc_image
tff(fact_6589_translation__diff,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [A2: A,S2: set(A),T2: set(A)] : ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),plus_plus(A),A2)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),S2),T2)) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(set(A),set(A),image(A,A,aa(A,fun(A,A),plus_plus(A),A2)),S2)),aa(set(A),set(A),image(A,A,aa(A,fun(A,A),plus_plus(A),A2)),T2)) ) ) ).
% translation_diff
tff(fact_6590_translation__Compl,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [A2: A,T2: set(A)] : ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),plus_plus(A),A2)),aa(set(A),set(A),uminus_uminus(set(A)),T2)) = aa(set(A),set(A),uminus_uminus(set(A)),aa(set(A),set(A),image(A,A,aa(A,fun(A,A),plus_plus(A),A2)),T2)) ) ) ).
% translation_Compl
tff(fact_6591_translation__Int,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [A2: A,S2: set(A),T2: set(A)] : ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),plus_plus(A),A2)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),S2),T2)) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(set(A),set(A),image(A,A,aa(A,fun(A,A),plus_plus(A),A2)),S2)),aa(set(A),set(A),image(A,A,aa(A,fun(A,A),plus_plus(A),A2)),T2)) ) ) ).
% translation_Int
tff(fact_6592_SUP__lessD,axiom,
! [B: $tType,A: $tType] :
( comple6319245703460814977attice(A)
=> ! [F2: fun(B,A),A3: set(B),Y: A,I: B] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),complete_Sup_Sup(A,aa(set(B),set(A),image(B,A,F2),A3))),Y))
=> ( pp(member(B,I,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(B,A,F2,I)),Y)) ) ) ) ).
% SUP_lessD
tff(fact_6593_less__SUP__iff,axiom,
! [A: $tType,B: $tType] :
( comple5582772986160207858norder(A)
=> ! [A2: A,F2: fun(B,A),A3: set(B)] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),complete_Sup_Sup(A,aa(set(B),set(A),image(B,A,F2),A3))))
<=> ? [X4: B] :
( pp(member(B,X4,A3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),aa(B,A,F2,X4))) ) ) ) ).
% less_SUP_iff
tff(fact_6594_translation__subtract__Compl,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [A2: A,T2: set(A)] : ( aa(set(A),set(A),image(A,A,aTP_Lamp_qz(A,fun(A,A),A2)),aa(set(A),set(A),uminus_uminus(set(A)),T2)) = aa(set(A),set(A),uminus_uminus(set(A)),aa(set(A),set(A),image(A,A,aTP_Lamp_qz(A,fun(A,A),A2)),T2)) ) ) ).
% translation_subtract_Compl
tff(fact_6595_image__Collect__subsetI,axiom,
! [A: $tType,B: $tType,P: fun(A,bool),F2: fun(A,B),B4: set(B)] :
( ! [X3: A] :
( pp(aa(A,bool,P,X3))
=> pp(member(B,aa(A,B,F2,X3),B4)) )
=> pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),aa(set(A),set(B),image(A,B,F2),aa(fun(A,bool),set(A),collect(A),P))),B4)) ) ).
% image_Collect_subsetI
tff(fact_6596_image__set,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),Xs: list(B)] : ( aa(set(B),set(A),image(B,A,F2),aa(list(B),set(B),set2(B),Xs)) = aa(list(A),set(A),set2(A),aa(list(B),list(A),map(B,A,F2),Xs)) ) ).
% image_set
tff(fact_6597_le__SUP__iff,axiom,
! [A: $tType,B: $tType] :
( comple5582772986160207858norder(A)
=> ! [X2: A,F2: fun(B,A),A3: set(B)] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),complete_Sup_Sup(A,aa(set(B),set(A),image(B,A,F2),A3))))
<=> ! [Y2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y2),X2))
=> ? [X4: B] :
( pp(member(B,X4,A3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y2),aa(B,A,F2,X4))) ) ) ) ) ).
% le_SUP_iff
tff(fact_6598_INF__le__iff,axiom,
! [B: $tType,A: $tType] :
( comple5582772986160207858norder(A)
=> ! [F2: fun(B,A),A3: set(B),X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Inf_Inf(A,aa(set(B),set(A),image(B,A,F2),A3))),X2))
<=> ! [Y2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y2))
=> ? [X4: B] :
( pp(member(B,X4,A3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(B,A,F2,X4)),Y2)) ) ) ) ) ).
% INF_le_iff
tff(fact_6599_cSUP__least,axiom,
! [B: $tType,A: $tType] :
( condit1219197933456340205attice(A)
=> ! [A3: set(B),F2: fun(B,A),M7: A] :
( ( A3 != bot_bot(set(B)) )
=> ( ! [X3: B] :
( pp(member(B,X3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,X3)),M7)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Sup_Sup(A,aa(set(B),set(A),image(B,A,F2),A3))),M7)) ) ) ) ).
% cSUP_least
tff(fact_6600_SUP__eq__iff,axiom,
! [B: $tType,A: $tType] :
( comple6319245703460814977attice(A)
=> ! [I5: set(B),C2: A,F2: fun(B,A)] :
( ( I5 != bot_bot(set(B)) )
=> ( ! [I3: B] :
( pp(member(B,I3,I5))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),aa(B,A,F2,I3))) )
=> ( ( complete_Sup_Sup(A,aa(set(B),set(A),image(B,A,F2),I5)) = C2 )
<=> ! [X4: B] :
( pp(member(B,X4,I5))
=> ( aa(B,A,F2,X4) = C2 ) ) ) ) ) ) ).
% SUP_eq_iff
tff(fact_6601_INF__eq__iff,axiom,
! [B: $tType,A: $tType] :
( comple6319245703460814977attice(A)
=> ! [I5: set(B),F2: fun(B,A),C2: A] :
( ( I5 != bot_bot(set(B)) )
=> ( ! [I3: B] :
( pp(member(B,I3,I5))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,I3)),C2)) )
=> ( ( complete_Inf_Inf(A,aa(set(B),set(A),image(B,A,F2),I5)) = C2 )
<=> ! [X4: B] :
( pp(member(B,X4,I5))
=> ( aa(B,A,F2,X4) = C2 ) ) ) ) ) ) ).
% INF_eq_iff
tff(fact_6602_cINF__greatest,axiom,
! [A: $tType,B: $tType] :
( condit1219197933456340205attice(A)
=> ! [A3: set(B),M: A,F2: fun(B,A)] :
( ( A3 != bot_bot(set(B)) )
=> ( ! [X3: B] :
( pp(member(B,X3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),M),aa(B,A,F2,X3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),M),complete_Inf_Inf(A,aa(set(B),set(A),image(B,A,F2),A3)))) ) ) ) ).
% cINF_greatest
tff(fact_6603_uminus__Inf,axiom,
! [A: $tType] :
( comple489889107523837845lgebra(A)
=> ! [A3: set(A)] : ( aa(A,A,uminus_uminus(A),complete_Inf_Inf(A,A3)) = complete_Sup_Sup(A,aa(set(A),set(A),image(A,A,uminus_uminus(A)),A3)) ) ) ).
% uminus_Inf
tff(fact_6604_uminus__Sup,axiom,
! [A: $tType] :
( comple489889107523837845lgebra(A)
=> ! [A3: set(A)] : ( aa(A,A,uminus_uminus(A),complete_Sup_Sup(A,A3)) = complete_Inf_Inf(A,aa(set(A),set(A),image(A,A,uminus_uminus(A)),A3)) ) ) ).
% uminus_Sup
tff(fact_6605_card__image__le,axiom,
! [B: $tType,A: $tType,A3: set(A),F2: fun(A,B)] :
( finite_finite(A,A3)
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(B),nat,finite_card(B),aa(set(A),set(B),image(A,B,F2),A3))),aa(set(A),nat,finite_card(A),A3))) ) ).
% card_image_le
tff(fact_6606_bij__betw__comp__iff2,axiom,
! [C: $tType,A: $tType,B: $tType,F8: fun(A,B),A8: set(A),A9: set(B),F2: fun(C,A),A3: set(C)] :
( bij_betw(A,B,F8,A8,A9)
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(C),set(A),image(C,A,F2),A3)),A8))
=> ( bij_betw(C,A,F2,A3,A8)
<=> bij_betw(C,B,aa(fun(C,A),fun(C,B),comp(A,B,C,F8),F2),A3,A9) ) ) ) ).
% bij_betw_comp_iff2
tff(fact_6607_SUP__subset__mono,axiom,
! [A: $tType,B: $tType] :
( comple6319245703460814977attice(A)
=> ! [A3: set(B),B4: set(B),F2: fun(B,A),G: fun(B,A)] :
( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),A3),B4))
=> ( ! [X3: B] :
( pp(member(B,X3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,X3)),aa(B,A,G,X3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Sup_Sup(A,aa(set(B),set(A),image(B,A,F2),A3))),complete_Sup_Sup(A,aa(set(B),set(A),image(B,A,G),B4)))) ) ) ) ).
% SUP_subset_mono
tff(fact_6608_INF__superset__mono,axiom,
! [A: $tType,B: $tType] :
( comple6319245703460814977attice(A)
=> ! [B4: set(B),A3: set(B),F2: fun(B,A),G: fun(B,A)] :
( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),B4),A3))
=> ( ! [X3: B] :
( pp(member(B,X3,B4))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,X3)),aa(B,A,G,X3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Inf_Inf(A,aa(set(B),set(A),image(B,A,F2),A3))),complete_Inf_Inf(A,aa(set(B),set(A),image(B,A,G),B4)))) ) ) ) ).
% INF_superset_mono
tff(fact_6609_sum_Ogroup,axiom,
! [C: $tType,A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [S: set(B),T6: set(C),G: fun(B,C),H: fun(B,A)] :
( finite_finite(B,S)
=> ( finite_finite(C,T6)
=> ( pp(aa(set(C),bool,aa(set(C),fun(set(C),bool),ord_less_eq(set(C)),aa(set(B),set(C),image(B,C,G),S)),T6))
=> ( aa(set(C),A,aa(fun(C,A),fun(set(C),A),groups7311177749621191930dd_sum(C,A),aa(fun(B,A),fun(C,A),aa(fun(B,C),fun(fun(B,A),fun(C,A)),aTP_Lamp_rb(set(B),fun(fun(B,C),fun(fun(B,A),fun(C,A))),S),G),H)),T6) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),H),S) ) ) ) ) ) ).
% sum.group
tff(fact_6610_uminus__INF,axiom,
! [A: $tType,B: $tType] :
( comple489889107523837845lgebra(A)
=> ! [B4: fun(B,A),A3: set(B)] : ( aa(A,A,uminus_uminus(A),complete_Inf_Inf(A,aa(set(B),set(A),image(B,A,B4),A3))) = complete_Sup_Sup(A,aa(set(B),set(A),image(B,A,aTP_Lamp_rc(fun(B,A),fun(B,A),B4)),A3)) ) ) ).
% uminus_INF
tff(fact_6611_uminus__SUP,axiom,
! [A: $tType,B: $tType] :
( comple489889107523837845lgebra(A)
=> ! [B4: fun(B,A),A3: set(B)] : ( aa(A,A,uminus_uminus(A),complete_Sup_Sup(A,aa(set(B),set(A),image(B,A,B4),A3))) = complete_Inf_Inf(A,aa(set(B),set(A),image(B,A,aTP_Lamp_rc(fun(B,A),fun(B,A),B4)),A3)) ) ) ).
% uminus_SUP
tff(fact_6612_prod_Ogroup,axiom,
! [C: $tType,A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [S: set(B),T6: set(C),G: fun(B,C),H: fun(B,A)] :
( finite_finite(B,S)
=> ( finite_finite(C,T6)
=> ( pp(aa(set(C),bool,aa(set(C),fun(set(C),bool),ord_less_eq(set(C)),aa(set(B),set(C),image(B,C,G),S)),T6))
=> ( aa(set(C),A,aa(fun(C,A),fun(set(C),A),groups7121269368397514597t_prod(C,A),aa(fun(B,A),fun(C,A),aa(fun(B,C),fun(fun(B,A),fun(C,A)),aTP_Lamp_rd(set(B),fun(fun(B,C),fun(fun(B,A),fun(C,A))),S),G),H)),T6) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),H),S) ) ) ) ) ) ).
% prod.group
tff(fact_6613_sum_Oreindex__nontrivial,axiom,
! [C: $tType,A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [A3: set(B),H: fun(B,C),G: fun(C,A)] :
( finite_finite(B,A3)
=> ( ! [X3: B,Y3: B] :
( pp(member(B,X3,A3))
=> ( pp(member(B,Y3,A3))
=> ( ( X3 != Y3 )
=> ( ( aa(B,C,H,X3) = aa(B,C,H,Y3) )
=> ( aa(C,A,G,aa(B,C,H,X3)) = zero_zero(A) ) ) ) ) )
=> ( aa(set(C),A,aa(fun(C,A),fun(set(C),A),groups7311177749621191930dd_sum(C,A),G),aa(set(B),set(C),image(B,C,H),A3)) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),aa(fun(B,C),fun(B,A),comp(C,A,B,G),H)),A3) ) ) ) ) ).
% sum.reindex_nontrivial
tff(fact_6614_INF__le__SUP,axiom,
! [A: $tType,B: $tType] :
( comple6319245703460814977attice(A)
=> ! [A3: set(B),F2: fun(B,A)] :
( ( A3 != bot_bot(set(B)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Inf_Inf(A,aa(set(B),set(A),image(B,A,F2),A3))),complete_Sup_Sup(A,aa(set(B),set(A),image(B,A,F2),A3)))) ) ) ).
% INF_le_SUP
tff(fact_6615_prod_Oreindex__nontrivial,axiom,
! [C: $tType,A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [A3: set(B),H: fun(B,C),G: fun(C,A)] :
( finite_finite(B,A3)
=> ( ! [X3: B,Y3: B] :
( pp(member(B,X3,A3))
=> ( pp(member(B,Y3,A3))
=> ( ( X3 != Y3 )
=> ( ( aa(B,C,H,X3) = aa(B,C,H,Y3) )
=> ( aa(C,A,G,aa(B,C,H,X3)) = one_one(A) ) ) ) ) )
=> ( aa(set(C),A,aa(fun(C,A),fun(set(C),A),groups7121269368397514597t_prod(C,A),G),aa(set(B),set(C),image(B,C,H),A3)) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),aa(fun(B,C),fun(B,A),comp(C,A,B,G),H)),A3) ) ) ) ) ).
% prod.reindex_nontrivial
tff(fact_6616_surj__card__le,axiom,
! [B: $tType,A: $tType,A3: set(A),B4: set(B),F2: fun(A,B)] :
( finite_finite(A,A3)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),B4),aa(set(A),set(B),image(A,B,F2),A3)))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(B),nat,finite_card(B),B4)),aa(set(A),nat,finite_card(A),A3))) ) ) ).
% surj_card_le
tff(fact_6617_scaleR__image__atLeastAtMost,axiom,
! [A: $tType] :
( real_V5355595471888546746vector(A)
=> ! [C2: real,X2: A,Y: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),C2))
=> ( aa(set(A),set(A),image(A,A,real_V8093663219630862766scaleR(A,C2)),set_or1337092689740270186AtMost(A,X2,Y)) = set_or1337092689740270186AtMost(A,aa(A,A,real_V8093663219630862766scaleR(A,C2),X2),aa(A,A,real_V8093663219630862766scaleR(A,C2),Y)) ) ) ) ).
% scaleR_image_atLeastAtMost
tff(fact_6618_image__Suc__lessThan,axiom,
! [N: nat] : ( aa(set(nat),set(nat),image(nat,nat,suc),aa(nat,set(nat),set_ord_lessThan(nat),N)) = set_or1337092689740270186AtMost(nat,one_one(nat),N) ) ).
% image_Suc_lessThan
tff(fact_6619_image__Suc__atMost,axiom,
! [N: nat] : ( aa(set(nat),set(nat),image(nat,nat,suc),aa(nat,set(nat),set_ord_atMost(nat),N)) = set_or1337092689740270186AtMost(nat,one_one(nat),aa(nat,nat,suc,N)) ) ).
% image_Suc_atMost
tff(fact_6620_atLeast0__atMost__Suc__eq__insert__0,axiom,
! [N: nat] : ( set_or1337092689740270186AtMost(nat,zero_zero(nat),aa(nat,nat,suc,N)) = aa(set(nat),set(nat),insert(nat,zero_zero(nat)),aa(set(nat),set(nat),image(nat,nat,suc),set_or1337092689740270186AtMost(nat,zero_zero(nat),N))) ) ).
% atLeast0_atMost_Suc_eq_insert_0
tff(fact_6621_atLeast0__lessThan__Suc__eq__insert__0,axiom,
! [N: nat] : ( set_or7035219750837199246ssThan(nat,zero_zero(nat),aa(nat,nat,suc,N)) = aa(set(nat),set(nat),insert(nat,zero_zero(nat)),aa(set(nat),set(nat),image(nat,nat,suc),set_or7035219750837199246ssThan(nat,zero_zero(nat),N))) ) ).
% atLeast0_lessThan_Suc_eq_insert_0
tff(fact_6622_lessThan__Suc__eq__insert__0,axiom,
! [N: nat] : ( aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,suc,N)) = aa(set(nat),set(nat),insert(nat,zero_zero(nat)),aa(set(nat),set(nat),image(nat,nat,suc),aa(nat,set(nat),set_ord_lessThan(nat),N))) ) ).
% lessThan_Suc_eq_insert_0
tff(fact_6623_atMost__Suc__eq__insert__0,axiom,
! [N: nat] : ( aa(nat,set(nat),set_ord_atMost(nat),aa(nat,nat,suc,N)) = aa(set(nat),set(nat),insert(nat,zero_zero(nat)),aa(set(nat),set(nat),image(nat,nat,suc),aa(nat,set(nat),set_ord_atMost(nat),N))) ) ).
% atMost_Suc_eq_insert_0
tff(fact_6624_distinct__insort__key,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [F2: fun(B,A),X2: B,Xs: list(B)] :
( distinct(A,aa(list(B),list(A),map(B,A,F2),aa(list(B),list(B),linorder_insort_key(B,A,F2,X2),Xs)))
<=> ( ~ pp(member(A,aa(B,A,F2,X2),aa(set(B),set(A),image(B,A,F2),aa(list(B),set(B),set2(B),Xs))))
& distinct(A,aa(list(B),list(A),map(B,A,F2),Xs)) ) ) ) ).
% distinct_insort_key
tff(fact_6625_sum__image__le,axiom,
! [A: $tType,B: $tType,C: $tType] :
( ordere6911136660526730532id_add(B)
=> ! [I5: set(C),G: fun(A,B),F2: fun(C,A)] :
( finite_finite(C,I5)
=> ( ! [I3: C] :
( pp(member(C,I3,I5))
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),zero_zero(B)),aa(A,B,G,aa(C,A,F2,I3)))) )
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),aa(set(A),B,aa(fun(A,B),fun(set(A),B),groups7311177749621191930dd_sum(A,B),G),aa(set(C),set(A),image(C,A,F2),I5))),aa(set(C),B,aa(fun(C,B),fun(set(C),B),groups7311177749621191930dd_sum(C,B),aa(fun(C,A),fun(C,B),comp(A,B,C,G),F2)),I5))) ) ) ) ).
% sum_image_le
tff(fact_6626_image__mult__atLeastAtMost__if,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [C2: A,X2: A,Y: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),times_times(A),C2)),set_or1337092689740270186AtMost(A,X2,Y)) = set_or1337092689740270186AtMost(A,aa(A,A,aa(A,fun(A,A),times_times(A),C2),X2),aa(A,A,aa(A,fun(A,A),times_times(A),C2),Y)) ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),times_times(A),C2)),set_or1337092689740270186AtMost(A,X2,Y)) = set_or1337092689740270186AtMost(A,aa(A,A,aa(A,fun(A,A),times_times(A),C2),Y),aa(A,A,aa(A,fun(A,A),times_times(A),C2),X2)) ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),times_times(A),C2)),set_or1337092689740270186AtMost(A,X2,Y)) = bot_bot(set(A)) ) ) ) ) ) ) ).
% image_mult_atLeastAtMost_if
tff(fact_6627_image__mult__atLeastAtMost__if_H,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [X2: A,Y: A,C2: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( aa(set(A),set(A),image(A,A,aTP_Lamp_re(A,fun(A,A),C2)),set_or1337092689740270186AtMost(A,X2,Y)) = set_or1337092689740270186AtMost(A,aa(A,A,aa(A,fun(A,A),times_times(A),X2),C2),aa(A,A,aa(A,fun(A,A),times_times(A),Y),C2)) ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( aa(set(A),set(A),image(A,A,aTP_Lamp_re(A,fun(A,A),C2)),set_or1337092689740270186AtMost(A,X2,Y)) = set_or1337092689740270186AtMost(A,aa(A,A,aa(A,fun(A,A),times_times(A),Y),C2),aa(A,A,aa(A,fun(A,A),times_times(A),X2),C2)) ) ) ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> ( aa(set(A),set(A),image(A,A,aTP_Lamp_re(A,fun(A,A),C2)),set_or1337092689740270186AtMost(A,X2,Y)) = bot_bot(set(A)) ) ) ) ) ).
% image_mult_atLeastAtMost_if'
tff(fact_6628_image__affinity__atLeastAtMost,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A,M: A,C2: A] :
( ( ( set_or1337092689740270186AtMost(A,A2,B2) = bot_bot(set(A)) )
=> ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),aTP_Lamp_rf(A,fun(A,fun(A,A)),M),C2)),set_or1337092689740270186AtMost(A,A2,B2)) = bot_bot(set(A)) ) )
& ( ( set_or1337092689740270186AtMost(A,A2,B2) != bot_bot(set(A)) )
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),M))
=> ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),aTP_Lamp_rf(A,fun(A,fun(A,A)),M),C2)),set_or1337092689740270186AtMost(A,A2,B2)) = set_or1337092689740270186AtMost(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),M),A2)),C2),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),M),B2)),C2)) ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),M))
=> ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),aTP_Lamp_rf(A,fun(A,fun(A,A)),M),C2)),set_or1337092689740270186AtMost(A,A2,B2)) = set_or1337092689740270186AtMost(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),M),B2)),C2),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),M),A2)),C2)) ) ) ) ) ) ) ).
% image_affinity_atLeastAtMost
tff(fact_6629_image__affinity__atLeastAtMost__diff,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A,M: A,C2: A] :
( ( ( set_or1337092689740270186AtMost(A,A2,B2) = bot_bot(set(A)) )
=> ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),aTP_Lamp_rg(A,fun(A,fun(A,A)),M),C2)),set_or1337092689740270186AtMost(A,A2,B2)) = bot_bot(set(A)) ) )
& ( ( set_or1337092689740270186AtMost(A,A2,B2) != bot_bot(set(A)) )
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),M))
=> ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),aTP_Lamp_rg(A,fun(A,fun(A,A)),M),C2)),set_or1337092689740270186AtMost(A,A2,B2)) = set_or1337092689740270186AtMost(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),M),A2)),C2),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),M),B2)),C2)) ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),M))
=> ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),aTP_Lamp_rg(A,fun(A,fun(A,A)),M),C2)),set_or1337092689740270186AtMost(A,A2,B2)) = set_or1337092689740270186AtMost(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),M),B2)),C2),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),M),A2)),C2)) ) ) ) ) ) ) ).
% image_affinity_atLeastAtMost_diff
tff(fact_6630_image__affinity__atLeastAtMost__div,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A,M: A,C2: A] :
( ( ( set_or1337092689740270186AtMost(A,A2,B2) = bot_bot(set(A)) )
=> ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),aTP_Lamp_rh(A,fun(A,fun(A,A)),M),C2)),set_or1337092689740270186AtMost(A,A2,B2)) = bot_bot(set(A)) ) )
& ( ( set_or1337092689740270186AtMost(A,A2,B2) != bot_bot(set(A)) )
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),M))
=> ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),aTP_Lamp_rh(A,fun(A,fun(A,A)),M),C2)),set_or1337092689740270186AtMost(A,A2,B2)) = set_or1337092689740270186AtMost(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),M)),C2),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),M)),C2)) ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),M))
=> ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),aTP_Lamp_rh(A,fun(A,fun(A,A)),M),C2)),set_or1337092689740270186AtMost(A,A2,B2)) = set_or1337092689740270186AtMost(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),M)),C2),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),M)),C2)) ) ) ) ) ) ) ).
% image_affinity_atLeastAtMost_div
tff(fact_6631_image__affinity__atLeastAtMost__div__diff,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [A2: A,B2: A,M: A,C2: A] :
( ( ( set_or1337092689740270186AtMost(A,A2,B2) = bot_bot(set(A)) )
=> ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),aTP_Lamp_ri(A,fun(A,fun(A,A)),M),C2)),set_or1337092689740270186AtMost(A,A2,B2)) = bot_bot(set(A)) ) )
& ( ( set_or1337092689740270186AtMost(A,A2,B2) != bot_bot(set(A)) )
=> ( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),M))
=> ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),aTP_Lamp_ri(A,fun(A,fun(A,A)),M),C2)),set_or1337092689740270186AtMost(A,A2,B2)) = set_or1337092689740270186AtMost(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),M)),C2),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),M)),C2)) ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),zero_zero(A)),M))
=> ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),aTP_Lamp_ri(A,fun(A,fun(A,A)),M),C2)),set_or1337092689740270186AtMost(A,A2,B2)) = set_or1337092689740270186AtMost(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),B2),M)),C2),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),M)),C2)) ) ) ) ) ) ) ).
% image_affinity_atLeastAtMost_div_diff
tff(fact_6632_sum__fun__comp,axiom,
! [C: $tType,A: $tType,B: $tType] :
( semiring_1(C)
=> ! [S: set(A),R2: set(B),G: fun(A,B),F2: fun(B,C)] :
( finite_finite(A,S)
=> ( finite_finite(B,R2)
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),aa(set(A),set(B),image(A,B,G),S)),R2))
=> ( aa(set(A),C,aa(fun(A,C),fun(set(A),C),groups7311177749621191930dd_sum(A,C),aa(fun(B,C),fun(A,C),aTP_Lamp_rj(fun(A,B),fun(fun(B,C),fun(A,C)),G),F2)),S) = aa(set(B),C,aa(fun(B,C),fun(set(B),C),groups7311177749621191930dd_sum(B,C),aa(fun(B,C),fun(B,C),aa(fun(A,B),fun(fun(B,C),fun(B,C)),aTP_Lamp_rl(set(A),fun(fun(A,B),fun(fun(B,C),fun(B,C))),S),G),F2)),R2) ) ) ) ) ) ).
% sum_fun_comp
tff(fact_6633_INF__nat__binary,axiom,
! [A: $tType] :
( counta3822494911875563373attice(A)
=> ! [A3: A,B4: A] : ( aa(A,A,aa(A,fun(A,A),inf_inf(A),A3),complete_Inf_Inf(A,aa(set(nat),set(A),image(nat,A,aTP_Lamp_rm(A,fun(nat,A),B4)),aa(fun(nat,bool),set(nat),collect(nat),aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)))))) = aa(A,A,aa(A,fun(A,A),inf_inf(A),A3),B4) ) ) ).
% INF_nat_binary
tff(fact_6634_sums__SUP,axiom,
! [A: $tType] :
( ( comple5582772986160207858norder(A)
& canoni5634975068530333245id_add(A)
& topolo1944317154257567458pology(A) )
=> ! [F2: fun(nat,A)] : sums(A,F2,complete_Sup_Sup(A,aa(set(nat),set(A),image(nat,A,aTP_Lamp_rn(fun(nat,A),fun(nat,A),F2)),top_top(set(nat))))) ) ).
% sums_SUP
tff(fact_6635_atMost__UNIV__triv,axiom,
! [A: $tType] : ( aa(set(A),set(set(A)),set_ord_atMost(set(A)),top_top(set(A))) = top_top(set(set(A))) ) ).
% atMost_UNIV_triv
tff(fact_6636_finite__option__UNIV,axiom,
! [A: $tType] :
( finite_finite(option(A),top_top(set(option(A))))
<=> finite_finite(A,top_top(set(A))) ) ).
% finite_option_UNIV
tff(fact_6637_pair__imageI,axiom,
! [C: $tType,B: $tType,A: $tType,A2: A,B2: B,A3: set(product_prod(A,B)),F2: fun(A,fun(B,C))] :
( pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),A2),B2),A3))
=> pp(member(C,aa(B,C,aa(A,fun(B,C),F2,A2),B2),aa(set(product_prod(A,B)),set(C),image(product_prod(A,B),C,aa(fun(A,fun(B,C)),fun(product_prod(A,B),C),product_case_prod(A,B,C),F2)),A3))) ) ).
% pair_imageI
tff(fact_6638_surj__plus,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [A2: A] : ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),plus_plus(A),A2)),top_top(set(A))) = top_top(set(A)) ) ) ).
% surj_plus
tff(fact_6639_range__add,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A] : ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),plus_plus(A),A2)),top_top(set(A))) = top_top(set(A)) ) ) ).
% range_add
tff(fact_6640_range__diff,axiom,
! [A: $tType] :
( group_add(A)
=> ! [A2: A] : ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),minus_minus(A),A2)),top_top(set(A))) = top_top(set(A)) ) ) ).
% range_diff
tff(fact_6641_Sup__eq__top__iff,axiom,
! [A: $tType] :
( comple5582772986160207858norder(A)
=> ! [A3: set(A)] :
( ( complete_Sup_Sup(A,A3) = top_top(A) )
<=> ! [X4: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X4),top_top(A)))
=> ? [Xa3: A] :
( pp(member(A,Xa3,A3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X4),Xa3)) ) ) ) ) ).
% Sup_eq_top_iff
tff(fact_6642_boolean__algebra_Ocompl__one,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ( aa(A,A,uminus_uminus(A),top_top(A)) = bot_bot(A) ) ) ).
% boolean_algebra.compl_one
tff(fact_6643_boolean__algebra_Ocompl__zero,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ( aa(A,A,uminus_uminus(A),bot_bot(A)) = top_top(A) ) ) ).
% boolean_algebra.compl_zero
tff(fact_6644_Diff__UNIV,axiom,
! [A: $tType,A3: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),top_top(set(A))) = bot_bot(set(A)) ) ).
% Diff_UNIV
tff(fact_6645_surj__fn,axiom,
! [A: $tType,F2: fun(A,A),N: nat] :
( ( aa(set(A),set(A),image(A,A,F2),top_top(set(A))) = top_top(set(A)) )
=> ( aa(set(A),set(A),image(A,A,aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),N),F2)),top_top(set(A))) = top_top(set(A)) ) ) ).
% surj_fn
tff(fact_6646_Gcd__UNIV,axiom,
! [A: $tType] :
( semiring_Gcd(A)
=> ( gcd_Gcd(A,top_top(set(A))) = one_one(A) ) ) ).
% Gcd_UNIV
tff(fact_6647_surj__diff__right,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [A2: A] : ( aa(set(A),set(A),image(A,A,aTP_Lamp_qz(A,fun(A,A),A2)),top_top(set(A))) = top_top(set(A)) ) ) ).
% surj_diff_right
tff(fact_6648_Gcd__int__eq,axiom,
! [N2: set(nat)] : ( gcd_Gcd(int,aa(set(nat),set(int),image(nat,int,semiring_1_of_nat(int)),N2)) = aa(nat,int,semiring_1_of_nat(int),gcd_Gcd(nat,N2)) ) ).
% Gcd_int_eq
tff(fact_6649_SUP__eq__top__iff,axiom,
! [A: $tType,B: $tType] :
( comple5582772986160207858norder(A)
=> ! [F2: fun(B,A),A3: set(B)] :
( ( complete_Sup_Sup(A,aa(set(B),set(A),image(B,A,F2),A3)) = top_top(A) )
<=> ! [X4: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X4),top_top(A)))
=> ? [Xa3: B] :
( pp(member(B,Xa3,A3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X4),aa(B,A,F2,Xa3))) ) ) ) ) ).
% SUP_eq_top_iff
tff(fact_6650_set__concat,axiom,
! [A: $tType,Xs: list(list(A))] : ( aa(list(A),set(A),set2(A),concat(A,Xs)) = complete_Sup_Sup(set(A),aa(set(list(A)),set(set(A)),image(list(A),set(A),set2(A)),aa(list(list(A)),set(list(A)),set2(list(A)),Xs))) ) ).
% set_concat
tff(fact_6651_Inf__atMostLessThan,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),top_top(A)),X2))
=> ( complete_Inf_Inf(A,aa(A,set(A),set_ord_lessThan(A),X2)) = bot_bot(A) ) ) ) ).
% Inf_atMostLessThan
tff(fact_6652_INT__simps_I3_J,axiom,
! [E3: $tType,F: $tType,C6: set(E3),A3: fun(E3,set(F)),B4: set(F)] :
( ( ( C6 = bot_bot(set(E3)) )
=> ( complete_Inf_Inf(set(F),aa(set(E3),set(set(F)),image(E3,set(F),aa(set(F),fun(E3,set(F)),aTP_Lamp_ro(fun(E3,set(F)),fun(set(F),fun(E3,set(F))),A3),B4)),C6)) = top_top(set(F)) ) )
& ( ( C6 != bot_bot(set(E3)) )
=> ( complete_Inf_Inf(set(F),aa(set(E3),set(set(F)),image(E3,set(F),aa(set(F),fun(E3,set(F)),aTP_Lamp_ro(fun(E3,set(F)),fun(set(F),fun(E3,set(F))),A3),B4)),C6)) = aa(set(F),set(F),aa(set(F),fun(set(F),set(F)),minus_minus(set(F)),complete_Inf_Inf(set(F),aa(set(E3),set(set(F)),image(E3,set(F),A3),C6))),B4) ) ) ) ).
% INT_simps(3)
tff(fact_6653_INT__simps_I4_J,axiom,
! [G2: $tType,H4: $tType,C6: set(H4),A3: set(G2),B4: fun(H4,set(G2))] :
( ( ( C6 = bot_bot(set(H4)) )
=> ( complete_Inf_Inf(set(G2),aa(set(H4),set(set(G2)),image(H4,set(G2),aa(fun(H4,set(G2)),fun(H4,set(G2)),aTP_Lamp_rp(set(G2),fun(fun(H4,set(G2)),fun(H4,set(G2))),A3),B4)),C6)) = top_top(set(G2)) ) )
& ( ( C6 != bot_bot(set(H4)) )
=> ( complete_Inf_Inf(set(G2),aa(set(H4),set(set(G2)),image(H4,set(G2),aa(fun(H4,set(G2)),fun(H4,set(G2)),aTP_Lamp_rp(set(G2),fun(fun(H4,set(G2)),fun(H4,set(G2))),A3),B4)),C6)) = aa(set(G2),set(G2),aa(set(G2),fun(set(G2),set(G2)),minus_minus(set(G2)),A3),complete_Sup_Sup(set(G2),aa(set(H4),set(set(G2)),image(H4,set(G2),B4),C6))) ) ) ) ).
% INT_simps(4)
tff(fact_6654_filter__shuffles,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A),Ys: list(A)] : ( aa(set(list(A)),set(list(A)),image(list(A),list(A),filter2(A,P)),shuffles(A,Xs,Ys)) = shuffles(A,aa(list(A),list(A),filter2(A,P),Xs),aa(list(A),list(A),filter2(A,P),Ys)) ) ).
% filter_shuffles
tff(fact_6655_UN__mono,axiom,
! [B: $tType,A: $tType,A3: set(A),B4: set(A),F2: fun(A,set(B)),G: fun(A,set(B))] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> ( ! [X3: A] :
( pp(member(A,X3,A3))
=> pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),aa(A,set(B),F2,X3)),aa(A,set(B),G,X3))) )
=> pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),complete_Sup_Sup(set(B),aa(set(A),set(set(B)),image(A,set(B),F2),A3))),complete_Sup_Sup(set(B),aa(set(A),set(set(B)),image(A,set(B),G),B4)))) ) ) ).
% UN_mono
tff(fact_6656_UN__least,axiom,
! [A: $tType,B: $tType,A3: set(A),B4: fun(A,set(B)),C6: set(B)] :
( ! [X3: A] :
( pp(member(A,X3,A3))
=> pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),aa(A,set(B),B4,X3)),C6)) )
=> pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),complete_Sup_Sup(set(B),aa(set(A),set(set(B)),image(A,set(B),B4),A3))),C6)) ) ).
% UN_least
tff(fact_6657_UN__upper,axiom,
! [B: $tType,A: $tType,A2: A,A3: set(A),B4: fun(A,set(B))] :
( pp(member(A,A2,A3))
=> pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),aa(A,set(B),B4,A2)),complete_Sup_Sup(set(B),aa(set(A),set(set(B)),image(A,set(B),B4),A3)))) ) ).
% UN_upper
tff(fact_6658_UN__subset__iff,axiom,
! [B: $tType,A: $tType,A3: fun(B,set(A)),I5: set(B),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),complete_Sup_Sup(set(A),aa(set(B),set(set(A)),image(B,set(A),A3),I5))),B4))
<=> ! [X4: B] :
( pp(member(B,X4,I5))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(B,set(A),A3,X4)),B4)) ) ) ).
% UN_subset_iff
tff(fact_6659_range__subsetD,axiom,
! [B: $tType,A: $tType,F2: fun(B,A),B4: set(A),I: B] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(B),set(A),image(B,A,F2),top_top(set(B)))),B4))
=> pp(member(A,aa(B,A,F2,I),B4)) ) ).
% range_subsetD
tff(fact_6660_UN__Pow__subset,axiom,
! [A: $tType,B: $tType,B4: fun(B,set(A)),A3: set(B)] : pp(aa(set(set(A)),bool,aa(set(set(A)),fun(set(set(A)),bool),ord_less_eq(set(set(A))),complete_Sup_Sup(set(set(A)),aa(set(B),set(set(set(A))),image(B,set(set(A)),aTP_Lamp_rq(fun(B,set(A)),fun(B,set(set(A))),B4)),A3))),pow2(A,complete_Sup_Sup(set(A),aa(set(B),set(set(A)),image(B,set(A),B4),A3))))) ).
% UN_Pow_subset
tff(fact_6661_UN__finite__subset,axiom,
! [A: $tType,A3: fun(nat,set(A)),C6: set(A)] :
( ! [N3: nat] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),complete_Sup_Sup(set(A),aa(set(nat),set(set(A)),image(nat,set(A),A3),set_or7035219750837199246ssThan(nat,zero_zero(nat),N3)))),C6))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),complete_Sup_Sup(set(A),aa(set(nat),set(set(A)),image(nat,set(A),A3),top_top(set(nat))))),C6)) ) ).
% UN_finite_subset
tff(fact_6662_finite__int__iff__bounded,axiom,
! [S: set(int)] :
( finite_finite(int,S)
<=> ? [K2: int] : pp(aa(set(int),bool,aa(set(int),fun(set(int),bool),ord_less_eq(set(int)),aa(set(int),set(int),image(int,int,abs_abs(int)),S)),aa(int,set(int),set_ord_lessThan(int),K2))) ) ).
% finite_int_iff_bounded
tff(fact_6663_finite__int__iff__bounded__le,axiom,
! [S: set(int)] :
( finite_finite(int,S)
<=> ? [K2: int] : pp(aa(set(int),bool,aa(set(int),fun(set(int),bool),ord_less_eq(set(int)),aa(set(int),set(int),image(int,int,abs_abs(int)),S)),aa(int,set(int),set_ord_atMost(int),K2))) ) ).
% finite_int_iff_bounded_le
tff(fact_6664_INT__subset__iff,axiom,
! [A: $tType,B: $tType,B4: set(A),A3: fun(B,set(A)),I5: set(B)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),complete_Inf_Inf(set(A),aa(set(B),set(set(A)),image(B,set(A),A3),I5))))
<=> ! [X4: B] :
( pp(member(B,X4,I5))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),aa(B,set(A),A3,X4))) ) ) ).
% INT_subset_iff
tff(fact_6665_INT__anti__mono,axiom,
! [B: $tType,A: $tType,A3: set(A),B4: set(A),F2: fun(A,set(B)),G: fun(A,set(B))] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> ( ! [X3: A] :
( pp(member(A,X3,A3))
=> pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),aa(A,set(B),F2,X3)),aa(A,set(B),G,X3))) )
=> pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),complete_Inf_Inf(set(B),aa(set(A),set(set(B)),image(A,set(B),F2),B4))),complete_Inf_Inf(set(B),aa(set(A),set(set(B)),image(A,set(B),G),A3)))) ) ) ).
% INT_anti_mono
tff(fact_6666_INT__greatest,axiom,
! [B: $tType,A: $tType,A3: set(A),C6: set(B),B4: fun(A,set(B))] :
( ! [X3: A] :
( pp(member(A,X3,A3))
=> pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),C6),aa(A,set(B),B4,X3))) )
=> pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),C6),complete_Inf_Inf(set(B),aa(set(A),set(set(B)),image(A,set(B),B4),A3)))) ) ).
% INT_greatest
tff(fact_6667_INT__lower,axiom,
! [B: $tType,A: $tType,A2: A,A3: set(A),B4: fun(A,set(B))] :
( pp(member(A,A2,A3))
=> pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),complete_Inf_Inf(set(B),aa(set(A),set(set(B)),image(A,set(B),B4),A3))),aa(A,set(B),B4,A2))) ) ).
% INT_lower
tff(fact_6668_UN__extend__simps_I6_J,axiom,
! [L5: $tType,K9: $tType,A3: fun(K9,set(L5)),C6: set(K9),B4: set(L5)] : ( aa(set(L5),set(L5),aa(set(L5),fun(set(L5),set(L5)),minus_minus(set(L5)),complete_Sup_Sup(set(L5),aa(set(K9),set(set(L5)),image(K9,set(L5),A3),C6))),B4) = complete_Sup_Sup(set(L5),aa(set(K9),set(set(L5)),image(K9,set(L5),aa(set(L5),fun(K9,set(L5)),aTP_Lamp_rr(fun(K9,set(L5)),fun(set(L5),fun(K9,set(L5))),A3),B4)),C6)) ) ).
% UN_extend_simps(6)
tff(fact_6669_INT__extend__simps_I3_J,axiom,
! [F: $tType,E3: $tType,C6: set(E3),A3: fun(E3,set(F)),B4: set(F)] :
( ( ( C6 = bot_bot(set(E3)) )
=> ( aa(set(F),set(F),aa(set(F),fun(set(F),set(F)),minus_minus(set(F)),complete_Inf_Inf(set(F),aa(set(E3),set(set(F)),image(E3,set(F),A3),C6))),B4) = aa(set(F),set(F),aa(set(F),fun(set(F),set(F)),minus_minus(set(F)),top_top(set(F))),B4) ) )
& ( ( C6 != bot_bot(set(E3)) )
=> ( aa(set(F),set(F),aa(set(F),fun(set(F),set(F)),minus_minus(set(F)),complete_Inf_Inf(set(F),aa(set(E3),set(set(F)),image(E3,set(F),A3),C6))),B4) = complete_Inf_Inf(set(F),aa(set(E3),set(set(F)),image(E3,set(F),aa(set(F),fun(E3,set(F)),aTP_Lamp_ro(fun(E3,set(F)),fun(set(F),fun(E3,set(F))),A3),B4)),C6)) ) ) ) ).
% INT_extend_simps(3)
tff(fact_6670_UNIV__option__conv,axiom,
! [A: $tType] : ( top_top(set(option(A))) = aa(set(option(A)),set(option(A)),insert(option(A),none(A)),aa(set(A),set(option(A)),image(A,option(A),some(A)),top_top(set(A)))) ) ).
% UNIV_option_conv
tff(fact_6671_UN__UN__finite__eq,axiom,
! [A: $tType,A3: fun(nat,set(A))] : ( complete_Sup_Sup(set(A),aa(set(nat),set(set(A)),image(nat,set(A),aTP_Lamp_rs(fun(nat,set(A)),fun(nat,set(A)),A3)),top_top(set(nat)))) = complete_Sup_Sup(set(A),aa(set(nat),set(set(A)),image(nat,set(A),A3),top_top(set(nat)))) ) ).
% UN_UN_finite_eq
tff(fact_6672_UN__finite2__eq,axiom,
! [A: $tType,A3: fun(nat,set(A)),B4: fun(nat,set(A)),K: nat] :
( ! [N3: nat] : ( complete_Sup_Sup(set(A),aa(set(nat),set(set(A)),image(nat,set(A),A3),set_or7035219750837199246ssThan(nat,zero_zero(nat),N3))) = complete_Sup_Sup(set(A),aa(set(nat),set(set(A)),image(nat,set(A),B4),set_or7035219750837199246ssThan(nat,zero_zero(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N3),K)))) )
=> ( complete_Sup_Sup(set(A),aa(set(nat),set(set(A)),image(nat,set(A),A3),top_top(set(nat)))) = complete_Sup_Sup(set(A),aa(set(nat),set(set(A)),image(nat,set(A),B4),top_top(set(nat)))) ) ) ).
% UN_finite2_eq
tff(fact_6673_UN__atMost__UNIV,axiom,
complete_Sup_Sup(set(nat),aa(set(nat),set(set(nat)),image(nat,set(nat),set_ord_atMost(nat)),top_top(set(nat)))) = top_top(set(nat)) ).
% UN_atMost_UNIV
tff(fact_6674_UN__lessThan__UNIV,axiom,
complete_Sup_Sup(set(nat),aa(set(nat),set(set(nat)),image(nat,set(nat),set_ord_lessThan(nat)),top_top(set(nat)))) = top_top(set(nat)) ).
% UN_lessThan_UNIV
tff(fact_6675_notin__range__Some,axiom,
! [A: $tType,X2: option(A)] :
( ~ pp(member(option(A),X2,aa(set(A),set(option(A)),image(A,option(A),some(A)),top_top(set(A)))))
<=> ( X2 = none(A) ) ) ).
% notin_range_Some
tff(fact_6676_finite__range__Some,axiom,
! [A: $tType] :
( finite_finite(option(A),aa(set(A),set(option(A)),image(A,option(A),some(A)),top_top(set(A))))
<=> finite_finite(A,top_top(set(A))) ) ).
% finite_range_Some
tff(fact_6677_None__notin__image__Some,axiom,
! [A: $tType,A3: set(A)] : ~ pp(member(option(A),none(A),aa(set(A),set(option(A)),image(A,option(A),some(A)),A3))) ).
% None_notin_image_Some
tff(fact_6678_Inf__real__def,axiom,
! [X6: set(real)] : ( complete_Inf_Inf(real,X6) = aa(real,real,uminus_uminus(real),complete_Sup_Sup(real,aa(set(real),set(real),image(real,real,uminus_uminus(real)),X6))) ) ).
% Inf_real_def
tff(fact_6679_Inf__int__def,axiom,
! [X6: set(int)] : ( complete_Inf_Inf(int,X6) = aa(int,int,uminus_uminus(int),complete_Sup_Sup(int,aa(set(int),set(int),image(int,int,uminus_uminus(int)),X6))) ) ).
% Inf_int_def
tff(fact_6680_SUP__Sup__eq2,axiom,
! [B: $tType,A: $tType,S: set(set(product_prod(A,B))),X: A,Xa2: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),complete_Sup_Sup(fun(A,fun(B,bool)),aa(set(set(product_prod(A,B))),set(fun(A,fun(B,bool))),image(set(product_prod(A,B)),fun(A,fun(B,bool)),aTP_Lamp_jb(set(product_prod(A,B)),fun(A,fun(B,bool)))),S)),X),Xa2))
<=> pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X),Xa2),complete_Sup_Sup(set(product_prod(A,B)),S))) ) ).
% SUP_Sup_eq2
tff(fact_6681_SUP__UN__eq2,axiom,
! [A: $tType,B: $tType,C: $tType,R: fun(C,set(product_prod(A,B))),S: set(C),X: A,Xa2: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),complete_Sup_Sup(fun(A,fun(B,bool)),aa(set(C),set(fun(A,fun(B,bool))),image(C,fun(A,fun(B,bool)),aTP_Lamp_rt(fun(C,set(product_prod(A,B))),fun(C,fun(A,fun(B,bool))),R)),S)),X),Xa2))
<=> pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X),Xa2),complete_Sup_Sup(set(product_prod(A,B)),aa(set(C),set(set(product_prod(A,B))),image(C,set(product_prod(A,B)),R),S)))) ) ).
% SUP_UN_eq2
tff(fact_6682_INF__INT__eq2,axiom,
! [A: $tType,B: $tType,C: $tType,R: fun(C,set(product_prod(A,B))),S: set(C),X: A,Xa2: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),complete_Inf_Inf(fun(A,fun(B,bool)),aa(set(C),set(fun(A,fun(B,bool))),image(C,fun(A,fun(B,bool)),aTP_Lamp_rt(fun(C,set(product_prod(A,B))),fun(C,fun(A,fun(B,bool))),R)),S)),X),Xa2))
<=> pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X),Xa2),complete_Inf_Inf(set(product_prod(A,B)),aa(set(C),set(set(product_prod(A,B))),image(C,set(product_prod(A,B)),R),S)))) ) ).
% INF_INT_eq2
tff(fact_6683_INF__Int__eq2,axiom,
! [B: $tType,A: $tType,S: set(set(product_prod(A,B))),X: A,Xa2: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),complete_Inf_Inf(fun(A,fun(B,bool)),aa(set(set(product_prod(A,B))),set(fun(A,fun(B,bool))),image(set(product_prod(A,B)),fun(A,fun(B,bool)),aTP_Lamp_jb(set(product_prod(A,B)),fun(A,fun(B,bool)))),S)),X),Xa2))
<=> pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X),Xa2),complete_Inf_Inf(set(product_prod(A,B)),S))) ) ).
% INF_Int_eq2
tff(fact_6684_Sup__SUP__eq2,axiom,
! [B: $tType,A: $tType,S: set(fun(A,fun(B,bool))),X: A,Xa2: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),complete_Sup_Sup(fun(A,fun(B,bool)),S),X),Xa2))
<=> pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X),Xa2),complete_Sup_Sup(set(product_prod(A,B)),aa(set(fun(product_prod(A,B),bool)),set(set(product_prod(A,B))),image(fun(product_prod(A,B),bool),set(product_prod(A,B)),collect(product_prod(A,B))),aa(set(fun(A,fun(B,bool))),set(fun(product_prod(A,B),bool)),image(fun(A,fun(B,bool)),fun(product_prod(A,B),bool),product_case_prod(A,B,bool)),S))))) ) ).
% Sup_SUP_eq2
tff(fact_6685_Inf__INT__eq2,axiom,
! [B: $tType,A: $tType,S: set(fun(A,fun(B,bool))),X: A,Xa2: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),complete_Inf_Inf(fun(A,fun(B,bool)),S),X),Xa2))
<=> pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X),Xa2),complete_Inf_Inf(set(product_prod(A,B)),aa(set(fun(product_prod(A,B),bool)),set(set(product_prod(A,B))),image(fun(product_prod(A,B),bool),set(product_prod(A,B)),collect(product_prod(A,B))),aa(set(fun(A,fun(B,bool))),set(fun(product_prod(A,B),bool)),image(fun(A,fun(B,bool)),fun(product_prod(A,B),bool),product_case_prod(A,B,bool)),S))))) ) ).
% Inf_INT_eq2
tff(fact_6686_Compl__eq__Diff__UNIV,axiom,
! [A: $tType,A3: set(A)] : ( aa(set(A),set(A),uminus_uminus(set(A)),A3) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),top_top(set(A))),A3) ) ).
% Compl_eq_Diff_UNIV
tff(fact_6687_boolean__algebra_Oconj__one__right,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),top_top(A)) = X2 ) ) ).
% boolean_algebra.conj_one_right
tff(fact_6688_not__UNIV__eq__Icc,axiom,
! [A: $tType] :
( no_top(A)
=> ! [L4: A,H2: A] : ( top_top(set(A)) != set_or1337092689740270186AtMost(A,L4,H2) ) ) ).
% not_UNIV_eq_Icc
tff(fact_6689_atMost__eq__UNIV__iff,axiom,
! [A: $tType] :
( order_top(A)
=> ! [X2: A] :
( ( aa(A,set(A),set_ord_atMost(A),X2) = top_top(set(A)) )
<=> ( X2 = top_top(A) ) ) ) ).
% atMost_eq_UNIV_iff
tff(fact_6690_not__UNIV__eq__Iic,axiom,
! [A: $tType] :
( no_top(A)
=> ! [H2: A] : ( top_top(set(A)) != aa(A,set(A),set_ord_atMost(A),H2) ) ) ).
% not_UNIV_eq_Iic
tff(fact_6691_top_Oextremum__strict,axiom,
! [A: $tType] :
( order_top(A)
=> ! [A2: A] : ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),top_top(A)),A2)) ) ).
% top.extremum_strict
tff(fact_6692_top_Onot__eq__extremum,axiom,
! [A: $tType] :
( order_top(A)
=> ! [A2: A] :
( ( A2 != top_top(A) )
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),top_top(A))) ) ) ).
% top.not_eq_extremum
tff(fact_6693_finite__fun__UNIVD1,axiom,
! [B: $tType,A: $tType] :
( finite_finite(fun(A,B),top_top(set(fun(A,B))))
=> ( ( aa(set(B),nat,finite_card(B),top_top(set(B))) != aa(nat,nat,suc,zero_zero(nat)) )
=> finite_finite(A,top_top(set(A))) ) ) ).
% finite_fun_UNIVD1
tff(fact_6694_bij__uminus,axiom,
! [A: $tType] :
( ab_group_add(A)
=> bij_betw(A,A,uminus_uminus(A),top_top(set(A)),top_top(set(A))) ) ).
% bij_uminus
tff(fact_6695_atLeastAtMost__eq__UNIV__iff,axiom,
! [A: $tType] :
( bounded_lattice(A)
=> ! [X2: A,Y: A] :
( ( set_or1337092689740270186AtMost(A,X2,Y) = top_top(set(A)) )
<=> ( ( X2 = bot_bot(A) )
& ( Y = top_top(A) ) ) ) ) ).
% atLeastAtMost_eq_UNIV_iff
tff(fact_6696_bij__fn,axiom,
! [A: $tType,F2: fun(A,A),N: nat] :
( bij_betw(A,A,F2,top_top(set(A)),top_top(set(A)))
=> bij_betw(A,A,aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),N),F2),top_top(set(A)),top_top(set(A))) ) ).
% bij_fn
tff(fact_6697_not__UNIV__le__Icc,axiom,
! [A: $tType] :
( no_top(A)
=> ! [L: A,H: A] : ~ pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),top_top(set(A))),set_or1337092689740270186AtMost(A,L,H))) ) ).
% not_UNIV_le_Icc
tff(fact_6698_top_Oextremum__uniqueI,axiom,
! [A: $tType] :
( order_top(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),top_top(A)),A2))
=> ( A2 = top_top(A) ) ) ) ).
% top.extremum_uniqueI
tff(fact_6699_top_Oextremum__unique,axiom,
! [A: $tType] :
( order_top(A)
=> ! [A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),top_top(A)),A2))
<=> ( A2 = top_top(A) ) ) ) ).
% top.extremum_unique
tff(fact_6700_top__greatest,axiom,
! [A: $tType] :
( order_top(A)
=> ! [A2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),top_top(A))) ) ).
% top_greatest
tff(fact_6701_subset__UNIV,axiom,
! [A: $tType,A3: set(A)] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),top_top(set(A)))) ).
% subset_UNIV
tff(fact_6702_not__UNIV__le__Iic,axiom,
! [A: $tType] :
( no_top(A)
=> ! [H: A] : ~ pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),top_top(set(A))),aa(A,set(A),set_ord_atMost(A),H))) ) ).
% not_UNIV_le_Iic
tff(fact_6703_UN__finite2__subset,axiom,
! [A: $tType,A3: fun(nat,set(A)),B4: fun(nat,set(A)),K: nat] :
( ! [N3: nat] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),complete_Sup_Sup(set(A),aa(set(nat),set(set(A)),image(nat,set(A),A3),set_or7035219750837199246ssThan(nat,zero_zero(nat),N3)))),complete_Sup_Sup(set(A),aa(set(nat),set(set(A)),image(nat,set(A),B4),set_or7035219750837199246ssThan(nat,zero_zero(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N3),K))))))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),complete_Sup_Sup(set(A),aa(set(nat),set(set(A)),image(nat,set(A),A3),top_top(set(nat))))),complete_Sup_Sup(set(A),aa(set(nat),set(set(A)),image(nat,set(A),B4),top_top(set(nat)))))) ) ).
% UN_finite2_subset
tff(fact_6704_in__image__insert__iff,axiom,
! [A: $tType,B4: set(set(A)),X2: A,A3: set(A)] :
( ! [C7: set(A)] :
( pp(member(set(A),C7,B4))
=> ~ pp(member(A,X2,C7)) )
=> ( pp(member(set(A),A3,aa(set(set(A)),set(set(A)),image(set(A),set(A),insert(A,X2)),B4)))
<=> ( pp(member(A,X2,A3))
& pp(member(set(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))),B4)) ) ) ) ).
% in_image_insert_iff
tff(fact_6705_image__int__atLeastAtMost,axiom,
! [A2: nat,B2: nat] : ( aa(set(nat),set(int),image(nat,int,semiring_1_of_nat(int)),set_or1337092689740270186AtMost(nat,A2,B2)) = set_or1337092689740270186AtMost(int,aa(nat,int,semiring_1_of_nat(int),A2),aa(nat,int,semiring_1_of_nat(int),B2)) ) ).
% image_int_atLeastAtMost
tff(fact_6706_surj__Compl__image__subset,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),A3: set(B)] :
( ( aa(set(B),set(A),image(B,A,F2),top_top(set(B))) = top_top(set(A)) )
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(A),set(A),uminus_uminus(set(A)),aa(set(B),set(A),image(B,A,F2),A3))),aa(set(B),set(A),image(B,A,F2),aa(set(B),set(B),uminus_uminus(set(B)),A3)))) ) ).
% surj_Compl_image_subset
tff(fact_6707_image__int__atLeastLessThan,axiom,
! [A2: nat,B2: nat] : ( aa(set(nat),set(int),image(nat,int,semiring_1_of_nat(int)),set_or7035219750837199246ssThan(nat,A2,B2)) = set_or7035219750837199246ssThan(int,aa(nat,int,semiring_1_of_nat(int),A2),aa(nat,int,semiring_1_of_nat(int),B2)) ) ).
% image_int_atLeastLessThan
tff(fact_6708_bij__betw__UNION__chain,axiom,
! [B: $tType,C: $tType,A: $tType,I5: set(A),A3: fun(A,set(B)),F2: fun(B,C),A8: fun(A,set(C))] :
( ! [I3: A,J2: A] :
( pp(member(A,I3,I5))
=> ( pp(member(A,J2,I5))
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),aa(A,set(B),A3,I3)),aa(A,set(B),A3,J2)))
| pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),aa(A,set(B),A3,J2)),aa(A,set(B),A3,I3))) ) ) )
=> ( ! [I3: A] :
( pp(member(A,I3,I5))
=> bij_betw(B,C,F2,aa(A,set(B),A3,I3),aa(A,set(C),A8,I3)) )
=> bij_betw(B,C,F2,complete_Sup_Sup(set(B),aa(set(A),set(set(B)),image(A,set(B),A3),I5)),complete_Sup_Sup(set(C),aa(set(A),set(set(C)),image(A,set(C),A8),I5))) ) ) ).
% bij_betw_UNION_chain
tff(fact_6709_suminf__eq__SUP__real,axiom,
! [X6: fun(nat,real)] :
( summable(real,X6)
=> ( ! [I3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(nat,real,X6,I3)))
=> ( suminf(real,X6) = complete_Sup_Sup(real,aa(set(nat),set(real),image(nat,real,aTP_Lamp_ru(fun(nat,real),fun(nat,real),X6)),top_top(set(nat)))) ) ) ) ).
% suminf_eq_SUP_real
tff(fact_6710_UN__extend__simps_I7_J,axiom,
! [M11: $tType,N10: $tType,A3: set(M11),B4: fun(N10,set(M11)),C6: set(N10)] : ( aa(set(M11),set(M11),aa(set(M11),fun(set(M11),set(M11)),minus_minus(set(M11)),A3),complete_Inf_Inf(set(M11),aa(set(N10),set(set(M11)),image(N10,set(M11),B4),C6))) = complete_Sup_Sup(set(M11),aa(set(N10),set(set(M11)),image(N10,set(M11),aa(fun(N10,set(M11)),fun(N10,set(M11)),aTP_Lamp_rv(set(M11),fun(fun(N10,set(M11)),fun(N10,set(M11))),A3),B4)),C6)) ) ).
% UN_extend_simps(7)
tff(fact_6711_finite__mono__strict__prefix__implies__finite__fixpoint,axiom,
! [A: $tType,F2: fun(nat,set(A)),S: set(A)] :
( ! [I3: nat] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(nat,set(A),F2,I3)),S))
=> ( finite_finite(A,S)
=> ( ? [N8: nat] :
( ! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N3),N8))
=> ! [M3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M3),N8))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M3),N3))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less(set(A)),aa(nat,set(A),F2,M3)),aa(nat,set(A),F2,N3))) ) ) )
& ! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N8),N3))
=> ( aa(nat,set(A),F2,N8) = aa(nat,set(A),F2,N3) ) ) )
=> ( aa(nat,set(A),F2,aa(set(A),nat,finite_card(A),S)) = complete_Sup_Sup(set(A),aa(set(nat),set(set(A)),image(nat,set(A),F2),top_top(set(nat)))) ) ) ) ) ).
% finite_mono_strict_prefix_implies_finite_fixpoint
tff(fact_6712_sorted__list__of__set_Ofolding__insort__key__axioms,axiom,
! [A: $tType] :
( linorder(A)
=> folding_insort_key(A,A,ord_less_eq(A),ord_less(A),top_top(set(A)),aTP_Lamp_nx(A,A)) ) ).
% sorted_list_of_set.folding_insort_key_axioms
tff(fact_6713_Collect__split__mono__strong,axiom,
! [B: $tType,A: $tType,X6: set(A),A3: set(product_prod(A,B)),Y6: set(B),P: fun(A,fun(B,bool)),Q: fun(A,fun(B,bool))] :
( ( X6 = aa(set(product_prod(A,B)),set(A),image(product_prod(A,B),A,product_fst(A,B)),A3) )
=> ( ( Y6 = aa(set(product_prod(A,B)),set(B),image(product_prod(A,B),B,product_snd(A,B)),A3) )
=> ( ! [X3: A] :
( pp(member(A,X3,X6))
=> ! [Xa4: B] :
( pp(member(B,Xa4,Y6))
=> ( pp(aa(B,bool,aa(A,fun(B,bool),P,X3),Xa4))
=> pp(aa(B,bool,aa(A,fun(B,bool),Q,X3),Xa4)) ) ) )
=> ( pp(aa(set(product_prod(A,B)),bool,aa(set(product_prod(A,B)),fun(set(product_prod(A,B)),bool),ord_less_eq(set(product_prod(A,B))),A3),aa(fun(product_prod(A,B),bool),set(product_prod(A,B)),collect(product_prod(A,B)),aa(fun(A,fun(B,bool)),fun(product_prod(A,B),bool),product_case_prod(A,B,bool),P))))
=> pp(aa(set(product_prod(A,B)),bool,aa(set(product_prod(A,B)),fun(set(product_prod(A,B)),bool),ord_less_eq(set(product_prod(A,B))),A3),aa(fun(product_prod(A,B),bool),set(product_prod(A,B)),collect(product_prod(A,B)),aa(fun(A,fun(B,bool)),fun(product_prod(A,B),bool),product_case_prod(A,B,bool),Q)))) ) ) ) ) ).
% Collect_split_mono_strong
tff(fact_6714_inf__top_Osemilattice__neutr__order__axioms,axiom,
! [A: $tType] :
( bounde4346867609351753570nf_top(A)
=> semila1105856199041335345_order(A,inf_inf(A),top_top(A),ord_less_eq(A),ord_less(A)) ) ).
% inf_top.semilattice_neutr_order_axioms
tff(fact_6715_map__of__eq__None__iff,axiom,
! [A: $tType,B: $tType,Xys: list(product_prod(B,A)),X2: B] :
( ( aa(B,option(A),map_of(B,A,Xys),X2) = none(A) )
<=> ~ pp(member(B,X2,aa(set(product_prod(B,A)),set(B),image(product_prod(B,A),B,product_fst(B,A)),aa(list(product_prod(B,A)),set(product_prod(B,A)),set2(product_prod(B,A)),Xys)))) ) ).
% map_of_eq_None_iff
tff(fact_6716_finite__UNIV__card__ge__0,axiom,
! [A: $tType] :
( finite_finite(A,top_top(set(A)))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(set(A),nat,finite_card(A),top_top(set(A))))) ) ).
% finite_UNIV_card_ge_0
tff(fact_6717_INT__extend__simps_I4_J,axiom,
! [G2: $tType,H4: $tType,C6: set(H4),A3: set(G2),B4: fun(H4,set(G2))] :
( ( ( C6 = bot_bot(set(H4)) )
=> ( aa(set(G2),set(G2),aa(set(G2),fun(set(G2),set(G2)),minus_minus(set(G2)),A3),complete_Sup_Sup(set(G2),aa(set(H4),set(set(G2)),image(H4,set(G2),B4),C6))) = A3 ) )
& ( ( C6 != bot_bot(set(H4)) )
=> ( aa(set(G2),set(G2),aa(set(G2),fun(set(G2),set(G2)),minus_minus(set(G2)),A3),complete_Sup_Sup(set(G2),aa(set(H4),set(set(G2)),image(H4,set(G2),B4),C6))) = complete_Inf_Inf(set(G2),aa(set(H4),set(set(G2)),image(H4,set(G2),aa(fun(H4,set(G2)),fun(H4,set(G2)),aTP_Lamp_rp(set(G2),fun(fun(H4,set(G2)),fun(H4,set(G2))),A3),B4)),C6)) ) ) ) ).
% INT_extend_simps(4)
tff(fact_6718_UN__le__add__shift__strict,axiom,
! [A: $tType,M7: fun(nat,set(A)),K: nat,N: nat] : ( complete_Sup_Sup(set(A),aa(set(nat),set(set(A)),image(nat,set(A),aa(nat,fun(nat,set(A)),aTP_Lamp_rw(fun(nat,set(A)),fun(nat,fun(nat,set(A))),M7),K)),aa(nat,set(nat),set_ord_lessThan(nat),N))) = complete_Sup_Sup(set(A),aa(set(nat),set(set(A)),image(nat,set(A),M7),set_or7035219750837199246ssThan(nat,K,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),K)))) ) ).
% UN_le_add_shift_strict
tff(fact_6719_UN__le__add__shift,axiom,
! [A: $tType,M7: fun(nat,set(A)),K: nat,N: nat] : ( complete_Sup_Sup(set(A),aa(set(nat),set(set(A)),image(nat,set(A),aa(nat,fun(nat,set(A)),aTP_Lamp_rw(fun(nat,set(A)),fun(nat,fun(nat,set(A))),M7),K)),aa(nat,set(nat),set_ord_atMost(nat),N))) = complete_Sup_Sup(set(A),aa(set(nat),set(set(A)),image(nat,set(A),M7),set_or1337092689740270186AtMost(nat,K,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),K)))) ) ).
% UN_le_add_shift
tff(fact_6720_subset__subseqs,axiom,
! [A: $tType,X6: set(A),Xs: list(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),X6),aa(list(A),set(A),set2(A),Xs)))
=> pp(member(set(A),X6,aa(set(list(A)),set(set(A)),image(list(A),set(A),set2(A)),aa(list(list(A)),set(list(A)),set2(list(A)),subseqs(A,Xs))))) ) ).
% subset_subseqs
tff(fact_6721_subseqs__powset,axiom,
! [A: $tType,Xs: list(A)] : ( aa(set(list(A)),set(set(A)),image(list(A),set(A),set2(A)),aa(list(list(A)),set(list(A)),set2(list(A)),subseqs(A,Xs))) = pow2(A,aa(list(A),set(A),set2(A),Xs)) ) ).
% subseqs_powset
tff(fact_6722_image__add__int__atLeastLessThan,axiom,
! [L: int,U: int] : ( aa(set(int),set(int),image(int,int,aTP_Lamp_rx(int,fun(int,int),L)),set_or7035219750837199246ssThan(int,zero_zero(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),U),L))) = set_or7035219750837199246ssThan(int,L,U) ) ).
% image_add_int_atLeastLessThan
tff(fact_6723_card__range__greater__zero,axiom,
! [A: $tType,B: $tType,F2: fun(B,A)] :
( finite_finite(A,aa(set(B),set(A),image(B,A,F2),top_top(set(B))))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),aa(set(A),nat,finite_card(A),aa(set(B),set(A),image(B,A,F2),top_top(set(B)))))) ) ).
% card_range_greater_zero
tff(fact_6724_card__UN__le,axiom,
! [B: $tType,A: $tType,I5: set(A),A3: fun(A,set(B))] :
( finite_finite(A,I5)
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(B),nat,finite_card(B),complete_Sup_Sup(set(B),aa(set(A),set(set(B)),image(A,set(B),A3),I5)))),aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),aTP_Lamp_ry(fun(A,set(B)),fun(A,nat),A3)),I5))) ) ).
% card_UN_le
tff(fact_6725_Gcd__int__def,axiom,
! [K5: set(int)] : ( gcd_Gcd(int,K5) = aa(nat,int,semiring_1_of_nat(int),gcd_Gcd(nat,aa(set(int),set(nat),image(int,nat,aa(fun(int,int),fun(int,nat),comp(int,nat,int,nat2),abs_abs(int))),K5))) ) ).
% Gcd_int_def
tff(fact_6726_suminf__eq__SUP,axiom,
! [A: $tType] :
( ( comple5582772986160207858norder(A)
& canoni5634975068530333245id_add(A)
& topolo1944317154257567458pology(A) )
=> ! [F2: fun(nat,A)] : ( suminf(A,F2) = complete_Sup_Sup(A,aa(set(nat),set(A),image(nat,A,aTP_Lamp_rn(fun(nat,A),fun(nat,A),F2)),top_top(set(nat)))) ) ) ).
% suminf_eq_SUP
tff(fact_6727_range__mod,axiom,
! [N: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(set(nat),set(nat),image(nat,nat,aTP_Lamp_rz(nat,fun(nat,nat),N)),top_top(set(nat))) = set_or7035219750837199246ssThan(nat,zero_zero(nat),N) ) ) ).
% range_mod
tff(fact_6728_image__atLeastZeroLessThan__int,axiom,
! [U: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),zero_zero(int)),U))
=> ( set_or7035219750837199246ssThan(int,zero_zero(int),U) = aa(set(nat),set(int),image(nat,int,semiring_1_of_nat(int)),aa(nat,set(nat),set_ord_lessThan(nat),aa(int,nat,nat2,U))) ) ) ).
% image_atLeastZeroLessThan_int
tff(fact_6729_UNIV__nat__eq,axiom,
top_top(set(nat)) = aa(set(nat),set(nat),insert(nat,zero_zero(nat)),aa(set(nat),set(nat),image(nat,nat,suc),top_top(set(nat)))) ).
% UNIV_nat_eq
tff(fact_6730_UN__image__subset,axiom,
! [C: $tType,B: $tType,A: $tType,F2: fun(B,set(A)),G: fun(C,set(B)),X2: C,X6: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),complete_Sup_Sup(set(A),aa(set(B),set(set(A)),image(B,set(A),F2),aa(C,set(B),G,X2)))),X6))
<=> pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),aa(C,set(B),G,X2)),aa(fun(B,bool),set(B),collect(B),aa(set(A),fun(B,bool),aTP_Lamp_sa(fun(B,set(A)),fun(set(A),fun(B,bool)),F2),X6)))) ) ).
% UN_image_subset
tff(fact_6731_card__UNIV__unit,axiom,
aa(set(product_unit),nat,finite_card(product_unit),top_top(set(product_unit))) = one_one(nat) ).
% card_UNIV_unit
tff(fact_6732_card__UNIV__bool,axiom,
aa(set(bool),nat,finite_card(bool),top_top(set(bool))) = aa(num,nat,numeral_numeral(nat),bit0(one2)) ).
% card_UNIV_bool
tff(fact_6733_range__mult,axiom,
! [A2: real] :
( ( ( A2 = zero_zero(real) )
=> ( aa(set(real),set(real),image(real,real,aa(real,fun(real,real),times_times(real),A2)),top_top(set(real))) = aa(set(real),set(real),insert(real,zero_zero(real)),bot_bot(set(real))) ) )
& ( ( A2 != zero_zero(real) )
=> ( aa(set(real),set(real),image(real,real,aa(real,fun(real,real),times_times(real),A2)),top_top(set(real))) = top_top(set(real)) ) ) ) ).
% range_mult
tff(fact_6734_int__in__range__abs,axiom,
! [N: nat] : pp(member(int,aa(nat,int,semiring_1_of_nat(int),N),aa(set(int),set(int),image(int,int,abs_abs(int)),top_top(set(int))))) ).
% int_in_range_abs
tff(fact_6735_top__empty__eq2,axiom,
! [B: $tType,A: $tType,X: A,Xa2: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),top_top(fun(A,fun(B,bool))),X),Xa2))
<=> pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X),Xa2),top_top(set(product_prod(A,B))))) ) ).
% top_empty_eq2
tff(fact_6736_infinite__UNIV__listI,axiom,
! [A: $tType] : ~ finite_finite(list(A),top_top(set(list(A)))) ).
% infinite_UNIV_listI
tff(fact_6737_bij__prod__encode,axiom,
bij_betw(product_prod(nat,nat),nat,nat_prod_encode,top_top(set(product_prod(nat,nat))),top_top(set(nat))) ).
% bij_prod_encode
tff(fact_6738_surj__prod__encode,axiom,
aa(set(product_prod(nat,nat)),set(nat),image(product_prod(nat,nat),nat,nat_prod_encode),top_top(set(product_prod(nat,nat)))) = top_top(set(nat)) ).
% surj_prod_encode
tff(fact_6739_conj__subset__def,axiom,
! [A: $tType,A3: set(A),P: fun(A,bool),Q: fun(A,bool)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),aa(fun(A,bool),set(A),collect(A),aa(fun(A,bool),fun(A,bool),aTP_Lamp_sb(fun(A,bool),fun(fun(A,bool),fun(A,bool)),P),Q))))
<=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),aa(fun(A,bool),set(A),collect(A),P)))
& pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),aa(fun(A,bool),set(A),collect(A),Q))) ) ) ).
% conj_subset_def
tff(fact_6740_root__def,axiom,
! [N: nat,X2: real] :
( ( ( N = zero_zero(nat) )
=> ( aa(real,real,root(N),X2) = zero_zero(real) ) )
& ( ( N != zero_zero(nat) )
=> ( aa(real,real,root(N),X2) = the_inv_into(real,real,top_top(set(real)),aTP_Lamp_sc(nat,fun(real,real),N),X2) ) ) ) ).
% root_def
tff(fact_6741_card__UNIV__char,axiom,
aa(set(char),nat,finite_card(char),top_top(set(char))) = aa(num,nat,numeral_numeral(nat),bit0(bit0(bit0(bit0(bit0(bit0(bit0(bit0(one2))))))))) ).
% card_UNIV_char
tff(fact_6742_UNIV__char__of__nat,axiom,
top_top(set(char)) = aa(set(nat),set(char),image(nat,char,unique5772411509450598832har_of(nat)),set_or7035219750837199246ssThan(nat,zero_zero(nat),aa(num,nat,numeral_numeral(nat),bit0(bit0(bit0(bit0(bit0(bit0(bit0(bit0(one2))))))))))) ).
% UNIV_char_of_nat
tff(fact_6743_length__remdups__concat,axiom,
! [A: $tType,Xss: list(list(A))] : ( aa(list(A),nat,size_size(list(A)),remdups(A,concat(A,Xss))) = aa(set(A),nat,finite_card(A),complete_Sup_Sup(set(A),aa(set(list(A)),set(set(A)),image(list(A),set(A),set2(A)),aa(list(list(A)),set(list(A)),set2(list(A)),Xss)))) ) ).
% length_remdups_concat
tff(fact_6744_remdups__upt,axiom,
! [M: nat,N: nat] : ( remdups(nat,upt(M,N)) = upt(M,N) ) ).
% remdups_upt
tff(fact_6745_remdups__eq__nil__right__iff,axiom,
! [A: $tType,X2: list(A)] :
( ( nil(A) = remdups(A,X2) )
<=> ( X2 = nil(A) ) ) ).
% remdups_eq_nil_right_iff
tff(fact_6746_remdups__eq__nil__iff,axiom,
! [A: $tType,X2: list(A)] :
( ( remdups(A,X2) = nil(A) )
<=> ( X2 = nil(A) ) ) ).
% remdups_eq_nil_iff
tff(fact_6747_set__remdups,axiom,
! [A: $tType,Xs: list(A)] : ( aa(list(A),set(A),set2(A),remdups(A,Xs)) = aa(list(A),set(A),set2(A),Xs) ) ).
% set_remdups
tff(fact_6748_length__remdups__eq,axiom,
! [A: $tType,Xs: list(A)] :
( ( aa(list(A),nat,size_size(list(A)),remdups(A,Xs)) = aa(list(A),nat,size_size(list(A)),Xs) )
<=> ( remdups(A,Xs) = Xs ) ) ).
% length_remdups_eq
tff(fact_6749_remdups__id__iff__distinct,axiom,
! [A: $tType,Xs: list(A)] :
( ( remdups(A,Xs) = Xs )
<=> distinct(A,Xs) ) ).
% remdups_id_iff_distinct
tff(fact_6750_distinct__remdups,axiom,
! [A: $tType,Xs: list(A)] : distinct(A,remdups(A,Xs)) ).
% distinct_remdups
tff(fact_6751_length__remdups__leq,axiom,
! [A: $tType,Xs: list(A)] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(list(A),nat,size_size(list(A)),remdups(A,Xs))),aa(list(A),nat,size_size(list(A)),Xs))) ).
% length_remdups_leq
tff(fact_6752_char__of__nat,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [N: nat] : ( aa(A,char,unique5772411509450598832har_of(A),aa(nat,A,semiring_1_of_nat(A),N)) = aa(nat,char,unique5772411509450598832har_of(nat),N) ) ) ).
% char_of_nat
tff(fact_6753_char__of__mod__256,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [N: A] : ( aa(A,char,unique5772411509450598832har_of(A),modulo_modulo(A,N,aa(num,A,numeral_numeral(A),bit0(bit0(bit0(bit0(bit0(bit0(bit0(bit0(one2))))))))))) = aa(A,char,unique5772411509450598832har_of(A),N) ) ) ).
% char_of_mod_256
tff(fact_6754_char__of__quasi__inj,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [M: A,N: A] :
( ( aa(A,char,unique5772411509450598832har_of(A),M) = aa(A,char,unique5772411509450598832har_of(A),N) )
<=> ( modulo_modulo(A,M,aa(num,A,numeral_numeral(A),bit0(bit0(bit0(bit0(bit0(bit0(bit0(bit0(one2)))))))))) = modulo_modulo(A,N,aa(num,A,numeral_numeral(A),bit0(bit0(bit0(bit0(bit0(bit0(bit0(bit0(one2)))))))))) ) ) ) ).
% char_of_quasi_inj
tff(fact_6755_remdups__filter,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] : ( remdups(A,aa(list(A),list(A),filter2(A,P),Xs)) = aa(list(A),list(A),filter2(A,P),remdups(A,Xs)) ) ).
% remdups_filter
tff(fact_6756_distinct__remdups__id,axiom,
! [A: $tType,Xs: list(A)] :
( distinct(A,Xs)
=> ( remdups(A,Xs) = Xs ) ) ).
% distinct_remdups_id
tff(fact_6757_remdups__remdups,axiom,
! [A: $tType,Xs: list(A)] : ( remdups(A,remdups(A,Xs)) = remdups(A,Xs) ) ).
% remdups_remdups
tff(fact_6758_remdups_Osimps_I1_J,axiom,
! [A: $tType] : ( remdups(A,nil(A)) = nil(A) ) ).
% remdups.simps(1)
tff(fact_6759_remdups__map__remdups,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),Xs: list(B)] : ( remdups(A,aa(list(B),list(A),map(B,A,F2),remdups(B,Xs))) = remdups(A,aa(list(B),list(A),map(B,A,F2),Xs)) ) ).
% remdups_map_remdups
tff(fact_6760_sorted__remdups,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Xs: list(A)] :
( sorted_wrt(A,ord_less_eq(A),Xs)
=> sorted_wrt(A,ord_less_eq(A),remdups(A,Xs)) ) ) ).
% sorted_remdups
tff(fact_6761_remove1__remdups,axiom,
! [A: $tType,Xs: list(A),X2: A] :
( distinct(A,Xs)
=> ( remove1(A,X2,remdups(A,Xs)) = remdups(A,remove1(A,X2,Xs)) ) ) ).
% remove1_remdups
tff(fact_6762_length__remdups__card__conv,axiom,
! [A: $tType,Xs: list(A)] : ( aa(list(A),nat,size_size(list(A)),remdups(A,Xs)) = aa(set(A),nat,finite_card(A),aa(list(A),set(A),set2(A),Xs)) ) ).
% length_remdups_card_conv
tff(fact_6763_sum__code,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [G: fun(B,A),Xs: list(B)] : ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),aa(list(B),set(B),set2(B),Xs)) = groups8242544230860333062m_list(A,aa(list(B),list(A),map(B,A,G),remdups(B,Xs))) ) ) ).
% sum_code
tff(fact_6764_char__of__take__bit__eq,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [N: nat,M: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(num,nat,numeral_numeral(nat),bit0(bit0(bit0(one2))))),N))
=> ( aa(A,char,unique5772411509450598832har_of(A),aa(A,A,bit_se2584673776208193580ke_bit(A,N),M)) = aa(A,char,unique5772411509450598832har_of(A),M) ) ) ) ).
% char_of_take_bit_eq
tff(fact_6765_of__char__of,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [A2: A] : ( aa(char,A,comm_s6883823935334413003f_char(A),aa(A,char,unique5772411509450598832har_of(A),A2)) = modulo_modulo(A,A2,aa(num,A,numeral_numeral(A),bit0(bit0(bit0(bit0(bit0(bit0(bit0(bit0(one2)))))))))) ) ) ).
% of_char_of
tff(fact_6766_char__of__def,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [N: A] : ( aa(A,char,unique5772411509450598832har_of(A),N) = char2(aa(bool,bool,fNot,aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),N)),aa(nat,bool,bit_se5641148757651400278ts_bit(A,N),one_one(nat)),aa(nat,bool,bit_se5641148757651400278ts_bit(A,N),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,bool,bit_se5641148757651400278ts_bit(A,N),aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,one2))),aa(nat,bool,bit_se5641148757651400278ts_bit(A,N),aa(num,nat,numeral_numeral(nat),bit0(bit0(one2)))),aa(nat,bool,bit_se5641148757651400278ts_bit(A,N),aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,bit0(one2)))),aa(nat,bool,bit_se5641148757651400278ts_bit(A,N),aa(num,nat,numeral_numeral(nat),bit0(aa(num,num,bit1,one2)))),aa(nat,bool,bit_se5641148757651400278ts_bit(A,N),aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,aa(num,num,bit1,one2))))) ) ) ).
% char_of_def
tff(fact_6767_of__char__mod__256,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [C2: char] : ( modulo_modulo(A,aa(char,A,comm_s6883823935334413003f_char(A),C2),aa(num,A,numeral_numeral(A),bit0(bit0(bit0(bit0(bit0(bit0(bit0(bit0(one2)))))))))) = aa(char,A,comm_s6883823935334413003f_char(A),C2) ) ) ).
% of_char_mod_256
tff(fact_6768_char_Osize_I2_J,axiom,
! [X1: bool,X23: bool,X33: bool,X42: bool,X52: bool,X62: bool,X72: bool,X8: bool] : ( aa(char,nat,size_size(char),char2(X1,X23,X33,X42,X52,X62,X72,X8)) = zero_zero(nat) ) ).
% char.size(2)
tff(fact_6769_nat__of__char__less__256,axiom,
! [C2: char] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(char,nat,comm_s6883823935334413003f_char(nat),C2)),aa(num,nat,numeral_numeral(nat),bit0(bit0(bit0(bit0(bit0(bit0(bit0(bit0(one2))))))))))) ).
% nat_of_char_less_256
tff(fact_6770_range__nat__of__char,axiom,
aa(set(char),set(nat),image(char,nat,comm_s6883823935334413003f_char(nat)),top_top(set(char))) = set_or7035219750837199246ssThan(nat,zero_zero(nat),aa(num,nat,numeral_numeral(nat),bit0(bit0(bit0(bit0(bit0(bit0(bit0(bit0(one2)))))))))) ).
% range_nat_of_char
tff(fact_6771_char__of__eq__iff,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [N: A,C2: char] :
( ( aa(A,char,unique5772411509450598832har_of(A),N) = C2 )
<=> ( aa(A,A,bit_se2584673776208193580ke_bit(A,aa(num,nat,numeral_numeral(nat),bit0(bit0(bit0(one2))))),N) = aa(char,A,comm_s6883823935334413003f_char(A),C2) ) ) ) ).
% char_of_eq_iff
tff(fact_6772_integer__of__char__code,axiom,
! [B0: bool,B1: bool,B22: bool,B32: bool,B42: bool,B52: bool,B62: bool,B72: bool] : ( integer_of_char(char2(B0,B1,B22,B32,B42,B52,B62,B72)) = aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),plus_plus(code_integer),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),times_times(code_integer),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),plus_plus(code_integer),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),times_times(code_integer),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),plus_plus(code_integer),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),times_times(code_integer),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),plus_plus(code_integer),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),times_times(code_integer),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),plus_plus(code_integer),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),times_times(code_integer),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),plus_plus(code_integer),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),times_times(code_integer),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),plus_plus(code_integer),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),times_times(code_integer),aa(bool,code_integer,zero_neq_one_of_bool(code_integer),B72)),aa(num,code_integer,numeral_numeral(code_integer),bit0(one2)))),aa(bool,code_integer,zero_neq_one_of_bool(code_integer),B62))),aa(num,code_integer,numeral_numeral(code_integer),bit0(one2)))),aa(bool,code_integer,zero_neq_one_of_bool(code_integer),B52))),aa(num,code_integer,numeral_numeral(code_integer),bit0(one2)))),aa(bool,code_integer,zero_neq_one_of_bool(code_integer),B42))),aa(num,code_integer,numeral_numeral(code_integer),bit0(one2)))),aa(bool,code_integer,zero_neq_one_of_bool(code_integer),B32))),aa(num,code_integer,numeral_numeral(code_integer),bit0(one2)))),aa(bool,code_integer,zero_neq_one_of_bool(code_integer),B22))),aa(num,code_integer,numeral_numeral(code_integer),bit0(one2)))),aa(bool,code_integer,zero_neq_one_of_bool(code_integer),B1))),aa(num,code_integer,numeral_numeral(code_integer),bit0(one2)))),aa(bool,code_integer,zero_neq_one_of_bool(code_integer),B0)) ) ).
% integer_of_char_code
tff(fact_6773_char_Osize__gen,axiom,
! [X1: bool,X23: bool,X33: bool,X42: bool,X52: bool,X62: bool,X72: bool,X8: bool] : ( size_char(char2(X1,X23,X33,X42,X52,X62,X72,X8)) = zero_zero(nat) ) ).
% char.size_gen
tff(fact_6774_String_Ochar__of__ascii__of,axiom,
! [C2: char] : ( aa(char,nat,comm_s6883823935334413003f_char(nat),ascii_of(C2)) = aa(nat,nat,bit_se2584673776208193580ke_bit(nat,aa(num,nat,numeral_numeral(nat),aa(num,num,bit1,aa(num,num,bit1,one2)))),aa(char,nat,comm_s6883823935334413003f_char(nat),C2)) ) ).
% String.char_of_ascii_of
tff(fact_6775_of__char__Char,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [B0: bool,B1: bool,B22: bool,B32: bool,B42: bool,B52: bool,B62: bool,B72: bool] : ( aa(char,A,comm_s6883823935334413003f_char(A),char2(B0,B1,B22,B32,B42,B52,B62,B72)) = groups4207007520872428315er_sum(bool,A,zero_neq_one_of_bool(A),aa(num,A,numeral_numeral(A),bit0(one2)),aa(list(bool),list(bool),cons(bool,B0),aa(list(bool),list(bool),cons(bool,B1),aa(list(bool),list(bool),cons(bool,B22),aa(list(bool),list(bool),cons(bool,B32),aa(list(bool),list(bool),cons(bool,B42),aa(list(bool),list(bool),cons(bool,B52),aa(list(bool),list(bool),cons(bool,B62),aa(list(bool),list(bool),cons(bool,B72),nil(bool)))))))))) ) ) ).
% of_char_Char
tff(fact_6776_list_Oinject,axiom,
! [A: $tType,X21: A,X222: list(A),Y21: A,Y222: list(A)] :
( ( aa(list(A),list(A),cons(A,X21),X222) = aa(list(A),list(A),cons(A,Y21),Y222) )
<=> ( ( X21 = Y21 )
& ( X222 = Y222 ) ) ) ).
% list.inject
tff(fact_6777_list_Osimps_I15_J,axiom,
! [A: $tType,X21: A,X222: list(A)] : ( aa(list(A),set(A),set2(A),aa(list(A),list(A),cons(A,X21),X222)) = aa(set(A),set(A),insert(A,X21),aa(list(A),set(A),set2(A),X222)) ) ).
% list.simps(15)
tff(fact_6778_nth__Cons__Suc,axiom,
! [A: $tType,X2: A,Xs: list(A),N: nat] : ( aa(nat,A,nth(A,aa(list(A),list(A),cons(A,X2),Xs)),aa(nat,nat,suc,N)) = aa(nat,A,nth(A,Xs),N) ) ).
% nth_Cons_Suc
tff(fact_6779_nth__Cons__0,axiom,
! [A: $tType,X2: A,Xs: list(A)] : ( aa(nat,A,nth(A,aa(list(A),list(A),cons(A,X2),Xs)),zero_zero(nat)) = X2 ) ).
% nth_Cons_0
tff(fact_6780_zip__Cons__Cons,axiom,
! [A: $tType,B: $tType,X2: A,Xs: list(A),Y: B,Ys: list(B)] : ( zip(A,B,aa(list(A),list(A),cons(A,X2),Xs),aa(list(B),list(B),cons(B,Y),Ys)) = aa(list(product_prod(A,B)),list(product_prod(A,B)),cons(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X2),Y)),zip(A,B,Xs,Ys)) ) ).
% zip_Cons_Cons
tff(fact_6781_sum__list_OCons,axiom,
! [A: $tType] :
( monoid_add(A)
=> ! [X2: A,Xs: list(A)] : ( groups8242544230860333062m_list(A,aa(list(A),list(A),cons(A,X2),Xs)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),groups8242544230860333062m_list(A,Xs)) ) ) ).
% sum_list.Cons
tff(fact_6782_singleton__rev__conv,axiom,
! [A: $tType,X2: A,Xs: list(A)] :
( ( aa(list(A),list(A),cons(A,X2),nil(A)) = aa(list(A),list(A),rev(A),Xs) )
<=> ( aa(list(A),list(A),cons(A,X2),nil(A)) = Xs ) ) ).
% singleton_rev_conv
tff(fact_6783_rev__singleton__conv,axiom,
! [A: $tType,Xs: list(A),X2: A] :
( ( aa(list(A),list(A),rev(A),Xs) = aa(list(A),list(A),cons(A,X2),nil(A)) )
<=> ( Xs = aa(list(A),list(A),cons(A,X2),nil(A)) ) ) ).
% rev_singleton_conv
tff(fact_6784_nths__singleton,axiom,
! [A: $tType,A3: set(nat),X2: A] :
( ( pp(member(nat,zero_zero(nat),A3))
=> ( nths(A,aa(list(A),list(A),cons(A,X2),nil(A)),A3) = aa(list(A),list(A),cons(A,X2),nil(A)) ) )
& ( ~ pp(member(nat,zero_zero(nat),A3))
=> ( nths(A,aa(list(A),list(A),cons(A,X2),nil(A)),A3) = nil(A) ) ) ) ).
% nths_singleton
tff(fact_6785_Cons__listrel1__Cons,axiom,
! [A: $tType,X2: A,Xs: list(A),Y: A,Ys: list(A),R: set(product_prod(A,A))] :
( pp(member(product_prod(list(A),list(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),aa(list(A),list(A),cons(A,X2),Xs)),aa(list(A),list(A),cons(A,Y),Ys)),listrel1(A,R)))
<=> ( ( pp(member(product_prod(A,A),aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),X2),Y),R))
& ( Xs = Ys ) )
| ( ( X2 = Y )
& pp(member(product_prod(list(A),list(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),Xs),Ys),listrel1(A,R))) ) ) ) ).
% Cons_listrel1_Cons
tff(fact_6786_horner__sum__simps_I2_J,axiom,
! [A: $tType,B: $tType] :
( comm_semiring_0(A)
=> ! [F2: fun(B,A),A2: A,X2: B,Xs: list(B)] : ( groups4207007520872428315er_sum(B,A,F2,A2,aa(list(B),list(B),cons(B,X2),Xs)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(B,A,F2,X2)),aa(A,A,aa(A,fun(A,A),times_times(A),A2),groups4207007520872428315er_sum(B,A,F2,A2,Xs))) ) ) ).
% horner_sum_simps(2)
tff(fact_6787_enumerate__simps_I2_J,axiom,
! [B: $tType,N: nat,X2: B,Xs: list(B)] : ( enumerate(B,N,aa(list(B),list(B),cons(B,X2),Xs)) = aa(list(product_prod(nat,B)),list(product_prod(nat,B)),cons(product_prod(nat,B),aa(B,product_prod(nat,B),aa(nat,fun(B,product_prod(nat,B)),product_Pair(nat,B),N),X2)),enumerate(B,aa(nat,nat,suc,N),Xs)) ) ).
% enumerate_simps(2)
tff(fact_6788_nth__Cons__numeral,axiom,
! [A: $tType,X2: A,Xs: list(A),V: num] : ( aa(nat,A,nth(A,aa(list(A),list(A),cons(A,X2),Xs)),aa(num,nat,numeral_numeral(nat),V)) = aa(nat,A,nth(A,Xs),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(num,nat,numeral_numeral(nat),V)),one_one(nat))) ) ).
% nth_Cons_numeral
tff(fact_6789_concat__map__singleton,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),Xs: list(B)] : ( concat(A,aa(list(B),list(list(A)),map(B,list(A),aTP_Lamp_sd(fun(B,A),fun(B,list(A)),F2)),Xs)) = aa(list(B),list(A),map(B,A,F2),Xs) ) ).
% concat_map_singleton
tff(fact_6790_nth__Cons__pos,axiom,
! [A: $tType,N: nat,X2: A,Xs: list(A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(nat,A,nth(A,aa(list(A),list(A),cons(A,X2),Xs)),N) = aa(nat,A,nth(A,Xs),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat))) ) ) ).
% nth_Cons_pos
tff(fact_6791_list__induct4,axiom,
! [C: $tType,A: $tType,B: $tType,D: $tType,Xs: list(A),Ys: list(B),Zs: list(C),Ws: list(D),P: fun(list(A),fun(list(B),fun(list(C),fun(list(D),bool))))] :
( ( aa(list(A),nat,size_size(list(A)),Xs) = aa(list(B),nat,size_size(list(B)),Ys) )
=> ( ( aa(list(B),nat,size_size(list(B)),Ys) = aa(list(C),nat,size_size(list(C)),Zs) )
=> ( ( aa(list(C),nat,size_size(list(C)),Zs) = aa(list(D),nat,size_size(list(D)),Ws) )
=> ( pp(aa(list(D),bool,aa(list(C),fun(list(D),bool),aa(list(B),fun(list(C),fun(list(D),bool)),aa(list(A),fun(list(B),fun(list(C),fun(list(D),bool))),P,nil(A)),nil(B)),nil(C)),nil(D)))
=> ( ! [X3: A,Xs2: list(A),Y3: B,Ys3: list(B),Z3: C,Zs2: list(C),W2: D,Ws2: list(D)] :
( ( aa(list(A),nat,size_size(list(A)),Xs2) = aa(list(B),nat,size_size(list(B)),Ys3) )
=> ( ( aa(list(B),nat,size_size(list(B)),Ys3) = aa(list(C),nat,size_size(list(C)),Zs2) )
=> ( ( aa(list(C),nat,size_size(list(C)),Zs2) = aa(list(D),nat,size_size(list(D)),Ws2) )
=> ( pp(aa(list(D),bool,aa(list(C),fun(list(D),bool),aa(list(B),fun(list(C),fun(list(D),bool)),aa(list(A),fun(list(B),fun(list(C),fun(list(D),bool))),P,Xs2),Ys3),Zs2),Ws2))
=> pp(aa(list(D),bool,aa(list(C),fun(list(D),bool),aa(list(B),fun(list(C),fun(list(D),bool)),aa(list(A),fun(list(B),fun(list(C),fun(list(D),bool))),P,aa(list(A),list(A),cons(A,X3),Xs2)),aa(list(B),list(B),cons(B,Y3),Ys3)),aa(list(C),list(C),cons(C,Z3),Zs2)),aa(list(D),list(D),cons(D,W2),Ws2))) ) ) ) )
=> pp(aa(list(D),bool,aa(list(C),fun(list(D),bool),aa(list(B),fun(list(C),fun(list(D),bool)),aa(list(A),fun(list(B),fun(list(C),fun(list(D),bool))),P,Xs),Ys),Zs),Ws)) ) ) ) ) ) ).
% list_induct4
tff(fact_6792_list__induct3,axiom,
! [B: $tType,A: $tType,C: $tType,Xs: list(A),Ys: list(B),Zs: list(C),P: fun(list(A),fun(list(B),fun(list(C),bool)))] :
( ( aa(list(A),nat,size_size(list(A)),Xs) = aa(list(B),nat,size_size(list(B)),Ys) )
=> ( ( aa(list(B),nat,size_size(list(B)),Ys) = aa(list(C),nat,size_size(list(C)),Zs) )
=> ( pp(aa(list(C),bool,aa(list(B),fun(list(C),bool),aa(list(A),fun(list(B),fun(list(C),bool)),P,nil(A)),nil(B)),nil(C)))
=> ( ! [X3: A,Xs2: list(A),Y3: B,Ys3: list(B),Z3: C,Zs2: list(C)] :
( ( aa(list(A),nat,size_size(list(A)),Xs2) = aa(list(B),nat,size_size(list(B)),Ys3) )
=> ( ( aa(list(B),nat,size_size(list(B)),Ys3) = aa(list(C),nat,size_size(list(C)),Zs2) )
=> ( pp(aa(list(C),bool,aa(list(B),fun(list(C),bool),aa(list(A),fun(list(B),fun(list(C),bool)),P,Xs2),Ys3),Zs2))
=> pp(aa(list(C),bool,aa(list(B),fun(list(C),bool),aa(list(A),fun(list(B),fun(list(C),bool)),P,aa(list(A),list(A),cons(A,X3),Xs2)),aa(list(B),list(B),cons(B,Y3),Ys3)),aa(list(C),list(C),cons(C,Z3),Zs2))) ) ) )
=> pp(aa(list(C),bool,aa(list(B),fun(list(C),bool),aa(list(A),fun(list(B),fun(list(C),bool)),P,Xs),Ys),Zs)) ) ) ) ) ).
% list_induct3
tff(fact_6793_list__induct2,axiom,
! [A: $tType,B: $tType,Xs: list(A),Ys: list(B),P: fun(list(A),fun(list(B),bool))] :
( ( aa(list(A),nat,size_size(list(A)),Xs) = aa(list(B),nat,size_size(list(B)),Ys) )
=> ( pp(aa(list(B),bool,aa(list(A),fun(list(B),bool),P,nil(A)),nil(B)))
=> ( ! [X3: A,Xs2: list(A),Y3: B,Ys3: list(B)] :
( ( aa(list(A),nat,size_size(list(A)),Xs2) = aa(list(B),nat,size_size(list(B)),Ys3) )
=> ( pp(aa(list(B),bool,aa(list(A),fun(list(B),bool),P,Xs2),Ys3))
=> pp(aa(list(B),bool,aa(list(A),fun(list(B),bool),P,aa(list(A),list(A),cons(A,X3),Xs2)),aa(list(B),list(B),cons(B,Y3),Ys3))) ) )
=> pp(aa(list(B),bool,aa(list(A),fun(list(B),bool),P,Xs),Ys)) ) ) ) ).
% list_induct2
tff(fact_6794_length__Cons,axiom,
! [A: $tType,X2: A,Xs: list(A)] : ( aa(list(A),nat,size_size(list(A)),aa(list(A),list(A),cons(A,X2),Xs)) = aa(nat,nat,suc,aa(list(A),nat,size_size(list(A)),Xs)) ) ).
% length_Cons
tff(fact_6795_length__Suc__conv,axiom,
! [A: $tType,Xs: list(A),N: nat] :
( ( aa(list(A),nat,size_size(list(A)),Xs) = aa(nat,nat,suc,N) )
<=> ? [Y2: A,Ys4: list(A)] :
( ( Xs = aa(list(A),list(A),cons(A,Y2),Ys4) )
& ( aa(list(A),nat,size_size(list(A)),Ys4) = N ) ) ) ).
% length_Suc_conv
tff(fact_6796_Suc__length__conv,axiom,
! [A: $tType,N: nat,Xs: list(A)] :
( ( aa(nat,nat,suc,N) = aa(list(A),nat,size_size(list(A)),Xs) )
<=> ? [Y2: A,Ys4: list(A)] :
( ( Xs = aa(list(A),list(A),cons(A,Y2),Ys4) )
& ( aa(list(A),nat,size_size(list(A)),Ys4) = N ) ) ) ).
% Suc_length_conv
tff(fact_6797_impossible__Cons,axiom,
! [A: $tType,Xs: list(A),Ys: list(A),X2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(list(A),nat,size_size(list(A)),Xs)),aa(list(A),nat,size_size(list(A)),Ys)))
=> ( Xs != aa(list(A),list(A),cons(A,X2),Ys) ) ) ).
% impossible_Cons
tff(fact_6798_Cons__shuffles__subset1,axiom,
! [A: $tType,X2: A,Xs: list(A),Ys: list(A)] : pp(aa(set(list(A)),bool,aa(set(list(A)),fun(set(list(A)),bool),ord_less_eq(set(list(A))),aa(set(list(A)),set(list(A)),image(list(A),list(A),cons(A,X2)),shuffles(A,Xs,Ys))),shuffles(A,aa(list(A),list(A),cons(A,X2),Xs),Ys))) ).
% Cons_shuffles_subset1
tff(fact_6799_Cons__shuffles__subset2,axiom,
! [A: $tType,Y: A,Xs: list(A),Ys: list(A)] : pp(aa(set(list(A)),bool,aa(set(list(A)),fun(set(list(A)),bool),ord_less_eq(set(list(A))),aa(set(list(A)),set(list(A)),image(list(A),list(A),cons(A,Y)),shuffles(A,Xs,Ys))),shuffles(A,Xs,aa(list(A),list(A),cons(A,Y),Ys)))) ).
% Cons_shuffles_subset2
tff(fact_6800_set__subset__Cons,axiom,
! [A: $tType,Xs: list(A),X2: A] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(list(A),set(A),set2(A),Xs)),aa(list(A),set(A),set2(A),aa(list(A),list(A),cons(A,X2),Xs)))) ).
% set_subset_Cons
tff(fact_6801_sorted2,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X2: A,Y: A,Zs: list(A)] :
( sorted_wrt(A,ord_less_eq(A),aa(list(A),list(A),cons(A,X2),aa(list(A),list(A),cons(A,Y),Zs)))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
& sorted_wrt(A,ord_less_eq(A),aa(list(A),list(A),cons(A,Y),Zs)) ) ) ) ).
% sorted2
tff(fact_6802_insort__key_Osimps_I2_J,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [F2: fun(B,A),X2: B,Y: B,Ys: list(B)] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,X2)),aa(B,A,F2,Y)))
=> ( aa(list(B),list(B),linorder_insort_key(B,A,F2,X2),aa(list(B),list(B),cons(B,Y),Ys)) = aa(list(B),list(B),cons(B,X2),aa(list(B),list(B),cons(B,Y),Ys)) ) )
& ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,X2)),aa(B,A,F2,Y)))
=> ( aa(list(B),list(B),linorder_insort_key(B,A,F2,X2),aa(list(B),list(B),cons(B,Y),Ys)) = aa(list(B),list(B),cons(B,Y),aa(list(B),list(B),linorder_insort_key(B,A,F2,X2),Ys)) ) ) ) ) ).
% insort_key.simps(2)
tff(fact_6803_foldr__Cons,axiom,
! [B: $tType,A: $tType,F2: fun(A,fun(B,B)),X2: A,Xs: list(A)] : ( foldr(A,B,F2,aa(list(A),list(A),cons(A,X2),Xs)) = aa(fun(B,B),fun(B,B),comp(B,B,B,aa(A,fun(B,B),F2,X2)),foldr(A,B,F2,Xs)) ) ).
% foldr_Cons
tff(fact_6804_map__eq__Cons__conv,axiom,
! [B: $tType,A: $tType,F2: fun(B,A),Xs: list(B),Y: A,Ys: list(A)] :
( ( aa(list(B),list(A),map(B,A,F2),Xs) = aa(list(A),list(A),cons(A,Y),Ys) )
<=> ? [Z5: B,Zs3: list(B)] :
( ( Xs = aa(list(B),list(B),cons(B,Z5),Zs3) )
& ( aa(B,A,F2,Z5) = Y )
& ( aa(list(B),list(A),map(B,A,F2),Zs3) = Ys ) ) ) ).
% map_eq_Cons_conv
tff(fact_6805_Cons__eq__map__conv,axiom,
! [A: $tType,B: $tType,X2: A,Xs: list(A),F2: fun(B,A),Ys: list(B)] :
( ( aa(list(A),list(A),cons(A,X2),Xs) = aa(list(B),list(A),map(B,A,F2),Ys) )
<=> ? [Z5: B,Zs3: list(B)] :
( ( Ys = aa(list(B),list(B),cons(B,Z5),Zs3) )
& ( X2 = aa(B,A,F2,Z5) )
& ( Xs = aa(list(B),list(A),map(B,A,F2),Zs3) ) ) ) ).
% Cons_eq_map_conv
tff(fact_6806_map__eq__Cons__D,axiom,
! [B: $tType,A: $tType,F2: fun(B,A),Xs: list(B),Y: A,Ys: list(A)] :
( ( aa(list(B),list(A),map(B,A,F2),Xs) = aa(list(A),list(A),cons(A,Y),Ys) )
=> ? [Z3: B,Zs2: list(B)] :
( ( Xs = aa(list(B),list(B),cons(B,Z3),Zs2) )
& ( aa(B,A,F2,Z3) = Y )
& ( aa(list(B),list(A),map(B,A,F2),Zs2) = Ys ) ) ) ).
% map_eq_Cons_D
tff(fact_6807_Cons__eq__map__D,axiom,
! [A: $tType,B: $tType,X2: A,Xs: list(A),F2: fun(B,A),Ys: list(B)] :
( ( aa(list(A),list(A),cons(A,X2),Xs) = aa(list(B),list(A),map(B,A,F2),Ys) )
=> ? [Z3: B,Zs2: list(B)] :
( ( Ys = aa(list(B),list(B),cons(B,Z3),Zs2) )
& ( X2 = aa(B,A,F2,Z3) )
& ( Xs = aa(list(B),list(A),map(B,A,F2),Zs2) ) ) ) ).
% Cons_eq_map_D
tff(fact_6808_list_Osimps_I9_J,axiom,
! [B: $tType,A: $tType,F2: fun(A,B),X21: A,X222: list(A)] : ( aa(list(A),list(B),map(A,B,F2),aa(list(A),list(A),cons(A,X21),X222)) = aa(list(B),list(B),cons(B,aa(A,B,F2,X21)),aa(list(A),list(B),map(A,B,F2),X222)) ) ).
% list.simps(9)
tff(fact_6809_product__lists_Osimps_I2_J,axiom,
! [A: $tType,Xs: list(A),Xss: list(list(A))] : ( product_lists(A,aa(list(list(A)),list(list(A)),cons(list(A),Xs),Xss)) = concat(list(A),aa(list(A),list(list(list(A))),map(A,list(list(A)),aTP_Lamp_se(list(list(A)),fun(A,list(list(A))),Xss)),Xs)) ) ).
% product_lists.simps(2)
tff(fact_6810_list_Osel_I1_J,axiom,
! [A: $tType,X21: A,X222: list(A)] : ( aa(list(A),A,hd(A),aa(list(A),list(A),cons(A,X21),X222)) = X21 ) ).
% list.sel(1)
tff(fact_6811_takeWhile_Osimps_I2_J,axiom,
! [A: $tType,P: fun(A,bool),X2: A,Xs: list(A)] :
( ( pp(aa(A,bool,P,X2))
=> ( takeWhile(A,P,aa(list(A),list(A),cons(A,X2),Xs)) = aa(list(A),list(A),cons(A,X2),takeWhile(A,P,Xs)) ) )
& ( ~ pp(aa(A,bool,P,X2))
=> ( takeWhile(A,P,aa(list(A),list(A),cons(A,X2),Xs)) = nil(A) ) ) ) ).
% takeWhile.simps(2)
tff(fact_6812_list__update__code_I3_J,axiom,
! [A: $tType,X2: A,Xs: list(A),I: nat,Y: A] : ( list_update(A,aa(list(A),list(A),cons(A,X2),Xs),aa(nat,nat,suc,I),Y) = aa(list(A),list(A),cons(A,X2),list_update(A,Xs,I,Y)) ) ).
% list_update_code(3)
tff(fact_6813_list__update__code_I2_J,axiom,
! [A: $tType,X2: A,Xs: list(A),Y: A] : ( list_update(A,aa(list(A),list(A),cons(A,X2),Xs),zero_zero(nat),Y) = aa(list(A),list(A),cons(A,Y),Xs) ) ).
% list_update_code(2)
tff(fact_6814_list__update_Osimps_I2_J,axiom,
! [A: $tType,X2: A,Xs: list(A),I: nat,V: A] : ( list_update(A,aa(list(A),list(A),cons(A,X2),Xs),I,V) = case_nat(list(A),aa(list(A),list(A),cons(A,V),Xs),aa(A,fun(nat,list(A)),aa(list(A),fun(A,fun(nat,list(A))),aTP_Lamp_sf(A,fun(list(A),fun(A,fun(nat,list(A)))),X2),Xs),V),I) ) ).
% list_update.simps(2)
tff(fact_6815_listrel1I2,axiom,
! [A: $tType,Xs: list(A),Ys: list(A),R: set(product_prod(A,A)),X2: A] :
( pp(member(product_prod(list(A),list(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),Xs),Ys),listrel1(A,R)))
=> pp(member(product_prod(list(A),list(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),aa(list(A),list(A),cons(A,X2),Xs)),aa(list(A),list(A),cons(A,X2),Ys)),listrel1(A,R))) ) ).
% listrel1I2
tff(fact_6816_map__tailrec__rev_Ocases,axiom,
! [A: $tType,B: $tType,X2: product_prod(fun(A,B),product_prod(list(A),list(B)))] :
( ! [F3: fun(A,B),Bs2: list(B)] : ( X2 != aa(product_prod(list(A),list(B)),product_prod(fun(A,B),product_prod(list(A),list(B))),aa(fun(A,B),fun(product_prod(list(A),list(B)),product_prod(fun(A,B),product_prod(list(A),list(B)))),product_Pair(fun(A,B),product_prod(list(A),list(B))),F3),aa(list(B),product_prod(list(A),list(B)),aa(list(A),fun(list(B),product_prod(list(A),list(B))),product_Pair(list(A),list(B)),nil(A)),Bs2)) )
=> ~ ! [F3: fun(A,B),A4: A,As: list(A),Bs2: list(B)] : ( X2 != aa(product_prod(list(A),list(B)),product_prod(fun(A,B),product_prod(list(A),list(B))),aa(fun(A,B),fun(product_prod(list(A),list(B)),product_prod(fun(A,B),product_prod(list(A),list(B)))),product_Pair(fun(A,B),product_prod(list(A),list(B))),F3),aa(list(B),product_prod(list(A),list(B)),aa(list(A),fun(list(B),product_prod(list(A),list(B))),product_Pair(list(A),list(B)),aa(list(A),list(A),cons(A,A4),As)),Bs2)) ) ) ).
% map_tailrec_rev.cases
tff(fact_6817_successively_Ocases,axiom,
! [A: $tType,X2: product_prod(fun(A,fun(A,bool)),list(A))] :
( ! [P5: fun(A,fun(A,bool))] : ( X2 != aa(list(A),product_prod(fun(A,fun(A,bool)),list(A)),aa(fun(A,fun(A,bool)),fun(list(A),product_prod(fun(A,fun(A,bool)),list(A))),product_Pair(fun(A,fun(A,bool)),list(A)),P5),nil(A)) )
=> ( ! [P5: fun(A,fun(A,bool)),X3: A] : ( X2 != aa(list(A),product_prod(fun(A,fun(A,bool)),list(A)),aa(fun(A,fun(A,bool)),fun(list(A),product_prod(fun(A,fun(A,bool)),list(A))),product_Pair(fun(A,fun(A,bool)),list(A)),P5),aa(list(A),list(A),cons(A,X3),nil(A))) )
=> ~ ! [P5: fun(A,fun(A,bool)),X3: A,Y3: A,Xs2: list(A)] : ( X2 != aa(list(A),product_prod(fun(A,fun(A,bool)),list(A)),aa(fun(A,fun(A,bool)),fun(list(A),product_prod(fun(A,fun(A,bool)),list(A))),product_Pair(fun(A,fun(A,bool)),list(A)),P5),aa(list(A),list(A),cons(A,X3),aa(list(A),list(A),cons(A,Y3),Xs2))) ) ) ) ).
% successively.cases
tff(fact_6818_arg__min__list_Ocases,axiom,
! [B: $tType,A: $tType] :
( linorder(B)
=> ! [X2: product_prod(fun(A,B),list(A))] :
( ! [F3: fun(A,B),X3: A] : ( X2 != aa(list(A),product_prod(fun(A,B),list(A)),aa(fun(A,B),fun(list(A),product_prod(fun(A,B),list(A))),product_Pair(fun(A,B),list(A)),F3),aa(list(A),list(A),cons(A,X3),nil(A))) )
=> ( ! [F3: fun(A,B),X3: A,Y3: A,Zs2: list(A)] : ( X2 != aa(list(A),product_prod(fun(A,B),list(A)),aa(fun(A,B),fun(list(A),product_prod(fun(A,B),list(A))),product_Pair(fun(A,B),list(A)),F3),aa(list(A),list(A),cons(A,X3),aa(list(A),list(A),cons(A,Y3),Zs2))) )
=> ~ ! [A4: fun(A,B)] : ( X2 != aa(list(A),product_prod(fun(A,B),list(A)),aa(fun(A,B),fun(list(A),product_prod(fun(A,B),list(A))),product_Pair(fun(A,B),list(A)),A4),nil(A)) ) ) ) ) ).
% arg_min_list.cases
tff(fact_6819_sorted__wrt_Ocases,axiom,
! [A: $tType,X2: product_prod(fun(A,fun(A,bool)),list(A))] :
( ! [P5: fun(A,fun(A,bool))] : ( X2 != aa(list(A),product_prod(fun(A,fun(A,bool)),list(A)),aa(fun(A,fun(A,bool)),fun(list(A),product_prod(fun(A,fun(A,bool)),list(A))),product_Pair(fun(A,fun(A,bool)),list(A)),P5),nil(A)) )
=> ~ ! [P5: fun(A,fun(A,bool)),X3: A,Ys3: list(A)] : ( X2 != aa(list(A),product_prod(fun(A,fun(A,bool)),list(A)),aa(fun(A,fun(A,bool)),fun(list(A),product_prod(fun(A,fun(A,bool)),list(A))),product_Pair(fun(A,fun(A,bool)),list(A)),P5),aa(list(A),list(A),cons(A,X3),Ys3)) ) ) ).
% sorted_wrt.cases
tff(fact_6820_shuffles_Ocases,axiom,
! [A: $tType,X2: product_prod(list(A),list(A))] :
( ! [Ys3: list(A)] : ( X2 != aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),nil(A)),Ys3) )
=> ( ! [Xs2: list(A)] : ( X2 != aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),Xs2),nil(A)) )
=> ~ ! [X3: A,Xs2: list(A),Y3: A,Ys3: list(A)] : ( X2 != aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),aa(list(A),list(A),cons(A,X3),Xs2)),aa(list(A),list(A),cons(A,Y3),Ys3)) ) ) ) ).
% shuffles.cases
tff(fact_6821_splice_Ocases,axiom,
! [A: $tType,X2: product_prod(list(A),list(A))] :
( ! [Ys3: list(A)] : ( X2 != aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),nil(A)),Ys3) )
=> ~ ! [X3: A,Xs2: list(A),Ys3: list(A)] : ( X2 != aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),aa(list(A),list(A),cons(A,X3),Xs2)),Ys3) ) ) ).
% splice.cases
tff(fact_6822_distinct__singleton,axiom,
! [A: $tType,X2: A] : distinct(A,aa(list(A),list(A),cons(A,X2),nil(A))) ).
% distinct_singleton
tff(fact_6823_list_Odistinct_I1_J,axiom,
! [A: $tType,X21: A,X222: list(A)] : ( nil(A) != aa(list(A),list(A),cons(A,X21),X222) ) ).
% list.distinct(1)
tff(fact_6824_list_OdiscI,axiom,
! [A: $tType,List: list(A),X21: A,X222: list(A)] :
( ( List = aa(list(A),list(A),cons(A,X21),X222) )
=> ( List != nil(A) ) ) ).
% list.discI
tff(fact_6825_list_Oexhaust,axiom,
! [A: $tType,Y: list(A)] :
( ( Y != nil(A) )
=> ~ ! [X212: A,X223: list(A)] : ( Y != aa(list(A),list(A),cons(A,X212),X223) ) ) ).
% list.exhaust
tff(fact_6826_min__list_Ocases,axiom,
! [A: $tType] :
( ord(A)
=> ! [X2: list(A)] :
( ! [X3: A,Xs2: list(A)] : ( X2 != aa(list(A),list(A),cons(A,X3),Xs2) )
=> ( X2 = nil(A) ) ) ) ).
% min_list.cases
tff(fact_6827_transpose_Ocases,axiom,
! [A: $tType,X2: list(list(A))] :
( ( X2 != nil(list(A)) )
=> ( ! [Xss2: list(list(A))] : ( X2 != aa(list(list(A)),list(list(A)),cons(list(A),nil(A)),Xss2) )
=> ~ ! [X3: A,Xs2: list(A),Xss2: list(list(A))] : ( X2 != aa(list(list(A)),list(list(A)),cons(list(A),aa(list(A),list(A),cons(A,X3),Xs2)),Xss2) ) ) ) ).
% transpose.cases
tff(fact_6828_remdups__adj_Ocases,axiom,
! [A: $tType,X2: list(A)] :
( ( X2 != nil(A) )
=> ( ! [X3: A] : ( X2 != aa(list(A),list(A),cons(A,X3),nil(A)) )
=> ~ ! [X3: A,Y3: A,Xs2: list(A)] : ( X2 != aa(list(A),list(A),cons(A,X3),aa(list(A),list(A),cons(A,Y3),Xs2)) ) ) ) ).
% remdups_adj.cases
tff(fact_6829_neq__Nil__conv,axiom,
! [A: $tType,Xs: list(A)] :
( ( Xs != nil(A) )
<=> ? [Y2: A,Ys4: list(A)] : ( Xs = aa(list(A),list(A),cons(A,Y2),Ys4) ) ) ).
% neq_Nil_conv
tff(fact_6830_list__induct2_H,axiom,
! [A: $tType,B: $tType,P: fun(list(A),fun(list(B),bool)),Xs: list(A),Ys: list(B)] :
( pp(aa(list(B),bool,aa(list(A),fun(list(B),bool),P,nil(A)),nil(B)))
=> ( ! [X3: A,Xs2: list(A)] : pp(aa(list(B),bool,aa(list(A),fun(list(B),bool),P,aa(list(A),list(A),cons(A,X3),Xs2)),nil(B)))
=> ( ! [Y3: B,Ys3: list(B)] : pp(aa(list(B),bool,aa(list(A),fun(list(B),bool),P,nil(A)),aa(list(B),list(B),cons(B,Y3),Ys3)))
=> ( ! [X3: A,Xs2: list(A),Y3: B,Ys3: list(B)] :
( pp(aa(list(B),bool,aa(list(A),fun(list(B),bool),P,Xs2),Ys3))
=> pp(aa(list(B),bool,aa(list(A),fun(list(B),bool),P,aa(list(A),list(A),cons(A,X3),Xs2)),aa(list(B),list(B),cons(B,Y3),Ys3))) )
=> pp(aa(list(B),bool,aa(list(A),fun(list(B),bool),P,Xs),Ys)) ) ) ) ) ).
% list_induct2'
tff(fact_6831_list__nonempty__induct,axiom,
! [A: $tType,Xs: list(A),P: fun(list(A),bool)] :
( ( Xs != nil(A) )
=> ( ! [X3: A] : pp(aa(list(A),bool,P,aa(list(A),list(A),cons(A,X3),nil(A))))
=> ( ! [X3: A,Xs2: list(A)] :
( ( Xs2 != nil(A) )
=> ( pp(aa(list(A),bool,P,Xs2))
=> pp(aa(list(A),bool,P,aa(list(A),list(A),cons(A,X3),Xs2))) ) )
=> pp(aa(list(A),bool,P,Xs)) ) ) ) ).
% list_nonempty_induct
tff(fact_6832_sorted__wrt1,axiom,
! [A: $tType,P: fun(A,fun(A,bool)),X2: A] : sorted_wrt(A,P,aa(list(A),list(A),cons(A,X2),nil(A))) ).
% sorted_wrt1
tff(fact_6833_insort__key_Osimps_I1_J,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [F2: fun(B,A),X2: B] : ( aa(list(B),list(B),linorder_insort_key(B,A,F2,X2),nil(B)) = aa(list(B),list(B),cons(B,X2),nil(B)) ) ) ).
% insort_key.simps(1)
tff(fact_6834_shufflesE,axiom,
! [A: $tType,Zs: list(A),Xs: list(A),Ys: list(A)] :
( pp(member(list(A),Zs,shuffles(A,Xs,Ys)))
=> ( ( ( Zs = Xs )
=> ( Ys != nil(A) ) )
=> ( ( ( Zs = Ys )
=> ( Xs != nil(A) ) )
=> ( ! [X3: A,Xs4: list(A)] :
( ( Xs = aa(list(A),list(A),cons(A,X3),Xs4) )
=> ! [Z3: A,Zs4: list(A)] :
( ( Zs = aa(list(A),list(A),cons(A,Z3),Zs4) )
=> ( ( X3 = Z3 )
=> ~ pp(member(list(A),Zs4,shuffles(A,Xs4,Ys))) ) ) )
=> ~ ! [Y3: A,Ys5: list(A)] :
( ( Ys = aa(list(A),list(A),cons(A,Y3),Ys5) )
=> ! [Z3: A,Zs4: list(A)] :
( ( Zs = aa(list(A),list(A),cons(A,Z3),Zs4) )
=> ( ( Y3 = Z3 )
=> ~ pp(member(list(A),Zs4,shuffles(A,Xs,Ys5))) ) ) ) ) ) ) ) ).
% shufflesE
tff(fact_6835_removeAll_Osimps_I2_J,axiom,
! [A: $tType,X2: A,Y: A,Xs: list(A)] :
( ( ( X2 = Y )
=> ( aa(list(A),list(A),removeAll(A,X2),aa(list(A),list(A),cons(A,Y),Xs)) = aa(list(A),list(A),removeAll(A,X2),Xs) ) )
& ( ( X2 != Y )
=> ( aa(list(A),list(A),removeAll(A,X2),aa(list(A),list(A),cons(A,Y),Xs)) = aa(list(A),list(A),cons(A,Y),aa(list(A),list(A),removeAll(A,X2),Xs)) ) ) ) ).
% removeAll.simps(2)
tff(fact_6836_Cons__in__shuffles__leftI,axiom,
! [A: $tType,Zs: list(A),Xs: list(A),Ys: list(A),Z: A] :
( pp(member(list(A),Zs,shuffles(A,Xs,Ys)))
=> pp(member(list(A),aa(list(A),list(A),cons(A,Z),Zs),shuffles(A,aa(list(A),list(A),cons(A,Z),Xs),Ys))) ) ).
% Cons_in_shuffles_leftI
tff(fact_6837_Cons__in__shuffles__rightI,axiom,
! [A: $tType,Zs: list(A),Xs: list(A),Ys: list(A),Z: A] :
( pp(member(list(A),Zs,shuffles(A,Xs,Ys)))
=> pp(member(list(A),aa(list(A),list(A),cons(A,Z),Zs),shuffles(A,Xs,aa(list(A),list(A),cons(A,Z),Ys)))) ) ).
% Cons_in_shuffles_rightI
tff(fact_6838_set__ConsD,axiom,
! [A: $tType,Y: A,X2: A,Xs: list(A)] :
( pp(member(A,Y,aa(list(A),set(A),set2(A),aa(list(A),list(A),cons(A,X2),Xs))))
=> ( ( Y = X2 )
| pp(member(A,Y,aa(list(A),set(A),set2(A),Xs))) ) ) ).
% set_ConsD
tff(fact_6839_list_Oset__cases,axiom,
! [A: $tType,E: A,A2: list(A)] :
( pp(member(A,E,aa(list(A),set(A),set2(A),A2)))
=> ( ! [Z23: list(A)] : ( A2 != aa(list(A),list(A),cons(A,E),Z23) )
=> ~ ! [Z12: A,Z23: list(A)] :
( ( A2 = aa(list(A),list(A),cons(A,Z12),Z23) )
=> ~ pp(member(A,E,aa(list(A),set(A),set2(A),Z23))) ) ) ) ).
% list.set_cases
tff(fact_6840_list_Oset__intros_I1_J,axiom,
! [A: $tType,X21: A,X222: list(A)] : pp(member(A,X21,aa(list(A),set(A),set2(A),aa(list(A),list(A),cons(A,X21),X222)))) ).
% list.set_intros(1)
tff(fact_6841_list_Oset__intros_I2_J,axiom,
! [A: $tType,Y: A,X222: list(A),X21: A] :
( pp(member(A,Y,aa(list(A),set(A),set2(A),X222)))
=> pp(member(A,Y,aa(list(A),set(A),set2(A),aa(list(A),list(A),cons(A,X21),X222)))) ) ).
% list.set_intros(2)
tff(fact_6842_not__Cons__self2,axiom,
! [A: $tType,X2: A,Xs: list(A)] : ( aa(list(A),list(A),cons(A,X2),Xs) != Xs ) ).
% not_Cons_self2
tff(fact_6843_remove1_Osimps_I2_J,axiom,
! [A: $tType,X2: A,Y: A,Xs: list(A)] :
( ( ( X2 = Y )
=> ( remove1(A,X2,aa(list(A),list(A),cons(A,Y),Xs)) = Xs ) )
& ( ( X2 != Y )
=> ( remove1(A,X2,aa(list(A),list(A),cons(A,Y),Xs)) = aa(list(A),list(A),cons(A,Y),remove1(A,X2,Xs)) ) ) ) ).
% remove1.simps(2)
tff(fact_6844_distinct__length__2__or__more,axiom,
! [A: $tType,A2: A,B2: A,Xs: list(A)] :
( distinct(A,aa(list(A),list(A),cons(A,A2),aa(list(A),list(A),cons(A,B2),Xs)))
<=> ( ( A2 != B2 )
& distinct(A,aa(list(A),list(A),cons(A,A2),Xs))
& distinct(A,aa(list(A),list(A),cons(A,B2),Xs)) ) ) ).
% distinct_length_2_or_more
tff(fact_6845_distinct_Osimps_I2_J,axiom,
! [A: $tType,X2: A,Xs: list(A)] :
( distinct(A,aa(list(A),list(A),cons(A,X2),Xs))
<=> ( ~ pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
& distinct(A,Xs) ) ) ).
% distinct.simps(2)
tff(fact_6846_replicate__Suc,axiom,
! [A: $tType,N: nat,X2: A] : ( replicate(A,aa(nat,nat,suc,N),X2) = aa(list(A),list(A),cons(A,X2),replicate(A,N,X2)) ) ).
% replicate_Suc
tff(fact_6847_filter_Osimps_I2_J,axiom,
! [A: $tType,P: fun(A,bool),X2: A,Xs: list(A)] :
( ( pp(aa(A,bool,P,X2))
=> ( aa(list(A),list(A),filter2(A,P),aa(list(A),list(A),cons(A,X2),Xs)) = aa(list(A),list(A),cons(A,X2),aa(list(A),list(A),filter2(A,P),Xs)) ) )
& ( ~ pp(aa(A,bool,P,X2))
=> ( aa(list(A),list(A),filter2(A,P),aa(list(A),list(A),cons(A,X2),Xs)) = aa(list(A),list(A),filter2(A,P),Xs) ) ) ) ).
% filter.simps(2)
tff(fact_6848_zip__eq__ConsE,axiom,
! [A: $tType,B: $tType,Xs: list(A),Ys: list(B),Xy: product_prod(A,B),Xys: list(product_prod(A,B))] :
( ( zip(A,B,Xs,Ys) = aa(list(product_prod(A,B)),list(product_prod(A,B)),cons(product_prod(A,B),Xy),Xys) )
=> ~ ! [X3: A,Xs4: list(A)] :
( ( Xs = aa(list(A),list(A),cons(A,X3),Xs4) )
=> ! [Y3: B,Ys5: list(B)] :
( ( Ys = aa(list(B),list(B),cons(B,Y3),Ys5) )
=> ( ( Xy = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X3),Y3) )
=> ( Xys != zip(A,B,Xs4,Ys5) ) ) ) ) ) ).
% zip_eq_ConsE
tff(fact_6849_remdups_Osimps_I2_J,axiom,
! [A: $tType,X2: A,Xs: list(A)] :
( ( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ( remdups(A,aa(list(A),list(A),cons(A,X2),Xs)) = remdups(A,Xs) ) )
& ( ~ pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ( remdups(A,aa(list(A),list(A),cons(A,X2),Xs)) = aa(list(A),list(A),cons(A,X2),remdups(A,Xs)) ) ) ) ).
% remdups.simps(2)
tff(fact_6850_Cons__in__subseqsD,axiom,
! [A: $tType,Y: A,Ys: list(A),Xs: list(A)] :
( pp(member(list(A),aa(list(A),list(A),cons(A,Y),Ys),aa(list(list(A)),set(list(A)),set2(list(A)),subseqs(A,Xs))))
=> pp(member(list(A),Ys,aa(list(list(A)),set(list(A)),set2(list(A)),subseqs(A,Xs)))) ) ).
% Cons_in_subseqsD
tff(fact_6851_nth__Cons,axiom,
! [A: $tType,X2: A,Xs: list(A),N: nat] : ( aa(nat,A,nth(A,aa(list(A),list(A),cons(A,X2),Xs)),N) = case_nat(A,X2,nth(A,Xs),N) ) ).
% nth_Cons
tff(fact_6852_Suc__le__length__iff,axiom,
! [A: $tType,N: nat,Xs: list(A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,suc,N)),aa(list(A),nat,size_size(list(A)),Xs)))
<=> ? [X4: A,Ys4: list(A)] :
( ( Xs = aa(list(A),list(A),cons(A,X4),Ys4) )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),aa(list(A),nat,size_size(list(A)),Ys4))) ) ) ).
% Suc_le_length_iff
tff(fact_6853_sorted1,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X2: A] : sorted_wrt(A,ord_less_eq(A),aa(list(A),list(A),cons(A,X2),nil(A))) ) ).
% sorted1
tff(fact_6854_sorted__simps_I2_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X2: A,Ys: list(A)] :
( sorted_wrt(A,ord_less_eq(A),aa(list(A),list(A),cons(A,X2),Ys))
<=> ( ! [X4: A] :
( pp(member(A,X4,aa(list(A),set(A),set2(A),Ys)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),X4)) )
& sorted_wrt(A,ord_less_eq(A),Ys) ) ) ) ).
% sorted_simps(2)
tff(fact_6855_strict__sorted__simps_I2_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X2: A,Ys: list(A)] :
( sorted_wrt(A,ord_less(A),aa(list(A),list(A),cons(A,X2),Ys))
<=> ( ! [X4: A] :
( pp(member(A,X4,aa(list(A),set(A),set2(A),Ys)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),X4)) )
& sorted_wrt(A,ord_less(A),Ys) ) ) ) ).
% strict_sorted_simps(2)
tff(fact_6856_insort__is__Cons,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [Xs: list(B),F2: fun(B,A),A2: B] :
( ! [X3: B] :
( pp(member(B,X3,aa(list(B),set(B),set2(B),Xs)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,F2,A2)),aa(B,A,F2,X3))) )
=> ( aa(list(B),list(B),linorder_insort_key(B,A,F2,A2),Xs) = aa(list(B),list(B),cons(B,A2),Xs) ) ) ) ).
% insort_is_Cons
tff(fact_6857_Cons__listrel1E2,axiom,
! [A: $tType,Xs: list(A),Y: A,Ys: list(A),R: set(product_prod(A,A))] :
( pp(member(product_prod(list(A),list(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),Xs),aa(list(A),list(A),cons(A,Y),Ys)),listrel1(A,R)))
=> ( ! [X3: A] :
( ( Xs = aa(list(A),list(A),cons(A,X3),Ys) )
=> ~ pp(member(product_prod(A,A),aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),X3),Y),R)) )
=> ~ ! [Zs2: list(A)] :
( ( Xs = aa(list(A),list(A),cons(A,Y),Zs2) )
=> ~ pp(member(product_prod(list(A),list(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),Zs2),Ys),listrel1(A,R))) ) ) ) ).
% Cons_listrel1E2
tff(fact_6858_Cons__listrel1E1,axiom,
! [A: $tType,X2: A,Xs: list(A),Ys: list(A),R: set(product_prod(A,A))] :
( pp(member(product_prod(list(A),list(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),aa(list(A),list(A),cons(A,X2),Xs)),Ys),listrel1(A,R)))
=> ( ! [Y3: A] :
( ( Ys = aa(list(A),list(A),cons(A,Y3),Xs) )
=> ~ pp(member(product_prod(A,A),aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),X2),Y3),R)) )
=> ~ ! [Zs2: list(A)] :
( ( Ys = aa(list(A),list(A),cons(A,X2),Zs2) )
=> ~ pp(member(product_prod(list(A),list(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),Xs),Zs2),listrel1(A,R))) ) ) ) ).
% Cons_listrel1E1
tff(fact_6859_listrel1I1,axiom,
! [A: $tType,X2: A,Y: A,R: set(product_prod(A,A)),Xs: list(A)] :
( pp(member(product_prod(A,A),aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),X2),Y),R))
=> pp(member(product_prod(list(A),list(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),aa(list(A),list(A),cons(A,X2),Xs)),aa(list(A),list(A),cons(A,Y),Xs)),listrel1(A,R))) ) ).
% listrel1I1
tff(fact_6860_count__list_Osimps_I2_J,axiom,
! [A: $tType,X2: A,Y: A,Xs: list(A)] :
( ( ( X2 = Y )
=> ( aa(A,nat,count_list(A,aa(list(A),list(A),cons(A,X2),Xs)),Y) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(A,nat,count_list(A,Xs),Y)),one_one(nat)) ) )
& ( ( X2 != Y )
=> ( aa(A,nat,count_list(A,aa(list(A),list(A),cons(A,X2),Xs)),Y) = aa(A,nat,count_list(A,Xs),Y) ) ) ) ).
% count_list.simps(2)
tff(fact_6861_list_Osize_I4_J,axiom,
! [A: $tType,X21: A,X222: list(A)] : ( aa(list(A),nat,size_size(list(A)),aa(list(A),list(A),cons(A,X21),X222)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(list(A),nat,size_size(list(A)),X222)),aa(nat,nat,suc,zero_zero(nat))) ) ).
% list.size(4)
tff(fact_6862_n__lists_Osimps_I2_J,axiom,
! [A: $tType,N: nat,Xs: list(A)] : ( n_lists(A,aa(nat,nat,suc,N),Xs) = concat(list(A),aa(list(list(A)),list(list(list(A))),map(list(A),list(list(A)),aTP_Lamp_sh(list(A),fun(list(A),list(list(A))),Xs)),n_lists(A,N,Xs))) ) ).
% n_lists.simps(2)
tff(fact_6863_nth__Cons_H,axiom,
! [A: $tType,N: nat,X2: A,Xs: list(A)] :
( ( ( N = zero_zero(nat) )
=> ( aa(nat,A,nth(A,aa(list(A),list(A),cons(A,X2),Xs)),N) = X2 ) )
& ( ( N != zero_zero(nat) )
=> ( aa(nat,A,nth(A,aa(list(A),list(A),cons(A,X2),Xs)),N) = aa(nat,A,nth(A,Xs),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat))) ) ) ) ).
% nth_Cons'
tff(fact_6864_list_Osize__gen_I2_J,axiom,
! [A: $tType,X2: fun(A,nat),X21: A,X222: list(A)] : ( aa(list(A),nat,size_list(A,X2),aa(list(A),list(A),cons(A,X21),X222)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(A,nat,X2,X21)),aa(list(A),nat,size_list(A,X2),X222))),aa(nat,nat,suc,zero_zero(nat))) ) ).
% list.size_gen(2)
tff(fact_6865_shuffles_Opinduct,axiom,
! [A: $tType,A0: list(A),A1: list(A),P: fun(list(A),fun(list(A),bool))] :
( pp(aa(product_prod(list(A),list(A)),bool,accp(product_prod(list(A),list(A)),shuffles_rel(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),A0),A1)))
=> ( ! [Ys3: list(A)] :
( pp(aa(product_prod(list(A),list(A)),bool,accp(product_prod(list(A),list(A)),shuffles_rel(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),nil(A)),Ys3)))
=> pp(aa(list(A),bool,aa(list(A),fun(list(A),bool),P,nil(A)),Ys3)) )
=> ( ! [Xs2: list(A)] :
( pp(aa(product_prod(list(A),list(A)),bool,accp(product_prod(list(A),list(A)),shuffles_rel(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),Xs2),nil(A))))
=> pp(aa(list(A),bool,aa(list(A),fun(list(A),bool),P,Xs2),nil(A))) )
=> ( ! [X3: A,Xs2: list(A),Y3: A,Ys3: list(A)] :
( pp(aa(product_prod(list(A),list(A)),bool,accp(product_prod(list(A),list(A)),shuffles_rel(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),aa(list(A),list(A),cons(A,X3),Xs2)),aa(list(A),list(A),cons(A,Y3),Ys3))))
=> ( pp(aa(list(A),bool,aa(list(A),fun(list(A),bool),P,Xs2),aa(list(A),list(A),cons(A,Y3),Ys3)))
=> ( pp(aa(list(A),bool,aa(list(A),fun(list(A),bool),P,aa(list(A),list(A),cons(A,X3),Xs2)),Ys3))
=> pp(aa(list(A),bool,aa(list(A),fun(list(A),bool),P,aa(list(A),list(A),cons(A,X3),Xs2)),aa(list(A),list(A),cons(A,Y3),Ys3))) ) ) )
=> pp(aa(list(A),bool,aa(list(A),fun(list(A),bool),P,A0),A1)) ) ) ) ) ).
% shuffles.pinduct
tff(fact_6866_map__upt__Suc,axiom,
! [A: $tType,F2: fun(nat,A),N: nat] : ( aa(list(nat),list(A),map(nat,A,F2),upt(zero_zero(nat),aa(nat,nat,suc,N))) = aa(list(A),list(A),cons(A,aa(nat,A,F2,zero_zero(nat))),aa(list(nat),list(A),map(nat,A,aTP_Lamp_si(fun(nat,A),fun(nat,A),F2)),upt(zero_zero(nat),N))) ) ).
% map_upt_Suc
tff(fact_6867_nth__equal__first__eq,axiom,
! [A: $tType,X2: A,Xs: list(A),N: nat] :
( ~ pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( ( aa(nat,A,nth(A,aa(list(A),list(A),cons(A,X2),Xs)),N) = X2 )
<=> ( N = zero_zero(nat) ) ) ) ) ).
% nth_equal_first_eq
tff(fact_6868_nth__non__equal__first__eq,axiom,
! [A: $tType,X2: A,Y: A,Xs: list(A),N: nat] :
( ( X2 != Y )
=> ( ( aa(nat,A,nth(A,aa(list(A),list(A),cons(A,X2),Xs)),N) = Y )
<=> ( ( aa(nat,A,nth(A,Xs),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat))) = Y )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N)) ) ) ) ).
% nth_non_equal_first_eq
tff(fact_6869_Cons__replicate__eq,axiom,
! [A: $tType,X2: A,Xs: list(A),N: nat,Y: A] :
( ( aa(list(A),list(A),cons(A,X2),Xs) = replicate(A,N,Y) )
<=> ( ( X2 = Y )
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
& ( Xs = replicate(A,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat)),X2) ) ) ) ).
% Cons_replicate_eq
tff(fact_6870_set__Cons__sing__Nil,axiom,
! [A: $tType,A3: set(A)] : ( set_Cons(A,A3,aa(set(list(A)),set(list(A)),insert(list(A),nil(A)),bot_bot(set(list(A))))) = aa(set(A),set(list(A)),image(A,list(A),aTP_Lamp_sj(A,list(A))),A3) ) ).
% set_Cons_sing_Nil
tff(fact_6871_transpose__aux__filter__head,axiom,
! [A: $tType,Xss: list(list(A))] : ( concat(A,aa(list(list(A)),list(list(A)),map(list(A),list(A),case_list(list(A),A,nil(A),aTP_Lamp_sk(A,fun(list(A),list(A))))),Xss)) = aa(list(list(A)),list(A),map(list(A),A,hd(A)),aa(list(list(A)),list(list(A)),filter2(list(A),aTP_Lamp_pg(list(A),bool)),Xss)) ) ).
% transpose_aux_filter_head
tff(fact_6872_upt__rec__numeral,axiom,
! [M: num,N: num] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(num,nat,numeral_numeral(nat),M)),aa(num,nat,numeral_numeral(nat),N)))
=> ( upt(aa(num,nat,numeral_numeral(nat),M),aa(num,nat,numeral_numeral(nat),N)) = aa(list(nat),list(nat),cons(nat,aa(num,nat,numeral_numeral(nat),M)),upt(aa(nat,nat,suc,aa(num,nat,numeral_numeral(nat),M)),aa(num,nat,numeral_numeral(nat),N))) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(num,nat,numeral_numeral(nat),M)),aa(num,nat,numeral_numeral(nat),N)))
=> ( upt(aa(num,nat,numeral_numeral(nat),M),aa(num,nat,numeral_numeral(nat),N)) = nil(nat) ) ) ) ).
% upt_rec_numeral
tff(fact_6873_n__lists__Nil,axiom,
! [A: $tType,N: nat] :
( ( ( N = zero_zero(nat) )
=> ( n_lists(A,N,nil(A)) = aa(list(list(A)),list(list(A)),cons(list(A),nil(A)),nil(list(A))) ) )
& ( ( N != zero_zero(nat) )
=> ( n_lists(A,N,nil(A)) = nil(list(A)) ) ) ) ).
% n_lists_Nil
tff(fact_6874_list__encode_Ocases,axiom,
! [X2: list(nat)] :
( ( X2 != nil(nat) )
=> ~ ! [X3: nat,Xs2: list(nat)] : ( X2 != aa(list(nat),list(nat),cons(nat,X3),Xs2) ) ) ).
% list_encode.cases
tff(fact_6875_list_Osimps_I4_J,axiom,
! [A: $tType,B: $tType,F1: B,F22: fun(A,fun(list(A),B))] : ( aa(list(A),B,case_list(B,A,F1,F22),nil(A)) = F1 ) ).
% list.simps(4)
tff(fact_6876_transpose_Osimps_I2_J,axiom,
! [A: $tType,Xss: list(list(A))] : ( transpose(A,aa(list(list(A)),list(list(A)),cons(list(A),nil(A)),Xss)) = transpose(A,Xss) ) ).
% transpose.simps(2)
tff(fact_6877_listset_Osimps_I2_J,axiom,
! [A: $tType,A3: set(A),As2: list(set(A))] : ( listset(A,aa(list(set(A)),list(set(A)),cons(set(A),A3),As2)) = set_Cons(A,A3,listset(A,As2)) ) ).
% listset.simps(2)
tff(fact_6878_upt__conv__Cons__Cons,axiom,
! [M: nat,N: nat,Ns: list(nat),Q2: nat] :
( ( aa(list(nat),list(nat),cons(nat,M),aa(list(nat),list(nat),cons(nat,N),Ns)) = upt(M,Q2) )
<=> ( aa(list(nat),list(nat),cons(nat,N),Ns) = upt(aa(nat,nat,suc,M),Q2) ) ) ).
% upt_conv_Cons_Cons
tff(fact_6879_list_Osimps_I5_J,axiom,
! [B: $tType,A: $tType,F1: B,F22: fun(A,fun(list(A),B)),X21: A,X222: list(A)] : ( aa(list(A),B,case_list(B,A,F1,F22),aa(list(A),list(A),cons(A,X21),X222)) = aa(list(A),B,aa(A,fun(list(A),B),F22,X21),X222) ) ).
% list.simps(5)
tff(fact_6880_list_Ocase__distrib,axiom,
! [B: $tType,C: $tType,A: $tType,H: fun(B,C),F1: B,F22: fun(A,fun(list(A),B)),List: list(A)] : ( aa(B,C,H,aa(list(A),B,case_list(B,A,F1,F22),List)) = aa(list(A),C,case_list(C,A,aa(B,C,H,F1),aa(fun(A,fun(list(A),B)),fun(A,fun(list(A),C)),aTP_Lamp_sl(fun(B,C),fun(fun(A,fun(list(A),B)),fun(A,fun(list(A),C))),H),F22)),List) ) ).
% list.case_distrib
tff(fact_6881_upt__conv__Cons,axiom,
! [I: nat,J: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),J))
=> ( upt(I,J) = aa(list(nat),list(nat),cons(nat,I),upt(aa(nat,nat,suc,I),J)) ) ) ).
% upt_conv_Cons
tff(fact_6882_map__of__Cons__code_I2_J,axiom,
! [C: $tType,B: $tType,L: B,K: B,V: C,Ps: list(product_prod(B,C))] :
( ( ( L = K )
=> ( aa(B,option(C),map_of(B,C,aa(list(product_prod(B,C)),list(product_prod(B,C)),cons(product_prod(B,C),aa(C,product_prod(B,C),aa(B,fun(C,product_prod(B,C)),product_Pair(B,C),L),V)),Ps)),K) = aa(C,option(C),some(C),V) ) )
& ( ( L != K )
=> ( aa(B,option(C),map_of(B,C,aa(list(product_prod(B,C)),list(product_prod(B,C)),cons(product_prod(B,C),aa(C,product_prod(B,C),aa(B,fun(C,product_prod(B,C)),product_Pair(B,C),L),V)),Ps)),K) = aa(B,option(C),map_of(B,C,Ps),K) ) ) ) ).
% map_of_Cons_code(2)
tff(fact_6883_subseqs_Osimps_I1_J,axiom,
! [A: $tType] : ( subseqs(A,nil(A)) = aa(list(list(A)),list(list(A)),cons(list(A),nil(A)),nil(list(A))) ) ).
% subseqs.simps(1)
tff(fact_6884_product__lists_Osimps_I1_J,axiom,
! [A: $tType] : ( product_lists(A,nil(list(A))) = aa(list(list(A)),list(list(A)),cons(list(A),nil(A)),nil(list(A))) ) ).
% product_lists.simps(1)
tff(fact_6885_upt__eq__Cons__conv,axiom,
! [I: nat,J: nat,X2: nat,Xs: list(nat)] :
( ( upt(I,J) = aa(list(nat),list(nat),cons(nat,X2),Xs) )
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),J))
& ( I = X2 )
& ( upt(aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),I),one_one(nat)),J) = Xs ) ) ) ).
% upt_eq_Cons_conv
tff(fact_6886_transpose_Osimps_I3_J,axiom,
! [A: $tType,X2: A,Xs: list(A),Xss: list(list(A))] : ( transpose(A,aa(list(list(A)),list(list(A)),cons(list(A),aa(list(A),list(A),cons(A,X2),Xs)),Xss)) = aa(list(list(A)),list(list(A)),cons(list(A),aa(list(A),list(A),cons(A,X2),concat(A,aa(list(list(A)),list(list(A)),map(list(A),list(A),case_list(list(A),A,nil(A),aTP_Lamp_sk(A,fun(list(A),list(A))))),Xss)))),transpose(A,aa(list(list(A)),list(list(A)),cons(list(A),Xs),concat(list(A),aa(list(list(A)),list(list(list(A))),map(list(A),list(list(A)),case_list(list(list(A)),A,nil(list(A)),aTP_Lamp_sm(A,fun(list(A),list(list(A)))))),Xss))))) ) ).
% transpose.simps(3)
tff(fact_6887_transpose_Oelims,axiom,
! [A: $tType,X2: list(list(A)),Y: list(list(A))] :
( ( transpose(A,X2) = Y )
=> ( ( ( X2 = nil(list(A)) )
=> ( Y != nil(list(A)) ) )
=> ( ! [Xss2: list(list(A))] :
( ( X2 = aa(list(list(A)),list(list(A)),cons(list(A),nil(A)),Xss2) )
=> ( Y != transpose(A,Xss2) ) )
=> ~ ! [X3: A,Xs2: list(A),Xss2: list(list(A))] :
( ( X2 = aa(list(list(A)),list(list(A)),cons(list(A),aa(list(A),list(A),cons(A,X3),Xs2)),Xss2) )
=> ( Y != aa(list(list(A)),list(list(A)),cons(list(A),aa(list(A),list(A),cons(A,X3),concat(A,aa(list(list(A)),list(list(A)),map(list(A),list(A),case_list(list(A),A,nil(A),aTP_Lamp_sk(A,fun(list(A),list(A))))),Xss2)))),transpose(A,aa(list(list(A)),list(list(A)),cons(list(A),Xs2),concat(list(A),aa(list(list(A)),list(list(list(A))),map(list(A),list(list(A)),case_list(list(list(A)),A,nil(list(A)),aTP_Lamp_sm(A,fun(list(A),list(list(A)))))),Xss2))))) ) ) ) ) ) ).
% transpose.elims
tff(fact_6888_upt__rec,axiom,
! [I: nat,J: nat] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),J))
=> ( upt(I,J) = aa(list(nat),list(nat),cons(nat,I),upt(aa(nat,nat,suc,I),J)) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),J))
=> ( upt(I,J) = nil(nat) ) ) ) ).
% upt_rec
tff(fact_6889_n__lists_Osimps_I1_J,axiom,
! [A: $tType,Xs: list(A)] : ( n_lists(A,zero_zero(nat),Xs) = aa(list(list(A)),list(list(A)),cons(list(A),nil(A)),nil(list(A))) ) ).
% n_lists.simps(1)
tff(fact_6890_sorted__list__of__set__greaterThanAtMost,axiom,
! [I: nat,J: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,suc,I)),J))
=> ( aa(set(nat),list(nat),linord4507533701916653071of_set(nat),set_or3652927894154168847AtMost(nat,I,J)) = aa(list(nat),list(nat),cons(nat,aa(nat,nat,suc,I)),aa(set(nat),list(nat),linord4507533701916653071of_set(nat),set_or3652927894154168847AtMost(nat,aa(nat,nat,suc,I),J))) ) ) ).
% sorted_list_of_set_greaterThanAtMost
tff(fact_6891_sorted__list__of__set__greaterThanLessThan,axiom,
! [I: nat,J: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,suc,I)),J))
=> ( aa(set(nat),list(nat),linord4507533701916653071of_set(nat),set_or5935395276787703475ssThan(nat,I,J)) = aa(list(nat),list(nat),cons(nat,aa(nat,nat,suc,I)),aa(set(nat),list(nat),linord4507533701916653071of_set(nat),set_or5935395276787703475ssThan(nat,aa(nat,nat,suc,I),J))) ) ) ).
% sorted_list_of_set_greaterThanLessThan
tff(fact_6892_zip__Cons1,axiom,
! [A: $tType,B: $tType,X2: A,Xs: list(A),Ys: list(B)] : ( zip(A,B,aa(list(A),list(A),cons(A,X2),Xs),Ys) = aa(list(B),list(product_prod(A,B)),case_list(list(product_prod(A,B)),B,nil(product_prod(A,B)),aa(list(A),fun(B,fun(list(B),list(product_prod(A,B)))),aTP_Lamp_sn(A,fun(list(A),fun(B,fun(list(B),list(product_prod(A,B))))),X2),Xs)),Ys) ) ).
% zip_Cons1
tff(fact_6893_zip__Cons,axiom,
! [B: $tType,A: $tType,Xs: list(A),Y: B,Ys: list(B)] : ( zip(A,B,Xs,aa(list(B),list(B),cons(B,Y),Ys)) = aa(list(A),list(product_prod(A,B)),case_list(list(product_prod(A,B)),A,nil(product_prod(A,B)),aa(list(B),fun(A,fun(list(A),list(product_prod(A,B)))),aTP_Lamp_so(B,fun(list(B),fun(A,fun(list(A),list(product_prod(A,B))))),Y),Ys)),Xs) ) ).
% zip_Cons
tff(fact_6894_transpose_Opsimps_I3_J,axiom,
! [A: $tType,X2: A,Xs: list(A),Xss: list(list(A))] :
( pp(aa(list(list(A)),bool,accp(list(list(A)),transpose_rel(A)),aa(list(list(A)),list(list(A)),cons(list(A),aa(list(A),list(A),cons(A,X2),Xs)),Xss)))
=> ( transpose(A,aa(list(list(A)),list(list(A)),cons(list(A),aa(list(A),list(A),cons(A,X2),Xs)),Xss)) = aa(list(list(A)),list(list(A)),cons(list(A),aa(list(A),list(A),cons(A,X2),concat(A,aa(list(list(A)),list(list(A)),map(list(A),list(A),case_list(list(A),A,nil(A),aTP_Lamp_sk(A,fun(list(A),list(A))))),Xss)))),transpose(A,aa(list(list(A)),list(list(A)),cons(list(A),Xs),concat(list(A),aa(list(list(A)),list(list(list(A))),map(list(A),list(list(A)),case_list(list(list(A)),A,nil(list(A)),aTP_Lamp_sm(A,fun(list(A),list(list(A)))))),Xss))))) ) ) ).
% transpose.psimps(3)
tff(fact_6895_transpose_Opelims,axiom,
! [A: $tType,X2: list(list(A)),Y: list(list(A))] :
( ( transpose(A,X2) = Y )
=> ( pp(aa(list(list(A)),bool,accp(list(list(A)),transpose_rel(A)),X2))
=> ( ( ( X2 = nil(list(A)) )
=> ( ( Y = nil(list(A)) )
=> ~ pp(aa(list(list(A)),bool,accp(list(list(A)),transpose_rel(A)),nil(list(A)))) ) )
=> ( ! [Xss2: list(list(A))] :
( ( X2 = aa(list(list(A)),list(list(A)),cons(list(A),nil(A)),Xss2) )
=> ( ( Y = transpose(A,Xss2) )
=> ~ pp(aa(list(list(A)),bool,accp(list(list(A)),transpose_rel(A)),aa(list(list(A)),list(list(A)),cons(list(A),nil(A)),Xss2))) ) )
=> ~ ! [X3: A,Xs2: list(A),Xss2: list(list(A))] :
( ( X2 = aa(list(list(A)),list(list(A)),cons(list(A),aa(list(A),list(A),cons(A,X3),Xs2)),Xss2) )
=> ( ( Y = aa(list(list(A)),list(list(A)),cons(list(A),aa(list(A),list(A),cons(A,X3),concat(A,aa(list(list(A)),list(list(A)),map(list(A),list(A),case_list(list(A),A,nil(A),aTP_Lamp_sk(A,fun(list(A),list(A))))),Xss2)))),transpose(A,aa(list(list(A)),list(list(A)),cons(list(A),Xs2),concat(list(A),aa(list(list(A)),list(list(list(A))),map(list(A),list(list(A)),case_list(list(list(A)),A,nil(list(A)),aTP_Lamp_sm(A,fun(list(A),list(list(A)))))),Xss2))))) )
=> ~ pp(aa(list(list(A)),bool,accp(list(list(A)),transpose_rel(A)),aa(list(list(A)),list(list(A)),cons(list(A),aa(list(A),list(A),cons(A,X3),Xs2)),Xss2))) ) ) ) ) ) ) ).
% transpose.pelims
tff(fact_6896_list_Odisc__eq__case_I2_J,axiom,
! [A: $tType,List: list(A)] :
( ( List != nil(A) )
<=> pp(aa(list(A),bool,case_list(bool,A,fFalse,aTP_Lamp_sp(A,fun(list(A),bool))),List)) ) ).
% list.disc_eq_case(2)
tff(fact_6897_list_Odisc__eq__case_I1_J,axiom,
! [A: $tType,List: list(A)] :
( ( List = nil(A) )
<=> pp(aa(list(A),bool,case_list(bool,A,fTrue,aTP_Lamp_sq(A,fun(list(A),bool))),List)) ) ).
% list.disc_eq_case(1)
tff(fact_6898_transpose_Opsimps_I1_J,axiom,
! [A: $tType] :
( pp(aa(list(list(A)),bool,accp(list(list(A)),transpose_rel(A)),nil(list(A))))
=> ( transpose(A,nil(list(A))) = nil(list(A)) ) ) ).
% transpose.psimps(1)
tff(fact_6899_transpose_Opsimps_I2_J,axiom,
! [A: $tType,Xss: list(list(A))] :
( pp(aa(list(list(A)),bool,accp(list(list(A)),transpose_rel(A)),aa(list(list(A)),list(list(A)),cons(list(A),nil(A)),Xss)))
=> ( transpose(A,aa(list(list(A)),list(list(A)),cons(list(A),nil(A)),Xss)) = transpose(A,Xss) ) ) ).
% transpose.psimps(2)
tff(fact_6900_transpose_Opinduct,axiom,
! [A: $tType,A0: list(list(A)),P: fun(list(list(A)),bool)] :
( pp(aa(list(list(A)),bool,accp(list(list(A)),transpose_rel(A)),A0))
=> ( ( pp(aa(list(list(A)),bool,accp(list(list(A)),transpose_rel(A)),nil(list(A))))
=> pp(aa(list(list(A)),bool,P,nil(list(A)))) )
=> ( ! [Xss2: list(list(A))] :
( pp(aa(list(list(A)),bool,accp(list(list(A)),transpose_rel(A)),aa(list(list(A)),list(list(A)),cons(list(A),nil(A)),Xss2)))
=> ( pp(aa(list(list(A)),bool,P,Xss2))
=> pp(aa(list(list(A)),bool,P,aa(list(list(A)),list(list(A)),cons(list(A),nil(A)),Xss2))) ) )
=> ( ! [X3: A,Xs2: list(A),Xss2: list(list(A))] :
( pp(aa(list(list(A)),bool,accp(list(list(A)),transpose_rel(A)),aa(list(list(A)),list(list(A)),cons(list(A),aa(list(A),list(A),cons(A,X3),Xs2)),Xss2)))
=> ( pp(aa(list(list(A)),bool,P,aa(list(list(A)),list(list(A)),cons(list(A),Xs2),concat(list(A),aa(list(list(A)),list(list(list(A))),map(list(A),list(list(A)),case_list(list(list(A)),A,nil(list(A)),aTP_Lamp_sm(A,fun(list(A),list(list(A)))))),Xss2)))))
=> pp(aa(list(list(A)),bool,P,aa(list(list(A)),list(list(A)),cons(list(A),aa(list(A),list(A),cons(A,X3),Xs2)),Xss2))) ) )
=> pp(aa(list(list(A)),bool,P,A0)) ) ) ) ) ).
% transpose.pinduct
tff(fact_6901_transpose__aux__filter__tail,axiom,
! [A: $tType,Xss: list(list(A))] : ( concat(list(A),aa(list(list(A)),list(list(list(A))),map(list(A),list(list(A)),case_list(list(list(A)),A,nil(list(A)),aTP_Lamp_sm(A,fun(list(A),list(list(A)))))),Xss)) = aa(list(list(A)),list(list(A)),map(list(A),list(A),tl(A)),aa(list(list(A)),list(list(A)),filter2(list(A),aTP_Lamp_pg(list(A),bool)),Xss)) ) ).
% transpose_aux_filter_tail
tff(fact_6902_list__encode_Oelims,axiom,
! [X2: list(nat),Y: nat] :
( ( aa(list(nat),nat,nat_list_encode,X2) = Y )
=> ( ( ( X2 = nil(nat) )
=> ( Y != zero_zero(nat) ) )
=> ~ ! [X3: nat,Xs2: list(nat)] :
( ( X2 = aa(list(nat),list(nat),cons(nat,X3),Xs2) )
=> ( Y != aa(nat,nat,suc,aa(product_prod(nat,nat),nat,nat_prod_encode,aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),X3),aa(list(nat),nat,nat_list_encode,Xs2)))) ) ) ) ) ).
% list_encode.elims
tff(fact_6903_tl__upt,axiom,
! [M: nat,N: nat] : ( aa(list(nat),list(nat),tl(nat),upt(M,N)) = upt(aa(nat,nat,suc,M),N) ) ).
% tl_upt
tff(fact_6904_length__tl,axiom,
! [A: $tType,Xs: list(A)] : ( aa(list(A),nat,size_size(list(A)),aa(list(A),list(A),tl(A),Xs)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(list(A),nat,size_size(list(A)),Xs)),one_one(nat)) ) ).
% length_tl
tff(fact_6905_list_Ocollapse,axiom,
! [A: $tType,List: list(A)] :
( ( List != nil(A) )
=> ( aa(list(A),list(A),cons(A,aa(list(A),A,hd(A),List)),aa(list(A),list(A),tl(A),List)) = List ) ) ).
% list.collapse
tff(fact_6906_hd__Cons__tl,axiom,
! [A: $tType,Xs: list(A)] :
( ( Xs != nil(A) )
=> ( aa(list(A),list(A),cons(A,aa(list(A),A,hd(A),Xs)),aa(list(A),list(A),tl(A),Xs)) = Xs ) ) ).
% hd_Cons_tl
tff(fact_6907_tl__replicate,axiom,
! [A: $tType,N: nat,X2: A] : ( aa(list(A),list(A),tl(A),replicate(A,N,X2)) = replicate(A,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat)),X2) ) ).
% tl_replicate
tff(fact_6908_Nil__tl,axiom,
! [A: $tType,Xs: list(A)] :
( ( nil(A) = aa(list(A),list(A),tl(A),Xs) )
<=> ( ( Xs = nil(A) )
| ? [X4: A] : ( Xs = aa(list(A),list(A),cons(A,X4),nil(A)) ) ) ) ).
% Nil_tl
tff(fact_6909_tl__Nil,axiom,
! [A: $tType,Xs: list(A)] :
( ( aa(list(A),list(A),tl(A),Xs) = nil(A) )
<=> ( ( Xs = nil(A) )
| ? [X4: A] : ( Xs = aa(list(A),list(A),cons(A,X4),nil(A)) ) ) ) ).
% tl_Nil
tff(fact_6910_list_Osel_I3_J,axiom,
! [A: $tType,X21: A,X222: list(A)] : ( aa(list(A),list(A),tl(A),aa(list(A),list(A),cons(A,X21),X222)) = X222 ) ).
% list.sel(3)
tff(fact_6911_list_Oexpand,axiom,
! [A: $tType,List: list(A),List2: list(A)] :
( ( ( List = nil(A) )
<=> ( List2 = nil(A) ) )
=> ( ( ( List != nil(A) )
=> ( ( List2 != nil(A) )
=> ( ( aa(list(A),A,hd(A),List) = aa(list(A),A,hd(A),List2) )
& ( aa(list(A),list(A),tl(A),List) = aa(list(A),list(A),tl(A),List2) ) ) ) )
=> ( List = List2 ) ) ) ).
% list.expand
tff(fact_6912_list_Osel_I2_J,axiom,
! [A: $tType] : ( aa(list(A),list(A),tl(A),nil(A)) = nil(A) ) ).
% list.sel(2)
tff(fact_6913_list_Oset__sel_I2_J,axiom,
! [A: $tType,A2: list(A),X2: A] :
( ( A2 != nil(A) )
=> ( pp(member(A,X2,aa(list(A),set(A),set2(A),aa(list(A),list(A),tl(A),A2))))
=> pp(member(A,X2,aa(list(A),set(A),set2(A),A2))) ) ) ).
% list.set_sel(2)
tff(fact_6914_bij__list__encode,axiom,
bij_betw(list(nat),nat,nat_list_encode,top_top(set(list(nat))),top_top(set(nat))) ).
% bij_list_encode
tff(fact_6915_distinct__tl,axiom,
! [A: $tType,Xs: list(A)] :
( distinct(A,Xs)
=> distinct(A,aa(list(A),list(A),tl(A),Xs)) ) ).
% distinct_tl
tff(fact_6916_list__encode__eq,axiom,
! [X2: list(nat),Y: list(nat)] :
( ( aa(list(nat),nat,nat_list_encode,X2) = aa(list(nat),nat,nat_list_encode,Y) )
<=> ( X2 = Y ) ) ).
% list_encode_eq
tff(fact_6917_surj__list__encode,axiom,
aa(set(list(nat)),set(nat),image(list(nat),nat,nat_list_encode),top_top(set(list(nat)))) = top_top(set(nat)) ).
% surj_list_encode
tff(fact_6918_sorted__tl,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Xs: list(A)] :
( sorted_wrt(A,ord_less_eq(A),Xs)
=> sorted_wrt(A,ord_less_eq(A),aa(list(A),list(A),tl(A),Xs)) ) ) ).
% sorted_tl
tff(fact_6919_map__tl,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),Xs: list(B)] : ( aa(list(B),list(A),map(B,A,F2),aa(list(B),list(B),tl(B),Xs)) = aa(list(A),list(A),tl(A),aa(list(B),list(A),map(B,A,F2),Xs)) ) ).
% map_tl
tff(fact_6920_list_Omap__sel_I2_J,axiom,
! [B: $tType,A: $tType,A2: list(A),F2: fun(A,B)] :
( ( A2 != nil(A) )
=> ( aa(list(B),list(B),tl(B),aa(list(A),list(B),map(A,B,F2),A2)) = aa(list(A),list(B),map(A,B,F2),aa(list(A),list(A),tl(A),A2)) ) ) ).
% list.map_sel(2)
tff(fact_6921_tl__def,axiom,
! [A: $tType,List: list(A)] : ( aa(list(A),list(A),tl(A),List) = aa(list(A),list(A),case_list(list(A),A,nil(A),aTP_Lamp_sr(A,fun(list(A),list(A)))),List) ) ).
% tl_def
tff(fact_6922_list_Oexhaust__sel,axiom,
! [A: $tType,List: list(A)] :
( ( List != nil(A) )
=> ( List = aa(list(A),list(A),cons(A,aa(list(A),A,hd(A),List)),aa(list(A),list(A),tl(A),List)) ) ) ).
% list.exhaust_sel
tff(fact_6923_list_Ocase__eq__if,axiom,
! [B: $tType,A: $tType,List: list(A),F1: B,F22: fun(A,fun(list(A),B))] :
( ( ( List = nil(A) )
=> ( aa(list(A),B,case_list(B,A,F1,F22),List) = F1 ) )
& ( ( List != nil(A) )
=> ( aa(list(A),B,case_list(B,A,F1,F22),List) = aa(list(A),B,aa(A,fun(list(A),B),F22,aa(list(A),A,hd(A),List)),aa(list(A),list(A),tl(A),List)) ) ) ) ).
% list.case_eq_if
tff(fact_6924_list__encode_Osimps_I1_J,axiom,
aa(list(nat),nat,nat_list_encode,nil(nat)) = zero_zero(nat) ).
% list_encode.simps(1)
tff(fact_6925_Nitpick_Osize__list__simp_I2_J,axiom,
! [A: $tType,Xs: list(A)] :
( ( ( Xs = nil(A) )
=> ( aa(list(A),nat,size_size(list(A)),Xs) = zero_zero(nat) ) )
& ( ( Xs != nil(A) )
=> ( aa(list(A),nat,size_size(list(A)),Xs) = aa(nat,nat,suc,aa(list(A),nat,size_size(list(A)),aa(list(A),list(A),tl(A),Xs))) ) ) ) ).
% Nitpick.size_list_simp(2)
tff(fact_6926_nth__tl,axiom,
! [A: $tType,N: nat,Xs: list(A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(list(A),nat,size_size(list(A)),aa(list(A),list(A),tl(A),Xs))))
=> ( aa(nat,A,nth(A,aa(list(A),list(A),tl(A),Xs)),N) = aa(nat,A,nth(A,Xs),aa(nat,nat,suc,N)) ) ) ).
% nth_tl
tff(fact_6927_Cons__in__shuffles__iff,axiom,
! [A: $tType,Z: A,Zs: list(A),Xs: list(A),Ys: list(A)] :
( pp(member(list(A),aa(list(A),list(A),cons(A,Z),Zs),shuffles(A,Xs,Ys)))
<=> ( ( ( Xs != nil(A) )
& ( aa(list(A),A,hd(A),Xs) = Z )
& pp(member(list(A),Zs,shuffles(A,aa(list(A),list(A),tl(A),Xs),Ys))) )
| ( ( Ys != nil(A) )
& ( aa(list(A),A,hd(A),Ys) = Z )
& pp(member(list(A),Zs,shuffles(A,Xs,aa(list(A),list(A),tl(A),Ys)))) ) ) ) ).
% Cons_in_shuffles_iff
tff(fact_6928_list_Osplit__sel__asm,axiom,
! [B: $tType,A: $tType,P: fun(B,bool),F1: B,F22: fun(A,fun(list(A),B)),List: list(A)] :
( pp(aa(B,bool,P,aa(list(A),B,case_list(B,A,F1,F22),List)))
<=> ~ ( ( ( List = nil(A) )
& ~ pp(aa(B,bool,P,F1)) )
| ( ( List = aa(list(A),list(A),cons(A,aa(list(A),A,hd(A),List)),aa(list(A),list(A),tl(A),List)) )
& ~ pp(aa(B,bool,P,aa(list(A),B,aa(A,fun(list(A),B),F22,aa(list(A),A,hd(A),List)),aa(list(A),list(A),tl(A),List)))) ) ) ) ).
% list.split_sel_asm
tff(fact_6929_list_Osplit__sel,axiom,
! [B: $tType,A: $tType,P: fun(B,bool),F1: B,F22: fun(A,fun(list(A),B)),List: list(A)] :
( pp(aa(B,bool,P,aa(list(A),B,case_list(B,A,F1,F22),List)))
<=> ( ( ( List = nil(A) )
=> pp(aa(B,bool,P,F1)) )
& ( ( List = aa(list(A),list(A),cons(A,aa(list(A),A,hd(A),List)),aa(list(A),list(A),tl(A),List)) )
=> pp(aa(B,bool,P,aa(list(A),B,aa(A,fun(list(A),B),F22,aa(list(A),A,hd(A),List)),aa(list(A),list(A),tl(A),List)))) ) ) ) ).
% list.split_sel
tff(fact_6930_Nitpick_Osize__list__simp_I1_J,axiom,
! [A: $tType,Xs: list(A),F2: fun(A,nat)] :
( ( ( Xs = nil(A) )
=> ( aa(list(A),nat,size_list(A,F2),Xs) = zero_zero(nat) ) )
& ( ( Xs != nil(A) )
=> ( aa(list(A),nat,size_list(A,F2),Xs) = aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(A,nat,F2,aa(list(A),A,hd(A),Xs))),aa(list(A),nat,size_list(A,F2),aa(list(A),list(A),tl(A),Xs)))) ) ) ) ).
% Nitpick.size_list_simp(1)
tff(fact_6931_list__encode_Osimps_I2_J,axiom,
! [X2: nat,Xs: list(nat)] : ( aa(list(nat),nat,nat_list_encode,aa(list(nat),list(nat),cons(nat,X2),Xs)) = aa(nat,nat,suc,aa(product_prod(nat,nat),nat,nat_prod_encode,aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),X2),aa(list(nat),nat,nat_list_encode,Xs)))) ) ).
% list_encode.simps(2)
tff(fact_6932_list__encode_Opelims,axiom,
! [X2: list(nat),Y: nat] :
( ( aa(list(nat),nat,nat_list_encode,X2) = Y )
=> ( pp(aa(list(nat),bool,accp(list(nat),nat_list_encode_rel),X2))
=> ( ( ( X2 = nil(nat) )
=> ( ( Y = zero_zero(nat) )
=> ~ pp(aa(list(nat),bool,accp(list(nat),nat_list_encode_rel),nil(nat))) ) )
=> ~ ! [X3: nat,Xs2: list(nat)] :
( ( X2 = aa(list(nat),list(nat),cons(nat,X3),Xs2) )
=> ( ( Y = aa(nat,nat,suc,aa(product_prod(nat,nat),nat,nat_prod_encode,aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),X3),aa(list(nat),nat,nat_list_encode,Xs2)))) )
=> ~ pp(aa(list(nat),bool,accp(list(nat),nat_list_encode_rel),aa(list(nat),list(nat),cons(nat,X3),Xs2))) ) ) ) ) ) ).
% list_encode.pelims
tff(fact_6933_shuffles_Opelims,axiom,
! [A: $tType,X2: list(A),Xa: list(A),Y: set(list(A))] :
( ( shuffles(A,X2,Xa) = Y )
=> ( pp(aa(product_prod(list(A),list(A)),bool,accp(product_prod(list(A),list(A)),shuffles_rel(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),X2),Xa)))
=> ( ( ( X2 = nil(A) )
=> ( ( Y = aa(set(list(A)),set(list(A)),insert(list(A),Xa),bot_bot(set(list(A)))) )
=> ~ pp(aa(product_prod(list(A),list(A)),bool,accp(product_prod(list(A),list(A)),shuffles_rel(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),nil(A)),Xa))) ) )
=> ( ( ( Xa = nil(A) )
=> ( ( Y = aa(set(list(A)),set(list(A)),insert(list(A),X2),bot_bot(set(list(A)))) )
=> ~ pp(aa(product_prod(list(A),list(A)),bool,accp(product_prod(list(A),list(A)),shuffles_rel(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),X2),nil(A)))) ) )
=> ~ ! [X3: A,Xs2: list(A)] :
( ( X2 = aa(list(A),list(A),cons(A,X3),Xs2) )
=> ! [Y3: A,Ys3: list(A)] :
( ( Xa = aa(list(A),list(A),cons(A,Y3),Ys3) )
=> ( ( Y = aa(set(list(A)),set(list(A)),aa(set(list(A)),fun(set(list(A)),set(list(A))),sup_sup(set(list(A))),aa(set(list(A)),set(list(A)),image(list(A),list(A),cons(A,X3)),shuffles(A,Xs2,aa(list(A),list(A),cons(A,Y3),Ys3)))),aa(set(list(A)),set(list(A)),image(list(A),list(A),cons(A,Y3)),shuffles(A,aa(list(A),list(A),cons(A,X3),Xs2),Ys3))) )
=> ~ pp(aa(product_prod(list(A),list(A)),bool,accp(product_prod(list(A),list(A)),shuffles_rel(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),aa(list(A),list(A),cons(A,X3),Xs2)),aa(list(A),list(A),cons(A,Y3),Ys3)))) ) ) ) ) ) ) ) ).
% shuffles.pelims
tff(fact_6934_sup_Obounded__iff,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [B2: A,C2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),sup_sup(A),B2),C2)),A2))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),A2)) ) ) ) ).
% sup.bounded_iff
tff(fact_6935_le__sup__iff,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [X2: A,Y: A,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),Y)),Z))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Z))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),Z)) ) ) ) ).
% le_sup_iff
tff(fact_6936_boolean__algebra_Odisj__one__left,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),sup_sup(A),top_top(A)),X2) = top_top(A) ) ) ).
% boolean_algebra.disj_one_left
tff(fact_6937_boolean__algebra_Odisj__one__right,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),top_top(A)) = top_top(A) ) ) ).
% boolean_algebra.disj_one_right
tff(fact_6938_Un__subset__iff,axiom,
! [A: $tType,A3: set(A),B4: set(A),C6: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),A3),B4)),C6))
<=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),C6))
& pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),C6)) ) ) ).
% Un_subset_iff
tff(fact_6939_Un__Diff__cancel,axiom,
! [A: $tType,A3: set(A),B4: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),A3),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),B4),A3)) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),A3),B4) ) ).
% Un_Diff_cancel
tff(fact_6940_Un__Diff__cancel2,axiom,
! [A: $tType,B4: set(A),A3: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),B4),A3)),A3) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),B4),A3) ) ).
% Un_Diff_cancel2
tff(fact_6941_sup__compl__top__left1,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A,Y: A] : ( aa(A,A,aa(A,fun(A,A),sup_sup(A),aa(A,A,uminus_uminus(A),X2)),aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),Y)) = top_top(A) ) ) ).
% sup_compl_top_left1
tff(fact_6942_sup__compl__top__left2,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A,Y: A] : ( aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),aa(A,A,aa(A,fun(A,A),sup_sup(A),aa(A,A,uminus_uminus(A),X2)),Y)) = top_top(A) ) ) ).
% sup_compl_top_left2
tff(fact_6943_boolean__algebra_Odisj__cancel__left,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),sup_sup(A),aa(A,A,uminus_uminus(A),X2)),X2) = top_top(A) ) ) ).
% boolean_algebra.disj_cancel_left
tff(fact_6944_boolean__algebra_Odisj__cancel__right,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),aa(A,A,uminus_uminus(A),X2)) = top_top(A) ) ) ).
% boolean_algebra.disj_cancel_right
tff(fact_6945_boolean__algebra_Ode__Morgan__conj,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A,Y: A] : ( aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),sup_sup(A),aa(A,A,uminus_uminus(A),X2)),aa(A,A,uminus_uminus(A),Y)) ) ) ).
% boolean_algebra.de_Morgan_conj
tff(fact_6946_boolean__algebra_Ode__Morgan__disj,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A,Y: A] : ( aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),Y)) = aa(A,A,aa(A,fun(A,A),inf_inf(A),aa(A,A,uminus_uminus(A),X2)),aa(A,A,uminus_uminus(A),Y)) ) ) ).
% boolean_algebra.de_Morgan_disj
tff(fact_6947_Compl__Diff__eq,axiom,
! [A: $tType,A3: set(A),B4: set(A)] : ( aa(set(A),set(A),uminus_uminus(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),aa(set(A),set(A),uminus_uminus(set(A)),A3)),B4) ) ).
% Compl_Diff_eq
tff(fact_6948_set__union,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] : ( aa(list(A),set(A),set2(A),union(A,Xs,Ys)) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),aa(list(A),set(A),set2(A),Xs)),aa(list(A),set(A),set2(A),Ys)) ) ).
% set_union
tff(fact_6949_Un__Pow__subset,axiom,
! [A: $tType,A3: set(A),B4: set(A)] : pp(aa(set(set(A)),bool,aa(set(set(A)),fun(set(set(A)),bool),ord_less_eq(set(set(A))),aa(set(set(A)),set(set(A)),aa(set(set(A)),fun(set(set(A)),set(set(A))),sup_sup(set(set(A))),pow2(A,A3)),pow2(A,B4))),pow2(A,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),A3),B4)))) ).
% Un_Pow_subset
tff(fact_6950_ivl__disj__un__two__touch_I4_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A,M: A,U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L),M))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),M),U))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),set_or1337092689740270186AtMost(A,L,M)),set_or1337092689740270186AtMost(A,M,U)) = set_or1337092689740270186AtMost(A,L,U) ) ) ) ) ).
% ivl_disj_un_two_touch(4)
tff(fact_6951_sup_OcoboundedI2,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [C2: A,B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2))) ) ) ).
% sup.coboundedI2
tff(fact_6952_sup_OcoboundedI1,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2))) ) ) ).
% sup.coboundedI1
tff(fact_6953_sup_Oabsorb__iff2,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
<=> ( aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2) = B2 ) ) ) ).
% sup.absorb_iff2
tff(fact_6954_sup_Oabsorb__iff1,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
<=> ( aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2) = A2 ) ) ) ).
% sup.absorb_iff1
tff(fact_6955_sup_Ocobounded2,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [B2: A,A2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2))) ) ).
% sup.cobounded2
tff(fact_6956_sup_Ocobounded1,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [A2: A,B2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2))) ) ).
% sup.cobounded1
tff(fact_6957_sup_Oorder__iff,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
<=> ( A2 = aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2) ) ) ) ).
% sup.order_iff
tff(fact_6958_sup_OboundedI,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [B2: A,A2: A,C2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),sup_sup(A),B2),C2)),A2)) ) ) ) ).
% sup.boundedI
tff(fact_6959_sup_OboundedE,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [B2: A,C2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),sup_sup(A),B2),C2)),A2))
=> ~ ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),A2)) ) ) ) ).
% sup.boundedE
tff(fact_6960_sup__absorb2,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
=> ( aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),Y) = Y ) ) ) ).
% sup_absorb2
tff(fact_6961_sup__absorb1,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [Y: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),X2))
=> ( aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),Y) = X2 ) ) ) ).
% sup_absorb1
tff(fact_6962_sup_Oabsorb2,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2) = B2 ) ) ) ).
% sup.absorb2
tff(fact_6963_sup_Oabsorb1,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
=> ( aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2) = A2 ) ) ) ).
% sup.absorb1
tff(fact_6964_sup__unique,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [F2: fun(A,fun(A,A)),X2: A,Y: A] :
( ! [X3: A,Y3: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),aa(A,A,aa(A,fun(A,A),F2,X3),Y3)))
=> ( ! [X3: A,Y3: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y3),aa(A,A,aa(A,fun(A,A),F2,X3),Y3)))
=> ( ! [X3: A,Y3: A,Z3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y3),X3))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Z3),X3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),F2,Y3),Z3)),X3)) ) )
=> ( aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),Y) = aa(A,A,aa(A,fun(A,A),F2,X2),Y) ) ) ) ) ) ).
% sup_unique
tff(fact_6965_sup_OorderI,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [A2: A,B2: A] :
( ( A2 = aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2)) ) ) ).
% sup.orderI
tff(fact_6966_sup_OorderE,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),A2))
=> ( A2 = aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2) ) ) ) ).
% sup.orderE
tff(fact_6967_le__iff__sup,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y))
<=> ( aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),Y) = Y ) ) ) ).
% le_iff_sup
tff(fact_6968_sup__least,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [Y: A,X2: A,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),X2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Z),X2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),sup_sup(A),Y),Z)),X2)) ) ) ) ).
% sup_least
tff(fact_6969_sup__mono,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [A2: A,C2: A,B2: A,D2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),C2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),D2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2)),aa(A,A,aa(A,fun(A,A),sup_sup(A),C2),D2))) ) ) ) ).
% sup_mono
tff(fact_6970_sup_Omono,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [C2: A,A2: A,D2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),A2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),D2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),sup_sup(A),C2),D2)),aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2))) ) ) ) ).
% sup.mono
tff(fact_6971_le__supI2,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [X2: A,B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2))) ) ) ).
% le_supI2
tff(fact_6972_le__supI1,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [X2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2))) ) ) ).
% le_supI1
tff(fact_6973_sup__ge2,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [Y: A,X2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),Y))) ) ).
% sup_ge2
tff(fact_6974_sup__ge1,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [X2: A,Y: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),Y))) ) ).
% sup_ge1
tff(fact_6975_le__supI,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [A2: A,X2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),X2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),X2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2)),X2)) ) ) ) ).
% le_supI
tff(fact_6976_le__supE,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [A2: A,B2: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2)),X2))
=> ~ ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),X2))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B2),X2)) ) ) ) ).
% le_supE
tff(fact_6977_inf__sup__ord_I3_J,axiom,
! [A: $tType] :
( lattice(A)
=> ! [X2: A,Y: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),Y))) ) ).
% inf_sup_ord(3)
tff(fact_6978_inf__sup__ord_I4_J,axiom,
! [A: $tType] :
( lattice(A)
=> ! [Y: A,X2: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),Y))) ) ).
% inf_sup_ord(4)
tff(fact_6979_Un__mono,axiom,
! [A: $tType,A3: set(A),C6: set(A),B4: set(A),D5: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),C6))
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),D5))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),A3),B4)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),C6),D5))) ) ) ).
% Un_mono
tff(fact_6980_Un__least,axiom,
! [A: $tType,A3: set(A),C6: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),C6))
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),C6))
=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),A3),B4)),C6)) ) ) ).
% Un_least
tff(fact_6981_Un__upper1,axiom,
! [A: $tType,A3: set(A),B4: set(A)] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),A3),B4))) ).
% Un_upper1
tff(fact_6982_Un__upper2,axiom,
! [A: $tType,B4: set(A),A3: set(A)] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),A3),B4))) ).
% Un_upper2
tff(fact_6983_Un__absorb1,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),A3),B4) = B4 ) ) ).
% Un_absorb1
tff(fact_6984_Un__absorb2,axiom,
! [A: $tType,B4: set(A),A3: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),A3))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),A3),B4) = A3 ) ) ).
% Un_absorb2
tff(fact_6985_subset__UnE,axiom,
! [A: $tType,C6: set(A),A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),C6),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),A3),B4)))
=> ~ ! [A10: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A10),A3))
=> ! [B13: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B13),B4))
=> ( C6 != aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),A10),B13) ) ) ) ) ).
% subset_UnE
tff(fact_6986_subset__Un__eq,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
<=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),A3),B4) = B4 ) ) ).
% subset_Un_eq
tff(fact_6987_ivl__disj__un__two_I3_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A,M: A,U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L),M))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),M),U))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),set_or7035219750837199246ssThan(A,L,M)),set_or7035219750837199246ssThan(A,M,U)) = set_or7035219750837199246ssThan(A,L,U) ) ) ) ) ).
% ivl_disj_un_two(3)
tff(fact_6988_Diff__subset__conv,axiom,
! [A: $tType,A3: set(A),B4: set(A),C6: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)),C6))
<=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),B4),C6))) ) ).
% Diff_subset_conv
tff(fact_6989_Diff__partition,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),A3),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),B4),A3)) = B4 ) ) ).
% Diff_partition
tff(fact_6990_distrib__inf__le,axiom,
! [A: $tType] :
( lattice(A)
=> ! [X2: A,Y: A,Z: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),sup_sup(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),Y)),aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),Z))),aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),aa(A,A,aa(A,fun(A,A),sup_sup(A),Y),Z)))) ) ).
% distrib_inf_le
tff(fact_6991_distrib__sup__le,axiom,
! [A: $tType] :
( lattice(A)
=> ! [X2: A,Y: A,Z: A] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),aa(A,A,aa(A,fun(A,A),inf_inf(A),Y),Z))),aa(A,A,aa(A,fun(A,A),inf_inf(A),aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),Y)),aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),Z)))) ) ).
% distrib_sup_le
tff(fact_6992_Un__Int__assoc__eq,axiom,
! [A: $tType,A3: set(A),B4: set(A),C6: set(A)] :
( ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),B4)),C6) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),B4),C6)) )
<=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),C6),A3)) ) ).
% Un_Int_assoc_eq
tff(fact_6993_ivl__disj__un__two_I6_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A,M: A,U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L),M))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),M),U))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),set_or3652927894154168847AtMost(A,L,M)),set_or3652927894154168847AtMost(A,M,U)) = set_or3652927894154168847AtMost(A,L,U) ) ) ) ) ).
% ivl_disj_un_two(6)
tff(fact_6994_Diff__Un,axiom,
! [A: $tType,A3: set(A),B4: set(A),C6: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),B4),C6)) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),C6)) ) ).
% Diff_Un
tff(fact_6995_Diff__Int,axiom,
! [A: $tType,A3: set(A),B4: set(A),C6: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),B4),C6)) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),C6)) ) ).
% Diff_Int
tff(fact_6996_Int__Diff__Un,axiom,
! [A: $tType,A3: set(A),B4: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),B4)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)) = A3 ) ).
% Int_Diff_Un
tff(fact_6997_Un__Diff__Int,axiom,
! [A: $tType,A3: set(A),B4: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),B4)) = A3 ) ).
% Un_Diff_Int
tff(fact_6998_boolean__algebra_Odisj__conj__distrib2,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [Y: A,Z: A,X2: A] : ( aa(A,A,aa(A,fun(A,A),sup_sup(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),Y),Z)),X2) = aa(A,A,aa(A,fun(A,A),inf_inf(A),aa(A,A,aa(A,fun(A,A),sup_sup(A),Y),X2)),aa(A,A,aa(A,fun(A,A),sup_sup(A),Z),X2)) ) ) ).
% boolean_algebra.disj_conj_distrib2
tff(fact_6999_boolean__algebra_Oconj__disj__distrib2,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [Y: A,Z: A,X2: A] : ( aa(A,A,aa(A,fun(A,A),inf_inf(A),aa(A,A,aa(A,fun(A,A),sup_sup(A),Y),Z)),X2) = aa(A,A,aa(A,fun(A,A),sup_sup(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),Y),X2)),aa(A,A,aa(A,fun(A,A),inf_inf(A),Z),X2)) ) ) ).
% boolean_algebra.conj_disj_distrib2
tff(fact_7000_boolean__algebra_Odisj__conj__distrib,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A,Y: A,Z: A] : ( aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),aa(A,A,aa(A,fun(A,A),inf_inf(A),Y),Z)) = aa(A,A,aa(A,fun(A,A),inf_inf(A),aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),Y)),aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),Z)) ) ) ).
% boolean_algebra.disj_conj_distrib
tff(fact_7001_boolean__algebra_Oconj__disj__distrib,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A,Y: A,Z: A] : ( aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),aa(A,A,aa(A,fun(A,A),sup_sup(A),Y),Z)) = aa(A,A,aa(A,fun(A,A),sup_sup(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),Y)),aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),Z)) ) ) ).
% boolean_algebra.conj_disj_distrib
tff(fact_7002_set__shuffles,axiom,
! [A: $tType,Zs: list(A),Xs: list(A),Ys: list(A)] :
( pp(member(list(A),Zs,shuffles(A,Xs,Ys)))
=> ( aa(list(A),set(A),set2(A),Zs) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),aa(list(A),set(A),set2(A),Xs)),aa(list(A),set(A),set2(A),Ys)) ) ) ).
% set_shuffles
tff(fact_7003_Un__Diff,axiom,
! [A: $tType,A3: set(A),B4: set(A),C6: set(A)] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),A3),B4)),C6) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),C6)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),B4),C6)) ) ).
% Un_Diff
tff(fact_7004_boolean__algebra__cancel_Osup2,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [B4: A,K: A,B2: A,A2: A] :
( ( B4 = aa(A,A,aa(A,fun(A,A),sup_sup(A),K),B2) )
=> ( aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B4) = aa(A,A,aa(A,fun(A,A),sup_sup(A),K),aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2)) ) ) ) ).
% boolean_algebra_cancel.sup2
tff(fact_7005_boolean__algebra__cancel_Osup1,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [A3: A,K: A,A2: A,B2: A] :
( ( A3 = aa(A,A,aa(A,fun(A,A),sup_sup(A),K),A2) )
=> ( aa(A,A,aa(A,fun(A,A),sup_sup(A),A3),B2) = aa(A,A,aa(A,fun(A,A),sup_sup(A),K),aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2)) ) ) ) ).
% boolean_algebra_cancel.sup1
tff(fact_7006_less__supI1,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [X2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2))) ) ) ).
% less_supI1
tff(fact_7007_less__supI2,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [X2: A,B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2))) ) ) ).
% less_supI2
tff(fact_7008_sup_Oabsorb3,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2))
=> ( aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2) = A2 ) ) ) ).
% sup.absorb3
tff(fact_7009_sup_Oabsorb4,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2) = B2 ) ) ) ).
% sup.absorb4
tff(fact_7010_sup_Ostrict__boundedE,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [B2: A,C2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(A,A,aa(A,fun(A,A),sup_sup(A),B2),C2)),A2))
=> ~ ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2))
=> ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),A2)) ) ) ) ).
% sup.strict_boundedE
tff(fact_7011_sup_Ostrict__order__iff,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2))
<=> ( ( A2 = aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2) )
& ( A2 != B2 ) ) ) ) ).
% sup.strict_order_iff
tff(fact_7012_sup_Ostrict__coboundedI1,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [C2: A,A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),A2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2))) ) ) ).
% sup.strict_coboundedI1
tff(fact_7013_sup_Ostrict__coboundedI2,axiom,
! [A: $tType] :
( semilattice_sup(A)
=> ! [C2: A,B2: A,A2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),B2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),C2),aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),B2))) ) ) ).
% sup.strict_coboundedI2
tff(fact_7014_boolean__algebra_Odisj__zero__right,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A] : ( aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),bot_bot(A)) = X2 ) ) ).
% boolean_algebra.disj_zero_right
tff(fact_7015_sup__cancel__left1,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A,A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),sup_sup(A),aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),A2)),aa(A,A,aa(A,fun(A,A),sup_sup(A),aa(A,A,uminus_uminus(A),X2)),B2)) = top_top(A) ) ) ).
% sup_cancel_left1
tff(fact_7016_sup__cancel__left2,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A,A2: A,B2: A] : ( aa(A,A,aa(A,fun(A,A),sup_sup(A),aa(A,A,aa(A,fun(A,A),sup_sup(A),aa(A,A,uminus_uminus(A),X2)),A2)),aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),B2)) = top_top(A) ) ) ).
% sup_cancel_left2
tff(fact_7017_sup__shunt,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A,Y: A] :
( ( aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),Y) = top_top(A) )
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,uminus_uminus(A),X2)),Y)) ) ) ).
% sup_shunt
tff(fact_7018_sup__neg__inf,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [P2: A,Q2: A,R: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),P2),aa(A,A,aa(A,fun(A,A),sup_sup(A),Q2),R)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),P2),aa(A,A,uminus_uminus(A),Q2))),R)) ) ) ).
% sup_neg_inf
tff(fact_7019_shunt2,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A,Y: A,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),aa(A,A,uminus_uminus(A),Y))),Z))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(A,A,aa(A,fun(A,A),sup_sup(A),Y),Z))) ) ) ).
% shunt2
tff(fact_7020_shunt1,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A,Y: A,Z: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),Y)),Z))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(A,A,aa(A,fun(A,A),sup_sup(A),aa(A,A,uminus_uminus(A),Y)),Z))) ) ) ).
% shunt1
tff(fact_7021_boolean__algebra_Ocomplement__unique,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [A2: A,X2: A,Y: A] :
( ( aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),X2) = bot_bot(A) )
=> ( ( aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),X2) = top_top(A) )
=> ( ( aa(A,A,aa(A,fun(A,A),inf_inf(A),A2),Y) = bot_bot(A) )
=> ( ( aa(A,A,aa(A,fun(A,A),sup_sup(A),A2),Y) = top_top(A) )
=> ( X2 = Y ) ) ) ) ) ) ).
% boolean_algebra.complement_unique
tff(fact_7022_less__eq__Inf__inter,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [A3: set(A),B4: set(A)] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,aa(A,fun(A,A),sup_sup(A),complete_Inf_Inf(A,A3)),complete_Inf_Inf(A,B4))),complete_Inf_Inf(A,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),B4)))) ) ).
% less_eq_Inf_inter
tff(fact_7023_ivl__disj__un__two_I7_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A,M: A,U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L),M))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),M),U))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),set_or7035219750837199246ssThan(A,L,M)),set_or1337092689740270186AtMost(A,M,U)) = set_or1337092689740270186AtMost(A,L,U) ) ) ) ) ).
% ivl_disj_un_two(7)
tff(fact_7024_ivl__disj__un__one_I2_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A,U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L),U))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),aa(A,set(A),set_ord_lessThan(A),L)),set_or7035219750837199246ssThan(A,L,U)) = aa(A,set(A),set_ord_lessThan(A),U) ) ) ) ).
% ivl_disj_un_one(2)
tff(fact_7025_card__Un__le,axiom,
! [A: $tType,A3: set(A),B4: set(A)] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),A3),B4))),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(set(A),nat,finite_card(A),A3)),aa(set(A),nat,finite_card(A),B4)))) ).
% card_Un_le
tff(fact_7026_ivl__disj__un__two_I8_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A,M: A,U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L),M))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),M),U))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),set_or1337092689740270186AtMost(A,L,M)),set_or3652927894154168847AtMost(A,M,U)) = set_or1337092689740270186AtMost(A,L,U) ) ) ) ) ).
% ivl_disj_un_two(8)
tff(fact_7027_ivl__disj__un__one_I3_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A,U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L),U))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),aa(A,set(A),set_ord_atMost(A),L)),set_or3652927894154168847AtMost(A,L,U)) = aa(A,set(A),set_ord_atMost(A),U) ) ) ) ).
% ivl_disj_un_one(3)
tff(fact_7028_shuffles_Osimps_I3_J,axiom,
! [A: $tType,X2: A,Xs: list(A),Y: A,Ys: list(A)] : ( shuffles(A,aa(list(A),list(A),cons(A,X2),Xs),aa(list(A),list(A),cons(A,Y),Ys)) = aa(set(list(A)),set(list(A)),aa(set(list(A)),fun(set(list(A)),set(list(A))),sup_sup(set(list(A))),aa(set(list(A)),set(list(A)),image(list(A),list(A),cons(A,X2)),shuffles(A,Xs,aa(list(A),list(A),cons(A,Y),Ys)))),aa(set(list(A)),set(list(A)),image(list(A),list(A),cons(A,Y)),shuffles(A,aa(list(A),list(A),cons(A,X2),Xs),Ys))) ) ).
% shuffles.simps(3)
tff(fact_7029_Inter__Un__subset,axiom,
! [A: $tType,A3: set(set(A)),B4: set(set(A))] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),complete_Inf_Inf(set(A),A3)),complete_Inf_Inf(set(A),B4))),complete_Inf_Inf(set(A),aa(set(set(A)),set(set(A)),aa(set(set(A)),fun(set(set(A)),set(set(A))),inf_inf(set(set(A))),A3),B4)))) ).
% Inter_Un_subset
tff(fact_7030_boolean__algebra__class_Oboolean__algebra_Ocompl__unique,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> ! [X2: A,Y: A] :
( ( aa(A,A,aa(A,fun(A,A),inf_inf(A),X2),Y) = bot_bot(A) )
=> ( ( aa(A,A,aa(A,fun(A,A),sup_sup(A),X2),Y) = top_top(A) )
=> ( aa(A,A,uminus_uminus(A),X2) = Y ) ) ) ) ).
% boolean_algebra_class.boolean_algebra.compl_unique
tff(fact_7031_ivl__disj__un__two__touch_I2_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A,M: A,U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L),M))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),M),U))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),set_or1337092689740270186AtMost(A,L,M)),set_or7035219750837199246ssThan(A,M,U)) = set_or7035219750837199246ssThan(A,L,U) ) ) ) ) ).
% ivl_disj_un_two_touch(2)
tff(fact_7032_sum_Ounion__inter,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [A3: set(B),B4: set(B),G: fun(B,A)] :
( finite_finite(B,A3)
=> ( finite_finite(B,B4)
=> ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),sup_sup(set(B)),A3),B4))),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),B4))) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),A3)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),B4)) ) ) ) ) ).
% sum.union_inter
tff(fact_7033_prod_Ounion__inter,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [A3: set(B),B4: set(B),G: fun(B,A)] :
( finite_finite(B,A3)
=> ( finite_finite(B,B4)
=> ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),sup_sup(set(B)),A3),B4))),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),B4))) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),A3)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),B4)) ) ) ) ) ).
% prod.union_inter
tff(fact_7034_card__Un__Int,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( finite_finite(A,A3)
=> ( finite_finite(A,B4)
=> ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(set(A),nat,finite_card(A),A3)),aa(set(A),nat,finite_card(A),B4)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),A3),B4))),aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),B4))) ) ) ) ).
% card_Un_Int
tff(fact_7035_ivl__disj__un__two__touch_I3_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A,M: A,U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),L),M))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),M),U))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),set_or3652927894154168847AtMost(A,L,M)),set_or1337092689740270186AtMost(A,M,U)) = set_or3652927894154168847AtMost(A,L,U) ) ) ) ) ).
% ivl_disj_un_two_touch(3)
tff(fact_7036_ivl__disj__un__two_I1_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A,M: A,U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),L),M))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),M),U))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),set_or5935395276787703475ssThan(A,L,M)),set_or7035219750837199246ssThan(A,M,U)) = set_or5935395276787703475ssThan(A,L,U) ) ) ) ) ).
% ivl_disj_un_two(1)
tff(fact_7037_ivl__disj__un__one_I4_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A,U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L),U))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),aa(A,set(A),set_ord_lessThan(A),L)),set_or1337092689740270186AtMost(A,L,U)) = aa(A,set(A),set_ord_atMost(A),U) ) ) ) ).
% ivl_disj_un_one(4)
tff(fact_7038_ivl__disj__un__singleton_I2_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [U: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),aa(A,set(A),set_ord_lessThan(A),U)),aa(set(A),set(A),insert(A,U),bot_bot(set(A)))) = aa(A,set(A),set_ord_atMost(A),U) ) ) ).
% ivl_disj_un_singleton(2)
tff(fact_7039_ivl__disj__un__two_I2_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A,M: A,U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L),M))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),M),U))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),set_or3652927894154168847AtMost(A,L,M)),set_or5935395276787703475ssThan(A,M,U)) = set_or5935395276787703475ssThan(A,L,U) ) ) ) ) ).
% ivl_disj_un_two(2)
tff(fact_7040_ivl__disj__un__one_I1_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A,U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),L),U))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),aa(A,set(A),set_ord_atMost(A),L)),set_or5935395276787703475ssThan(A,L,U)) = aa(A,set(A),set_ord_lessThan(A),U) ) ) ) ).
% ivl_disj_un_one(1)
tff(fact_7041_ivl__disj__un__two__touch_I1_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A,M: A,U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),L),M))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),M),U))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),set_or3652927894154168847AtMost(A,L,M)),set_or7035219750837199246ssThan(A,M,U)) = set_or5935395276787703475ssThan(A,L,U) ) ) ) ) ).
% ivl_disj_un_two_touch(1)
tff(fact_7042_SUP__nat__binary,axiom,
! [A: $tType] :
( counta3822494911875563373attice(A)
=> ! [A3: A,B4: A] : ( aa(A,A,aa(A,fun(A,A),sup_sup(A),A3),complete_Sup_Sup(A,aa(set(nat),set(A),image(nat,A,aTP_Lamp_rm(A,fun(nat,A),B4)),aa(fun(nat,bool),set(nat),collect(nat),aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)))))) = aa(A,A,aa(A,fun(A,A),sup_sup(A),A3),B4) ) ) ).
% SUP_nat_binary
tff(fact_7043_sup__bot_Osemilattice__neutr__order__axioms,axiom,
! [A: $tType] :
( bounde4967611905675639751up_bot(A)
=> semila1105856199041335345_order(A,sup_sup(A),bot_bot(A),aTP_Lamp_ss(A,fun(A,bool)),aTP_Lamp_st(A,fun(A,bool))) ) ).
% sup_bot.semilattice_neutr_order_axioms
tff(fact_7044_sum_Ounion__inter__neutral,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [A3: set(B),B4: set(B),G: fun(B,A)] :
( finite_finite(B,A3)
=> ( finite_finite(B,B4)
=> ( ! [X3: B] :
( pp(member(B,X3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),B4)))
=> ( aa(B,A,G,X3) = zero_zero(A) ) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),sup_sup(set(B)),A3),B4)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),A3)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),B4)) ) ) ) ) ) ).
% sum.union_inter_neutral
tff(fact_7045_sum__Un,axiom,
! [A: $tType,B: $tType] :
( ab_group_add(A)
=> ! [A3: set(B),B4: set(B),F2: fun(B,A)] :
( finite_finite(B,A3)
=> ( finite_finite(B,B4)
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),sup_sup(set(B)),A3),B4)) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),A3)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),B4))),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),F2),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),B4))) ) ) ) ) ).
% sum_Un
tff(fact_7046_sum_Ounion__disjoint,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [A3: set(B),B4: set(B),G: fun(B,A)] :
( finite_finite(B,A3)
=> ( finite_finite(B,B4)
=> ( ( aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),B4) = bot_bot(set(B)) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),sup_sup(set(B)),A3),B4)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),A3)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),B4)) ) ) ) ) ) ).
% sum.union_disjoint
tff(fact_7047_prod_Ounion__inter__neutral,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [A3: set(B),B4: set(B),G: fun(B,A)] :
( finite_finite(B,A3)
=> ( finite_finite(B,B4)
=> ( ! [X3: B] :
( pp(member(B,X3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),B4)))
=> ( aa(B,A,G,X3) = one_one(A) ) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),sup_sup(set(B)),A3),B4)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),A3)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),B4)) ) ) ) ) ) ).
% prod.union_inter_neutral
tff(fact_7048_boolean__algebra_Oabstract__boolean__algebra__axioms,axiom,
! [A: $tType] :
( boolea8198339166811842893lgebra(A)
=> boolea2506097494486148201lgebra(A,inf_inf(A),sup_sup(A),uminus_uminus(A),bot_bot(A),top_top(A)) ) ).
% boolean_algebra.abstract_boolean_algebra_axioms
tff(fact_7049_prod_Ounion__disjoint,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [A3: set(B),B4: set(B),G: fun(B,A)] :
( finite_finite(B,A3)
=> ( finite_finite(B,B4)
=> ( ( aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),B4) = bot_bot(set(B)) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),sup_sup(set(B)),A3),B4)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),A3)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),B4)) ) ) ) ) ) ).
% prod.union_disjoint
tff(fact_7050_sum_Ounion__diff2,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [A3: set(B),B4: set(B),G: fun(B,A)] :
( finite_finite(B,A3)
=> ( finite_finite(B,B4)
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),sup_sup(set(B)),A3),B4)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),A3),B4))),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),B4),A3)))),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),B4))) ) ) ) ) ).
% sum.union_diff2
tff(fact_7051_sum__Un2,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_add(B)
=> ! [A3: set(A),B4: set(A),F2: fun(A,B)] :
( finite_finite(A,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),A3),B4))
=> ( aa(set(A),B,aa(fun(A,B),fun(set(A),B),groups7311177749621191930dd_sum(A,B),F2),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),A3),B4)) = aa(B,B,aa(B,fun(B,B),plus_plus(B),aa(B,B,aa(B,fun(B,B),plus_plus(B),aa(set(A),B,aa(fun(A,B),fun(set(A),B),groups7311177749621191930dd_sum(A,B),F2),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),B4))),aa(set(A),B,aa(fun(A,B),fun(set(A),B),groups7311177749621191930dd_sum(A,B),F2),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),B4),A3)))),aa(set(A),B,aa(fun(A,B),fun(set(A),B),groups7311177749621191930dd_sum(A,B),F2),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),B4))) ) ) ) ).
% sum_Un2
tff(fact_7052_ivl__disj__un__singleton_I6_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A,U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L),U))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),set_or7035219750837199246ssThan(A,L,U)),aa(set(A),set(A),insert(A,U),bot_bot(set(A)))) = set_or1337092689740270186AtMost(A,L,U) ) ) ) ).
% ivl_disj_un_singleton(6)
tff(fact_7053_prod_Ounion__diff2,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [A3: set(B),B4: set(B),G: fun(B,A)] :
( finite_finite(B,A3)
=> ( finite_finite(B,B4)
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),sup_sup(set(B)),A3),B4)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),A3),B4))),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),B4),A3)))),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),G),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),B4))) ) ) ) ) ).
% prod.union_diff2
tff(fact_7054_card__Un__disjoint,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( finite_finite(A,A3)
=> ( finite_finite(A,B4)
=> ( ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),B4) = bot_bot(set(A)) )
=> ( aa(set(A),nat,finite_card(A),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),A3),B4)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(set(A),nat,finite_card(A),A3)),aa(set(A),nat,finite_card(A),B4)) ) ) ) ) ).
% card_Un_disjoint
tff(fact_7055_ivl__disj__un__singleton_I5_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A,U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L),U))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),aa(set(A),set(A),insert(A,L),bot_bot(set(A)))),set_or3652927894154168847AtMost(A,L,U)) = set_or1337092689740270186AtMost(A,L,U) ) ) ) ).
% ivl_disj_un_singleton(5)
tff(fact_7056_ivl__disj__un__two_I4_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A,M: A,U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L),M))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),M),U))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),set_or1337092689740270186AtMost(A,L,M)),set_or5935395276787703475ssThan(A,M,U)) = set_or7035219750837199246ssThan(A,L,U) ) ) ) ) ).
% ivl_disj_un_two(4)
tff(fact_7057_ivl__disj__un__singleton_I3_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A,U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),L),U))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),aa(set(A),set(A),insert(A,L),bot_bot(set(A)))),set_or5935395276787703475ssThan(A,L,U)) = set_or7035219750837199246ssThan(A,L,U) ) ) ) ).
% ivl_disj_un_singleton(3)
tff(fact_7058_sum__Un__nat,axiom,
! [A: $tType,A3: set(A),B4: set(A),F2: fun(A,nat)] :
( finite_finite(A,A3)
=> ( finite_finite(A,B4)
=> ( aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),F2),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),A3),B4)) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),F2),A3)),aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),F2),B4))),aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),F2),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),A3),B4))) ) ) ) ).
% sum_Un_nat
tff(fact_7059_ivl__disj__un__two_I5_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A,M: A,U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),L),M))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),M),U))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),set_or5935395276787703475ssThan(A,L,M)),set_or1337092689740270186AtMost(A,M,U)) = set_or3652927894154168847AtMost(A,L,U) ) ) ) ) ).
% ivl_disj_un_two(5)
tff(fact_7060_ivl__disj__un__singleton_I4_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A,U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),L),U))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),set_or5935395276787703475ssThan(A,L,U)),aa(set(A),set(A),insert(A,U),bot_bot(set(A)))) = set_or3652927894154168847AtMost(A,L,U) ) ) ) ).
% ivl_disj_un_singleton(4)
tff(fact_7061_prod__Un,axiom,
! [A: $tType,B: $tType] :
( field(A)
=> ! [A3: set(B),B4: set(B),F2: fun(B,A)] :
( finite_finite(B,A3)
=> ( finite_finite(B,B4)
=> ( ! [X3: B] :
( pp(member(B,X3,aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),B4)))
=> ( aa(B,A,F2,X3) != zero_zero(A) ) )
=> ( aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),F2),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),sup_sup(set(B)),A3),B4)) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),F2),A3)),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),F2),B4))),aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),F2),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),inf_inf(set(B)),A3),B4))) ) ) ) ) ) ).
% prod_Un
tff(fact_7062_UN__le__eq__Un0,axiom,
! [A: $tType,M7: fun(nat,set(A)),N: nat] : ( complete_Sup_Sup(set(A),aa(set(nat),set(set(A)),image(nat,set(A),M7),aa(nat,set(nat),set_ord_atMost(nat),N))) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),complete_Sup_Sup(set(A),aa(set(nat),set(set(A)),image(nat,set(A),M7),set_or1337092689740270186AtMost(nat,one_one(nat),N)))),aa(nat,set(A),M7,zero_zero(nat))) ) ).
% UN_le_eq_Un0
tff(fact_7063_shuffles_Oelims,axiom,
! [A: $tType,X2: list(A),Xa: list(A),Y: set(list(A))] :
( ( shuffles(A,X2,Xa) = Y )
=> ( ( ( X2 = nil(A) )
=> ( Y != aa(set(list(A)),set(list(A)),insert(list(A),Xa),bot_bot(set(list(A)))) ) )
=> ( ( ( Xa = nil(A) )
=> ( Y != aa(set(list(A)),set(list(A)),insert(list(A),X2),bot_bot(set(list(A)))) ) )
=> ~ ! [X3: A,Xs2: list(A)] :
( ( X2 = aa(list(A),list(A),cons(A,X3),Xs2) )
=> ! [Y3: A,Ys3: list(A)] :
( ( Xa = aa(list(A),list(A),cons(A,Y3),Ys3) )
=> ( Y != aa(set(list(A)),set(list(A)),aa(set(list(A)),fun(set(list(A)),set(list(A))),sup_sup(set(list(A))),aa(set(list(A)),set(list(A)),image(list(A),list(A),cons(A,X3)),shuffles(A,Xs2,aa(list(A),list(A),cons(A,Y3),Ys3)))),aa(set(list(A)),set(list(A)),image(list(A),list(A),cons(A,Y3)),shuffles(A,aa(list(A),list(A),cons(A,X3),Xs2),Ys3))) ) ) ) ) ) ) ).
% shuffles.elims
tff(fact_7064_shuffles_Opsimps_I3_J,axiom,
! [A: $tType,X2: A,Xs: list(A),Y: A,Ys: list(A)] :
( pp(aa(product_prod(list(A),list(A)),bool,accp(product_prod(list(A),list(A)),shuffles_rel(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),aa(list(A),list(A),cons(A,X2),Xs)),aa(list(A),list(A),cons(A,Y),Ys))))
=> ( shuffles(A,aa(list(A),list(A),cons(A,X2),Xs),aa(list(A),list(A),cons(A,Y),Ys)) = aa(set(list(A)),set(list(A)),aa(set(list(A)),fun(set(list(A)),set(list(A))),sup_sup(set(list(A))),aa(set(list(A)),set(list(A)),image(list(A),list(A),cons(A,X2)),shuffles(A,Xs,aa(list(A),list(A),cons(A,Y),Ys)))),aa(set(list(A)),set(list(A)),image(list(A),list(A),cons(A,Y)),shuffles(A,aa(list(A),list(A),cons(A,X2),Xs),Ys))) ) ) ).
% shuffles.psimps(3)
tff(fact_7065_concat__inth,axiom,
! [A: $tType,Xs: list(A),X2: A,Ys: list(A)] : ( aa(nat,A,nth(A,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),aa(list(A),list(A),cons(A,X2),nil(A))),Ys))),aa(list(A),nat,size_size(list(A)),Xs)) = X2 ) ).
% concat_inth
tff(fact_7066_these__insert__Some,axiom,
! [A: $tType,X2: A,A3: set(option(A))] : ( these(A,aa(set(option(A)),set(option(A)),insert(option(A),aa(A,option(A),some(A),X2)),A3)) = aa(set(A),set(A),insert(A,X2),these(A,A3)) ) ).
% these_insert_Some
tff(fact_7067_append_Oassoc,axiom,
! [A: $tType,A2: list(A),B2: list(A),C2: list(A)] : ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),A2),B2)),C2) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),A2),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),B2),C2)) ) ).
% append.assoc
tff(fact_7068_append__assoc,axiom,
! [A: $tType,Xs: list(A),Ys: list(A),Zs: list(A)] : ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)),Zs) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys),Zs)) ) ).
% append_assoc
tff(fact_7069_append__same__eq,axiom,
! [A: $tType,Ys: list(A),Xs: list(A),Zs: list(A)] :
( ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys),Xs) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Zs),Xs) )
<=> ( Ys = Zs ) ) ).
% append_same_eq
tff(fact_7070_same__append__eq,axiom,
! [A: $tType,Xs: list(A),Ys: list(A),Zs: list(A)] :
( ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Zs) )
<=> ( Ys = Zs ) ) ).
% same_append_eq
tff(fact_7071_append_Oright__neutral,axiom,
! [A: $tType,A2: list(A)] : ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),A2),nil(A)) = A2 ) ).
% append.right_neutral
tff(fact_7072_append__Nil2,axiom,
! [A: $tType,Xs: list(A)] : ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),nil(A)) = Xs ) ).
% append_Nil2
tff(fact_7073_append__self__conv,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] :
( ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys) = Xs )
<=> ( Ys = nil(A) ) ) ).
% append_self_conv
tff(fact_7074_self__append__conv,axiom,
! [A: $tType,Y: list(A),Ys: list(A)] :
( ( Y = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Y),Ys) )
<=> ( Ys = nil(A) ) ) ).
% self_append_conv
tff(fact_7075_append__self__conv2,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] :
( ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys) = Ys )
<=> ( Xs = nil(A) ) ) ).
% append_self_conv2
tff(fact_7076_self__append__conv2,axiom,
! [A: $tType,Y: list(A),Xs: list(A)] :
( ( Y = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Y) )
<=> ( Xs = nil(A) ) ) ).
% self_append_conv2
tff(fact_7077_Nil__is__append__conv,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] :
( ( nil(A) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys) )
<=> ( ( Xs = nil(A) )
& ( Ys = nil(A) ) ) ) ).
% Nil_is_append_conv
tff(fact_7078_append__is__Nil__conv,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] :
( ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys) = nil(A) )
<=> ( ( Xs = nil(A) )
& ( Ys = nil(A) ) ) ) ).
% append_is_Nil_conv
tff(fact_7079_append__eq__append__conv,axiom,
! [A: $tType,Xs: list(A),Ys: list(A),Us: list(A),Vs: list(A)] :
( ( ( aa(list(A),nat,size_size(list(A)),Xs) = aa(list(A),nat,size_size(list(A)),Ys) )
| ( aa(list(A),nat,size_size(list(A)),Us) = aa(list(A),nat,size_size(list(A)),Vs) ) )
=> ( ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Us) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys),Vs) )
<=> ( ( Xs = Ys )
& ( Us = Vs ) ) ) ) ).
% append_eq_append_conv
tff(fact_7080_map__append,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),Xs: list(B),Ys: list(B)] : ( aa(list(B),list(A),map(B,A,F2),aa(list(B),list(B),aa(list(B),fun(list(B),list(B)),append(B),Xs),Ys)) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),aa(list(B),list(A),map(B,A,F2),Xs)),aa(list(B),list(A),map(B,A,F2),Ys)) ) ).
% map_append
tff(fact_7081_filter__append,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A),Ys: list(A)] : ( aa(list(A),list(A),filter2(A,P),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),aa(list(A),list(A),filter2(A,P),Xs)),aa(list(A),list(A),filter2(A,P),Ys)) ) ).
% filter_append
tff(fact_7082_rev__append,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] : ( aa(list(A),list(A),rev(A),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),aa(list(A),list(A),rev(A),Ys)),aa(list(A),list(A),rev(A),Xs)) ) ).
% rev_append
tff(fact_7083_concat__append,axiom,
! [A: $tType,Xs: list(list(A)),Ys: list(list(A))] : ( concat(A,aa(list(list(A)),list(list(A)),aa(list(list(A)),fun(list(list(A)),list(list(A))),append(list(A)),Xs),Ys)) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),concat(A,Xs)),concat(A,Ys)) ) ).
% concat_append
tff(fact_7084_foldr__append,axiom,
! [B: $tType,A: $tType,F2: fun(B,fun(A,A)),Xs: list(B),Ys: list(B),A2: A] : ( aa(A,A,foldr(B,A,F2,aa(list(B),list(B),aa(list(B),fun(list(B),list(B)),append(B),Xs),Ys)),A2) = aa(A,A,foldr(B,A,F2,Xs),aa(A,A,foldr(B,A,F2,Ys),A2)) ) ).
% foldr_append
tff(fact_7085_removeAll__append,axiom,
! [A: $tType,X2: A,Xs: list(A),Ys: list(A)] : ( aa(list(A),list(A),removeAll(A,X2),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),aa(list(A),list(A),removeAll(A,X2),Xs)),aa(list(A),list(A),removeAll(A,X2),Ys)) ) ).
% removeAll_append
tff(fact_7086_these__empty,axiom,
! [A: $tType] : ( these(A,bot_bot(set(option(A)))) = bot_bot(set(A)) ) ).
% these_empty
tff(fact_7087_append1__eq__conv,axiom,
! [A: $tType,Xs: list(A),X2: A,Ys: list(A),Y: A] :
( ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),aa(list(A),list(A),cons(A,X2),nil(A))) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys),aa(list(A),list(A),cons(A,Y),nil(A))) )
<=> ( ( Xs = Ys )
& ( X2 = Y ) ) ) ).
% append1_eq_conv
tff(fact_7088_length__append,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] : ( aa(list(A),nat,size_size(list(A)),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(list(A),nat,size_size(list(A)),Xs)),aa(list(A),nat,size_size(list(A)),Ys)) ) ).
% length_append
tff(fact_7089_set__append,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] : ( aa(list(A),set(A),set2(A),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),aa(list(A),set(A),set2(A),Xs)),aa(list(A),set(A),set2(A),Ys)) ) ).
% set_append
tff(fact_7090_sum__list__append,axiom,
! [A: $tType] :
( monoid_add(A)
=> ! [Xs: list(A),Ys: list(A)] : ( groups8242544230860333062m_list(A,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),groups8242544230860333062m_list(A,Xs)),groups8242544230860333062m_list(A,Ys)) ) ) ).
% sum_list_append
tff(fact_7091_zip__append,axiom,
! [A: $tType,B: $tType,Xs: list(A),Us: list(B),Ys: list(A),Vs: list(B)] :
( ( aa(list(A),nat,size_size(list(A)),Xs) = aa(list(B),nat,size_size(list(B)),Us) )
=> ( zip(A,B,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys),aa(list(B),list(B),aa(list(B),fun(list(B),list(B)),append(B),Us),Vs)) = aa(list(product_prod(A,B)),list(product_prod(A,B)),aa(list(product_prod(A,B)),fun(list(product_prod(A,B)),list(product_prod(A,B))),append(product_prod(A,B)),zip(A,B,Xs,Us)),zip(A,B,Ys,Vs)) ) ) ).
% zip_append
tff(fact_7092_hd__append2,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] :
( ( Xs != nil(A) )
=> ( aa(list(A),A,hd(A),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)) = aa(list(A),A,hd(A),Xs) ) ) ).
% hd_append2
tff(fact_7093_tl__append2,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] :
( ( Xs != nil(A) )
=> ( aa(list(A),list(A),tl(A),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),aa(list(A),list(A),tl(A),Xs)),Ys) ) ) ).
% tl_append2
tff(fact_7094_takeWhile__append1,axiom,
! [A: $tType,X2: A,Xs: list(A),P: fun(A,bool),Ys: list(A)] :
( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ( ~ pp(aa(A,bool,P,X2))
=> ( takeWhile(A,P,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)) = takeWhile(A,P,Xs) ) ) ) ).
% takeWhile_append1
tff(fact_7095_takeWhile__append2,axiom,
! [A: $tType,Xs: list(A),P: fun(A,bool),Ys: list(A)] :
( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),Xs)))
=> pp(aa(A,bool,P,X3)) )
=> ( takeWhile(A,P,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),takeWhile(A,P,Ys)) ) ) ).
% takeWhile_append2
tff(fact_7096_fun__upds__append__drop,axiom,
! [A: $tType,B: $tType,Xs: list(A),Ys: list(B),M: fun(A,option(B)),Zs: list(A)] :
( ( aa(list(A),nat,size_size(list(A)),Xs) = aa(list(B),nat,size_size(list(B)),Ys) )
=> ( map_upds(A,B,M,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Zs),Ys) = map_upds(A,B,M,Xs,Ys) ) ) ).
% fun_upds_append_drop
tff(fact_7097_fun__upds__append2__drop,axiom,
! [A: $tType,B: $tType,Xs: list(A),Ys: list(B),M: fun(A,option(B)),Zs: list(B)] :
( ( aa(list(A),nat,size_size(list(A)),Xs) = aa(list(B),nat,size_size(list(B)),Ys) )
=> ( map_upds(A,B,M,Xs,aa(list(B),list(B),aa(list(B),fun(list(B),list(B)),append(B),Ys),Zs)) = map_upds(A,B,M,Xs,Ys) ) ) ).
% fun_upds_append2_drop
tff(fact_7098_size__list__append,axiom,
! [A: $tType,F2: fun(A,nat),Xs: list(A),Ys: list(A)] : ( aa(list(A),nat,size_list(A,F2),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(list(A),nat,size_list(A,F2),Xs)),aa(list(A),nat,size_list(A,F2),Ys)) ) ).
% size_list_append
tff(fact_7099_these__image__Some__eq,axiom,
! [A: $tType,A3: set(A)] : ( these(A,aa(set(A),set(option(A)),image(A,option(A),some(A)),A3)) = A3 ) ).
% these_image_Some_eq
tff(fact_7100_these__insert__None,axiom,
! [A: $tType,A3: set(option(A))] : ( these(A,aa(set(option(A)),set(option(A)),insert(option(A),none(A)),A3)) = these(A,A3) ) ).
% these_insert_None
tff(fact_7101_nth__append__length,axiom,
! [A: $tType,Xs: list(A),X2: A,Ys: list(A)] : ( aa(nat,A,nth(A,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),aa(list(A),list(A),cons(A,X2),Ys))),aa(list(A),nat,size_size(list(A)),Xs)) = X2 ) ).
% nth_append_length
tff(fact_7102_nth__append__length__plus,axiom,
! [A: $tType,Xs: list(A),Ys: list(A),N: nat] : ( aa(nat,A,nth(A,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(list(A),nat,size_size(list(A)),Xs)),N)) = aa(nat,A,nth(A,Ys),N) ) ).
% nth_append_length_plus
tff(fact_7103_rev__eq__Cons__iff,axiom,
! [A: $tType,Xs: list(A),Y: A,Ys: list(A)] :
( ( aa(list(A),list(A),rev(A),Xs) = aa(list(A),list(A),cons(A,Y),Ys) )
<=> ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),aa(list(A),list(A),rev(A),Ys)),aa(list(A),list(A),cons(A,Y),nil(A))) ) ) ).
% rev_eq_Cons_iff
tff(fact_7104_list__update__length,axiom,
! [A: $tType,Xs: list(A),X2: A,Ys: list(A),Y: A] : ( list_update(A,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),aa(list(A),list(A),cons(A,X2),Ys)),aa(list(A),nat,size_size(list(A)),Xs),Y) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),aa(list(A),list(A),cons(A,Y),Ys)) ) ).
% list_update_length
tff(fact_7105_distinct__append,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] :
( distinct(A,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys))
<=> ( distinct(A,Xs)
& distinct(A,Ys)
& ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(list(A),set(A),set2(A),Xs)),aa(list(A),set(A),set2(A),Ys)) = bot_bot(set(A)) ) ) ) ).
% distinct_append
tff(fact_7106_sorted__list__of__set__lessThan__Suc,axiom,
! [K: nat] : ( aa(set(nat),list(nat),linord4507533701916653071of_set(nat),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,suc,K))) = aa(list(nat),list(nat),aa(list(nat),fun(list(nat),list(nat)),append(nat),aa(set(nat),list(nat),linord4507533701916653071of_set(nat),aa(nat,set(nat),set_ord_lessThan(nat),K))),aa(list(nat),list(nat),cons(nat,K),nil(nat))) ) ).
% sorted_list_of_set_lessThan_Suc
tff(fact_7107_sorted__list__of__set__atMost__Suc,axiom,
! [K: nat] : ( aa(set(nat),list(nat),linord4507533701916653071of_set(nat),aa(nat,set(nat),set_ord_atMost(nat),aa(nat,nat,suc,K))) = aa(list(nat),list(nat),aa(list(nat),fun(list(nat),list(nat)),append(nat),aa(set(nat),list(nat),linord4507533701916653071of_set(nat),aa(nat,set(nat),set_ord_atMost(nat),K))),aa(list(nat),list(nat),cons(nat,aa(nat,nat,suc,K)),nil(nat))) ) ).
% sorted_list_of_set_atMost_Suc
tff(fact_7108_sup__Un__eq2,axiom,
! [B: $tType,A: $tType,R2: set(product_prod(A,B)),S: set(product_prod(A,B)),X: A,Xa2: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),aa(fun(A,fun(B,bool)),fun(A,fun(B,bool)),aa(fun(A,fun(B,bool)),fun(fun(A,fun(B,bool)),fun(A,fun(B,bool))),sup_sup(fun(A,fun(B,bool))),aa(set(product_prod(A,B)),fun(A,fun(B,bool)),aTP_Lamp_jb(set(product_prod(A,B)),fun(A,fun(B,bool))),R2)),aa(set(product_prod(A,B)),fun(A,fun(B,bool)),aTP_Lamp_jb(set(product_prod(A,B)),fun(A,fun(B,bool))),S)),X),Xa2))
<=> pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X),Xa2),aa(set(product_prod(A,B)),set(product_prod(A,B)),aa(set(product_prod(A,B)),fun(set(product_prod(A,B)),set(product_prod(A,B))),sup_sup(set(product_prod(A,B))),R2),S))) ) ).
% sup_Un_eq2
tff(fact_7109_sup__nat__def,axiom,
sup_sup(nat) = ord_max(nat) ).
% sup_nat_def
tff(fact_7110_sup__enat__def,axiom,
sup_sup(extended_enat) = ord_max(extended_enat) ).
% sup_enat_def
tff(fact_7111_takeWhile__tail,axiom,
! [A: $tType,P: fun(A,bool),X2: A,Xs: list(A),L: list(A)] :
( ~ pp(aa(A,bool,P,X2))
=> ( takeWhile(A,P,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),aa(list(A),list(A),cons(A,X2),L))) = takeWhile(A,P,Xs) ) ) ).
% takeWhile_tail
tff(fact_7112_rev__induct,axiom,
! [A: $tType,P: fun(list(A),bool),Xs: list(A)] :
( pp(aa(list(A),bool,P,nil(A)))
=> ( ! [X3: A,Xs2: list(A)] :
( pp(aa(list(A),bool,P,Xs2))
=> pp(aa(list(A),bool,P,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs2),aa(list(A),list(A),cons(A,X3),nil(A))))) )
=> pp(aa(list(A),bool,P,Xs)) ) ) ).
% rev_induct
tff(fact_7113_rev__exhaust,axiom,
! [A: $tType,Xs: list(A)] :
( ( Xs != nil(A) )
=> ~ ! [Ys3: list(A),Y3: A] : ( Xs != aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys3),aa(list(A),list(A),cons(A,Y3),nil(A))) ) ) ).
% rev_exhaust
tff(fact_7114_Cons__eq__append__conv,axiom,
! [A: $tType,X2: A,Xs: list(A),Ys: list(A),Zs: list(A)] :
( ( aa(list(A),list(A),cons(A,X2),Xs) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys),Zs) )
<=> ( ( ( Ys = nil(A) )
& ( aa(list(A),list(A),cons(A,X2),Xs) = Zs ) )
| ? [Ys6: list(A)] :
( ( aa(list(A),list(A),cons(A,X2),Ys6) = Ys )
& ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys6),Zs) ) ) ) ) ).
% Cons_eq_append_conv
tff(fact_7115_append__eq__Cons__conv,axiom,
! [A: $tType,Ys: list(A),Zs: list(A),X2: A,Xs: list(A)] :
( ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys),Zs) = aa(list(A),list(A),cons(A,X2),Xs) )
<=> ( ( ( Ys = nil(A) )
& ( Zs = aa(list(A),list(A),cons(A,X2),Xs) ) )
| ? [Ys6: list(A)] :
( ( Ys = aa(list(A),list(A),cons(A,X2),Ys6) )
& ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys6),Zs) = Xs ) ) ) ) ).
% append_eq_Cons_conv
tff(fact_7116_rev__nonempty__induct,axiom,
! [A: $tType,Xs: list(A),P: fun(list(A),bool)] :
( ( Xs != nil(A) )
=> ( ! [X3: A] : pp(aa(list(A),bool,P,aa(list(A),list(A),cons(A,X3),nil(A))))
=> ( ! [X3: A,Xs2: list(A)] :
( ( Xs2 != nil(A) )
=> ( pp(aa(list(A),bool,P,Xs2))
=> pp(aa(list(A),bool,P,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs2),aa(list(A),list(A),cons(A,X3),nil(A))))) ) )
=> pp(aa(list(A),bool,P,Xs)) ) ) ) ).
% rev_nonempty_induct
tff(fact_7117_concat__eq__appendD,axiom,
! [A: $tType,Xss: list(list(A)),Ys: list(A),Zs: list(A)] :
( ( concat(A,Xss) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys),Zs) )
=> ( ( Xss != nil(list(A)) )
=> ? [Xss1: list(list(A)),Xs2: list(A),Xs4: list(A),Xss22: list(list(A))] :
( ( Xss = aa(list(list(A)),list(list(A)),aa(list(list(A)),fun(list(list(A)),list(list(A))),append(list(A)),Xss1),aa(list(list(A)),list(list(A)),cons(list(A),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs2),Xs4)),Xss22)) )
& ( Ys = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),concat(A,Xss1)),Xs2) )
& ( Zs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs4),concat(A,Xss22)) ) ) ) ) ).
% concat_eq_appendD
tff(fact_7118_concat__eq__append__conv,axiom,
! [A: $tType,Xss: list(list(A)),Ys: list(A),Zs: list(A)] :
( ( concat(A,Xss) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys),Zs) )
<=> ( ( ( Xss = nil(list(A)) )
=> ( ( Ys = nil(A) )
& ( Zs = nil(A) ) ) )
& ( ( Xss != nil(list(A)) )
=> ? [Xss12: list(list(A)),Xs3: list(A),Xs5: list(A),Xss23: list(list(A))] :
( ( Xss = aa(list(list(A)),list(list(A)),aa(list(list(A)),fun(list(list(A)),list(list(A))),append(list(A)),Xss12),aa(list(list(A)),list(list(A)),cons(list(A),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs3),Xs5)),Xss23)) )
& ( Ys = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),concat(A,Xss12)),Xs3) )
& ( Zs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs5),concat(A,Xss23)) ) ) ) ) ) ).
% concat_eq_append_conv
tff(fact_7119_split__list,axiom,
! [A: $tType,X2: A,Xs: list(A)] :
( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ? [Ys3: list(A),Zs2: list(A)] : ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys3),aa(list(A),list(A),cons(A,X2),Zs2)) ) ) ).
% split_list
tff(fact_7120_split__list__last,axiom,
! [A: $tType,X2: A,Xs: list(A)] :
( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ? [Ys3: list(A),Zs2: list(A)] :
( ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys3),aa(list(A),list(A),cons(A,X2),Zs2)) )
& ~ pp(member(A,X2,aa(list(A),set(A),set2(A),Zs2))) ) ) ).
% split_list_last
tff(fact_7121_split__list__prop,axiom,
! [A: $tType,Xs: list(A),P: fun(A,bool)] :
( ? [X: A] :
( pp(member(A,X,aa(list(A),set(A),set2(A),Xs)))
& pp(aa(A,bool,P,X)) )
=> ? [Ys3: list(A),X3: A] :
( ? [Zs2: list(A)] : ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys3),aa(list(A),list(A),cons(A,X3),Zs2)) )
& pp(aa(A,bool,P,X3)) ) ) ).
% split_list_prop
tff(fact_7122_split__list__first,axiom,
! [A: $tType,X2: A,Xs: list(A)] :
( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ? [Ys3: list(A),Zs2: list(A)] :
( ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys3),aa(list(A),list(A),cons(A,X2),Zs2)) )
& ~ pp(member(A,X2,aa(list(A),set(A),set2(A),Ys3))) ) ) ).
% split_list_first
tff(fact_7123_split__list__propE,axiom,
! [A: $tType,Xs: list(A),P: fun(A,bool)] :
( ? [X: A] :
( pp(member(A,X,aa(list(A),set(A),set2(A),Xs)))
& pp(aa(A,bool,P,X)) )
=> ~ ! [Ys3: list(A),X3: A] :
( ? [Zs2: list(A)] : ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys3),aa(list(A),list(A),cons(A,X3),Zs2)) )
=> ~ pp(aa(A,bool,P,X3)) ) ) ).
% split_list_propE
tff(fact_7124_append__Cons__eq__iff,axiom,
! [A: $tType,X2: A,Xs: list(A),Ys: list(A),Xs6: list(A),Ys7: list(A)] :
( ~ pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ( ~ pp(member(A,X2,aa(list(A),set(A),set2(A),Ys)))
=> ( ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),aa(list(A),list(A),cons(A,X2),Ys)) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs6),aa(list(A),list(A),cons(A,X2),Ys7)) )
<=> ( ( Xs = Xs6 )
& ( Ys = Ys7 ) ) ) ) ) ).
% append_Cons_eq_iff
tff(fact_7125_in__set__conv__decomp,axiom,
! [A: $tType,X2: A,Xs: list(A)] :
( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
<=> ? [Ys4: list(A),Zs3: list(A)] : ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys4),aa(list(A),list(A),cons(A,X2),Zs3)) ) ) ).
% in_set_conv_decomp
tff(fact_7126_split__list__last__prop,axiom,
! [A: $tType,Xs: list(A),P: fun(A,bool)] :
( ? [X: A] :
( pp(member(A,X,aa(list(A),set(A),set2(A),Xs)))
& pp(aa(A,bool,P,X)) )
=> ? [Ys3: list(A),X3: A,Zs2: list(A)] :
( ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys3),aa(list(A),list(A),cons(A,X3),Zs2)) )
& pp(aa(A,bool,P,X3))
& ! [Xa2: A] :
( pp(member(A,Xa2,aa(list(A),set(A),set2(A),Zs2)))
=> ~ pp(aa(A,bool,P,Xa2)) ) ) ) ).
% split_list_last_prop
tff(fact_7127_split__list__first__prop,axiom,
! [A: $tType,Xs: list(A),P: fun(A,bool)] :
( ? [X: A] :
( pp(member(A,X,aa(list(A),set(A),set2(A),Xs)))
& pp(aa(A,bool,P,X)) )
=> ? [Ys3: list(A),X3: A] :
( ? [Zs2: list(A)] : ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys3),aa(list(A),list(A),cons(A,X3),Zs2)) )
& pp(aa(A,bool,P,X3))
& ! [Xa2: A] :
( pp(member(A,Xa2,aa(list(A),set(A),set2(A),Ys3)))
=> ~ pp(aa(A,bool,P,Xa2)) ) ) ) ).
% split_list_first_prop
tff(fact_7128_split__list__last__propE,axiom,
! [A: $tType,Xs: list(A),P: fun(A,bool)] :
( ? [X: A] :
( pp(member(A,X,aa(list(A),set(A),set2(A),Xs)))
& pp(aa(A,bool,P,X)) )
=> ~ ! [Ys3: list(A),X3: A,Zs2: list(A)] :
( ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys3),aa(list(A),list(A),cons(A,X3),Zs2)) )
=> ( pp(aa(A,bool,P,X3))
=> ~ ! [Xa2: A] :
( pp(member(A,Xa2,aa(list(A),set(A),set2(A),Zs2)))
=> ~ pp(aa(A,bool,P,Xa2)) ) ) ) ) ).
% split_list_last_propE
tff(fact_7129_split__list__first__propE,axiom,
! [A: $tType,Xs: list(A),P: fun(A,bool)] :
( ? [X: A] :
( pp(member(A,X,aa(list(A),set(A),set2(A),Xs)))
& pp(aa(A,bool,P,X)) )
=> ~ ! [Ys3: list(A),X3: A] :
( ? [Zs2: list(A)] : ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys3),aa(list(A),list(A),cons(A,X3),Zs2)) )
=> ( pp(aa(A,bool,P,X3))
=> ~ ! [Xa2: A] :
( pp(member(A,Xa2,aa(list(A),set(A),set2(A),Ys3)))
=> ~ pp(aa(A,bool,P,Xa2)) ) ) ) ) ).
% split_list_first_propE
tff(fact_7130_in__set__conv__decomp__last,axiom,
! [A: $tType,X2: A,Xs: list(A)] :
( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
<=> ? [Ys4: list(A),Zs3: list(A)] :
( ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys4),aa(list(A),list(A),cons(A,X2),Zs3)) )
& ~ pp(member(A,X2,aa(list(A),set(A),set2(A),Zs3))) ) ) ).
% in_set_conv_decomp_last
tff(fact_7131_in__set__conv__decomp__first,axiom,
! [A: $tType,X2: A,Xs: list(A)] :
( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
<=> ? [Ys4: list(A),Zs3: list(A)] :
( ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys4),aa(list(A),list(A),cons(A,X2),Zs3)) )
& ~ pp(member(A,X2,aa(list(A),set(A),set2(A),Ys4))) ) ) ).
% in_set_conv_decomp_first
tff(fact_7132_split__list__last__prop__iff,axiom,
! [A: $tType,Xs: list(A),P: fun(A,bool)] :
( ? [X4: A] :
( pp(member(A,X4,aa(list(A),set(A),set2(A),Xs)))
& pp(aa(A,bool,P,X4)) )
<=> ? [Ys4: list(A),X4: A,Zs3: list(A)] :
( ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys4),aa(list(A),list(A),cons(A,X4),Zs3)) )
& pp(aa(A,bool,P,X4))
& ! [Xa3: A] :
( pp(member(A,Xa3,aa(list(A),set(A),set2(A),Zs3)))
=> ~ pp(aa(A,bool,P,Xa3)) ) ) ) ).
% split_list_last_prop_iff
tff(fact_7133_split__list__first__prop__iff,axiom,
! [A: $tType,Xs: list(A),P: fun(A,bool)] :
( ? [X4: A] :
( pp(member(A,X4,aa(list(A),set(A),set2(A),Xs)))
& pp(aa(A,bool,P,X4)) )
<=> ? [Ys4: list(A),X4: A] :
( ? [Zs3: list(A)] : ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys4),aa(list(A),list(A),cons(A,X4),Zs3)) )
& pp(aa(A,bool,P,X4))
& ! [Xa3: A] :
( pp(member(A,Xa3,aa(list(A),set(A),set2(A),Ys4)))
=> ~ pp(aa(A,bool,P,Xa3)) ) ) ) ).
% split_list_first_prop_iff
tff(fact_7134_concat_Osimps_I2_J,axiom,
! [A: $tType,X2: list(A),Xs: list(list(A))] : ( concat(A,aa(list(list(A)),list(list(A)),cons(list(A),X2),Xs)) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),X2),concat(A,Xs)) ) ).
% concat.simps(2)
tff(fact_7135_Cons__eq__appendI,axiom,
! [A: $tType,X2: A,Xs1: list(A),Ys: list(A),Xs: list(A),Zs: list(A)] :
( ( aa(list(A),list(A),cons(A,X2),Xs1) = Ys )
=> ( ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs1),Zs) )
=> ( aa(list(A),list(A),cons(A,X2),Xs) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys),Zs) ) ) ) ).
% Cons_eq_appendI
tff(fact_7136_append__Cons,axiom,
! [A: $tType,X2: A,Xs: list(A),Ys: list(A)] : ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),aa(list(A),list(A),cons(A,X2),Xs)),Ys) = aa(list(A),list(A),cons(A,X2),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)) ) ).
% append_Cons
tff(fact_7137_replicate__app__Cons__same,axiom,
! [A: $tType,N: nat,X2: A,Xs: list(A)] : ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),replicate(A,N,X2)),aa(list(A),list(A),cons(A,X2),Xs)) = aa(list(A),list(A),cons(A,X2),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),replicate(A,N,X2)),Xs)) ) ).
% replicate_app_Cons_same
tff(fact_7138_longest__common__prefix,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] :
? [Ps2: list(A),Xs4: list(A),Ys5: list(A)] :
( ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ps2),Xs4) )
& ( Ys = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ps2),Ys5) )
& ( ( Xs4 = nil(A) )
| ( Ys5 = nil(A) )
| ( aa(list(A),A,hd(A),Xs4) != aa(list(A),A,hd(A),Ys5) ) ) ) ).
% longest_common_prefix
tff(fact_7139_hd__append,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] :
( ( ( Xs = nil(A) )
=> ( aa(list(A),A,hd(A),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)) = aa(list(A),A,hd(A),Ys) ) )
& ( ( Xs != nil(A) )
=> ( aa(list(A),A,hd(A),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)) = aa(list(A),A,hd(A),Xs) ) ) ) ).
% hd_append
tff(fact_7140_append__Nil,axiom,
! [A: $tType,Ys: list(A)] : ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),nil(A)),Ys) = Ys ) ).
% append_Nil
tff(fact_7141_append_Oleft__neutral,axiom,
! [A: $tType,A2: list(A)] : ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),nil(A)),A2) = A2 ) ).
% append.left_neutral
tff(fact_7142_eq__Nil__appendI,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] :
( ( Xs = Ys )
=> ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),nil(A)),Ys) ) ) ).
% eq_Nil_appendI
tff(fact_7143_remdups__append2,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] : ( remdups(A,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),remdups(A,Ys))) = remdups(A,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)) ) ).
% remdups_append2
tff(fact_7144_replicate__add,axiom,
! [A: $tType,N: nat,M: nat,X2: A] : ( replicate(A,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),M),X2) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),replicate(A,N,X2)),replicate(A,M,X2)) ) ).
% replicate_add
tff(fact_7145_append__replicate__commute,axiom,
! [A: $tType,N: nat,X2: A,K: nat] : ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),replicate(A,N,X2)),replicate(A,K,X2)) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),replicate(A,K,X2)),replicate(A,N,X2)) ) ).
% append_replicate_commute
tff(fact_7146_remove1__append,axiom,
! [A: $tType,X2: A,Xs: list(A),Ys: list(A)] :
( ( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ( remove1(A,X2,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),remove1(A,X2,Xs)),Ys) ) )
& ( ~ pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ( remove1(A,X2,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),remove1(A,X2,Ys)) ) ) ) ).
% remove1_append
tff(fact_7147_in__these__eq,axiom,
! [A: $tType,X2: A,A3: set(option(A))] :
( pp(member(A,X2,these(A,A3)))
<=> pp(member(option(A),aa(A,option(A),some(A),X2),A3)) ) ).
% in_these_eq
tff(fact_7148_sorted__wrt__append,axiom,
! [A: $tType,P: fun(A,fun(A,bool)),Xs: list(A),Ys: list(A)] :
( sorted_wrt(A,P,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys))
<=> ( sorted_wrt(A,P,Xs)
& sorted_wrt(A,P,Ys)
& ! [X4: A] :
( pp(member(A,X4,aa(list(A),set(A),set2(A),Xs)))
=> ! [Xa3: A] :
( pp(member(A,Xa3,aa(list(A),set(A),set2(A),Ys)))
=> pp(aa(A,bool,aa(A,fun(A,bool),P,X4),Xa3)) ) ) ) ) ).
% sorted_wrt_append
tff(fact_7149_append__eq__appendI,axiom,
! [A: $tType,Xs: list(A),Xs1: list(A),Zs: list(A),Ys: list(A),Us: list(A)] :
( ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Xs1) = Zs )
=> ( ( Ys = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs1),Us) )
=> ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Zs),Us) ) ) ) ).
% append_eq_appendI
tff(fact_7150_append__eq__append__conv2,axiom,
! [A: $tType,Xs: list(A),Ys: list(A),Zs: list(A),Ts: list(A)] :
( ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Zs),Ts) )
<=> ? [Us2: list(A)] :
( ( ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Zs),Us2) )
& ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Us2),Ys) = Ts ) )
| ( ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Us2) = Zs )
& ( Ys = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Us2),Ts) ) ) ) ) ).
% append_eq_append_conv2
tff(fact_7151_enumerate__append__eq,axiom,
! [A: $tType,N: nat,Xs: list(A),Ys: list(A)] : ( enumerate(A,N,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)) = aa(list(product_prod(nat,A)),list(product_prod(nat,A)),aa(list(product_prod(nat,A)),fun(list(product_prod(nat,A)),list(product_prod(nat,A))),append(product_prod(nat,A)),enumerate(A,N,Xs)),enumerate(A,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),N),aa(list(A),nat,size_size(list(A)),Xs)),Ys)) ) ).
% enumerate_append_eq
tff(fact_7152_map__eq__append__conv,axiom,
! [A: $tType,B: $tType,F2: fun(B,A),Xs: list(B),Ys: list(A),Zs: list(A)] :
( ( aa(list(B),list(A),map(B,A,F2),Xs) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys),Zs) )
<=> ? [Us2: list(B),Vs2: list(B)] :
( ( Xs = aa(list(B),list(B),aa(list(B),fun(list(B),list(B)),append(B),Us2),Vs2) )
& ( Ys = aa(list(B),list(A),map(B,A,F2),Us2) )
& ( Zs = aa(list(B),list(A),map(B,A,F2),Vs2) ) ) ) ).
% map_eq_append_conv
tff(fact_7153_append__eq__map__conv,axiom,
! [A: $tType,B: $tType,Ys: list(A),Zs: list(A),F2: fun(B,A),Xs: list(B)] :
( ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys),Zs) = aa(list(B),list(A),map(B,A,F2),Xs) )
<=> ? [Us2: list(B),Vs2: list(B)] :
( ( Xs = aa(list(B),list(B),aa(list(B),fun(list(B),list(B)),append(B),Us2),Vs2) )
& ( Ys = aa(list(B),list(A),map(B,A,F2),Us2) )
& ( Zs = aa(list(B),list(A),map(B,A,F2),Vs2) ) ) ) ).
% append_eq_map_conv
tff(fact_7154_append__listrel1I,axiom,
! [A: $tType,Xs: list(A),Ys: list(A),R: set(product_prod(A,A)),Us: list(A),Vs: list(A)] :
( ( ( pp(member(product_prod(list(A),list(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),Xs),Ys),listrel1(A,R)))
& ( Us = Vs ) )
| ( ( Xs = Ys )
& pp(member(product_prod(list(A),list(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),Us),Vs),listrel1(A,R))) ) )
=> pp(member(product_prod(list(A),list(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Us)),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys),Vs)),listrel1(A,R))) ) ).
% append_listrel1I
tff(fact_7155_concat__conv__foldr,axiom,
! [A: $tType,Xss: list(list(A))] : ( concat(A,Xss) = aa(list(A),list(A),foldr(list(A),list(A),append(A),Xss),nil(A)) ) ).
% concat_conv_foldr
tff(fact_7156_tl__append,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] : ( aa(list(A),list(A),tl(A),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)) = aa(list(A),list(A),case_list(list(A),A,aa(list(A),list(A),tl(A),Ys),aTP_Lamp_su(list(A),fun(A,fun(list(A),list(A))),Ys)),Xs) ) ).
% tl_append
tff(fact_7157_comm__append__are__replicate,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] :
( ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys),Xs) )
=> ? [M3: nat,N3: nat,Zs2: list(A)] :
( ( concat(A,replicate(list(A),M3,Zs2)) = Xs )
& ( concat(A,replicate(list(A),N3,Zs2)) = Ys ) ) ) ).
% comm_append_are_replicate
tff(fact_7158_same__length__different,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] :
( ( Xs != Ys )
=> ( ( aa(list(A),nat,size_size(list(A)),Xs) = aa(list(A),nat,size_size(list(A)),Ys) )
=> ? [Pre: list(A),X3: A,Xs4: list(A),Y3: A,Ys5: list(A)] :
( ( X3 != Y3 )
& ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Pre),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),aa(list(A),list(A),cons(A,X3),nil(A))),Xs4)) )
& ( Ys = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Pre),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),aa(list(A),list(A),cons(A,Y3),nil(A))),Ys5)) ) ) ) ) ).
% same_length_different
tff(fact_7159_sorted__append,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Xs: list(A),Ys: list(A)] :
( sorted_wrt(A,ord_less_eq(A),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys))
<=> ( sorted_wrt(A,ord_less_eq(A),Xs)
& sorted_wrt(A,ord_less_eq(A),Ys)
& ! [X4: A] :
( pp(member(A,X4,aa(list(A),set(A),set2(A),Xs)))
=> ! [Xa3: A] :
( pp(member(A,Xa3,aa(list(A),set(A),set2(A),Ys)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X4),Xa3)) ) ) ) ) ) ).
% sorted_append
tff(fact_7160_not__distinct__decomp,axiom,
! [A: $tType,Ws: list(A)] :
( ~ distinct(A,Ws)
=> ? [Xs2: list(A),Ys3: list(A),Zs2: list(A),Y3: A] : ( Ws = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs2),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),aa(list(A),list(A),cons(A,Y3),nil(A))),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys3),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),aa(list(A),list(A),cons(A,Y3),nil(A))),Zs2)))) ) ) ).
% not_distinct_decomp
tff(fact_7161_not__distinct__conv__prefix,axiom,
! [A: $tType,As3: list(A)] :
( ~ distinct(A,As3)
<=> ? [Xs3: list(A),Y2: A,Ys4: list(A)] :
( pp(member(A,Y2,aa(list(A),set(A),set2(A),Xs3)))
& distinct(A,Xs3)
& ( As3 = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs3),aa(list(A),list(A),cons(A,Y2),Ys4)) ) ) ) ).
% not_distinct_conv_prefix
tff(fact_7162_filter__eq__Cons__iff,axiom,
! [A: $tType,P: fun(A,bool),Ys: list(A),X2: A,Xs: list(A)] :
( ( aa(list(A),list(A),filter2(A,P),Ys) = aa(list(A),list(A),cons(A,X2),Xs) )
<=> ? [Us2: list(A),Vs2: list(A)] :
( ( Ys = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Us2),aa(list(A),list(A),cons(A,X2),Vs2)) )
& ! [X4: A] :
( pp(member(A,X4,aa(list(A),set(A),set2(A),Us2)))
=> ~ pp(aa(A,bool,P,X4)) )
& pp(aa(A,bool,P,X2))
& ( Xs = aa(list(A),list(A),filter2(A,P),Vs2) ) ) ) ).
% filter_eq_Cons_iff
tff(fact_7163_Cons__eq__filter__iff,axiom,
! [A: $tType,X2: A,Xs: list(A),P: fun(A,bool),Ys: list(A)] :
( ( aa(list(A),list(A),cons(A,X2),Xs) = aa(list(A),list(A),filter2(A,P),Ys) )
<=> ? [Us2: list(A),Vs2: list(A)] :
( ( Ys = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Us2),aa(list(A),list(A),cons(A,X2),Vs2)) )
& ! [X4: A] :
( pp(member(A,X4,aa(list(A),set(A),set2(A),Us2)))
=> ~ pp(aa(A,bool,P,X4)) )
& pp(aa(A,bool,P,X2))
& ( Xs = aa(list(A),list(A),filter2(A,P),Vs2) ) ) ) ).
% Cons_eq_filter_iff
tff(fact_7164_filter__eq__ConsD,axiom,
! [A: $tType,P: fun(A,bool),Ys: list(A),X2: A,Xs: list(A)] :
( ( aa(list(A),list(A),filter2(A,P),Ys) = aa(list(A),list(A),cons(A,X2),Xs) )
=> ? [Us3: list(A),Vs3: list(A)] :
( ( Ys = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Us3),aa(list(A),list(A),cons(A,X2),Vs3)) )
& ! [X: A] :
( pp(member(A,X,aa(list(A),set(A),set2(A),Us3)))
=> ~ pp(aa(A,bool,P,X)) )
& pp(aa(A,bool,P,X2))
& ( Xs = aa(list(A),list(A),filter2(A,P),Vs3) ) ) ) ).
% filter_eq_ConsD
tff(fact_7165_Cons__eq__filterD,axiom,
! [A: $tType,X2: A,Xs: list(A),P: fun(A,bool),Ys: list(A)] :
( ( aa(list(A),list(A),cons(A,X2),Xs) = aa(list(A),list(A),filter2(A,P),Ys) )
=> ? [Us3: list(A),Vs3: list(A)] :
( ( Ys = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Us3),aa(list(A),list(A),cons(A,X2),Vs3)) )
& ! [X: A] :
( pp(member(A,X,aa(list(A),set(A),set2(A),Us3)))
=> ~ pp(aa(A,bool,P,X)) )
& pp(aa(A,bool,P,X2))
& ( Xs = aa(list(A),list(A),filter2(A,P),Vs3) ) ) ) ).
% Cons_eq_filterD
tff(fact_7166_rev_Osimps_I2_J,axiom,
! [A: $tType,X2: A,Xs: list(A)] : ( aa(list(A),list(A),rev(A),aa(list(A),list(A),cons(A,X2),Xs)) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),aa(list(A),list(A),rev(A),Xs)),aa(list(A),list(A),cons(A,X2),nil(A))) ) ).
% rev.simps(2)
tff(fact_7167_replicate__append__same,axiom,
! [A: $tType,I: nat,X2: A] : ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),replicate(A,I,X2)),aa(list(A),list(A),cons(A,X2),nil(A))) = aa(list(A),list(A),cons(A,X2),replicate(A,I,X2)) ) ).
% replicate_append_same
tff(fact_7168_upt__add__eq__append,axiom,
! [I: nat,J: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),J))
=> ( upt(I,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),J),K)) = aa(list(nat),list(nat),aa(list(nat),fun(list(nat),list(nat)),append(nat),upt(I,J)),upt(J,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),J),K))) ) ) ).
% upt_add_eq_append
tff(fact_7169_list__update__append1,axiom,
! [A: $tType,I: nat,Xs: list(A),Ys: list(A),X2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( list_update(A,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys),I,X2) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),list_update(A,Xs,I,X2)),Ys) ) ) ).
% list_update_append1
tff(fact_7170_atLeastLessThan__add__Un,axiom,
! [I: nat,J: nat,K: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),J))
=> ( set_or7035219750837199246ssThan(nat,I,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),J),K)) = aa(set(nat),set(nat),aa(set(nat),fun(set(nat),set(nat)),sup_sup(set(nat)),set_or7035219750837199246ssThan(nat,I,J)),set_or7035219750837199246ssThan(nat,J,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),J),K))) ) ) ).
% atLeastLessThan_add_Un
tff(fact_7171_remove1__split,axiom,
! [A: $tType,A2: A,Xs: list(A),Ys: list(A)] :
( pp(member(A,A2,aa(list(A),set(A),set2(A),Xs)))
=> ( ( remove1(A,A2,Xs) = Ys )
<=> ? [Ls: list(A),Rs: list(A)] :
( ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ls),aa(list(A),list(A),cons(A,A2),Rs)) )
& ~ pp(member(A,A2,aa(list(A),set(A),set2(A),Ls)))
& ( Ys = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ls),Rs) ) ) ) ) ).
% remove1_split
tff(fact_7172_rotate1_Osimps_I2_J,axiom,
! [A: $tType,X2: A,Xs: list(A)] : ( rotate1(A,aa(list(A),list(A),cons(A,X2),Xs)) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),aa(list(A),list(A),cons(A,X2),nil(A))) ) ).
% rotate1.simps(2)
tff(fact_7173_nths__append,axiom,
! [A: $tType,L: list(A),L4: list(A),A3: set(nat)] : ( nths(A,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),L),L4),A3) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),nths(A,L,A3)),nths(A,L4,aa(fun(nat,bool),set(nat),collect(nat),aa(set(nat),fun(nat,bool),aTP_Lamp_sv(list(A),fun(set(nat),fun(nat,bool)),L),A3)))) ) ).
% nths_append
tff(fact_7174_length__append__singleton,axiom,
! [A: $tType,Xs: list(A),X2: A] : ( aa(list(A),nat,size_size(list(A)),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),aa(list(A),list(A),cons(A,X2),nil(A)))) = aa(nat,nat,suc,aa(list(A),nat,size_size(list(A)),Xs)) ) ).
% length_append_singleton
tff(fact_7175_length__Suc__conv__rev,axiom,
! [A: $tType,Xs: list(A),N: nat] :
( ( aa(list(A),nat,size_size(list(A)),Xs) = aa(nat,nat,suc,N) )
<=> ? [Y2: A,Ys4: list(A)] :
( ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys4),aa(list(A),list(A),cons(A,Y2),nil(A))) )
& ( aa(list(A),nat,size_size(list(A)),Ys4) = N ) ) ) ).
% length_Suc_conv_rev
tff(fact_7176_subseqs_Osimps_I2_J,axiom,
! [A: $tType,X2: A,Xs: list(A)] : ( subseqs(A,aa(list(A),list(A),cons(A,X2),Xs)) = aa(list(list(A)),list(list(A)),aa(list(list(A)),fun(list(list(A)),list(list(A))),append(list(A)),aa(list(list(A)),list(list(A)),map(list(A),list(A),cons(A,X2)),subseqs(A,Xs))),subseqs(A,Xs)) ) ).
% subseqs.simps(2)
tff(fact_7177_nth__append,axiom,
! [A: $tType,N: nat,Xs: list(A),Ys: list(A)] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( aa(nat,A,nth(A,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)),N) = aa(nat,A,nth(A,Xs),N) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( aa(nat,A,nth(A,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)),N) = aa(nat,A,nth(A,Ys),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(list(A),nat,size_size(list(A)),Xs))) ) ) ) ).
% nth_append
tff(fact_7178_list__update__append,axiom,
! [A: $tType,N: nat,Xs: list(A),Ys: list(A),X2: A] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( list_update(A,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys),N,X2) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),list_update(A,Xs,N,X2)),Ys) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),N),aa(list(A),nat,size_size(list(A)),Xs)))
=> ( list_update(A,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys),N,X2) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),list_update(A,Ys,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(list(A),nat,size_size(list(A)),Xs)),X2)) ) ) ) ).
% list_update_append
tff(fact_7179_listrel1E,axiom,
! [A: $tType,Xs: list(A),Ys: list(A),R: set(product_prod(A,A))] :
( pp(member(product_prod(list(A),list(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),Xs),Ys),listrel1(A,R)))
=> ~ ! [X3: A,Y3: A] :
( pp(member(product_prod(A,A),aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),X3),Y3),R))
=> ! [Us3: list(A),Vs3: list(A)] :
( ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Us3),aa(list(A),list(A),cons(A,X3),Vs3)) )
=> ( Ys != aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Us3),aa(list(A),list(A),cons(A,Y3),Vs3)) ) ) ) ) ).
% listrel1E
tff(fact_7180_listrel1I,axiom,
! [A: $tType,X2: A,Y: A,R: set(product_prod(A,A)),Xs: list(A),Us: list(A),Vs: list(A),Ys: list(A)] :
( pp(member(product_prod(A,A),aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),X2),Y),R))
=> ( ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Us),aa(list(A),list(A),cons(A,X2),Vs)) )
=> ( ( Ys = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Us),aa(list(A),list(A),cons(A,Y),Vs)) )
=> pp(member(product_prod(list(A),list(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),Xs),Ys),listrel1(A,R))) ) ) ) ).
% listrel1I
tff(fact_7181_product_Osimps_I2_J,axiom,
! [A: $tType,B: $tType,X2: A,Xs: list(A),Ys: list(B)] : ( product(A,B,aa(list(A),list(A),cons(A,X2),Xs),Ys) = aa(list(product_prod(A,B)),list(product_prod(A,B)),aa(list(product_prod(A,B)),fun(list(product_prod(A,B)),list(product_prod(A,B))),append(product_prod(A,B)),aa(list(B),list(product_prod(A,B)),map(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X2)),Ys)),product(A,B,Xs,Ys)) ) ).
% product.simps(2)
tff(fact_7182_snoc__listrel1__snoc__iff,axiom,
! [A: $tType,Xs: list(A),X2: A,Ys: list(A),Y: A,R: set(product_prod(A,A))] :
( pp(member(product_prod(list(A),list(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),aa(list(A),list(A),cons(A,X2),nil(A)))),aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys),aa(list(A),list(A),cons(A,Y),nil(A)))),listrel1(A,R)))
<=> ( ( pp(member(product_prod(list(A),list(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),Xs),Ys),listrel1(A,R)))
& ( X2 = Y ) )
| ( ( Xs = Ys )
& pp(member(product_prod(A,A),aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),X2),Y),R)) ) ) ) ).
% snoc_listrel1_snoc_iff
tff(fact_7183_horner__sum__append,axiom,
! [A: $tType,B: $tType] :
( comm_semiring_1(A)
=> ! [F2: fun(B,A),A2: A,Xs: list(B),Ys: list(B)] : ( groups4207007520872428315er_sum(B,A,F2,A2,aa(list(B),list(B),aa(list(B),fun(list(B),list(B)),append(B),Xs),Ys)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),groups4207007520872428315er_sum(B,A,F2,A2,Xs)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,A2),aa(list(B),nat,size_size(list(B)),Xs))),groups4207007520872428315er_sum(B,A,F2,A2,Ys))) ) ) ).
% horner_sum_append
tff(fact_7184_nths__Cons,axiom,
! [A: $tType,X2: A,L: list(A),A3: set(nat)] : ( nths(A,aa(list(A),list(A),cons(A,X2),L),A3) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),if(list(A),member(nat,zero_zero(nat),A3),aa(list(A),list(A),cons(A,X2),nil(A)),nil(A))),nths(A,L,aa(fun(nat,bool),set(nat),collect(nat),aTP_Lamp_sw(set(nat),fun(nat,bool),A3)))) ) ).
% nths_Cons
tff(fact_7185_rotate1__hd__tl,axiom,
! [A: $tType,Xs: list(A)] :
( ( Xs != nil(A) )
=> ( rotate1(A,Xs) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),aa(list(A),list(A),tl(A),Xs)),aa(list(A),list(A),cons(A,aa(list(A),A,hd(A),Xs)),nil(A))) ) ) ).
% rotate1_hd_tl
tff(fact_7186_upt__Suc,axiom,
! [I: nat,J: nat] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),J))
=> ( upt(I,aa(nat,nat,suc,J)) = aa(list(nat),list(nat),aa(list(nat),fun(list(nat),list(nat)),append(nat),upt(I,J)),aa(list(nat),list(nat),cons(nat,J),nil(nat))) ) )
& ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),J))
=> ( upt(I,aa(nat,nat,suc,J)) = nil(nat) ) ) ) ).
% upt_Suc
tff(fact_7187_upt__Suc__append,axiom,
! [I: nat,J: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),I),J))
=> ( upt(I,aa(nat,nat,suc,J)) = aa(list(nat),list(nat),aa(list(nat),fun(list(nat),list(nat)),append(nat),upt(I,J)),aa(list(nat),list(nat),cons(nat,J),nil(nat))) ) ) ).
% upt_Suc_append
tff(fact_7188_Pow__set_I2_J,axiom,
! [B: $tType,X2: B,Xs: list(B)] : ( pow2(B,aa(list(B),set(B),set2(B),aa(list(B),list(B),cons(B,X2),Xs))) = aa(set(set(B)),set(set(B)),aa(set(set(B)),fun(set(set(B)),set(set(B))),sup_sup(set(set(B))),pow2(B,aa(list(B),set(B),set2(B),Xs))),aa(set(set(B)),set(set(B)),image(set(B),set(B),insert(B,X2)),pow2(B,aa(list(B),set(B),set2(B),Xs)))) ) ).
% Pow_set(2)
tff(fact_7189_comm__append__is__replicate,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] :
( ( Xs != nil(A) )
=> ( ( Ys != nil(A) )
=> ( ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys),Xs) )
=> ? [N3: nat,Zs2: list(A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),one_one(nat)),N3))
& ( concat(A,replicate(list(A),N3,Zs2)) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys) ) ) ) ) ) ).
% comm_append_is_replicate
tff(fact_7190_sorted__insort__is__snoc,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Xs: list(A),A2: A] :
( sorted_wrt(A,ord_less_eq(A),Xs)
=> ( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),Xs)))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),A2)) )
=> ( aa(list(A),list(A),linorder_insort_key(A,A,aTP_Lamp_nx(A,A),A2),Xs) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),aa(list(A),list(A),cons(A,A2),nil(A))) ) ) ) ) ).
% sorted_insort_is_snoc
tff(fact_7191_these__not__empty__eq,axiom,
! [A: $tType,B4: set(option(A))] :
( ( these(A,B4) != bot_bot(set(A)) )
<=> ( ( B4 != bot_bot(set(option(A))) )
& ( B4 != aa(set(option(A)),set(option(A)),insert(option(A),none(A)),bot_bot(set(option(A)))) ) ) ) ).
% these_not_empty_eq
tff(fact_7192_these__empty__eq,axiom,
! [A: $tType,B4: set(option(A))] :
( ( these(A,B4) = bot_bot(set(A)) )
<=> ( ( B4 = bot_bot(set(option(A))) )
| ( B4 = aa(set(option(A)),set(option(A)),insert(option(A),none(A)),bot_bot(set(option(A)))) ) ) ) ).
% these_empty_eq
tff(fact_7193_Some__image__these__eq,axiom,
! [A: $tType,A3: set(option(A))] : ( aa(set(A),set(option(A)),image(A,option(A),some(A)),these(A,A3)) = aa(fun(option(A),bool),set(option(A)),collect(option(A)),aTP_Lamp_sx(set(option(A)),fun(option(A),bool),A3)) ) ).
% Some_image_these_eq
tff(fact_7194_map__upds__append1,axiom,
! [B: $tType,A: $tType,Xs: list(A),Ys: list(B),M: fun(A,option(B)),X2: A] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(list(A),nat,size_size(list(A)),Xs)),aa(list(B),nat,size_size(list(B)),Ys)))
=> ( map_upds(A,B,M,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),aa(list(A),list(A),cons(A,X2),nil(A))),Ys) = fun_upd(A,option(B),map_upds(A,B,M,Xs,Ys),X2,aa(B,option(B),some(B),aa(nat,B,nth(B,Ys),aa(list(A),nat,size_size(list(A)),Xs)))) ) ) ).
% map_upds_append1
tff(fact_7195_upto__aux__rec,axiom,
! [J: int,I: int,Js: list(int)] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),J),I))
=> ( upto_aux(I,J,Js) = Js ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),J),I))
=> ( upto_aux(I,J,Js) = upto_aux(I,aa(int,int,aa(int,fun(int,int),minus_minus(int),J),one_one(int)),aa(list(int),list(int),cons(int,J),Js)) ) ) ) ).
% upto_aux_rec
tff(fact_7196_sup2CI,axiom,
! [A: $tType,B: $tType,B4: fun(A,fun(B,bool)),X2: A,Y: B,A3: fun(A,fun(B,bool))] :
( ( ~ pp(aa(B,bool,aa(A,fun(B,bool),B4,X2),Y))
=> pp(aa(B,bool,aa(A,fun(B,bool),A3,X2),Y)) )
=> pp(aa(B,bool,aa(A,fun(B,bool),aa(fun(A,fun(B,bool)),fun(A,fun(B,bool)),aa(fun(A,fun(B,bool)),fun(fun(A,fun(B,bool)),fun(A,fun(B,bool))),sup_sup(fun(A,fun(B,bool))),A3),B4),X2),Y)) ) ).
% sup2CI
tff(fact_7197_empty__upd__none,axiom,
! [A: $tType,B: $tType,X2: A,X: A] : ( aa(A,option(B),fun_upd(A,option(B),aTP_Lamp_ol(A,option(B)),X2,none(B)),X) = none(B) ) ).
% empty_upd_none
tff(fact_7198_map__fun__upd,axiom,
! [B: $tType,A: $tType,Y: A,Xs: list(A),F2: fun(A,B),V: B] :
( ~ pp(member(A,Y,aa(list(A),set(A),set2(A),Xs)))
=> ( aa(list(A),list(B),map(A,B,fun_upd(A,B,F2,Y,V)),Xs) = aa(list(A),list(B),map(A,B,F2),Xs) ) ) ).
% map_fun_upd
tff(fact_7199_image__map__upd,axiom,
! [B: $tType,A: $tType,X2: A,A3: set(A),M: fun(A,option(B)),Y: B] :
( ~ pp(member(A,X2,A3))
=> ( aa(set(A),set(option(B)),image(A,option(B),fun_upd(A,option(B),M,X2,aa(B,option(B),some(B),Y))),A3) = aa(set(A),set(option(B)),image(A,option(B),M),A3) ) ) ).
% image_map_upd
tff(fact_7200_map__upds__Cons,axiom,
! [A: $tType,B: $tType,M: fun(A,option(B)),A2: A,As3: list(A),B2: B,Bs: list(B)] : ( map_upds(A,B,M,aa(list(A),list(A),cons(A,A2),As3),aa(list(B),list(B),cons(B,B2),Bs)) = map_upds(A,B,fun_upd(A,option(B),M,A2,aa(B,option(B),some(B),B2)),As3,Bs) ) ).
% map_upds_Cons
tff(fact_7201_map__upds__twist,axiom,
! [A: $tType,B: $tType,A2: A,As3: list(A),M: fun(A,option(B)),B2: B,Bs: list(B)] :
( ~ pp(member(A,A2,aa(list(A),set(A),set2(A),As3)))
=> ( map_upds(A,B,fun_upd(A,option(B),M,A2,aa(B,option(B),some(B),B2)),As3,Bs) = fun_upd(A,option(B),map_upds(A,B,M,As3,Bs),A2,aa(B,option(B),some(B),B2)) ) ) ).
% map_upds_twist
tff(fact_7202_restrict__fun__upd,axiom,
! [B: $tType,A: $tType,X2: A,D5: set(A),M: fun(A,option(B)),Y: option(B)] :
( ( pp(member(A,X2,D5))
=> ( restrict_map(A,B,fun_upd(A,option(B),M,X2,Y),D5) = fun_upd(A,option(B),restrict_map(A,B,M,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),D5),aa(set(A),set(A),insert(A,X2),bot_bot(set(A))))),X2,Y) ) )
& ( ~ pp(member(A,X2,D5))
=> ( restrict_map(A,B,fun_upd(A,option(B),M,X2,Y),D5) = restrict_map(A,B,M,D5) ) ) ) ).
% restrict_fun_upd
tff(fact_7203_fun__upd__restrict__conv,axiom,
! [A: $tType,B: $tType,X2: A,D5: set(A),M: fun(A,option(B)),Y: option(B)] :
( pp(member(A,X2,D5))
=> ( fun_upd(A,option(B),restrict_map(A,B,M,D5),X2,Y) = fun_upd(A,option(B),restrict_map(A,B,M,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),D5),aa(set(A),set(A),insert(A,X2),bot_bot(set(A))))),X2,Y) ) ) ).
% fun_upd_restrict_conv
tff(fact_7204_ran__map__upd,axiom,
! [A: $tType,B: $tType,M: fun(B,option(A)),A2: B,B2: A] :
( ( aa(B,option(A),M,A2) = none(A) )
=> ( ran(B,A,fun_upd(B,option(A),M,A2,aa(A,option(A),some(A),B2))) = aa(set(A),set(A),insert(A,B2),ran(B,A,M)) ) ) ).
% ran_map_upd
tff(fact_7205_fun__upd__None__restrict,axiom,
! [B: $tType,A: $tType,X2: A,D5: set(A),M: fun(A,option(B))] :
( ( pp(member(A,X2,D5))
=> ( fun_upd(A,option(B),restrict_map(A,B,M,D5),X2,none(B)) = restrict_map(A,B,M,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),D5),aa(set(A),set(A),insert(A,X2),bot_bot(set(A))))) ) )
& ( ~ pp(member(A,X2,D5))
=> ( fun_upd(A,option(B),restrict_map(A,B,M,D5),X2,none(B)) = restrict_map(A,B,M,D5) ) ) ) ).
% fun_upd_None_restrict
tff(fact_7206_restrict__upd__same,axiom,
! [B: $tType,A: $tType,M: fun(A,option(B)),X2: A,Y: B] : ( restrict_map(A,B,fun_upd(A,option(B),M,X2,aa(B,option(B),some(B),Y)),aa(set(A),set(A),uminus_uminus(set(A)),aa(set(A),set(A),insert(A,X2),bot_bot(set(A))))) = restrict_map(A,B,M,aa(set(A),set(A),uminus_uminus(set(A)),aa(set(A),set(A),insert(A,X2),bot_bot(set(A))))) ) ).
% restrict_upd_same
tff(fact_7207_sup2I2,axiom,
! [A: $tType,B: $tType,B4: fun(A,fun(B,bool)),X2: A,Y: B,A3: fun(A,fun(B,bool))] :
( pp(aa(B,bool,aa(A,fun(B,bool),B4,X2),Y))
=> pp(aa(B,bool,aa(A,fun(B,bool),aa(fun(A,fun(B,bool)),fun(A,fun(B,bool)),aa(fun(A,fun(B,bool)),fun(fun(A,fun(B,bool)),fun(A,fun(B,bool))),sup_sup(fun(A,fun(B,bool))),A3),B4),X2),Y)) ) ).
% sup2I2
tff(fact_7208_sup2I1,axiom,
! [A: $tType,B: $tType,A3: fun(A,fun(B,bool)),X2: A,Y: B,B4: fun(A,fun(B,bool))] :
( pp(aa(B,bool,aa(A,fun(B,bool),A3,X2),Y))
=> pp(aa(B,bool,aa(A,fun(B,bool),aa(fun(A,fun(B,bool)),fun(A,fun(B,bool)),aa(fun(A,fun(B,bool)),fun(fun(A,fun(B,bool)),fun(A,fun(B,bool))),sup_sup(fun(A,fun(B,bool))),A3),B4),X2),Y)) ) ).
% sup2I1
tff(fact_7209_sup2E,axiom,
! [A: $tType,B: $tType,A3: fun(A,fun(B,bool)),B4: fun(A,fun(B,bool)),X2: A,Y: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),aa(fun(A,fun(B,bool)),fun(A,fun(B,bool)),aa(fun(A,fun(B,bool)),fun(fun(A,fun(B,bool)),fun(A,fun(B,bool))),sup_sup(fun(A,fun(B,bool))),A3),B4),X2),Y))
=> ( ~ pp(aa(B,bool,aa(A,fun(B,bool),A3,X2),Y))
=> pp(aa(B,bool,aa(A,fun(B,bool),B4,X2),Y)) ) ) ).
% sup2E
tff(fact_7210_map__upd__nonempty,axiom,
! [A: $tType,B: $tType,T2: fun(A,option(B)),K: A,X2: B] :
~ ! [X3: A] : ( aa(A,option(B),fun_upd(A,option(B),T2,K,aa(B,option(B),some(B),X2)),X3) = none(B) ) ).
% map_upd_nonempty
tff(fact_7211_map__upd__Some__unfold,axiom,
! [B: $tType,A: $tType,M: fun(B,option(A)),A2: B,B2: A,X2: B,Y: A] :
( ( aa(B,option(A),fun_upd(B,option(A),M,A2,aa(A,option(A),some(A),B2)),X2) = aa(A,option(A),some(A),Y) )
<=> ( ( ( X2 = A2 )
& ( B2 = Y ) )
| ( ( X2 != A2 )
& ( aa(B,option(A),M,X2) = aa(A,option(A),some(A),Y) ) ) ) ) ).
% map_upd_Some_unfold
tff(fact_7212_map__upd__triv,axiom,
! [A: $tType,B: $tType,T2: fun(B,option(A)),K: B,X2: A] :
( ( aa(B,option(A),T2,K) = aa(A,option(A),some(A),X2) )
=> ( fun_upd(B,option(A),T2,K,aa(A,option(A),some(A),X2)) = T2 ) ) ).
% map_upd_triv
tff(fact_7213_map__upd__eqD1,axiom,
! [A: $tType,B: $tType,M: fun(A,option(B)),A2: A,X2: B,N: fun(A,option(B)),Y: B] :
( ( fun_upd(A,option(B),M,A2,aa(B,option(B),some(B),X2)) = fun_upd(A,option(B),N,A2,aa(B,option(B),some(B),Y)) )
=> ( X2 = Y ) ) ).
% map_upd_eqD1
tff(fact_7214_fun__upd__restrict,axiom,
! [A: $tType,B: $tType,M: fun(A,option(B)),D5: set(A),X2: A,Y: option(B)] : ( fun_upd(A,option(B),restrict_map(A,B,M,D5),X2,Y) = fun_upd(A,option(B),restrict_map(A,B,M,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),D5),aa(set(A),set(A),insert(A,X2),bot_bot(set(A))))),X2,Y) ) ).
% fun_upd_restrict
tff(fact_7215_finite__range__updI,axiom,
! [A: $tType,B: $tType,F2: fun(B,option(A)),A2: B,B2: A] :
( finite_finite(option(A),aa(set(B),set(option(A)),image(B,option(A),F2),top_top(set(B))))
=> finite_finite(option(A),aa(set(B),set(option(A)),image(B,option(A),fun_upd(B,option(A),F2,A2,aa(A,option(A),some(A),B2))),top_top(set(B)))) ) ).
% finite_range_updI
tff(fact_7216_map__of__zip__upd,axiom,
! [A: $tType,B: $tType,Ys: list(B),Xs: list(A),Zs: list(B),X2: A,Y: B,Z: B] :
( ( aa(list(B),nat,size_size(list(B)),Ys) = aa(list(A),nat,size_size(list(A)),Xs) )
=> ( ( aa(list(B),nat,size_size(list(B)),Zs) = aa(list(A),nat,size_size(list(A)),Xs) )
=> ( ~ pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ( ( fun_upd(A,option(B),map_of(A,B,zip(A,B,Xs,Ys)),X2,aa(B,option(B),some(B),Y)) = fun_upd(A,option(B),map_of(A,B,zip(A,B,Xs,Zs)),X2,aa(B,option(B),some(B),Z)) )
=> ( map_of(A,B,zip(A,B,Xs,Ys)) = map_of(A,B,zip(A,B,Xs,Zs)) ) ) ) ) ) ).
% map_of_zip_upd
tff(fact_7217_restrict__complement__singleton__eq,axiom,
! [A: $tType,B: $tType,F2: fun(A,option(B)),X2: A] : ( restrict_map(A,B,F2,aa(set(A),set(A),uminus_uminus(set(A)),aa(set(A),set(A),insert(A,X2),bot_bot(set(A))))) = fun_upd(A,option(B),F2,X2,none(B)) ) ).
% restrict_complement_singleton_eq
tff(fact_7218_fun__upd__image,axiom,
! [A: $tType,B: $tType,X2: B,A3: set(B),F2: fun(B,A),Y: A] :
( ( pp(member(B,X2,A3))
=> ( aa(set(B),set(A),image(B,A,fun_upd(B,A,F2,X2,Y)),A3) = aa(set(A),set(A),insert(A,Y),aa(set(B),set(A),image(B,A,F2),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),A3),aa(set(B),set(B),insert(B,X2),bot_bot(set(B)))))) ) )
& ( ~ pp(member(B,X2,A3))
=> ( aa(set(B),set(A),image(B,A,fun_upd(B,A,F2,X2,Y)),A3) = aa(set(B),set(A),image(B,A,F2),A3) ) ) ) ).
% fun_upd_image
tff(fact_7219_map__of_Osimps_I2_J,axiom,
! [B: $tType,A: $tType,P2: product_prod(A,B),Ps: list(product_prod(A,B))] : ( map_of(A,B,aa(list(product_prod(A,B)),list(product_prod(A,B)),cons(product_prod(A,B),P2),Ps)) = fun_upd(A,option(B),map_of(A,B,Ps),aa(product_prod(A,B),A,product_fst(A,B),P2),aa(B,option(B),some(B),aa(product_prod(A,B),B,product_snd(A,B),P2))) ) ).
% map_of.simps(2)
tff(fact_7220_upto_Opsimps,axiom,
! [I: int,J: int] :
( pp(aa(product_prod(int,int),bool,accp(product_prod(int,int),upto_rel),aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),I),J)))
=> ( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),I),J))
=> ( upto(I,J) = aa(list(int),list(int),cons(int,I),upto(aa(int,int,aa(int,fun(int,int),plus_plus(int),I),one_one(int)),J)) ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),I),J))
=> ( upto(I,J) = nil(int) ) ) ) ) ).
% upto.psimps
tff(fact_7221_upto_Opelims,axiom,
! [X2: int,Xa: int,Y: list(int)] :
( ( upto(X2,Xa) = Y )
=> ( pp(aa(product_prod(int,int),bool,accp(product_prod(int,int),upto_rel),aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),X2),Xa)))
=> ~ ( ( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),X2),Xa))
=> ( Y = aa(list(int),list(int),cons(int,X2),upto(aa(int,int,aa(int,fun(int,int),plus_plus(int),X2),one_one(int)),Xa)) ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),X2),Xa))
=> ( Y = nil(int) ) ) )
=> ~ pp(aa(product_prod(int,int),bool,accp(product_prod(int,int),upto_rel),aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),X2),Xa))) ) ) ) ).
% upto.pelims
tff(fact_7222_upto__empty,axiom,
! [J: int,I: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),J),I))
=> ( upto(I,J) = nil(int) ) ) ).
% upto_empty
tff(fact_7223_upto__Nil2,axiom,
! [I: int,J: int] :
( ( nil(int) = upto(I,J) )
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),J),I)) ) ).
% upto_Nil2
tff(fact_7224_upto__Nil,axiom,
! [I: int,J: int] :
( ( upto(I,J) = nil(int) )
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),J),I)) ) ).
% upto_Nil
tff(fact_7225_upto__single,axiom,
! [I: int] : ( upto(I,I) = aa(list(int),list(int),cons(int,I),nil(int)) ) ).
% upto_single
tff(fact_7226_nth__upto,axiom,
! [I: int,K: nat,J: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),plus_plus(int),I),aa(nat,int,semiring_1_of_nat(int),K))),J))
=> ( aa(nat,int,nth(int,upto(I,J)),K) = aa(int,int,aa(int,fun(int,int),plus_plus(int),I),aa(nat,int,semiring_1_of_nat(int),K)) ) ) ).
% nth_upto
tff(fact_7227_length__upto,axiom,
! [I: int,J: int] : ( aa(list(int),nat,size_size(list(int)),upto(I,J)) = aa(int,nat,nat2,aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),J),I)),one_one(int))) ) ).
% length_upto
tff(fact_7228_upto__rec__numeral_I1_J,axiom,
! [M: num,N: num] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(num,int,numeral_numeral(int),M)),aa(num,int,numeral_numeral(int),N)))
=> ( upto(aa(num,int,numeral_numeral(int),M),aa(num,int,numeral_numeral(int),N)) = aa(list(int),list(int),cons(int,aa(num,int,numeral_numeral(int),M)),upto(aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(num,int,numeral_numeral(int),M)),one_one(int)),aa(num,int,numeral_numeral(int),N))) ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(num,int,numeral_numeral(int),M)),aa(num,int,numeral_numeral(int),N)))
=> ( upto(aa(num,int,numeral_numeral(int),M),aa(num,int,numeral_numeral(int),N)) = nil(int) ) ) ) ).
% upto_rec_numeral(1)
tff(fact_7229_upto__rec__numeral_I4_J,axiom,
! [M: num,N: num] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),M))),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),N))))
=> ( upto(aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),M)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),N))) = aa(list(int),list(int),cons(int,aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),M))),upto(aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),M))),one_one(int)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),N)))) ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),M))),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),N))))
=> ( upto(aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),M)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),N))) = nil(int) ) ) ) ).
% upto_rec_numeral(4)
tff(fact_7230_upto__rec__numeral_I3_J,axiom,
! [M: num,N: num] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),M))),aa(num,int,numeral_numeral(int),N)))
=> ( upto(aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),M)),aa(num,int,numeral_numeral(int),N)) = aa(list(int),list(int),cons(int,aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),M))),upto(aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),M))),one_one(int)),aa(num,int,numeral_numeral(int),N))) ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),M))),aa(num,int,numeral_numeral(int),N)))
=> ( upto(aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),M)),aa(num,int,numeral_numeral(int),N)) = nil(int) ) ) ) ).
% upto_rec_numeral(3)
tff(fact_7231_upto__rec__numeral_I2_J,axiom,
! [M: num,N: num] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(num,int,numeral_numeral(int),M)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),N))))
=> ( upto(aa(num,int,numeral_numeral(int),M),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),N))) = aa(list(int),list(int),cons(int,aa(num,int,numeral_numeral(int),M)),upto(aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(num,int,numeral_numeral(int),M)),one_one(int)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),N)))) ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(num,int,numeral_numeral(int),M)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),N))))
=> ( upto(aa(num,int,numeral_numeral(int),M),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),N))) = nil(int) ) ) ) ).
% upto_rec_numeral(2)
tff(fact_7232_upto__aux__def,axiom,
! [I: int,J: int,Js: list(int)] : ( upto_aux(I,J,Js) = aa(list(int),list(int),aa(list(int),fun(list(int),list(int)),append(int),upto(I,J)),Js) ) ).
% upto_aux_def
tff(fact_7233_upto__code,axiom,
! [I: int,J: int] : ( upto(I,J) = upto_aux(I,J,nil(int)) ) ).
% upto_code
tff(fact_7234_distinct__upto,axiom,
! [I: int,J: int] : distinct(int,upto(I,J)) ).
% distinct_upto
tff(fact_7235_sorted__wrt__upto,axiom,
! [I: int,J: int] : sorted_wrt(int,ord_less(int),upto(I,J)) ).
% sorted_wrt_upto
tff(fact_7236_atLeastAtMost__upto,axiom,
! [I: int,J: int] : ( set_or1337092689740270186AtMost(int,I,J) = aa(list(int),set(int),set2(int),upto(I,J)) ) ).
% atLeastAtMost_upto
tff(fact_7237_sorted__upto,axiom,
! [M: int,N: int] : sorted_wrt(int,ord_less_eq(int),upto(M,N)) ).
% sorted_upto
tff(fact_7238_upto__split2,axiom,
! [I: int,J: int,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),I),J))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),J),K))
=> ( upto(I,K) = aa(list(int),list(int),aa(list(int),fun(list(int),list(int)),append(int),upto(I,J)),upto(aa(int,int,aa(int,fun(int,int),plus_plus(int),J),one_one(int)),K)) ) ) ) ).
% upto_split2
tff(fact_7239_upto__split1,axiom,
! [I: int,J: int,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),I),J))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),J),K))
=> ( upto(I,K) = aa(list(int),list(int),aa(list(int),fun(list(int),list(int)),append(int),upto(I,aa(int,int,aa(int,fun(int,int),minus_minus(int),J),one_one(int)))),upto(J,K)) ) ) ) ).
% upto_split1
tff(fact_7240_atLeastLessThan__upto,axiom,
! [I: int,J: int] : ( set_or7035219750837199246ssThan(int,I,J) = aa(list(int),set(int),set2(int),upto(I,aa(int,int,aa(int,fun(int,int),minus_minus(int),J),one_one(int)))) ) ).
% atLeastLessThan_upto
tff(fact_7241_greaterThanAtMost__upto,axiom,
! [I: int,J: int] : ( set_or3652927894154168847AtMost(int,I,J) = aa(list(int),set(int),set2(int),upto(aa(int,int,aa(int,fun(int,int),plus_plus(int),I),one_one(int)),J)) ) ).
% greaterThanAtMost_upto
tff(fact_7242_upto_Oelims,axiom,
! [X2: int,Xa: int,Y: list(int)] :
( ( upto(X2,Xa) = Y )
=> ( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),X2),Xa))
=> ( Y = aa(list(int),list(int),cons(int,X2),upto(aa(int,int,aa(int,fun(int,int),plus_plus(int),X2),one_one(int)),Xa)) ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),X2),Xa))
=> ( Y = nil(int) ) ) ) ) ).
% upto.elims
tff(fact_7243_upto_Osimps,axiom,
! [I: int,J: int] :
( ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),I),J))
=> ( upto(I,J) = aa(list(int),list(int),cons(int,I),upto(aa(int,int,aa(int,fun(int,int),plus_plus(int),I),one_one(int)),J)) ) )
& ( ~ pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),I),J))
=> ( upto(I,J) = nil(int) ) ) ) ).
% upto.simps
tff(fact_7244_upto__rec1,axiom,
! [I: int,J: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),I),J))
=> ( upto(I,J) = aa(list(int),list(int),cons(int,I),upto(aa(int,int,aa(int,fun(int,int),plus_plus(int),I),one_one(int)),J)) ) ) ).
% upto_rec1
tff(fact_7245_upto__rec2,axiom,
! [I: int,J: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),I),J))
=> ( upto(I,J) = aa(list(int),list(int),aa(list(int),fun(list(int),list(int)),append(int),upto(I,aa(int,int,aa(int,fun(int,int),minus_minus(int),J),one_one(int)))),aa(list(int),list(int),cons(int,J),nil(int))) ) ) ).
% upto_rec2
tff(fact_7246_greaterThanLessThan__upto,axiom,
! [I: int,J: int] : ( set_or5935395276787703475ssThan(int,I,J) = aa(list(int),set(int),set2(int),upto(aa(int,int,aa(int,fun(int,int),plus_plus(int),I),one_one(int)),aa(int,int,aa(int,fun(int,int),minus_minus(int),J),one_one(int)))) ) ).
% greaterThanLessThan_upto
tff(fact_7247_upto__split3,axiom,
! [I: int,J: int,K: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),I),J))
=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),J),K))
=> ( upto(I,K) = aa(list(int),list(int),aa(list(int),fun(list(int),list(int)),append(int),upto(I,aa(int,int,aa(int,fun(int,int),minus_minus(int),J),one_one(int)))),aa(list(int),list(int),cons(int,J),upto(aa(int,int,aa(int,fun(int,int),plus_plus(int),J),one_one(int)),K))) ) ) ) ).
% upto_split3
tff(fact_7248_UNION__fun__upd,axiom,
! [B: $tType,A: $tType,A3: fun(B,set(A)),I: B,B4: set(A),J4: set(B)] : ( complete_Sup_Sup(set(A),aa(set(B),set(set(A)),image(B,set(A),fun_upd(B,set(A),A3,I,B4)),J4)) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),complete_Sup_Sup(set(A),aa(set(B),set(set(A)),image(B,set(A),A3),aa(set(B),set(B),aa(set(B),fun(set(B),set(B)),minus_minus(set(B)),J4),aa(set(B),set(B),insert(B,I),bot_bot(set(B))))))),if(set(A),member(B,I,J4),B4,bot_bot(set(A)))) ) ).
% UNION_fun_upd
tff(fact_7249_splice_Opinduct,axiom,
! [A: $tType,A0: list(A),A1: list(A),P: fun(list(A),fun(list(A),bool))] :
( pp(aa(product_prod(list(A),list(A)),bool,accp(product_prod(list(A),list(A)),splice_rel(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),A0),A1)))
=> ( ! [Ys3: list(A)] :
( pp(aa(product_prod(list(A),list(A)),bool,accp(product_prod(list(A),list(A)),splice_rel(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),nil(A)),Ys3)))
=> pp(aa(list(A),bool,aa(list(A),fun(list(A),bool),P,nil(A)),Ys3)) )
=> ( ! [X3: A,Xs2: list(A),Ys3: list(A)] :
( pp(aa(product_prod(list(A),list(A)),bool,accp(product_prod(list(A),list(A)),splice_rel(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),aa(list(A),list(A),cons(A,X3),Xs2)),Ys3)))
=> ( pp(aa(list(A),bool,aa(list(A),fun(list(A),bool),P,Ys3),Xs2))
=> pp(aa(list(A),bool,aa(list(A),fun(list(A),bool),P,aa(list(A),list(A),cons(A,X3),Xs2)),Ys3)) ) )
=> pp(aa(list(A),bool,aa(list(A),fun(list(A),bool),P,A0),A1)) ) ) ) ).
% splice.pinduct
tff(fact_7250_set__relcomp,axiom,
! [B: $tType,C: $tType,A: $tType,Xys: list(product_prod(A,C)),Yzs: list(product_prod(C,B))] : ( relcomp(A,C,B,aa(list(product_prod(A,C)),set(product_prod(A,C)),set2(product_prod(A,C)),Xys),aa(list(product_prod(C,B)),set(product_prod(C,B)),set2(product_prod(C,B)),Yzs)) = aa(list(product_prod(A,B)),set(product_prod(A,B)),set2(product_prod(A,B)),concat(product_prod(A,B),aa(list(product_prod(A,C)),list(list(product_prod(A,B))),map(product_prod(A,C),list(product_prod(A,B)),aTP_Lamp_sz(list(product_prod(C,B)),fun(product_prod(A,C),list(product_prod(A,B))),Yzs)),Xys))) ) ).
% set_relcomp
tff(fact_7251_relcomp_Ocases,axiom,
! [A: $tType,C: $tType,B: $tType,A1: A,A22: C,R: set(product_prod(A,B)),S2: set(product_prod(B,C))] :
( pp(member(product_prod(A,C),aa(C,product_prod(A,C),aa(A,fun(C,product_prod(A,C)),product_Pair(A,C),A1),A22),relcomp(A,B,C,R,S2)))
=> ~ ! [B3: B] :
( pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),A1),B3),R))
=> ~ pp(member(product_prod(B,C),aa(C,product_prod(B,C),aa(B,fun(C,product_prod(B,C)),product_Pair(B,C),B3),A22),S2)) ) ) ).
% relcomp.cases
tff(fact_7252_relcomp_Osimps,axiom,
! [A: $tType,C: $tType,B: $tType,A1: A,A22: C,R: set(product_prod(A,B)),S2: set(product_prod(B,C))] :
( pp(member(product_prod(A,C),aa(C,product_prod(A,C),aa(A,fun(C,product_prod(A,C)),product_Pair(A,C),A1),A22),relcomp(A,B,C,R,S2)))
<=> ? [A5: A,B5: B,C3: C] :
( ( A1 = A5 )
& ( A22 = C3 )
& pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),A5),B5),R))
& pp(member(product_prod(B,C),aa(C,product_prod(B,C),aa(B,fun(C,product_prod(B,C)),product_Pair(B,C),B5),C3),S2)) ) ) ).
% relcomp.simps
tff(fact_7253_relcomp_OrelcompI,axiom,
! [A: $tType,C: $tType,B: $tType,A2: A,B2: B,R: set(product_prod(A,B)),C2: C,S2: set(product_prod(B,C))] :
( pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),A2),B2),R))
=> ( pp(member(product_prod(B,C),aa(C,product_prod(B,C),aa(B,fun(C,product_prod(B,C)),product_Pair(B,C),B2),C2),S2))
=> pp(member(product_prod(A,C),aa(C,product_prod(A,C),aa(A,fun(C,product_prod(A,C)),product_Pair(A,C),A2),C2),relcomp(A,B,C,R,S2))) ) ) ).
% relcomp.relcompI
tff(fact_7254_relcompE,axiom,
! [A: $tType,B: $tType,C: $tType,Xz: product_prod(A,B),R: set(product_prod(A,C)),S2: set(product_prod(C,B))] :
( pp(member(product_prod(A,B),Xz,relcomp(A,C,B,R,S2)))
=> ~ ! [X3: A,Y3: C,Z3: B] :
( ( Xz = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),X3),Z3) )
=> ( pp(member(product_prod(A,C),aa(C,product_prod(A,C),aa(A,fun(C,product_prod(A,C)),product_Pair(A,C),X3),Y3),R))
=> ~ pp(member(product_prod(C,B),aa(B,product_prod(C,B),aa(C,fun(B,product_prod(C,B)),product_Pair(C,B),Y3),Z3),S2)) ) ) ) ).
% relcompE
tff(fact_7255_relcompEpair,axiom,
! [A: $tType,B: $tType,C: $tType,A2: A,C2: B,R: set(product_prod(A,C)),S2: set(product_prod(C,B))] :
( pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),A2),C2),relcomp(A,C,B,R,S2)))
=> ~ ! [B3: C] :
( pp(member(product_prod(A,C),aa(C,product_prod(A,C),aa(A,fun(C,product_prod(A,C)),product_Pair(A,C),A2),B3),R))
=> ~ pp(member(product_prod(C,B),aa(B,product_prod(C,B),aa(C,fun(B,product_prod(C,B)),product_Pair(C,B),B3),C2),S2)) ) ) ).
% relcompEpair
tff(fact_7256_relcomp__mono,axiom,
! [A: $tType,C: $tType,B: $tType,R3: set(product_prod(A,B)),R: set(product_prod(A,B)),S7: set(product_prod(B,C)),S2: set(product_prod(B,C))] :
( pp(aa(set(product_prod(A,B)),bool,aa(set(product_prod(A,B)),fun(set(product_prod(A,B)),bool),ord_less_eq(set(product_prod(A,B))),R3),R))
=> ( pp(aa(set(product_prod(B,C)),bool,aa(set(product_prod(B,C)),fun(set(product_prod(B,C)),bool),ord_less_eq(set(product_prod(B,C))),S7),S2))
=> pp(aa(set(product_prod(A,C)),bool,aa(set(product_prod(A,C)),fun(set(product_prod(A,C)),bool),ord_less_eq(set(product_prod(A,C))),relcomp(A,B,C,R3,S7)),relcomp(A,B,C,R,S2))) ) ) ).
% relcomp_mono
tff(fact_7257_min__ext__compat,axiom,
! [A: $tType,R2: set(product_prod(A,A)),S: set(product_prod(A,A))] :
( pp(aa(set(product_prod(A,A)),bool,aa(set(product_prod(A,A)),fun(set(product_prod(A,A)),bool),ord_less_eq(set(product_prod(A,A))),relcomp(A,A,A,R2,S)),R2))
=> pp(aa(set(product_prod(set(A),set(A))),bool,aa(set(product_prod(set(A),set(A))),fun(set(product_prod(set(A),set(A))),bool),ord_less_eq(set(product_prod(set(A),set(A)))),relcomp(set(A),set(A),set(A),min_ext(A,R2),aa(set(product_prod(set(A),set(A))),set(product_prod(set(A),set(A))),aa(set(product_prod(set(A),set(A))),fun(set(product_prod(set(A),set(A))),set(product_prod(set(A),set(A)))),sup_sup(set(product_prod(set(A),set(A)))),min_ext(A,S)),aa(set(product_prod(set(A),set(A))),set(product_prod(set(A),set(A))),insert(product_prod(set(A),set(A)),aa(set(A),product_prod(set(A),set(A)),aa(set(A),fun(set(A),product_prod(set(A),set(A))),product_Pair(set(A),set(A)),bot_bot(set(A))),bot_bot(set(A)))),bot_bot(set(product_prod(set(A),set(A)))))))),min_ext(A,R2))) ) ).
% min_ext_compat
tff(fact_7258_splice_Opelims,axiom,
! [A: $tType,X2: list(A),Xa: list(A),Y: list(A)] :
( ( splice(A,X2,Xa) = Y )
=> ( pp(aa(product_prod(list(A),list(A)),bool,accp(product_prod(list(A),list(A)),splice_rel(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),X2),Xa)))
=> ( ( ( X2 = nil(A) )
=> ( ( Y = Xa )
=> ~ pp(aa(product_prod(list(A),list(A)),bool,accp(product_prod(list(A),list(A)),splice_rel(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),nil(A)),Xa))) ) )
=> ~ ! [X3: A,Xs2: list(A)] :
( ( X2 = aa(list(A),list(A),cons(A,X3),Xs2) )
=> ( ( Y = aa(list(A),list(A),cons(A,X3),splice(A,Xa,Xs2)) )
=> ~ pp(aa(product_prod(list(A),list(A)),bool,accp(product_prod(list(A),list(A)),splice_rel(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),aa(list(A),list(A),cons(A,X3),Xs2)),Xa))) ) ) ) ) ) ).
% splice.pelims
tff(fact_7259_splice__Nil2,axiom,
! [A: $tType,Xs: list(A)] : ( splice(A,Xs,nil(A)) = Xs ) ).
% splice_Nil2
tff(fact_7260_split__Nil__iff,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] :
( ( splice(A,Xs,Ys) = nil(A) )
<=> ( ( Xs = nil(A) )
& ( Ys = nil(A) ) ) ) ).
% split_Nil_iff
tff(fact_7261_splice__in__shuffles,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] : pp(member(list(A),splice(A,Xs,Ys),shuffles(A,Xs,Ys))) ).
% splice_in_shuffles
tff(fact_7262_length__splice,axiom,
! [A: $tType,Xs: list(A),Ys: list(A)] : ( aa(list(A),nat,size_size(list(A)),splice(A,Xs,Ys)) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(list(A),nat,size_size(list(A)),Xs)),aa(list(A),nat,size_size(list(A)),Ys)) ) ).
% length_splice
tff(fact_7263_splice__replicate,axiom,
! [A: $tType,M: nat,X2: A,N: nat] : ( splice(A,replicate(A,M,X2),replicate(A,N,X2)) = replicate(A,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),M),N),X2) ) ).
% splice_replicate
tff(fact_7264_splice_Osimps_I2_J,axiom,
! [A: $tType,X2: A,Xs: list(A),Ys: list(A)] : ( splice(A,aa(list(A),list(A),cons(A,X2),Xs),Ys) = aa(list(A),list(A),cons(A,X2),splice(A,Ys,Xs)) ) ).
% splice.simps(2)
tff(fact_7265_splice_Osimps_I1_J,axiom,
! [A: $tType,Ys: list(A)] : ( splice(A,nil(A),Ys) = Ys ) ).
% splice.simps(1)
tff(fact_7266_splice_Oelims,axiom,
! [A: $tType,X2: list(A),Xa: list(A),Y: list(A)] :
( ( splice(A,X2,Xa) = Y )
=> ( ( ( X2 = nil(A) )
=> ( Y != Xa ) )
=> ~ ! [X3: A,Xs2: list(A)] :
( ( X2 = aa(list(A),list(A),cons(A,X3),Xs2) )
=> ( Y != aa(list(A),list(A),cons(A,X3),splice(A,Xa,Xs2)) ) ) ) ) ).
% splice.elims
tff(fact_7267_splice_Opsimps_I2_J,axiom,
! [A: $tType,X2: A,Xs: list(A),Ys: list(A)] :
( pp(aa(product_prod(list(A),list(A)),bool,accp(product_prod(list(A),list(A)),splice_rel(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),aa(list(A),list(A),cons(A,X2),Xs)),Ys)))
=> ( splice(A,aa(list(A),list(A),cons(A,X2),Xs),Ys) = aa(list(A),list(A),cons(A,X2),splice(A,Ys,Xs)) ) ) ).
% splice.psimps(2)
tff(fact_7268_splice_Opsimps_I1_J,axiom,
! [A: $tType,Ys: list(A)] :
( pp(aa(product_prod(list(A),list(A)),bool,accp(product_prod(list(A),list(A)),splice_rel(A)),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),nil(A)),Ys)))
=> ( splice(A,nil(A),Ys) = Ys ) ) ).
% splice.psimps(1)
tff(fact_7269_max__ext__compat,axiom,
! [A: $tType,R2: set(product_prod(A,A)),S: set(product_prod(A,A))] :
( pp(aa(set(product_prod(A,A)),bool,aa(set(product_prod(A,A)),fun(set(product_prod(A,A)),bool),ord_less_eq(set(product_prod(A,A))),relcomp(A,A,A,R2,S)),R2))
=> pp(aa(set(product_prod(set(A),set(A))),bool,aa(set(product_prod(set(A),set(A))),fun(set(product_prod(set(A),set(A))),bool),ord_less_eq(set(product_prod(set(A),set(A)))),relcomp(set(A),set(A),set(A),max_ext(A,R2),aa(set(product_prod(set(A),set(A))),set(product_prod(set(A),set(A))),aa(set(product_prod(set(A),set(A))),fun(set(product_prod(set(A),set(A))),set(product_prod(set(A),set(A)))),sup_sup(set(product_prod(set(A),set(A)))),max_ext(A,S)),aa(set(product_prod(set(A),set(A))),set(product_prod(set(A),set(A))),insert(product_prod(set(A),set(A)),aa(set(A),product_prod(set(A),set(A)),aa(set(A),fun(set(A),product_prod(set(A),set(A))),product_Pair(set(A),set(A)),bot_bot(set(A))),bot_bot(set(A)))),bot_bot(set(product_prod(set(A),set(A)))))))),max_ext(A,R2))) ) ).
% max_ext_compat
tff(fact_7270_graph__map__upd,axiom,
! [A: $tType,B: $tType,M: fun(A,option(B)),K: A,V: B] : ( graph(A,B,fun_upd(A,option(B),M,K,aa(B,option(B),some(B),V))) = aa(set(product_prod(A,B)),set(product_prod(A,B)),insert(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),K),V)),graph(A,B,fun_upd(A,option(B),M,K,none(B)))) ) ).
% graph_map_upd
tff(fact_7271_graph__empty,axiom,
! [B: $tType,A: $tType] : ( graph(A,B,aTP_Lamp_ol(A,option(B))) = bot_bot(set(product_prod(A,B))) ) ).
% graph_empty
tff(fact_7272_in__graphD,axiom,
! [A: $tType,B: $tType,K: A,V: B,M: fun(A,option(B))] :
( pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),K),V),graph(A,B,M)))
=> ( aa(A,option(B),M,K) = aa(B,option(B),some(B),V) ) ) ).
% in_graphD
tff(fact_7273_in__graphI,axiom,
! [A: $tType,B: $tType,M: fun(B,option(A)),K: B,V: A] :
( ( aa(B,option(A),M,K) = aa(A,option(A),some(A),V) )
=> pp(member(product_prod(B,A),aa(A,product_prod(B,A),aa(B,fun(A,product_prod(B,A)),product_Pair(B,A),K),V),graph(B,A,M))) ) ).
% in_graphI
tff(fact_7274_graph__restrictD_I1_J,axiom,
! [B: $tType,A: $tType,K: A,V: B,M: fun(A,option(B)),A3: set(A)] :
( pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),K),V),graph(A,B,restrict_map(A,B,M,A3))))
=> pp(member(A,K,A3)) ) ).
% graph_restrictD(1)
tff(fact_7275_max__ext__additive,axiom,
! [A: $tType,A3: set(A),B4: set(A),R2: set(product_prod(A,A)),C6: set(A),D5: set(A)] :
( pp(member(product_prod(set(A),set(A)),aa(set(A),product_prod(set(A),set(A)),aa(set(A),fun(set(A),product_prod(set(A),set(A))),product_Pair(set(A),set(A)),A3),B4),max_ext(A,R2)))
=> ( pp(member(product_prod(set(A),set(A)),aa(set(A),product_prod(set(A),set(A)),aa(set(A),fun(set(A),product_prod(set(A),set(A))),product_Pair(set(A),set(A)),C6),D5),max_ext(A,R2)))
=> pp(member(product_prod(set(A),set(A)),aa(set(A),product_prod(set(A),set(A)),aa(set(A),fun(set(A),product_prod(set(A),set(A))),product_Pair(set(A),set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),A3),C6)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),B4),D5)),max_ext(A,R2))) ) ) ).
% max_ext_additive
tff(fact_7276_graph__restrictD_I2_J,axiom,
! [A: $tType,B: $tType,K: A,V: B,M: fun(A,option(B)),A3: set(A)] :
( pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),K),V),graph(A,B,restrict_map(A,B,M,A3))))
=> ( aa(A,option(B),M,K) = aa(B,option(B),some(B),V) ) ) ).
% graph_restrictD(2)
tff(fact_7277_graph__fun__upd__None,axiom,
! [B: $tType,A: $tType,M: fun(A,option(B)),K: A] : ( graph(A,B,fun_upd(A,option(B),M,K,none(B))) = aa(fun(product_prod(A,B),bool),set(product_prod(A,B)),collect(product_prod(A,B)),aa(A,fun(product_prod(A,B),bool),aTP_Lamp_ta(fun(A,option(B)),fun(A,fun(product_prod(A,B),bool)),M),K)) ) ).
% graph_fun_upd_None
tff(fact_7278_max__ext_Ocases,axiom,
! [A: $tType,A1: set(A),A22: set(A),R2: set(product_prod(A,A))] :
( pp(member(product_prod(set(A),set(A)),aa(set(A),product_prod(set(A),set(A)),aa(set(A),fun(set(A),product_prod(set(A),set(A))),product_Pair(set(A),set(A)),A1),A22),max_ext(A,R2)))
=> ~ ( finite_finite(A,A1)
=> ( finite_finite(A,A22)
=> ( ( A22 != bot_bot(set(A)) )
=> ~ ! [X: A] :
( pp(member(A,X,A1))
=> ? [Xa4: A] :
( pp(member(A,Xa4,A22))
& pp(member(product_prod(A,A),aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),X),Xa4),R2)) ) ) ) ) ) ) ).
% max_ext.cases
tff(fact_7279_max__ext_Osimps,axiom,
! [A: $tType,A1: set(A),A22: set(A),R2: set(product_prod(A,A))] :
( pp(member(product_prod(set(A),set(A)),aa(set(A),product_prod(set(A),set(A)),aa(set(A),fun(set(A),product_prod(set(A),set(A))),product_Pair(set(A),set(A)),A1),A22),max_ext(A,R2)))
<=> ( finite_finite(A,A1)
& finite_finite(A,A22)
& ( A22 != bot_bot(set(A)) )
& ! [X4: A] :
( pp(member(A,X4,A1))
=> ? [Xa3: A] :
( pp(member(A,Xa3,A22))
& pp(member(product_prod(A,A),aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),X4),Xa3),R2)) ) ) ) ) ).
% max_ext.simps
tff(fact_7280_max__ext_Omax__extI,axiom,
! [A: $tType,X6: set(A),Y6: set(A),R2: set(product_prod(A,A))] :
( finite_finite(A,X6)
=> ( finite_finite(A,Y6)
=> ( ( Y6 != bot_bot(set(A)) )
=> ( ! [X3: A] :
( pp(member(A,X3,X6))
=> ? [Xa2: A] :
( pp(member(A,Xa2,Y6))
& pp(member(product_prod(A,A),aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),X3),Xa2),R2)) ) )
=> pp(member(product_prod(set(A),set(A)),aa(set(A),product_prod(set(A),set(A)),aa(set(A),fun(set(A),product_prod(set(A),set(A))),product_Pair(set(A),set(A)),X6),Y6),max_ext(A,R2))) ) ) ) ) ).
% max_ext.max_extI
tff(fact_7281_extract__Some__iff,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A),Ys: list(A),Y: A,Zs: list(A)] :
( ( extract(A,P,Xs) = aa(product_prod(list(A),product_prod(A,list(A))),option(product_prod(list(A),product_prod(A,list(A)))),some(product_prod(list(A),product_prod(A,list(A)))),aa(product_prod(A,list(A)),product_prod(list(A),product_prod(A,list(A))),aa(list(A),fun(product_prod(A,list(A)),product_prod(list(A),product_prod(A,list(A)))),product_Pair(list(A),product_prod(A,list(A))),Ys),aa(list(A),product_prod(A,list(A)),aa(A,fun(list(A),product_prod(A,list(A))),product_Pair(A,list(A)),Y),Zs))) )
<=> ( ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys),aa(list(A),list(A),cons(A,Y),Zs)) )
& pp(aa(A,bool,P,Y))
& ~ ? [X4: A] :
( pp(member(A,X4,aa(list(A),set(A),set2(A),Ys)))
& pp(aa(A,bool,P,X4)) ) ) ) ).
% extract_Some_iff
tff(fact_7282_extract__SomeE,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A),Ys: list(A),Y: A,Zs: list(A)] :
( ( extract(A,P,Xs) = aa(product_prod(list(A),product_prod(A,list(A))),option(product_prod(list(A),product_prod(A,list(A)))),some(product_prod(list(A),product_prod(A,list(A)))),aa(product_prod(A,list(A)),product_prod(list(A),product_prod(A,list(A))),aa(list(A),fun(product_prod(A,list(A)),product_prod(list(A),product_prod(A,list(A)))),product_Pair(list(A),product_prod(A,list(A))),Ys),aa(list(A),product_prod(A,list(A)),aa(A,fun(list(A),product_prod(A,list(A))),product_Pair(A,list(A)),Y),Zs))) )
=> ( ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Ys),aa(list(A),list(A),cons(A,Y),Zs)) )
& pp(aa(A,bool,P,Y))
& ~ ? [X: A] :
( pp(member(A,X,aa(list(A),set(A),set2(A),Ys)))
& pp(aa(A,bool,P,X)) ) ) ) ).
% extract_SomeE
tff(fact_7283_extract__None__iff,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] :
( ( extract(A,P,Xs) = none(product_prod(list(A),product_prod(A,list(A)))) )
<=> ~ ? [X4: A] :
( pp(member(A,X4,aa(list(A),set(A),set2(A),Xs)))
& pp(aa(A,bool,P,X4)) ) ) ).
% extract_None_iff
tff(fact_7284_extract__Nil__code,axiom,
! [A: $tType,P: fun(A,bool)] : ( extract(A,P,nil(A)) = none(product_prod(list(A),product_prod(A,list(A)))) ) ).
% extract_Nil_code
tff(fact_7285_extract__Cons__code,axiom,
! [A: $tType,P: fun(A,bool),X2: A,Xs: list(A)] :
( ( pp(aa(A,bool,P,X2))
=> ( extract(A,P,aa(list(A),list(A),cons(A,X2),Xs)) = aa(product_prod(list(A),product_prod(A,list(A))),option(product_prod(list(A),product_prod(A,list(A)))),some(product_prod(list(A),product_prod(A,list(A)))),aa(product_prod(A,list(A)),product_prod(list(A),product_prod(A,list(A))),aa(list(A),fun(product_prod(A,list(A)),product_prod(list(A),product_prod(A,list(A)))),product_Pair(list(A),product_prod(A,list(A))),nil(A)),aa(list(A),product_prod(A,list(A)),aa(A,fun(list(A),product_prod(A,list(A))),product_Pair(A,list(A)),X2),Xs))) ) )
& ( ~ pp(aa(A,bool,P,X2))
=> ( extract(A,P,aa(list(A),list(A),cons(A,X2),Xs)) = case_option(option(product_prod(list(A),product_prod(A,list(A)))),product_prod(list(A),product_prod(A,list(A))),none(product_prod(list(A),product_prod(A,list(A)))),aa(fun(list(A),fun(product_prod(A,list(A)),option(product_prod(list(A),product_prod(A,list(A)))))),fun(product_prod(list(A),product_prod(A,list(A))),option(product_prod(list(A),product_prod(A,list(A))))),product_case_prod(list(A),product_prod(A,list(A)),option(product_prod(list(A),product_prod(A,list(A))))),aTP_Lamp_tc(A,fun(list(A),fun(product_prod(A,list(A)),option(product_prod(list(A),product_prod(A,list(A)))))),X2)),extract(A,P,Xs)) ) ) ) ).
% extract_Cons_code
tff(fact_7286_INF__filter__not__bot,axiom,
! [I6: $tType,A: $tType,B4: set(I6),F4: fun(I6,filter(A))] :
( ! [X7: set(I6)] :
( pp(aa(set(I6),bool,aa(set(I6),fun(set(I6),bool),ord_less_eq(set(I6)),X7),B4))
=> ( finite_finite(I6,X7)
=> ( complete_Inf_Inf(filter(A),aa(set(I6),set(filter(A)),image(I6,filter(A),F4),X7)) != bot_bot(filter(A)) ) ) )
=> ( complete_Inf_Inf(filter(A),aa(set(I6),set(filter(A)),image(I6,filter(A),F4),B4)) != bot_bot(filter(A)) ) ) ).
% INF_filter_not_bot
tff(fact_7287_option_Osimps_I5_J,axiom,
! [B: $tType,A: $tType,F1: B,F22: fun(A,B),X23: A] : ( case_option(B,A,F1,F22,aa(A,option(A),some(A),X23)) = aa(A,B,F22,X23) ) ).
% option.simps(5)
tff(fact_7288_Inf__filter__not__bot,axiom,
! [A: $tType,B4: set(filter(A))] :
( ! [X7: set(filter(A))] :
( pp(aa(set(filter(A)),bool,aa(set(filter(A)),fun(set(filter(A)),bool),ord_less_eq(set(filter(A))),X7),B4))
=> ( finite_finite(filter(A),X7)
=> ( complete_Inf_Inf(filter(A),X7) != bot_bot(filter(A)) ) ) )
=> ( complete_Inf_Inf(filter(A),B4) != bot_bot(filter(A)) ) ) ).
% Inf_filter_not_bot
tff(fact_7289_INF__filter__bot__base,axiom,
! [A: $tType,B: $tType,I5: set(A),F4: fun(A,filter(B))] :
( ! [I3: A] :
( pp(member(A,I3,I5))
=> ! [J2: A] :
( pp(member(A,J2,I5))
=> ? [X: A] :
( pp(member(A,X,I5))
& pp(aa(filter(B),bool,aa(filter(B),fun(filter(B),bool),ord_less_eq(filter(B)),aa(A,filter(B),F4,X)),aa(filter(B),filter(B),aa(filter(B),fun(filter(B),filter(B)),inf_inf(filter(B)),aa(A,filter(B),F4,I3)),aa(A,filter(B),F4,J2)))) ) ) )
=> ( ( complete_Inf_Inf(filter(B),aa(set(A),set(filter(B)),image(A,filter(B),F4),I5)) = bot_bot(filter(B)) )
<=> ? [X4: A] :
( pp(member(A,X4,I5))
& ( aa(A,filter(B),F4,X4) = bot_bot(filter(B)) ) ) ) ) ).
% INF_filter_bot_base
tff(fact_7290_option_Osimps_I4_J,axiom,
! [A: $tType,B: $tType,F1: B,F22: fun(A,B)] : ( case_option(B,A,F1,F22,none(A)) = F1 ) ).
% option.simps(4)
tff(fact_7291_option_Ocase__distrib,axiom,
! [B: $tType,C: $tType,A: $tType,H: fun(B,C),F1: B,F22: fun(A,B),Option: option(A)] : ( aa(B,C,H,case_option(B,A,F1,F22,Option)) = case_option(C,A,aa(B,C,H,F1),aa(fun(A,B),fun(A,C),aTP_Lamp_td(fun(B,C),fun(fun(A,B),fun(A,C)),H),F22),Option) ) ).
% option.case_distrib
tff(fact_7292_extract__def,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] : ( extract(A,P,Xs) = aa(list(A),option(product_prod(list(A),product_prod(A,list(A)))),case_list(option(product_prod(list(A),product_prod(A,list(A)))),A,none(product_prod(list(A),product_prod(A,list(A)))),aa(list(A),fun(A,fun(list(A),option(product_prod(list(A),product_prod(A,list(A)))))),aTP_Lamp_te(fun(A,bool),fun(list(A),fun(A,fun(list(A),option(product_prod(list(A),product_prod(A,list(A))))))),P),Xs)),dropWhile(A,aa(fun(A,bool),fun(A,bool),comp(bool,bool,A,fNot),P),Xs)) ) ).
% extract_def
tff(fact_7293_Id__on__def,axiom,
! [A: $tType,A3: set(A)] : ( id_on(A,A3) = complete_Sup_Sup(set(product_prod(A,A)),aa(set(A),set(set(product_prod(A,A))),image(A,set(product_prod(A,A)),aTP_Lamp_tf(A,set(product_prod(A,A)))),A3)) ) ).
% Id_on_def
tff(fact_7294_dropWhile__idem,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] : ( dropWhile(A,P,dropWhile(A,P,Xs)) = dropWhile(A,P,Xs) ) ).
% dropWhile_idem
tff(fact_7295_Id__onI,axiom,
! [A: $tType,A2: A,A3: set(A)] :
( pp(member(A,A2,A3))
=> pp(member(product_prod(A,A),aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),A2),A2),id_on(A,A3))) ) ).
% Id_onI
tff(fact_7296_dropWhile__eq__Nil__conv,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] :
( ( dropWhile(A,P,Xs) = nil(A) )
<=> ! [X4: A] :
( pp(member(A,X4,aa(list(A),set(A),set2(A),Xs)))
=> pp(aa(A,bool,P,X4)) ) ) ).
% dropWhile_eq_Nil_conv
tff(fact_7297_dropWhile__append1,axiom,
! [A: $tType,X2: A,Xs: list(A),P: fun(A,bool),Ys: list(A)] :
( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ( ~ pp(aa(A,bool,P,X2))
=> ( dropWhile(A,P,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),dropWhile(A,P,Xs)),Ys) ) ) ) ).
% dropWhile_append1
tff(fact_7298_dropWhile__append2,axiom,
! [A: $tType,Xs: list(A),P: fun(A,bool),Ys: list(A)] :
( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),Xs)))
=> pp(aa(A,bool,P,X3)) )
=> ( dropWhile(A,P,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),Ys)) = dropWhile(A,P,Ys) ) ) ).
% dropWhile_append2
tff(fact_7299_dropWhile__replicate,axiom,
! [A: $tType,P: fun(A,bool),X2: A,N: nat] :
( ( pp(aa(A,bool,P,X2))
=> ( dropWhile(A,P,replicate(A,N,X2)) = nil(A) ) )
& ( ~ pp(aa(A,bool,P,X2))
=> ( dropWhile(A,P,replicate(A,N,X2)) = replicate(A,N,X2) ) ) ) ).
% dropWhile_replicate
tff(fact_7300_takeWhile__dropWhile__id,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] : ( aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),takeWhile(A,P,Xs)),dropWhile(A,P,Xs)) = Xs ) ).
% takeWhile_dropWhile_id
tff(fact_7301_less__filter__def,axiom,
! [A: $tType,F4: filter(A),F9: filter(A)] :
( pp(aa(filter(A),bool,aa(filter(A),fun(filter(A),bool),ord_less(filter(A)),F4),F9))
<=> ( pp(aa(filter(A),bool,aa(filter(A),fun(filter(A),bool),ord_less_eq(filter(A)),F4),F9))
& ~ pp(aa(filter(A),bool,aa(filter(A),fun(filter(A),bool),ord_less_eq(filter(A)),F9),F4)) ) ) ).
% less_filter_def
tff(fact_7302_option_Odisc__eq__case_I1_J,axiom,
! [A: $tType,Option: option(A)] :
( ( Option = none(A) )
<=> pp(case_option(bool,A,fTrue,aTP_Lamp_tg(A,bool),Option)) ) ).
% option.disc_eq_case(1)
tff(fact_7303_option_Odisc__eq__case_I2_J,axiom,
! [A: $tType,Option: option(A)] :
( ( Option != none(A) )
<=> pp(case_option(bool,A,fFalse,aTP_Lamp_th(A,bool),Option)) ) ).
% option.disc_eq_case(2)
tff(fact_7304_dropWhile__map,axiom,
! [A: $tType,B: $tType,P: fun(A,bool),F2: fun(B,A),Xs: list(B)] : ( dropWhile(A,P,aa(list(B),list(A),map(B,A,F2),Xs)) = aa(list(B),list(A),map(B,A,F2),dropWhile(B,aa(fun(B,A),fun(B,bool),comp(A,bool,B,P),F2),Xs)) ) ).
% dropWhile_map
tff(fact_7305_set__dropWhileD,axiom,
! [A: $tType,X2: A,P: fun(A,bool),Xs: list(A)] :
( pp(member(A,X2,aa(list(A),set(A),set2(A),dropWhile(A,P,Xs))))
=> pp(member(A,X2,aa(list(A),set(A),set2(A),Xs))) ) ).
% set_dropWhileD
tff(fact_7306_dropWhile__cong,axiom,
! [A: $tType,L: list(A),K: list(A),P: fun(A,bool),Q: fun(A,bool)] :
( ( L = K )
=> ( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),L)))
=> ( pp(aa(A,bool,P,X3))
<=> pp(aa(A,bool,Q,X3)) ) )
=> ( dropWhile(A,P,L) = dropWhile(A,Q,K) ) ) ) ).
% dropWhile_cong
tff(fact_7307_distinct__dropWhile,axiom,
! [A: $tType,Xs: list(A),P: fun(A,bool)] :
( distinct(A,Xs)
=> distinct(A,dropWhile(A,P,Xs)) ) ).
% distinct_dropWhile
tff(fact_7308_dropWhile__append3,axiom,
! [A: $tType,P: fun(A,bool),Y: A,Xs: list(A),Ys: list(A)] :
( ~ pp(aa(A,bool,P,Y))
=> ( dropWhile(A,P,aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Xs),aa(list(A),list(A),cons(A,Y),Ys))) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),dropWhile(A,P,Xs)),aa(list(A),list(A),cons(A,Y),Ys)) ) ) ).
% dropWhile_append3
tff(fact_7309_dropWhile_Osimps_I2_J,axiom,
! [A: $tType,P: fun(A,bool),X2: A,Xs: list(A)] :
( ( pp(aa(A,bool,P,X2))
=> ( dropWhile(A,P,aa(list(A),list(A),cons(A,X2),Xs)) = dropWhile(A,P,Xs) ) )
& ( ~ pp(aa(A,bool,P,X2))
=> ( dropWhile(A,P,aa(list(A),list(A),cons(A,X2),Xs)) = aa(list(A),list(A),cons(A,X2),Xs) ) ) ) ).
% dropWhile.simps(2)
tff(fact_7310_dropWhile_Osimps_I1_J,axiom,
! [A: $tType,P: fun(A,bool)] : ( dropWhile(A,P,nil(A)) = nil(A) ) ).
% dropWhile.simps(1)
tff(fact_7311_hd__dropWhile,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] :
( ( dropWhile(A,P,Xs) != nil(A) )
=> ~ pp(aa(A,bool,P,aa(list(A),A,hd(A),dropWhile(A,P,Xs)))) ) ).
% hd_dropWhile
tff(fact_7312_dropWhile__eq__self__iff,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] :
( ( dropWhile(A,P,Xs) = Xs )
<=> ( ( Xs = nil(A) )
| ~ pp(aa(A,bool,P,aa(list(A),A,hd(A),Xs))) ) ) ).
% dropWhile_eq_self_iff
tff(fact_7313_length__dropWhile__le,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] : pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(list(A),nat,size_size(list(A)),dropWhile(A,P,Xs))),aa(list(A),nat,size_size(list(A)),Xs))) ).
% length_dropWhile_le
tff(fact_7314_sorted__dropWhile,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Xs: list(A),P: fun(A,bool)] :
( sorted_wrt(A,ord_less_eq(A),Xs)
=> sorted_wrt(A,ord_less_eq(A),dropWhile(A,P,Xs)) ) ) ).
% sorted_dropWhile
tff(fact_7315_Id__on__iff,axiom,
! [A: $tType,X2: A,Y: A,A3: set(A)] :
( pp(member(product_prod(A,A),aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),X2),Y),id_on(A,A3)))
<=> ( ( X2 = Y )
& pp(member(A,X2,A3)) ) ) ).
% Id_on_iff
tff(fact_7316_Id__on__eqI,axiom,
! [A: $tType,A2: A,B2: A,A3: set(A)] :
( ( A2 = B2 )
=> ( pp(member(A,A2,A3))
=> pp(member(product_prod(A,A),aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),A2),B2),id_on(A,A3))) ) ) ).
% Id_on_eqI
tff(fact_7317_Id__onE,axiom,
! [A: $tType,C2: product_prod(A,A),A3: set(A)] :
( pp(member(product_prod(A,A),C2,id_on(A,A3)))
=> ~ ! [X3: A] :
( pp(member(A,X3,A3))
=> ( C2 != aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),X3),X3) ) ) ) ).
% Id_onE
tff(fact_7318_case__optionE,axiom,
! [A: $tType,P: bool,Q: fun(A,bool),X2: option(A)] :
( pp(case_option(bool,A,P,Q,X2))
=> ( ( ( X2 = none(A) )
=> ~ pp(P) )
=> ~ ! [Y3: A] :
( ( X2 = aa(A,option(A),some(A),Y3) )
=> ~ pp(aa(A,bool,Q,Y3)) ) ) ) ).
% case_optionE
tff(fact_7319_dropWhile__eq__Cons__conv,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A),Y: A,Ys: list(A)] :
( ( dropWhile(A,P,Xs) = aa(list(A),list(A),cons(A,Y),Ys) )
<=> ( ( Xs = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),takeWhile(A,P,Xs)),aa(list(A),list(A),cons(A,Y),Ys)) )
& ~ pp(aa(A,bool,P,Y)) ) ) ).
% dropWhile_eq_Cons_conv
tff(fact_7320_takeWhile__eq__filter,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] :
( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),dropWhile(A,P,Xs))))
=> ~ pp(aa(A,bool,P,X3)) )
=> ( takeWhile(A,P,Xs) = aa(list(A),list(A),filter2(A,P),Xs) ) ) ).
% takeWhile_eq_filter
tff(fact_7321_map__filter__simps_I1_J,axiom,
! [A: $tType,B: $tType,F2: fun(B,option(A)),X2: B,Xs: list(B)] : ( map_filter(B,A,F2,aa(list(B),list(B),cons(B,X2),Xs)) = case_option(list(A),A,map_filter(B,A,F2,Xs),aa(list(B),fun(A,list(A)),aTP_Lamp_ti(fun(B,option(A)),fun(list(B),fun(A,list(A))),F2),Xs),aa(B,option(A),F2,X2)) ) ).
% map_filter_simps(1)
tff(fact_7322_dropWhile__nth,axiom,
! [A: $tType,J: nat,P: fun(A,bool),Xs: list(A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J),aa(list(A),nat,size_size(list(A)),dropWhile(A,P,Xs))))
=> ( aa(nat,A,nth(A,dropWhile(A,P,Xs)),J) = aa(nat,A,nth(A,Xs),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),J),aa(list(A),nat,size_size(list(A)),takeWhile(A,P,Xs)))) ) ) ).
% dropWhile_nth
tff(fact_7323_dropWhile__neq__rev,axiom,
! [A: $tType,Xs: list(A),X2: A] :
( distinct(A,Xs)
=> ( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ( dropWhile(A,aTP_Lamp_oz(A,fun(A,bool),X2),aa(list(A),list(A),rev(A),Xs)) = aa(list(A),list(A),cons(A,X2),aa(list(A),list(A),rev(A),takeWhile(A,aTP_Lamp_oz(A,fun(A,bool),X2),Xs))) ) ) ) ).
% dropWhile_neq_rev
tff(fact_7324_takeWhile__neq__rev,axiom,
! [A: $tType,Xs: list(A),X2: A] :
( distinct(A,Xs)
=> ( pp(member(A,X2,aa(list(A),set(A),set2(A),Xs)))
=> ( takeWhile(A,aTP_Lamp_oz(A,fun(A,bool),X2),aa(list(A),list(A),rev(A),Xs)) = aa(list(A),list(A),rev(A),aa(list(A),list(A),tl(A),dropWhile(A,aTP_Lamp_oz(A,fun(A,bool),X2),Xs))) ) ) ) ).
% takeWhile_neq_rev
tff(fact_7325_Id__on__set,axiom,
! [A: $tType,Xs: list(A)] : ( id_on(A,aa(list(A),set(A),set2(A),Xs)) = aa(list(product_prod(A,A)),set(product_prod(A,A)),set2(product_prod(A,A)),aa(list(A),list(product_prod(A,A)),map(A,product_prod(A,A),aTP_Lamp_nr(A,product_prod(A,A))),Xs)) ) ).
% Id_on_set
tff(fact_7326_take__bit__numeral__minus__numeral__int,axiom,
! [M: num,N: num] : ( aa(int,int,bit_se2584673776208193580ke_bit(int,aa(num,nat,numeral_numeral(nat),M)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),N))) = case_option(int,num,zero_zero(int),aTP_Lamp_tj(num,fun(num,int),M),bit_take_bit_num(aa(num,nat,numeral_numeral(nat),M),N)) ) ).
% take_bit_numeral_minus_numeral_int
tff(fact_7327_find__dropWhile,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] : ( find(A,P,Xs) = aa(list(A),option(A),case_list(option(A),A,none(A),aTP_Lamp_tk(A,fun(list(A),option(A)))),dropWhile(A,aa(fun(A,bool),fun(A,bool),comp(bool,bool,A,fNot),P),Xs)) ) ).
% find_dropWhile
tff(fact_7328_take__bit__num__simps_I1_J,axiom,
! [M: num] : ( bit_take_bit_num(zero_zero(nat),M) = none(num) ) ).
% take_bit_num_simps(1)
tff(fact_7329_take__bit__num__simps_I2_J,axiom,
! [N: nat] : ( bit_take_bit_num(aa(nat,nat,suc,N),one2) = aa(num,option(num),some(num),one2) ) ).
% take_bit_num_simps(2)
tff(fact_7330_take__bit__num__simps_I5_J,axiom,
! [R: num] : ( bit_take_bit_num(aa(num,nat,numeral_numeral(nat),R),one2) = aa(num,option(num),some(num),one2) ) ).
% take_bit_num_simps(5)
tff(fact_7331_take__bit__num__simps_I3_J,axiom,
! [N: nat,M: num] : ( bit_take_bit_num(aa(nat,nat,suc,N),bit0(M)) = case_option(option(num),num,none(num),aTP_Lamp_tl(num,option(num)),bit_take_bit_num(N,M)) ) ).
% take_bit_num_simps(3)
tff(fact_7332_take__bit__num__simps_I4_J,axiom,
! [N: nat,M: num] : ( bit_take_bit_num(aa(nat,nat,suc,N),aa(num,num,bit1,M)) = aa(num,option(num),some(num),case_option(num,num,one2,bit1,bit_take_bit_num(N,M))) ) ).
% take_bit_num_simps(4)
tff(fact_7333_take__bit__num__simps_I6_J,axiom,
! [R: num,M: num] : ( bit_take_bit_num(aa(num,nat,numeral_numeral(nat),R),bit0(M)) = case_option(option(num),num,none(num),aTP_Lamp_tl(num,option(num)),bit_take_bit_num(pred_numeral(R),M)) ) ).
% take_bit_num_simps(6)
tff(fact_7334_take__bit__num__simps_I7_J,axiom,
! [R: num,M: num] : ( bit_take_bit_num(aa(num,nat,numeral_numeral(nat),R),aa(num,num,bit1,M)) = aa(num,option(num),some(num),case_option(num,num,one2,bit1,bit_take_bit_num(pred_numeral(R),M))) ) ).
% take_bit_num_simps(7)
tff(fact_7335_take__bit__numeral__numeral,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [M: num,N: num] : ( aa(A,A,bit_se2584673776208193580ke_bit(A,aa(num,nat,numeral_numeral(nat),M)),aa(num,A,numeral_numeral(A),N)) = case_option(A,num,zero_zero(A),numeral_numeral(A),bit_take_bit_num(aa(num,nat,numeral_numeral(nat),M),N)) ) ) ).
% take_bit_numeral_numeral
tff(fact_7336_Code__Abstract__Nat_Otake__bit__num__code_I2_J,axiom,
! [N: nat,M: num] : ( bit_take_bit_num(N,bit0(M)) = case_nat(option(num),none(num),aTP_Lamp_tm(num,fun(nat,option(num)),M),N) ) ).
% Code_Abstract_Nat.take_bit_num_code(2)
tff(fact_7337_take__bit__num__eq__Some__imp,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [M: nat,N: num,Q2: num] :
( ( bit_take_bit_num(M,N) = aa(num,option(num),some(num),Q2) )
=> ( aa(A,A,bit_se2584673776208193580ke_bit(A,M),aa(num,A,numeral_numeral(A),N)) = aa(num,A,numeral_numeral(A),Q2) ) ) ) ).
% take_bit_num_eq_Some_imp
tff(fact_7338_find__cong,axiom,
! [A: $tType,Xs: list(A),Ys: list(A),P: fun(A,bool),Q: fun(A,bool)] :
( ( Xs = Ys )
=> ( ! [X3: A] :
( pp(member(A,X3,aa(list(A),set(A),set2(A),Ys)))
=> ( pp(aa(A,bool,P,X3))
<=> pp(aa(A,bool,Q,X3)) ) )
=> ( find(A,P,Xs) = find(A,Q,Ys) ) ) ) ).
% find_cong
tff(fact_7339_Code__Abstract__Nat_Otake__bit__num__code_I1_J,axiom,
! [N: nat] : ( bit_take_bit_num(N,one2) = case_nat(option(num),none(num),aTP_Lamp_tn(nat,option(num)),N) ) ).
% Code_Abstract_Nat.take_bit_num_code(1)
tff(fact_7340_Code__Abstract__Nat_Otake__bit__num__code_I3_J,axiom,
! [N: nat,M: num] : ( bit_take_bit_num(N,aa(num,num,bit1,M)) = case_nat(option(num),none(num),aTP_Lamp_to(num,fun(nat,option(num)),M),N) ) ).
% Code_Abstract_Nat.take_bit_num_code(3)
tff(fact_7341_find_Osimps_I2_J,axiom,
! [A: $tType,P: fun(A,bool),X2: A,Xs: list(A)] :
( ( pp(aa(A,bool,P,X2))
=> ( find(A,P,aa(list(A),list(A),cons(A,X2),Xs)) = aa(A,option(A),some(A),X2) ) )
& ( ~ pp(aa(A,bool,P,X2))
=> ( find(A,P,aa(list(A),list(A),cons(A,X2),Xs)) = find(A,P,Xs) ) ) ) ).
% find.simps(2)
tff(fact_7342_find_Osimps_I1_J,axiom,
! [A: $tType,Uu2: fun(A,bool)] : ( find(A,Uu2,nil(A)) = none(A) ) ).
% find.simps(1)
tff(fact_7343_find__None__iff,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] :
( ( find(A,P,Xs) = none(A) )
<=> ~ ? [X4: A] :
( pp(member(A,X4,aa(list(A),set(A),set2(A),Xs)))
& pp(aa(A,bool,P,X4)) ) ) ).
% find_None_iff
tff(fact_7344_find__None__iff2,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] :
( ( none(A) = find(A,P,Xs) )
<=> ~ ? [X4: A] :
( pp(member(A,X4,aa(list(A),set(A),set2(A),Xs)))
& pp(aa(A,bool,P,X4)) ) ) ).
% find_None_iff2
tff(fact_7345_take__bit__num__eq__None__imp,axiom,
! [A: $tType] :
( bit_se359711467146920520ations(A)
=> ! [M: nat,N: num] :
( ( bit_take_bit_num(M,N) = none(num) )
=> ( aa(A,A,bit_se2584673776208193580ke_bit(A,M),aa(num,A,numeral_numeral(A),N)) = zero_zero(A) ) ) ) ).
% take_bit_num_eq_None_imp
tff(fact_7346_take__bit__num__def,axiom,
! [N: nat,M: num] :
( ( ( aa(nat,nat,bit_se2584673776208193580ke_bit(nat,N),aa(num,nat,numeral_numeral(nat),M)) = zero_zero(nat) )
=> ( bit_take_bit_num(N,M) = none(num) ) )
& ( ( aa(nat,nat,bit_se2584673776208193580ke_bit(nat,N),aa(num,nat,numeral_numeral(nat),M)) != zero_zero(nat) )
=> ( bit_take_bit_num(N,M) = aa(num,option(num),some(num),aa(nat,num,num_of_nat,aa(nat,nat,bit_se2584673776208193580ke_bit(nat,N),aa(num,nat,numeral_numeral(nat),M)))) ) ) ) ).
% take_bit_num_def
tff(fact_7347_find__Some__iff,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A),X2: A] :
( ( find(A,P,Xs) = aa(A,option(A),some(A),X2) )
<=> ? [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I4),aa(list(A),nat,size_size(list(A)),Xs)))
& pp(aa(A,bool,P,aa(nat,A,nth(A,Xs),I4)))
& ( X2 = aa(nat,A,nth(A,Xs),I4) )
& ! [J3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J3),I4))
=> ~ pp(aa(A,bool,P,aa(nat,A,nth(A,Xs),J3))) ) ) ) ).
% find_Some_iff
tff(fact_7348_find__Some__iff2,axiom,
! [A: $tType,X2: A,P: fun(A,bool),Xs: list(A)] :
( ( aa(A,option(A),some(A),X2) = find(A,P,Xs) )
<=> ? [I4: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),I4),aa(list(A),nat,size_size(list(A)),Xs)))
& pp(aa(A,bool,P,aa(nat,A,nth(A,Xs),I4)))
& ( X2 = aa(nat,A,nth(A,Xs),I4) )
& ! [J3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),J3),I4))
=> ~ pp(aa(A,bool,P,aa(nat,A,nth(A,Xs),J3))) ) ) ) ).
% find_Some_iff2
tff(fact_7349_and__minus__numerals_I3_J,axiom,
! [M: num,N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(num,int,numeral_numeral(int),M)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),bit0(N)))) = case_option(int,num,zero_zero(int),numeral_numeral(int),bit_and_not_num(M,bitM(N))) ) ).
% and_minus_numerals(3)
tff(fact_7350_and__minus__numerals_I7_J,axiom,
! [N: num,M: num] : ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),bit0(N)))),aa(num,int,numeral_numeral(int),M)) = case_option(int,num,zero_zero(int),numeral_numeral(int),bit_and_not_num(M,bitM(N))) ) ).
% and_minus_numerals(7)
tff(fact_7351_and__minus__numerals_I4_J,axiom,
! [M: num,N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(num,int,numeral_numeral(int),M)),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,N)))) = case_option(int,num,zero_zero(int),numeral_numeral(int),bit_and_not_num(M,bit0(N))) ) ).
% and_minus_numerals(4)
tff(fact_7352_and__minus__numerals_I8_J,axiom,
! [N: num,M: num] : ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(int,int,uminus_uminus(int),aa(num,int,numeral_numeral(int),aa(num,num,bit1,N)))),aa(num,int,numeral_numeral(int),M)) = case_option(int,num,zero_zero(int),numeral_numeral(int),bit_and_not_num(M,bit0(N))) ) ).
% and_minus_numerals(8)
tff(fact_7353_and__not__num_Osimps_I1_J,axiom,
bit_and_not_num(one2,one2) = none(num) ).
% and_not_num.simps(1)
tff(fact_7354_and__not__num_Osimps_I3_J,axiom,
! [N: num] : ( bit_and_not_num(one2,aa(num,num,bit1,N)) = none(num) ) ).
% and_not_num.simps(3)
tff(fact_7355_and__not__num_Osimps_I4_J,axiom,
! [M: num] : ( bit_and_not_num(bit0(M),one2) = aa(num,option(num),some(num),bit0(M)) ) ).
% and_not_num.simps(4)
tff(fact_7356_and__not__num_Osimps_I2_J,axiom,
! [N: num] : ( bit_and_not_num(one2,bit0(N)) = aa(num,option(num),some(num),one2) ) ).
% and_not_num.simps(2)
tff(fact_7357_and__not__num_Osimps_I7_J,axiom,
! [M: num] : ( bit_and_not_num(aa(num,num,bit1,M),one2) = aa(num,option(num),some(num),bit0(M)) ) ).
% and_not_num.simps(7)
tff(fact_7358_and__not__num__eq__Some__iff,axiom,
! [M: num,N: num,Q2: num] :
( ( bit_and_not_num(M,N) = aa(num,option(num),some(num),Q2) )
<=> ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(num,int,numeral_numeral(int),M)),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),N))) = aa(num,int,numeral_numeral(int),Q2) ) ) ).
% and_not_num_eq_Some_iff
tff(fact_7359_and__not__num_Osimps_I8_J,axiom,
! [M: num,N: num] : ( bit_and_not_num(aa(num,num,bit1,M),bit0(N)) = case_option(option(num),num,aa(num,option(num),some(num),one2),aTP_Lamp_tp(num,option(num)),bit_and_not_num(M,N)) ) ).
% and_not_num.simps(8)
tff(fact_7360_and__not__num__eq__None__iff,axiom,
! [M: num,N: num] :
( ( bit_and_not_num(M,N) = none(num) )
<=> ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(num,int,numeral_numeral(int),M)),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),N))) = zero_zero(int) ) ) ).
% and_not_num_eq_None_iff
tff(fact_7361_int__numeral__and__not__num,axiom,
! [M: num,N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(num,int,numeral_numeral(int),M)),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),N))) = case_option(int,num,zero_zero(int),numeral_numeral(int),bit_and_not_num(M,N)) ) ).
% int_numeral_and_not_num
tff(fact_7362_int__numeral__not__and__num,axiom,
! [M: num,N: num] : ( aa(int,int,aa(int,fun(int,int),bit_se5824344872417868541ns_and(int),aa(int,int,bit_ri4277139882892585799ns_not(int),aa(num,int,numeral_numeral(int),M))),aa(num,int,numeral_numeral(int),N)) = case_option(int,num,zero_zero(int),numeral_numeral(int),bit_and_not_num(N,M)) ) ).
% int_numeral_not_and_num
tff(fact_7363_Bit__Operations_Otake__bit__num__code,axiom,
! [N: nat,M: num] : ( bit_take_bit_num(N,M) = aa(product_prod(nat,num),option(num),aa(fun(nat,fun(num,option(num))),fun(product_prod(nat,num),option(num)),product_case_prod(nat,num,option(num)),aTP_Lamp_tt(nat,fun(num,option(num)))),aa(num,product_prod(nat,num),aa(nat,fun(num,product_prod(nat,num)),product_Pair(nat,num),N),M)) ) ).
% Bit_Operations.take_bit_num_code
tff(fact_7364_partition__filter__conv,axiom,
! [A: $tType,F2: fun(A,bool),Xs: list(A)] : ( partition(A,F2,Xs) = aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),aa(list(A),list(A),filter2(A,F2),Xs)),aa(list(A),list(A),filter2(A,aa(fun(A,bool),fun(A,bool),comp(bool,bool,A,fNot),F2)),Xs)) ) ).
% partition_filter_conv
tff(fact_7365_verit__eq__simplify_I18_J,axiom,
! [A: $tType,F1: A,F22: fun(num,A),F32: fun(num,A),X33: num] : ( case_num(A,F1,F22,F32,aa(num,num,bit1,X33)) = aa(num,A,F32,X33) ) ).
% verit_eq_simplify(18)
tff(fact_7366_verit__eq__simplify_I17_J,axiom,
! [A: $tType,F1: A,F22: fun(num,A),F32: fun(num,A),X23: num] : ( case_num(A,F1,F22,F32,bit0(X23)) = aa(num,A,F22,X23) ) ).
% verit_eq_simplify(17)
tff(fact_7367_verit__eq__simplify_I16_J,axiom,
! [A: $tType,F1: A,F22: fun(num,A),F32: fun(num,A)] : ( case_num(A,F1,F22,F32,one2) = F1 ) ).
% verit_eq_simplify(16)
tff(fact_7368_num_Ocase__distrib,axiom,
! [A: $tType,B: $tType,H: fun(A,B),F1: A,F22: fun(num,A),F32: fun(num,A),Num: num] : ( aa(A,B,H,case_num(A,F1,F22,F32,Num)) = case_num(B,aa(A,B,H,F1),aa(fun(num,A),fun(num,B),aTP_Lamp_tu(fun(A,B),fun(fun(num,A),fun(num,B)),H),F22),aa(fun(num,A),fun(num,B),aTP_Lamp_tu(fun(A,B),fun(fun(num,A),fun(num,B)),H),F32),Num) ) ).
% num.case_distrib
tff(fact_7369_partition__filter1,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] : ( aa(product_prod(list(A),list(A)),list(A),product_fst(list(A),list(A)),partition(A,P,Xs)) = aa(list(A),list(A),filter2(A,P),Xs) ) ).
% partition_filter1
tff(fact_7370_partition_Osimps_I1_J,axiom,
! [A: $tType,P: fun(A,bool)] : ( partition(A,P,nil(A)) = aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),nil(A)),nil(A)) ) ).
% partition.simps(1)
tff(fact_7371_partition__P,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A),Yes: list(A),No: list(A)] :
( ( partition(A,P,Xs) = aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),Yes),No) )
=> ( ! [X: A] :
( pp(member(A,X,aa(list(A),set(A),set2(A),Yes)))
=> pp(aa(A,bool,P,X)) )
& ! [X: A] :
( pp(member(A,X,aa(list(A),set(A),set2(A),No)))
=> ~ pp(aa(A,bool,P,X)) ) ) ) ).
% partition_P
tff(fact_7372_partition_Osimps_I2_J,axiom,
! [A: $tType,P: fun(A,bool),X2: A,Xs: list(A)] : ( partition(A,P,aa(list(A),list(A),cons(A,X2),Xs)) = aa(product_prod(list(A),list(A)),product_prod(list(A),list(A)),aa(fun(list(A),fun(list(A),product_prod(list(A),list(A)))),fun(product_prod(list(A),list(A)),product_prod(list(A),list(A))),product_case_prod(list(A),list(A),product_prod(list(A),list(A))),aa(A,fun(list(A),fun(list(A),product_prod(list(A),list(A)))),aTP_Lamp_tv(fun(A,bool),fun(A,fun(list(A),fun(list(A),product_prod(list(A),list(A))))),P),X2)),partition(A,P,Xs)) ) ).
% partition.simps(2)
tff(fact_7373_partition__filter2,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A)] : ( aa(product_prod(list(A),list(A)),list(A),product_snd(list(A),list(A)),partition(A,P,Xs)) = aa(list(A),list(A),filter2(A,aa(fun(A,bool),fun(A,bool),comp(bool,bool,A,fNot),P)),Xs) ) ).
% partition_filter2
tff(fact_7374_partition__set,axiom,
! [A: $tType,P: fun(A,bool),Xs: list(A),Yes: list(A),No: list(A)] :
( ( partition(A,P,Xs) = aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),Yes),No) )
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),aa(list(A),set(A),set2(A),Yes)),aa(list(A),set(A),set2(A),No)) = aa(list(A),set(A),set2(A),Xs) ) ) ).
% partition_set
tff(fact_7375_DERIV__real__root__generic,axiom,
! [N: nat,X2: real,D5: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( ( X2 != zero_zero(real) )
=> ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( D5 = aa(real,real,inverse_inverse(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N)),aa(nat,real,power_power(real,aa(real,real,root(N),X2)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(nat,nat,suc,zero_zero(nat)))))) ) ) )
=> ( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),zero_zero(real)))
=> ( D5 = aa(real,real,uminus_uminus(real),aa(real,real,inverse_inverse(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N)),aa(nat,real,power_power(real,aa(real,real,root(N),X2)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(nat,nat,suc,zero_zero(nat))))))) ) ) )
=> ( ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( D5 = aa(real,real,inverse_inverse(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N)),aa(nat,real,power_power(real,aa(real,real,root(N),X2)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(nat,nat,suc,zero_zero(nat)))))) ) )
=> has_field_derivative(real,root(N),D5,topolo174197925503356063within(real,X2,top_top(set(real)))) ) ) ) ) ) ).
% DERIV_real_root_generic
tff(fact_7376_DERIV__even__real__root,axiom,
! [N: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),zero_zero(real)))
=> has_field_derivative(real,root(N),aa(real,real,inverse_inverse(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,uminus_uminus(real),aa(nat,real,semiring_1_of_nat(real),N))),aa(nat,real,power_power(real,aa(real,real,root(N),X2)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(nat,nat,suc,zero_zero(nat)))))),topolo174197925503356063within(real,X2,top_top(set(real)))) ) ) ) ).
% DERIV_even_real_root
tff(fact_7377_termdiffs__strong__converges__everywhere,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [C2: fun(nat,A),X2: A] :
( ! [Y3: A] : summable(A,aa(A,fun(nat,A),aTP_Lamp_ci(fun(nat,A),fun(A,fun(nat,A)),C2),Y3))
=> has_field_derivative(A,aTP_Lamp_tw(fun(nat,A),fun(A,A),C2),suminf(A,aa(A,fun(nat,A),aTP_Lamp_cj(fun(nat,A),fun(A,fun(nat,A)),C2),X2)),topolo174197925503356063within(A,X2,top_top(set(A)))) ) ) ).
% termdiffs_strong_converges_everywhere
tff(fact_7378_at__within__Icc__at,axiom,
! [A: $tType] :
( topolo2564578578187576103pology(A)
=> ! [A2: A,X2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),X2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),B2))
=> ( topolo174197925503356063within(A,X2,set_or1337092689740270186AtMost(A,A2,B2)) = topolo174197925503356063within(A,X2,top_top(set(A))) ) ) ) ) ).
% at_within_Icc_at
tff(fact_7379_DERIV__neg__imp__decreasing,axiom,
! [A2: real,B2: real,F2: fun(real,real)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),B2))
=> ( ! [X3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),X3))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X3),B2))
=> ? [Y4: real] :
( has_field_derivative(real,F2,Y4,topolo174197925503356063within(real,X3,top_top(set(real))))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y4),zero_zero(real))) ) ) )
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,F2,B2)),aa(real,real,F2,A2))) ) ) ).
% DERIV_neg_imp_decreasing
tff(fact_7380_DERIV__pos__imp__increasing,axiom,
! [A2: real,B2: real,F2: fun(real,real)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),B2))
=> ( ! [X3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),X3))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X3),B2))
=> ? [Y4: real] :
( has_field_derivative(real,F2,Y4,topolo174197925503356063within(real,X3,top_top(set(real))))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),Y4)) ) ) )
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,F2,A2)),aa(real,real,F2,B2))) ) ) ).
% DERIV_pos_imp_increasing
tff(fact_7381_MVT2,axiom,
! [A2: real,B2: real,F2: fun(real,real),F8: fun(real,real)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),B2))
=> ( ! [X3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),X3))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X3),B2))
=> has_field_derivative(real,F2,aa(real,real,F8,X3),topolo174197925503356063within(real,X3,top_top(set(real)))) ) )
=> ? [Z3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),Z3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Z3),B2))
& ( aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,F2,B2)),aa(real,real,F2,A2)) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),B2),A2)),aa(real,real,F8,Z3)) ) ) ) ) ).
% MVT2
tff(fact_7382_DERIV__local__min,axiom,
! [F2: fun(real,real),L: real,X2: real,D2: real] :
( has_field_derivative(real,F2,L,topolo174197925503356063within(real,X2,top_top(set(real))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D2))
=> ( ! [Y3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),X2),Y3))),D2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,F2,X2)),aa(real,real,F2,Y3))) )
=> ( L = zero_zero(real) ) ) ) ) ).
% DERIV_local_min
tff(fact_7383_DERIV__local__max,axiom,
! [F2: fun(real,real),L: real,X2: real,D2: real] :
( has_field_derivative(real,F2,L,topolo174197925503356063within(real,X2,top_top(set(real))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D2))
=> ( ! [Y3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),X2),Y3))),D2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,F2,Y3)),aa(real,real,F2,X2))) )
=> ( L = zero_zero(real) ) ) ) ) ).
% DERIV_local_max
tff(fact_7384_has__real__derivative__pos__inc__left,axiom,
! [F2: fun(real,real),L: real,X2: real,S: set(real)] :
( has_field_derivative(real,F2,L,topolo174197925503356063within(real,X2,S))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),L))
=> ? [D3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D3))
& ! [H5: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),H5))
=> ( pp(member(real,aa(real,real,aa(real,fun(real,real),minus_minus(real),X2),H5),S))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),H5),D3))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,F2,aa(real,real,aa(real,fun(real,real),minus_minus(real),X2),H5))),aa(real,real,F2,X2))) ) ) ) ) ) ) ).
% has_real_derivative_pos_inc_left
tff(fact_7385_has__real__derivative__neg__dec__left,axiom,
! [F2: fun(real,real),L: real,X2: real,S: set(real)] :
( has_field_derivative(real,F2,L,topolo174197925503356063within(real,X2,S))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),L),zero_zero(real)))
=> ? [D3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D3))
& ! [H5: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),H5))
=> ( pp(member(real,aa(real,real,aa(real,fun(real,real),minus_minus(real),X2),H5),S))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),H5),D3))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,F2,X2)),aa(real,real,F2,aa(real,real,aa(real,fun(real,real),minus_minus(real),X2),H5)))) ) ) ) ) ) ) ).
% has_real_derivative_neg_dec_left
tff(fact_7386_has__real__derivative__pos__inc__right,axiom,
! [F2: fun(real,real),L: real,X2: real,S: set(real)] :
( has_field_derivative(real,F2,L,topolo174197925503356063within(real,X2,S))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),L))
=> ? [D3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D3))
& ! [H5: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),H5))
=> ( pp(member(real,aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),H5),S))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),H5),D3))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,F2,X2)),aa(real,real,F2,aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),H5)))) ) ) ) ) ) ) ).
% has_real_derivative_pos_inc_right
tff(fact_7387_has__real__derivative__neg__dec__right,axiom,
! [F2: fun(real,real),L: real,X2: real,S: set(real)] :
( has_field_derivative(real,F2,L,topolo174197925503356063within(real,X2,S))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),L),zero_zero(real)))
=> ? [D3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D3))
& ! [H5: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),H5))
=> ( pp(member(real,aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),H5),S))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),H5),D3))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,F2,aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),H5))),aa(real,real,F2,X2))) ) ) ) ) ) ) ).
% has_real_derivative_neg_dec_right
tff(fact_7388_DERIV__isconst3,axiom,
! [A2: real,B2: real,X2: real,Y: real,F2: fun(real,real)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),B2))
=> ( pp(member(real,X2,set_or5935395276787703475ssThan(real,A2,B2)))
=> ( pp(member(real,Y,set_or5935395276787703475ssThan(real,A2,B2)))
=> ( ! [X3: real] :
( pp(member(real,X3,set_or5935395276787703475ssThan(real,A2,B2)))
=> has_field_derivative(real,F2,zero_zero(real),topolo174197925503356063within(real,X3,top_top(set(real)))) )
=> ( aa(real,real,F2,X2) = aa(real,real,F2,Y) ) ) ) ) ) ).
% DERIV_isconst3
tff(fact_7389_DERIV__local__const,axiom,
! [F2: fun(real,real),L: real,X2: real,D2: real] :
( has_field_derivative(real,F2,L,topolo174197925503356063within(real,X2,top_top(set(real))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D2))
=> ( ! [Y3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),X2),Y3))),D2))
=> ( aa(real,real,F2,X2) = aa(real,real,F2,Y3) ) )
=> ( L = zero_zero(real) ) ) ) ) ).
% DERIV_local_const
tff(fact_7390_DERIV__pos__inc__left,axiom,
! [F2: fun(real,real),L: real,X2: real] :
( has_field_derivative(real,F2,L,topolo174197925503356063within(real,X2,top_top(set(real))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),L))
=> ? [D3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D3))
& ! [H5: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),H5))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),H5),D3))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,F2,aa(real,real,aa(real,fun(real,real),minus_minus(real),X2),H5))),aa(real,real,F2,X2))) ) ) ) ) ) ).
% DERIV_pos_inc_left
tff(fact_7391_DERIV__neg__dec__left,axiom,
! [F2: fun(real,real),L: real,X2: real] :
( has_field_derivative(real,F2,L,topolo174197925503356063within(real,X2,top_top(set(real))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),L),zero_zero(real)))
=> ? [D3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D3))
& ! [H5: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),H5))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),H5),D3))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,F2,X2)),aa(real,real,F2,aa(real,real,aa(real,fun(real,real),minus_minus(real),X2),H5)))) ) ) ) ) ) ).
% DERIV_neg_dec_left
tff(fact_7392_DERIV__ln,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> has_field_derivative(real,ln_ln(real),aa(real,real,inverse_inverse(real),X2),topolo174197925503356063within(real,X2,top_top(set(real)))) ) ).
% DERIV_ln
tff(fact_7393_DERIV__neg__dec__right,axiom,
! [F2: fun(real,real),L: real,X2: real] :
( has_field_derivative(real,F2,L,topolo174197925503356063within(real,X2,top_top(set(real))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),L),zero_zero(real)))
=> ? [D3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D3))
& ! [H5: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),H5))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),H5),D3))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,F2,aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),H5))),aa(real,real,F2,X2))) ) ) ) ) ) ).
% DERIV_neg_dec_right
tff(fact_7394_DERIV__pos__inc__right,axiom,
! [F2: fun(real,real),L: real,X2: real] :
( has_field_derivative(real,F2,L,topolo174197925503356063within(real,X2,top_top(set(real))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),L))
=> ? [D3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D3))
& ! [H5: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),H5))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),H5),D3))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,F2,X2)),aa(real,real,F2,aa(real,real,aa(real,fun(real,real),plus_plus(real),X2),H5)))) ) ) ) ) ) ).
% DERIV_pos_inc_right
tff(fact_7395_DERIV__ln__divide,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> has_field_derivative(real,ln_ln(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),X2),topolo174197925503356063within(real,X2,top_top(set(real)))) ) ).
% DERIV_ln_divide
tff(fact_7396_DERIV__pow,axiom,
! [N: nat,X2: real,S2: set(real)] : has_field_derivative(real,aTP_Lamp_tx(nat,fun(real,real),N),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N)),aa(nat,real,power_power(real,X2),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(nat,nat,suc,zero_zero(nat))))),topolo174197925503356063within(real,X2,S2)) ).
% DERIV_pow
tff(fact_7397_DERIV__at__within__shift,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),Y: A,Z: A,X2: A,S: set(A)] :
( has_field_derivative(A,F2,Y,topolo174197925503356063within(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),Z),X2),aa(set(A),set(A),image(A,A,aa(A,fun(A,A),plus_plus(A),Z)),S)))
<=> has_field_derivative(A,aa(A,fun(A,A),aTP_Lamp_ty(fun(A,A),fun(A,fun(A,A)),F2),Z),Y,topolo174197925503356063within(A,X2,S)) ) ) ).
% DERIV_at_within_shift
tff(fact_7398_DERIV__mirror,axiom,
! [F2: fun(real,real),Y: real,X2: real] :
( has_field_derivative(real,F2,Y,topolo174197925503356063within(real,aa(real,real,uminus_uminus(real),X2),top_top(set(real))))
<=> has_field_derivative(real,aTP_Lamp_tz(fun(real,real),fun(real,real),F2),aa(real,real,uminus_uminus(real),Y),topolo174197925503356063within(real,X2,top_top(set(real)))) ) ).
% DERIV_mirror
tff(fact_7399_DERIV__cos__add,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [K: A,Xa: A] : has_field_derivative(A,aTP_Lamp_ua(A,fun(A,A),K),aa(A,A,uminus_uminus(A),sin(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),Xa),K))),topolo174197925503356063within(A,Xa,top_top(set(A)))) ) ).
% DERIV_cos_add
tff(fact_7400_DERIV__cos,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] : has_field_derivative(A,cos(A),aa(A,A,uminus_uminus(A),sin(A,X2)),topolo174197925503356063within(A,X2,top_top(set(A)))) ) ).
% DERIV_cos
tff(fact_7401_DERIV__fun__cos,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [G: fun(A,A),M: A,X2: A] :
( has_field_derivative(A,G,M,topolo174197925503356063within(A,X2,top_top(set(A))))
=> has_field_derivative(A,aTP_Lamp_ub(fun(A,A),fun(A,A),G),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),sin(A,aa(A,A,G,X2)))),M),topolo174197925503356063within(A,X2,top_top(set(A)))) ) ) ).
% DERIV_fun_cos
tff(fact_7402_DERIV__fun__sin,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [G: fun(A,A),M: A,X2: A] :
( has_field_derivative(A,G,M,topolo174197925503356063within(A,X2,top_top(set(A))))
=> has_field_derivative(A,aTP_Lamp_uc(fun(A,A),fun(A,A),G),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,cos(A),aa(A,A,G,X2))),M),topolo174197925503356063within(A,X2,top_top(set(A)))) ) ) ).
% DERIV_fun_sin
tff(fact_7403_DERIV__chain__s,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [S2: set(A),G: fun(A,A),G5: fun(A,A),F2: fun(A,A),F8: A,X2: A] :
( ! [X3: A] :
( pp(member(A,X3,S2))
=> has_field_derivative(A,G,aa(A,A,G5,X3),topolo174197925503356063within(A,X3,top_top(set(A)))) )
=> ( has_field_derivative(A,F2,F8,topolo174197925503356063within(A,X2,top_top(set(A))))
=> ( pp(member(A,aa(A,A,F2,X2),S2))
=> has_field_derivative(A,aa(fun(A,A),fun(A,A),aTP_Lamp_ud(fun(A,A),fun(fun(A,A),fun(A,A)),G),F2),aa(A,A,aa(A,fun(A,A),times_times(A),F8),aa(A,A,G5,aa(A,A,F2,X2))),topolo174197925503356063within(A,X2,top_top(set(A)))) ) ) ) ) ).
% DERIV_chain_s
tff(fact_7404_DERIV__chain3,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [G: fun(A,A),G5: fun(A,A),F2: fun(A,A),F8: A,X2: A] :
( ! [X3: A] : has_field_derivative(A,G,aa(A,A,G5,X3),topolo174197925503356063within(A,X3,top_top(set(A))))
=> ( has_field_derivative(A,F2,F8,topolo174197925503356063within(A,X2,top_top(set(A))))
=> has_field_derivative(A,aa(fun(A,A),fun(A,A),aTP_Lamp_ud(fun(A,A),fun(fun(A,A),fun(A,A)),G),F2),aa(A,A,aa(A,fun(A,A),times_times(A),F8),aa(A,A,G5,aa(A,A,F2,X2))),topolo174197925503356063within(A,X2,top_top(set(A)))) ) ) ) ).
% DERIV_chain3
tff(fact_7405_DERIV__chain2,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),Da: A,G: fun(A,A),X2: A,Db: A,S2: set(A)] :
( has_field_derivative(A,F2,Da,topolo174197925503356063within(A,aa(A,A,G,X2),top_top(set(A))))
=> ( has_field_derivative(A,G,Db,topolo174197925503356063within(A,X2,S2))
=> has_field_derivative(A,aa(fun(A,A),fun(A,A),aTP_Lamp_ud(fun(A,A),fun(fun(A,A),fun(A,A)),F2),G),aa(A,A,aa(A,fun(A,A),times_times(A),Da),Db),topolo174197925503356063within(A,X2,S2)) ) ) ) ).
% DERIV_chain2
tff(fact_7406_DERIV__chain_H,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D5: A,X2: A,S2: set(A),G: fun(A,A),E5: A] :
( has_field_derivative(A,F2,D5,topolo174197925503356063within(A,X2,S2))
=> ( has_field_derivative(A,G,E5,topolo174197925503356063within(A,aa(A,A,F2,X2),top_top(set(A))))
=> has_field_derivative(A,aa(fun(A,A),fun(A,A),aTP_Lamp_ue(fun(A,A),fun(fun(A,A),fun(A,A)),F2),G),aa(A,A,aa(A,fun(A,A),times_times(A),E5),D5),topolo174197925503356063within(A,X2,S2)) ) ) ) ).
% DERIV_chain'
tff(fact_7407_DERIV__fun__exp,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [G: fun(A,A),M: A,X2: A] :
( has_field_derivative(A,G,M,topolo174197925503356063within(A,X2,top_top(set(A))))
=> has_field_derivative(A,aTP_Lamp_uf(fun(A,A),fun(A,A),G),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,exp(A),aa(A,A,G,X2))),M),topolo174197925503356063within(A,X2,top_top(set(A)))) ) ) ).
% DERIV_fun_exp
tff(fact_7408_DERIV__unique,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D5: A,X2: A,E5: A] :
( has_field_derivative(A,F2,D5,topolo174197925503356063within(A,X2,top_top(set(A))))
=> ( has_field_derivative(A,F2,E5,topolo174197925503356063within(A,X2,top_top(set(A))))
=> ( D5 = E5 ) ) ) ) ).
% DERIV_unique
tff(fact_7409_has__field__derivative__at__within,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),F8: A,X2: A,S2: set(A)] :
( has_field_derivative(A,F2,F8,topolo174197925503356063within(A,X2,top_top(set(A))))
=> has_field_derivative(A,F2,F8,topolo174197925503356063within(A,X2,S2)) ) ) ).
% has_field_derivative_at_within
tff(fact_7410_DERIV__isconst__all,axiom,
! [F2: fun(real,real),X2: real,Y: real] :
( ! [X3: real] : has_field_derivative(real,F2,zero_zero(real),topolo174197925503356063within(real,X3,top_top(set(real))))
=> ( aa(real,real,F2,X2) = aa(real,real,F2,Y) ) ) ).
% DERIV_isconst_all
tff(fact_7411_DERIV__shift,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),Y: A,X2: A,Z: A] :
( has_field_derivative(A,F2,Y,topolo174197925503356063within(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),Z),top_top(set(A))))
<=> has_field_derivative(A,aa(A,fun(A,A),aTP_Lamp_ug(fun(A,A),fun(A,fun(A,A)),F2),Z),Y,topolo174197925503356063within(A,X2,top_top(set(A)))) ) ) ).
% DERIV_shift
tff(fact_7412_DERIV__const__ratio__const2,axiom,
! [A2: real,B2: real,F2: fun(real,real),K: real] :
( ( A2 != B2 )
=> ( ! [X3: real] : has_field_derivative(real,F2,K,topolo174197925503356063within(real,X3,top_top(set(real))))
=> ( aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,F2,B2)),aa(real,real,F2,A2))),aa(real,real,aa(real,fun(real,real),minus_minus(real),B2),A2)) = K ) ) ) ).
% DERIV_const_ratio_const2
tff(fact_7413_DERIV__const__ratio__const,axiom,
! [A2: real,B2: real,F2: fun(real,real),K: real] :
( ( A2 != B2 )
=> ( ! [X3: real] : has_field_derivative(real,F2,K,topolo174197925503356063within(real,X3,top_top(set(real))))
=> ( aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,F2,B2)),aa(real,real,F2,A2)) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),B2),A2)),K) ) ) ) ).
% DERIV_const_ratio_const
tff(fact_7414_DERIV__sum,axiom,
! [A: $tType,C: $tType,B: $tType] :
( real_V3459762299906320749_field(B)
=> ! [S: set(A),F2: fun(B,fun(A,B)),F8: fun(C,fun(A,B)),X2: C,F4: filter(B)] :
( ! [N3: A] :
( pp(member(A,N3,S))
=> has_field_derivative(B,aa(A,fun(B,B),aTP_Lamp_uh(fun(B,fun(A,B)),fun(A,fun(B,B)),F2),N3),aa(A,B,aa(C,fun(A,B),F8,X2),N3),F4) )
=> has_field_derivative(B,aa(fun(B,fun(A,B)),fun(B,B),aTP_Lamp_ui(set(A),fun(fun(B,fun(A,B)),fun(B,B)),S),F2),aa(set(A),B,aa(fun(A,B),fun(set(A),B),groups7311177749621191930dd_sum(A,B),aa(C,fun(A,B),F8,X2)),S),F4) ) ) ).
% DERIV_sum
tff(fact_7415_DERIV__minus,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D5: A,X2: A,S2: set(A)] :
( has_field_derivative(A,F2,D5,topolo174197925503356063within(A,X2,S2))
=> has_field_derivative(A,aTP_Lamp_uj(fun(A,A),fun(A,A),F2),aa(A,A,uminus_uminus(A),D5),topolo174197925503356063within(A,X2,S2)) ) ) ).
% DERIV_minus
tff(fact_7416_field__differentiable__minus,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),F8: A,F4: filter(A)] :
( has_field_derivative(A,F2,F8,F4)
=> has_field_derivative(A,aTP_Lamp_uj(fun(A,A),fun(A,A),F2),aa(A,A,uminus_uminus(A),F8),F4) ) ) ).
% field_differentiable_minus
tff(fact_7417_DERIV__mult,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),Da: A,X2: A,S2: set(A),G: fun(A,A),Db: A] :
( has_field_derivative(A,F2,Da,topolo174197925503356063within(A,X2,S2))
=> ( has_field_derivative(A,G,Db,topolo174197925503356063within(A,X2,S2))
=> has_field_derivative(A,aa(fun(A,A),fun(A,A),aTP_Lamp_uk(fun(A,A),fun(fun(A,A),fun(A,A)),F2),G),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),Da),aa(A,A,G,X2))),aa(A,A,aa(A,fun(A,A),times_times(A),Db),aa(A,A,F2,X2))),topolo174197925503356063within(A,X2,S2)) ) ) ) ).
% DERIV_mult
tff(fact_7418_DERIV__mult_H,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D5: A,X2: A,S2: set(A),G: fun(A,A),E5: A] :
( has_field_derivative(A,F2,D5,topolo174197925503356063within(A,X2,S2))
=> ( has_field_derivative(A,G,E5,topolo174197925503356063within(A,X2,S2))
=> has_field_derivative(A,aa(fun(A,A),fun(A,A),aTP_Lamp_uk(fun(A,A),fun(fun(A,A),fun(A,A)),F2),G),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,F2,X2)),E5)),aa(A,A,aa(A,fun(A,A),times_times(A),D5),aa(A,A,G,X2))),topolo174197925503356063within(A,X2,S2)) ) ) ) ).
% DERIV_mult'
tff(fact_7419_DERIV__cmult__Id,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [C2: A,X2: A,S2: set(A)] : has_field_derivative(A,aa(A,fun(A,A),times_times(A),C2),C2,topolo174197925503356063within(A,X2,S2)) ) ).
% DERIV_cmult_Id
tff(fact_7420_DERIV__cdivide,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D5: A,X2: A,S2: set(A),C2: A] :
( has_field_derivative(A,F2,D5,topolo174197925503356063within(A,X2,S2))
=> has_field_derivative(A,aa(A,fun(A,A),aTP_Lamp_ul(fun(A,A),fun(A,fun(A,A)),F2),C2),aa(A,A,aa(A,fun(A,A),divide_divide(A),D5),C2),topolo174197925503356063within(A,X2,S2)) ) ) ).
% DERIV_cdivide
tff(fact_7421_DERIV__cmult__right,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D5: A,X2: A,S2: set(A),C2: A] :
( has_field_derivative(A,F2,D5,topolo174197925503356063within(A,X2,S2))
=> has_field_derivative(A,aa(A,fun(A,A),aTP_Lamp_um(fun(A,A),fun(A,fun(A,A)),F2),C2),aa(A,A,aa(A,fun(A,A),times_times(A),D5),C2),topolo174197925503356063within(A,X2,S2)) ) ) ).
% DERIV_cmult_right
tff(fact_7422_DERIV__cmult,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D5: A,X2: A,S2: set(A),C2: A] :
( has_field_derivative(A,F2,D5,topolo174197925503356063within(A,X2,S2))
=> has_field_derivative(A,aa(A,fun(A,A),aTP_Lamp_un(fun(A,A),fun(A,fun(A,A)),F2),C2),aa(A,A,aa(A,fun(A,A),times_times(A),C2),D5),topolo174197925503356063within(A,X2,S2)) ) ) ).
% DERIV_cmult
tff(fact_7423_has__field__derivative__sinh,axiom,
! [A11: $tType] :
( ( real_Vector_banach(A11)
& real_V3459762299906320749_field(A11) )
=> ! [G: fun(A11,A11),Db: A11,X2: A11,S2: set(A11)] :
( has_field_derivative(A11,G,Db,topolo174197925503356063within(A11,X2,S2))
=> has_field_derivative(A11,aTP_Lamp_uo(fun(A11,A11),fun(A11,A11),G),aa(A11,A11,aa(A11,fun(A11,A11),times_times(A11),cosh(A11,aa(A11,A11,G,X2))),Db),topolo174197925503356063within(A11,X2,S2)) ) ) ).
% has_field_derivative_sinh
tff(fact_7424_has__field__derivative__cosh,axiom,
! [A11: $tType] :
( ( real_Vector_banach(A11)
& real_V3459762299906320749_field(A11) )
=> ! [G: fun(A11,A11),Db: A11,X2: A11,S2: set(A11)] :
( has_field_derivative(A11,G,Db,topolo174197925503356063within(A11,X2,S2))
=> has_field_derivative(A11,aTP_Lamp_up(fun(A11,A11),fun(A11,A11),G),aa(A11,A11,aa(A11,fun(A11,A11),times_times(A11),sinh(A11,aa(A11,A11,G,X2))),Db),topolo174197925503356063within(A11,X2,S2)) ) ) ).
% has_field_derivative_cosh
tff(fact_7425_DERIV__cong,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),X6: A,F4: filter(A),Y6: A] :
( has_field_derivative(A,F2,X6,F4)
=> ( ( X6 = Y6 )
=> has_field_derivative(A,F2,Y6,F4) ) ) ) ).
% DERIV_cong
tff(fact_7426_DERIV__const,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [K: A,F4: filter(A)] : has_field_derivative(A,aTP_Lamp_uq(A,fun(A,A),K),zero_zero(A),F4) ) ).
% DERIV_const
tff(fact_7427_DERIV__ident,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F4: filter(A)] : has_field_derivative(A,aTP_Lamp_ur(A,A),one_one(A),F4) ) ).
% DERIV_ident
tff(fact_7428_field__differentiable__add,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),F8: A,F4: filter(A),G: fun(A,A),G5: A] :
( has_field_derivative(A,F2,F8,F4)
=> ( has_field_derivative(A,G,G5,F4)
=> has_field_derivative(A,aa(fun(A,A),fun(A,A),aTP_Lamp_us(fun(A,A),fun(fun(A,A),fun(A,A)),F2),G),aa(A,A,aa(A,fun(A,A),plus_plus(A),F8),G5),F4) ) ) ) ).
% field_differentiable_add
tff(fact_7429_DERIV__add,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D5: A,X2: A,S2: set(A),G: fun(A,A),E5: A] :
( has_field_derivative(A,F2,D5,topolo174197925503356063within(A,X2,S2))
=> ( has_field_derivative(A,G,E5,topolo174197925503356063within(A,X2,S2))
=> has_field_derivative(A,aa(fun(A,A),fun(A,A),aTP_Lamp_us(fun(A,A),fun(fun(A,A),fun(A,A)),F2),G),aa(A,A,aa(A,fun(A,A),plus_plus(A),D5),E5),topolo174197925503356063within(A,X2,S2)) ) ) ) ).
% DERIV_add
tff(fact_7430_DERIV__inverse_H,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D5: A,X2: A,S2: set(A)] :
( has_field_derivative(A,F2,D5,topolo174197925503356063within(A,X2,S2))
=> ( ( aa(A,A,F2,X2) != zero_zero(A) )
=> has_field_derivative(A,aTP_Lamp_ut(fun(A,A),fun(A,A),F2),aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,inverse_inverse(A),aa(A,A,F2,X2))),D5)),aa(A,A,inverse_inverse(A),aa(A,A,F2,X2)))),topolo174197925503356063within(A,X2,S2)) ) ) ) ).
% DERIV_inverse'
tff(fact_7431_DERIV__divide,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D5: A,X2: A,S2: set(A),G: fun(A,A),E5: A] :
( has_field_derivative(A,F2,D5,topolo174197925503356063within(A,X2,S2))
=> ( has_field_derivative(A,G,E5,topolo174197925503356063within(A,X2,S2))
=> ( ( aa(A,A,G,X2) != zero_zero(A) )
=> has_field_derivative(A,aa(fun(A,A),fun(A,A),aTP_Lamp_uu(fun(A,A),fun(fun(A,A),fun(A,A)),F2),G),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),D5),aa(A,A,G,X2))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,F2,X2)),E5))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,G,X2)),aa(A,A,G,X2))),topolo174197925503356063within(A,X2,S2)) ) ) ) ) ).
% DERIV_divide
tff(fact_7432_DERIV__diff,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D5: A,X2: A,S2: set(A),G: fun(A,A),E5: A] :
( has_field_derivative(A,F2,D5,topolo174197925503356063within(A,X2,S2))
=> ( has_field_derivative(A,G,E5,topolo174197925503356063within(A,X2,S2))
=> has_field_derivative(A,aa(fun(A,A),fun(A,A),aTP_Lamp_uv(fun(A,A),fun(fun(A,A),fun(A,A)),F2),G),aa(A,A,aa(A,fun(A,A),minus_minus(A),D5),E5),topolo174197925503356063within(A,X2,S2)) ) ) ) ).
% DERIV_diff
tff(fact_7433_field__differentiable__diff,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),F8: A,F4: filter(A),G: fun(A,A),G5: A] :
( has_field_derivative(A,F2,F8,F4)
=> ( has_field_derivative(A,G,G5,F4)
=> has_field_derivative(A,aa(fun(A,A),fun(A,A),aTP_Lamp_uv(fun(A,A),fun(fun(A,A),fun(A,A)),F2),G),aa(A,A,aa(A,fun(A,A),minus_minus(A),F8),G5),F4) ) ) ) ).
% field_differentiable_diff
tff(fact_7434_DERIV__power,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D5: A,X2: A,S2: set(A),N: nat] :
( has_field_derivative(A,F2,D5,topolo174197925503356063within(A,X2,S2))
=> has_field_derivative(A,aa(nat,fun(A,A),aTP_Lamp_uw(fun(A,A),fun(nat,fun(A,A)),F2),N),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),N)),aa(A,A,aa(A,fun(A,A),times_times(A),D5),aa(nat,A,power_power(A,aa(A,A,F2,X2)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(nat,nat,suc,zero_zero(nat)))))),topolo174197925503356063within(A,X2,S2)) ) ) ).
% DERIV_power
tff(fact_7435_DERIV__inverse,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [X2: A,S2: set(A)] :
( ( X2 != zero_zero(A) )
=> has_field_derivative(A,inverse_inverse(A),aa(A,A,uminus_uminus(A),aa(nat,A,power_power(A,aa(A,A,inverse_inverse(A),X2)),aa(nat,nat,suc,aa(nat,nat,suc,zero_zero(nat))))),topolo174197925503356063within(A,X2,S2)) ) ) ).
% DERIV_inverse
tff(fact_7436_DERIV__const__average,axiom,
! [A2: real,B2: real,V: fun(real,real),K: real] :
( ( A2 != B2 )
=> ( ! [X3: real] : has_field_derivative(real,V,K,topolo174197925503356063within(real,X3,top_top(set(real))))
=> ( aa(real,real,V,aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),A2),B2)),aa(num,real,numeral_numeral(real),bit0(one2)))) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,V,A2)),aa(real,real,V,B2))),aa(num,real,numeral_numeral(real),bit0(one2))) ) ) ) ).
% DERIV_const_average
tff(fact_7437_DERIV__power__Suc,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D5: A,X2: A,S2: set(A),N: nat] :
( has_field_derivative(A,F2,D5,topolo174197925503356063within(A,X2,S2))
=> has_field_derivative(A,aa(nat,fun(A,A),aTP_Lamp_ux(fun(A,A),fun(nat,fun(A,A)),F2),N),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),one_one(A)),aa(nat,A,semiring_1_of_nat(A),N))),aa(A,A,aa(A,fun(A,A),times_times(A),D5),aa(nat,A,power_power(A,aa(A,A,F2,X2)),N))),topolo174197925503356063within(A,X2,S2)) ) ) ).
% DERIV_power_Suc
tff(fact_7438_DERIV__nonpos__imp__nonincreasing,axiom,
! [A2: real,B2: real,F2: fun(real,real)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),B2))
=> ( ! [X3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),X3))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X3),B2))
=> ? [Y4: real] :
( has_field_derivative(real,F2,Y4,topolo174197925503356063within(real,X3,top_top(set(real))))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y4),zero_zero(real))) ) ) )
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,F2,B2)),aa(real,real,F2,A2))) ) ) ).
% DERIV_nonpos_imp_nonincreasing
tff(fact_7439_DERIV__nonneg__imp__nondecreasing,axiom,
! [A2: real,B2: real,F2: fun(real,real)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),B2))
=> ( ! [X3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),X3))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X3),B2))
=> ? [Y4: real] :
( has_field_derivative(real,F2,Y4,topolo174197925503356063within(real,X3,top_top(set(real))))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Y4)) ) ) )
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,F2,A2)),aa(real,real,F2,B2))) ) ) ).
% DERIV_nonneg_imp_nondecreasing
tff(fact_7440_deriv__nonneg__imp__mono,axiom,
! [A2: real,B2: real,G: fun(real,real),G5: fun(real,real)] :
( ! [X3: real] :
( pp(member(real,X3,set_or1337092689740270186AtMost(real,A2,B2)))
=> has_field_derivative(real,G,aa(real,real,G5,X3),topolo174197925503356063within(real,X3,top_top(set(real)))) )
=> ( ! [X3: real] :
( pp(member(real,X3,set_or1337092689740270186AtMost(real,A2,B2)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,G5,X3))) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),B2))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,G,A2)),aa(real,real,G,B2))) ) ) ) ).
% deriv_nonneg_imp_mono
tff(fact_7441_has__field__derivative__subset,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),Y: A,X2: A,S2: set(A),T2: set(A)] :
( has_field_derivative(A,F2,Y,topolo174197925503356063within(A,X2,S2))
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),T2),S2))
=> has_field_derivative(A,F2,Y,topolo174197925503356063within(A,X2,T2)) ) ) ) ).
% has_field_derivative_subset
tff(fact_7442_DERIV__subset,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),F8: A,X2: A,S2: set(A),T2: set(A)] :
( has_field_derivative(A,F2,F8,topolo174197925503356063within(A,X2,S2))
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),T2),S2))
=> has_field_derivative(A,F2,F8,topolo174197925503356063within(A,X2,T2)) ) ) ) ).
% DERIV_subset
tff(fact_7443_at__le,axiom,
! [A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [S2: set(A),T2: set(A),X2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),S2),T2))
=> pp(aa(filter(A),bool,aa(filter(A),fun(filter(A),bool),ord_less_eq(filter(A)),topolo174197925503356063within(A,X2,S2)),topolo174197925503356063within(A,X2,T2))) ) ) ).
% at_le
tff(fact_7444_DERIV__chain,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),Da: A,G: fun(A,A),X2: A,Db: A,S2: set(A)] :
( has_field_derivative(A,F2,Da,topolo174197925503356063within(A,aa(A,A,G,X2),top_top(set(A))))
=> ( has_field_derivative(A,G,Db,topolo174197925503356063within(A,X2,S2))
=> has_field_derivative(A,aa(fun(A,A),fun(A,A),comp(A,A,A,F2),G),aa(A,A,aa(A,fun(A,A),times_times(A),Da),Db),topolo174197925503356063within(A,X2,S2)) ) ) ) ).
% DERIV_chain
tff(fact_7445_DERIV__image__chain,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),Da: A,G: fun(A,A),X2: A,S2: set(A),Db: A] :
( has_field_derivative(A,F2,Da,topolo174197925503356063within(A,aa(A,A,G,X2),aa(set(A),set(A),image(A,A,G),S2)))
=> ( has_field_derivative(A,G,Db,topolo174197925503356063within(A,X2,S2))
=> has_field_derivative(A,aa(fun(A,A),fun(A,A),comp(A,A,A,F2),G),aa(A,A,aa(A,fun(A,A),times_times(A),Da),Db),topolo174197925503356063within(A,X2,S2)) ) ) ) ).
% DERIV_image_chain
tff(fact_7446_DERIV__at__within__shift__lemma,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),Y: A,Z: A,X2: A,S: set(A)] :
( has_field_derivative(A,F2,Y,topolo174197925503356063within(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),Z),X2),aa(set(A),set(A),image(A,A,aa(A,fun(A,A),plus_plus(A),Z)),S)))
=> has_field_derivative(A,aa(fun(A,A),fun(A,A),comp(A,A,A,F2),aa(A,fun(A,A),plus_plus(A),Z)),Y,topolo174197925503356063within(A,X2,S)) ) ) ).
% DERIV_at_within_shift_lemma
tff(fact_7447_DERIV__fun__pow,axiom,
! [G: fun(real,real),M: real,X2: real,N: nat] :
( has_field_derivative(real,G,M,topolo174197925503356063within(real,X2,top_top(set(real))))
=> has_field_derivative(real,aa(nat,fun(real,real),aTP_Lamp_uy(fun(real,real),fun(nat,fun(real,real)),G),N),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N)),aa(nat,real,power_power(real,aa(real,real,G,X2)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),one_one(nat))))),M),topolo174197925503356063within(real,X2,top_top(set(real)))) ) ).
% DERIV_fun_pow
tff(fact_7448_at__within__Icc__at__left,axiom,
! [A: $tType] :
( topolo2564578578187576103pology(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( topolo174197925503356063within(A,B2,set_or1337092689740270186AtMost(A,A2,B2)) = topolo174197925503356063within(A,B2,aa(A,set(A),set_ord_lessThan(A),B2)) ) ) ) ).
% at_within_Icc_at_left
tff(fact_7449_DERIV__quotient,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D2: A,X2: A,S2: set(A),G: fun(A,A),E: A] :
( has_field_derivative(A,F2,D2,topolo174197925503356063within(A,X2,S2))
=> ( has_field_derivative(A,G,E,topolo174197925503356063within(A,X2,S2))
=> ( ( aa(A,A,G,X2) != zero_zero(A) )
=> has_field_derivative(A,aa(fun(A,A),fun(A,A),aTP_Lamp_uu(fun(A,A),fun(fun(A,A),fun(A,A)),F2),G),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),D2),aa(A,A,G,X2))),aa(A,A,aa(A,fun(A,A),times_times(A),E),aa(A,A,F2,X2)))),aa(nat,A,power_power(A,aa(A,A,G,X2)),aa(nat,nat,suc,aa(nat,nat,suc,zero_zero(nat))))),topolo174197925503356063within(A,X2,S2)) ) ) ) ) ).
% DERIV_quotient
tff(fact_7450_DERIV__inverse__fun,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D2: A,X2: A,S2: set(A)] :
( has_field_derivative(A,F2,D2,topolo174197925503356063within(A,X2,S2))
=> ( ( aa(A,A,F2,X2) != zero_zero(A) )
=> has_field_derivative(A,aTP_Lamp_ut(fun(A,A),fun(A,A),F2),aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),times_times(A),D2),aa(A,A,inverse_inverse(A),aa(nat,A,power_power(A,aa(A,A,F2,X2)),aa(nat,nat,suc,aa(nat,nat,suc,zero_zero(nat))))))),topolo174197925503356063within(A,X2,S2)) ) ) ) ).
% DERIV_inverse_fun
tff(fact_7451_termdiffs__sums__strong,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [K5: real,C2: fun(nat,A),F2: fun(A,A),F8: A,Z: A] :
( ! [Z3: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,Z3)),K5))
=> sums(A,aa(A,fun(nat,A),aTP_Lamp_ci(fun(nat,A),fun(A,fun(nat,A)),C2),Z3),aa(A,A,F2,Z3)) )
=> ( has_field_derivative(A,F2,F8,topolo174197925503356063within(A,Z,top_top(set(A))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,Z)),K5))
=> sums(A,aa(A,fun(nat,A),aTP_Lamp_cj(fun(nat,A),fun(A,fun(nat,A)),C2),Z),F8) ) ) ) ) ).
% termdiffs_sums_strong
tff(fact_7452_has__real__derivative__powr,axiom,
! [Z: real,R: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),Z))
=> has_field_derivative(real,aTP_Lamp_uz(real,fun(real,real),R),aa(real,real,aa(real,fun(real,real),times_times(real),R),powr(real,Z,aa(real,real,aa(real,fun(real,real),minus_minus(real),R),one_one(real)))),topolo174197925503356063within(real,Z,top_top(set(real)))) ) ).
% has_real_derivative_powr
tff(fact_7453_termdiffs__strong_H,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [K5: real,C2: fun(nat,A),Z: A] :
( ! [Z3: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,Z3)),K5))
=> summable(A,aa(A,fun(nat,A),aTP_Lamp_ci(fun(nat,A),fun(A,fun(nat,A)),C2),Z3)) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,Z)),K5))
=> has_field_derivative(A,aTP_Lamp_tw(fun(nat,A),fun(A,A),C2),suminf(A,aa(A,fun(nat,A),aTP_Lamp_cj(fun(nat,A),fun(A,fun(nat,A)),C2),Z)),topolo174197925503356063within(A,Z,top_top(set(A)))) ) ) ) ).
% termdiffs_strong'
tff(fact_7454_termdiffs__strong,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [C2: fun(nat,A),K5: A,X2: A] :
( summable(A,aa(A,fun(nat,A),aTP_Lamp_ci(fun(nat,A),fun(A,fun(nat,A)),C2),K5))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,X2)),real_V7770717601297561774m_norm(A,K5)))
=> has_field_derivative(A,aTP_Lamp_tw(fun(nat,A),fun(A,A),C2),suminf(A,aa(A,fun(nat,A),aTP_Lamp_cj(fun(nat,A),fun(A,fun(nat,A)),C2),X2)),topolo174197925503356063within(A,X2,top_top(set(A)))) ) ) ) ).
% termdiffs_strong
tff(fact_7455_termdiffs,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [C2: fun(nat,A),K5: A,X2: A] :
( summable(A,aa(A,fun(nat,A),aTP_Lamp_ci(fun(nat,A),fun(A,fun(nat,A)),C2),K5))
=> ( summable(A,aa(A,fun(nat,A),aTP_Lamp_cj(fun(nat,A),fun(A,fun(nat,A)),C2),K5))
=> ( summable(A,aa(A,fun(nat,A),aTP_Lamp_va(fun(nat,A),fun(A,fun(nat,A)),C2),K5))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,X2)),real_V7770717601297561774m_norm(A,K5)))
=> has_field_derivative(A,aTP_Lamp_tw(fun(nat,A),fun(A,A),C2),suminf(A,aa(A,fun(nat,A),aTP_Lamp_cj(fun(nat,A),fun(A,fun(nat,A)),C2),X2)),topolo174197925503356063within(A,X2,top_top(set(A)))) ) ) ) ) ) ).
% termdiffs
tff(fact_7456_DERIV__log,axiom,
! [X2: real,B2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> has_field_derivative(real,log(B2),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,ln_ln(real),B2)),X2)),topolo174197925503356063within(real,X2,top_top(set(real)))) ) ).
% DERIV_log
tff(fact_7457_DERIV__fun__powr,axiom,
! [G: fun(real,real),M: real,X2: real,R: real] :
( has_field_derivative(real,G,M,topolo174197925503356063within(real,X2,top_top(set(real))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,G,X2)))
=> has_field_derivative(real,aa(real,fun(real,real),aTP_Lamp_vb(fun(real,real),fun(real,fun(real,real)),G),R),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),R),powr(real,aa(real,real,G,X2),aa(real,real,aa(real,fun(real,real),minus_minus(real),R),aa(nat,real,semiring_1_of_nat(real),one_one(nat)))))),M),topolo174197925503356063within(real,X2,top_top(set(real)))) ) ) ).
% DERIV_fun_powr
tff(fact_7458_DERIV__powr,axiom,
! [G: fun(real,real),M: real,X2: real,F2: fun(real,real),R: real] :
( has_field_derivative(real,G,M,topolo174197925503356063within(real,X2,top_top(set(real))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,G,X2)))
=> ( has_field_derivative(real,F2,R,topolo174197925503356063within(real,X2,top_top(set(real))))
=> has_field_derivative(real,aa(fun(real,real),fun(real,real),aTP_Lamp_vc(fun(real,real),fun(fun(real,real),fun(real,real)),G),F2),aa(real,real,aa(real,fun(real,real),times_times(real),powr(real,aa(real,real,G,X2),aa(real,real,F2,X2))),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,aa(real,fun(real,real),times_times(real),R),aa(real,real,ln_ln(real),aa(real,real,G,X2)))),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),times_times(real),M),aa(real,real,F2,X2))),aa(real,real,G,X2)))),topolo174197925503356063within(real,X2,top_top(set(real)))) ) ) ) ).
% DERIV_powr
tff(fact_7459_DERIV__tan,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] :
( ( aa(A,A,cos(A),X2) != zero_zero(A) )
=> has_field_derivative(A,tan(A),aa(A,A,inverse_inverse(A),aa(nat,A,power_power(A,aa(A,A,cos(A),X2)),aa(num,nat,numeral_numeral(nat),bit0(one2)))),topolo174197925503356063within(A,X2,top_top(set(A)))) ) ) ).
% DERIV_tan
tff(fact_7460_DERIV__real__sqrt,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> has_field_derivative(real,sqrt,aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,inverse_inverse(real),aa(real,real,sqrt,X2))),aa(num,real,numeral_numeral(real),bit0(one2))),topolo174197925503356063within(real,X2,top_top(set(real)))) ) ).
% DERIV_real_sqrt
tff(fact_7461_DERIV__series_H,axiom,
! [F2: fun(real,fun(nat,real)),F8: fun(real,fun(nat,real)),X0: real,A2: real,B2: real,L6: fun(nat,real)] :
( ! [N3: nat] : has_field_derivative(real,aa(nat,fun(real,real),aTP_Lamp_vd(fun(real,fun(nat,real)),fun(nat,fun(real,real)),F2),N3),aa(nat,real,aa(real,fun(nat,real),F8,X0),N3),topolo174197925503356063within(real,X0,top_top(set(real))))
=> ( ! [X3: real] :
( pp(member(real,X3,set_or5935395276787703475ssThan(real,A2,B2)))
=> summable(real,aa(real,fun(nat,real),F2,X3)) )
=> ( pp(member(real,X0,set_or5935395276787703475ssThan(real,A2,B2)))
=> ( summable(real,aa(real,fun(nat,real),F8,X0))
=> ( summable(real,L6)
=> ( ! [N3: nat,X3: real,Y3: real] :
( pp(member(real,X3,set_or5935395276787703475ssThan(real,A2,B2)))
=> ( pp(member(real,Y3,set_or5935395276787703475ssThan(real,A2,B2)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(nat,real,aa(real,fun(nat,real),F2,X3),N3)),aa(nat,real,aa(real,fun(nat,real),F2,Y3),N3)))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,L6,N3)),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),X3),Y3))))) ) )
=> has_field_derivative(real,aTP_Lamp_ve(fun(real,fun(nat,real)),fun(real,real),F2),suminf(real,aa(real,fun(nat,real),F8,X0)),topolo174197925503356063within(real,X0,top_top(set(real)))) ) ) ) ) ) ) ).
% DERIV_series'
tff(fact_7462_DERIV__arctan,axiom,
! [X2: real] : has_field_derivative(real,arctan,aa(real,real,inverse_inverse(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2))))),topolo174197925503356063within(real,X2,top_top(set(real)))) ).
% DERIV_arctan
tff(fact_7463_arsinh__real__has__field__derivative,axiom,
! [X2: real,A3: set(real)] : has_field_derivative(real,arsinh(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),one_one(real)))),topolo174197925503356063within(real,X2,A3)) ).
% arsinh_real_has_field_derivative
tff(fact_7464_DERIV__cot,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] :
( ( sin(A,X2) != zero_zero(A) )
=> has_field_derivative(A,cot(A),aa(A,A,uminus_uminus(A),aa(A,A,inverse_inverse(A),aa(nat,A,power_power(A,sin(A,X2)),aa(num,nat,numeral_numeral(nat),bit0(one2))))),topolo174197925503356063within(A,X2,top_top(set(A)))) ) ) ).
% DERIV_cot
tff(fact_7465_has__field__derivative__tanh,axiom,
! [A11: $tType] :
( ( real_Vector_banach(A11)
& real_V3459762299906320749_field(A11) )
=> ! [G: fun(A11,A11),X2: A11,Db: A11,S2: set(A11)] :
( ( cosh(A11,aa(A11,A11,G,X2)) != zero_zero(A11) )
=> ( has_field_derivative(A11,G,Db,topolo174197925503356063within(A11,X2,S2))
=> has_field_derivative(A11,aTP_Lamp_vf(fun(A11,A11),fun(A11,A11),G),aa(A11,A11,aa(A11,fun(A11,A11),times_times(A11),aa(A11,A11,aa(A11,fun(A11,A11),minus_minus(A11),one_one(A11)),aa(nat,A11,power_power(A11,aa(A11,A11,tanh(A11),aa(A11,A11,G,X2))),aa(num,nat,numeral_numeral(nat),bit0(one2))))),Db),topolo174197925503356063within(A11,X2,S2)) ) ) ) ).
% has_field_derivative_tanh
tff(fact_7466_DERIV__real__sqrt__generic,axiom,
! [X2: real,D5: real] :
( ( X2 != zero_zero(real) )
=> ( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> ( D5 = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,inverse_inverse(real),aa(real,real,sqrt,X2))),aa(num,real,numeral_numeral(real),bit0(one2))) ) )
=> ( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),zero_zero(real)))
=> ( D5 = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,uminus_uminus(real),aa(real,real,inverse_inverse(real),aa(real,real,sqrt,X2)))),aa(num,real,numeral_numeral(real),bit0(one2))) ) )
=> has_field_derivative(real,sqrt,D5,topolo174197925503356063within(real,X2,top_top(set(real)))) ) ) ) ).
% DERIV_real_sqrt_generic
tff(fact_7467_arcosh__real__has__field__derivative,axiom,
! [X2: real,A3: set(real)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),X2))
=> has_field_derivative(real,arcosh(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),one_one(real)))),topolo174197925503356063within(real,X2,A3)) ) ).
% arcosh_real_has_field_derivative
tff(fact_7468_artanh__real__has__field__derivative,axiom,
! [X2: real,A3: set(real)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),X2)),one_one(real)))
=> has_field_derivative(real,artanh(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(real,real,aa(real,fun(real,real),minus_minus(real),one_one(real)),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2))))),topolo174197925503356063within(real,X2,A3)) ) ).
% artanh_real_has_field_derivative
tff(fact_7469_DERIV__power__series_H,axiom,
! [R2: real,F2: fun(nat,real),X0: real] :
( ! [X3: real] :
( pp(member(real,X3,set_or5935395276787703475ssThan(real,aa(real,real,uminus_uminus(real),R2),R2)))
=> summable(real,aa(real,fun(nat,real),aTP_Lamp_vg(fun(nat,real),fun(real,fun(nat,real)),F2),X3)) )
=> ( pp(member(real,X0,set_or5935395276787703475ssThan(real,aa(real,real,uminus_uminus(real),R2),R2)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),R2))
=> has_field_derivative(real,aTP_Lamp_vi(fun(nat,real),fun(real,real),F2),suminf(real,aa(real,fun(nat,real),aTP_Lamp_vg(fun(nat,real),fun(real,fun(nat,real)),F2),X0)),topolo174197925503356063within(real,X0,top_top(set(real)))) ) ) ) ).
% DERIV_power_series'
tff(fact_7470_DERIV__real__root,axiom,
! [N: nat,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),X2))
=> has_field_derivative(real,root(N),aa(real,real,inverse_inverse(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N)),aa(nat,real,power_power(real,aa(real,real,root(N),X2)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(nat,nat,suc,zero_zero(nat)))))),topolo174197925503356063within(real,X2,top_top(set(real)))) ) ) ).
% DERIV_real_root
tff(fact_7471_DERIV__arccos,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),one_one(real))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),one_one(real)))
=> has_field_derivative(real,arccos,aa(real,real,inverse_inverse(real),aa(real,real,uminus_uminus(real),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),minus_minus(real),one_one(real)),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2))))))),topolo174197925503356063within(real,X2,top_top(set(real)))) ) ) ).
% DERIV_arccos
tff(fact_7472_DERIV__arcsin,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),one_one(real))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),one_one(real)))
=> has_field_derivative(real,arcsin,aa(real,real,inverse_inverse(real),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),minus_minus(real),one_one(real)),aa(nat,real,power_power(real,X2),aa(num,nat,numeral_numeral(nat),bit0(one2)))))),topolo174197925503356063within(real,X2,top_top(set(real)))) ) ) ).
% DERIV_arcsin
tff(fact_7473_Maclaurin__all__le,axiom,
! [Diff: fun(nat,fun(real,real)),F2: fun(real,real),X2: real,N: nat] :
( ( aa(nat,fun(real,real),Diff,zero_zero(nat)) = F2 )
=> ( ! [M3: nat,X3: real] : has_field_derivative(real,aa(nat,fun(real,real),Diff,M3),aa(real,real,aa(nat,fun(real,real),Diff,aa(nat,nat,suc,M3)),X3),topolo174197925503356063within(real,X3,top_top(set(real))))
=> ? [T3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),T3)),aa(real,real,abs_abs(real),X2)))
& ( aa(real,real,F2,X2) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aa(real,fun(nat,real),aTP_Lamp_vj(fun(nat,fun(real,real)),fun(real,fun(nat,real)),Diff),X2)),aa(nat,set(nat),set_ord_lessThan(nat),N))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(nat,fun(real,real),Diff,N),T3)),semiring_char_0_fact(real,N))),aa(nat,real,power_power(real,X2),N))) ) ) ) ) ).
% Maclaurin_all_le
tff(fact_7474_Maclaurin__all__le__objl,axiom,
! [Diff: fun(nat,fun(real,real)),F2: fun(real,real),X2: real,N: nat] :
( ( ( aa(nat,fun(real,real),Diff,zero_zero(nat)) = F2 )
& ! [M3: nat,X3: real] : has_field_derivative(real,aa(nat,fun(real,real),Diff,M3),aa(real,real,aa(nat,fun(real,real),Diff,aa(nat,nat,suc,M3)),X3),topolo174197925503356063within(real,X3,top_top(set(real)))) )
=> ? [T3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),T3)),aa(real,real,abs_abs(real),X2)))
& ( aa(real,real,F2,X2) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aa(real,fun(nat,real),aTP_Lamp_vj(fun(nat,fun(real,real)),fun(real,fun(nat,real)),Diff),X2)),aa(nat,set(nat),set_ord_lessThan(nat),N))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(nat,fun(real,real),Diff,N),T3)),semiring_char_0_fact(real,N))),aa(nat,real,power_power(real,X2),N))) ) ) ) ).
% Maclaurin_all_le_objl
tff(fact_7475_DERIV__odd__real__root,axiom,
! [N: nat,X2: real] :
( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> ( ( X2 != zero_zero(real) )
=> has_field_derivative(real,root(N),aa(real,real,inverse_inverse(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,semiring_1_of_nat(real),N)),aa(nat,real,power_power(real,aa(real,real,root(N),X2)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(nat,nat,suc,zero_zero(nat)))))),topolo174197925503356063within(real,X2,top_top(set(real)))) ) ) ).
% DERIV_odd_real_root
tff(fact_7476_Maclaurin__minus,axiom,
! [H: real,N: nat,Diff: fun(nat,fun(real,real)),F2: fun(real,real)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),H),zero_zero(real)))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( ( aa(nat,fun(real,real),Diff,zero_zero(nat)) = F2 )
=> ( ! [M3: nat,T3: real] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M3),N))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),H),T3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),T3),zero_zero(real))) )
=> has_field_derivative(real,aa(nat,fun(real,real),Diff,M3),aa(real,real,aa(nat,fun(real,real),Diff,aa(nat,nat,suc,M3)),T3),topolo174197925503356063within(real,T3,top_top(set(real)))) )
=> ? [T3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),H),T3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),T3),zero_zero(real)))
& ( aa(real,real,F2,H) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aa(fun(nat,fun(real,real)),fun(nat,real),aTP_Lamp_vk(real,fun(fun(nat,fun(real,real)),fun(nat,real)),H),Diff)),aa(nat,set(nat),set_ord_lessThan(nat),N))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(nat,fun(real,real),Diff,N),T3)),semiring_char_0_fact(real,N))),aa(nat,real,power_power(real,H),N))) ) ) ) ) ) ) ).
% Maclaurin_minus
tff(fact_7477_Maclaurin2,axiom,
! [H: real,Diff: fun(nat,fun(real,real)),F2: fun(real,real),N: nat] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),H))
=> ( ( aa(nat,fun(real,real),Diff,zero_zero(nat)) = F2 )
=> ( ! [M3: nat,T3: real] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M3),N))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),T3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),T3),H)) )
=> has_field_derivative(real,aa(nat,fun(real,real),Diff,M3),aa(real,real,aa(nat,fun(real,real),Diff,aa(nat,nat,suc,M3)),T3),topolo174197925503356063within(real,T3,top_top(set(real)))) )
=> ? [T3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),T3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),T3),H))
& ( aa(real,real,F2,H) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aa(fun(nat,fun(real,real)),fun(nat,real),aTP_Lamp_vk(real,fun(fun(nat,fun(real,real)),fun(nat,real)),H),Diff)),aa(nat,set(nat),set_ord_lessThan(nat),N))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(nat,fun(real,real),Diff,N),T3)),semiring_char_0_fact(real,N))),aa(nat,real,power_power(real,H),N))) ) ) ) ) ) ).
% Maclaurin2
tff(fact_7478_Maclaurin,axiom,
! [H: real,N: nat,Diff: fun(nat,fun(real,real)),F2: fun(real,real)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),H))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( ( aa(nat,fun(real,real),Diff,zero_zero(nat)) = F2 )
=> ( ! [M3: nat,T3: real] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M3),N))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),T3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),T3),H)) )
=> has_field_derivative(real,aa(nat,fun(real,real),Diff,M3),aa(real,real,aa(nat,fun(real,real),Diff,aa(nat,nat,suc,M3)),T3),topolo174197925503356063within(real,T3,top_top(set(real)))) )
=> ? [T3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),T3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),T3),H))
& ( aa(real,real,F2,H) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aa(fun(nat,fun(real,real)),fun(nat,real),aTP_Lamp_vk(real,fun(fun(nat,fun(real,real)),fun(nat,real)),H),Diff)),aa(nat,set(nat),set_ord_lessThan(nat),N))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(nat,fun(real,real),Diff,N),T3)),semiring_char_0_fact(real,N))),aa(nat,real,power_power(real,H),N))) ) ) ) ) ) ) ).
% Maclaurin
tff(fact_7479_Maclaurin__all__lt,axiom,
! [Diff: fun(nat,fun(real,real)),F2: fun(real,real),N: nat,X2: real] :
( ( aa(nat,fun(real,real),Diff,zero_zero(nat)) = F2 )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( ( X2 != zero_zero(real) )
=> ( ! [M3: nat,X3: real] : has_field_derivative(real,aa(nat,fun(real,real),Diff,M3),aa(real,real,aa(nat,fun(real,real),Diff,aa(nat,nat,suc,M3)),X3),topolo174197925503356063within(real,X3,top_top(set(real))))
=> ? [T3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,abs_abs(real),T3)))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),T3)),aa(real,real,abs_abs(real),X2)))
& ( aa(real,real,F2,X2) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aa(real,fun(nat,real),aTP_Lamp_vj(fun(nat,fun(real,real)),fun(real,fun(nat,real)),Diff),X2)),aa(nat,set(nat),set_ord_lessThan(nat),N))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(nat,fun(real,real),Diff,N),T3)),semiring_char_0_fact(real,N))),aa(nat,real,power_power(real,X2),N))) ) ) ) ) ) ) ).
% Maclaurin_all_lt
tff(fact_7480_Maclaurin__bi__le,axiom,
! [Diff: fun(nat,fun(real,real)),F2: fun(real,real),N: nat,X2: real] :
( ( aa(nat,fun(real,real),Diff,zero_zero(nat)) = F2 )
=> ( ! [M3: nat,T3: real] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M3),N))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),T3)),aa(real,real,abs_abs(real),X2))) )
=> has_field_derivative(real,aa(nat,fun(real,real),Diff,M3),aa(real,real,aa(nat,fun(real,real),Diff,aa(nat,nat,suc,M3)),T3),topolo174197925503356063within(real,T3,top_top(set(real)))) )
=> ? [T3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),T3)),aa(real,real,abs_abs(real),X2)))
& ( aa(real,real,F2,X2) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aa(real,fun(nat,real),aTP_Lamp_vj(fun(nat,fun(real,real)),fun(real,fun(nat,real)),Diff),X2)),aa(nat,set(nat),set_ord_lessThan(nat),N))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(nat,fun(real,real),Diff,N),T3)),semiring_char_0_fact(real,N))),aa(nat,real,power_power(real,X2),N))) ) ) ) ) ).
% Maclaurin_bi_le
tff(fact_7481_Taylor,axiom,
! [N: nat,Diff: fun(nat,fun(real,real)),F2: fun(real,real),A2: real,B2: real,C2: real,X2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( ( aa(nat,fun(real,real),Diff,zero_zero(nat)) = F2 )
=> ( ! [M3: nat,T3: real] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M3),N))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),T3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),T3),B2)) )
=> has_field_derivative(real,aa(nat,fun(real,real),Diff,M3),aa(real,real,aa(nat,fun(real,real),Diff,aa(nat,nat,suc,M3)),T3),topolo174197925503356063within(real,T3,top_top(set(real)))) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),C2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),C2),B2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X2),B2))
=> ( ( X2 != C2 )
=> ? [T3: real] :
( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),C2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),T3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),T3),C2)) ) )
& ( ~ pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),C2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),C2),T3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),T3),X2)) ) )
& ( aa(real,real,F2,X2) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aa(real,fun(nat,real),aa(real,fun(real,fun(nat,real)),aTP_Lamp_vl(fun(nat,fun(real,real)),fun(real,fun(real,fun(nat,real))),Diff),C2),X2)),aa(nat,set(nat),set_ord_lessThan(nat),N))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(nat,fun(real,real),Diff,N),T3)),semiring_char_0_fact(real,N))),aa(nat,real,power_power(real,aa(real,real,aa(real,fun(real,real),minus_minus(real),X2),C2)),N))) ) ) ) ) ) ) ) ) ) ) ).
% Taylor
tff(fact_7482_Taylor__up,axiom,
! [N: nat,Diff: fun(nat,fun(real,real)),F2: fun(real,real),A2: real,B2: real,C2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( ( aa(nat,fun(real,real),Diff,zero_zero(nat)) = F2 )
=> ( ! [M3: nat,T3: real] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M3),N))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),T3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),T3),B2)) )
=> has_field_derivative(real,aa(nat,fun(real,real),Diff,M3),aa(real,real,aa(nat,fun(real,real),Diff,aa(nat,nat,suc,M3)),T3),topolo174197925503356063within(real,T3,top_top(set(real)))) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),C2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),C2),B2))
=> ? [T3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),C2),T3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),T3),B2))
& ( aa(real,real,F2,B2) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aa(real,fun(nat,real),aa(real,fun(real,fun(nat,real)),aTP_Lamp_vm(fun(nat,fun(real,real)),fun(real,fun(real,fun(nat,real))),Diff),B2),C2)),aa(nat,set(nat),set_ord_lessThan(nat),N))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(nat,fun(real,real),Diff,N),T3)),semiring_char_0_fact(real,N))),aa(nat,real,power_power(real,aa(real,real,aa(real,fun(real,real),minus_minus(real),B2),C2)),N))) ) ) ) ) ) ) ) ).
% Taylor_up
tff(fact_7483_Taylor__down,axiom,
! [N: nat,Diff: fun(nat,fun(real,real)),F2: fun(real,real),A2: real,B2: real,C2: real] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( ( aa(nat,fun(real,real),Diff,zero_zero(nat)) = F2 )
=> ( ! [M3: nat,T3: real] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M3),N))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),T3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),T3),B2)) )
=> has_field_derivative(real,aa(nat,fun(real,real),Diff,M3),aa(real,real,aa(nat,fun(real,real),Diff,aa(nat,nat,suc,M3)),T3),topolo174197925503356063within(real,T3,top_top(set(real)))) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),C2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),C2),B2))
=> ? [T3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),T3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),T3),C2))
& ( aa(real,real,F2,A2) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aa(real,fun(nat,real),aa(real,fun(real,fun(nat,real)),aTP_Lamp_vm(fun(nat,fun(real,real)),fun(real,fun(real,fun(nat,real))),Diff),A2),C2)),aa(nat,set(nat),set_ord_lessThan(nat),N))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(nat,fun(real,real),Diff,N),T3)),semiring_char_0_fact(real,N))),aa(nat,real,power_power(real,aa(real,real,aa(real,fun(real,real),minus_minus(real),A2),C2)),N))) ) ) ) ) ) ) ) ).
% Taylor_down
tff(fact_7484_Maclaurin__lemma2,axiom,
! [N: nat,H: real,Diff: fun(nat,fun(real,real)),K: nat,B4: real] :
( ! [M3: nat,T3: real] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M3),N))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),T3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),T3),H)) )
=> has_field_derivative(real,aa(nat,fun(real,real),Diff,M3),aa(real,real,aa(nat,fun(real,real),Diff,aa(nat,nat,suc,M3)),T3),topolo174197925503356063within(real,T3,top_top(set(real)))) )
=> ( ( N = aa(nat,nat,suc,K) )
=> ! [M2: nat,T8: real] :
( ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M2),N))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),T8))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),T8),H)) )
=> has_field_derivative(real,aa(nat,fun(real,real),aa(real,fun(nat,fun(real,real)),aa(fun(nat,fun(real,real)),fun(real,fun(nat,fun(real,real))),aTP_Lamp_vo(nat,fun(fun(nat,fun(real,real)),fun(real,fun(nat,fun(real,real)))),N),Diff),B4),M2),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(nat,fun(real,real),Diff,aa(nat,nat,suc,M2)),T8)),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aa(real,fun(nat,real),aa(nat,fun(real,fun(nat,real)),aTP_Lamp_vp(fun(nat,fun(real,real)),fun(nat,fun(real,fun(nat,real))),Diff),M2),T8)),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(nat,nat,suc,M2))))),aa(real,real,aa(real,fun(real,real),times_times(real),B4),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(nat,real,power_power(real,T8),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(nat,nat,suc,M2)))),semiring_char_0_fact(real,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),N),aa(nat,nat,suc,M2))))))),topolo174197925503356063within(real,T8,top_top(set(real)))) ) ) ) ).
% Maclaurin_lemma2
tff(fact_7485_DERIV__arctan__series,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),X2)),one_one(real)))
=> has_field_derivative(real,aTP_Lamp_vq(real,real),suminf(real,aTP_Lamp_vr(real,fun(nat,real),X2)),topolo174197925503356063within(real,X2,top_top(set(real)))) ) ).
% DERIV_arctan_series
tff(fact_7486_has__derivative__arcsin,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [G: fun(A,real),X2: A,G5: fun(A,real),S2: set(A)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),one_one(real))),aa(A,real,G,X2)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(A,real,G,X2)),one_one(real)))
=> ( has_derivative(A,real,G,G5,topolo174197925503356063within(A,X2,S2))
=> has_derivative(A,real,aTP_Lamp_vs(fun(A,real),fun(A,real),G),aa(fun(A,real),fun(A,real),aa(A,fun(fun(A,real),fun(A,real)),aTP_Lamp_vt(fun(A,real),fun(A,fun(fun(A,real),fun(A,real))),G),X2),G5),topolo174197925503356063within(A,X2,S2)) ) ) ) ) ).
% has_derivative_arcsin
tff(fact_7487_has__derivative__arccos,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [G: fun(A,real),X2: A,G5: fun(A,real),S2: set(A)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),one_one(real))),aa(A,real,G,X2)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(A,real,G,X2)),one_one(real)))
=> ( has_derivative(A,real,G,G5,topolo174197925503356063within(A,X2,S2))
=> has_derivative(A,real,aTP_Lamp_vu(fun(A,real),fun(A,real),G),aa(fun(A,real),fun(A,real),aa(A,fun(fun(A,real),fun(A,real)),aTP_Lamp_vv(fun(A,real),fun(A,fun(fun(A,real),fun(A,real))),G),X2),G5),topolo174197925503356063within(A,X2,S2)) ) ) ) ) ).
% has_derivative_arccos
tff(fact_7488_has__derivative__in__compose,axiom,
! [B: $tType,C: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(C)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),F8: fun(A,B),X2: A,S2: set(A),G: fun(B,C),G5: fun(B,C)] :
( has_derivative(A,B,F2,F8,topolo174197925503356063within(A,X2,S2))
=> ( has_derivative(B,C,G,G5,topolo174197925503356063within(B,aa(A,B,F2,X2),aa(set(A),set(B),image(A,B,F2),S2)))
=> has_derivative(A,C,aa(fun(B,C),fun(A,C),aTP_Lamp_vw(fun(A,B),fun(fun(B,C),fun(A,C)),F2),G),aa(fun(B,C),fun(A,C),aTP_Lamp_vw(fun(A,B),fun(fun(B,C),fun(A,C)),F8),G5),topolo174197925503356063within(A,X2,S2)) ) ) ) ).
% has_derivative_in_compose
tff(fact_7489_has__derivative__compose,axiom,
! [B: $tType,C: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(C)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),F8: fun(A,B),X2: A,S2: set(A),G: fun(B,C),G5: fun(B,C)] :
( has_derivative(A,B,F2,F8,topolo174197925503356063within(A,X2,S2))
=> ( has_derivative(B,C,G,G5,topolo174197925503356063within(B,aa(A,B,F2,X2),top_top(set(B))))
=> has_derivative(A,C,aa(fun(B,C),fun(A,C),aTP_Lamp_vw(fun(A,B),fun(fun(B,C),fun(A,C)),F2),G),aa(fun(B,C),fun(A,C),aTP_Lamp_vw(fun(A,B),fun(fun(B,C),fun(A,C)),F8),G5),topolo174197925503356063within(A,X2,S2)) ) ) ) ).
% has_derivative_compose
tff(fact_7490_has__derivative__unique,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),F4: fun(A,B),X2: A,F9: fun(A,B)] :
( has_derivative(A,B,F2,F4,topolo174197925503356063within(A,X2,top_top(set(A))))
=> ( has_derivative(A,B,F2,F9,topolo174197925503356063within(A,X2,top_top(set(A))))
=> ( F4 = F9 ) ) ) ) ).
% has_derivative_unique
tff(fact_7491_has__derivative__zero__unique,axiom,
! [A: $tType,B: $tType] :
( ( real_V822414075346904944vector(B)
& real_V822414075346904944vector(A) )
=> ! [F4: fun(A,B),X2: A] :
( has_derivative(A,B,aTP_Lamp_vx(A,B),F4,topolo174197925503356063within(A,X2,top_top(set(A))))
=> ! [X: A] : ( aa(A,B,F4,X) = zero_zero(B) ) ) ) ).
% has_derivative_zero_unique
tff(fact_7492_has__derivative__mult,axiom,
! [A: $tType,D: $tType] :
( ( real_V822414075346904944vector(D)
& real_V4412858255891104859lgebra(A) )
=> ! [F2: fun(D,A),F8: fun(D,A),X2: D,S2: set(D),G: fun(D,A),G5: fun(D,A)] :
( has_derivative(D,A,F2,F8,topolo174197925503356063within(D,X2,S2))
=> ( has_derivative(D,A,G,G5,topolo174197925503356063within(D,X2,S2))
=> has_derivative(D,A,aa(fun(D,A),fun(D,A),aTP_Lamp_vy(fun(D,A),fun(fun(D,A),fun(D,A)),F2),G),aa(fun(D,A),fun(D,A),aa(fun(D,A),fun(fun(D,A),fun(D,A)),aa(D,fun(fun(D,A),fun(fun(D,A),fun(D,A))),aa(fun(D,A),fun(D,fun(fun(D,A),fun(fun(D,A),fun(D,A)))),aTP_Lamp_vz(fun(D,A),fun(fun(D,A),fun(D,fun(fun(D,A),fun(fun(D,A),fun(D,A))))),F2),F8),X2),G),G5),topolo174197925503356063within(D,X2,S2)) ) ) ) ).
% has_derivative_mult
tff(fact_7493_has__field__derivative__imp__has__derivative,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D5: A,F4: filter(A)] :
( has_field_derivative(A,F2,D5,F4)
=> has_derivative(A,A,F2,aa(A,fun(A,A),times_times(A),D5),F4) ) ) ).
% has_field_derivative_imp_has_derivative
tff(fact_7494_has__derivative__imp__has__field__derivative,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D5: fun(A,A),F4: filter(A),D7: A] :
( has_derivative(A,A,F2,D5,F4)
=> ( ! [X3: A] : ( aa(A,A,aa(A,fun(A,A),times_times(A),X3),D7) = aa(A,A,D5,X3) )
=> has_field_derivative(A,F2,D7,F4) ) ) ) ).
% has_derivative_imp_has_field_derivative
tff(fact_7495_has__field__derivative__def,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D5: A,F4: filter(A)] :
( has_field_derivative(A,F2,D5,F4)
<=> has_derivative(A,A,F2,aa(A,fun(A,A),times_times(A),D5),F4) ) ) ).
% has_field_derivative_def
tff(fact_7496_has__derivative__transform,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [X2: A,S2: set(A),G: fun(A,B),F2: fun(A,B),F8: fun(A,B)] :
( pp(member(A,X2,S2))
=> ( ! [X3: A] :
( pp(member(A,X3,S2))
=> ( aa(A,B,G,X3) = aa(A,B,F2,X3) ) )
=> ( has_derivative(A,B,F2,F8,topolo174197925503356063within(A,X2,S2))
=> has_derivative(A,B,G,F8,topolo174197925503356063within(A,X2,S2)) ) ) ) ) ).
% has_derivative_transform
tff(fact_7497_has__derivative__scaleR,axiom,
! [C: $tType,D: $tType] :
( ( real_V822414075346904944vector(D)
& real_V822414075346904944vector(C) )
=> ! [F2: fun(D,real),F8: fun(D,real),X2: D,S2: set(D),G: fun(D,C),G5: fun(D,C)] :
( has_derivative(D,real,F2,F8,topolo174197925503356063within(D,X2,S2))
=> ( has_derivative(D,C,G,G5,topolo174197925503356063within(D,X2,S2))
=> has_derivative(D,C,aa(fun(D,C),fun(D,C),aTP_Lamp_wa(fun(D,real),fun(fun(D,C),fun(D,C)),F2),G),aa(fun(D,C),fun(D,C),aa(fun(D,C),fun(fun(D,C),fun(D,C)),aa(D,fun(fun(D,C),fun(fun(D,C),fun(D,C))),aa(fun(D,real),fun(D,fun(fun(D,C),fun(fun(D,C),fun(D,C)))),aTP_Lamp_wb(fun(D,real),fun(fun(D,real),fun(D,fun(fun(D,C),fun(fun(D,C),fun(D,C))))),F2),F8),X2),G),G5),topolo174197925503356063within(D,X2,S2)) ) ) ) ).
% has_derivative_scaleR
tff(fact_7498_has__derivative__subset,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),F8: fun(A,B),X2: A,S2: set(A),T2: set(A)] :
( has_derivative(A,B,F2,F8,topolo174197925503356063within(A,X2,S2))
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),T2),S2))
=> has_derivative(A,B,F2,F8,topolo174197925503356063within(A,X2,T2)) ) ) ) ).
% has_derivative_subset
tff(fact_7499_has__derivative__in__compose2,axiom,
! [A: $tType,B: $tType,C: $tType] :
( ( real_V822414075346904944vector(C)
& real_V822414075346904944vector(B)
& real_V822414075346904944vector(A) )
=> ! [T2: set(A),G: fun(A,B),G5: fun(A,fun(A,B)),F2: fun(C,A),S2: set(C),X2: C,F8: fun(C,A)] :
( ! [X3: A] :
( pp(member(A,X3,T2))
=> has_derivative(A,B,G,aa(A,fun(A,B),G5,X3),topolo174197925503356063within(A,X3,T2)) )
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(set(C),set(A),image(C,A,F2),S2)),T2))
=> ( pp(member(C,X2,S2))
=> ( has_derivative(C,A,F2,F8,topolo174197925503356063within(C,X2,S2))
=> has_derivative(C,B,aa(fun(C,A),fun(C,B),aTP_Lamp_wc(fun(A,B),fun(fun(C,A),fun(C,B)),G),F2),aa(fun(C,A),fun(C,B),aa(C,fun(fun(C,A),fun(C,B)),aa(fun(C,A),fun(C,fun(fun(C,A),fun(C,B))),aTP_Lamp_wd(fun(A,fun(A,B)),fun(fun(C,A),fun(C,fun(fun(C,A),fun(C,B)))),G5),F2),X2),F8),topolo174197925503356063within(C,X2,S2)) ) ) ) ) ) ).
% has_derivative_in_compose2
tff(fact_7500_has__derivative__diff,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),F8: fun(A,B),F4: filter(A),G: fun(A,B),G5: fun(A,B)] :
( has_derivative(A,B,F2,F8,F4)
=> ( has_derivative(A,B,G,G5,F4)
=> has_derivative(A,B,aa(fun(A,B),fun(A,B),aTP_Lamp_we(fun(A,B),fun(fun(A,B),fun(A,B)),F2),G),aa(fun(A,B),fun(A,B),aTP_Lamp_we(fun(A,B),fun(fun(A,B),fun(A,B)),F8),G5),F4) ) ) ) ).
% has_derivative_diff
tff(fact_7501_has__derivative__add,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),F8: fun(A,B),F4: filter(A),G: fun(A,B),G5: fun(A,B)] :
( has_derivative(A,B,F2,F8,F4)
=> ( has_derivative(A,B,G,G5,F4)
=> has_derivative(A,B,aa(fun(A,B),fun(A,B),aTP_Lamp_wf(fun(A,B),fun(fun(A,B),fun(A,B)),F2),G),aa(fun(A,B),fun(A,B),aTP_Lamp_wf(fun(A,B),fun(fun(A,B),fun(A,B)),F8),G5),F4) ) ) ) ).
% has_derivative_add
tff(fact_7502_has__derivative__const,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [C2: B,F4: filter(A)] : has_derivative(A,B,aTP_Lamp_wg(B,fun(A,B),C2),aTP_Lamp_vx(A,B),F4) ) ).
% has_derivative_const
tff(fact_7503_has__derivative__eq__rhs,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),F8: fun(A,B),F4: filter(A),G5: fun(A,B)] :
( has_derivative(A,B,F2,F8,F4)
=> ( ( F8 = G5 )
=> has_derivative(A,B,F2,G5,F4) ) ) ) ).
% has_derivative_eq_rhs
tff(fact_7504_has__derivative__of__real,axiom,
! [A: $tType,C: $tType] :
( ( real_V822414075346904944vector(C)
& real_V2191834092415804123ebra_1(A)
& real_V822414075346904944vector(A) )
=> ! [G: fun(C,real),G5: fun(C,real),F4: filter(C)] :
( has_derivative(C,real,G,G5,F4)
=> has_derivative(C,A,aTP_Lamp_wh(fun(C,real),fun(C,A),G),aTP_Lamp_wh(fun(C,real),fun(C,A),G5),F4) ) ) ).
% has_derivative_of_real
tff(fact_7505_has__derivative__ident,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F4: filter(A)] : has_derivative(A,A,aTP_Lamp_wi(A,A),aTP_Lamp_wi(A,A),F4) ) ).
% has_derivative_ident
tff(fact_7506_has__derivative__scaleR__right,axiom,
! [B: $tType,C: $tType] :
( ( real_V822414075346904944vector(C)
& real_V822414075346904944vector(B) )
=> ! [G: fun(C,B),G5: fun(C,B),F4: filter(C),R: real] :
( has_derivative(C,B,G,G5,F4)
=> has_derivative(C,B,aa(real,fun(C,B),aTP_Lamp_wj(fun(C,B),fun(real,fun(C,B)),G),R),aa(real,fun(C,B),aTP_Lamp_wj(fun(C,B),fun(real,fun(C,B)),G5),R),F4) ) ) ).
% has_derivative_scaleR_right
tff(fact_7507_has__derivative__scaleR__left,axiom,
! [B: $tType,C: $tType] :
( ( real_V822414075346904944vector(C)
& real_V822414075346904944vector(B) )
=> ! [G: fun(C,real),G5: fun(C,real),F4: filter(C),X2: B] :
( has_derivative(C,real,G,G5,F4)
=> has_derivative(C,B,aa(B,fun(C,B),aTP_Lamp_wk(fun(C,real),fun(B,fun(C,B)),G),X2),aa(B,fun(C,B),aTP_Lamp_wk(fun(C,real),fun(B,fun(C,B)),G5),X2),F4) ) ) ).
% has_derivative_scaleR_left
tff(fact_7508_has__derivative__mult__left,axiom,
! [A: $tType,C: $tType] :
( ( real_V822414075346904944vector(C)
& real_V4412858255891104859lgebra(A) )
=> ! [G: fun(C,A),G5: fun(C,A),F4: filter(C),Y: A] :
( has_derivative(C,A,G,G5,F4)
=> has_derivative(C,A,aa(A,fun(C,A),aTP_Lamp_wl(fun(C,A),fun(A,fun(C,A)),G),Y),aa(A,fun(C,A),aTP_Lamp_wl(fun(C,A),fun(A,fun(C,A)),G5),Y),F4) ) ) ).
% has_derivative_mult_left
tff(fact_7509_has__derivative__mult__right,axiom,
! [A: $tType,C: $tType] :
( ( real_V822414075346904944vector(C)
& real_V4412858255891104859lgebra(A) )
=> ! [G: fun(C,A),G5: fun(C,A),F4: filter(C),X2: A] :
( has_derivative(C,A,G,G5,F4)
=> has_derivative(C,A,aa(A,fun(C,A),aTP_Lamp_wm(fun(C,A),fun(A,fun(C,A)),G),X2),aa(A,fun(C,A),aTP_Lamp_wm(fun(C,A),fun(A,fun(C,A)),G5),X2),F4) ) ) ).
% has_derivative_mult_right
tff(fact_7510_has__derivative__minus,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),F8: fun(A,B),F4: filter(A)] :
( has_derivative(A,B,F2,F8,F4)
=> has_derivative(A,B,aTP_Lamp_wn(fun(A,B),fun(A,B),F2),aTP_Lamp_wn(fun(A,B),fun(A,B),F8),F4) ) ) ).
% has_derivative_minus
tff(fact_7511_has__derivative__sum,axiom,
! [A: $tType,C: $tType,B: $tType] :
( ( real_V822414075346904944vector(B)
& real_V822414075346904944vector(C) )
=> ! [I5: set(A),F2: fun(A,fun(B,C)),F8: fun(A,fun(B,C)),F4: filter(B)] :
( ! [I3: A] :
( pp(member(A,I3,I5))
=> has_derivative(B,C,aa(A,fun(B,C),F2,I3),aa(A,fun(B,C),F8,I3),F4) )
=> has_derivative(B,C,aa(fun(A,fun(B,C)),fun(B,C),aTP_Lamp_wp(set(A),fun(fun(A,fun(B,C)),fun(B,C)),I5),F2),aa(fun(A,fun(B,C)),fun(B,C),aTP_Lamp_wp(set(A),fun(fun(A,fun(B,C)),fun(B,C)),I5),F8),F4) ) ) ).
% has_derivative_sum
tff(fact_7512_has__derivative__exp,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [G: fun(A,real),G5: fun(A,real),X2: A,S2: set(A)] :
( has_derivative(A,real,G,G5,topolo174197925503356063within(A,X2,S2))
=> has_derivative(A,real,aTP_Lamp_wq(fun(A,real),fun(A,real),G),aa(A,fun(A,real),aa(fun(A,real),fun(A,fun(A,real)),aTP_Lamp_wr(fun(A,real),fun(fun(A,real),fun(A,fun(A,real))),G),G5),X2),topolo174197925503356063within(A,X2,S2)) ) ) ).
% has_derivative_exp
tff(fact_7513_has__derivative__sin,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [G: fun(A,real),G5: fun(A,real),X2: A,S2: set(A)] :
( has_derivative(A,real,G,G5,topolo174197925503356063within(A,X2,S2))
=> has_derivative(A,real,aTP_Lamp_ws(fun(A,real),fun(A,real),G),aa(A,fun(A,real),aa(fun(A,real),fun(A,fun(A,real)),aTP_Lamp_wt(fun(A,real),fun(fun(A,real),fun(A,fun(A,real))),G),G5),X2),topolo174197925503356063within(A,X2,S2)) ) ) ).
% has_derivative_sin
tff(fact_7514_has__derivative__cosh,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [G: fun(A,A),Db: A,X2: A,S2: set(A)] :
( has_derivative(A,A,G,aa(A,fun(A,A),times_times(A),Db),topolo174197925503356063within(A,X2,S2))
=> has_derivative(A,A,aTP_Lamp_wu(fun(A,A),fun(A,A),G),aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),sinh(A,aa(A,A,G,X2))),Db)),topolo174197925503356063within(A,X2,S2)) ) ) ).
% has_derivative_cosh
tff(fact_7515_has__derivative__sinh,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [G: fun(A,A),Db: A,X2: A,S2: set(A)] :
( has_derivative(A,A,G,aa(A,fun(A,A),times_times(A),Db),topolo174197925503356063within(A,X2,S2))
=> has_derivative(A,A,aTP_Lamp_wv(fun(A,A),fun(A,A),G),aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),cosh(A,aa(A,A,G,X2))),Db)),topolo174197925503356063within(A,X2,S2)) ) ) ).
% has_derivative_sinh
tff(fact_7516_has__derivative__divide_H,axiom,
! [A: $tType,C: $tType] :
( ( real_V822414075346904944vector(C)
& real_V3459762299906320749_field(A) )
=> ! [F2: fun(C,A),F8: fun(C,A),X2: C,S: set(C),G: fun(C,A),G5: fun(C,A)] :
( has_derivative(C,A,F2,F8,topolo174197925503356063within(C,X2,S))
=> ( has_derivative(C,A,G,G5,topolo174197925503356063within(C,X2,S))
=> ( ( aa(C,A,G,X2) != zero_zero(A) )
=> has_derivative(C,A,aa(fun(C,A),fun(C,A),aTP_Lamp_ww(fun(C,A),fun(fun(C,A),fun(C,A)),F2),G),aa(fun(C,A),fun(C,A),aa(fun(C,A),fun(fun(C,A),fun(C,A)),aa(C,fun(fun(C,A),fun(fun(C,A),fun(C,A))),aa(fun(C,A),fun(C,fun(fun(C,A),fun(fun(C,A),fun(C,A)))),aTP_Lamp_wx(fun(C,A),fun(fun(C,A),fun(C,fun(fun(C,A),fun(fun(C,A),fun(C,A))))),F2),F8),X2),G),G5),topolo174197925503356063within(C,X2,S)) ) ) ) ) ).
% has_derivative_divide'
tff(fact_7517_has__derivative__inverse,axiom,
! [A: $tType,C: $tType] :
( ( real_V822414075346904944vector(C)
& real_V8999393235501362500lgebra(A) )
=> ! [F2: fun(C,A),X2: C,F8: fun(C,A),S: set(C)] :
( ( aa(C,A,F2,X2) != zero_zero(A) )
=> ( has_derivative(C,A,F2,F8,topolo174197925503356063within(C,X2,S))
=> has_derivative(C,A,aTP_Lamp_wy(fun(C,A),fun(C,A),F2),aa(fun(C,A),fun(C,A),aa(C,fun(fun(C,A),fun(C,A)),aTP_Lamp_wz(fun(C,A),fun(C,fun(fun(C,A),fun(C,A))),F2),X2),F8),topolo174197925503356063within(C,X2,S)) ) ) ) ).
% has_derivative_inverse
tff(fact_7518_has__derivative__inverse_H,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [X2: A,S: set(A)] :
( ( X2 != zero_zero(A) )
=> has_derivative(A,A,inverse_inverse(A),aTP_Lamp_xa(A,fun(A,A),X2),topolo174197925503356063within(A,X2,S)) ) ) ).
% has_derivative_inverse'
tff(fact_7519_DERIV__compose__FDERIV,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(real,real),F8: real,G: fun(A,real),X2: A,G5: fun(A,real),S2: set(A)] :
( has_field_derivative(real,F2,F8,topolo174197925503356063within(real,aa(A,real,G,X2),top_top(set(real))))
=> ( has_derivative(A,real,G,G5,topolo174197925503356063within(A,X2,S2))
=> has_derivative(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_xb(fun(real,real),fun(fun(A,real),fun(A,real)),F2),G),aa(fun(A,real),fun(A,real),aTP_Lamp_xc(real,fun(fun(A,real),fun(A,real)),F8),G5),topolo174197925503356063within(A,X2,S2)) ) ) ) ).
% DERIV_compose_FDERIV
tff(fact_7520_has__derivative__cos,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [G: fun(A,real),G5: fun(A,real),X2: A,S2: set(A)] :
( has_derivative(A,real,G,G5,topolo174197925503356063within(A,X2,S2))
=> has_derivative(A,real,aTP_Lamp_xd(fun(A,real),fun(A,real),G),aa(A,fun(A,real),aa(fun(A,real),fun(A,fun(A,real)),aTP_Lamp_xe(fun(A,real),fun(fun(A,real),fun(A,fun(A,real))),G),G5),X2),topolo174197925503356063within(A,X2,S2)) ) ) ).
% has_derivative_cos
tff(fact_7521_has__derivative__power,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V3459762299906320749_field(B) )
=> ! [F2: fun(A,B),F8: fun(A,B),X2: A,S: set(A),N: nat] :
( has_derivative(A,B,F2,F8,topolo174197925503356063within(A,X2,S))
=> has_derivative(A,B,aa(nat,fun(A,B),aTP_Lamp_xf(fun(A,B),fun(nat,fun(A,B)),F2),N),aa(nat,fun(A,B),aa(A,fun(nat,fun(A,B)),aa(fun(A,B),fun(A,fun(nat,fun(A,B))),aTP_Lamp_xg(fun(A,B),fun(fun(A,B),fun(A,fun(nat,fun(A,B)))),F2),F8),X2),N),topolo174197925503356063within(A,X2,S)) ) ) ).
% has_derivative_power
tff(fact_7522_has__derivative__ln,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [G: fun(A,real),X2: A,G5: fun(A,real),S2: set(A)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(A,real,G,X2)))
=> ( has_derivative(A,real,G,G5,topolo174197925503356063within(A,X2,S2))
=> has_derivative(A,real,aTP_Lamp_xh(fun(A,real),fun(A,real),G),aa(fun(A,real),fun(A,real),aa(A,fun(fun(A,real),fun(A,real)),aTP_Lamp_xi(fun(A,real),fun(A,fun(fun(A,real),fun(A,real))),G),X2),G5),topolo174197925503356063within(A,X2,S2)) ) ) ) ).
% has_derivative_ln
tff(fact_7523_has__derivative__divide,axiom,
! [A: $tType,C: $tType] :
( ( real_V822414075346904944vector(C)
& real_V8999393235501362500lgebra(A) )
=> ! [F2: fun(C,A),F8: fun(C,A),X2: C,S: set(C),G: fun(C,A),G5: fun(C,A)] :
( has_derivative(C,A,F2,F8,topolo174197925503356063within(C,X2,S))
=> ( has_derivative(C,A,G,G5,topolo174197925503356063within(C,X2,S))
=> ( ( aa(C,A,G,X2) != zero_zero(A) )
=> has_derivative(C,A,aa(fun(C,A),fun(C,A),aTP_Lamp_xj(fun(C,A),fun(fun(C,A),fun(C,A)),F2),G),aa(fun(C,A),fun(C,A),aa(fun(C,A),fun(fun(C,A),fun(C,A)),aa(C,fun(fun(C,A),fun(fun(C,A),fun(C,A))),aa(fun(C,A),fun(C,fun(fun(C,A),fun(fun(C,A),fun(C,A)))),aTP_Lamp_xk(fun(C,A),fun(fun(C,A),fun(C,fun(fun(C,A),fun(fun(C,A),fun(C,A))))),F2),F8),X2),G),G5),topolo174197925503356063within(C,X2,S)) ) ) ) ) ).
% has_derivative_divide
tff(fact_7524_has__derivative__prod,axiom,
! [B: $tType,I6: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V3459762299906320749_field(B) )
=> ! [I5: set(I6),F2: fun(I6,fun(A,B)),F8: fun(I6,fun(A,B)),X2: A,S: set(A)] :
( ! [I3: I6] :
( pp(member(I6,I3,I5))
=> has_derivative(A,B,aa(I6,fun(A,B),F2,I3),aa(I6,fun(A,B),F8,I3),topolo174197925503356063within(A,X2,S)) )
=> has_derivative(A,B,aa(fun(I6,fun(A,B)),fun(A,B),aTP_Lamp_xm(set(I6),fun(fun(I6,fun(A,B)),fun(A,B)),I5),F2),aa(A,fun(A,B),aa(fun(I6,fun(A,B)),fun(A,fun(A,B)),aa(fun(I6,fun(A,B)),fun(fun(I6,fun(A,B)),fun(A,fun(A,B))),aTP_Lamp_xo(set(I6),fun(fun(I6,fun(A,B)),fun(fun(I6,fun(A,B)),fun(A,fun(A,B)))),I5),F2),F8),X2),topolo174197925503356063within(A,X2,S)) ) ) ).
% has_derivative_prod
tff(fact_7525_has__derivative__powr,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [G: fun(A,real),G5: fun(A,real),X2: A,X6: set(A),F2: fun(A,real),F8: fun(A,real)] :
( has_derivative(A,real,G,G5,topolo174197925503356063within(A,X2,X6))
=> ( has_derivative(A,real,F2,F8,topolo174197925503356063within(A,X2,X6))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(A,real,G,X2)))
=> ( pp(member(A,X2,X6))
=> has_derivative(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_xp(fun(A,real),fun(fun(A,real),fun(A,real)),G),F2),aa(fun(A,real),fun(A,real),aa(fun(A,real),fun(fun(A,real),fun(A,real)),aa(A,fun(fun(A,real),fun(fun(A,real),fun(A,real))),aa(fun(A,real),fun(A,fun(fun(A,real),fun(fun(A,real),fun(A,real)))),aTP_Lamp_xq(fun(A,real),fun(fun(A,real),fun(A,fun(fun(A,real),fun(fun(A,real),fun(A,real))))),G),G5),X2),F2),F8),topolo174197925503356063within(A,X2,X6)) ) ) ) ) ) ).
% has_derivative_powr
tff(fact_7526_has__derivative__real__sqrt,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [G: fun(A,real),X2: A,G5: fun(A,real),S2: set(A)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(A,real,G,X2)))
=> ( has_derivative(A,real,G,G5,topolo174197925503356063within(A,X2,S2))
=> has_derivative(A,real,aTP_Lamp_xr(fun(A,real),fun(A,real),G),aa(fun(A,real),fun(A,real),aa(A,fun(fun(A,real),fun(A,real)),aTP_Lamp_xs(fun(A,real),fun(A,fun(fun(A,real),fun(A,real))),G),X2),G5),topolo174197925503356063within(A,X2,S2)) ) ) ) ).
% has_derivative_real_sqrt
tff(fact_7527_has__derivative__arctan,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [G: fun(A,real),G5: fun(A,real),X2: A,S2: set(A)] :
( has_derivative(A,real,G,G5,topolo174197925503356063within(A,X2,S2))
=> has_derivative(A,real,aTP_Lamp_xt(fun(A,real),fun(A,real),G),aa(A,fun(A,real),aa(fun(A,real),fun(A,fun(A,real)),aTP_Lamp_xu(fun(A,real),fun(fun(A,real),fun(A,fun(A,real))),G),G5),X2),topolo174197925503356063within(A,X2,S2)) ) ) ).
% has_derivative_arctan
tff(fact_7528_has__derivative__tan,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [G: fun(A,real),X2: A,G5: fun(A,real),S2: set(A)] :
( ( aa(real,real,cos(real),aa(A,real,G,X2)) != zero_zero(real) )
=> ( has_derivative(A,real,G,G5,topolo174197925503356063within(A,X2,S2))
=> has_derivative(A,real,aTP_Lamp_xv(fun(A,real),fun(A,real),G),aa(fun(A,real),fun(A,real),aa(A,fun(fun(A,real),fun(A,real)),aTP_Lamp_xw(fun(A,real),fun(A,fun(fun(A,real),fun(A,real))),G),X2),G5),topolo174197925503356063within(A,X2,S2)) ) ) ) ).
% has_derivative_tan
tff(fact_7529_has__derivative__floor,axiom,
! [Aa: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& archim2362893244070406136eiling(Aa)
& topolo2564578578187576103pology(Aa) )
=> ! [G: fun(A,real),X2: A,F2: fun(real,Aa),G5: fun(A,real),S2: set(A)] :
( topolo3448309680560233919inuous(real,Aa,topolo174197925503356063within(real,aa(A,real,G,X2),top_top(set(real))),F2)
=> ( ~ pp(member(Aa,aa(real,Aa,F2,aa(A,real,G,X2)),ring_1_Ints(Aa)))
=> ( has_derivative(A,real,G,G5,topolo174197925503356063within(A,X2,S2))
=> has_derivative(A,real,aa(fun(real,Aa),fun(A,real),aTP_Lamp_xx(fun(A,real),fun(fun(real,Aa),fun(A,real)),G),F2),aTP_Lamp_xy(fun(A,real),fun(A,real),G5),topolo174197925503356063within(A,X2,S2)) ) ) ) ) ).
% has_derivative_floor
tff(fact_7530_termdiffs__aux,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [C2: fun(nat,A),K5: A,X2: A] :
( summable(A,aa(A,fun(nat,A),aTP_Lamp_va(fun(nat,A),fun(A,fun(nat,A)),C2),K5))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,X2)),real_V7770717601297561774m_norm(A,K5)))
=> filterlim(A,A,aa(A,fun(A,A),aTP_Lamp_ya(fun(nat,A),fun(A,fun(A,A)),C2),X2),topolo7230453075368039082e_nhds(A,zero_zero(A)),topolo174197925503356063within(A,zero_zero(A),top_top(set(A)))) ) ) ) ).
% termdiffs_aux
tff(fact_7531_tendsto__mult__right__iff,axiom,
! [A: $tType,B: $tType] :
( ( field(A)
& topolo4211221413907600880p_mult(A) )
=> ! [C2: A,F2: fun(B,A),L: A,F4: filter(B)] :
( ( C2 != zero_zero(A) )
=> ( filterlim(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_yb(A,fun(fun(B,A),fun(B,A)),C2),F2),topolo7230453075368039082e_nhds(A,aa(A,A,aa(A,fun(A,A),times_times(A),L),C2)),F4)
<=> filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,L),F4) ) ) ) ).
% tendsto_mult_right_iff
tff(fact_7532_tendsto__mult__left__iff,axiom,
! [A: $tType,B: $tType] :
( ( field(A)
& topolo4211221413907600880p_mult(A) )
=> ! [C2: A,F2: fun(B,A),L: A,F4: filter(B)] :
( ( C2 != zero_zero(A) )
=> ( filterlim(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_yc(A,fun(fun(B,A),fun(B,A)),C2),F2),topolo7230453075368039082e_nhds(A,aa(A,A,aa(A,fun(A,A),times_times(A),C2),L)),F4)
<=> filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,L),F4) ) ) ) ).
% tendsto_mult_left_iff
tff(fact_7533_power__tendsto__0__iff,axiom,
! [A: $tType,N: nat,F2: fun(A,real),F4: filter(A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( filterlim(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_yd(nat,fun(fun(A,real),fun(A,real)),N),F2),topolo7230453075368039082e_nhds(real,zero_zero(real)),F4)
<=> filterlim(A,real,F2,topolo7230453075368039082e_nhds(real,zero_zero(real)),F4) ) ) ).
% power_tendsto_0_iff
tff(fact_7534_isCont__Pair,axiom,
! [B: $tType,C: $tType,A: $tType] :
( ( topological_t2_space(A)
& topolo4958980785337419405_space(C)
& topolo4958980785337419405_space(B) )
=> ! [A2: A,F2: fun(A,B),G: fun(A,C)] :
( topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,top_top(set(A))),F2)
=> ( topolo3448309680560233919inuous(A,C,topolo174197925503356063within(A,A2,top_top(set(A))),G)
=> topolo3448309680560233919inuous(A,product_prod(B,C),topolo174197925503356063within(A,A2,top_top(set(A))),aa(fun(A,C),fun(A,product_prod(B,C)),aTP_Lamp_ye(fun(A,B),fun(fun(A,C),fun(A,product_prod(B,C))),F2),G)) ) ) ) ).
% isCont_Pair
tff(fact_7535_LIM__fun__less__zero,axiom,
! [F2: fun(real,real),L: real,C2: real] :
( filterlim(real,real,F2,topolo7230453075368039082e_nhds(real,L),topolo174197925503356063within(real,C2,top_top(set(real))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),L),zero_zero(real)))
=> ? [R4: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),R4))
& ! [X: real] :
( ( ( X != C2 )
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),C2),X))),R4)) )
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,F2,X)),zero_zero(real))) ) ) ) ) ).
% LIM_fun_less_zero
tff(fact_7536_LIM__fun__not__zero,axiom,
! [F2: fun(real,real),L: real,C2: real] :
( filterlim(real,real,F2,topolo7230453075368039082e_nhds(real,L),topolo174197925503356063within(real,C2,top_top(set(real))))
=> ( ( L != zero_zero(real) )
=> ? [R4: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),R4))
& ! [X: real] :
( ( ( X != C2 )
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),C2),X))),R4)) )
=> ( aa(real,real,F2,X) != zero_zero(real) ) ) ) ) ) ).
% LIM_fun_not_zero
tff(fact_7537_LIM__fun__gt__zero,axiom,
! [F2: fun(real,real),L: real,C2: real] :
( filterlim(real,real,F2,topolo7230453075368039082e_nhds(real,L),topolo174197925503356063within(real,C2,top_top(set(real))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),L))
=> ? [R4: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),R4))
& ! [X: real] :
( ( ( X != C2 )
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),C2),X))),R4)) )
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(real,real,F2,X))) ) ) ) ) ).
% LIM_fun_gt_zero
tff(fact_7538_LIM__D,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),L6: B,A2: A,R: real] :
( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,L6),topolo174197925503356063within(A,A2,top_top(set(A))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),R))
=> ? [S3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),S3))
& ! [X: A] :
( ( ( X != A2 )
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),X),A2))),S3)) )
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(B,aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(A,B,F2,X)),L6))),R)) ) ) ) ) ) ).
% LIM_D
tff(fact_7539_LIM__I,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [A2: A,F2: fun(A,B),L6: B] :
( ! [R4: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),R4))
=> ? [S8: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),S8))
& ! [X3: A] :
( ( ( X3 != A2 )
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),X3),A2))),S8)) )
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(B,aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(A,B,F2,X3)),L6))),R4)) ) ) )
=> filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,L6),topolo174197925503356063within(A,A2,top_top(set(A)))) ) ) ).
% LIM_I
tff(fact_7540_LIM__eq,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),L6: B,A2: A] :
( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,L6),topolo174197925503356063within(A,A2,top_top(set(A))))
<=> ! [R5: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),R5))
=> ? [S6: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),S6))
& ! [X4: A] :
( ( ( X4 != A2 )
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),X4),A2))),S6)) )
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(B,aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(A,B,F2,X4)),L6))),R5)) ) ) ) ) ) ).
% LIM_eq
tff(fact_7541_LIM__equal2,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& topolo4958980785337419405_space(B) )
=> ! [R2: real,A2: A,F2: fun(A,B),G: fun(A,B),L: B] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),R2))
=> ( ! [X3: A] :
( ( X3 != A2 )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),X3),A2))),R2))
=> ( aa(A,B,F2,X3) = aa(A,B,G,X3) ) ) )
=> ( filterlim(A,B,G,topolo7230453075368039082e_nhds(B,L),topolo174197925503356063within(A,A2,top_top(set(A))))
=> filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,L),topolo174197925503356063within(A,A2,top_top(set(A)))) ) ) ) ) ).
% LIM_equal2
tff(fact_7542_isCont__LIM__compose2,axiom,
! [C: $tType,B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& topolo4958980785337419405_space(B)
& topolo4958980785337419405_space(C) )
=> ! [A2: A,F2: fun(A,B),G: fun(B,C),L: C] :
( topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,top_top(set(A))),F2)
=> ( filterlim(B,C,G,topolo7230453075368039082e_nhds(C,L),topolo174197925503356063within(B,aa(A,B,F2,A2),top_top(set(B))))
=> ( ? [D6: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D6))
& ! [X3: A] :
( ( ( X3 != A2 )
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),X3),A2))),D6)) )
=> ( aa(A,B,F2,X3) != aa(A,B,F2,A2) ) ) )
=> filterlim(A,C,aa(fun(B,C),fun(A,C),aTP_Lamp_yf(fun(A,B),fun(fun(B,C),fun(A,C)),F2),G),topolo7230453075368039082e_nhds(C,L),topolo174197925503356063within(A,A2,top_top(set(A)))) ) ) ) ) ).
% isCont_LIM_compose2
tff(fact_7543_LIM__compose2,axiom,
! [C: $tType,B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& topolo4958980785337419405_space(B)
& topolo4958980785337419405_space(C) )
=> ! [F2: fun(A,B),B2: B,A2: A,G: fun(B,C),C2: C] :
( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,B2),topolo174197925503356063within(A,A2,top_top(set(A))))
=> ( filterlim(B,C,G,topolo7230453075368039082e_nhds(C,C2),topolo174197925503356063within(B,B2,top_top(set(B))))
=> ( ? [D6: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D6))
& ! [X3: A] :
( ( ( X3 != A2 )
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),X3),A2))),D6)) )
=> ( aa(A,B,F2,X3) != B2 ) ) )
=> filterlim(A,C,aa(fun(B,C),fun(A,C),aTP_Lamp_yf(fun(A,B),fun(fun(B,C),fun(A,C)),F2),G),topolo7230453075368039082e_nhds(C,C2),topolo174197925503356063within(A,A2,top_top(set(A)))) ) ) ) ) ).
% LIM_compose2
tff(fact_7544_isCont__real__root,axiom,
! [X2: real,N: nat] : topolo3448309680560233919inuous(real,real,topolo174197925503356063within(real,X2,top_top(set(real))),root(N)) ).
% isCont_real_root
tff(fact_7545_DERIV__isCont,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D5: A,X2: A] :
( has_field_derivative(A,F2,D5,topolo174197925503356063within(A,X2,top_top(set(A))))
=> topolo3448309680560233919inuous(A,A,topolo174197925503356063within(A,X2,top_top(set(A))),F2) ) ) ).
% DERIV_isCont
tff(fact_7546_isCont__real__sqrt,axiom,
! [X2: real] : topolo3448309680560233919inuous(real,real,topolo174197925503356063within(real,X2,top_top(set(real))),sqrt) ).
% isCont_real_sqrt
tff(fact_7547_LIM__offset__zero__cancel,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& topolo4958980785337419405_space(B) )
=> ! [F2: fun(A,B),A2: A,L6: B] :
( filterlim(A,B,aa(A,fun(A,B),aTP_Lamp_yg(fun(A,B),fun(A,fun(A,B)),F2),A2),topolo7230453075368039082e_nhds(B,L6),topolo174197925503356063within(A,zero_zero(A),top_top(set(A))))
=> filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,L6),topolo174197925503356063within(A,A2,top_top(set(A)))) ) ) ).
% LIM_offset_zero_cancel
tff(fact_7548_LIM__offset__zero,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& topolo4958980785337419405_space(B) )
=> ! [F2: fun(A,B),L6: B,A2: A] :
( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,L6),topolo174197925503356063within(A,A2,top_top(set(A))))
=> filterlim(A,B,aa(A,fun(A,B),aTP_Lamp_yg(fun(A,B),fun(A,fun(A,B)),F2),A2),topolo7230453075368039082e_nhds(B,L6),topolo174197925503356063within(A,zero_zero(A),top_top(set(A)))) ) ) ).
% LIM_offset_zero
tff(fact_7549_LIM__isCont__iff,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& topolo4958980785337419405_space(B) )
=> ! [F2: fun(A,B),A2: A] :
( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,aa(A,B,F2,A2)),topolo174197925503356063within(A,A2,top_top(set(A))))
<=> filterlim(A,B,aa(A,fun(A,B),aTP_Lamp_yg(fun(A,B),fun(A,fun(A,B)),F2),A2),topolo7230453075368039082e_nhds(B,aa(A,B,F2,A2)),topolo174197925503356063within(A,zero_zero(A),top_top(set(A)))) ) ) ).
% LIM_isCont_iff
tff(fact_7550_isCont__iff,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& topolo4958980785337419405_space(B) )
=> ! [X2: A,F2: fun(A,B)] :
( topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,X2,top_top(set(A))),F2)
<=> filterlim(A,B,aa(fun(A,B),fun(A,B),aTP_Lamp_yh(A,fun(fun(A,B),fun(A,B)),X2),F2),topolo7230453075368039082e_nhds(B,aa(A,B,F2,X2)),topolo174197925503356063within(A,zero_zero(A),top_top(set(A)))) ) ) ).
% isCont_iff
tff(fact_7551_LIM__not__zero,axiom,
! [Aa: $tType,A: $tType] :
( ( topolo8386298272705272623_space(A)
& zero(Aa)
& topological_t2_space(Aa) )
=> ! [K: Aa,A2: A] :
( ( K != zero_zero(Aa) )
=> ~ filterlim(A,Aa,aTP_Lamp_yi(Aa,fun(A,Aa),K),topolo7230453075368039082e_nhds(Aa,zero_zero(Aa)),topolo174197925503356063within(A,A2,top_top(set(A)))) ) ) ).
% LIM_not_zero
tff(fact_7552_DERIV__LIM__iff,axiom,
! [A: $tType] :
( ( inverse(A)
& real_V822414075346904944vector(A) )
=> ! [F2: fun(A,A),A2: A,D5: A] :
( filterlim(A,A,aa(A,fun(A,A),aTP_Lamp_yj(fun(A,A),fun(A,fun(A,A)),F2),A2),topolo7230453075368039082e_nhds(A,D5),topolo174197925503356063within(A,zero_zero(A),top_top(set(A))))
<=> filterlim(A,A,aa(A,fun(A,A),aTP_Lamp_yk(fun(A,A),fun(A,fun(A,A)),F2),A2),topolo7230453075368039082e_nhds(A,D5),topolo174197925503356063within(A,A2,top_top(set(A)))) ) ) ).
% DERIV_LIM_iff
tff(fact_7553_LIM__offset,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& topolo4958980785337419405_space(B) )
=> ! [F2: fun(A,B),L6: B,A2: A,K: A] :
( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,L6),topolo174197925503356063within(A,A2,top_top(set(A))))
=> filterlim(A,B,aa(A,fun(A,B),aTP_Lamp_yl(fun(A,B),fun(A,fun(A,B)),F2),K),topolo7230453075368039082e_nhds(B,L6),topolo174197925503356063within(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),K),top_top(set(A)))) ) ) ).
% LIM_offset
tff(fact_7554_LIM__offset__zero__iff,axiom,
! [C: $tType,D: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& topolo4958980785337419405_space(D)
& zero(C) )
=> ! [A2: A,F2: fun(A,D),L6: D] :
( nO_MATCH(C,A,zero_zero(C),A2)
=> ( filterlim(A,D,F2,topolo7230453075368039082e_nhds(D,L6),topolo174197925503356063within(A,A2,top_top(set(A))))
<=> filterlim(A,D,aa(fun(A,D),fun(A,D),aTP_Lamp_ym(A,fun(fun(A,D),fun(A,D)),A2),F2),topolo7230453075368039082e_nhds(D,L6),topolo174197925503356063within(A,zero_zero(A),top_top(set(A)))) ) ) ) ).
% LIM_offset_zero_iff
tff(fact_7555_continuous__at__within__divide,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space(A)
& real_V3459762299906320749_field(B) )
=> ! [A2: A,S2: set(A),F2: fun(A,B),G: fun(A,B)] :
( topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,S2),F2)
=> ( topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,S2),G)
=> ( ( aa(A,B,G,A2) != zero_zero(B) )
=> topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,S2),aa(fun(A,B),fun(A,B),aTP_Lamp_yn(fun(A,B),fun(fun(A,B),fun(A,B)),F2),G)) ) ) ) ) ).
% continuous_at_within_divide
tff(fact_7556_DERIV__continuous,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D5: A,X2: A,S2: set(A)] :
( has_field_derivative(A,F2,D5,topolo174197925503356063within(A,X2,S2))
=> topolo3448309680560233919inuous(A,A,topolo174197925503356063within(A,X2,S2),F2) ) ) ).
% DERIV_continuous
tff(fact_7557_has__derivative__continuous,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),F8: fun(A,B),X2: A,S2: set(A)] :
( has_derivative(A,B,F2,F8,topolo174197925503356063within(A,X2,S2))
=> topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,X2,S2),F2) ) ) ).
% has_derivative_continuous
tff(fact_7558_has__field__derivativeD,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D5: A,X2: A,S: set(A)] :
( has_field_derivative(A,F2,D5,topolo174197925503356063within(A,X2,S))
=> filterlim(A,A,aa(A,fun(A,A),aTP_Lamp_yo(fun(A,A),fun(A,fun(A,A)),F2),X2),topolo7230453075368039082e_nhds(A,D5),topolo174197925503356063within(A,X2,S)) ) ) ).
% has_field_derivativeD
tff(fact_7559_has__field__derivative__iff,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D5: A,X2: A,S: set(A)] :
( has_field_derivative(A,F2,D5,topolo174197925503356063within(A,X2,S))
<=> filterlim(A,A,aa(A,fun(A,A),aTP_Lamp_yo(fun(A,A),fun(A,fun(A,A)),F2),X2),topolo7230453075368039082e_nhds(A,D5),topolo174197925503356063within(A,X2,S)) ) ) ).
% has_field_derivative_iff
tff(fact_7560_LIM__imp__LIM,axiom,
! [B: $tType,C: $tType,A: $tType] :
( ( topolo4958980785337419405_space(A)
& real_V822414075346904944vector(C)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),L: B,A2: A,G: fun(A,C),M: C] :
( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,L),topolo174197925503356063within(A,A2,top_top(set(A))))
=> ( ! [X3: A] :
( ( X3 != A2 )
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(C,aa(C,C,aa(C,fun(C,C),minus_minus(C),aa(A,C,G,X3)),M))),real_V7770717601297561774m_norm(B,aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(A,B,F2,X3)),L)))) )
=> filterlim(A,C,G,topolo7230453075368039082e_nhds(C,M),topolo174197925503356063within(A,A2,top_top(set(A)))) ) ) ) ).
% LIM_imp_LIM
tff(fact_7561_real__LIM__sandwich__zero,axiom,
! [A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [F2: fun(A,real),A2: A,G: fun(A,real)] :
( filterlim(A,real,F2,topolo7230453075368039082e_nhds(real,zero_zero(real)),topolo174197925503356063within(A,A2,top_top(set(A))))
=> ( ! [X3: A] :
( ( X3 != A2 )
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(A,real,G,X3))) )
=> ( ! [X3: A] :
( ( X3 != A2 )
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(A,real,G,X3)),aa(A,real,F2,X3))) )
=> filterlim(A,real,G,topolo7230453075368039082e_nhds(real,zero_zero(real)),topolo174197925503356063within(A,A2,top_top(set(A)))) ) ) ) ) ).
% real_LIM_sandwich_zero
tff(fact_7562_IVT,axiom,
! [A: $tType,B: $tType] :
( ( topolo1944317154257567458pology(B)
& topolo8458572112393995274pology(A) )
=> ! [F2: fun(A,B),A2: A,Y: B,B2: A] :
( pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),aa(A,B,F2,A2)),Y))
=> ( pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),Y),aa(A,B,F2,B2)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( ! [X3: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),X3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),B2)) )
=> topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,X3,top_top(set(A))),F2) )
=> ? [X3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),X3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),B2))
& ( aa(A,B,F2,X3) = Y ) ) ) ) ) ) ) ).
% IVT
tff(fact_7563_IVT2,axiom,
! [A: $tType,B: $tType] :
( ( topolo1944317154257567458pology(B)
& topolo8458572112393995274pology(A) )
=> ! [F2: fun(A,B),B2: A,Y: B,A2: A] :
( pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),aa(A,B,F2,B2)),Y))
=> ( pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),Y),aa(A,B,F2,A2)))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),B2))
=> ( ! [X3: A] :
( ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),X3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),B2)) )
=> topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,X3,top_top(set(A))),F2) )
=> ? [X3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),X3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),B2))
& ( aa(A,B,F2,X3) = Y ) ) ) ) ) ) ) ).
% IVT2
tff(fact_7564_isCont__Lb__Ub,axiom,
! [A2: real,B2: real,F2: fun(real,real)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),B2))
=> ( ! [X3: real] :
( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),X3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X3),B2)) )
=> topolo3448309680560233919inuous(real,real,topolo174197925503356063within(real,X3,top_top(set(real))),F2) )
=> ? [L7: real,M9: real] :
( ! [X: real] :
( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),X))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X),B2)) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),L7),aa(real,real,F2,X)))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,F2,X)),M9)) ) )
& ! [Y4: real] :
( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),L7),Y4))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Y4),M9)) )
=> ? [X3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),X3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X3),B2))
& ( aa(real,real,F2,X3) = Y4 ) ) ) ) ) ) ).
% isCont_Lb_Ub
tff(fact_7565_tendsto__within__subset,axiom,
! [B: $tType,A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [F2: fun(A,B),L: filter(B),X2: A,S: set(A),T6: set(A)] :
( filterlim(A,B,F2,L,topolo174197925503356063within(A,X2,S))
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),T6),S))
=> filterlim(A,B,F2,L,topolo174197925503356063within(A,X2,T6)) ) ) ) ).
% tendsto_within_subset
tff(fact_7566_isCont__mult,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space(A)
& real_V4412858255891104859lgebra(B) )
=> ! [A2: A,F2: fun(A,B),G: fun(A,B)] :
( topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,top_top(set(A))),F2)
=> ( topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,top_top(set(A))),G)
=> topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,top_top(set(A))),aa(fun(A,B),fun(A,B),aTP_Lamp_yp(fun(A,B),fun(fun(A,B),fun(A,B)),F2),G)) ) ) ) ).
% isCont_mult
tff(fact_7567_isCont__add,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space(A)
& topolo6943815403480290642id_add(B) )
=> ! [A2: A,F2: fun(A,B),G: fun(A,B)] :
( topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,top_top(set(A))),F2)
=> ( topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,top_top(set(A))),G)
=> topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,top_top(set(A))),aa(fun(A,B),fun(A,B),aTP_Lamp_yq(fun(A,B),fun(fun(A,B),fun(A,B)),F2),G)) ) ) ) ).
% isCont_add
tff(fact_7568_isCont__diff,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space(A)
& real_V822414075346904944vector(B) )
=> ! [A2: A,F2: fun(A,B),G: fun(A,B)] :
( topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,top_top(set(A))),F2)
=> ( topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,top_top(set(A))),G)
=> topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,top_top(set(A))),aa(fun(A,B),fun(A,B),aTP_Lamp_yr(fun(A,B),fun(fun(A,B),fun(A,B)),F2),G)) ) ) ) ).
% isCont_diff
tff(fact_7569_isCont__minus,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space(A)
& real_V822414075346904944vector(B) )
=> ! [A2: A,F2: fun(A,B)] :
( topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,top_top(set(A))),F2)
=> topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,top_top(set(A))),aTP_Lamp_ys(fun(A,B),fun(A,B),F2)) ) ) ).
% isCont_minus
tff(fact_7570_isCont__power,axiom,
! [A: $tType,B: $tType] :
( ( power(B)
& real_V4412858255891104859lgebra(B)
& topological_t2_space(A) )
=> ! [A2: A,F2: fun(A,B),N: nat] :
( topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,top_top(set(A))),F2)
=> topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,top_top(set(A))),aa(nat,fun(A,B),aTP_Lamp_yt(fun(A,B),fun(nat,fun(A,B)),F2),N)) ) ) ).
% isCont_power
tff(fact_7571_continuous__at__within__inverse,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space(A)
& real_V8999393235501362500lgebra(B) )
=> ! [A2: A,S2: set(A),F2: fun(A,B)] :
( topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,S2),F2)
=> ( ( aa(A,B,F2,A2) != zero_zero(B) )
=> topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,S2),aTP_Lamp_yu(fun(A,B),fun(A,B),F2)) ) ) ) ).
% continuous_at_within_inverse
tff(fact_7572_continuous__Pair,axiom,
! [B: $tType,C: $tType,A: $tType] :
( ( topological_t2_space(A)
& topolo4958980785337419405_space(C)
& topolo4958980785337419405_space(B) )
=> ! [F4: filter(A),F2: fun(A,B),G: fun(A,C)] :
( topolo3448309680560233919inuous(A,B,F4,F2)
=> ( topolo3448309680560233919inuous(A,C,F4,G)
=> topolo3448309680560233919inuous(A,product_prod(B,C),F4,aa(fun(A,C),fun(A,product_prod(B,C)),aTP_Lamp_ye(fun(A,B),fun(fun(A,C),fun(A,product_prod(B,C))),F2),G)) ) ) ) ).
% continuous_Pair
tff(fact_7573_tendsto__Pair,axiom,
! [C: $tType,B: $tType,A: $tType] :
( ( topolo4958980785337419405_space(B)
& topolo4958980785337419405_space(C) )
=> ! [F2: fun(A,B),A2: B,F4: filter(A),G: fun(A,C),B2: C] :
( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,A2),F4)
=> ( filterlim(A,C,G,topolo7230453075368039082e_nhds(C,B2),F4)
=> filterlim(A,product_prod(B,C),aa(fun(A,C),fun(A,product_prod(B,C)),aTP_Lamp_yv(fun(A,B),fun(fun(A,C),fun(A,product_prod(B,C))),F2),G),topolo7230453075368039082e_nhds(product_prod(B,C),aa(C,product_prod(B,C),aa(B,fun(C,product_prod(B,C)),product_Pair(B,C),A2),B2)),F4) ) ) ) ).
% tendsto_Pair
tff(fact_7574_tendsto__log,axiom,
! [A: $tType,F2: fun(A,real),A2: real,F4: filter(A),G: fun(A,real),B2: real] :
( filterlim(A,real,F2,topolo7230453075368039082e_nhds(real,A2),F4)
=> ( filterlim(A,real,G,topolo7230453075368039082e_nhds(real,B2),F4)
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),A2))
=> ( ( A2 != one_one(real) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),B2))
=> filterlim(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_yw(fun(A,real),fun(fun(A,real),fun(A,real)),F2),G),topolo7230453075368039082e_nhds(real,aa(real,real,log(A2),B2)),F4) ) ) ) ) ) ).
% tendsto_log
tff(fact_7575_tendsto__arcosh,axiom,
! [B: $tType,F2: fun(B,real),A2: real,F4: filter(B)] :
( filterlim(B,real,F2,topolo7230453075368039082e_nhds(real,A2),F4)
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),A2))
=> filterlim(B,real,aTP_Lamp_yx(fun(B,real),fun(B,real),F2),topolo7230453075368039082e_nhds(real,aa(real,real,arcosh(real),A2)),F4) ) ) ).
% tendsto_arcosh
tff(fact_7576_tendsto__null__power,axiom,
! [B: $tType,A: $tType] :
( real_V2822296259951069270ebra_1(B)
=> ! [F2: fun(A,B),F4: filter(A),N: nat] :
( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,zero_zero(B)),F4)
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> filterlim(A,B,aa(nat,fun(A,B),aTP_Lamp_yy(fun(A,B),fun(nat,fun(A,B)),F2),N),topolo7230453075368039082e_nhds(B,zero_zero(B)),F4) ) ) ) ).
% tendsto_null_power
tff(fact_7577_tendsto__artanh,axiom,
! [A: $tType,F2: fun(A,real),A2: real,F4: filter(A)] :
( filterlim(A,real,F2,topolo7230453075368039082e_nhds(real,A2),F4)
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),one_one(real))),A2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),one_one(real)))
=> filterlim(A,real,aTP_Lamp_yz(fun(A,real),fun(A,real),F2),topolo7230453075368039082e_nhds(real,aa(real,real,artanh(real),A2)),F4) ) ) ) ).
% tendsto_artanh
tff(fact_7578_tendsto__null__sum,axiom,
! [C: $tType,B: $tType,A: $tType] :
( topolo5987344860129210374id_add(C)
=> ! [I5: set(B),F2: fun(A,fun(B,C)),F4: filter(A)] :
( ! [I3: B] :
( pp(member(B,I3,I5))
=> filterlim(A,C,aa(B,fun(A,C),aTP_Lamp_za(fun(A,fun(B,C)),fun(B,fun(A,C)),F2),I3),topolo7230453075368039082e_nhds(C,zero_zero(C)),F4) )
=> filterlim(A,C,aa(fun(A,fun(B,C)),fun(A,C),aTP_Lamp_zb(set(B),fun(fun(A,fun(B,C)),fun(A,C)),I5),F2),topolo7230453075368039082e_nhds(C,zero_zero(C)),F4) ) ) ).
% tendsto_null_sum
tff(fact_7579_tendsto__real__root,axiom,
! [A: $tType,F2: fun(A,real),X2: real,F4: filter(A),N: nat] :
( filterlim(A,real,F2,topolo7230453075368039082e_nhds(real,X2),F4)
=> filterlim(A,real,aa(nat,fun(A,real),aTP_Lamp_zc(fun(A,real),fun(nat,fun(A,real)),F2),N),topolo7230453075368039082e_nhds(real,aa(real,real,root(N),X2)),F4) ) ).
% tendsto_real_root
tff(fact_7580_tendsto__minus__cancel__left,axiom,
! [B: $tType,A: $tType] :
( topolo1633459387980952147up_add(B)
=> ! [F2: fun(A,B),Y: B,F4: filter(A)] :
( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,aa(B,B,uminus_uminus(B),Y)),F4)
<=> filterlim(A,B,aTP_Lamp_zd(fun(A,B),fun(A,B),F2),topolo7230453075368039082e_nhds(B,Y),F4) ) ) ).
% tendsto_minus_cancel_left
tff(fact_7581_tendsto__minus__cancel,axiom,
! [A: $tType,B: $tType] :
( topolo1633459387980952147up_add(A)
=> ! [F2: fun(B,A),A2: A,F4: filter(B)] :
( filterlim(B,A,aTP_Lamp_ze(fun(B,A),fun(B,A),F2),topolo7230453075368039082e_nhds(A,aa(A,A,uminus_uminus(A),A2)),F4)
=> filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,A2),F4) ) ) ).
% tendsto_minus_cancel
tff(fact_7582_continuous__minus,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space(A)
& topolo1633459387980952147up_add(B) )
=> ! [F4: filter(A),F2: fun(A,B)] :
( topolo3448309680560233919inuous(A,B,F4,F2)
=> topolo3448309680560233919inuous(A,B,F4,aTP_Lamp_zf(fun(A,B),fun(A,B),F2)) ) ) ).
% continuous_minus
tff(fact_7583_tendsto__minus,axiom,
! [A: $tType,B: $tType] :
( topolo1633459387980952147up_add(A)
=> ! [F2: fun(B,A),A2: A,F4: filter(B)] :
( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,A2),F4)
=> filterlim(B,A,aTP_Lamp_ze(fun(B,A),fun(B,A),F2),topolo7230453075368039082e_nhds(A,aa(A,A,uminus_uminus(A),A2)),F4) ) ) ).
% tendsto_minus
tff(fact_7584_tendsto__uminus__nhds,axiom,
! [A: $tType] :
( topolo1633459387980952147up_add(A)
=> ! [A2: A] : filterlim(A,A,uminus_uminus(A),topolo7230453075368039082e_nhds(A,aa(A,A,uminus_uminus(A),A2)),topolo7230453075368039082e_nhds(A,A2)) ) ).
% tendsto_uminus_nhds
tff(fact_7585_tendsto__mult__one,axiom,
! [B: $tType,D: $tType] :
( topolo1898628316856586783d_mult(B)
=> ! [F2: fun(D,B),F4: filter(D),G: fun(D,B)] :
( filterlim(D,B,F2,topolo7230453075368039082e_nhds(B,one_one(B)),F4)
=> ( filterlim(D,B,G,topolo7230453075368039082e_nhds(B,one_one(B)),F4)
=> filterlim(D,B,aa(fun(D,B),fun(D,B),aTP_Lamp_zg(fun(D,B),fun(fun(D,B),fun(D,B)),F2),G),topolo7230453075368039082e_nhds(B,one_one(B)),F4) ) ) ) ).
% tendsto_mult_one
tff(fact_7586_tendsto__divide__zero,axiom,
! [A: $tType,B: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(B,A),F4: filter(B),C2: A] :
( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,zero_zero(A)),F4)
=> filterlim(B,A,aa(A,fun(B,A),aTP_Lamp_zh(fun(B,A),fun(A,fun(B,A)),F2),C2),topolo7230453075368039082e_nhds(A,zero_zero(A)),F4) ) ) ).
% tendsto_divide_zero
tff(fact_7587_tendsto__divide,axiom,
! [A: $tType,B: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(B,A),A2: A,F4: filter(B),G: fun(B,A),B2: A] :
( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,A2),F4)
=> ( filterlim(B,A,G,topolo7230453075368039082e_nhds(A,B2),F4)
=> ( ( B2 != zero_zero(A) )
=> filterlim(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_zi(fun(B,A),fun(fun(B,A),fun(B,A)),F2),G),topolo7230453075368039082e_nhds(A,aa(A,A,aa(A,fun(A,A),divide_divide(A),A2),B2)),F4) ) ) ) ) ).
% tendsto_divide
tff(fact_7588_tendsto__mult__right__zero,axiom,
! [A: $tType,D: $tType] :
( real_V4412858255891104859lgebra(A)
=> ! [F2: fun(D,A),F4: filter(D),C2: A] :
( filterlim(D,A,F2,topolo7230453075368039082e_nhds(A,zero_zero(A)),F4)
=> filterlim(D,A,aa(A,fun(D,A),aTP_Lamp_zj(fun(D,A),fun(A,fun(D,A)),F2),C2),topolo7230453075368039082e_nhds(A,zero_zero(A)),F4) ) ) ).
% tendsto_mult_right_zero
tff(fact_7589_tendsto__mult__left__zero,axiom,
! [A: $tType,D: $tType] :
( real_V4412858255891104859lgebra(A)
=> ! [F2: fun(D,A),F4: filter(D),C2: A] :
( filterlim(D,A,F2,topolo7230453075368039082e_nhds(A,zero_zero(A)),F4)
=> filterlim(D,A,aa(A,fun(D,A),aTP_Lamp_zk(fun(D,A),fun(A,fun(D,A)),F2),C2),topolo7230453075368039082e_nhds(A,zero_zero(A)),F4) ) ) ).
% tendsto_mult_left_zero
tff(fact_7590_tendsto__mult__zero,axiom,
! [A: $tType,D: $tType] :
( real_V4412858255891104859lgebra(A)
=> ! [F2: fun(D,A),F4: filter(D),G: fun(D,A)] :
( filterlim(D,A,F2,topolo7230453075368039082e_nhds(A,zero_zero(A)),F4)
=> ( filterlim(D,A,G,topolo7230453075368039082e_nhds(A,zero_zero(A)),F4)
=> filterlim(D,A,aa(fun(D,A),fun(D,A),aTP_Lamp_zl(fun(D,A),fun(fun(D,A),fun(D,A)),F2),G),topolo7230453075368039082e_nhds(A,zero_zero(A)),F4) ) ) ) ).
% tendsto_mult_zero
tff(fact_7591_continuous__mult__right,axiom,
! [B: $tType,A: $tType] :
( ( real_V4412858255891104859lgebra(A)
& topological_t2_space(B) )
=> ! [F4: filter(B),F2: fun(B,A),C2: A] :
( topolo3448309680560233919inuous(B,A,F4,F2)
=> topolo3448309680560233919inuous(B,A,F4,aa(A,fun(B,A),aTP_Lamp_zm(fun(B,A),fun(A,fun(B,A)),F2),C2)) ) ) ).
% continuous_mult_right
tff(fact_7592_continuous__mult__left,axiom,
! [B: $tType,A: $tType] :
( ( real_V4412858255891104859lgebra(A)
& topological_t2_space(B) )
=> ! [F4: filter(B),F2: fun(B,A),C2: A] :
( topolo3448309680560233919inuous(B,A,F4,F2)
=> topolo3448309680560233919inuous(B,A,F4,aa(A,fun(B,A),aTP_Lamp_zn(fun(B,A),fun(A,fun(B,A)),F2),C2)) ) ) ).
% continuous_mult_left
tff(fact_7593_tendsto__mult__right,axiom,
! [A: $tType,B: $tType] :
( topolo4211221413907600880p_mult(A)
=> ! [F2: fun(B,A),L: A,F4: filter(B),C2: A] :
( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,L),F4)
=> filterlim(B,A,aa(A,fun(B,A),aTP_Lamp_zo(fun(B,A),fun(A,fun(B,A)),F2),C2),topolo7230453075368039082e_nhds(A,aa(A,A,aa(A,fun(A,A),times_times(A),L),C2)),F4) ) ) ).
% tendsto_mult_right
tff(fact_7594_tendsto__mult__left,axiom,
! [A: $tType,B: $tType] :
( topolo4211221413907600880p_mult(A)
=> ! [F2: fun(B,A),L: A,F4: filter(B),C2: A] :
( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,L),F4)
=> filterlim(B,A,aa(A,fun(B,A),aTP_Lamp_zp(fun(B,A),fun(A,fun(B,A)),F2),C2),topolo7230453075368039082e_nhds(A,aa(A,A,aa(A,fun(A,A),times_times(A),C2),L)),F4) ) ) ).
% tendsto_mult_left
tff(fact_7595_continuous__mult_H,axiom,
! [B: $tType,D: $tType] :
( ( topological_t2_space(D)
& topolo4211221413907600880p_mult(B) )
=> ! [F4: filter(D),F2: fun(D,B),G: fun(D,B)] :
( topolo3448309680560233919inuous(D,B,F4,F2)
=> ( topolo3448309680560233919inuous(D,B,F4,G)
=> topolo3448309680560233919inuous(D,B,F4,aa(fun(D,B),fun(D,B),aTP_Lamp_zq(fun(D,B),fun(fun(D,B),fun(D,B)),F2),G)) ) ) ) ).
% continuous_mult'
tff(fact_7596_continuous__mult,axiom,
! [A: $tType,D: $tType] :
( ( topological_t2_space(D)
& real_V4412858255891104859lgebra(A) )
=> ! [F4: filter(D),F2: fun(D,A),G: fun(D,A)] :
( topolo3448309680560233919inuous(D,A,F4,F2)
=> ( topolo3448309680560233919inuous(D,A,F4,G)
=> topolo3448309680560233919inuous(D,A,F4,aa(fun(D,A),fun(D,A),aTP_Lamp_zr(fun(D,A),fun(fun(D,A),fun(D,A)),F2),G)) ) ) ) ).
% continuous_mult
tff(fact_7597_tendsto__mult,axiom,
! [A: $tType,B: $tType] :
( topolo4211221413907600880p_mult(A)
=> ! [F2: fun(B,A),A2: A,F4: filter(B),G: fun(B,A),B2: A] :
( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,A2),F4)
=> ( filterlim(B,A,G,topolo7230453075368039082e_nhds(A,B2),F4)
=> filterlim(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_zs(fun(B,A),fun(fun(B,A),fun(B,A)),F2),G),topolo7230453075368039082e_nhds(A,aa(A,A,aa(A,fun(A,A),times_times(A),A2),B2)),F4) ) ) ) ).
% tendsto_mult
tff(fact_7598_tendsto__power,axiom,
! [B: $tType,A: $tType] :
( ( power(B)
& real_V4412858255891104859lgebra(B) )
=> ! [F2: fun(A,B),A2: B,F4: filter(A),N: nat] :
( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,A2),F4)
=> filterlim(A,B,aa(nat,fun(A,B),aTP_Lamp_zt(fun(A,B),fun(nat,fun(A,B)),F2),N),topolo7230453075368039082e_nhds(B,aa(nat,B,power_power(B,A2),N)),F4) ) ) ).
% tendsto_power
tff(fact_7599_continuous__power,axiom,
! [A: $tType,B: $tType] :
( ( power(B)
& real_V4412858255891104859lgebra(B)
& topological_t2_space(A) )
=> ! [F4: filter(A),F2: fun(A,B),N: nat] :
( topolo3448309680560233919inuous(A,B,F4,F2)
=> topolo3448309680560233919inuous(A,B,F4,aa(nat,fun(A,B),aTP_Lamp_yt(fun(A,B),fun(nat,fun(A,B)),F2),N)) ) ) ).
% continuous_power
tff(fact_7600_continuous__power_H,axiom,
! [B: $tType,C: $tType] :
( ( topological_t2_space(C)
& topolo1898628316856586783d_mult(B) )
=> ! [F4: filter(C),F2: fun(C,B),G: fun(C,nat)] :
( topolo3448309680560233919inuous(C,B,F4,F2)
=> ( topolo3448309680560233919inuous(C,nat,F4,G)
=> topolo3448309680560233919inuous(C,B,F4,aa(fun(C,nat),fun(C,B),aTP_Lamp_zu(fun(C,B),fun(fun(C,nat),fun(C,B)),F2),G)) ) ) ) ).
% continuous_power'
tff(fact_7601_tendsto__power__strong,axiom,
! [B: $tType,C: $tType] :
( topolo1898628316856586783d_mult(B)
=> ! [F2: fun(C,B),A2: B,F4: filter(C),G: fun(C,nat),B2: nat] :
( filterlim(C,B,F2,topolo7230453075368039082e_nhds(B,A2),F4)
=> ( filterlim(C,nat,G,topolo7230453075368039082e_nhds(nat,B2),F4)
=> filterlim(C,B,aa(fun(C,nat),fun(C,B),aTP_Lamp_zv(fun(C,B),fun(fun(C,nat),fun(C,B)),F2),G),topolo7230453075368039082e_nhds(B,aa(nat,B,power_power(B,A2),B2)),F4) ) ) ) ).
% tendsto_power_strong
tff(fact_7602_tendsto__real__sqrt,axiom,
! [A: $tType,F2: fun(A,real),X2: real,F4: filter(A)] :
( filterlim(A,real,F2,topolo7230453075368039082e_nhds(real,X2),F4)
=> filterlim(A,real,aTP_Lamp_zw(fun(A,real),fun(A,real),F2),topolo7230453075368039082e_nhds(real,aa(real,real,sqrt,X2)),F4) ) ).
% tendsto_real_sqrt
tff(fact_7603_tendsto__add__zero,axiom,
! [B: $tType,D: $tType] :
( topolo6943815403480290642id_add(B)
=> ! [F2: fun(D,B),F4: filter(D),G: fun(D,B)] :
( filterlim(D,B,F2,topolo7230453075368039082e_nhds(B,zero_zero(B)),F4)
=> ( filterlim(D,B,G,topolo7230453075368039082e_nhds(B,zero_zero(B)),F4)
=> filterlim(D,B,aa(fun(D,B),fun(D,B),aTP_Lamp_zx(fun(D,B),fun(fun(D,B),fun(D,B)),F2),G),topolo7230453075368039082e_nhds(B,zero_zero(B)),F4) ) ) ) ).
% tendsto_add_zero
tff(fact_7604_tendsto__sgn,axiom,
! [A: $tType,B: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(B,A),L: A,F4: filter(B)] :
( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,L),F4)
=> ( ( L != zero_zero(A) )
=> filterlim(B,A,aTP_Lamp_zy(fun(B,A),fun(B,A),F2),topolo7230453075368039082e_nhds(A,aa(A,A,sgn_sgn(A),L)),F4) ) ) ) ).
% tendsto_sgn
tff(fact_7605_tendsto__powr,axiom,
! [A: $tType,F2: fun(A,real),A2: real,F4: filter(A),G: fun(A,real),B2: real] :
( filterlim(A,real,F2,topolo7230453075368039082e_nhds(real,A2),F4)
=> ( filterlim(A,real,G,topolo7230453075368039082e_nhds(real,B2),F4)
=> ( ( A2 != zero_zero(real) )
=> filterlim(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_zz(fun(A,real),fun(fun(A,real),fun(A,real)),F2),G),topolo7230453075368039082e_nhds(real,powr(real,A2,B2)),F4) ) ) ) ).
% tendsto_powr
tff(fact_7606_tendsto__ln,axiom,
! [A: $tType,F2: fun(A,real),A2: real,F4: filter(A)] :
( filterlim(A,real,F2,topolo7230453075368039082e_nhds(real,A2),F4)
=> ( ( A2 != zero_zero(real) )
=> filterlim(A,real,aTP_Lamp_ly(fun(A,real),fun(A,real),F2),topolo7230453075368039082e_nhds(real,aa(real,real,ln_ln(real),A2)),F4) ) ) ).
% tendsto_ln
tff(fact_7607_tendsto__norm__zero__cancel,axiom,
! [B: $tType,A: $tType] :
( real_V822414075346904944vector(B)
=> ! [F2: fun(A,B),F4: filter(A)] :
( filterlim(A,real,aTP_Lamp_aaa(fun(A,B),fun(A,real),F2),topolo7230453075368039082e_nhds(real,zero_zero(real)),F4)
=> filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,zero_zero(B)),F4) ) ) ).
% tendsto_norm_zero_cancel
tff(fact_7608_tendsto__norm__zero__iff,axiom,
! [B: $tType,A: $tType] :
( real_V822414075346904944vector(B)
=> ! [F2: fun(A,B),F4: filter(A)] :
( filterlim(A,real,aTP_Lamp_aaa(fun(A,B),fun(A,real),F2),topolo7230453075368039082e_nhds(real,zero_zero(real)),F4)
<=> filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,zero_zero(B)),F4) ) ) ).
% tendsto_norm_zero_iff
tff(fact_7609_tendsto__norm__zero,axiom,
! [B: $tType,A: $tType] :
( real_V822414075346904944vector(B)
=> ! [F2: fun(A,B),F4: filter(A)] :
( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,zero_zero(B)),F4)
=> filterlim(A,real,aTP_Lamp_aaa(fun(A,B),fun(A,real),F2),topolo7230453075368039082e_nhds(real,zero_zero(real)),F4) ) ) ).
% tendsto_norm_zero
tff(fact_7610_tendsto__inverse,axiom,
! [A: $tType,B: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [F2: fun(B,A),A2: A,F4: filter(B)] :
( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,A2),F4)
=> ( ( A2 != zero_zero(A) )
=> filterlim(B,A,aTP_Lamp_aab(fun(B,A),fun(B,A),F2),topolo7230453075368039082e_nhds(A,aa(A,A,inverse_inverse(A),A2)),F4) ) ) ) ).
% tendsto_inverse
tff(fact_7611_tendsto__tan,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [F2: fun(A,A),A2: A,F4: filter(A)] :
( filterlim(A,A,F2,topolo7230453075368039082e_nhds(A,A2),F4)
=> ( ( aa(A,A,cos(A),A2) != zero_zero(A) )
=> filterlim(A,A,aTP_Lamp_aac(fun(A,A),fun(A,A),F2),topolo7230453075368039082e_nhds(A,aa(A,A,tan(A),A2)),F4) ) ) ) ).
% tendsto_tan
tff(fact_7612_tendsto__tanh,axiom,
! [A: $tType,C: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [F2: fun(C,A),A2: A,F4: filter(C)] :
( filterlim(C,A,F2,topolo7230453075368039082e_nhds(A,A2),F4)
=> ( ( cosh(A,A2) != zero_zero(A) )
=> filterlim(C,A,aTP_Lamp_aad(fun(C,A),fun(C,A),F2),topolo7230453075368039082e_nhds(A,aa(A,A,tanh(A),A2)),F4) ) ) ) ).
% tendsto_tanh
tff(fact_7613_tendsto__cot,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [F2: fun(A,A),A2: A,F4: filter(A)] :
( filterlim(A,A,F2,topolo7230453075368039082e_nhds(A,A2),F4)
=> ( ( sin(A,A2) != zero_zero(A) )
=> filterlim(A,A,aTP_Lamp_aae(fun(A,A),fun(A,A),F2),topolo7230453075368039082e_nhds(A,aa(A,A,cot(A),A2)),F4) ) ) ) ).
% tendsto_cot
tff(fact_7614_tendsto__add,axiom,
! [A: $tType,B: $tType] :
( topolo6943815403480290642id_add(A)
=> ! [F2: fun(B,A),A2: A,F4: filter(B),G: fun(B,A),B2: A] :
( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,A2),F4)
=> ( filterlim(B,A,G,topolo7230453075368039082e_nhds(A,B2),F4)
=> filterlim(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_aaf(fun(B,A),fun(fun(B,A),fun(B,A)),F2),G),topolo7230453075368039082e_nhds(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2)),F4) ) ) ) ).
% tendsto_add
tff(fact_7615_continuous__add,axiom,
! [B: $tType,D: $tType] :
( ( topological_t2_space(D)
& topolo6943815403480290642id_add(B) )
=> ! [F4: filter(D),F2: fun(D,B),G: fun(D,B)] :
( topolo3448309680560233919inuous(D,B,F4,F2)
=> ( topolo3448309680560233919inuous(D,B,F4,G)
=> topolo3448309680560233919inuous(D,B,F4,aa(fun(D,B),fun(D,B),aTP_Lamp_aag(fun(D,B),fun(fun(D,B),fun(D,B)),F2),G)) ) ) ) ).
% continuous_add
tff(fact_7616_tendsto__add__const__iff,axiom,
! [A: $tType,B: $tType] :
( topolo1633459387980952147up_add(A)
=> ! [C2: A,F2: fun(B,A),D2: A,F4: filter(B)] :
( filterlim(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_aah(A,fun(fun(B,A),fun(B,A)),C2),F2),topolo7230453075368039082e_nhds(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),D2)),F4)
<=> filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,D2),F4) ) ) ).
% tendsto_add_const_iff
tff(fact_7617_tendsto__rabs__zero__cancel,axiom,
! [A: $tType,F2: fun(A,real),F4: filter(A)] :
( filterlim(A,real,aTP_Lamp_aai(fun(A,real),fun(A,real),F2),topolo7230453075368039082e_nhds(real,zero_zero(real)),F4)
=> filterlim(A,real,F2,topolo7230453075368039082e_nhds(real,zero_zero(real)),F4) ) ).
% tendsto_rabs_zero_cancel
tff(fact_7618_tendsto__rabs__zero__iff,axiom,
! [A: $tType,F2: fun(A,real),F4: filter(A)] :
( filterlim(A,real,aTP_Lamp_aai(fun(A,real),fun(A,real),F2),topolo7230453075368039082e_nhds(real,zero_zero(real)),F4)
<=> filterlim(A,real,F2,topolo7230453075368039082e_nhds(real,zero_zero(real)),F4) ) ).
% tendsto_rabs_zero_iff
tff(fact_7619_tendsto__rabs__zero,axiom,
! [A: $tType,F2: fun(A,real),F4: filter(A)] :
( filterlim(A,real,F2,topolo7230453075368039082e_nhds(real,zero_zero(real)),F4)
=> filterlim(A,real,aTP_Lamp_aai(fun(A,real),fun(A,real),F2),topolo7230453075368039082e_nhds(real,zero_zero(real)),F4) ) ).
% tendsto_rabs_zero
tff(fact_7620_continuous__diff,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space(A)
& topolo1633459387980952147up_add(B) )
=> ! [F4: filter(A),F2: fun(A,B),G: fun(A,B)] :
( topolo3448309680560233919inuous(A,B,F4,F2)
=> ( topolo3448309680560233919inuous(A,B,F4,G)
=> topolo3448309680560233919inuous(A,B,F4,aa(fun(A,B),fun(A,B),aTP_Lamp_aaj(fun(A,B),fun(fun(A,B),fun(A,B)),F2),G)) ) ) ) ).
% continuous_diff
tff(fact_7621_tendsto__diff,axiom,
! [A: $tType,B: $tType] :
( topolo1633459387980952147up_add(A)
=> ! [F2: fun(B,A),A2: A,F4: filter(B),G: fun(B,A),B2: A] :
( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,A2),F4)
=> ( filterlim(B,A,G,topolo7230453075368039082e_nhds(A,B2),F4)
=> filterlim(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_aak(fun(B,A),fun(fun(B,A),fun(B,A)),F2),G),topolo7230453075368039082e_nhds(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)),F4) ) ) ) ).
% tendsto_diff
tff(fact_7622_Lim__transform__eq,axiom,
! [A: $tType,B: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(B,A),G: fun(B,A),F4: filter(B),A2: A] :
( filterlim(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_aal(fun(B,A),fun(fun(B,A),fun(B,A)),F2),G),topolo7230453075368039082e_nhds(A,zero_zero(A)),F4)
=> ( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,A2),F4)
<=> filterlim(B,A,G,topolo7230453075368039082e_nhds(A,A2),F4) ) ) ) ).
% Lim_transform_eq
tff(fact_7623_LIM__zero__cancel,axiom,
! [B: $tType,A: $tType] :
( real_V822414075346904944vector(B)
=> ! [F2: fun(A,B),L: B,F4: filter(A)] :
( filterlim(A,B,aa(B,fun(A,B),aTP_Lamp_aam(fun(A,B),fun(B,fun(A,B)),F2),L),topolo7230453075368039082e_nhds(B,zero_zero(B)),F4)
=> filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,L),F4) ) ) ).
% LIM_zero_cancel
tff(fact_7624_Lim__transform2,axiom,
! [A: $tType,B: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(B,A),A2: A,F4: filter(B),G: fun(B,A)] :
( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,A2),F4)
=> ( filterlim(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_aal(fun(B,A),fun(fun(B,A),fun(B,A)),F2),G),topolo7230453075368039082e_nhds(A,zero_zero(A)),F4)
=> filterlim(B,A,G,topolo7230453075368039082e_nhds(A,A2),F4) ) ) ) ).
% Lim_transform2
tff(fact_7625_Lim__transform,axiom,
! [A: $tType,B: $tType] :
( real_V822414075346904944vector(A)
=> ! [G: fun(B,A),A2: A,F4: filter(B),F2: fun(B,A)] :
( filterlim(B,A,G,topolo7230453075368039082e_nhds(A,A2),F4)
=> ( filterlim(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_aan(fun(B,A),fun(fun(B,A),fun(B,A)),G),F2),topolo7230453075368039082e_nhds(A,zero_zero(A)),F4)
=> filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,A2),F4) ) ) ) ).
% Lim_transform
tff(fact_7626_LIM__zero__iff,axiom,
! [B: $tType,A: $tType] :
( real_V822414075346904944vector(B)
=> ! [F2: fun(A,B),L: B,F4: filter(A)] :
( filterlim(A,B,aa(B,fun(A,B),aTP_Lamp_aam(fun(A,B),fun(B,fun(A,B)),F2),L),topolo7230453075368039082e_nhds(B,zero_zero(B)),F4)
<=> filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,L),F4) ) ) ).
% LIM_zero_iff
tff(fact_7627_LIM__zero,axiom,
! [B: $tType,A: $tType] :
( real_V822414075346904944vector(B)
=> ! [F2: fun(A,B),L: B,F4: filter(A)] :
( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,L),F4)
=> filterlim(A,B,aa(B,fun(A,B),aTP_Lamp_aam(fun(A,B),fun(B,fun(A,B)),F2),L),topolo7230453075368039082e_nhds(B,zero_zero(B)),F4) ) ) ).
% LIM_zero
tff(fact_7628_tendsto__one__prod_H,axiom,
! [C: $tType,B: $tType,A: $tType] :
( topolo4987421752381908075d_mult(C)
=> ! [I5: set(B),F2: fun(A,fun(B,C)),F4: filter(A)] :
( ! [I3: B] :
( pp(member(B,I3,I5))
=> filterlim(A,C,aa(B,fun(A,C),aTP_Lamp_aao(fun(A,fun(B,C)),fun(B,fun(A,C)),F2),I3),topolo7230453075368039082e_nhds(C,one_one(C)),F4) )
=> filterlim(A,C,aa(fun(A,fun(B,C)),fun(A,C),aTP_Lamp_aap(set(B),fun(fun(A,fun(B,C)),fun(A,C)),I5),F2),topolo7230453075368039082e_nhds(C,one_one(C)),F4) ) ) ).
% tendsto_one_prod'
tff(fact_7629_tendsto__mono,axiom,
! [A: $tType,B: $tType] :
( topolo4958980785337419405_space(A)
=> ! [F4: filter(B),F9: filter(B),F2: fun(B,A),L: A] :
( pp(aa(filter(B),bool,aa(filter(B),fun(filter(B),bool),ord_less_eq(filter(B)),F4),F9))
=> ( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,L),F9)
=> filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,L),F4) ) ) ) ).
% tendsto_mono
tff(fact_7630_filterlim__mono,axiom,
! [B: $tType,A: $tType,F2: fun(A,B),F23: filter(B),F12: filter(A),F24: filter(B),F13: filter(A)] :
( filterlim(A,B,F2,F23,F12)
=> ( pp(aa(filter(B),bool,aa(filter(B),fun(filter(B),bool),ord_less_eq(filter(B)),F23),F24))
=> ( pp(aa(filter(A),bool,aa(filter(A),fun(filter(A),bool),ord_less_eq(filter(A)),F13),F12))
=> filterlim(A,B,F2,F24,F13) ) ) ) ).
% filterlim_mono
tff(fact_7631_continuous__at__within__sgn,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space(A)
& real_V822414075346904944vector(B) )
=> ! [A2: A,S2: set(A),F2: fun(A,B)] :
( topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,S2),F2)
=> ( ( aa(A,B,F2,A2) != zero_zero(B) )
=> topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,S2),aTP_Lamp_aaq(fun(A,B),fun(A,B),F2)) ) ) ) ).
% continuous_at_within_sgn
tff(fact_7632_continuous__frac,axiom,
! [X2: real] :
( ~ pp(member(real,X2,ring_1_Ints(real)))
=> topolo3448309680560233919inuous(real,real,topolo174197925503356063within(real,X2,top_top(set(real))),archimedean_frac(real)) ) ).
% continuous_frac
tff(fact_7633_DERIV__def,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D5: A,X2: A] :
( has_field_derivative(A,F2,D5,topolo174197925503356063within(A,X2,top_top(set(A))))
<=> filterlim(A,A,aa(A,fun(A,A),aTP_Lamp_aar(fun(A,A),fun(A,fun(A,A)),F2),X2),topolo7230453075368039082e_nhds(A,D5),topolo174197925503356063within(A,zero_zero(A),top_top(set(A)))) ) ) ).
% DERIV_def
tff(fact_7634_DERIV__D,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D5: A,X2: A] :
( has_field_derivative(A,F2,D5,topolo174197925503356063within(A,X2,top_top(set(A))))
=> filterlim(A,A,aa(A,fun(A,A),aTP_Lamp_aar(fun(A,A),fun(A,fun(A,A)),F2),X2),topolo7230453075368039082e_nhds(A,D5),topolo174197925503356063within(A,zero_zero(A),top_top(set(A)))) ) ) ).
% DERIV_D
tff(fact_7635_lim__exp__minus__1,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> filterlim(A,A,aTP_Lamp_aas(A,A),topolo7230453075368039082e_nhds(A,one_one(A)),topolo174197925503356063within(A,zero_zero(A),top_top(set(A)))) ) ).
% lim_exp_minus_1
tff(fact_7636_lemma__termdiff4,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [K: real,F2: fun(A,B),K5: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),K))
=> ( ! [H3: A] :
( ( H3 != zero_zero(A) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,H3)),K))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(B,aa(A,B,F2,H3))),aa(real,real,aa(real,fun(real,real),times_times(real),K5),real_V7770717601297561774m_norm(A,H3)))) ) )
=> filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,zero_zero(B)),topolo174197925503356063within(A,zero_zero(A),top_top(set(A)))) ) ) ) ).
% lemma_termdiff4
tff(fact_7637_isCont__bounded,axiom,
! [A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [A2: real,B2: real,F2: fun(real,A)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),B2))
=> ( ! [X3: real] :
( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),X3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X3),B2)) )
=> topolo3448309680560233919inuous(real,A,topolo174197925503356063within(real,X3,top_top(set(real))),F2) )
=> ? [M9: A] :
! [X: real] :
( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),X))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X),B2)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(real,A,F2,X)),M9)) ) ) ) ) ).
% isCont_bounded
tff(fact_7638_isCont__eq__Ub,axiom,
! [A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [A2: real,B2: real,F2: fun(real,A)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),B2))
=> ( ! [X3: real] :
( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),X3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X3),B2)) )
=> topolo3448309680560233919inuous(real,A,topolo174197925503356063within(real,X3,top_top(set(real))),F2) )
=> ? [M9: A] :
( ! [X: real] :
( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),X))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X),B2)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(real,A,F2,X)),M9)) )
& ? [X3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),X3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X3),B2))
& ( aa(real,A,F2,X3) = M9 ) ) ) ) ) ) ).
% isCont_eq_Ub
tff(fact_7639_isCont__eq__Lb,axiom,
! [A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [A2: real,B2: real,F2: fun(real,A)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),B2))
=> ( ! [X3: real] :
( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),X3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X3),B2)) )
=> topolo3448309680560233919inuous(real,A,topolo174197925503356063within(real,X3,top_top(set(real))),F2) )
=> ? [M9: A] :
( ! [X: real] :
( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),X))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X),B2)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),M9),aa(real,A,F2,X))) )
& ? [X3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),X3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X3),B2))
& ( aa(real,A,F2,X3) = M9 ) ) ) ) ) ) ).
% isCont_eq_Lb
tff(fact_7640_isCont__inverse__function2,axiom,
! [A2: real,X2: real,B2: real,G: fun(real,real),F2: fun(real,real)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),B2))
=> ( ! [Z3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),Z3))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Z3),B2))
=> ( aa(real,real,G,aa(real,real,F2,Z3)) = Z3 ) ) )
=> ( ! [Z3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),Z3))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Z3),B2))
=> topolo3448309680560233919inuous(real,real,topolo174197925503356063within(real,Z3,top_top(set(real))),F2) ) )
=> topolo3448309680560233919inuous(real,real,topolo174197925503356063within(real,aa(real,real,F2,X2),top_top(set(real))),G) ) ) ) ) ).
% isCont_inverse_function2
tff(fact_7641_field__has__derivative__at,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),D5: A,X2: A] :
( has_derivative(A,A,F2,aa(A,fun(A,A),times_times(A),D5),topolo174197925503356063within(A,X2,top_top(set(A))))
<=> filterlim(A,A,aa(A,fun(A,A),aTP_Lamp_aar(fun(A,A),fun(A,fun(A,A)),F2),X2),topolo7230453075368039082e_nhds(A,D5),topolo174197925503356063within(A,zero_zero(A),top_top(set(A)))) ) ) ).
% field_has_derivative_at
tff(fact_7642_isCont__ln,axiom,
! [X2: real] :
( ( X2 != zero_zero(real) )
=> topolo3448309680560233919inuous(real,real,topolo174197925503356063within(real,X2,top_top(set(real))),ln_ln(real)) ) ).
% isCont_ln
tff(fact_7643_isCont__divide,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space(A)
& real_V3459762299906320749_field(B) )
=> ! [A2: A,F2: fun(A,B),G: fun(A,B)] :
( topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,top_top(set(A))),F2)
=> ( topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,top_top(set(A))),G)
=> ( ( aa(A,B,G,A2) != zero_zero(B) )
=> topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,top_top(set(A))),aa(fun(A,B),fun(A,B),aTP_Lamp_yn(fun(A,B),fun(fun(A,B),fun(A,B)),F2),G)) ) ) ) ) ).
% isCont_divide
tff(fact_7644_isCont__sgn,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space(A)
& real_V822414075346904944vector(B) )
=> ! [A2: A,F2: fun(A,B)] :
( topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,top_top(set(A))),F2)
=> ( ( aa(A,B,F2,A2) != zero_zero(B) )
=> topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,top_top(set(A))),aTP_Lamp_aaq(fun(A,B),fun(A,B),F2)) ) ) ) ).
% isCont_sgn
tff(fact_7645_filterlim__at__to__0,axiom,
! [B: $tType,A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(A,B),F4: filter(B),A2: A] :
( filterlim(A,B,F2,F4,topolo174197925503356063within(A,A2,top_top(set(A))))
<=> filterlim(A,B,aa(A,fun(A,B),aTP_Lamp_aat(fun(A,B),fun(A,fun(A,B)),F2),A2),F4,topolo174197925503356063within(A,zero_zero(A),top_top(set(A)))) ) ) ).
% filterlim_at_to_0
tff(fact_7646_continuous__within__tan,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A,S2: set(A),F2: fun(A,A)] :
( topolo3448309680560233919inuous(A,A,topolo174197925503356063within(A,X2,S2),F2)
=> ( ( aa(A,A,cos(A),aa(A,A,F2,X2)) != zero_zero(A) )
=> topolo3448309680560233919inuous(A,A,topolo174197925503356063within(A,X2,S2),aTP_Lamp_aac(fun(A,A),fun(A,A),F2)) ) ) ) ).
% continuous_within_tan
tff(fact_7647_continuous__within__cot,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A,S2: set(A),F2: fun(A,A)] :
( topolo3448309680560233919inuous(A,A,topolo174197925503356063within(A,X2,S2),F2)
=> ( ( sin(A,aa(A,A,F2,X2)) != zero_zero(A) )
=> topolo3448309680560233919inuous(A,A,topolo174197925503356063within(A,X2,S2),aTP_Lamp_aae(fun(A,A),fun(A,A),F2)) ) ) ) ).
% continuous_within_cot
tff(fact_7648_continuous__at__within__tanh,axiom,
! [A: $tType,C: $tType] :
( ( topological_t2_space(C)
& real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: C,A3: set(C),F2: fun(C,A)] :
( topolo3448309680560233919inuous(C,A,topolo174197925503356063within(C,X2,A3),F2)
=> ( ( cosh(A,aa(C,A,F2,X2)) != zero_zero(A) )
=> topolo3448309680560233919inuous(C,A,topolo174197925503356063within(C,X2,A3),aTP_Lamp_aau(fun(C,A),fun(C,A),F2)) ) ) ) ).
% continuous_at_within_tanh
tff(fact_7649_CARAT__DERIV,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),L: A,X2: A] :
( has_field_derivative(A,F2,L,topolo174197925503356063within(A,X2,top_top(set(A))))
<=> ? [G6: fun(A,A)] :
( ! [Z5: A] : ( aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,F2,Z5)),aa(A,A,F2,X2)) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,G6,Z5)),aa(A,A,aa(A,fun(A,A),minus_minus(A),Z5),X2)) )
& topolo3448309680560233919inuous(A,A,topolo174197925503356063within(A,X2,top_top(set(A))),G6)
& ( aa(A,A,G6,X2) = L ) ) ) ) ).
% CARAT_DERIV
tff(fact_7650_isCont__has__Ub,axiom,
! [A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [A2: real,B2: real,F2: fun(real,A)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),B2))
=> ( ! [X3: real] :
( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),X3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X3),B2)) )
=> topolo3448309680560233919inuous(real,A,topolo174197925503356063within(real,X3,top_top(set(real))),F2) )
=> ? [M9: A] :
( ! [X: real] :
( ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),X))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X),B2)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(real,A,F2,X)),M9)) )
& ! [N8: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),N8),M9))
=> ? [X3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),X3))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X3),B2))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),N8),aa(real,A,F2,X3))) ) ) ) ) ) ) ).
% isCont_has_Ub
tff(fact_7651_isCont__tan,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] :
( ( aa(A,A,cos(A),X2) != zero_zero(A) )
=> topolo3448309680560233919inuous(A,A,topolo174197925503356063within(A,X2,top_top(set(A))),tan(A)) ) ) ).
% isCont_tan
tff(fact_7652_filterlim__shift,axiom,
! [B: $tType,A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(A,B),F4: filter(B),A2: A,D2: A] :
( filterlim(A,B,F2,F4,topolo174197925503356063within(A,A2,top_top(set(A))))
=> filterlim(A,B,aa(fun(A,A),fun(A,B),comp(A,B,A,F2),aa(A,fun(A,A),plus_plus(A),D2)),F4,topolo174197925503356063within(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),D2),top_top(set(A)))) ) ) ).
% filterlim_shift
tff(fact_7653_filterlim__shift__iff,axiom,
! [B: $tType,A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(A,B),D2: A,F4: filter(B),A2: A] :
( filterlim(A,B,aa(fun(A,A),fun(A,B),comp(A,B,A,F2),aa(A,fun(A,A),plus_plus(A),D2)),F4,topolo174197925503356063within(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),D2),top_top(set(A))))
<=> filterlim(A,B,F2,F4,topolo174197925503356063within(A,A2,top_top(set(A)))) ) ) ).
% filterlim_shift_iff
tff(fact_7654_isCont__cot,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] :
( ( sin(A,X2) != zero_zero(A) )
=> topolo3448309680560233919inuous(A,A,topolo174197925503356063within(A,X2,top_top(set(A))),cot(A)) ) ) ).
% isCont_cot
tff(fact_7655_isCont__tanh,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] :
( ( cosh(A,X2) != zero_zero(A) )
=> topolo3448309680560233919inuous(A,A,topolo174197925503356063within(A,X2,top_top(set(A))),tanh(A)) ) ) ).
% isCont_tanh
tff(fact_7656_powser__limit__0__strong,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [S2: real,A2: fun(nat,A),F2: fun(A,A)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),S2))
=> ( ! [X3: A] :
( ( X3 != zero_zero(A) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,X3)),S2))
=> sums(A,aa(A,fun(nat,A),aTP_Lamp_ci(fun(nat,A),fun(A,fun(nat,A)),A2),X3),aa(A,A,F2,X3)) ) )
=> filterlim(A,A,F2,topolo7230453075368039082e_nhds(A,aa(nat,A,A2,zero_zero(nat))),topolo174197925503356063within(A,zero_zero(A),top_top(set(A)))) ) ) ) ).
% powser_limit_0_strong
tff(fact_7657_powser__limit__0,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [S2: real,A2: fun(nat,A),F2: fun(A,A)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),S2))
=> ( ! [X3: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,X3)),S2))
=> sums(A,aa(A,fun(nat,A),aTP_Lamp_ci(fun(nat,A),fun(A,fun(nat,A)),A2),X3),aa(A,A,F2,X3)) )
=> filterlim(A,A,F2,topolo7230453075368039082e_nhds(A,aa(nat,A,A2,zero_zero(nat))),topolo174197925503356063within(A,zero_zero(A),top_top(set(A)))) ) ) ) ).
% powser_limit_0
tff(fact_7658_lemma__termdiff5,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_Vector_banach(B) )
=> ! [K: real,F2: fun(nat,real),G: fun(A,fun(nat,B))] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),K))
=> ( summable(real,F2)
=> ( ! [H3: A,N3: nat] :
( ( H3 != zero_zero(A) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,H3)),K))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(B,aa(nat,B,aa(A,fun(nat,B),G,H3),N3))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,F2,N3)),real_V7770717601297561774m_norm(A,H3)))) ) )
=> filterlim(A,B,aTP_Lamp_aav(fun(A,fun(nat,B)),fun(A,B),G),topolo7230453075368039082e_nhds(B,zero_zero(B)),topolo174197925503356063within(A,zero_zero(A),top_top(set(A)))) ) ) ) ) ).
% lemma_termdiff5
tff(fact_7659_isCont__tan_H,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [A2: A,F2: fun(A,A)] :
( topolo3448309680560233919inuous(A,A,topolo174197925503356063within(A,A2,top_top(set(A))),F2)
=> ( ( aa(A,A,cos(A),aa(A,A,F2,A2)) != zero_zero(A) )
=> topolo3448309680560233919inuous(A,A,topolo174197925503356063within(A,A2,top_top(set(A))),aTP_Lamp_aac(fun(A,A),fun(A,A),F2)) ) ) ) ).
% isCont_tan'
tff(fact_7660_isCont__arcosh,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),X2))
=> topolo3448309680560233919inuous(real,real,topolo174197925503356063within(real,X2,top_top(set(real))),arcosh(real)) ) ).
% isCont_arcosh
tff(fact_7661_LIM__cos__div__sin,axiom,
filterlim(real,real,aTP_Lamp_aaw(real,real),topolo7230453075368039082e_nhds(real,zero_zero(real)),topolo174197925503356063within(real,aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))),top_top(set(real)))) ).
% LIM_cos_div_sin
tff(fact_7662_isCont__cot_H,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [A2: A,F2: fun(A,A)] :
( topolo3448309680560233919inuous(A,A,topolo174197925503356063within(A,A2,top_top(set(A))),F2)
=> ( ( sin(A,aa(A,A,F2,A2)) != zero_zero(A) )
=> topolo3448309680560233919inuous(A,A,topolo174197925503356063within(A,A2,top_top(set(A))),aTP_Lamp_aae(fun(A,A),fun(A,A),F2)) ) ) ) ).
% isCont_cot'
tff(fact_7663_continuous__floor,axiom,
! [X2: real] :
( ~ pp(member(real,X2,ring_1_Ints(real)))
=> topolo3448309680560233919inuous(real,real,topolo174197925503356063within(real,X2,top_top(set(real))),aa(fun(real,int),fun(real,real),comp(int,real,real,ring_1_of_int(real)),archim6421214686448440834_floor(real))) ) ).
% continuous_floor
tff(fact_7664_DERIV__inverse__function,axiom,
! [F2: fun(real,real),D5: real,G: fun(real,real),X2: real,A2: real,B2: real] :
( has_field_derivative(real,F2,D5,topolo174197925503356063within(real,aa(real,real,G,X2),top_top(set(real))))
=> ( ( D5 != zero_zero(real) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),B2))
=> ( ! [Y3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),Y3))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y3),B2))
=> ( aa(real,real,F2,aa(real,real,G,Y3)) = Y3 ) ) )
=> ( topolo3448309680560233919inuous(real,real,topolo174197925503356063within(real,X2,top_top(set(real))),G)
=> has_field_derivative(real,G,aa(real,real,inverse_inverse(real),D5),topolo174197925503356063within(real,X2,top_top(set(real)))) ) ) ) ) ) ) ).
% DERIV_inverse_function
tff(fact_7665_isCont__polynom,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [A2: A,C2: fun(nat,A),N: nat] : topolo3448309680560233919inuous(A,A,topolo174197925503356063within(A,A2,top_top(set(A))),aa(nat,fun(A,A),aTP_Lamp_aax(fun(nat,A),fun(nat,fun(A,A)),C2),N)) ) ).
% isCont_polynom
tff(fact_7666_isCont__arccos,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),one_one(real))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),one_one(real)))
=> topolo3448309680560233919inuous(real,real,topolo174197925503356063within(real,X2,top_top(set(real))),arccos) ) ) ).
% isCont_arccos
tff(fact_7667_isCont__arcsin,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),one_one(real))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),one_one(real)))
=> topolo3448309680560233919inuous(real,real,topolo174197925503356063within(real,X2,top_top(set(real))),arcsin) ) ) ).
% isCont_arcsin
tff(fact_7668_isCont__powser__converges__everywhere,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [C2: fun(nat,A),X2: A] :
( ! [Y3: A] : summable(A,aa(A,fun(nat,A),aTP_Lamp_ci(fun(nat,A),fun(A,fun(nat,A)),C2),Y3))
=> topolo3448309680560233919inuous(A,A,topolo174197925503356063within(A,X2,top_top(set(A))),aTP_Lamp_tw(fun(nat,A),fun(A,A),C2)) ) ) ).
% isCont_powser_converges_everywhere
tff(fact_7669_LIM__less__bound,axiom,
! [B2: real,X2: real,F2: fun(real,real)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),B2),X2))
=> ( ! [X3: real] :
( pp(member(real,X3,set_or5935395276787703475ssThan(real,B2,X2)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,F2,X3))) )
=> ( topolo3448309680560233919inuous(real,real,topolo174197925503356063within(real,X2,top_top(set(real))),F2)
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(real,real,F2,X2))) ) ) ) ).
% LIM_less_bound
tff(fact_7670_isCont__artanh,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),one_one(real))),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),one_one(real)))
=> topolo3448309680560233919inuous(real,real,topolo174197925503356063within(real,X2,top_top(set(real))),artanh(real)) ) ) ).
% isCont_artanh
tff(fact_7671_isCont__inverse__function,axiom,
! [D2: real,X2: real,G: fun(real,real),F2: fun(real,real)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D2))
=> ( ! [Z3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),Z3),X2))),D2))
=> ( aa(real,real,G,aa(real,real,F2,Z3)) = Z3 ) )
=> ( ! [Z3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),Z3),X2))),D2))
=> topolo3448309680560233919inuous(real,real,topolo174197925503356063within(real,Z3,top_top(set(real))),F2) )
=> topolo3448309680560233919inuous(real,real,topolo174197925503356063within(real,aa(real,real,F2,X2),top_top(set(real))),G) ) ) ) ).
% isCont_inverse_function
tff(fact_7672_GMVT_H,axiom,
! [A2: real,B2: real,F2: fun(real,real),G: fun(real,real),G5: fun(real,real),F8: fun(real,real)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),B2))
=> ( ! [Z3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),Z3))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Z3),B2))
=> topolo3448309680560233919inuous(real,real,topolo174197925503356063within(real,Z3,top_top(set(real))),F2) ) )
=> ( ! [Z3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),A2),Z3))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Z3),B2))
=> topolo3448309680560233919inuous(real,real,topolo174197925503356063within(real,Z3,top_top(set(real))),G) ) )
=> ( ! [Z3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),Z3))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Z3),B2))
=> has_field_derivative(real,G,aa(real,real,G5,Z3),topolo174197925503356063within(real,Z3,top_top(set(real)))) ) )
=> ( ! [Z3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),Z3))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Z3),B2))
=> has_field_derivative(real,F2,aa(real,real,F8,Z3),topolo174197925503356063within(real,Z3,top_top(set(real)))) ) )
=> ? [C4: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),C4))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),C4),B2))
& ( aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,F2,B2)),aa(real,real,F2,A2))),aa(real,real,G5,C4)) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,G,B2)),aa(real,real,G,A2))),aa(real,real,F8,C4)) ) ) ) ) ) ) ) ).
% GMVT'
tff(fact_7673_floor__has__real__derivative,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling(A)
& topolo2564578578187576103pology(A) )
=> ! [X2: real,F2: fun(real,A)] :
( topolo3448309680560233919inuous(real,A,topolo174197925503356063within(real,X2,top_top(set(real))),F2)
=> ( ~ pp(member(A,aa(real,A,F2,X2),ring_1_Ints(A)))
=> has_field_derivative(real,aTP_Lamp_aay(fun(real,A),fun(real,real),F2),zero_zero(real),topolo174197925503356063within(real,X2,top_top(set(real)))) ) ) ) ).
% floor_has_real_derivative
tff(fact_7674_isCont__powser_H,axiom,
! [A: $tType,Aa: $tType] :
( ( real_Vector_banach(Aa)
& real_V3459762299906320749_field(Aa)
& topological_t2_space(A) )
=> ! [A2: A,F2: fun(A,Aa),C2: fun(nat,Aa),K5: Aa] :
( topolo3448309680560233919inuous(A,Aa,topolo174197925503356063within(A,A2,top_top(set(A))),F2)
=> ( summable(Aa,aa(Aa,fun(nat,Aa),aTP_Lamp_aaz(fun(nat,Aa),fun(Aa,fun(nat,Aa)),C2),K5))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(Aa,aa(A,Aa,F2,A2))),real_V7770717601297561774m_norm(Aa,K5)))
=> topolo3448309680560233919inuous(A,Aa,topolo174197925503356063within(A,A2,top_top(set(A))),aa(fun(nat,Aa),fun(A,Aa),aTP_Lamp_abb(fun(A,Aa),fun(fun(nat,Aa),fun(A,Aa)),F2),C2)) ) ) ) ) ).
% isCont_powser'
tff(fact_7675_isCont__powser,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [C2: fun(nat,A),K5: A,X2: A] :
( summable(A,aa(A,fun(nat,A),aTP_Lamp_ci(fun(nat,A),fun(A,fun(nat,A)),C2),K5))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,X2)),real_V7770717601297561774m_norm(A,K5)))
=> topolo3448309680560233919inuous(A,A,topolo174197925503356063within(A,X2,top_top(set(A))),aTP_Lamp_tw(fun(nat,A),fun(A,A),C2)) ) ) ) ).
% isCont_powser
tff(fact_7676_summable__Leibniz_I3_J,axiom,
! [A2: fun(nat,real)] :
( filterlim(nat,real,A2,topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(nat))
=> ( topological_monoseq(real,A2)
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(nat,real,A2,zero_zero(nat))),zero_zero(real)))
=> ! [N7: nat] : pp(member(real,suminf(real,aTP_Lamp_abc(fun(nat,real),fun(nat,real),A2)),set_or1337092689740270186AtMost(real,aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aTP_Lamp_abc(fun(nat,real),fun(nat,real),A2)),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N7)),one_one(nat)))),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aTP_Lamp_abc(fun(nat,real),fun(nat,real),A2)),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N7)))))) ) ) ) ).
% summable_Leibniz(3)
tff(fact_7677_summable__Leibniz_I2_J,axiom,
! [A2: fun(nat,real)] :
( filterlim(nat,real,A2,topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(nat))
=> ( topological_monoseq(real,A2)
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(nat,real,A2,zero_zero(nat))))
=> ! [N7: nat] : pp(member(real,suminf(real,aTP_Lamp_abc(fun(nat,real),fun(nat,real),A2)),set_or1337092689740270186AtMost(real,aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aTP_Lamp_abc(fun(nat,real),fun(nat,real),A2)),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N7))),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aTP_Lamp_abc(fun(nat,real),fun(nat,real),A2)),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N7)),one_one(nat))))))) ) ) ) ).
% summable_Leibniz(2)
tff(fact_7678_tendsto__zero__mult__left__iff,axiom,
! [A: $tType] :
( ( field(A)
& topolo4211221413907600880p_mult(A) )
=> ! [C2: A,A2: fun(nat,A)] :
( ( C2 != zero_zero(A) )
=> ( filterlim(nat,A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_abd(A,fun(fun(nat,A),fun(nat,A)),C2),A2),topolo7230453075368039082e_nhds(A,zero_zero(A)),at_top(nat))
<=> filterlim(nat,A,A2,topolo7230453075368039082e_nhds(A,zero_zero(A)),at_top(nat)) ) ) ) ).
% tendsto_zero_mult_left_iff
tff(fact_7679_tendsto__zero__mult__right__iff,axiom,
! [A: $tType] :
( ( field(A)
& topolo4211221413907600880p_mult(A) )
=> ! [C2: A,A2: fun(nat,A)] :
( ( C2 != zero_zero(A) )
=> ( filterlim(nat,A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_abe(A,fun(fun(nat,A),fun(nat,A)),C2),A2),topolo7230453075368039082e_nhds(A,zero_zero(A)),at_top(nat))
<=> filterlim(nat,A,A2,topolo7230453075368039082e_nhds(A,zero_zero(A)),at_top(nat)) ) ) ) ).
% tendsto_zero_mult_right_iff
tff(fact_7680_tendsto__zero__divide__iff,axiom,
! [A: $tType] :
( ( field(A)
& topolo4211221413907600880p_mult(A) )
=> ! [C2: A,A2: fun(nat,A)] :
( ( C2 != zero_zero(A) )
=> ( filterlim(nat,A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_abf(A,fun(fun(nat,A),fun(nat,A)),C2),A2),topolo7230453075368039082e_nhds(A,zero_zero(A)),at_top(nat))
<=> filterlim(nat,A,A2,topolo7230453075368039082e_nhds(A,zero_zero(A)),at_top(nat)) ) ) ) ).
% tendsto_zero_divide_iff
tff(fact_7681_approx__from__below__dense__linorder,axiom,
! [A: $tType] :
( ( dense_linorder(A)
& topolo3112930676232923870pology(A)
& topolo1944317154257567458pology(A) )
=> ! [Y: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X2))
=> ? [U2: fun(nat,A)] :
( ! [N7: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(nat,A,U2,N7)),X2))
& filterlim(nat,A,U2,topolo7230453075368039082e_nhds(A,X2),at_top(nat)) ) ) ) ).
% approx_from_below_dense_linorder
tff(fact_7682_approx__from__above__dense__linorder,axiom,
! [A: $tType] :
( ( dense_linorder(A)
& topolo3112930676232923870pology(A)
& topolo1944317154257567458pology(A) )
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ? [U2: fun(nat,A)] :
( ! [N7: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),aa(nat,A,U2,N7)))
& filterlim(nat,A,U2,topolo7230453075368039082e_nhds(A,X2),at_top(nat)) ) ) ) ).
% approx_from_above_dense_linorder
tff(fact_7683_filterlim__Suc,axiom,
filterlim(nat,nat,suc,at_top(nat),at_top(nat)) ).
% filterlim_Suc
tff(fact_7684_filterlim__sequentially__Suc,axiom,
! [A: $tType,F2: fun(nat,A),F4: filter(A)] :
( filterlim(nat,A,aTP_Lamp_si(fun(nat,A),fun(nat,A),F2),F4,at_top(nat))
<=> filterlim(nat,A,F2,F4,at_top(nat)) ) ).
% filterlim_sequentially_Suc
tff(fact_7685_continuous__real__root,axiom,
! [A: $tType] :
( topological_t2_space(A)
=> ! [F4: filter(A),F2: fun(A,real),N: nat] :
( topolo3448309680560233919inuous(A,real,F4,F2)
=> topolo3448309680560233919inuous(A,real,F4,aa(nat,fun(A,real),aTP_Lamp_abg(fun(A,real),fun(nat,fun(A,real)),F2),N)) ) ) ).
% continuous_real_root
tff(fact_7686_continuous__real__sqrt,axiom,
! [A: $tType] :
( topological_t2_space(A)
=> ! [F4: filter(A),F2: fun(A,real)] :
( topolo3448309680560233919inuous(A,real,F4,F2)
=> topolo3448309680560233919inuous(A,real,F4,aTP_Lamp_abh(fun(A,real),fun(A,real),F2)) ) ) ).
% continuous_real_sqrt
tff(fact_7687_LIMSEQ__imp__Suc,axiom,
! [A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [F2: fun(nat,A),L: A] :
( filterlim(nat,A,aTP_Lamp_abi(fun(nat,A),fun(nat,A),F2),topolo7230453075368039082e_nhds(A,L),at_top(nat))
=> filterlim(nat,A,F2,topolo7230453075368039082e_nhds(A,L),at_top(nat)) ) ) ).
% LIMSEQ_imp_Suc
tff(fact_7688_LIMSEQ__Suc,axiom,
! [A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [F2: fun(nat,A),L: A] :
( filterlim(nat,A,F2,topolo7230453075368039082e_nhds(A,L),at_top(nat))
=> filterlim(nat,A,aTP_Lamp_abi(fun(nat,A),fun(nat,A),F2),topolo7230453075368039082e_nhds(A,L),at_top(nat)) ) ) ).
% LIMSEQ_Suc
tff(fact_7689_LIMSEQ__offset,axiom,
! [A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [F2: fun(nat,A),K: nat,A2: A] :
( filterlim(nat,A,aa(nat,fun(nat,A),aTP_Lamp_abj(fun(nat,A),fun(nat,fun(nat,A)),F2),K),topolo7230453075368039082e_nhds(A,A2),at_top(nat))
=> filterlim(nat,A,F2,topolo7230453075368039082e_nhds(A,A2),at_top(nat)) ) ) ).
% LIMSEQ_offset
tff(fact_7690_LIMSEQ__ignore__initial__segment,axiom,
! [A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [F2: fun(nat,A),A2: A,K: nat] :
( filterlim(nat,A,F2,topolo7230453075368039082e_nhds(A,A2),at_top(nat))
=> filterlim(nat,A,aa(nat,fun(nat,A),aTP_Lamp_abj(fun(nat,A),fun(nat,fun(nat,A)),F2),K),topolo7230453075368039082e_nhds(A,A2),at_top(nat)) ) ) ).
% LIMSEQ_ignore_initial_segment
tff(fact_7691_seq__offset__neg,axiom,
! [A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [F2: fun(nat,A),L: A,K: nat] :
( filterlim(nat,A,F2,topolo7230453075368039082e_nhds(A,L),at_top(nat))
=> filterlim(nat,A,aa(nat,fun(nat,A),aTP_Lamp_abk(fun(nat,A),fun(nat,fun(nat,A)),F2),K),topolo7230453075368039082e_nhds(A,L),at_top(nat)) ) ) ).
% seq_offset_neg
tff(fact_7692_LIMSEQ__le__const2,axiom,
! [A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [X6: fun(nat,A),X2: A,A2: A] :
( filterlim(nat,A,X6,topolo7230453075368039082e_nhds(A,X2),at_top(nat))
=> ( ? [N8: nat] :
! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N8),N3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,X6,N3)),A2)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),A2)) ) ) ) ).
% LIMSEQ_le_const2
tff(fact_7693_LIMSEQ__le__const,axiom,
! [A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [X6: fun(nat,A),X2: A,A2: A] :
( filterlim(nat,A,X6,topolo7230453075368039082e_nhds(A,X2),at_top(nat))
=> ( ? [N8: nat] :
! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N8),N3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),aa(nat,A,X6,N3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),X2)) ) ) ) ).
% LIMSEQ_le_const
tff(fact_7694_Lim__bounded2,axiom,
! [A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [F2: fun(nat,A),L: A,N2: nat,C6: A] :
( filterlim(nat,A,F2,topolo7230453075368039082e_nhds(A,L),at_top(nat))
=> ( ! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N2),N3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C6),aa(nat,A,F2,N3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C6),L)) ) ) ) ).
% Lim_bounded2
tff(fact_7695_Lim__bounded,axiom,
! [A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [F2: fun(nat,A),L: A,M7: nat,C6: A] :
( filterlim(nat,A,F2,topolo7230453075368039082e_nhds(A,L),at_top(nat))
=> ( ! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M7),N3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,F2,N3)),C6)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L),C6)) ) ) ) ).
% Lim_bounded
tff(fact_7696_LIMSEQ__le,axiom,
! [A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [X6: fun(nat,A),X2: A,Y6: fun(nat,A),Y: A] :
( filterlim(nat,A,X6,topolo7230453075368039082e_nhds(A,X2),at_top(nat))
=> ( filterlim(nat,A,Y6,topolo7230453075368039082e_nhds(A,Y),at_top(nat))
=> ( ? [N8: nat] :
! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N8),N3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,X6,N3)),aa(nat,A,Y6,N3))) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y)) ) ) ) ) ).
% LIMSEQ_le
tff(fact_7697_lim__mono,axiom,
! [A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [N2: nat,X6: fun(nat,A),Y6: fun(nat,A),X2: A,Y: A] :
( ! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N2),N3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,X6,N3)),aa(nat,A,Y6,N3))) )
=> ( filterlim(nat,A,X6,topolo7230453075368039082e_nhds(A,X2),at_top(nat))
=> ( filterlim(nat,A,Y6,topolo7230453075368039082e_nhds(A,Y),at_top(nat))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),Y)) ) ) ) ) ).
% lim_mono
tff(fact_7698_Sup__lim,axiom,
! [A: $tType] :
( ( comple5582772986160207858norder(A)
& topolo1944317154257567458pology(A) )
=> ! [B2: fun(nat,A),S2: set(A),A2: A] :
( ! [N3: nat] : pp(member(A,aa(nat,A,B2,N3),S2))
=> ( filterlim(nat,A,B2,topolo7230453075368039082e_nhds(A,A2),at_top(nat))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),complete_Sup_Sup(A,S2))) ) ) ) ).
% Sup_lim
tff(fact_7699_Inf__lim,axiom,
! [A: $tType] :
( ( comple5582772986160207858norder(A)
& topolo1944317154257567458pology(A) )
=> ! [B2: fun(nat,A),S2: set(A),A2: A] :
( ! [N3: nat] : pp(member(A,aa(nat,A,B2,N3),S2))
=> ( filterlim(nat,A,B2,topolo7230453075368039082e_nhds(A,A2),at_top(nat))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),complete_Inf_Inf(A,S2)),A2)) ) ) ) ).
% Inf_lim
tff(fact_7700_summable__LIMSEQ__zero,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A)] :
( summable(A,F2)
=> filterlim(nat,A,F2,topolo7230453075368039082e_nhds(A,zero_zero(A)),at_top(nat)) ) ) ).
% summable_LIMSEQ_zero
tff(fact_7701_continuous__at__within__powr,axiom,
! [C: $tType] :
( topological_t2_space(C)
=> ! [A2: C,S2: set(C),F2: fun(C,real),G: fun(C,real)] :
( topolo3448309680560233919inuous(C,real,topolo174197925503356063within(C,A2,S2),F2)
=> ( topolo3448309680560233919inuous(C,real,topolo174197925503356063within(C,A2,S2),G)
=> ( ( aa(C,real,F2,A2) != zero_zero(real) )
=> topolo3448309680560233919inuous(C,real,topolo174197925503356063within(C,A2,S2),aa(fun(C,real),fun(C,real),aTP_Lamp_abl(fun(C,real),fun(fun(C,real),fun(C,real)),F2),G)) ) ) ) ) ).
% continuous_at_within_powr
tff(fact_7702_continuous__within__ln,axiom,
! [A: $tType] :
( topological_t2_space(A)
=> ! [X2: A,S2: set(A),F2: fun(A,real)] :
( topolo3448309680560233919inuous(A,real,topolo174197925503356063within(A,X2,S2),F2)
=> ( ( aa(A,real,F2,X2) != zero_zero(real) )
=> topolo3448309680560233919inuous(A,real,topolo174197925503356063within(A,X2,S2),aTP_Lamp_abm(fun(A,real),fun(A,real),F2)) ) ) ) ).
% continuous_within_ln
tff(fact_7703_mult__nat__right__at__top,axiom,
! [C2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),C2))
=> filterlim(nat,nat,aTP_Lamp_abn(nat,fun(nat,nat),C2),at_top(nat),at_top(nat)) ) ).
% mult_nat_right_at_top
tff(fact_7704_mult__nat__left__at__top,axiom,
! [C2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),C2))
=> filterlim(nat,nat,aa(nat,fun(nat,nat),times_times(nat),C2),at_top(nat),at_top(nat)) ) ).
% mult_nat_left_at_top
tff(fact_7705_monoseq__convergent,axiom,
! [X6: fun(nat,real),B4: real] :
( topological_monoseq(real,X6)
=> ( ! [I3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),aa(nat,real,X6,I3))),B4))
=> ~ ! [L7: real] : ~ filterlim(nat,real,X6,topolo7230453075368039082e_nhds(real,L7),at_top(nat)) ) ) ).
% monoseq_convergent
tff(fact_7706_LIMSEQ__root,axiom,
filterlim(nat,real,aTP_Lamp_abo(nat,real),topolo7230453075368039082e_nhds(real,one_one(real)),at_top(nat)) ).
% LIMSEQ_root
tff(fact_7707_isCont__powr,axiom,
! [C: $tType] :
( topological_t2_space(C)
=> ! [A2: C,F2: fun(C,real),G: fun(C,real)] :
( topolo3448309680560233919inuous(C,real,topolo174197925503356063within(C,A2,top_top(set(C))),F2)
=> ( topolo3448309680560233919inuous(C,real,topolo174197925503356063within(C,A2,top_top(set(C))),G)
=> ( ( aa(C,real,F2,A2) != zero_zero(real) )
=> topolo3448309680560233919inuous(C,real,topolo174197925503356063within(C,A2,top_top(set(C))),aa(fun(C,real),fun(C,real),aTP_Lamp_abl(fun(C,real),fun(fun(C,real),fun(C,real)),F2),G)) ) ) ) ) ).
% isCont_powr
tff(fact_7708_isCont__ln_H,axiom,
! [A: $tType] :
( topological_t2_space(A)
=> ! [X2: A,F2: fun(A,real)] :
( topolo3448309680560233919inuous(A,real,topolo174197925503356063within(A,X2,top_top(set(A))),F2)
=> ( ( aa(A,real,F2,X2) != zero_zero(real) )
=> topolo3448309680560233919inuous(A,real,topolo174197925503356063within(A,X2,top_top(set(A))),aTP_Lamp_abm(fun(A,real),fun(A,real),F2)) ) ) ) ).
% isCont_ln'
tff(fact_7709_monoseq__le,axiom,
! [A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [A2: fun(nat,A),X2: A] :
( topological_monoseq(A,A2)
=> ( filterlim(nat,A,A2,topolo7230453075368039082e_nhds(A,X2),at_top(nat))
=> ( ( ! [N7: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,A2,N7)),X2))
& ! [M2: nat,N7: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M2),N7))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,A2,M2)),aa(nat,A,A2,N7))) ) )
| ( ! [N7: nat] : pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),aa(nat,A,A2,N7)))
& ! [M2: nat,N7: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M2),N7))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(nat,A,A2,N7)),aa(nat,A,A2,M2))) ) ) ) ) ) ) ).
% monoseq_le
tff(fact_7710_lim__const__over__n,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [A2: A] : filterlim(nat,A,aTP_Lamp_abp(A,fun(nat,A),A2),topolo7230453075368039082e_nhds(A,zero_zero(A)),at_top(nat)) ) ).
% lim_const_over_n
tff(fact_7711_lim__inverse__n,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> filterlim(nat,A,aTP_Lamp_abq(nat,A),topolo7230453075368039082e_nhds(A,zero_zero(A)),at_top(nat)) ) ).
% lim_inverse_n
tff(fact_7712_LIMSEQ__linear,axiom,
! [A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [X6: fun(nat,A),X2: A,L: nat] :
( filterlim(nat,A,X6,topolo7230453075368039082e_nhds(A,X2),at_top(nat))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),L))
=> filterlim(nat,A,aa(nat,fun(nat,A),aTP_Lamp_abr(fun(nat,A),fun(nat,fun(nat,A)),X6),L),topolo7230453075368039082e_nhds(A,X2),at_top(nat)) ) ) ) ).
% LIMSEQ_linear
tff(fact_7713_telescope__summable,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A),C2: A] :
( filterlim(nat,A,F2,topolo7230453075368039082e_nhds(A,C2),at_top(nat))
=> summable(A,aTP_Lamp_abs(fun(nat,A),fun(nat,A),F2)) ) ) ).
% telescope_summable
tff(fact_7714_telescope__summable_H,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A),C2: A] :
( filterlim(nat,A,F2,topolo7230453075368039082e_nhds(A,C2),at_top(nat))
=> summable(A,aTP_Lamp_abt(fun(nat,A),fun(nat,A),F2)) ) ) ).
% telescope_summable'
tff(fact_7715_nested__sequence__unique,axiom,
! [F2: fun(nat,real),G: fun(nat,real)] :
( ! [N3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(nat,real,F2,N3)),aa(nat,real,F2,aa(nat,nat,suc,N3))))
=> ( ! [N3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(nat,real,G,aa(nat,nat,suc,N3))),aa(nat,real,G,N3)))
=> ( ! [N3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(nat,real,F2,N3)),aa(nat,real,G,N3)))
=> ( filterlim(nat,real,aa(fun(nat,real),fun(nat,real),aTP_Lamp_abu(fun(nat,real),fun(fun(nat,real),fun(nat,real)),F2),G),topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(nat))
=> ? [L2: real] :
( ! [N7: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(nat,real,F2,N7)),L2))
& filterlim(nat,real,F2,topolo7230453075368039082e_nhds(real,L2),at_top(nat))
& ! [N7: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),L2),aa(nat,real,G,N7)))
& filterlim(nat,real,G,topolo7230453075368039082e_nhds(real,L2),at_top(nat)) ) ) ) ) ) ).
% nested_sequence_unique
tff(fact_7716_LIMSEQ__inverse__zero,axiom,
! [X6: fun(nat,real)] :
( ! [R4: real] :
? [N8: nat] :
! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N8),N3))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),R4),aa(nat,real,X6,N3))) )
=> filterlim(nat,real,aTP_Lamp_abv(fun(nat,real),fun(nat,real),X6),topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(nat)) ) ).
% LIMSEQ_inverse_zero
tff(fact_7717_lim__inverse__n_H,axiom,
filterlim(nat,real,aTP_Lamp_abw(nat,real),topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(nat)) ).
% lim_inverse_n'
tff(fact_7718_LIMSEQ__root__const,axiom,
! [C2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),C2))
=> filterlim(nat,real,aTP_Lamp_abx(real,fun(nat,real),C2),topolo7230453075368039082e_nhds(real,one_one(real)),at_top(nat)) ) ).
% LIMSEQ_root_const
tff(fact_7719_LIMSEQ__inverse__real__of__nat,axiom,
filterlim(nat,real,aTP_Lamp_aby(nat,real),topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(nat)) ).
% LIMSEQ_inverse_real_of_nat
tff(fact_7720_LIMSEQ__inverse__real__of__nat__add,axiom,
! [R: real] : filterlim(nat,real,aTP_Lamp_abz(real,fun(nat,real),R),topolo7230453075368039082e_nhds(real,R),at_top(nat)) ).
% LIMSEQ_inverse_real_of_nat_add
tff(fact_7721_continuous__at__within__log,axiom,
! [A: $tType] :
( topological_t2_space(A)
=> ! [A2: A,S2: set(A),F2: fun(A,real),G: fun(A,real)] :
( topolo3448309680560233919inuous(A,real,topolo174197925503356063within(A,A2,S2),F2)
=> ( topolo3448309680560233919inuous(A,real,topolo174197925503356063within(A,A2,S2),G)
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(A,real,F2,A2)))
=> ( ( aa(A,real,F2,A2) != one_one(real) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(A,real,G,A2)))
=> topolo3448309680560233919inuous(A,real,topolo174197925503356063within(A,A2,S2),aa(fun(A,real),fun(A,real),aTP_Lamp_aca(fun(A,real),fun(fun(A,real),fun(A,real)),F2),G)) ) ) ) ) ) ) ).
% continuous_at_within_log
tff(fact_7722_increasing__LIMSEQ,axiom,
! [F2: fun(nat,real),L: real] :
( ! [N3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(nat,real,F2,N3)),aa(nat,real,F2,aa(nat,nat,suc,N3))))
=> ( ! [N3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(nat,real,F2,N3)),L))
=> ( ! [E2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),E2))
=> ? [N7: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),L),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(nat,real,F2,N7)),E2))) )
=> filterlim(nat,real,F2,topolo7230453075368039082e_nhds(real,L),at_top(nat)) ) ) ) ).
% increasing_LIMSEQ
tff(fact_7723_lim__1__over__n,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> filterlim(nat,A,aTP_Lamp_acb(nat,A),topolo7230453075368039082e_nhds(A,zero_zero(A)),at_top(nat)) ) ).
% lim_1_over_n
tff(fact_7724_LIMSEQ__Suc__n__over__n,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> filterlim(nat,A,aTP_Lamp_acc(nat,A),topolo7230453075368039082e_nhds(A,one_one(A)),at_top(nat)) ) ).
% LIMSEQ_Suc_n_over_n
tff(fact_7725_LIMSEQ__n__over__Suc__n,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> filterlim(nat,A,aTP_Lamp_acd(nat,A),topolo7230453075368039082e_nhds(A,one_one(A)),at_top(nat)) ) ).
% LIMSEQ_n_over_Suc_n
tff(fact_7726_LIMSEQ__realpow__zero,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),X2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),one_one(real)))
=> filterlim(nat,real,power_power(real,X2),topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(nat)) ) ) ).
% LIMSEQ_realpow_zero
tff(fact_7727_telescope__sums,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A),C2: A] :
( filterlim(nat,A,F2,topolo7230453075368039082e_nhds(A,C2),at_top(nat))
=> sums(A,aTP_Lamp_abs(fun(nat,A),fun(nat,A),F2),aa(A,A,aa(A,fun(A,A),minus_minus(A),C2),aa(nat,A,F2,zero_zero(nat)))) ) ) ).
% telescope_sums
tff(fact_7728_telescope__sums_H,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A),C2: A] :
( filterlim(nat,A,F2,topolo7230453075368039082e_nhds(A,C2),at_top(nat))
=> sums(A,aTP_Lamp_abt(fun(nat,A),fun(nat,A),F2),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,F2,zero_zero(nat))),C2)) ) ) ).
% telescope_sums'
tff(fact_7729_LIMSEQ__divide__realpow__zero,axiom,
! [X2: real,A2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),X2))
=> filterlim(nat,real,aa(real,fun(nat,real),aTP_Lamp_ace(real,fun(real,fun(nat,real)),X2),A2),topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(nat)) ) ).
% LIMSEQ_divide_realpow_zero
tff(fact_7730_LIMSEQ__abs__realpow__zero,axiom,
! [C2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),C2)),one_one(real)))
=> filterlim(nat,real,power_power(real,aa(real,real,abs_abs(real),C2)),topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(nat)) ) ).
% LIMSEQ_abs_realpow_zero
tff(fact_7731_LIMSEQ__abs__realpow__zero2,axiom,
! [C2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,abs_abs(real),C2)),one_one(real)))
=> filterlim(nat,real,power_power(real,C2),topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(nat)) ) ).
% LIMSEQ_abs_realpow_zero2
tff(fact_7732_LIMSEQ__inverse__realpow__zero,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),X2))
=> filterlim(nat,real,aTP_Lamp_acf(real,fun(nat,real),X2),topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(nat)) ) ).
% LIMSEQ_inverse_realpow_zero
tff(fact_7733_sums__def_H,axiom,
! [A: $tType] :
( ( comm_monoid_add(A)
& topolo4958980785337419405_space(A) )
=> ! [F2: fun(nat,A),S2: A] :
( sums(A,F2,S2)
<=> filterlim(nat,A,aTP_Lamp_acg(fun(nat,A),fun(nat,A),F2),topolo7230453075368039082e_nhds(A,S2),at_top(nat)) ) ) ).
% sums_def'
tff(fact_7734_root__test__convergence,axiom,
! [A: $tType] :
( real_Vector_banach(A)
=> ! [F2: fun(nat,A),X2: real] :
( filterlim(nat,real,aTP_Lamp_ach(fun(nat,A),fun(nat,real),F2),topolo7230453075368039082e_nhds(real,X2),at_top(nat))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),X2),one_one(real)))
=> summable(A,F2) ) ) ) ).
% root_test_convergence
tff(fact_7735_LIMSEQ__inverse__real__of__nat__add__minus,axiom,
! [R: real] : filterlim(nat,real,aTP_Lamp_aci(real,fun(nat,real),R),topolo7230453075368039082e_nhds(real,R),at_top(nat)) ).
% LIMSEQ_inverse_real_of_nat_add_minus
tff(fact_7736_isCont__log,axiom,
! [A: $tType] :
( topological_t2_space(A)
=> ! [A2: A,F2: fun(A,real),G: fun(A,real)] :
( topolo3448309680560233919inuous(A,real,topolo174197925503356063within(A,A2,top_top(set(A))),F2)
=> ( topolo3448309680560233919inuous(A,real,topolo174197925503356063within(A,A2,top_top(set(A))),G)
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(A,real,F2,A2)))
=> ( ( aa(A,real,F2,A2) != one_one(real) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(A,real,G,A2)))
=> topolo3448309680560233919inuous(A,real,topolo174197925503356063within(A,A2,top_top(set(A))),aa(fun(A,real),fun(A,real),aTP_Lamp_aca(fun(A,real),fun(fun(A,real),fun(A,real)),F2),G)) ) ) ) ) ) ) ).
% isCont_log
tff(fact_7737_LIMSEQ__iff,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X6: fun(nat,A),L6: A] :
( filterlim(nat,A,X6,topolo7230453075368039082e_nhds(A,L6),at_top(nat))
<=> ! [R5: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),R5))
=> ? [No2: nat] :
! [N5: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),No2),N5))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,X6,N5)),L6))),R5)) ) ) ) ) ).
% LIMSEQ_iff
tff(fact_7738_LIMSEQ__I,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X6: fun(nat,A),L6: A] :
( ! [R4: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),R4))
=> ? [No3: nat] :
! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),No3),N3))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,X6,N3)),L6))),R4)) ) )
=> filterlim(nat,A,X6,topolo7230453075368039082e_nhds(A,L6),at_top(nat)) ) ) ).
% LIMSEQ_I
tff(fact_7739_LIMSEQ__D,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X6: fun(nat,A),L6: A,R: real] :
( filterlim(nat,A,X6,topolo7230453075368039082e_nhds(A,L6),at_top(nat))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),R))
=> ? [No4: nat] :
! [N7: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),No4),N7))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,X6,N7)),L6))),R)) ) ) ) ) ).
% LIMSEQ_D
tff(fact_7740_LIMSEQ__power__zero,axiom,
! [A: $tType] :
( real_V2822296259951069270ebra_1(A)
=> ! [X2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,X2)),one_one(real)))
=> filterlim(nat,A,power_power(A,X2),topolo7230453075368039082e_nhds(A,zero_zero(A)),at_top(nat)) ) ) ).
% LIMSEQ_power_zero
tff(fact_7741_tendsto__exp__limit__sequentially,axiom,
! [X2: real] : filterlim(nat,real,aTP_Lamp_acj(real,fun(nat,real),X2),topolo7230453075368039082e_nhds(real,aa(real,real,exp(real),X2)),at_top(nat)) ).
% tendsto_exp_limit_sequentially
tff(fact_7742_tendsto__at__iff__sequentially,axiom,
! [C: $tType,A: $tType] :
( ( topolo3112930676232923870pology(A)
& topolo4958980785337419405_space(C) )
=> ! [F2: fun(A,C),A2: C,X2: A,S2: set(A)] :
( filterlim(A,C,F2,topolo7230453075368039082e_nhds(C,A2),topolo174197925503356063within(A,X2,S2))
<=> ! [X9: fun(nat,A)] :
( ! [I4: nat] : pp(member(A,aa(nat,A,X9,I4),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),S2),aa(set(A),set(A),insert(A,X2),bot_bot(set(A))))))
=> ( filterlim(nat,A,X9,topolo7230453075368039082e_nhds(A,X2),at_top(nat))
=> filterlim(nat,C,aa(fun(nat,A),fun(nat,C),comp(A,C,nat,F2),X9),topolo7230453075368039082e_nhds(C,A2),at_top(nat)) ) ) ) ) ).
% tendsto_at_iff_sequentially
tff(fact_7743_tendsto__power__zero,axiom,
! [A: $tType,B: $tType] :
( real_V2822296259951069270ebra_1(A)
=> ! [F2: fun(B,nat),F4: filter(B),X2: A] :
( filterlim(B,nat,F2,at_top(nat),F4)
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,X2)),one_one(real)))
=> filterlim(B,A,aa(A,fun(B,A),aTP_Lamp_ack(fun(B,nat),fun(A,fun(B,A)),F2),X2),topolo7230453075368039082e_nhds(A,zero_zero(A)),F4) ) ) ) ).
% tendsto_power_zero
tff(fact_7744_LIMSEQ__inverse__real__of__nat__add__minus__mult,axiom,
! [R: real] : filterlim(nat,real,aTP_Lamp_acl(real,fun(nat,real),R),topolo7230453075368039082e_nhds(real,R),at_top(nat)) ).
% LIMSEQ_inverse_real_of_nat_add_minus_mult
tff(fact_7745_LIMSEQ__norm__0,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A)] :
( ! [N3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,aa(nat,A,F2,N3))),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,suc,N3)))))
=> filterlim(nat,A,F2,topolo7230453075368039082e_nhds(A,zero_zero(A)),at_top(nat)) ) ) ).
% LIMSEQ_norm_0
tff(fact_7746_summable__Leibniz_I1_J,axiom,
! [A2: fun(nat,real)] :
( filterlim(nat,real,A2,topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(nat))
=> ( topological_monoseq(real,A2)
=> summable(real,aTP_Lamp_abc(fun(nat,real),fun(nat,real),A2)) ) ) ).
% summable_Leibniz(1)
tff(fact_7747_field__derivative__lim__unique,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),Df: A,Z: A,S2: fun(nat,A),A2: A] :
( has_field_derivative(A,F2,Df,topolo174197925503356063within(A,Z,top_top(set(A))))
=> ( filterlim(nat,A,S2,topolo7230453075368039082e_nhds(A,zero_zero(A)),at_top(nat))
=> ( ! [N3: nat] : ( aa(nat,A,S2,N3) != zero_zero(A) )
=> ( filterlim(nat,A,aa(fun(nat,A),fun(nat,A),aa(A,fun(fun(nat,A),fun(nat,A)),aTP_Lamp_acm(fun(A,A),fun(A,fun(fun(nat,A),fun(nat,A))),F2),Z),S2),topolo7230453075368039082e_nhds(A,A2),at_top(nat))
=> ( Df = A2 ) ) ) ) ) ) ).
% field_derivative_lim_unique
tff(fact_7748_powser__times__n__limit__0,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V8999393235501362500lgebra(A) )
=> ! [X2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V7770717601297561774m_norm(A,X2)),one_one(real)))
=> filterlim(nat,A,aTP_Lamp_acn(A,fun(nat,A),X2),topolo7230453075368039082e_nhds(A,zero_zero(A)),at_top(nat)) ) ) ).
% powser_times_n_limit_0
tff(fact_7749_lim__n__over__pown,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [X2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),real_V7770717601297561774m_norm(A,X2)))
=> filterlim(nat,A,aTP_Lamp_aco(A,fun(nat,A),X2),topolo7230453075368039082e_nhds(A,zero_zero(A)),at_top(nat)) ) ) ).
% lim_n_over_pown
tff(fact_7750_summable,axiom,
! [A2: fun(nat,real)] :
( filterlim(nat,real,A2,topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(nat))
=> ( ! [N3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(nat,real,A2,N3)))
=> ( ! [N3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(nat,real,A2,aa(nat,nat,suc,N3))),aa(nat,real,A2,N3)))
=> summable(real,aTP_Lamp_abc(fun(nat,real),fun(nat,real),A2)) ) ) ) ).
% summable
tff(fact_7751_cos__diff__limit__1,axiom,
! [Theta: fun(nat,real),Theta2: real] :
( filterlim(nat,real,aa(real,fun(nat,real),aTP_Lamp_acp(fun(nat,real),fun(real,fun(nat,real)),Theta),Theta2),topolo7230453075368039082e_nhds(real,one_one(real)),at_top(nat))
=> ~ ! [K3: fun(nat,int)] : ~ filterlim(nat,real,aa(fun(nat,int),fun(nat,real),aTP_Lamp_acq(fun(nat,real),fun(fun(nat,int),fun(nat,real)),Theta),K3),topolo7230453075368039082e_nhds(real,Theta2),at_top(nat)) ) ).
% cos_diff_limit_1
tff(fact_7752_cos__limit__1,axiom,
! [Theta: fun(nat,real)] :
( filterlim(nat,real,aTP_Lamp_acr(fun(nat,real),fun(nat,real),Theta),topolo7230453075368039082e_nhds(real,one_one(real)),at_top(nat))
=> ? [K3: fun(nat,int)] : filterlim(nat,real,aa(fun(nat,int),fun(nat,real),aTP_Lamp_acq(fun(nat,real),fun(fun(nat,int),fun(nat,real)),Theta),K3),topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(nat)) ) ).
% cos_limit_1
tff(fact_7753_summable__Leibniz_I4_J,axiom,
! [A2: fun(nat,real)] :
( filterlim(nat,real,A2,topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(nat))
=> ( topological_monoseq(real,A2)
=> filterlim(nat,real,aTP_Lamp_acs(fun(nat,real),fun(nat,real),A2),topolo7230453075368039082e_nhds(real,suminf(real,aTP_Lamp_abc(fun(nat,real),fun(nat,real),A2))),at_top(nat)) ) ) ).
% summable_Leibniz(4)
tff(fact_7754_zeroseq__arctan__series,axiom,
! [X2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),X2)),one_one(real)))
=> filterlim(nat,real,aTP_Lamp_aj(real,fun(nat,real),X2),topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(nat)) ) ).
% zeroseq_arctan_series
tff(fact_7755_summable__Leibniz_H_I2_J,axiom,
! [A2: fun(nat,real),N: nat] :
( filterlim(nat,real,A2,topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(nat))
=> ( ! [N3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(nat,real,A2,N3)))
=> ( ! [N3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(nat,real,A2,aa(nat,nat,suc,N3))),aa(nat,real,A2,N3)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aTP_Lamp_abc(fun(nat,real),fun(nat,real),A2)),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)))),suminf(real,aTP_Lamp_abc(fun(nat,real),fun(nat,real),A2)))) ) ) ) ).
% summable_Leibniz'(2)
tff(fact_7756_summable__Leibniz_H_I3_J,axiom,
! [A2: fun(nat,real)] :
( filterlim(nat,real,A2,topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(nat))
=> ( ! [N3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(nat,real,A2,N3)))
=> ( ! [N3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(nat,real,A2,aa(nat,nat,suc,N3))),aa(nat,real,A2,N3)))
=> filterlim(nat,real,aTP_Lamp_acs(fun(nat,real),fun(nat,real),A2),topolo7230453075368039082e_nhds(real,suminf(real,aTP_Lamp_abc(fun(nat,real),fun(nat,real),A2))),at_top(nat)) ) ) ) ).
% summable_Leibniz'(3)
tff(fact_7757_sums__alternating__upper__lower,axiom,
! [A2: fun(nat,real)] :
( ! [N3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(nat,real,A2,aa(nat,nat,suc,N3))),aa(nat,real,A2,N3)))
=> ( ! [N3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(nat,real,A2,N3)))
=> ( filterlim(nat,real,A2,topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(nat))
=> ? [L2: real] :
( ! [N7: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aTP_Lamp_abc(fun(nat,real),fun(nat,real),A2)),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N7)))),L2))
& filterlim(nat,real,aTP_Lamp_acs(fun(nat,real),fun(nat,real),A2),topolo7230453075368039082e_nhds(real,L2),at_top(nat))
& ! [N7: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),L2),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aTP_Lamp_abc(fun(nat,real),fun(nat,real),A2)),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N7)),one_one(nat))))))
& filterlim(nat,real,aTP_Lamp_act(fun(nat,real),fun(nat,real),A2),topolo7230453075368039082e_nhds(real,L2),at_top(nat)) ) ) ) ) ).
% sums_alternating_upper_lower
tff(fact_7758_summable__Leibniz_I5_J,axiom,
! [A2: fun(nat,real)] :
( filterlim(nat,real,A2,topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(nat))
=> ( topological_monoseq(real,A2)
=> filterlim(nat,real,aTP_Lamp_act(fun(nat,real),fun(nat,real),A2),topolo7230453075368039082e_nhds(real,suminf(real,aTP_Lamp_abc(fun(nat,real),fun(nat,real),A2))),at_top(nat)) ) ) ).
% summable_Leibniz(5)
tff(fact_7759_summable__Leibniz_H_I5_J,axiom,
! [A2: fun(nat,real)] :
( filterlim(nat,real,A2,topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(nat))
=> ( ! [N3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(nat,real,A2,N3)))
=> ( ! [N3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(nat,real,A2,aa(nat,nat,suc,N3))),aa(nat,real,A2,N3)))
=> filterlim(nat,real,aTP_Lamp_act(fun(nat,real),fun(nat,real),A2),topolo7230453075368039082e_nhds(real,suminf(real,aTP_Lamp_abc(fun(nat,real),fun(nat,real),A2))),at_top(nat)) ) ) ) ).
% summable_Leibniz'(5)
tff(fact_7760_summable__Leibniz_H_I4_J,axiom,
! [A2: fun(nat,real),N: nat] :
( filterlim(nat,real,A2,topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(nat))
=> ( ! [N3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(nat,real,A2,N3)))
=> ( ! [N3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(nat,real,A2,aa(nat,nat,suc,N3))),aa(nat,real,A2,N3)))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),suminf(real,aTP_Lamp_abc(fun(nat,real),fun(nat,real),A2))),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aTP_Lamp_abc(fun(nat,real),fun(nat,real),A2)),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N)),one_one(nat)))))) ) ) ) ).
% summable_Leibniz'(4)
tff(fact_7761_has__derivative__at2,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),F8: fun(A,B),X2: A] :
( has_derivative(A,B,F2,F8,topolo174197925503356063within(A,X2,top_top(set(A))))
<=> ( real_V3181309239436604168linear(A,B,F8)
& filterlim(A,B,aa(A,fun(A,B),aa(fun(A,B),fun(A,fun(A,B)),aTP_Lamp_acu(fun(A,B),fun(fun(A,B),fun(A,fun(A,B))),F2),F8),X2),topolo7230453075368039082e_nhds(B,zero_zero(B)),topolo174197925503356063within(A,X2,top_top(set(A)))) ) ) ) ).
% has_derivative_at2
tff(fact_7762_has__derivative__at,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),D5: fun(A,B),X2: A] :
( has_derivative(A,B,F2,D5,topolo174197925503356063within(A,X2,top_top(set(A))))
<=> ( real_V3181309239436604168linear(A,B,D5)
& filterlim(A,real,aa(A,fun(A,real),aa(fun(A,B),fun(A,fun(A,real)),aTP_Lamp_acv(fun(A,B),fun(fun(A,B),fun(A,fun(A,real))),F2),D5),X2),topolo7230453075368039082e_nhds(real,zero_zero(real)),topolo174197925503356063within(A,zero_zero(A),top_top(set(A)))) ) ) ) ).
% has_derivative_at
tff(fact_7763_bounded__linear_Otendsto__zero,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),G: fun(C,A),F4: filter(C)] :
( real_V3181309239436604168linear(A,B,F2)
=> ( filterlim(C,A,G,topolo7230453075368039082e_nhds(A,zero_zero(A)),F4)
=> filterlim(C,B,aa(fun(C,A),fun(C,B),aTP_Lamp_acw(fun(A,B),fun(fun(C,A),fun(C,B)),F2),G),topolo7230453075368039082e_nhds(B,zero_zero(B)),F4) ) ) ) ).
% bounded_linear.tendsto_zero
tff(fact_7764_bounded__linear__minus,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B)] :
( real_V3181309239436604168linear(A,B,F2)
=> real_V3181309239436604168linear(A,B,aTP_Lamp_wn(fun(A,B),fun(A,B),F2)) ) ) ).
% bounded_linear_minus
tff(fact_7765_real__bounded__linear,axiom,
! [F2: fun(real,real)] :
( real_V3181309239436604168linear(real,real,F2)
<=> ? [C3: real] :
! [X4: real] : ( aa(real,real,F2,X4) = aa(real,real,aa(real,fun(real,real),times_times(real),X4),C3) ) ) ).
% real_bounded_linear
tff(fact_7766_bounded__linear__divide,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Y: A] : real_V3181309239436604168linear(A,A,aTP_Lamp_acx(A,fun(A,A),Y)) ) ).
% bounded_linear_divide
tff(fact_7767_bounded__linear__mult__left,axiom,
! [A: $tType] :
( real_V4412858255891104859lgebra(A)
=> ! [Y: A] : real_V3181309239436604168linear(A,A,aTP_Lamp_acy(A,fun(A,A),Y)) ) ).
% bounded_linear_mult_left
tff(fact_7768_bounded__linear__const__mult,axiom,
! [C: $tType,A: $tType] :
( ( real_V4412858255891104859lgebra(A)
& real_V822414075346904944vector(C) )
=> ! [G: fun(C,A),X2: A] :
( real_V3181309239436604168linear(C,A,G)
=> real_V3181309239436604168linear(C,A,aa(A,fun(C,A),aTP_Lamp_wm(fun(C,A),fun(A,fun(C,A)),G),X2)) ) ) ).
% bounded_linear_const_mult
tff(fact_7769_bounded__linear__mult__const,axiom,
! [C: $tType,A: $tType] :
( ( real_V4412858255891104859lgebra(A)
& real_V822414075346904944vector(C) )
=> ! [G: fun(C,A),Y: A] :
( real_V3181309239436604168linear(C,A,G)
=> real_V3181309239436604168linear(C,A,aa(A,fun(C,A),aTP_Lamp_wl(fun(C,A),fun(A,fun(C,A)),G),Y)) ) ) ).
% bounded_linear_mult_const
tff(fact_7770_bounded__linear__mult__right,axiom,
! [A: $tType] :
( real_V4412858255891104859lgebra(A)
=> ! [X2: A] : real_V3181309239436604168linear(A,A,aa(A,fun(A,A),times_times(A),X2)) ) ).
% bounded_linear_mult_right
tff(fact_7771_bounded__linear_Obounded__linear,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B)] :
( real_V3181309239436604168linear(A,B,F2)
=> real_V3181309239436604168linear(A,B,F2) ) ) ).
% bounded_linear.bounded_linear
tff(fact_7772_bounded__linear__zero,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> real_V3181309239436604168linear(A,B,aTP_Lamp_vx(A,B)) ) ).
% bounded_linear_zero
tff(fact_7773_bounded__linear__add,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),G: fun(A,B)] :
( real_V3181309239436604168linear(A,B,F2)
=> ( real_V3181309239436604168linear(A,B,G)
=> real_V3181309239436604168linear(A,B,aa(fun(A,B),fun(A,B),aTP_Lamp_wf(fun(A,B),fun(fun(A,B),fun(A,B)),F2),G)) ) ) ) ).
% bounded_linear_add
tff(fact_7774_bounded__linear__sub,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),G: fun(A,B)] :
( real_V3181309239436604168linear(A,B,F2)
=> ( real_V3181309239436604168linear(A,B,G)
=> real_V3181309239436604168linear(A,B,aa(fun(A,B),fun(A,B),aTP_Lamp_we(fun(A,B),fun(fun(A,B),fun(A,B)),F2),G)) ) ) ) ).
% bounded_linear_sub
tff(fact_7775_bounded__linear_Obounded,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B)] :
( real_V3181309239436604168linear(A,B,F2)
=> ? [K10: real] :
! [X: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(B,aa(A,B,F2,X))),aa(real,real,aa(real,fun(real,real),times_times(real),real_V7770717601297561774m_norm(A,X)),K10))) ) ) ).
% bounded_linear.bounded
tff(fact_7776_bounded__linear_Ohas__derivative,axiom,
! [A: $tType,B: $tType,C: $tType] :
( ( real_V822414075346904944vector(C)
& real_V822414075346904944vector(B)
& real_V822414075346904944vector(A) )
=> ! [F2: fun(A,B),G: fun(C,A),G5: fun(C,A),F4: filter(C)] :
( real_V3181309239436604168linear(A,B,F2)
=> ( has_derivative(C,A,G,G5,F4)
=> has_derivative(C,B,aa(fun(C,A),fun(C,B),aTP_Lamp_wc(fun(A,B),fun(fun(C,A),fun(C,B)),F2),G),aa(fun(C,A),fun(C,B),aTP_Lamp_wc(fun(A,B),fun(fun(C,A),fun(C,B)),F2),G5),F4) ) ) ) ).
% bounded_linear.has_derivative
tff(fact_7777_has__derivative__bounded__linear,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),F8: fun(A,B),F4: filter(A)] :
( has_derivative(A,B,F2,F8,F4)
=> real_V3181309239436604168linear(A,B,F8) ) ) ).
% has_derivative_bounded_linear
tff(fact_7778_bounded__linear_Ononneg__bounded,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B)] :
( real_V3181309239436604168linear(A,B,F2)
=> ? [K10: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),K10))
& ! [X: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(B,aa(A,B,F2,X))),aa(real,real,aa(real,fun(real,real),times_times(real),real_V7770717601297561774m_norm(A,X)),K10))) ) ) ) ).
% bounded_linear.nonneg_bounded
tff(fact_7779_has__derivative__within__singleton__iff,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),G: fun(A,B),X2: A] :
( has_derivative(A,B,F2,G,topolo174197925503356063within(A,X2,aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))))
<=> real_V3181309239436604168linear(A,B,G) ) ) ).
% has_derivative_within_singleton_iff
tff(fact_7780_bounded__linear_Opos__bounded,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B)] :
( real_V3181309239436604168linear(A,B,F2)
=> ? [K10: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),K10))
& ! [X: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(B,aa(A,B,F2,X))),aa(real,real,aa(real,fun(real,real),times_times(real),real_V7770717601297561774m_norm(A,X)),K10))) ) ) ) ).
% bounded_linear.pos_bounded
tff(fact_7781_bounded__linear__intro,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),K5: real] :
( ! [X3: A,Y3: A] : ( aa(A,B,F2,aa(A,A,aa(A,fun(A,A),plus_plus(A),X3),Y3)) = aa(B,B,aa(B,fun(B,B),plus_plus(B),aa(A,B,F2,X3)),aa(A,B,F2,Y3)) )
=> ( ! [R4: real,X3: A] : ( aa(A,B,F2,aa(A,A,real_V8093663219630862766scaleR(A,R4),X3)) = aa(B,B,real_V8093663219630862766scaleR(B,R4),aa(A,B,F2,X3)) )
=> ( ! [X3: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(B,aa(A,B,F2,X3))),aa(real,real,aa(real,fun(real,real),times_times(real),real_V7770717601297561774m_norm(A,X3)),K5)))
=> real_V3181309239436604168linear(A,B,F2) ) ) ) ) ).
% bounded_linear_intro
tff(fact_7782_has__derivative__iff__norm,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),F8: fun(A,B),X2: A,S2: set(A)] :
( has_derivative(A,B,F2,F8,topolo174197925503356063within(A,X2,S2))
<=> ( real_V3181309239436604168linear(A,B,F8)
& filterlim(A,real,aa(A,fun(A,real),aa(fun(A,B),fun(A,fun(A,real)),aTP_Lamp_acz(fun(A,B),fun(fun(A,B),fun(A,fun(A,real))),F2),F8),X2),topolo7230453075368039082e_nhds(real,zero_zero(real)),topolo174197925503356063within(A,X2,S2)) ) ) ) ).
% has_derivative_iff_norm
tff(fact_7783_has__derivativeI,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F8: fun(A,B),X2: A,F2: fun(A,B),S2: set(A)] :
( real_V3181309239436604168linear(A,B,F8)
=> ( filterlim(A,B,aa(fun(A,B),fun(A,B),aa(A,fun(fun(A,B),fun(A,B)),aTP_Lamp_ada(fun(A,B),fun(A,fun(fun(A,B),fun(A,B))),F8),X2),F2),topolo7230453075368039082e_nhds(B,zero_zero(B)),topolo174197925503356063within(A,X2,S2))
=> has_derivative(A,B,F2,F8,topolo174197925503356063within(A,X2,S2)) ) ) ) ).
% has_derivativeI
tff(fact_7784_has__derivative__at__within,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),F8: fun(A,B),X2: A,S2: set(A)] :
( has_derivative(A,B,F2,F8,topolo174197925503356063within(A,X2,S2))
<=> ( real_V3181309239436604168linear(A,B,F8)
& filterlim(A,B,aa(A,fun(A,B),aa(fun(A,B),fun(A,fun(A,B)),aTP_Lamp_adb(fun(A,B),fun(fun(A,B),fun(A,fun(A,B))),F2),F8),X2),topolo7230453075368039082e_nhds(B,zero_zero(B)),topolo174197925503356063within(A,X2,S2)) ) ) ) ).
% has_derivative_at_within
tff(fact_7785_has__derivative__iff__Ex,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),F8: fun(A,B),X2: A] :
( has_derivative(A,B,F2,F8,topolo174197925503356063within(A,X2,top_top(set(A))))
<=> ( real_V3181309239436604168linear(A,B,F8)
& ? [E4: fun(A,B)] :
( ! [H6: A] : ( aa(A,B,F2,aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),H6)) = aa(B,B,aa(B,fun(B,B),plus_plus(B),aa(B,B,aa(B,fun(B,B),plus_plus(B),aa(A,B,F2,X2)),aa(A,B,F8,H6))),aa(A,B,E4,H6)) )
& filterlim(A,real,aTP_Lamp_adc(fun(A,B),fun(A,real),E4),topolo7230453075368039082e_nhds(real,zero_zero(real)),topolo174197925503356063within(A,zero_zero(A),top_top(set(A)))) ) ) ) ) ).
% has_derivative_iff_Ex
tff(fact_7786_has__derivative__within,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),F8: fun(A,B),X2: A,S2: set(A)] :
( has_derivative(A,B,F2,F8,topolo174197925503356063within(A,X2,S2))
<=> ( real_V3181309239436604168linear(A,B,F8)
& filterlim(A,B,aa(A,fun(A,B),aa(fun(A,B),fun(A,fun(A,B)),aTP_Lamp_acu(fun(A,B),fun(fun(A,B),fun(A,fun(A,B))),F2),F8),X2),topolo7230453075368039082e_nhds(B,zero_zero(B)),topolo174197925503356063within(A,X2,S2)) ) ) ) ).
% has_derivative_within
tff(fact_7787_has__derivative__def,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),F8: fun(A,B),F4: filter(A)] :
( has_derivative(A,B,F2,F8,F4)
<=> ( real_V3181309239436604168linear(A,B,F8)
& filterlim(A,B,aa(filter(A),fun(A,B),aa(fun(A,B),fun(filter(A),fun(A,B)),aTP_Lamp_add(fun(A,B),fun(fun(A,B),fun(filter(A),fun(A,B))),F2),F8),F4),topolo7230453075368039082e_nhds(B,zero_zero(B)),F4) ) ) ) ).
% has_derivative_def
tff(fact_7788_has__derivative__at__within__iff__Ex,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [X2: A,S: set(A),F2: fun(A,B),F8: fun(A,B)] :
( pp(member(A,X2,S))
=> ( topolo1002775350975398744n_open(A,S)
=> ( has_derivative(A,B,F2,F8,topolo174197925503356063within(A,X2,S))
<=> ( real_V3181309239436604168linear(A,B,F8)
& ? [E4: fun(A,B)] :
( ! [H6: A] :
( pp(member(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),H6),S))
=> ( aa(A,B,F2,aa(A,A,aa(A,fun(A,A),plus_plus(A),X2),H6)) = aa(B,B,aa(B,fun(B,B),plus_plus(B),aa(B,B,aa(B,fun(B,B),plus_plus(B),aa(A,B,F2,X2)),aa(A,B,F8,H6))),aa(A,B,E4,H6)) ) )
& filterlim(A,real,aTP_Lamp_adc(fun(A,B),fun(A,real),E4),topolo7230453075368039082e_nhds(real,zero_zero(real)),topolo174197925503356063within(A,zero_zero(A),top_top(set(A)))) ) ) ) ) ) ) ).
% has_derivative_at_within_iff_Ex
tff(fact_7789_has__derivative__transform__within__open,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),F8: fun(A,B),X2: A,T2: set(A),S2: set(A),G: fun(A,B)] :
( has_derivative(A,B,F2,F8,topolo174197925503356063within(A,X2,T2))
=> ( topolo1002775350975398744n_open(A,S2)
=> ( pp(member(A,X2,S2))
=> ( ! [X3: A] :
( pp(member(A,X3,S2))
=> ( aa(A,B,F2,X3) = aa(A,B,G,X3) ) )
=> has_derivative(A,B,G,F8,topolo174197925503356063within(A,X2,T2)) ) ) ) ) ) ).
% has_derivative_transform_within_open
tff(fact_7790_openI,axiom,
! [A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [S: set(A)] :
( ! [X3: A] :
( pp(member(A,X3,S))
=> ? [T9: set(A)] :
( topolo1002775350975398744n_open(A,T9)
& pp(member(A,X3,T9))
& pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),T9),S)) ) )
=> topolo1002775350975398744n_open(A,S) ) ) ).
% openI
tff(fact_7791_open__subopen,axiom,
! [A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [S: set(A)] :
( topolo1002775350975398744n_open(A,S)
<=> ! [X4: A] :
( pp(member(A,X4,S))
=> ? [T10: set(A)] :
( topolo1002775350975398744n_open(A,T10)
& pp(member(A,X4,T10))
& pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),T10),S)) ) ) ) ) ).
% open_subopen
tff(fact_7792_first__countable__basis,axiom,
! [A: $tType] :
( topolo3112930676232923870pology(A)
=> ! [X2: A] :
? [A7: fun(nat,set(A))] :
( ! [I2: nat] :
( pp(member(A,X2,aa(nat,set(A),A7,I2)))
& topolo1002775350975398744n_open(A,aa(nat,set(A),A7,I2)) )
& ! [S9: set(A)] :
( ( topolo1002775350975398744n_open(A,S9)
& pp(member(A,X2,S9)) )
=> ? [I3: nat] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(nat,set(A),A7,I3)),S9)) ) ) ) ).
% first_countable_basis
tff(fact_7793_Inf__notin__open,axiom,
! [A: $tType] :
( topolo8458572112393995274pology(A)
=> ! [A3: set(A),X2: A] :
( topolo1002775350975398744n_open(A,A3)
=> ( ! [X3: A] :
( pp(member(A,X3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),X3)) )
=> ~ pp(member(A,complete_Inf_Inf(A,A3),A3)) ) ) ) ).
% Inf_notin_open
tff(fact_7794_Sup__notin__open,axiom,
! [A: $tType] :
( topolo8458572112393995274pology(A)
=> ! [A3: set(A),X2: A] :
( topolo1002775350975398744n_open(A,A3)
=> ( ! [X3: A] :
( pp(member(A,X3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X3),X2)) )
=> ~ pp(member(A,complete_Sup_Sup(A,A3),A3)) ) ) ) ).
% Sup_notin_open
tff(fact_7795_open__right,axiom,
! [A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [S: set(A),X2: A,Y: A] :
( topolo1002775350975398744n_open(A,S)
=> ( pp(member(A,X2,S))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ? [B3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),B3))
& pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),set_or7035219750837199246ssThan(A,X2,B3)),S)) ) ) ) ) ) ).
% open_right
tff(fact_7796_open__left,axiom,
! [A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [S: set(A),X2: A,Y: A] :
( topolo1002775350975398744n_open(A,S)
=> ( pp(member(A,X2,S))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X2))
=> ? [B3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B3),X2))
& pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),set_or3652927894154168847AtMost(A,B3,X2)),S)) ) ) ) ) ) ).
% open_left
tff(fact_7797_at__within__open__subset,axiom,
! [A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [A2: A,S: set(A),T6: set(A)] :
( pp(member(A,A2,S))
=> ( topolo1002775350975398744n_open(A,S)
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),S),T6))
=> ( topolo174197925503356063within(A,A2,T6) = topolo174197925503356063within(A,A2,top_top(set(A))) ) ) ) ) ) ).
% at_within_open_subset
tff(fact_7798_has__field__derivative__transform__within__open,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),F8: A,A2: A,S: set(A),G: fun(A,A)] :
( has_field_derivative(A,F2,F8,topolo174197925503356063within(A,A2,top_top(set(A))))
=> ( topolo1002775350975398744n_open(A,S)
=> ( pp(member(A,A2,S))
=> ( ! [X3: A] :
( pp(member(A,X3,S))
=> ( aa(A,A,F2,X3) = aa(A,A,G,X3) ) )
=> has_field_derivative(A,G,F8,topolo174197925503356063within(A,A2,top_top(set(A)))) ) ) ) ) ) ).
% has_field_derivative_transform_within_open
tff(fact_7799_lim__explicit,axiom,
! [A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [F2: fun(nat,A),F0: A] :
( filterlim(nat,A,F2,topolo7230453075368039082e_nhds(A,F0),at_top(nat))
<=> ! [S10: set(A)] :
( topolo1002775350975398744n_open(A,S10)
=> ( pp(member(A,F0,S10))
=> ? [N6: nat] :
! [N5: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N6),N5))
=> pp(member(A,aa(nat,A,F2,N5),S10)) ) ) ) ) ) ).
% lim_explicit
tff(fact_7800_continuous__divide,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space(A)
& real_V3459762299906320749_field(B) )
=> ! [F4: filter(A),F2: fun(A,B),G: fun(A,B)] :
( topolo3448309680560233919inuous(A,B,F4,F2)
=> ( topolo3448309680560233919inuous(A,B,F4,G)
=> ( ( aa(A,B,G,topolo3827282254853284352ce_Lim(A,A,F4,aTP_Lamp_ade(A,A))) != zero_zero(B) )
=> topolo3448309680560233919inuous(A,B,F4,aa(fun(A,B),fun(A,B),aTP_Lamp_yn(fun(A,B),fun(fun(A,B),fun(A,B)),F2),G)) ) ) ) ) ).
% continuous_divide
tff(fact_7801_continuous__inverse,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space(A)
& real_V8999393235501362500lgebra(B) )
=> ! [F4: filter(A),F2: fun(A,B)] :
( topolo3448309680560233919inuous(A,B,F4,F2)
=> ( ( aa(A,B,F2,topolo3827282254853284352ce_Lim(A,A,F4,aTP_Lamp_ade(A,A))) != zero_zero(B) )
=> topolo3448309680560233919inuous(A,B,F4,aTP_Lamp_yu(fun(A,B),fun(A,B),F2)) ) ) ) ).
% continuous_inverse
tff(fact_7802_continuous__sgn,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space(A)
& real_V822414075346904944vector(B) )
=> ! [F4: filter(A),F2: fun(A,B)] :
( topolo3448309680560233919inuous(A,B,F4,F2)
=> ( ( aa(A,B,F2,topolo3827282254853284352ce_Lim(A,A,F4,aTP_Lamp_ade(A,A))) != zero_zero(B) )
=> topolo3448309680560233919inuous(A,B,F4,aTP_Lamp_aaq(fun(A,B),fun(A,B),F2)) ) ) ) ).
% continuous_sgn
tff(fact_7803_at__within__nhd,axiom,
! [A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [X2: A,S: set(A),T6: set(A),U3: set(A)] :
( pp(member(A,X2,S))
=> ( topolo1002775350975398744n_open(A,S)
=> ( ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),T6),S)),aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),U3),S)),aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))) )
=> ( topolo174197925503356063within(A,X2,T6) = topolo174197925503356063within(A,X2,U3) ) ) ) ) ) ).
% at_within_nhd
tff(fact_7804_continuous__powr,axiom,
! [A: $tType] :
( topological_t2_space(A)
=> ! [F4: filter(A),F2: fun(A,real),G: fun(A,real)] :
( topolo3448309680560233919inuous(A,real,F4,F2)
=> ( topolo3448309680560233919inuous(A,real,F4,G)
=> ( ( aa(A,real,F2,topolo3827282254853284352ce_Lim(A,A,F4,aTP_Lamp_ade(A,A))) != zero_zero(real) )
=> topolo3448309680560233919inuous(A,real,F4,aa(fun(A,real),fun(A,real),aTP_Lamp_adf(fun(A,real),fun(fun(A,real),fun(A,real)),F2),G)) ) ) ) ) ).
% continuous_powr
tff(fact_7805_continuous__ln,axiom,
! [A: $tType] :
( topological_t2_space(A)
=> ! [F4: filter(A),F2: fun(A,real)] :
( topolo3448309680560233919inuous(A,real,F4,F2)
=> ( ( aa(A,real,F2,topolo3827282254853284352ce_Lim(A,A,F4,aTP_Lamp_ade(A,A))) != zero_zero(real) )
=> topolo3448309680560233919inuous(A,real,F4,aTP_Lamp_abm(fun(A,real),fun(A,real),F2)) ) ) ) ).
% continuous_ln
tff(fact_7806_continuous__tan,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [F4: filter(A),F2: fun(A,A)] :
( topolo3448309680560233919inuous(A,A,F4,F2)
=> ( ( aa(A,A,cos(A),aa(A,A,F2,topolo3827282254853284352ce_Lim(A,A,F4,aTP_Lamp_adg(A,A)))) != zero_zero(A) )
=> topolo3448309680560233919inuous(A,A,F4,aTP_Lamp_aac(fun(A,A),fun(A,A),F2)) ) ) ) ).
% continuous_tan
tff(fact_7807_continuous__cot,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [F4: filter(A),F2: fun(A,A)] :
( topolo3448309680560233919inuous(A,A,F4,F2)
=> ( ( sin(A,aa(A,A,F2,topolo3827282254853284352ce_Lim(A,A,F4,aTP_Lamp_adg(A,A)))) != zero_zero(A) )
=> topolo3448309680560233919inuous(A,A,F4,aTP_Lamp_aae(fun(A,A),fun(A,A),F2)) ) ) ) ).
% continuous_cot
tff(fact_7808_continuous__tanh,axiom,
! [A: $tType,C: $tType] :
( ( topological_t2_space(C)
& real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [F4: filter(C),F2: fun(C,A)] :
( topolo3448309680560233919inuous(C,A,F4,F2)
=> ( ( cosh(A,aa(C,A,F2,topolo3827282254853284352ce_Lim(C,C,F4,aTP_Lamp_adh(C,C)))) != zero_zero(A) )
=> topolo3448309680560233919inuous(C,A,F4,aTP_Lamp_aau(fun(C,A),fun(C,A),F2)) ) ) ) ).
% continuous_tanh
tff(fact_7809_continuous__arcosh,axiom,
! [A: $tType] :
( topological_t2_space(A)
=> ! [F4: filter(A),F2: fun(A,real)] :
( topolo3448309680560233919inuous(A,real,F4,F2)
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),aa(A,real,F2,topolo3827282254853284352ce_Lim(A,A,F4,aTP_Lamp_ade(A,A)))))
=> topolo3448309680560233919inuous(A,real,F4,aTP_Lamp_adi(fun(A,real),fun(A,real),F2)) ) ) ) ).
% continuous_arcosh
tff(fact_7810_tendsto__offset__zero__iff,axiom,
! [C: $tType,D: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& topolo4958980785337419405_space(D)
& zero(C) )
=> ! [A2: A,S: set(A),F2: fun(A,D),L6: D] :
( nO_MATCH(C,A,zero_zero(C),A2)
=> ( pp(member(A,A2,S))
=> ( topolo1002775350975398744n_open(A,S)
=> ( filterlim(A,D,F2,topolo7230453075368039082e_nhds(D,L6),topolo174197925503356063within(A,A2,S))
<=> filterlim(A,D,aa(fun(A,D),fun(A,D),aTP_Lamp_ym(A,fun(fun(A,D),fun(A,D)),A2),F2),topolo7230453075368039082e_nhds(D,L6),topolo174197925503356063within(A,zero_zero(A),top_top(set(A)))) ) ) ) ) ) ).
% tendsto_offset_zero_iff
tff(fact_7811_continuous__log,axiom,
! [A: $tType] :
( topological_t2_space(A)
=> ! [F4: filter(A),F2: fun(A,real),G: fun(A,real)] :
( topolo3448309680560233919inuous(A,real,F4,F2)
=> ( topolo3448309680560233919inuous(A,real,F4,G)
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(A,real,F2,topolo3827282254853284352ce_Lim(A,A,F4,aTP_Lamp_ade(A,A)))))
=> ( ( aa(A,real,F2,topolo3827282254853284352ce_Lim(A,A,F4,aTP_Lamp_ade(A,A))) != one_one(real) )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(A,real,G,topolo3827282254853284352ce_Lim(A,A,F4,aTP_Lamp_ade(A,A)))))
=> topolo3448309680560233919inuous(A,real,F4,aa(fun(A,real),fun(A,real),aTP_Lamp_aca(fun(A,real),fun(fun(A,real),fun(A,real)),F2),G)) ) ) ) ) ) ) ).
% continuous_log
tff(fact_7812_continuous__artanh,axiom,
! [A: $tType] :
( topological_t2_space(A)
=> ! [F4: filter(A),F2: fun(A,real)] :
( topolo3448309680560233919inuous(A,real,F4,F2)
=> ( pp(member(real,aa(A,real,F2,topolo3827282254853284352ce_Lim(A,A,F4,aTP_Lamp_ade(A,A))),set_or5935395276787703475ssThan(real,aa(real,real,uminus_uminus(real),one_one(real)),one_one(real))))
=> topolo3448309680560233919inuous(A,real,F4,aTP_Lamp_adj(fun(A,real),fun(A,real),F2)) ) ) ) ).
% continuous_artanh
tff(fact_7813_has__derivativeI__sandwich,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [E: real,F8: fun(A,B),S2: set(A),X2: A,F2: fun(A,B),H7: fun(A,real)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),E))
=> ( real_V3181309239436604168linear(A,B,F8)
=> ( ! [Y3: A] :
( pp(member(A,Y3,S2))
=> ( ( Y3 != X2 )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,Y3,X2)),E))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),real_V7770717601297561774m_norm(B,aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(A,B,F2,Y3)),aa(A,B,F2,X2))),aa(A,B,F8,aa(A,A,aa(A,fun(A,A),minus_minus(A),Y3),X2))))),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),Y3),X2)))),aa(A,real,H7,Y3))) ) ) )
=> ( filterlim(A,real,H7,topolo7230453075368039082e_nhds(real,zero_zero(real)),topolo174197925503356063within(A,X2,S2))
=> has_derivative(A,B,F2,F8,topolo174197925503356063within(A,X2,S2)) ) ) ) ) ) ).
% has_derivativeI_sandwich
tff(fact_7814_tendsto__arctan__at__bot,axiom,
filterlim(real,real,arctan,topolo7230453075368039082e_nhds(real,aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),at_bot(real)) ).
% tendsto_arctan_at_bot
tff(fact_7815_dist__add__cancel2,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [B2: A,A2: A,C2: A] : ( real_V557655796197034286t_dist(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),B2),A2),aa(A,A,aa(A,fun(A,A),plus_plus(A),C2),A2)) = real_V557655796197034286t_dist(A,B2,C2) ) ) ).
% dist_add_cancel2
tff(fact_7816_dist__add__cancel,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [A2: A,B2: A,C2: A] : ( real_V557655796197034286t_dist(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),B2),aa(A,A,aa(A,fun(A,A),plus_plus(A),A2),C2)) = real_V557655796197034286t_dist(A,B2,C2) ) ) ).
% dist_add_cancel
tff(fact_7817_dist__eq__0__iff,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X2: A,Y: A] :
( ( real_V557655796197034286t_dist(A,X2,Y) = zero_zero(real) )
<=> ( X2 = Y ) ) ) ).
% dist_eq_0_iff
tff(fact_7818_dist__self,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X2: A] : ( real_V557655796197034286t_dist(A,X2,X2) = zero_zero(real) ) ) ).
% dist_self
tff(fact_7819_dist__0__norm,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X2: A] : ( real_V557655796197034286t_dist(A,zero_zero(A),X2) = real_V7770717601297561774m_norm(A,X2) ) ) ).
% dist_0_norm
tff(fact_7820_zero__less__dist__iff,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X2: A,Y: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),real_V557655796197034286t_dist(A,X2,Y)))
<=> ( X2 != Y ) ) ) ).
% zero_less_dist_iff
tff(fact_7821_dist__le__zero__iff,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X2: A,Y: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V557655796197034286t_dist(A,X2,Y)),zero_zero(real)))
<=> ( X2 = Y ) ) ) ).
% dist_le_zero_iff
tff(fact_7822_dist__diff_I2_J,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [A2: A,B2: A] : ( real_V557655796197034286t_dist(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2),A2) = real_V7770717601297561774m_norm(A,B2) ) ) ).
% dist_diff(2)
tff(fact_7823_dist__diff_I1_J,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [A2: A,B2: A] : ( real_V557655796197034286t_dist(A,A2,aa(A,A,aa(A,fun(A,A),minus_minus(A),A2),B2)) = real_V7770717601297561774m_norm(A,B2) ) ) ).
% dist_diff(1)
tff(fact_7824_dist__scaleR,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X2: real,A2: A,Y: real] : ( real_V557655796197034286t_dist(A,aa(A,A,real_V8093663219630862766scaleR(A,X2),A2),aa(A,A,real_V8093663219630862766scaleR(A,Y),A2)) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),X2),Y))),real_V7770717601297561774m_norm(A,A2)) ) ) ).
% dist_scaleR
tff(fact_7825_open__ball,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X2: A,D2: real] : topolo1002775350975398744n_open(A,aa(fun(A,bool),set(A),collect(A),aa(real,fun(A,bool),aTP_Lamp_adk(A,fun(real,fun(A,bool)),X2),D2))) ) ).
% open_ball
tff(fact_7826_open__dist,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [S: set(A)] :
( topolo1002775350975398744n_open(A,S)
<=> ! [X4: A] :
( pp(member(A,X4,S))
=> ? [E4: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),E4))
& ! [Y2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,Y2,X4)),E4))
=> pp(member(A,Y2,S)) ) ) ) ) ) ).
% open_dist
tff(fact_7827_dist__commute__lessI,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [Y: A,X2: A,E: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,Y,X2)),E))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X2,Y)),E)) ) ) ).
% dist_commute_lessI
tff(fact_7828_dist__pos__lt,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X2: A,Y: A] :
( ( X2 != Y )
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),real_V557655796197034286t_dist(A,X2,Y))) ) ) ).
% dist_pos_lt
tff(fact_7829_dist__not__less__zero,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X2: A,Y: A] : ~ pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X2,Y)),zero_zero(real))) ) ).
% dist_not_less_zero
tff(fact_7830_dist__triangle__less__add,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X1: A,Y: A,E1: real,X23: A,E22: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X1,Y)),E1))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X23,Y)),E22))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X1,X23)),aa(real,real,aa(real,fun(real,real),plus_plus(real),E1),E22))) ) ) ) ).
% dist_triangle_less_add
tff(fact_7831_dist__triangle__lt,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X2: A,Z: A,Y: A,E: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),real_V557655796197034286t_dist(A,X2,Z)),real_V557655796197034286t_dist(A,Y,Z))),E))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X2,Y)),E)) ) ) ).
% dist_triangle_lt
tff(fact_7832_norm__conv__dist,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X2: A] : ( real_V7770717601297561774m_norm(A,X2) = real_V557655796197034286t_dist(A,X2,zero_zero(A)) ) ) ).
% norm_conv_dist
tff(fact_7833_dist__real__def,axiom,
! [X2: real,Y: real] : ( real_V557655796197034286t_dist(real,X2,Y) = aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),X2),Y)) ) ).
% dist_real_def
tff(fact_7834_dist__norm,axiom,
! [A: $tType] :
( real_V6936659425649961206t_norm(A)
=> ! [X2: A,Y: A] : ( real_V557655796197034286t_dist(A,X2,Y) = real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),X2),Y)) ) ) ).
% dist_norm
tff(fact_7835_dist__complex__def,axiom,
! [X2: complex,Y: complex] : ( real_V557655796197034286t_dist(complex,X2,Y) = real_V7770717601297561774m_norm(complex,aa(complex,complex,aa(complex,fun(complex,complex),minus_minus(complex),X2),Y)) ) ).
% dist_complex_def
tff(fact_7836_dist__triangle,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X2: A,Z: A,Y: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V557655796197034286t_dist(A,X2,Z)),aa(real,real,aa(real,fun(real,real),plus_plus(real),real_V557655796197034286t_dist(A,X2,Y)),real_V557655796197034286t_dist(A,Y,Z)))) ) ).
% dist_triangle
tff(fact_7837_dist__triangle2,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X2: A,Y: A,Z: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V557655796197034286t_dist(A,X2,Y)),aa(real,real,aa(real,fun(real,real),plus_plus(real),real_V557655796197034286t_dist(A,X2,Z)),real_V557655796197034286t_dist(A,Y,Z)))) ) ).
% dist_triangle2
tff(fact_7838_dist__triangle3,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X2: A,Y: A,A2: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V557655796197034286t_dist(A,X2,Y)),aa(real,real,aa(real,fun(real,real),plus_plus(real),real_V557655796197034286t_dist(A,A2,X2)),real_V557655796197034286t_dist(A,A2,Y)))) ) ).
% dist_triangle3
tff(fact_7839_dist__triangle__le,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X2: A,Z: A,Y: A,E: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),real_V557655796197034286t_dist(A,X2,Z)),real_V557655796197034286t_dist(A,Y,Z))),E))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V557655796197034286t_dist(A,X2,Y)),E)) ) ) ).
% dist_triangle_le
tff(fact_7840_zero__le__dist,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X2: A,Y: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),real_V557655796197034286t_dist(A,X2,Y))) ) ).
% zero_le_dist
tff(fact_7841_abs__dist__diff__le,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [A2: A,B2: A,C2: A] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,abs_abs(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),real_V557655796197034286t_dist(A,A2,B2)),real_V557655796197034286t_dist(A,B2,C2)))),real_V557655796197034286t_dist(A,A2,C2))) ) ).
% abs_dist_diff_le
tff(fact_7842_has__field__derivative__transform__within,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),F8: A,A2: A,S: set(A),D2: real,G: fun(A,A)] :
( has_field_derivative(A,F2,F8,topolo174197925503356063within(A,A2,S))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D2))
=> ( pp(member(A,A2,S))
=> ( ! [X3: A] :
( pp(member(A,X3,S))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X3,A2)),D2))
=> ( aa(A,A,F2,X3) = aa(A,A,G,X3) ) ) )
=> has_field_derivative(A,G,F8,topolo174197925503356063within(A,A2,S)) ) ) ) ) ) ).
% has_field_derivative_transform_within
tff(fact_7843_has__derivative__transform__within,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),F8: fun(A,B),X2: A,S2: set(A),D2: real,G: fun(A,B)] :
( has_derivative(A,B,F2,F8,topolo174197925503356063within(A,X2,S2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D2))
=> ( pp(member(A,X2,S2))
=> ( ! [X10: A] :
( pp(member(A,X10,S2))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X10,X2)),D2))
=> ( aa(A,B,F2,X10) = aa(A,B,G,X10) ) ) )
=> has_derivative(A,B,G,F8,topolo174197925503356063within(A,X2,S2)) ) ) ) ) ) ).
% has_derivative_transform_within
tff(fact_7844_Cauchy__def,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X6: fun(nat,A)] :
( topolo3814608138187158403Cauchy(A,X6)
<=> ! [E4: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),E4))
=> ? [M8: nat] :
! [M6: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M8),M6))
=> ! [N5: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M8),N5))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,aa(nat,A,X6,M6),aa(nat,A,X6,N5))),E4)) ) ) ) ) ) ).
% Cauchy_def
tff(fact_7845_Cauchy__altdef2,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [S2: fun(nat,A)] :
( topolo3814608138187158403Cauchy(A,S2)
<=> ! [E4: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),E4))
=> ? [N6: nat] :
! [N5: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N6),N5))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,aa(nat,A,S2,N5),aa(nat,A,S2,N6))),E4)) ) ) ) ) ).
% Cauchy_altdef2
tff(fact_7846_metric__CauchyD,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X6: fun(nat,A),E: real] :
( topolo3814608138187158403Cauchy(A,X6)
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),E))
=> ? [M9: nat] :
! [M2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M9),M2))
=> ! [N7: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M9),N7))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,aa(nat,A,X6,M2),aa(nat,A,X6,N7))),E)) ) ) ) ) ) ).
% metric_CauchyD
tff(fact_7847_metric__CauchyI,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X6: fun(nat,A)] :
( ! [E2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),E2))
=> ? [M10: nat] :
! [M3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M10),M3))
=> ! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M10),N3))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,aa(nat,A,X6,M3),aa(nat,A,X6,N3))),E2)) ) ) )
=> topolo3814608138187158403Cauchy(A,X6) ) ) ).
% metric_CauchyI
tff(fact_7848_dist__of__int,axiom,
! [A: $tType] :
( real_V2822296259951069270ebra_1(A)
=> ! [M: int,N: int] : ( real_V557655796197034286t_dist(A,aa(int,A,ring_1_of_int(A),M),aa(int,A,ring_1_of_int(A),N)) = aa(int,real,ring_1_of_int(real),aa(int,int,abs_abs(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),M),N))) ) ) ).
% dist_of_int
tff(fact_7849_metric__LIM__imp__LIM,axiom,
! [A: $tType,B: $tType,C: $tType] :
( ( topolo4958980785337419405_space(C)
& real_V7819770556892013058_space(B)
& real_V7819770556892013058_space(A) )
=> ! [F2: fun(C,A),L: A,A2: C,G: fun(C,B),M: B] :
( filterlim(C,A,F2,topolo7230453075368039082e_nhds(A,L),topolo174197925503356063within(C,A2,top_top(set(C))))
=> ( ! [X3: C] :
( ( X3 != A2 )
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V557655796197034286t_dist(B,aa(C,B,G,X3),M)),real_V557655796197034286t_dist(A,aa(C,A,F2,X3),L))) )
=> filterlim(C,B,G,topolo7230453075368039082e_nhds(B,M),topolo174197925503356063within(C,A2,top_top(set(C)))) ) ) ) ).
% metric_LIM_imp_LIM
tff(fact_7850_dist__triangle__half__l,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X1: A,Y: A,E: real,X23: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X1,Y)),aa(real,real,aa(real,fun(real,real),divide_divide(real),E),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X23,Y)),aa(real,real,aa(real,fun(real,real),divide_divide(real),E),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X1,X23)),E)) ) ) ) ).
% dist_triangle_half_l
tff(fact_7851_dist__triangle__half__r,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [Y: A,X1: A,E: real,X23: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,Y,X1)),aa(real,real,aa(real,fun(real,real),divide_divide(real),E),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,Y,X23)),aa(real,real,aa(real,fun(real,real),divide_divide(real),E),aa(num,real,numeral_numeral(real),bit0(one2)))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X1,X23)),E)) ) ) ) ).
% dist_triangle_half_r
tff(fact_7852_Lim__transform__within,axiom,
! [B: $tType,A: $tType] :
( ( real_V7819770556892013058_space(A)
& topolo4958980785337419405_space(B) )
=> ! [F2: fun(A,B),L: B,X2: A,S: set(A),D2: real,G: fun(A,B)] :
( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,L),topolo174197925503356063within(A,X2,S))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D2))
=> ( ! [X10: A] :
( pp(member(A,X10,S))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),real_V557655796197034286t_dist(A,X10,X2)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X10,X2)),D2))
=> ( aa(A,B,F2,X10) = aa(A,B,G,X10) ) ) ) )
=> filterlim(A,B,G,topolo7230453075368039082e_nhds(B,L),topolo174197925503356063within(A,X2,S)) ) ) ) ) ).
% Lim_transform_within
tff(fact_7853_dist__triangle__third,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X1: A,X23: A,E: real,X33: A,X42: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X1,X23)),aa(real,real,aa(real,fun(real,real),divide_divide(real),E),aa(num,real,numeral_numeral(real),aa(num,num,bit1,one2)))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X23,X33)),aa(real,real,aa(real,fun(real,real),divide_divide(real),E),aa(num,real,numeral_numeral(real),aa(num,num,bit1,one2)))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X33,X42)),aa(real,real,aa(real,fun(real,real),divide_divide(real),E),aa(num,real,numeral_numeral(real),aa(num,num,bit1,one2)))))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X1,X42)),E)) ) ) ) ) ).
% dist_triangle_third
tff(fact_7854_exp__at__bot,axiom,
filterlim(real,real,exp(real),topolo7230453075368039082e_nhds(real,zero_zero(real)),at_bot(real)) ).
% exp_at_bot
tff(fact_7855_filterlim__transform__within,axiom,
! [B: $tType,A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [G: fun(A,B),G7: filter(B),X2: A,S: set(A),F4: filter(B),D2: real,F2: fun(A,B)] :
( filterlim(A,B,G,G7,topolo174197925503356063within(A,X2,S))
=> ( pp(aa(filter(B),bool,aa(filter(B),fun(filter(B),bool),ord_less_eq(filter(B)),G7),F4))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D2))
=> ( ! [X10: A] :
( pp(member(A,X10,S))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),real_V557655796197034286t_dist(A,X10,X2)))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X10,X2)),D2))
=> ( aa(A,B,F2,X10) = aa(A,B,G,X10) ) ) ) )
=> filterlim(A,B,F2,F4,topolo174197925503356063within(A,X2,S)) ) ) ) ) ) ).
% filterlim_transform_within
tff(fact_7856_Cauchy__altdef,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [F2: fun(nat,A)] :
( topolo3814608138187158403Cauchy(A,F2)
<=> ! [E4: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),E4))
=> ? [M8: nat] :
! [M6: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M8),M6))
=> ! [N5: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M6),N5))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,aa(nat,A,F2,M6),aa(nat,A,F2,N5))),E4)) ) ) ) ) ) ).
% Cauchy_altdef
tff(fact_7857_CauchyI_H,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X6: fun(nat,A)] :
( ! [E2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),E2))
=> ? [M10: nat] :
! [M3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M10),M3))
=> ! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),M3),N3))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,aa(nat,A,X6,M3),aa(nat,A,X6,N3))),E2)) ) ) )
=> topolo3814608138187158403Cauchy(A,X6) ) ) ).
% CauchyI'
tff(fact_7858_dist__of__nat,axiom,
! [A: $tType] :
( real_V2822296259951069270ebra_1(A)
=> ! [M: nat,N: nat] : ( real_V557655796197034286t_dist(A,aa(nat,A,semiring_1_of_nat(A),M),aa(nat,A,semiring_1_of_nat(A),N)) = aa(int,real,ring_1_of_int(real),aa(int,int,abs_abs(int),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(nat,int,semiring_1_of_nat(int),M)),aa(nat,int,semiring_1_of_nat(int),N)))) ) ) ).
% dist_of_nat
tff(fact_7859_filterlim__inverse__at__bot__neg,axiom,
filterlim(real,real,inverse_inverse(real),at_bot(real),topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_lessThan(real),zero_zero(real)))) ).
% filterlim_inverse_at_bot_neg
tff(fact_7860_tendsto__dist__iff,axiom,
! [B: $tType,A: $tType] :
( real_V7819770556892013058_space(B)
=> ! [F2: fun(A,B),L: B,F4: filter(A)] :
( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,L),F4)
<=> filterlim(A,real,aa(B,fun(A,real),aTP_Lamp_adl(fun(A,B),fun(B,fun(A,real)),F2),L),topolo7230453075368039082e_nhds(real,zero_zero(real)),F4) ) ) ).
% tendsto_dist_iff
tff(fact_7861_metric__LIM__equal2,axiom,
! [B: $tType,A: $tType] :
( ( real_V7819770556892013058_space(A)
& topolo4958980785337419405_space(B) )
=> ! [G: fun(A,B),L: B,A2: A,R2: real,F2: fun(A,B)] :
( filterlim(A,B,G,topolo7230453075368039082e_nhds(B,L),topolo174197925503356063within(A,A2,top_top(set(A))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),R2))
=> ( ! [X3: A] :
( ( X3 != A2 )
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X3,A2)),R2))
=> ( aa(A,B,F2,X3) = aa(A,B,G,X3) ) ) )
=> filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,L),topolo174197925503356063within(A,A2,top_top(set(A)))) ) ) ) ) ).
% metric_LIM_equal2
tff(fact_7862_metric__LIM__I,axiom,
! [B: $tType,A: $tType] :
( ( real_V7819770556892013058_space(A)
& real_V7819770556892013058_space(B) )
=> ! [A2: A,F2: fun(A,B),L6: B] :
( ! [R4: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),R4))
=> ? [S8: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),S8))
& ! [X3: A] :
( ( ( X3 != A2 )
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X3,A2)),S8)) )
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(B,aa(A,B,F2,X3),L6)),R4)) ) ) )
=> filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,L6),topolo174197925503356063within(A,A2,top_top(set(A)))) ) ) ).
% metric_LIM_I
tff(fact_7863_metric__LIM__D,axiom,
! [B: $tType,A: $tType] :
( ( real_V7819770556892013058_space(A)
& real_V7819770556892013058_space(B) )
=> ! [F2: fun(A,B),L6: B,A2: A,R: real] :
( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,L6),topolo174197925503356063within(A,A2,top_top(set(A))))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),R))
=> ? [S3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),S3))
& ! [X: A] :
( ( ( X != A2 )
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X,A2)),S3)) )
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(B,aa(A,B,F2,X),L6)),R)) ) ) ) ) ) ).
% metric_LIM_D
tff(fact_7864_LIM__def,axiom,
! [B: $tType,A: $tType] :
( ( real_V7819770556892013058_space(A)
& real_V7819770556892013058_space(B) )
=> ! [F2: fun(A,B),L6: B,A2: A] :
( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,L6),topolo174197925503356063within(A,A2,top_top(set(A))))
<=> ! [R5: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),R5))
=> ? [S6: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),S6))
& ! [X4: A] :
( ( ( X4 != A2 )
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X4,A2)),S6)) )
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(B,aa(A,B,F2,X4),L6)),R5)) ) ) ) ) ) ).
% LIM_def
tff(fact_7865_lim__sequentially,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X6: fun(nat,A),L6: A] :
( filterlim(nat,A,X6,topolo7230453075368039082e_nhds(A,L6),at_top(nat))
<=> ! [R5: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),R5))
=> ? [No2: nat] :
! [N5: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),No2),N5))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,aa(nat,A,X6,N5),L6)),R5)) ) ) ) ) ).
% lim_sequentially
tff(fact_7866_metric__LIMSEQ__I,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X6: fun(nat,A),L6: A] :
( ! [R4: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),R4))
=> ? [No3: nat] :
! [N3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),No3),N3))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,aa(nat,A,X6,N3),L6)),R4)) ) )
=> filterlim(nat,A,X6,topolo7230453075368039082e_nhds(A,L6),at_top(nat)) ) ) ).
% metric_LIMSEQ_I
tff(fact_7867_metric__LIMSEQ__D,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X6: fun(nat,A),L6: A,R: real] :
( filterlim(nat,A,X6,topolo7230453075368039082e_nhds(A,L6),at_top(nat))
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),R))
=> ? [No4: nat] :
! [N7: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),No4),N7))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,aa(nat,A,X6,N7),L6)),R)) ) ) ) ) ).
% metric_LIMSEQ_D
tff(fact_7868_metric__Cauchy__iff2,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X6: fun(nat,A)] :
( topolo3814608138187158403Cauchy(A,X6)
<=> ! [J3: nat] :
? [M8: nat] :
! [M6: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M8),M6))
=> ! [N5: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),M8),N5))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,aa(nat,A,X6,M6),aa(nat,A,X6,N5))),aa(real,real,inverse_inverse(real),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,suc,J3))))) ) ) ) ) ).
% metric_Cauchy_iff2
tff(fact_7869_metric__LIM__compose2,axiom,
! [C: $tType,B: $tType,A: $tType] :
( ( real_V7819770556892013058_space(A)
& topolo4958980785337419405_space(B)
& topolo4958980785337419405_space(C) )
=> ! [F2: fun(A,B),B2: B,A2: A,G: fun(B,C),C2: C] :
( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,B2),topolo174197925503356063within(A,A2,top_top(set(A))))
=> ( filterlim(B,C,G,topolo7230453075368039082e_nhds(C,C2),topolo174197925503356063within(B,B2,top_top(set(B))))
=> ( ? [D6: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D6))
& ! [X3: A] :
( ( ( X3 != A2 )
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X3,A2)),D6)) )
=> ( aa(A,B,F2,X3) != B2 ) ) )
=> filterlim(A,C,aa(fun(B,C),fun(A,C),aTP_Lamp_adm(fun(A,B),fun(fun(B,C),fun(A,C)),F2),G),topolo7230453075368039082e_nhds(C,C2),topolo174197925503356063within(A,A2,top_top(set(A)))) ) ) ) ) ).
% metric_LIM_compose2
tff(fact_7870_tanh__real__at__bot,axiom,
filterlim(real,real,tanh(real),topolo7230453075368039082e_nhds(real,aa(real,real,uminus_uminus(real),one_one(real))),at_bot(real)) ).
% tanh_real_at_bot
tff(fact_7871_filterlim__tendsto__pos__mult__at__bot,axiom,
! [A: $tType,F2: fun(A,real),C2: real,F4: filter(A),G: fun(A,real)] :
( filterlim(A,real,F2,topolo7230453075368039082e_nhds(real,C2),F4)
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),C2))
=> ( filterlim(A,real,G,at_bot(real),F4)
=> filterlim(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_adn(fun(A,real),fun(fun(A,real),fun(A,real)),F2),G),at_bot(real),F4) ) ) ) ).
% filterlim_tendsto_pos_mult_at_bot
tff(fact_7872_metric__isCont__LIM__compose2,axiom,
! [D: $tType,C: $tType,A: $tType] :
( ( real_V7819770556892013058_space(A)
& topolo4958980785337419405_space(C)
& topolo4958980785337419405_space(D) )
=> ! [A2: A,F2: fun(A,C),G: fun(C,D),L: D] :
( topolo3448309680560233919inuous(A,C,topolo174197925503356063within(A,A2,top_top(set(A))),F2)
=> ( filterlim(C,D,G,topolo7230453075368039082e_nhds(D,L),topolo174197925503356063within(C,aa(A,C,F2,A2),top_top(set(C))))
=> ( ? [D6: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D6))
& ! [X3: A] :
( ( ( X3 != A2 )
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X3,A2)),D6)) )
=> ( aa(A,C,F2,X3) != aa(A,C,F2,A2) ) ) )
=> filterlim(A,D,aa(fun(C,D),fun(A,D),aTP_Lamp_ado(fun(A,C),fun(fun(C,D),fun(A,D)),F2),G),topolo7230453075368039082e_nhds(D,L),topolo174197925503356063within(A,A2,top_top(set(A)))) ) ) ) ) ).
% metric_isCont_LIM_compose2
tff(fact_7873_LIMSEQ__iff__nz,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X6: fun(nat,A),L6: A] :
( filterlim(nat,A,X6,topolo7230453075368039082e_nhds(A,L6),at_top(nat))
<=> ! [R5: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),R5))
=> ? [No2: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),No2))
& ! [N5: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),No2),N5))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,aa(nat,A,X6,N5),L6)),R5)) ) ) ) ) ) ).
% LIMSEQ_iff_nz
tff(fact_7874_DERIV__pos__imp__increasing__at__bot,axiom,
! [B2: real,F2: fun(real,real),Flim: real] :
( ! [X3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),X3),B2))
=> ? [Y4: real] :
( has_field_derivative(real,F2,Y4,topolo174197925503356063within(real,X3,top_top(set(real))))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),Y4)) ) )
=> ( filterlim(real,real,F2,topolo7230453075368039082e_nhds(real,Flim),at_bot(real))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Flim),aa(real,real,F2,B2))) ) ) ).
% DERIV_pos_imp_increasing_at_bot
tff(fact_7875_filterlim__pow__at__bot__odd,axiom,
! [N: nat,F2: fun(real,real),F4: filter(real)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( filterlim(real,real,F2,at_bot(real),F4)
=> ( ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_adp(nat,fun(fun(real,real),fun(real,real)),N),F2),at_bot(real),F4) ) ) ) ).
% filterlim_pow_at_bot_odd
tff(fact_7876_totally__bounded__metric,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [S: set(A)] :
( topolo6688025880775521714ounded(A,S)
<=> ! [E4: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),E4))
=> ? [K2: set(A)] :
( finite_finite(A,K2)
& pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),S),complete_Sup_Sup(set(A),aa(set(A),set(set(A)),image(A,set(A),aTP_Lamp_adr(real,fun(A,set(A)),E4)),K2)))) ) ) ) ) ).
% totally_bounded_metric
tff(fact_7877_tendsto__exp__limit__at__right,axiom,
! [X2: real] : filterlim(real,real,aTP_Lamp_ads(real,fun(real,real),X2),topolo7230453075368039082e_nhds(real,aa(real,real,exp(real),X2)),topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real)))) ).
% tendsto_exp_limit_at_right
tff(fact_7878_greaterThan__eq__iff,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X2: A,Y: A] :
( ( aa(A,set(A),set_ord_greaterThan(A),X2) = aa(A,set(A),set_ord_greaterThan(A),Y) )
<=> ( X2 = Y ) ) ) ).
% greaterThan_eq_iff
tff(fact_7879_greaterThan__iff,axiom,
! [A: $tType] :
( ord(A)
=> ! [I: A,K: A] :
( pp(member(A,I,aa(A,set(A),set_ord_greaterThan(A),K)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),K),I)) ) ) ).
% greaterThan_iff
tff(fact_7880_Inf__greaterThan,axiom,
! [A: $tType] :
( ( comple6319245703460814977attice(A)
& dense_linorder(A) )
=> ! [X2: A] : ( complete_Inf_Inf(A,aa(A,set(A),set_ord_greaterThan(A),X2)) = X2 ) ) ).
% Inf_greaterThan
tff(fact_7881_greaterThan__subset__iff,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X2: A,Y: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(A,set(A),set_ord_greaterThan(A),X2)),aa(A,set(A),set_ord_greaterThan(A),Y)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),X2)) ) ) ).
% greaterThan_subset_iff
tff(fact_7882_Compl__atMost,axiom,
! [A: $tType] :
( linorder(A)
=> ! [K: A] : ( aa(set(A),set(A),uminus_uminus(set(A)),aa(A,set(A),set_ord_atMost(A),K)) = aa(A,set(A),set_ord_greaterThan(A),K) ) ) ).
% Compl_atMost
tff(fact_7883_Compl__greaterThan,axiom,
! [A: $tType] :
( linorder(A)
=> ! [K: A] : ( aa(set(A),set(A),uminus_uminus(set(A)),aa(A,set(A),set_ord_greaterThan(A),K)) = aa(A,set(A),set_ord_atMost(A),K) ) ) ).
% Compl_greaterThan
tff(fact_7884_Sup__greaterThanAtLeast,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),top_top(A)))
=> ( complete_Sup_Sup(A,aa(A,set(A),set_ord_greaterThan(A),X2)) = top_top(A) ) ) ) ).
% Sup_greaterThanAtLeast
tff(fact_7885_image__uminus__lessThan,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [X2: A] : ( aa(set(A),set(A),image(A,A,uminus_uminus(A)),aa(A,set(A),set_ord_lessThan(A),X2)) = aa(A,set(A),set_ord_greaterThan(A),aa(A,A,uminus_uminus(A),X2)) ) ) ).
% image_uminus_lessThan
tff(fact_7886_image__uminus__greaterThan,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [X2: A] : ( aa(set(A),set(A),image(A,A,uminus_uminus(A)),aa(A,set(A),set_ord_greaterThan(A),X2)) = aa(A,set(A),set_ord_lessThan(A),aa(A,A,uminus_uminus(A),X2)) ) ) ).
% image_uminus_greaterThan
tff(fact_7887_greaterThanAtMost__def,axiom,
! [A: $tType] :
( ord(A)
=> ! [L: A,U: A] : ( set_or3652927894154168847AtMost(A,L,U) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(A,set(A),set_ord_greaterThan(A),L)),aa(A,set(A),set_ord_atMost(A),U)) ) ) ).
% greaterThanAtMost_def
tff(fact_7888_lessThan__Int__lessThan,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A2: A,B2: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(A,set(A),set_ord_greaterThan(A),A2)),aa(A,set(A),set_ord_greaterThan(A),B2)) = aa(A,set(A),set_ord_greaterThan(A),aa(A,A,aa(A,fun(A,A),ord_max(A),A2),B2)) ) ) ).
% lessThan_Int_lessThan
tff(fact_7889_infinite__Ioi,axiom,
! [A: $tType] :
( ( linorder(A)
& no_top(A) )
=> ! [A2: A] : ~ finite_finite(A,aa(A,set(A),set_ord_greaterThan(A),A2)) ) ).
% infinite_Ioi
tff(fact_7890_totally__bounded__subset,axiom,
! [A: $tType] :
( topolo7287701948861334536_space(A)
=> ! [S: set(A),T6: set(A)] :
( topolo6688025880775521714ounded(A,S)
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),T6),S))
=> topolo6688025880775521714ounded(A,T6) ) ) ) ).
% totally_bounded_subset
tff(fact_7891_greaterThan__non__empty,axiom,
! [A: $tType] :
( no_top(A)
=> ! [X2: A] : ( aa(A,set(A),set_ord_greaterThan(A),X2) != bot_bot(set(A)) ) ) ).
% greaterThan_non_empty
tff(fact_7892_greaterThan__def,axiom,
! [A: $tType] :
( ord(A)
=> ! [L: A] : ( aa(A,set(A),set_ord_greaterThan(A),L) = aa(fun(A,bool),set(A),collect(A),aa(A,fun(A,bool),ord_less(A),L)) ) ) ).
% greaterThan_def
tff(fact_7893_ivl__disj__int__one_I7_J,axiom,
! [A: $tType] :
( order(A)
=> ! [L: A,U: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),set_or1337092689740270186AtMost(A,L,U)),aa(A,set(A),set_ord_greaterThan(A),U)) = bot_bot(set(A)) ) ) ).
% ivl_disj_int_one(7)
tff(fact_7894_at__within__Icc__at__right,axiom,
! [A: $tType] :
( topolo2564578578187576103pology(A)
=> ! [A2: A,B2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> ( topolo174197925503356063within(A,A2,set_or1337092689740270186AtMost(A,A2,B2)) = topolo174197925503356063within(A,A2,aa(A,set(A),set_ord_greaterThan(A),A2)) ) ) ) ).
% at_within_Icc_at_right
tff(fact_7895_greaterThanLessThan__eq,axiom,
! [A: $tType] :
( ord(A)
=> ! [A2: A,B2: A] : ( set_or5935395276787703475ssThan(A,A2,B2) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(A,set(A),set_ord_greaterThan(A),A2)),aa(A,set(A),set_ord_lessThan(A),B2)) ) ) ).
% greaterThanLessThan_eq
tff(fact_7896_greaterThanLessThan__def,axiom,
! [A: $tType] :
( ord(A)
=> ! [L: A,U: A] : ( set_or5935395276787703475ssThan(A,L,U) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(A,set(A),set_ord_greaterThan(A),L)),aa(A,set(A),set_ord_lessThan(A),U)) ) ) ).
% greaterThanLessThan_def
tff(fact_7897_ivl__disj__int__one_I5_J,axiom,
! [A: $tType] :
( order(A)
=> ! [L: A,U: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),set_or3652927894154168847AtMost(A,L,U)),aa(A,set(A),set_ord_greaterThan(A),U)) = bot_bot(set(A)) ) ) ).
% ivl_disj_int_one(5)
tff(fact_7898_ivl__disj__un__one_I5_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A,U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L),U))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),set_or3652927894154168847AtMost(A,L,U)),aa(A,set(A),set_ord_greaterThan(A),U)) = aa(A,set(A),set_ord_greaterThan(A),L) ) ) ) ).
% ivl_disj_un_one(5)
tff(fact_7899_filterlim__at__left__to__right,axiom,
! [A: $tType,F2: fun(real,A),F4: filter(A),A2: real] :
( filterlim(real,A,F2,F4,topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_lessThan(real),A2)))
<=> filterlim(real,A,aTP_Lamp_adt(fun(real,A),fun(real,A),F2),F4,topolo174197925503356063within(real,aa(real,real,uminus_uminus(real),A2),aa(real,set(real),set_ord_greaterThan(real),aa(real,real,uminus_uminus(real),A2)))) ) ).
% filterlim_at_left_to_right
tff(fact_7900_less__separate,axiom,
! [A: $tType] :
( order(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ? [A4: A,B3: A] :
( pp(member(A,X2,aa(A,set(A),set_ord_lessThan(A),A4)))
& pp(member(A,Y,aa(A,set(A),set_ord_greaterThan(A),B3)))
& ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(A,set(A),set_ord_lessThan(A),A4)),aa(A,set(A),set_ord_greaterThan(A),B3)) = bot_bot(set(A)) ) ) ) ) ).
% less_separate
tff(fact_7901_filterlim__at__right__to__0,axiom,
! [A: $tType,F2: fun(real,A),F4: filter(A),A2: real] :
( filterlim(real,A,F2,F4,topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_greaterThan(real),A2)))
<=> filterlim(real,A,aa(real,fun(real,A),aTP_Lamp_adu(fun(real,A),fun(real,fun(real,A)),F2),A2),F4,topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real)))) ) ).
% filterlim_at_right_to_0
tff(fact_7902_filterlim__times__pos,axiom,
! [A: $tType,B: $tType] :
( ( linordered_field(A)
& topolo1944317154257567458pology(A) )
=> ! [F2: fun(B,A),P2: A,F12: filter(B),C2: A,L: A] :
( filterlim(B,A,F2,topolo174197925503356063within(A,P2,aa(A,set(A),set_ord_greaterThan(A),P2)),F12)
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),zero_zero(A)),C2))
=> ( ( L = aa(A,A,aa(A,fun(A,A),times_times(A),C2),P2) )
=> filterlim(B,A,aa(A,fun(B,A),aTP_Lamp_adv(fun(B,A),fun(A,fun(B,A)),F2),C2),topolo174197925503356063within(A,L,aa(A,set(A),set_ord_greaterThan(A),L)),F12) ) ) ) ) ).
% filterlim_times_pos
tff(fact_7903_ln__at__0,axiom,
filterlim(real,real,ln_ln(real),at_bot(real),topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real)))) ).
% ln_at_0
tff(fact_7904_tendsto__arcosh__at__left__1,axiom,
filterlim(real,real,arcosh(real),topolo7230453075368039082e_nhds(real,zero_zero(real)),topolo174197925503356063within(real,one_one(real),aa(real,set(real),set_ord_greaterThan(real),one_one(real)))) ).
% tendsto_arcosh_at_left_1
tff(fact_7905_artanh__real__at__right__1,axiom,
filterlim(real,real,artanh(real),at_bot(real),topolo174197925503356063within(real,aa(real,real,uminus_uminus(real),one_one(real)),aa(real,set(real),set_ord_greaterThan(real),aa(real,real,uminus_uminus(real),one_one(real))))) ).
% artanh_real_at_right_1
tff(fact_7906_isCont__If__ge,axiom,
! [B: $tType,A: $tType] :
( ( topolo1944317154257567458pology(A)
& topolo4958980785337419405_space(B) )
=> ! [A2: A,G: fun(A,B),F2: fun(A,B)] :
( topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,aa(A,set(A),set_ord_lessThan(A),A2)),G)
=> ( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,aa(A,B,G,A2)),topolo174197925503356063within(A,A2,aa(A,set(A),set_ord_greaterThan(A),A2)))
=> topolo3448309680560233919inuous(A,B,topolo174197925503356063within(A,A2,top_top(set(A))),aa(fun(A,B),fun(A,B),aa(fun(A,B),fun(fun(A,B),fun(A,B)),aTP_Lamp_adw(A,fun(fun(A,B),fun(fun(A,B),fun(A,B))),A2),G),F2)) ) ) ) ).
% isCont_If_ge
tff(fact_7907_filterlim__tan__at__right,axiom,
filterlim(real,real,tan(real),at_bot(real),topolo174197925503356063within(real,aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))),aa(real,set(real),set_ord_greaterThan(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))))) ).
% filterlim_tan_at_right
tff(fact_7908_at__within__order,axiom,
! [A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [X2: A,S2: set(A)] :
( ( top_top(set(A)) != aa(set(A),set(A),insert(A,X2),bot_bot(set(A))) )
=> ( topolo174197925503356063within(A,X2,S2) = aa(filter(A),filter(A),aa(filter(A),fun(filter(A),filter(A)),inf_inf(filter(A)),complete_Inf_Inf(filter(A),aa(set(A),set(filter(A)),image(A,filter(A),aa(set(A),fun(A,filter(A)),aTP_Lamp_adx(A,fun(set(A),fun(A,filter(A))),X2),S2)),aa(A,set(A),set_ord_greaterThan(A),X2)))),complete_Inf_Inf(filter(A),aa(set(A),set(filter(A)),image(A,filter(A),aa(set(A),fun(A,filter(A)),aTP_Lamp_ady(A,fun(set(A),fun(A,filter(A))),X2),S2)),aa(A,set(A),set_ord_lessThan(A),X2)))) ) ) ) ).
% at_within_order
tff(fact_7909_interval__cases,axiom,
! [A: $tType] :
( condit6923001295902523014norder(A)
=> ! [S: set(A)] :
( ! [A4: A,B3: A,X3: A] :
( pp(member(A,A4,S))
=> ( pp(member(A,B3,S))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A4),X3))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),B3))
=> pp(member(A,X3,S)) ) ) ) )
=> ? [A4: A,B3: A] :
( ( S = bot_bot(set(A)) )
| ( S = top_top(set(A)) )
| ( S = aa(A,set(A),set_ord_lessThan(A),B3) )
| ( S = aa(A,set(A),set_ord_atMost(A),B3) )
| ( S = aa(A,set(A),set_ord_greaterThan(A),A4) )
| ( S = aa(A,set(A),set_ord_atLeast(A),A4) )
| ( S = set_or5935395276787703475ssThan(A,A4,B3) )
| ( S = set_or3652927894154168847AtMost(A,A4,B3) )
| ( S = set_or7035219750837199246ssThan(A,A4,B3) )
| ( S = set_or1337092689740270186AtMost(A,A4,B3) ) ) ) ) ).
% interval_cases
tff(fact_7910_atLeast__eq__iff,axiom,
! [A: $tType] :
( order(A)
=> ! [X2: A,Y: A] :
( ( aa(A,set(A),set_ord_atLeast(A),X2) = aa(A,set(A),set_ord_atLeast(A),Y) )
<=> ( X2 = Y ) ) ) ).
% atLeast_eq_iff
tff(fact_7911_atLeast__0,axiom,
aa(nat,set(nat),set_ord_atLeast(nat),zero_zero(nat)) = top_top(set(nat)) ).
% atLeast_0
tff(fact_7912_atLeast__iff,axiom,
! [A: $tType] :
( ord(A)
=> ! [I: A,K: A] :
( pp(member(A,I,aa(A,set(A),set_ord_atLeast(A),K)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),K),I)) ) ) ).
% atLeast_iff
tff(fact_7913_Inf__atLeast,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [X2: A] : ( complete_Inf_Inf(A,aa(A,set(A),set_ord_atLeast(A),X2)) = X2 ) ) ).
% Inf_atLeast
tff(fact_7914_atLeast__empty__triv,axiom,
! [A: $tType] : ( aa(set(A),set(set(A)),set_ord_atLeast(set(A)),bot_bot(set(A))) = top_top(set(set(A))) ) ).
% atLeast_empty_triv
tff(fact_7915_atLeast__subset__iff,axiom,
! [A: $tType] :
( preorder(A)
=> ! [X2: A,Y: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(A,set(A),set_ord_atLeast(A),X2)),aa(A,set(A),set_ord_atLeast(A),Y)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),X2)) ) ) ).
% atLeast_subset_iff
tff(fact_7916_image__add__atLeast,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [K: A,I: A] : ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),plus_plus(A),K)),aa(A,set(A),set_ord_atLeast(A),I)) = aa(A,set(A),set_ord_atLeast(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),K),I)) ) ) ).
% image_add_atLeast
tff(fact_7917_Sup__atLeast,axiom,
! [A: $tType] :
( comple6319245703460814977attice(A)
=> ! [X2: A] : ( complete_Sup_Sup(A,aa(A,set(A),set_ord_atLeast(A),X2)) = top_top(A) ) ) ).
% Sup_atLeast
tff(fact_7918_principal__le__iff,axiom,
! [A: $tType,A3: set(A),B4: set(A)] :
( pp(aa(filter(A),bool,aa(filter(A),fun(filter(A),bool),ord_less_eq(filter(A)),principal(A,A3)),principal(A,B4)))
<=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4)) ) ).
% principal_le_iff
tff(fact_7919_Compl__atLeast,axiom,
! [A: $tType] :
( linorder(A)
=> ! [K: A] : ( aa(set(A),set(A),uminus_uminus(set(A)),aa(A,set(A),set_ord_atLeast(A),K)) = aa(A,set(A),set_ord_lessThan(A),K) ) ) ).
% Compl_atLeast
tff(fact_7920_Compl__lessThan,axiom,
! [A: $tType] :
( linorder(A)
=> ! [K: A] : ( aa(set(A),set(A),uminus_uminus(set(A)),aa(A,set(A),set_ord_lessThan(A),K)) = aa(A,set(A),set_ord_atLeast(A),K) ) ) ).
% Compl_lessThan
tff(fact_7921_Icc__subset__Ici__iff,axiom,
! [A: $tType] :
( preorder(A)
=> ! [L: A,H: A,L4: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),set_or1337092689740270186AtMost(A,L,H)),aa(A,set(A),set_ord_atLeast(A),L4)))
<=> ( ~ pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L),H))
| pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L4),L)) ) ) ) ).
% Icc_subset_Ici_iff
tff(fact_7922_image__minus__const__AtMost,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [C2: A,B2: A] : ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),minus_minus(A),C2)),aa(A,set(A),set_ord_atMost(A),B2)) = aa(A,set(A),set_ord_atLeast(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),C2),B2)) ) ) ).
% image_minus_const_AtMost
tff(fact_7923_image__minus__const__atLeast,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [C2: A,A2: A] : ( aa(set(A),set(A),image(A,A,aa(A,fun(A,A),minus_minus(A),C2)),aa(A,set(A),set_ord_atLeast(A),A2)) = aa(A,set(A),set_ord_atMost(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),C2),A2)) ) ) ).
% image_minus_const_atLeast
tff(fact_7924_image__uminus__atLeast,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [X2: A] : ( aa(set(A),set(A),image(A,A,uminus_uminus(A)),aa(A,set(A),set_ord_atLeast(A),X2)) = aa(A,set(A),set_ord_atMost(A),aa(A,A,uminus_uminus(A),X2)) ) ) ).
% image_uminus_atLeast
tff(fact_7925_image__uminus__atMost,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [X2: A] : ( aa(set(A),set(A),image(A,A,uminus_uminus(A)),aa(A,set(A),set_ord_atMost(A),X2)) = aa(A,set(A),set_ord_atLeast(A),aa(A,A,uminus_uminus(A),X2)) ) ) ).
% image_uminus_atMost
tff(fact_7926_Int__atLeastAtMostL2,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A2: A,B2: A,C2: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),set_or1337092689740270186AtMost(A,A2,B2)),aa(A,set(A),set_ord_atLeast(A),C2)) = set_or1337092689740270186AtMost(A,aa(A,A,aa(A,fun(A,A),ord_max(A),A2),C2),B2) ) ) ).
% Int_atLeastAtMostL2
tff(fact_7927_Int__atLeastAtMostR2,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A2: A,C2: A,D2: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(A,set(A),set_ord_atLeast(A),A2)),set_or1337092689740270186AtMost(A,C2,D2)) = set_or1337092689740270186AtMost(A,aa(A,A,aa(A,fun(A,A),ord_max(A),A2),C2),D2) ) ) ).
% Int_atLeastAtMostR2
tff(fact_7928_Ioi__le__Ico,axiom,
! [A: $tType] :
( preorder(A)
=> ! [A2: A] : pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(A,set(A),set_ord_greaterThan(A),A2)),aa(A,set(A),set_ord_atLeast(A),A2))) ) ).
% Ioi_le_Ico
tff(fact_7929_atLeast__Suc__greaterThan,axiom,
! [K: nat] : ( aa(nat,set(nat),set_ord_atLeast(nat),aa(nat,nat,suc,K)) = aa(nat,set(nat),set_ord_greaterThan(nat),K) ) ).
% atLeast_Suc_greaterThan
tff(fact_7930_Ici__subset__Ioi__iff,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A2: A,B2: A] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(A,set(A),set_ord_atLeast(A),A2)),aa(A,set(A),set_ord_greaterThan(A),B2)))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),A2)) ) ) ).
% Ici_subset_Ioi_iff
tff(fact_7931_ivl__disj__un__one_I8_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A,U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L),U))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),set_or7035219750837199246ssThan(A,L,U)),aa(A,set(A),set_ord_atLeast(A),U)) = aa(A,set(A),set_ord_atLeast(A),L) ) ) ) ).
% ivl_disj_un_one(8)
tff(fact_7932_not__Ici__le__Icc,axiom,
! [A: $tType] :
( no_top(A)
=> ! [L: A,L4: A,H2: A] : ~ pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(A,set(A),set_ord_atLeast(A),L)),set_or1337092689740270186AtMost(A,L4,H2))) ) ).
% not_Ici_le_Icc
tff(fact_7933_not__Ici__eq__Icc,axiom,
! [A: $tType] :
( no_top(A)
=> ! [L4: A,L: A,H: A] : ( aa(A,set(A),set_ord_atLeast(A),L4) != set_or1337092689740270186AtMost(A,L,H) ) ) ).
% not_Ici_eq_Icc
tff(fact_7934_not__empty__eq__Ici__eq__empty,axiom,
! [A: $tType] :
( preorder(A)
=> ! [L: A] : ( bot_bot(set(A)) != aa(A,set(A),set_ord_atLeast(A),L) ) ) ).
% not_empty_eq_Ici_eq_empty
tff(fact_7935_atLeast__eq__UNIV__iff,axiom,
! [A: $tType] :
( order_bot(A)
=> ! [X2: A] :
( ( aa(A,set(A),set_ord_atLeast(A),X2) = top_top(set(A)) )
<=> ( X2 = bot_bot(A) ) ) ) ).
% atLeast_eq_UNIV_iff
tff(fact_7936_not__UNIV__eq__Ici,axiom,
! [A: $tType] :
( no_bot(A)
=> ! [L4: A] : ( top_top(set(A)) != aa(A,set(A),set_ord_atLeast(A),L4) ) ) ).
% not_UNIV_eq_Ici
tff(fact_7937_not__Iic__eq__Ici,axiom,
! [A: $tType] :
( no_top(A)
=> ! [H: A,L4: A] : ( aa(A,set(A),set_ord_atMost(A),H) != aa(A,set(A),set_ord_atLeast(A),L4) ) ) ).
% not_Iic_eq_Ici
tff(fact_7938_not__UNIV__le__Ici,axiom,
! [A: $tType] :
( no_bot(A)
=> ! [L: A] : ~ pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),top_top(set(A))),aa(A,set(A),set_ord_atLeast(A),L))) ) ).
% not_UNIV_le_Ici
tff(fact_7939_not__Ici__le__Iic,axiom,
! [A: $tType] :
( no_top(A)
=> ! [L: A,H2: A] : ~ pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(A,set(A),set_ord_atLeast(A),L)),aa(A,set(A),set_ord_atMost(A),H2))) ) ).
% not_Ici_le_Iic
tff(fact_7940_not__Iic__le__Ici,axiom,
! [A: $tType] :
( no_bot(A)
=> ! [H: A,L4: A] : ~ pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(A,set(A),set_ord_atMost(A),H)),aa(A,set(A),set_ord_atLeast(A),L4))) ) ).
% not_Iic_le_Ici
tff(fact_7941_atLeast__def,axiom,
! [A: $tType] :
( ord(A)
=> ! [L: A] : ( aa(A,set(A),set_ord_atLeast(A),L) = aa(fun(A,bool),set(A),collect(A),aa(A,fun(A,bool),ord_less_eq(A),L)) ) ) ).
% atLeast_def
tff(fact_7942_infinite__Ici,axiom,
! [A: $tType] :
( ( linorder(A)
& no_top(A) )
=> ! [A2: A] : ~ finite_finite(A,aa(A,set(A),set_ord_atLeast(A),A2)) ) ).
% infinite_Ici
tff(fact_7943_ivl__disj__int__one_I8_J,axiom,
! [A: $tType] :
( order(A)
=> ! [L: A,U: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),set_or7035219750837199246ssThan(A,L,U)),aa(A,set(A),set_ord_atLeast(A),U)) = bot_bot(set(A)) ) ) ).
% ivl_disj_int_one(8)
tff(fact_7944_atLeastLessThan__def,axiom,
! [A: $tType] :
( ord(A)
=> ! [L: A,U: A] : ( set_or7035219750837199246ssThan(A,L,U) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(A,set(A),set_ord_atLeast(A),L)),aa(A,set(A),set_ord_lessThan(A),U)) ) ) ).
% atLeastLessThan_def
tff(fact_7945_atLeastAtMost__def,axiom,
! [A: $tType] :
( ord(A)
=> ! [L: A,U: A] : ( set_or1337092689740270186AtMost(A,L,U) = aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(A,set(A),set_ord_atLeast(A),L)),aa(A,set(A),set_ord_atMost(A),U)) ) ) ).
% atLeastAtMost_def
tff(fact_7946_ivl__disj__int__one_I6_J,axiom,
! [A: $tType] :
( order(A)
=> ! [L: A,U: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),set_or5935395276787703475ssThan(A,L,U)),aa(A,set(A),set_ord_atLeast(A),U)) = bot_bot(set(A)) ) ) ).
% ivl_disj_int_one(6)
tff(fact_7947_INT__greaterThan__UNIV,axiom,
complete_Inf_Inf(set(nat),aa(set(nat),set(set(nat)),image(nat,set(nat),set_ord_greaterThan(nat)),top_top(set(nat)))) = bot_bot(set(nat)) ).
% INT_greaterThan_UNIV
tff(fact_7948_greaterThan__0,axiom,
aa(nat,set(nat),set_ord_greaterThan(nat),zero_zero(nat)) = aa(set(nat),set(nat),image(nat,nat,suc),top_top(set(nat))) ).
% greaterThan_0
tff(fact_7949_tendsto__at__iff__tendsto__nhds__within,axiom,
! [A: $tType,B: $tType] :
( ( topolo4958980785337419405_space(B)
& topolo4958980785337419405_space(A) )
=> ! [F2: fun(B,A),X2: B,Y: A,S2: set(B)] :
( ( aa(B,A,F2,X2) = Y )
=> ( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,Y),topolo174197925503356063within(B,X2,S2))
<=> filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,Y),aa(filter(B),filter(B),aa(filter(B),fun(filter(B),filter(B)),inf_inf(filter(B)),topolo7230453075368039082e_nhds(B,X2)),principal(B,S2))) ) ) ) ).
% tendsto_at_iff_tendsto_nhds_within
tff(fact_7950_atMost__Int__atLeast,axiom,
! [A: $tType] :
( order(A)
=> ! [N: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(A,set(A),set_ord_atMost(A),N)),aa(A,set(A),set_ord_atLeast(A),N)) = aa(set(A),set(A),insert(A,N),bot_bot(set(A))) ) ) ).
% atMost_Int_atLeast
tff(fact_7951_ivl__disj__un__one_I7_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A,U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),L),U))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),set_or1337092689740270186AtMost(A,L,U)),aa(A,set(A),set_ord_greaterThan(A),U)) = aa(A,set(A),set_ord_atLeast(A),L) ) ) ) ).
% ivl_disj_un_one(7)
tff(fact_7952_ivl__disj__un__singleton_I1_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A] : ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),aa(set(A),set(A),insert(A,L),bot_bot(set(A)))),aa(A,set(A),set_ord_greaterThan(A),L)) = aa(A,set(A),set_ord_atLeast(A),L) ) ) ).
% ivl_disj_un_singleton(1)
tff(fact_7953_ivl__disj__un__one_I6_J,axiom,
! [A: $tType] :
( linorder(A)
=> ! [L: A,U: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),L),U))
=> ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),set_or5935395276787703475ssThan(A,L,U)),aa(A,set(A),set_ord_atLeast(A),U)) = aa(A,set(A),set_ord_greaterThan(A),L) ) ) ) ).
% ivl_disj_un_one(6)
tff(fact_7954_greaterThan__Suc,axiom,
! [K: nat] : ( aa(nat,set(nat),set_ord_greaterThan(nat),aa(nat,nat,suc,K)) = aa(set(nat),set(nat),aa(set(nat),fun(set(nat),set(nat)),minus_minus(set(nat)),aa(nat,set(nat),set_ord_greaterThan(nat),K)),aa(set(nat),set(nat),insert(nat,aa(nat,nat,suc,K)),bot_bot(set(nat)))) ) ).
% greaterThan_Suc
tff(fact_7955_UN__atLeast__UNIV,axiom,
complete_Sup_Sup(set(nat),aa(set(nat),set(set(nat)),image(nat,set(nat),set_ord_atLeast(nat)),top_top(set(nat)))) = top_top(set(nat)) ).
% UN_atLeast_UNIV
tff(fact_7956_atLeast__Suc,axiom,
! [K: nat] : ( aa(nat,set(nat),set_ord_atLeast(nat),aa(nat,nat,suc,K)) = aa(set(nat),set(nat),aa(set(nat),fun(set(nat),set(nat)),minus_minus(set(nat)),aa(nat,set(nat),set_ord_atLeast(nat),K)),aa(set(nat),set(nat),insert(nat,K),bot_bot(set(nat)))) ) ).
% atLeast_Suc
tff(fact_7957_filterlim__base__iff,axiom,
! [A: $tType,B: $tType,C: $tType,D: $tType,I5: set(A),F4: fun(A,set(B)),F2: fun(B,C),G7: fun(D,set(C)),J4: set(D)] :
( ( I5 != bot_bot(set(A)) )
=> ( ! [I3: A] :
( pp(member(A,I3,I5))
=> ! [J2: A] :
( pp(member(A,J2,I5))
=> ( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),aa(A,set(B),F4,I3)),aa(A,set(B),F4,J2)))
| pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),aa(A,set(B),F4,J2)),aa(A,set(B),F4,I3))) ) ) )
=> ( filterlim(B,C,F2,complete_Inf_Inf(filter(C),aa(set(D),set(filter(C)),image(D,filter(C),aTP_Lamp_adz(fun(D,set(C)),fun(D,filter(C)),G7)),J4)),complete_Inf_Inf(filter(B),aa(set(A),set(filter(B)),image(A,filter(B),aTP_Lamp_aea(fun(A,set(B)),fun(A,filter(B)),F4)),I5)))
<=> ! [X4: D] :
( pp(member(D,X4,J4))
=> ? [Xa3: A] :
( pp(member(A,Xa3,I5))
& ! [Xb4: B] :
( pp(member(B,Xb4,aa(A,set(B),F4,Xa3)))
=> pp(member(C,aa(B,C,F2,Xb4),aa(D,set(C),G7,X4))) ) ) ) ) ) ) ).
% filterlim_base_iff
tff(fact_7958_at__within__def,axiom,
! [A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [A2: A,S2: set(A)] : ( topolo174197925503356063within(A,A2,S2) = aa(filter(A),filter(A),aa(filter(A),fun(filter(A),filter(A)),inf_inf(filter(A)),topolo7230453075368039082e_nhds(A,A2)),principal(A,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),S2),aa(set(A),set(A),insert(A,A2),bot_bot(set(A)))))) ) ) ).
% at_within_def
tff(fact_7959_nhds__metric,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X2: A] : ( topolo7230453075368039082e_nhds(A,X2) = complete_Inf_Inf(filter(A),aa(set(real),set(filter(A)),image(real,filter(A),aTP_Lamp_aec(A,fun(real,filter(A)),X2)),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real)))) ) ) ).
% nhds_metric
tff(fact_7960_at__left__eq,axiom,
! [A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [Y: A,X2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X2))
=> ( topolo174197925503356063within(A,X2,aa(A,set(A),set_ord_lessThan(A),X2)) = complete_Inf_Inf(filter(A),aa(set(A),set(filter(A)),image(A,filter(A),aTP_Lamp_aed(A,fun(A,filter(A)),X2)),aa(A,set(A),set_ord_lessThan(A),X2))) ) ) ) ).
% at_left_eq
tff(fact_7961_at__right__eq,axiom,
! [A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [X2: A,Y: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ( topolo174197925503356063within(A,X2,aa(A,set(A),set_ord_greaterThan(A),X2)) = complete_Inf_Inf(filter(A),aa(set(A),set(filter(A)),image(A,filter(A),aTP_Lamp_aee(A,fun(A,filter(A)),X2)),aa(A,set(A),set_ord_greaterThan(A),X2))) ) ) ) ).
% at_right_eq
tff(fact_7962_at__within__eq,axiom,
! [A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [X2: A,S2: set(A)] : ( topolo174197925503356063within(A,X2,S2) = complete_Inf_Inf(filter(A),aa(set(set(A)),set(filter(A)),image(set(A),filter(A),aa(set(A),fun(set(A),filter(A)),aTP_Lamp_aef(A,fun(set(A),fun(set(A),filter(A))),X2),S2)),aa(fun(set(A),bool),set(set(A)),collect(set(A)),aTP_Lamp_aeg(A,fun(set(A),bool),X2)))) ) ) ).
% at_within_eq
tff(fact_7963_filterlim__pow__at__bot__even,axiom,
! [N: nat,F2: fun(real,real),F4: filter(real)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( filterlim(real,real,F2,at_bot(real),F4)
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),N))
=> filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_adp(nat,fun(fun(real,real),fun(real,real)),N),F2),at_top(real),F4) ) ) ) ).
% filterlim_pow_at_bot_even
tff(fact_7964_filterlim__tan__at__left,axiom,
filterlim(real,real,tan(real),at_top(real),topolo174197925503356063within(real,aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))),aa(real,set(real),set_ord_lessThan(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))) ).
% filterlim_tan_at_left
tff(fact_7965_filterlim__at__top__add__at__top,axiom,
! [A: $tType,F2: fun(A,real),F4: filter(A),G: fun(A,real)] :
( filterlim(A,real,F2,at_top(real),F4)
=> ( filterlim(A,real,G,at_top(real),F4)
=> filterlim(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_aeh(fun(A,real),fun(fun(A,real),fun(A,real)),F2),G),at_top(real),F4) ) ) ).
% filterlim_at_top_add_at_top
tff(fact_7966_sqrt__at__top,axiom,
filterlim(real,real,sqrt,at_top(real),at_top(real)) ).
% sqrt_at_top
tff(fact_7967_filterlim__at__top__mult__at__top,axiom,
! [A: $tType,F2: fun(A,real),F4: filter(A),G: fun(A,real)] :
( filterlim(A,real,F2,at_top(real),F4)
=> ( filterlim(A,real,G,at_top(real),F4)
=> filterlim(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_adn(fun(A,real),fun(fun(A,real),fun(A,real)),F2),G),at_top(real),F4) ) ) ).
% filterlim_at_top_mult_at_top
tff(fact_7968_filterlim__tendsto__add__at__top,axiom,
! [A: $tType,F2: fun(A,real),C2: real,F4: filter(A),G: fun(A,real)] :
( filterlim(A,real,F2,topolo7230453075368039082e_nhds(real,C2),F4)
=> ( filterlim(A,real,G,at_top(real),F4)
=> filterlim(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_aeh(fun(A,real),fun(fun(A,real),fun(A,real)),F2),G),at_top(real),F4) ) ) ).
% filterlim_tendsto_add_at_top
tff(fact_7969_filterlim__real__sequentially,axiom,
filterlim(nat,real,semiring_1_of_nat(real),at_top(real),at_top(nat)) ).
% filterlim_real_sequentially
tff(fact_7970_filterlim__uminus__at__top,axiom,
! [A: $tType,F2: fun(A,real),F4: filter(A)] :
( filterlim(A,real,F2,at_top(real),F4)
<=> filterlim(A,real,aTP_Lamp_aei(fun(A,real),fun(A,real),F2),at_bot(real),F4) ) ).
% filterlim_uminus_at_top
tff(fact_7971_filterlim__uminus__at__bot,axiom,
! [A: $tType,F2: fun(A,real),F4: filter(A)] :
( filterlim(A,real,F2,at_bot(real),F4)
<=> filterlim(A,real,aTP_Lamp_aei(fun(A,real),fun(A,real),F2),at_top(real),F4) ) ).
% filterlim_uminus_at_bot
tff(fact_7972_filterlim__at__top__mirror,axiom,
! [A: $tType,F2: fun(real,A),F4: filter(A)] :
( filterlim(real,A,F2,F4,at_top(real))
<=> filterlim(real,A,aTP_Lamp_adt(fun(real,A),fun(real,A),F2),F4,at_bot(real)) ) ).
% filterlim_at_top_mirror
tff(fact_7973_filterlim__at__bot__mirror,axiom,
! [A: $tType,F2: fun(real,A),F4: filter(A)] :
( filterlim(real,A,F2,F4,at_bot(real))
<=> filterlim(real,A,aTP_Lamp_adt(fun(real,A),fun(real,A),F2),F4,at_top(real)) ) ).
% filterlim_at_bot_mirror
tff(fact_7974_filterlim__uminus__at__top__at__bot,axiom,
filterlim(real,real,uminus_uminus(real),at_top(real),at_bot(real)) ).
% filterlim_uminus_at_top_at_bot
tff(fact_7975_filterlim__uminus__at__bot__at__top,axiom,
filterlim(real,real,uminus_uminus(real),at_bot(real),at_top(real)) ).
% filterlim_uminus_at_bot_at_top
tff(fact_7976_filterlim__pow__at__top,axiom,
! [A: $tType,N: nat,F2: fun(A,real),F4: filter(A)] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( filterlim(A,real,F2,at_top(real),F4)
=> filterlim(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_yd(nat,fun(fun(A,real),fun(A,real)),N),F2),at_top(real),F4) ) ) ).
% filterlim_pow_at_top
tff(fact_7977_tanh__real__at__top,axiom,
filterlim(real,real,tanh(real),topolo7230453075368039082e_nhds(real,one_one(real)),at_top(real)) ).
% tanh_real_at_top
tff(fact_7978_real__tendsto__divide__at__top,axiom,
! [A: $tType,F2: fun(A,real),C2: real,F4: filter(A),G: fun(A,real)] :
( filterlim(A,real,F2,topolo7230453075368039082e_nhds(real,C2),F4)
=> ( filterlim(A,real,G,at_top(real),F4)
=> filterlim(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_aej(fun(A,real),fun(fun(A,real),fun(A,real)),F2),G),topolo7230453075368039082e_nhds(real,zero_zero(real)),F4) ) ) ).
% real_tendsto_divide_at_top
tff(fact_7979_tendsto__inverse__0__at__top,axiom,
! [A: $tType,F2: fun(A,real),F4: filter(A)] :
( filterlim(A,real,F2,at_top(real),F4)
=> filterlim(A,real,aTP_Lamp_aek(fun(A,real),fun(A,real),F2),topolo7230453075368039082e_nhds(real,zero_zero(real)),F4) ) ).
% tendsto_inverse_0_at_top
tff(fact_7980_filterlim__sequentially__iff__filterlim__real,axiom,
! [A: $tType,F2: fun(A,nat),F4: filter(A)] :
( filterlim(A,nat,F2,at_top(nat),F4)
<=> filterlim(A,real,aTP_Lamp_ar(fun(A,nat),fun(A,real),F2),at_top(real),F4) ) ).
% filterlim_sequentially_iff_filterlim_real
tff(fact_7981_filterlim__at__top__mult__tendsto__pos,axiom,
! [A: $tType,F2: fun(A,real),C2: real,F4: filter(A),G: fun(A,real)] :
( filterlim(A,real,F2,topolo7230453075368039082e_nhds(real,C2),F4)
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),C2))
=> ( filterlim(A,real,G,at_top(real),F4)
=> filterlim(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_ael(fun(A,real),fun(fun(A,real),fun(A,real)),F2),G),at_top(real),F4) ) ) ) ).
% filterlim_at_top_mult_tendsto_pos
tff(fact_7982_filterlim__tendsto__pos__mult__at__top,axiom,
! [A: $tType,F2: fun(A,real),C2: real,F4: filter(A),G: fun(A,real)] :
( filterlim(A,real,F2,topolo7230453075368039082e_nhds(real,C2),F4)
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),C2))
=> ( filterlim(A,real,G,at_top(real),F4)
=> filterlim(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_adn(fun(A,real),fun(fun(A,real),fun(A,real)),F2),G),at_top(real),F4) ) ) ) ).
% filterlim_tendsto_pos_mult_at_top
tff(fact_7983_tendsto__neg__powr,axiom,
! [A: $tType,S2: real,F2: fun(A,real),F4: filter(A)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),S2),zero_zero(real)))
=> ( filterlim(A,real,F2,at_top(real),F4)
=> filterlim(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_aem(real,fun(fun(A,real),fun(A,real)),S2),F2),topolo7230453075368039082e_nhds(real,zero_zero(real)),F4) ) ) ).
% tendsto_neg_powr
tff(fact_7984_ln__x__over__x__tendsto__0,axiom,
filterlim(real,real,aTP_Lamp_aen(real,real),topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(real)) ).
% ln_x_over_x_tendsto_0
tff(fact_7985_artanh__real__at__left__1,axiom,
filterlim(real,real,artanh(real),at_top(real),topolo174197925503356063within(real,one_one(real),aa(real,set(real),set_ord_lessThan(real),one_one(real)))) ).
% artanh_real_at_left_1
tff(fact_7986_filterlim__at__right__to__top,axiom,
! [A: $tType,F2: fun(real,A),F4: filter(A)] :
( filterlim(real,A,F2,F4,topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real))))
<=> filterlim(real,A,aTP_Lamp_aeo(fun(real,A),fun(real,A),F2),F4,at_top(real)) ) ).
% filterlim_at_right_to_top
tff(fact_7987_filterlim__at__top__to__right,axiom,
! [A: $tType,F2: fun(real,A),F4: filter(A)] :
( filterlim(real,A,F2,F4,at_top(real))
<=> filterlim(real,A,aTP_Lamp_aeo(fun(real,A),fun(real,A),F2),F4,topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real)))) ) ).
% filterlim_at_top_to_right
tff(fact_7988_filterlim__inverse__at__right__top,axiom,
filterlim(real,real,inverse_inverse(real),topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real))),at_top(real)) ).
% filterlim_inverse_at_right_top
tff(fact_7989_filterlim__inverse__at__top__right,axiom,
filterlim(real,real,inverse_inverse(real),at_top(real),topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real)))) ).
% filterlim_inverse_at_top_right
tff(fact_7990_filterlim__tendsto__neg__mult__at__bot,axiom,
! [A: $tType,F2: fun(A,real),C2: real,F4: filter(A),G: fun(A,real)] :
( filterlim(A,real,F2,topolo7230453075368039082e_nhds(real,C2),F4)
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),C2),zero_zero(real)))
=> ( filterlim(A,real,G,at_top(real),F4)
=> filterlim(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_adn(fun(A,real),fun(fun(A,real),fun(A,real)),F2),G),at_bot(real),F4) ) ) ) ).
% filterlim_tendsto_neg_mult_at_bot
tff(fact_7991_tendsto__power__div__exp__0,axiom,
! [K: nat] : filterlim(real,real,aTP_Lamp_aep(nat,fun(real,real),K),topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(real)) ).
% tendsto_power_div_exp_0
tff(fact_7992_tendsto__exp__limit__at__top,axiom,
! [X2: real] : filterlim(real,real,aTP_Lamp_aeq(real,fun(real,real),X2),topolo7230453075368039082e_nhds(real,aa(real,real,exp(real),X2)),at_top(real)) ).
% tendsto_exp_limit_at_top
tff(fact_7993_DERIV__neg__imp__decreasing__at__top,axiom,
! [B2: real,F2: fun(real,real),Flim: real] :
( ! [X3: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),B2),X3))
=> ? [Y4: real] :
( has_field_derivative(real,F2,Y4,topolo174197925503356063within(real,X3,top_top(set(real))))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Y4),zero_zero(real))) ) )
=> ( filterlim(real,real,F2,topolo7230453075368039082e_nhds(real,Flim),at_top(real))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Flim),aa(real,real,F2,B2))) ) ) ).
% DERIV_neg_imp_decreasing_at_top
tff(fact_7994_tendsto__arctan__at__top,axiom,
filterlim(real,real,arctan,topolo7230453075368039082e_nhds(real,aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))),at_top(real)) ).
% tendsto_arctan_at_top
tff(fact_7995_Gcd__eq__Max,axiom,
! [M7: set(nat)] :
( finite_finite(nat,M7)
=> ( ( M7 != bot_bot(set(nat)) )
=> ( ~ pp(member(nat,zero_zero(nat),M7))
=> ( gcd_Gcd(nat,M7) = lattic643756798349783984er_Max(nat,complete_Inf_Inf(set(nat),aa(set(nat),set(set(nat)),image(nat,set(nat),aTP_Lamp_aer(nat,set(nat))),M7))) ) ) ) ) ).
% Gcd_eq_Max
tff(fact_7996_at__infinity__def,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ( at_infinity(A) = complete_Inf_Inf(filter(A),aa(set(real),set(filter(A)),image(real,filter(A),aTP_Lamp_aet(real,filter(A))),top_top(set(real)))) ) ) ).
% at_infinity_def
tff(fact_7997_Max__singleton,axiom,
! [A: $tType] :
( linorder(A)
=> ! [X2: A] : ( lattic643756798349783984er_Max(A,aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))) = X2 ) ) ).
% Max_singleton
tff(fact_7998_Max__divisors__self__nat,axiom,
! [N: nat] :
( ( N != zero_zero(nat) )
=> ( lattic643756798349783984er_Max(nat,aa(fun(nat,bool),set(nat),collect(nat),aTP_Lamp_lr(nat,fun(nat,bool),N))) = N ) ) ).
% Max_divisors_self_nat
tff(fact_7999_Max_Obounded__iff,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),X2: A] :
( finite_finite(A,A3)
=> ( ( A3 != bot_bot(set(A)) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),lattic643756798349783984er_Max(A,A3)),X2))
<=> ! [X4: A] :
( pp(member(A,X4,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X4),X2)) ) ) ) ) ) ).
% Max.bounded_iff
tff(fact_8000_Max__less__iff,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),X2: A] :
( finite_finite(A,A3)
=> ( ( A3 != bot_bot(set(A)) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),lattic643756798349783984er_Max(A,A3)),X2))
<=> ! [X4: A] :
( pp(member(A,X4,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X4),X2)) ) ) ) ) ) ).
% Max_less_iff
tff(fact_8001_Max__const,axiom,
! [B: $tType,A: $tType] :
( linorder(A)
=> ! [A3: set(B),C2: A] :
( finite_finite(B,A3)
=> ( ( A3 != bot_bot(set(B)) )
=> ( lattic643756798349783984er_Max(A,aa(set(B),set(A),image(B,A,aTP_Lamp_aeu(A,fun(B,A),C2)),A3)) = C2 ) ) ) ) ).
% Max_const
tff(fact_8002_Max__insert,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),X2: A] :
( finite_finite(A,A3)
=> ( ( A3 != bot_bot(set(A)) )
=> ( lattic643756798349783984er_Max(A,aa(set(A),set(A),insert(A,X2),A3)) = aa(A,A,aa(A,fun(A,A),ord_max(A),X2),lattic643756798349783984er_Max(A,A3)) ) ) ) ) ).
% Max_insert
tff(fact_8003_at__top__le__at__infinity,axiom,
pp(aa(filter(real),bool,aa(filter(real),fun(filter(real),bool),ord_less_eq(filter(real)),at_top(real)),at_infinity(real))) ).
% at_top_le_at_infinity
tff(fact_8004_Max__insert2,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),A2: A] :
( finite_finite(A,A3)
=> ( ! [B3: A] :
( pp(member(A,B3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),B3),A2)) )
=> ( lattic643756798349783984er_Max(A,aa(set(A),set(A),insert(A,A2),A3)) = A2 ) ) ) ) ).
% Max_insert2
tff(fact_8005_Max__Sup,axiom,
! [A: $tType] :
( comple5582772986160207858norder(A)
=> ! [A3: set(A)] :
( finite_finite(A,A3)
=> ( ( A3 != bot_bot(set(A)) )
=> ( lattic643756798349783984er_Max(A,A3) = complete_Sup_Sup(A,A3) ) ) ) ) ).
% Max_Sup
tff(fact_8006_Max__ge,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),X2: A] :
( finite_finite(A,A3)
=> ( pp(member(A,X2,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),lattic643756798349783984er_Max(A,A3))) ) ) ) ).
% Max_ge
tff(fact_8007_Max__eqI,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),X2: A] :
( finite_finite(A,A3)
=> ( ! [Y3: A] :
( pp(member(A,Y3,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y3),X2)) )
=> ( pp(member(A,X2,A3))
=> ( lattic643756798349783984er_Max(A,A3) = X2 ) ) ) ) ) ).
% Max_eqI
tff(fact_8008_Max__eq__if,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),B4: set(A)] :
( finite_finite(A,A3)
=> ( finite_finite(A,B4)
=> ( ! [X3: A] :
( pp(member(A,X3,A3))
=> ? [Xa2: A] :
( pp(member(A,Xa2,B4))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),Xa2)) ) )
=> ( ! [X3: A] :
( pp(member(A,X3,B4))
=> ? [Xa2: A] :
( pp(member(A,Xa2,A3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),Xa2)) ) )
=> ( lattic643756798349783984er_Max(A,A3) = lattic643756798349783984er_Max(A,B4) ) ) ) ) ) ) ).
% Max_eq_if
tff(fact_8009_Max_OcoboundedI,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),A2: A] :
( finite_finite(A,A3)
=> ( pp(member(A,A2,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),lattic643756798349783984er_Max(A,A3))) ) ) ) ).
% Max.coboundedI
tff(fact_8010_Max_Oin__idem,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),X2: A] :
( finite_finite(A,A3)
=> ( pp(member(A,X2,A3))
=> ( aa(A,A,aa(A,fun(A,A),ord_max(A),X2),lattic643756798349783984er_Max(A,A3)) = lattic643756798349783984er_Max(A,A3) ) ) ) ) ).
% Max.in_idem
tff(fact_8011_Max__in,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A)] :
( finite_finite(A,A3)
=> ( ( A3 != bot_bot(set(A)) )
=> pp(member(A,lattic643756798349783984er_Max(A,A3),A3)) ) ) ) ).
% Max_in
tff(fact_8012_Max__gr__iff,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),X2: A] :
( finite_finite(A,A3)
=> ( ( A3 != bot_bot(set(A)) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),lattic643756798349783984er_Max(A,A3)))
<=> ? [X4: A] :
( pp(member(A,X4,A3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),X4)) ) ) ) ) ) ).
% Max_gr_iff
tff(fact_8013_Max__eq__iff,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),M: A] :
( finite_finite(A,A3)
=> ( ( A3 != bot_bot(set(A)) )
=> ( ( lattic643756798349783984er_Max(A,A3) = M )
<=> ( pp(member(A,M,A3))
& ! [X4: A] :
( pp(member(A,X4,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X4),M)) ) ) ) ) ) ) ).
% Max_eq_iff
tff(fact_8014_Max__ge__iff,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),X2: A] :
( finite_finite(A,A3)
=> ( ( A3 != bot_bot(set(A)) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),lattic643756798349783984er_Max(A,A3)))
<=> ? [X4: A] :
( pp(member(A,X4,A3))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),X4)) ) ) ) ) ) ).
% Max_ge_iff
tff(fact_8015_eq__Max__iff,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),M: A] :
( finite_finite(A,A3)
=> ( ( A3 != bot_bot(set(A)) )
=> ( ( M = lattic643756798349783984er_Max(A,A3) )
<=> ( pp(member(A,M,A3))
& ! [X4: A] :
( pp(member(A,X4,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X4),M)) ) ) ) ) ) ) ).
% eq_Max_iff
tff(fact_8016_Max_OboundedE,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),X2: A] :
( finite_finite(A,A3)
=> ( ( A3 != bot_bot(set(A)) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),lattic643756798349783984er_Max(A,A3)),X2))
=> ! [A14: A] :
( pp(member(A,A14,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A14),X2)) ) ) ) ) ) ).
% Max.boundedE
tff(fact_8017_Max_OboundedI,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),X2: A] :
( finite_finite(A,A3)
=> ( ( A3 != bot_bot(set(A)) )
=> ( ! [A4: A] :
( pp(member(A,A4,A3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A4),X2)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),lattic643756798349783984er_Max(A,A3)),X2)) ) ) ) ) ).
% Max.boundedI
tff(fact_8018_at__bot__le__at__infinity,axiom,
pp(aa(filter(real),bool,aa(filter(real),fun(filter(real),bool),ord_less_eq(filter(real)),at_bot(real)),at_infinity(real))) ).
% at_bot_le_at_infinity
tff(fact_8019_filterlim__real__at__infinity__sequentially,axiom,
filterlim(nat,real,semiring_1_of_nat(real),at_infinity(real),at_top(nat)) ).
% filterlim_real_at_infinity_sequentially
tff(fact_8020_tendsto__of__nat,axiom,
! [A: $tType] :
( real_V2822296259951069270ebra_1(A)
=> filterlim(nat,A,semiring_1_of_nat(A),at_infinity(A),at_top(nat)) ) ).
% tendsto_of_nat
tff(fact_8021_Max_Osubset__imp,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),B4: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),A3),B4))
=> ( ( A3 != bot_bot(set(A)) )
=> ( finite_finite(A,B4)
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),lattic643756798349783984er_Max(A,A3)),lattic643756798349783984er_Max(A,B4))) ) ) ) ) ).
% Max.subset_imp
tff(fact_8022_Max__mono,axiom,
! [A: $tType] :
( linorder(A)
=> ! [M7: set(A),N2: set(A)] :
( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),M7),N2))
=> ( ( M7 != bot_bot(set(A)) )
=> ( finite_finite(A,N2)
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),lattic643756798349783984er_Max(A,M7)),lattic643756798349783984er_Max(A,N2))) ) ) ) ) ).
% Max_mono
tff(fact_8023_hom__Max__commute,axiom,
! [A: $tType] :
( linorder(A)
=> ! [H: fun(A,A),N2: set(A)] :
( ! [X3: A,Y3: A] : ( aa(A,A,H,aa(A,A,aa(A,fun(A,A),ord_max(A),X3),Y3)) = aa(A,A,aa(A,fun(A,A),ord_max(A),aa(A,A,H,X3)),aa(A,A,H,Y3)) )
=> ( finite_finite(A,N2)
=> ( ( N2 != bot_bot(set(A)) )
=> ( aa(A,A,H,lattic643756798349783984er_Max(A,N2)) = lattic643756798349783984er_Max(A,aa(set(A),set(A),image(A,A,H),N2)) ) ) ) ) ) ).
% hom_Max_commute
tff(fact_8024_Max_Osubset,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),B4: set(A)] :
( finite_finite(A,A3)
=> ( ( B4 != bot_bot(set(A)) )
=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),B4),A3))
=> ( aa(A,A,aa(A,fun(A,A),ord_max(A),lattic643756798349783984er_Max(A,B4)),lattic643756798349783984er_Max(A,A3)) = lattic643756798349783984er_Max(A,A3) ) ) ) ) ) ).
% Max.subset
tff(fact_8025_Max_Oclosed,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A)] :
( finite_finite(A,A3)
=> ( ( A3 != bot_bot(set(A)) )
=> ( ! [X3: A,Y3: A] : pp(member(A,aa(A,A,aa(A,fun(A,A),ord_max(A),X3),Y3),aa(set(A),set(A),insert(A,X3),aa(set(A),set(A),insert(A,Y3),bot_bot(set(A))))))
=> pp(member(A,lattic643756798349783984er_Max(A,A3),A3)) ) ) ) ) ).
% Max.closed
tff(fact_8026_Max_Oinsert__not__elem,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),X2: A] :
( finite_finite(A,A3)
=> ( ~ pp(member(A,X2,A3))
=> ( ( A3 != bot_bot(set(A)) )
=> ( lattic643756798349783984er_Max(A,aa(set(A),set(A),insert(A,X2),A3)) = aa(A,A,aa(A,fun(A,A),ord_max(A),X2),lattic643756798349783984er_Max(A,A3)) ) ) ) ) ) ).
% Max.insert_not_elem
tff(fact_8027_Max_Ounion,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),B4: set(A)] :
( finite_finite(A,A3)
=> ( ( A3 != bot_bot(set(A)) )
=> ( finite_finite(A,B4)
=> ( ( B4 != bot_bot(set(A)) )
=> ( lattic643756798349783984er_Max(A,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),sup_sup(set(A)),A3),B4)) = aa(A,A,aa(A,fun(A,A),ord_max(A),lattic643756798349783984er_Max(A,A3)),lattic643756798349783984er_Max(A,B4)) ) ) ) ) ) ) ).
% Max.union
tff(fact_8028_tendsto__add__filterlim__at__infinity,axiom,
! [B: $tType,A: $tType] :
( real_V822414075346904944vector(B)
=> ! [F2: fun(A,B),C2: B,F4: filter(A),G: fun(A,B)] :
( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,C2),F4)
=> ( filterlim(A,B,G,at_infinity(B),F4)
=> filterlim(A,B,aa(fun(A,B),fun(A,B),aTP_Lamp_aev(fun(A,B),fun(fun(A,B),fun(A,B)),F2),G),at_infinity(B),F4) ) ) ) ).
% tendsto_add_filterlim_at_infinity
tff(fact_8029_tendsto__add__filterlim__at__infinity_H,axiom,
! [B: $tType,A: $tType] :
( real_V822414075346904944vector(B)
=> ! [F2: fun(A,B),F4: filter(A),G: fun(A,B),C2: B] :
( filterlim(A,B,F2,at_infinity(B),F4)
=> ( filterlim(A,B,G,topolo7230453075368039082e_nhds(B,C2),F4)
=> filterlim(A,B,aa(fun(A,B),fun(A,B),aTP_Lamp_aev(fun(A,B),fun(fun(A,B),fun(A,B)),F2),G),at_infinity(B),F4) ) ) ) ).
% tendsto_add_filterlim_at_infinity'
tff(fact_8030_card__le__Suc__Max,axiom,
! [S: set(nat)] :
( finite_finite(nat,S)
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(nat),nat,finite_card(nat),S)),aa(nat,nat,suc,lattic643756798349783984er_Max(nat,S)))) ) ).
% card_le_Suc_Max
tff(fact_8031_Sup__nat__def,axiom,
! [X6: set(nat)] :
( ( ( X6 = bot_bot(set(nat)) )
=> ( complete_Sup_Sup(nat,X6) = zero_zero(nat) ) )
& ( ( X6 != bot_bot(set(nat)) )
=> ( complete_Sup_Sup(nat,X6) = lattic643756798349783984er_Max(nat,X6) ) ) ) ).
% Sup_nat_def
tff(fact_8032_divide__nat__def,axiom,
! [N: nat,M: nat] :
( ( ( N = zero_zero(nat) )
=> ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N) = zero_zero(nat) ) )
& ( ( N != zero_zero(nat) )
=> ( aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),M),N) = lattic643756798349783984er_Max(nat,aa(fun(nat,bool),set(nat),collect(nat),aa(nat,fun(nat,bool),aTP_Lamp_aew(nat,fun(nat,fun(nat,bool)),N),M))) ) ) ) ).
% divide_nat_def
tff(fact_8033_Max__add__commute,axiom,
! [B: $tType,A: $tType] :
( linord4140545234300271783up_add(A)
=> ! [S: set(B),F2: fun(B,A),K: A] :
( finite_finite(B,S)
=> ( ( S != bot_bot(set(B)) )
=> ( lattic643756798349783984er_Max(A,aa(set(B),set(A),image(B,A,aa(A,fun(B,A),aTP_Lamp_aex(fun(B,A),fun(A,fun(B,A)),F2),K)),S)) = aa(A,A,aa(A,fun(A,A),plus_plus(A),lattic643756798349783984er_Max(A,aa(set(B),set(A),image(B,A,F2),S))),K) ) ) ) ) ).
% Max_add_commute
tff(fact_8034_gcd__is__Max__divisors__nat,axiom,
! [N: nat,M: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> ( aa(nat,nat,aa(nat,fun(nat,nat),gcd_gcd(nat),M),N) = lattic643756798349783984er_Max(nat,aa(fun(nat,bool),set(nat),collect(nat),aa(nat,fun(nat,bool),aTP_Lamp_aey(nat,fun(nat,fun(nat,bool)),N),M))) ) ) ).
% gcd_is_Max_divisors_nat
tff(fact_8035_tendsto__inverse__0,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> filterlim(A,A,inverse_inverse(A),topolo7230453075368039082e_nhds(A,zero_zero(A)),at_infinity(A)) ) ).
% tendsto_inverse_0
tff(fact_8036_Max_Oinsert__remove,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),X2: A] :
( finite_finite(A,A3)
=> ( ( ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))) = bot_bot(set(A)) )
=> ( lattic643756798349783984er_Max(A,aa(set(A),set(A),insert(A,X2),A3)) = X2 ) )
& ( ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))) != bot_bot(set(A)) )
=> ( lattic643756798349783984er_Max(A,aa(set(A),set(A),insert(A,X2),A3)) = aa(A,A,aa(A,fun(A,A),ord_max(A),X2),lattic643756798349783984er_Max(A,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))))) ) ) ) ) ) ).
% Max.insert_remove
tff(fact_8037_Max_Oremove,axiom,
! [A: $tType] :
( linorder(A)
=> ! [A3: set(A),X2: A] :
( finite_finite(A,A3)
=> ( pp(member(A,X2,A3))
=> ( ( ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))) = bot_bot(set(A)) )
=> ( lattic643756798349783984er_Max(A,A3) = X2 ) )
& ( ( aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))) != bot_bot(set(A)) )
=> ( lattic643756798349783984er_Max(A,A3) = aa(A,A,aa(A,fun(A,A),ord_max(A),X2),lattic643756798349783984er_Max(A,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),A3),aa(set(A),set(A),insert(A,X2),bot_bot(set(A)))))) ) ) ) ) ) ) ).
% Max.remove
tff(fact_8038_tendsto__mult__filterlim__at__infinity,axiom,
! [A: $tType,B: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(B,A),C2: A,F4: filter(B),G: fun(B,A)] :
( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,C2),F4)
=> ( ( C2 != zero_zero(A) )
=> ( filterlim(B,A,G,at_infinity(A),F4)
=> filterlim(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_aez(fun(B,A),fun(fun(B,A),fun(B,A)),F2),G),at_infinity(A),F4) ) ) ) ) ).
% tendsto_mult_filterlim_at_infinity
tff(fact_8039_tendsto__divide__0,axiom,
! [A: $tType,C: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [F2: fun(C,A),C2: A,F4: filter(C),G: fun(C,A)] :
( filterlim(C,A,F2,topolo7230453075368039082e_nhds(A,C2),F4)
=> ( filterlim(C,A,G,at_infinity(A),F4)
=> filterlim(C,A,aa(fun(C,A),fun(C,A),aTP_Lamp_afa(fun(C,A),fun(fun(C,A),fun(C,A)),F2),G),topolo7230453075368039082e_nhds(A,zero_zero(A)),F4) ) ) ) ).
% tendsto_divide_0
tff(fact_8040_filterlim__power__at__infinity,axiom,
! [B: $tType,A: $tType] :
( real_V8999393235501362500lgebra(B)
=> ! [F2: fun(A,B),F4: filter(A),N: nat] :
( filterlim(A,B,F2,at_infinity(B),F4)
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),zero_zero(nat)),N))
=> filterlim(A,B,aa(nat,fun(A,B),aTP_Lamp_afb(fun(A,B),fun(nat,fun(A,B)),F2),N),at_infinity(B),F4) ) ) ) ).
% filterlim_power_at_infinity
tff(fact_8041_filterlim__inverse__at__infinity,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> filterlim(A,A,inverse_inverse(A),at_infinity(A),topolo174197925503356063within(A,zero_zero(A),top_top(set(A)))) ) ).
% filterlim_inverse_at_infinity
tff(fact_8042_sum__le__card__Max,axiom,
! [A: $tType,A3: set(A),F2: fun(A,nat)] :
( finite_finite(A,A3)
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(set(A),nat,aa(fun(A,nat),fun(set(A),nat),groups7311177749621191930dd_sum(A,nat),F2),A3)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(set(A),nat,finite_card(A),A3)),lattic643756798349783984er_Max(nat,aa(set(A),set(nat),image(A,nat,F2),A3))))) ) ).
% sum_le_card_Max
tff(fact_8043_lim__infinity__imp__sequentially,axiom,
! [A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [F2: fun(real,A),L: A] :
( filterlim(real,A,F2,topolo7230453075368039082e_nhds(A,L),at_infinity(real))
=> filterlim(nat,A,aTP_Lamp_afc(fun(real,A),fun(nat,A),F2),topolo7230453075368039082e_nhds(A,L),at_top(nat)) ) ) ).
% lim_infinity_imp_sequentially
tff(fact_8044_filterlim__inverse__at__iff,axiom,
! [B: $tType,A: $tType] :
( real_V8999393235501362500lgebra(B)
=> ! [G: fun(A,B),F4: filter(A)] :
( filterlim(A,B,aTP_Lamp_afd(fun(A,B),fun(A,B),G),topolo174197925503356063within(B,zero_zero(B),top_top(set(B))),F4)
<=> filterlim(A,B,G,at_infinity(B),F4) ) ) ).
% filterlim_inverse_at_iff
tff(fact_8045_filterlim__divide__at__infinity,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),C2: A,F4: filter(A),G: fun(A,A)] :
( filterlim(A,A,F2,topolo7230453075368039082e_nhds(A,C2),F4)
=> ( filterlim(A,A,G,topolo174197925503356063within(A,zero_zero(A),top_top(set(A))),F4)
=> ( ( C2 != zero_zero(A) )
=> filterlim(A,A,aa(fun(A,A),fun(A,A),aTP_Lamp_uu(fun(A,A),fun(fun(A,A),fun(A,A)),F2),G),at_infinity(A),F4) ) ) ) ) ).
% filterlim_divide_at_infinity
tff(fact_8046_filterlim__realpow__sequentially__gt1,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [X2: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),one_one(real)),real_V7770717601297561774m_norm(A,X2)))
=> filterlim(nat,A,power_power(A,X2),at_infinity(A),at_top(nat)) ) ) ).
% filterlim_realpow_sequentially_gt1
tff(fact_8047_lim__at__infinity__0,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),L: A] :
( filterlim(A,A,F2,topolo7230453075368039082e_nhds(A,L),at_infinity(A))
<=> filterlim(A,A,aa(fun(A,A),fun(A,A),comp(A,A,A,F2),inverse_inverse(A)),topolo7230453075368039082e_nhds(A,L),topolo174197925503356063within(A,zero_zero(A),top_top(set(A)))) ) ) ).
% lim_at_infinity_0
tff(fact_8048_lim__zero__infinity,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),L: A] :
( filterlim(A,A,aTP_Lamp_afe(fun(A,A),fun(A,A),F2),topolo7230453075368039082e_nhds(A,L),topolo174197925503356063within(A,zero_zero(A),top_top(set(A))))
=> filterlim(A,A,F2,topolo7230453075368039082e_nhds(A,L),at_infinity(A)) ) ) ).
% lim_zero_infinity
tff(fact_8049_polyfun__extremal,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [C2: fun(nat,A),K: nat,N: nat,B4: real] :
( ( aa(nat,A,C2,K) != zero_zero(A) )
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),one_one(nat)),K))
=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),N))
=> eventually(A,aa(real,fun(A,bool),aa(nat,fun(real,fun(A,bool)),aTP_Lamp_aff(fun(nat,A),fun(nat,fun(real,fun(A,bool))),C2),N),B4),at_infinity(A)) ) ) ) ) ).
% polyfun_extremal
tff(fact_8050_lhopital__left__at__top,axiom,
! [G: fun(real,real),X2: real,G5: fun(real,real),F2: fun(real,real),F8: fun(real,real),Y: real] :
( filterlim(real,real,G,at_top(real),topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_lessThan(real),X2)))
=> ( eventually(real,aTP_Lamp_afg(fun(real,real),fun(real,bool),G5),topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_lessThan(real),X2)))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),F2),F8),topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_lessThan(real),X2)))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),G),G5),topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_lessThan(real),X2)))
=> ( filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_afi(fun(real,real),fun(fun(real,real),fun(real,real)),G5),F8),topolo7230453075368039082e_nhds(real,Y),topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_lessThan(real),X2)))
=> filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_afi(fun(real,real),fun(fun(real,real),fun(real,real)),G),F2),topolo7230453075368039082e_nhds(real,Y),topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_lessThan(real),X2))) ) ) ) ) ) ).
% lhopital_left_at_top
tff(fact_8051_eventually__sequentially__Suc,axiom,
! [P: fun(nat,bool)] :
( eventually(nat,aTP_Lamp_afj(fun(nat,bool),fun(nat,bool),P),at_top(nat))
<=> eventually(nat,P,at_top(nat)) ) ).
% eventually_sequentially_Suc
tff(fact_8052_eventually__sequentially__seg,axiom,
! [P: fun(nat,bool),K: nat] :
( eventually(nat,aa(nat,fun(nat,bool),aTP_Lamp_afk(fun(nat,bool),fun(nat,fun(nat,bool)),P),K),at_top(nat))
<=> eventually(nat,P,at_top(nat)) ) ).
% eventually_sequentially_seg
tff(fact_8053_Max__divisors__self__int,axiom,
! [N: int] :
( ( N != zero_zero(int) )
=> ( lattic643756798349783984er_Max(int,aa(fun(int,bool),set(int),collect(int),aTP_Lamp_mf(int,fun(int,bool),N))) = aa(int,int,abs_abs(int),N) ) ) ).
% Max_divisors_self_int
tff(fact_8054_eventually__at__infinity,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [P: fun(A,bool)] :
( eventually(A,P,at_infinity(A))
<=> ? [B5: real] :
! [X4: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),B5),real_V7770717601297561774m_norm(A,X4)))
=> pp(aa(A,bool,P,X4)) ) ) ) ).
% eventually_at_infinity
tff(fact_8055_le__principal,axiom,
! [A: $tType,F4: filter(A),A3: set(A)] :
( pp(aa(filter(A),bool,aa(filter(A),fun(filter(A),bool),ord_less_eq(filter(A)),F4),principal(A,A3)))
<=> eventually(A,aTP_Lamp_a(set(A),fun(A,bool),A3),F4) ) ).
% le_principal
tff(fact_8056_real__tendsto__sandwich,axiom,
! [B: $tType,F2: fun(B,real),G: fun(B,real),Net: filter(B),H: fun(B,real),C2: real] :
( eventually(B,aa(fun(B,real),fun(B,bool),aTP_Lamp_afl(fun(B,real),fun(fun(B,real),fun(B,bool)),F2),G),Net)
=> ( eventually(B,aa(fun(B,real),fun(B,bool),aTP_Lamp_afl(fun(B,real),fun(fun(B,real),fun(B,bool)),G),H),Net)
=> ( filterlim(B,real,F2,topolo7230453075368039082e_nhds(real,C2),Net)
=> ( filterlim(B,real,H,topolo7230453075368039082e_nhds(real,C2),Net)
=> filterlim(B,real,G,topolo7230453075368039082e_nhds(real,C2),Net) ) ) ) ) ).
% real_tendsto_sandwich
tff(fact_8057_order__tendsto__iff,axiom,
! [A: $tType,B: $tType] :
( topolo2564578578187576103pology(A)
=> ! [F2: fun(B,A),X2: A,F4: filter(B)] :
( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,X2),F4)
<=> ( ! [L3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),L3),X2))
=> eventually(B,aa(A,fun(B,bool),aTP_Lamp_afm(fun(B,A),fun(A,fun(B,bool)),F2),L3),F4) )
& ! [U4: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),U4))
=> eventually(B,aa(A,fun(B,bool),aTP_Lamp_afn(fun(B,A),fun(A,fun(B,bool)),F2),U4),F4) ) ) ) ) ).
% order_tendsto_iff
tff(fact_8058_order__tendstoI,axiom,
! [A: $tType,B: $tType] :
( topolo2564578578187576103pology(A)
=> ! [Y: A,F2: fun(B,A),F4: filter(B)] :
( ! [A4: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A4),Y))
=> eventually(B,aa(A,fun(B,bool),aTP_Lamp_afm(fun(B,A),fun(A,fun(B,bool)),F2),A4),F4) )
=> ( ! [A4: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),A4))
=> eventually(B,aa(A,fun(B,bool),aTP_Lamp_afn(fun(B,A),fun(A,fun(B,bool)),F2),A4),F4) )
=> filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,Y),F4) ) ) ) ).
% order_tendstoI
tff(fact_8059_order__tendstoD_I1_J,axiom,
! [A: $tType,B: $tType] :
( topolo2564578578187576103pology(A)
=> ! [F2: fun(B,A),Y: A,F4: filter(B),A2: A] :
( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,Y),F4)
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),Y))
=> eventually(B,aa(A,fun(B,bool),aTP_Lamp_afm(fun(B,A),fun(A,fun(B,bool)),F2),A2),F4) ) ) ) ).
% order_tendstoD(1)
tff(fact_8060_order__tendstoD_I2_J,axiom,
! [A: $tType,B: $tType] :
( topolo2564578578187576103pology(A)
=> ! [F2: fun(B,A),Y: A,F4: filter(B),A2: A] :
( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,Y),F4)
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),A2))
=> eventually(B,aa(A,fun(B,bool),aTP_Lamp_afn(fun(B,A),fun(A,fun(B,bool)),F2),A2),F4) ) ) ) ).
% order_tendstoD(2)
tff(fact_8061_filterlim__mono__eventually,axiom,
! [B: $tType,A: $tType,F2: fun(A,B),F4: filter(B),G7: filter(A),F9: filter(B),G8: filter(A),F8: fun(A,B)] :
( filterlim(A,B,F2,F4,G7)
=> ( pp(aa(filter(B),bool,aa(filter(B),fun(filter(B),bool),ord_less_eq(filter(B)),F4),F9))
=> ( pp(aa(filter(A),bool,aa(filter(A),fun(filter(A),bool),ord_less_eq(filter(A)),G8),G7))
=> ( eventually(A,aa(fun(A,B),fun(A,bool),aTP_Lamp_afo(fun(A,B),fun(fun(A,B),fun(A,bool)),F2),F8),G8)
=> filterlim(A,B,F8,F9,G8) ) ) ) ) ).
% filterlim_mono_eventually
tff(fact_8062_tendsto__sandwich,axiom,
! [A: $tType,B: $tType] :
( topolo2564578578187576103pology(A)
=> ! [F2: fun(B,A),G: fun(B,A),Net: filter(B),H: fun(B,A),C2: A] :
( eventually(B,aa(fun(B,A),fun(B,bool),aTP_Lamp_afp(fun(B,A),fun(fun(B,A),fun(B,bool)),F2),G),Net)
=> ( eventually(B,aa(fun(B,A),fun(B,bool),aTP_Lamp_afp(fun(B,A),fun(fun(B,A),fun(B,bool)),G),H),Net)
=> ( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,C2),Net)
=> ( filterlim(B,A,H,topolo7230453075368039082e_nhds(A,C2),Net)
=> filterlim(B,A,G,topolo7230453075368039082e_nhds(A,C2),Net) ) ) ) ) ) ).
% tendsto_sandwich
tff(fact_8063_filterlim__at__bot__dense,axiom,
! [B: $tType,A: $tType] :
( ( dense_linorder(B)
& no_bot(B) )
=> ! [F2: fun(A,B),F4: filter(A)] :
( filterlim(A,B,F2,at_bot(B),F4)
<=> ! [Z7: B] : eventually(A,aa(B,fun(A,bool),aTP_Lamp_afq(fun(A,B),fun(B,fun(A,bool)),F2),Z7),F4) ) ) ).
% filterlim_at_bot_dense
tff(fact_8064_filterlim__at__bot,axiom,
! [B: $tType,A: $tType] :
( linorder(B)
=> ! [F2: fun(A,B),F4: filter(A)] :
( filterlim(A,B,F2,at_bot(B),F4)
<=> ! [Z7: B] : eventually(A,aa(B,fun(A,bool),aTP_Lamp_afr(fun(A,B),fun(B,fun(A,bool)),F2),Z7),F4) ) ) ).
% filterlim_at_bot
tff(fact_8065_filterlim__at__bot__le,axiom,
! [B: $tType,A: $tType] :
( linorder(B)
=> ! [F2: fun(A,B),F4: filter(A),C2: B] :
( filterlim(A,B,F2,at_bot(B),F4)
<=> ! [Z7: B] :
( pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),Z7),C2))
=> eventually(A,aa(B,fun(A,bool),aTP_Lamp_afr(fun(A,B),fun(B,fun(A,bool)),F2),Z7),F4) ) ) ) ).
% filterlim_at_bot_le
tff(fact_8066_eventually__at__bot__dense,axiom,
! [A: $tType] :
( ( linorder(A)
& no_bot(A) )
=> ! [P: fun(A,bool)] :
( eventually(A,P,at_bot(A))
<=> ? [N6: A] :
! [N5: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),N5),N6))
=> pp(aa(A,bool,P,N5)) ) ) ) ).
% eventually_at_bot_dense
tff(fact_8067_eventually__gt__at__bot,axiom,
! [A: $tType] :
( unboun7993243217541854897norder(A)
=> ! [C2: A] : eventually(A,aTP_Lamp_afs(A,fun(A,bool),C2),at_bot(A)) ) ).
% eventually_gt_at_bot
tff(fact_8068_eventually__le__at__bot,axiom,
! [A: $tType] :
( linorder(A)
=> ! [C2: A] : eventually(A,aTP_Lamp_aft(A,fun(A,bool),C2),at_bot(A)) ) ).
% eventually_le_at_bot
tff(fact_8069_eventually__at__bot__linorder,axiom,
! [A: $tType] :
( linorder(A)
=> ! [P: fun(A,bool)] :
( eventually(A,P,at_bot(A))
<=> ? [N6: A] :
! [N5: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),N5),N6))
=> pp(aa(A,bool,P,N5)) ) ) ) ).
% eventually_at_bot_linorder
tff(fact_8070_has__derivative__transform__eventually,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),F8: fun(A,B),X2: A,S2: set(A),G: fun(A,B)] :
( has_derivative(A,B,F2,F8,topolo174197925503356063within(A,X2,S2))
=> ( eventually(A,aa(fun(A,B),fun(A,bool),aTP_Lamp_afu(fun(A,B),fun(fun(A,B),fun(A,bool)),F2),G),topolo174197925503356063within(A,X2,S2))
=> ( ( aa(A,B,F2,X2) = aa(A,B,G,X2) )
=> ( pp(member(A,X2,S2))
=> has_derivative(A,B,G,F8,topolo174197925503356063within(A,X2,S2)) ) ) ) ) ) ).
% has_derivative_transform_eventually
tff(fact_8071_filter__leD,axiom,
! [A: $tType,F4: filter(A),F9: filter(A),P: fun(A,bool)] :
( pp(aa(filter(A),bool,aa(filter(A),fun(filter(A),bool),ord_less_eq(filter(A)),F4),F9))
=> ( eventually(A,P,F9)
=> eventually(A,P,F4) ) ) ).
% filter_leD
tff(fact_8072_filter__leI,axiom,
! [A: $tType,F9: filter(A),F4: filter(A)] :
( ! [P5: fun(A,bool)] :
( eventually(A,P5,F9)
=> eventually(A,P5,F4) )
=> pp(aa(filter(A),bool,aa(filter(A),fun(filter(A),bool),ord_less_eq(filter(A)),F4),F9)) ) ).
% filter_leI
tff(fact_8073_le__filter__def,axiom,
! [A: $tType,F4: filter(A),F9: filter(A)] :
( pp(aa(filter(A),bool,aa(filter(A),fun(filter(A),bool),ord_less_eq(filter(A)),F4),F9))
<=> ! [P6: fun(A,bool)] :
( eventually(A,P6,F9)
=> eventually(A,P6,F4) ) ) ).
% le_filter_def
tff(fact_8074_has__field__derivative__cong__eventually,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(A,A),G: fun(A,A),X2: A,S: set(A),U: A] :
( eventually(A,aa(fun(A,A),fun(A,bool),aTP_Lamp_afv(fun(A,A),fun(fun(A,A),fun(A,bool)),F2),G),topolo174197925503356063within(A,X2,S))
=> ( ( aa(A,A,F2,X2) = aa(A,A,G,X2) )
=> ( has_field_derivative(A,F2,U,topolo174197925503356063within(A,X2,S))
<=> has_field_derivative(A,G,U,topolo174197925503356063within(A,X2,S)) ) ) ) ) ).
% has_field_derivative_cong_eventually
tff(fact_8075_has__field__derivative__cong__ev,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [X2: A,Y: A,S: set(A),F2: fun(A,A),G: fun(A,A),U: A,V: A,T2: set(A)] :
( ( X2 = Y )
=> ( eventually(A,aa(fun(A,A),fun(A,bool),aa(fun(A,A),fun(fun(A,A),fun(A,bool)),aTP_Lamp_afw(set(A),fun(fun(A,A),fun(fun(A,A),fun(A,bool))),S),F2),G),topolo7230453075368039082e_nhds(A,X2))
=> ( ( U = V )
=> ( ( S = T2 )
=> ( pp(member(A,X2,S))
=> ( has_field_derivative(A,F2,U,topolo174197925503356063within(A,X2,S))
<=> has_field_derivative(A,G,V,topolo174197925503356063within(A,Y,T2)) ) ) ) ) ) ) ) ).
% has_field_derivative_cong_ev
tff(fact_8076_eventually__nhds__top,axiom,
! [A: $tType] :
( ( order_top(A)
& topolo1944317154257567458pology(A) )
=> ! [B2: A,P: fun(A,bool)] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B2),top_top(A)))
=> ( eventually(A,P,topolo7230453075368039082e_nhds(A,top_top(A)))
<=> ? [B5: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B5),top_top(A)))
& ! [Z5: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B5),Z5))
=> pp(aa(A,bool,P,Z5)) ) ) ) ) ) ).
% eventually_nhds_top
tff(fact_8077_eventually__at__left,axiom,
! [A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [Y: A,X2: A,P: fun(A,bool)] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y),X2))
=> ( eventually(A,P,topolo174197925503356063within(A,X2,aa(A,set(A),set_ord_lessThan(A),X2)))
<=> ? [B5: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B5),X2))
& ! [Y2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B5),Y2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y2),X2))
=> pp(aa(A,bool,P,Y2)) ) ) ) ) ) ) ).
% eventually_at_left
tff(fact_8078_eventually__at__left__field,axiom,
! [A: $tType] :
( ( linordered_field(A)
& topolo1944317154257567458pology(A) )
=> ! [P: fun(A,bool),X2: A] :
( eventually(A,P,topolo174197925503356063within(A,X2,aa(A,set(A),set_ord_lessThan(A),X2)))
<=> ? [B5: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B5),X2))
& ! [Y2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B5),Y2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y2),X2))
=> pp(aa(A,bool,P,Y2)) ) ) ) ) ) ).
% eventually_at_left_field
tff(fact_8079_eventually__Inf__base,axiom,
! [A: $tType,B4: set(filter(A)),P: fun(A,bool)] :
( ( B4 != bot_bot(set(filter(A))) )
=> ( ! [F6: filter(A)] :
( pp(member(filter(A),F6,B4))
=> ! [G4: filter(A)] :
( pp(member(filter(A),G4,B4))
=> ? [X: filter(A)] :
( pp(member(filter(A),X,B4))
& pp(aa(filter(A),bool,aa(filter(A),fun(filter(A),bool),ord_less_eq(filter(A)),X),aa(filter(A),filter(A),aa(filter(A),fun(filter(A),filter(A)),inf_inf(filter(A)),F6),G4))) ) ) )
=> ( eventually(A,P,complete_Inf_Inf(filter(A),B4))
<=> ? [X4: filter(A)] :
( pp(member(filter(A),X4,B4))
& eventually(A,P,X4) ) ) ) ) ).
% eventually_Inf_base
tff(fact_8080_countable__basis__at__decseq,axiom,
! [A: $tType] :
( topolo3112930676232923870pology(A)
=> ! [X2: A] :
~ ! [A7: fun(nat,set(A))] :
( ! [I2: nat] : topolo1002775350975398744n_open(A,aa(nat,set(A),A7,I2))
=> ( ! [I2: nat] : pp(member(A,X2,aa(nat,set(A),A7,I2)))
=> ~ ! [S9: set(A)] :
( topolo1002775350975398744n_open(A,S9)
=> ( pp(member(A,X2,S9))
=> eventually(nat,aa(set(A),fun(nat,bool),aTP_Lamp_afx(fun(nat,set(A)),fun(set(A),fun(nat,bool)),A7),S9),at_top(nat)) ) ) ) ) ) ).
% countable_basis_at_decseq
tff(fact_8081_eventually__sequentially,axiom,
! [P: fun(nat,bool)] :
( eventually(nat,P,at_top(nat))
<=> ? [N6: nat] :
! [N5: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),N6),N5))
=> pp(aa(nat,bool,P,N5)) ) ) ).
% eventually_sequentially
tff(fact_8082_eventually__sequentiallyI,axiom,
! [C2: nat,P: fun(nat,bool)] :
( ! [X3: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),C2),X3))
=> pp(aa(nat,bool,P,X3)) )
=> eventually(nat,P,at_top(nat)) ) ).
% eventually_sequentiallyI
tff(fact_8083_eventually__at__top__linorder,axiom,
! [A: $tType] :
( linorder(A)
=> ! [P: fun(A,bool)] :
( eventually(A,P,at_top(A))
<=> ? [N6: A] :
! [N5: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),N6),N5))
=> pp(aa(A,bool,P,N5)) ) ) ) ).
% eventually_at_top_linorder
tff(fact_8084_eventually__at__top__linorderI,axiom,
! [A: $tType] :
( linorder(A)
=> ! [C2: A,P: fun(A,bool)] :
( ! [X3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),C2),X3))
=> pp(aa(A,bool,P,X3)) )
=> eventually(A,P,at_top(A)) ) ) ).
% eventually_at_top_linorderI
tff(fact_8085_eventually__ge__at__top,axiom,
! [A: $tType] :
( linorder(A)
=> ! [C2: A] : eventually(A,aa(A,fun(A,bool),ord_less_eq(A),C2),at_top(A)) ) ).
% eventually_ge_at_top
tff(fact_8086_le__sequentially,axiom,
! [F4: filter(nat)] :
( pp(aa(filter(nat),bool,aa(filter(nat),fun(filter(nat),bool),ord_less_eq(filter(nat)),F4),at_top(nat)))
<=> ! [N6: nat] : eventually(nat,aa(nat,fun(nat,bool),ord_less_eq(nat),N6),F4) ) ).
% le_sequentially
tff(fact_8087_sequentially__offset,axiom,
! [P: fun(nat,bool),K: nat] :
( eventually(nat,P,at_top(nat))
=> eventually(nat,aa(nat,fun(nat,bool),aTP_Lamp_afk(fun(nat,bool),fun(nat,fun(nat,bool)),P),K),at_top(nat)) ) ).
% sequentially_offset
tff(fact_8088_eventually__gt__at__top,axiom,
! [A: $tType] :
( ( linorder(A)
& no_top(A) )
=> ! [C2: A] : eventually(A,aa(A,fun(A,bool),ord_less(A),C2),at_top(A)) ) ).
% eventually_gt_at_top
tff(fact_8089_eventually__at__top__dense,axiom,
! [A: $tType] :
( ( linorder(A)
& no_top(A) )
=> ! [P: fun(A,bool)] :
( eventually(A,P,at_top(A))
<=> ? [N6: A] :
! [N5: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),N6),N5))
=> pp(aa(A,bool,P,N5)) ) ) ) ).
% eventually_at_top_dense
tff(fact_8090_filterlim__at__top__dense,axiom,
! [B: $tType,A: $tType] :
( unboun7993243217541854897norder(B)
=> ! [F2: fun(A,B),F4: filter(A)] :
( filterlim(A,B,F2,at_top(B),F4)
<=> ! [Z7: B] : eventually(A,aa(B,fun(A,bool),aTP_Lamp_afy(fun(A,B),fun(B,fun(A,bool)),F2),Z7),F4) ) ) ).
% filterlim_at_top_dense
tff(fact_8091_filterlim__at__top,axiom,
! [B: $tType,A: $tType] :
( linorder(B)
=> ! [F2: fun(A,B),F4: filter(A)] :
( filterlim(A,B,F2,at_top(B),F4)
<=> ! [Z7: B] : eventually(A,aa(B,fun(A,bool),aTP_Lamp_afz(fun(A,B),fun(B,fun(A,bool)),F2),Z7),F4) ) ) ).
% filterlim_at_top
tff(fact_8092_filterlim__at__top__ge,axiom,
! [B: $tType,A: $tType] :
( linorder(B)
=> ! [F2: fun(A,B),F4: filter(A),C2: B] :
( filterlim(A,B,F2,at_top(B),F4)
<=> ! [Z7: B] :
( pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),C2),Z7))
=> eventually(A,aa(B,fun(A,bool),aTP_Lamp_afz(fun(A,B),fun(B,fun(A,bool)),F2),Z7),F4) ) ) ) ).
% filterlim_at_top_ge
tff(fact_8093_filterlim__at__top__mono,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [F2: fun(B,A),F4: filter(B),G: fun(B,A)] :
( filterlim(B,A,F2,at_top(A),F4)
=> ( eventually(B,aa(fun(B,A),fun(B,bool),aTP_Lamp_aga(fun(B,A),fun(fun(B,A),fun(B,bool)),F2),G),F4)
=> filterlim(B,A,G,at_top(A),F4) ) ) ) ).
% filterlim_at_top_mono
tff(fact_8094_filterlim__at__top__at__top,axiom,
! [B: $tType,A: $tType] :
( ( linorder(A)
& linorder(B) )
=> ! [Q: fun(A,bool),F2: fun(A,B),P: fun(B,bool),G: fun(B,A)] :
( ! [X3: A,Y3: A] :
( pp(aa(A,bool,Q,X3))
=> ( pp(aa(A,bool,Q,Y3))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),Y3))
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),aa(A,B,F2,X3)),aa(A,B,F2,Y3))) ) ) )
=> ( ! [X3: B] :
( pp(aa(B,bool,P,X3))
=> ( aa(A,B,F2,aa(B,A,G,X3)) = X3 ) )
=> ( ! [X3: B] :
( pp(aa(B,bool,P,X3))
=> pp(aa(A,bool,Q,aa(B,A,G,X3))) )
=> ( eventually(A,Q,at_top(A))
=> ( eventually(B,P,at_top(B))
=> filterlim(A,B,F2,at_top(B),at_top(A)) ) ) ) ) ) ) ).
% filterlim_at_top_at_top
tff(fact_8095_eventually__at__right__less,axiom,
! [A: $tType] :
( ( no_top(A)
& topolo1944317154257567458pology(A) )
=> ! [X2: A] : eventually(A,aa(A,fun(A,bool),ord_less(A),X2),topolo174197925503356063within(A,X2,aa(A,set(A),set_ord_greaterThan(A),X2))) ) ).
% eventually_at_right_less
tff(fact_8096_eventually__at__right__field,axiom,
! [A: $tType] :
( ( linordered_field(A)
& topolo1944317154257567458pology(A) )
=> ! [P: fun(A,bool),X2: A] :
( eventually(A,P,topolo174197925503356063within(A,X2,aa(A,set(A),set_ord_greaterThan(A),X2)))
<=> ? [B5: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),B5))
& ! [Y2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y2),B5))
=> pp(aa(A,bool,P,Y2)) ) ) ) ) ) ).
% eventually_at_right_field
tff(fact_8097_eventually__at__right,axiom,
! [A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [X2: A,Y: A,P: fun(A,bool)] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y))
=> ( eventually(A,P,topolo174197925503356063within(A,X2,aa(A,set(A),set_ord_greaterThan(A),X2)))
<=> ? [B5: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),B5))
& ! [Y2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X2),Y2))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Y2),B5))
=> pp(aa(A,bool,P,Y2)) ) ) ) ) ) ) ).
% eventually_at_right
tff(fact_8098_eventually__at,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [P: fun(A,bool),A2: A,S: set(A)] :
( eventually(A,P,topolo174197925503356063within(A,A2,S))
<=> ? [D4: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D4))
& ! [X4: A] :
( pp(member(A,X4,S))
=> ( ( ( X4 != A2 )
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X4,A2)),D4)) )
=> pp(aa(A,bool,P,X4)) ) ) ) ) ) ).
% eventually_at
tff(fact_8099_gcd__is__Max__divisors__int,axiom,
! [N: int,M: int] :
( ( N != zero_zero(int) )
=> ( aa(int,int,aa(int,fun(int,int),gcd_gcd(int),M),N) = lattic643756798349783984er_Max(int,aa(fun(int,bool),set(int),collect(int),aa(int,fun(int,bool),aTP_Lamp_agb(int,fun(int,fun(int,bool)),N),M))) ) ) ).
% gcd_is_Max_divisors_int
tff(fact_8100_eventually__nhds__metric,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [P: fun(A,bool),A2: A] :
( eventually(A,P,topolo7230453075368039082e_nhds(A,A2))
<=> ? [D4: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D4))
& ! [X4: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,X4,A2)),D4))
=> pp(aa(A,bool,P,X4)) ) ) ) ) ).
% eventually_nhds_metric
tff(fact_8101_eventually__at__leftI,axiom,
! [A: $tType] :
( topolo2564578578187576103pology(A)
=> ! [A2: A,B2: A,P: fun(A,bool)] :
( ! [X3: A] :
( pp(member(A,X3,set_or5935395276787703475ssThan(A,A2,B2)))
=> pp(aa(A,bool,P,X3)) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> eventually(A,P,topolo174197925503356063within(A,B2,aa(A,set(A),set_ord_lessThan(A),B2))) ) ) ) ).
% eventually_at_leftI
tff(fact_8102_eventually__at__rightI,axiom,
! [A: $tType] :
( topolo2564578578187576103pology(A)
=> ! [A2: A,B2: A,P: fun(A,bool)] :
( ! [X3: A] :
( pp(member(A,X3,set_or5935395276787703475ssThan(A,A2,B2)))
=> pp(aa(A,bool,P,X3)) )
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B2))
=> eventually(A,P,topolo174197925503356063within(A,A2,aa(A,set(A),set_ord_greaterThan(A),A2))) ) ) ) ).
% eventually_at_rightI
tff(fact_8103_eventually__at__to__0,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [P: fun(A,bool),A2: A] :
( eventually(A,P,topolo174197925503356063within(A,A2,top_top(set(A))))
<=> eventually(A,aa(A,fun(A,bool),aTP_Lamp_agc(fun(A,bool),fun(A,fun(A,bool)),P),A2),topolo174197925503356063within(A,zero_zero(A),top_top(set(A)))) ) ) ).
% eventually_at_to_0
tff(fact_8104_increasing__tendsto,axiom,
! [A: $tType,B: $tType] :
( topolo2564578578187576103pology(A)
=> ! [F2: fun(B,A),L: A,F4: filter(B)] :
( eventually(B,aa(A,fun(B,bool),aTP_Lamp_agd(fun(B,A),fun(A,fun(B,bool)),F2),L),F4)
=> ( ! [X3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),X3),L))
=> eventually(B,aa(A,fun(B,bool),aTP_Lamp_afm(fun(B,A),fun(A,fun(B,bool)),F2),X3),F4) )
=> filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,L),F4) ) ) ) ).
% increasing_tendsto
tff(fact_8105_decreasing__tendsto,axiom,
! [A: $tType,B: $tType] :
( topolo2564578578187576103pology(A)
=> ! [L: A,F2: fun(B,A),F4: filter(B)] :
( eventually(B,aa(fun(B,A),fun(B,bool),aTP_Lamp_age(A,fun(fun(B,A),fun(B,bool)),L),F2),F4)
=> ( ! [X3: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),L),X3))
=> eventually(B,aa(A,fun(B,bool),aTP_Lamp_afn(fun(B,A),fun(A,fun(B,bool)),F2),X3),F4) )
=> filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,L),F4) ) ) ) ).
% decreasing_tendsto
tff(fact_8106_filterlim__at__top__gt,axiom,
! [B: $tType,A: $tType] :
( unboun7993243217541854897norder(B)
=> ! [F2: fun(A,B),F4: filter(A),C2: B] :
( filterlim(A,B,F2,at_top(B),F4)
<=> ! [Z7: B] :
( pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),C2),Z7))
=> eventually(A,aa(B,fun(A,bool),aTP_Lamp_agf(fun(A,B),fun(B,fun(A,bool)),F2),Z7),F4) ) ) ) ).
% filterlim_at_top_gt
tff(fact_8107_DERIV__cong__ev,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [X2: A,Y: A,F2: fun(A,A),G: fun(A,A),U: A,V: A] :
( ( X2 = Y )
=> ( eventually(A,aa(fun(A,A),fun(A,bool),aTP_Lamp_afv(fun(A,A),fun(fun(A,A),fun(A,bool)),F2),G),topolo7230453075368039082e_nhds(A,X2))
=> ( ( U = V )
=> ( has_field_derivative(A,F2,U,topolo174197925503356063within(A,X2,top_top(set(A))))
<=> has_field_derivative(A,G,V,topolo174197925503356063within(A,Y,top_top(set(A)))) ) ) ) ) ) ).
% DERIV_cong_ev
tff(fact_8108_filterlim__at__bot__lt,axiom,
! [B: $tType,A: $tType] :
( unboun7993243217541854897norder(B)
=> ! [F2: fun(A,B),F4: filter(A),C2: B] :
( filterlim(A,B,F2,at_bot(B),F4)
<=> ! [Z7: B] :
( pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),Z7),C2))
=> eventually(A,aa(B,fun(A,bool),aTP_Lamp_agg(fun(A,B),fun(B,fun(A,bool)),F2),Z7),F4) ) ) ) ).
% filterlim_at_bot_lt
tff(fact_8109_tendsto__upperbound,axiom,
! [B: $tType,A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [F2: fun(B,A),X2: A,F4: filter(B),A2: A] :
( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,X2),F4)
=> ( eventually(B,aa(A,fun(B,bool),aTP_Lamp_agh(fun(B,A),fun(A,fun(B,bool)),F2),A2),F4)
=> ( ( F4 != bot_bot(filter(B)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X2),A2)) ) ) ) ) ).
% tendsto_upperbound
tff(fact_8110_tendsto__lowerbound,axiom,
! [B: $tType,A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [F2: fun(B,A),X2: A,F4: filter(B),A2: A] :
( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,X2),F4)
=> ( eventually(B,aa(A,fun(B,bool),aTP_Lamp_agi(fun(B,A),fun(A,fun(B,bool)),F2),A2),F4)
=> ( ( F4 != bot_bot(filter(B)) )
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),A2),X2)) ) ) ) ) ).
% tendsto_lowerbound
tff(fact_8111_tendsto__le,axiom,
! [B: $tType,A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [F4: filter(B),F2: fun(B,A),X2: A,G: fun(B,A),Y: A] :
( ( F4 != bot_bot(filter(B)) )
=> ( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,X2),F4)
=> ( filterlim(B,A,G,topolo7230453075368039082e_nhds(A,Y),F4)
=> ( eventually(B,aa(fun(B,A),fun(B,bool),aTP_Lamp_agj(fun(B,A),fun(fun(B,A),fun(B,bool)),F2),G),F4)
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y),X2)) ) ) ) ) ) ).
% tendsto_le
tff(fact_8112_metric__tendsto__imp__tendsto,axiom,
! [A: $tType,B: $tType,C: $tType] :
( ( real_V7819770556892013058_space(B)
& real_V7819770556892013058_space(A) )
=> ! [F2: fun(C,A),A2: A,F4: filter(C),G: fun(C,B),B2: B] :
( filterlim(C,A,F2,topolo7230453075368039082e_nhds(A,A2),F4)
=> ( eventually(C,aa(B,fun(C,bool),aa(fun(C,B),fun(B,fun(C,bool)),aa(A,fun(fun(C,B),fun(B,fun(C,bool))),aTP_Lamp_agk(fun(C,A),fun(A,fun(fun(C,B),fun(B,fun(C,bool)))),F2),A2),G),B2),F4)
=> filterlim(C,B,G,topolo7230453075368039082e_nhds(B,B2),F4) ) ) ) ).
% metric_tendsto_imp_tendsto
tff(fact_8113_filterlim__at__infinity__imp__filterlim__at__top,axiom,
! [A: $tType,F2: fun(A,real),F4: filter(A)] :
( filterlim(A,real,F2,at_infinity(real),F4)
=> ( eventually(A,aTP_Lamp_agl(fun(A,real),fun(A,bool),F2),F4)
=> filterlim(A,real,F2,at_top(real),F4) ) ) ).
% filterlim_at_infinity_imp_filterlim_at_top
tff(fact_8114_filterlim__at__infinity__imp__filterlim__at__bot,axiom,
! [A: $tType,F2: fun(A,real),F4: filter(A)] :
( filterlim(A,real,F2,at_infinity(real),F4)
=> ( eventually(A,aTP_Lamp_agm(fun(A,real),fun(A,bool),F2),F4)
=> filterlim(A,real,F2,at_bot(real),F4) ) ) ).
% filterlim_at_infinity_imp_filterlim_at_bot
tff(fact_8115_eventually__at__right__to__0,axiom,
! [P: fun(real,bool),A2: real] :
( eventually(real,P,topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_greaterThan(real),A2)))
<=> eventually(real,aa(real,fun(real,bool),aTP_Lamp_agn(fun(real,bool),fun(real,fun(real,bool)),P),A2),topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real)))) ) ).
% eventually_at_right_to_0
tff(fact_8116_eventually__INF,axiom,
! [A: $tType,B: $tType,P: fun(A,bool),F4: fun(B,filter(A)),B4: set(B)] :
( eventually(A,P,complete_Inf_Inf(filter(A),aa(set(B),set(filter(A)),image(B,filter(A),F4),B4)))
<=> ? [X9: set(B)] :
( pp(aa(set(B),bool,aa(set(B),fun(set(B),bool),ord_less_eq(set(B)),X9),B4))
& finite_finite(B,X9)
& eventually(A,P,complete_Inf_Inf(filter(A),aa(set(B),set(filter(A)),image(B,filter(A),F4),X9))) ) ) ).
% eventually_INF
tff(fact_8117_eventually__at__left__to__right,axiom,
! [P: fun(real,bool),A2: real] :
( eventually(real,P,topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_lessThan(real),A2)))
<=> eventually(real,aTP_Lamp_ago(fun(real,bool),fun(real,bool),P),topolo174197925503356063within(real,aa(real,real,uminus_uminus(real),A2),aa(real,set(real),set_ord_greaterThan(real),aa(real,real,uminus_uminus(real),A2)))) ) ).
% eventually_at_left_to_right
tff(fact_8118_continuous__arcosh__strong,axiom,
! [A: $tType] :
( topological_t2_space(A)
=> ! [F4: filter(A),F2: fun(A,real)] :
( topolo3448309680560233919inuous(A,real,F4,F2)
=> ( eventually(A,aTP_Lamp_agp(fun(A,real),fun(A,bool),F2),F4)
=> topolo3448309680560233919inuous(A,real,F4,aTP_Lamp_adi(fun(A,real),fun(A,real),F2)) ) ) ) ).
% continuous_arcosh_strong
tff(fact_8119_eventually__at__right__real,axiom,
! [A2: real,B2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),A2),B2))
=> eventually(real,aa(real,fun(real,bool),aTP_Lamp_agq(real,fun(real,fun(real,bool)),A2),B2),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_greaterThan(real),A2))) ) ).
% eventually_at_right_real
tff(fact_8120_eventually__at__left__real,axiom,
! [B2: real,A2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),B2),A2))
=> eventually(real,aa(real,fun(real,bool),aTP_Lamp_agq(real,fun(real,fun(real,bool)),B2),A2),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_lessThan(real),A2))) ) ).
% eventually_at_left_real
tff(fact_8121_eventually__at__le,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [P: fun(A,bool),A2: A,S: set(A)] :
( eventually(A,P,topolo174197925503356063within(A,A2,S))
<=> ? [D4: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),D4))
& ! [X4: A] :
( pp(member(A,X4,S))
=> ( ( ( X4 != A2 )
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V557655796197034286t_dist(A,X4,A2)),D4)) )
=> pp(aa(A,bool,P,X4)) ) ) ) ) ) ).
% eventually_at_le
tff(fact_8122_eventually__at__infinity__pos,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [P2: fun(A,bool)] :
( eventually(A,P2,at_infinity(A))
<=> ? [B5: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),B5))
& ! [X4: A] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),B5),real_V7770717601297561774m_norm(A,X4)))
=> pp(aa(A,bool,P2,X4)) ) ) ) ) ).
% eventually_at_infinity_pos
tff(fact_8123_tendsto__imp__filterlim__at__left,axiom,
! [B: $tType,A: $tType] :
( topolo2564578578187576103pology(B)
=> ! [F2: fun(A,B),L6: B,F4: filter(A)] :
( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,L6),F4)
=> ( eventually(A,aa(B,fun(A,bool),aTP_Lamp_agr(fun(A,B),fun(B,fun(A,bool)),F2),L6),F4)
=> filterlim(A,B,F2,topolo174197925503356063within(B,L6,aa(B,set(B),set_ord_lessThan(B),L6)),F4) ) ) ) ).
% tendsto_imp_filterlim_at_left
tff(fact_8124_tendsto__imp__filterlim__at__right,axiom,
! [B: $tType,A: $tType] :
( topolo2564578578187576103pology(B)
=> ! [F2: fun(A,B),L6: B,F4: filter(A)] :
( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,L6),F4)
=> ( eventually(A,aa(B,fun(A,bool),aTP_Lamp_ags(fun(A,B),fun(B,fun(A,bool)),F2),L6),F4)
=> filterlim(A,B,F2,topolo174197925503356063within(B,L6,aa(B,set(B),set_ord_greaterThan(B),L6)),F4) ) ) ) ).
% tendsto_imp_filterlim_at_right
tff(fact_8125_tendsto__iff,axiom,
! [A: $tType,B: $tType] :
( real_V7819770556892013058_space(A)
=> ! [F2: fun(B,A),L: A,F4: filter(B)] :
( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,L),F4)
<=> ! [E4: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),E4))
=> eventually(B,aa(real,fun(B,bool),aa(A,fun(real,fun(B,bool)),aTP_Lamp_agt(fun(B,A),fun(A,fun(real,fun(B,bool))),F2),L),E4),F4) ) ) ) ).
% tendsto_iff
tff(fact_8126_tendstoI,axiom,
! [A: $tType,B: $tType] :
( real_V7819770556892013058_space(A)
=> ! [F2: fun(B,A),L: A,F4: filter(B)] :
( ! [E2: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),E2))
=> eventually(B,aa(real,fun(B,bool),aa(A,fun(real,fun(B,bool)),aTP_Lamp_agt(fun(B,A),fun(A,fun(real,fun(B,bool))),F2),L),E2),F4) )
=> filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,L),F4) ) ) ).
% tendstoI
tff(fact_8127_tendstoD,axiom,
! [A: $tType,B: $tType] :
( real_V7819770556892013058_space(A)
=> ! [F2: fun(B,A),L: A,F4: filter(B),E: real] :
( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,L),F4)
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),E))
=> eventually(B,aa(real,fun(B,bool),aa(A,fun(real,fun(B,bool)),aTP_Lamp_agt(fun(B,A),fun(A,fun(real,fun(B,bool))),F2),L),E),F4) ) ) ) ).
% tendstoD
tff(fact_8128_eventually__Inf,axiom,
! [A: $tType,P: fun(A,bool),B4: set(filter(A))] :
( eventually(A,P,complete_Inf_Inf(filter(A),B4))
<=> ? [X9: set(filter(A))] :
( pp(aa(set(filter(A)),bool,aa(set(filter(A)),fun(set(filter(A)),bool),ord_less_eq(set(filter(A))),X9),B4))
& finite_finite(filter(A),X9)
& eventually(A,P,complete_Inf_Inf(filter(A),X9)) ) ) ).
% eventually_Inf
tff(fact_8129_summable__comparison__test__ev,axiom,
! [A: $tType] :
( real_Vector_banach(A)
=> ! [F2: fun(nat,A),G: fun(nat,real)] :
( eventually(nat,aa(fun(nat,real),fun(nat,bool),aTP_Lamp_agu(fun(nat,A),fun(fun(nat,real),fun(nat,bool)),F2),G),at_top(nat))
=> ( summable(real,G)
=> summable(A,F2) ) ) ) ).
% summable_comparison_test_ev
tff(fact_8130_eventually__at__right__to__top,axiom,
! [P: fun(real,bool)] :
( eventually(real,P,topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real))))
<=> eventually(real,aTP_Lamp_agv(fun(real,bool),fun(real,bool),P),at_top(real)) ) ).
% eventually_at_right_to_top
tff(fact_8131_eventually__at__top__to__right,axiom,
! [P: fun(real,bool)] :
( eventually(real,P,at_top(real))
<=> eventually(real,aTP_Lamp_agv(fun(real,bool),fun(real,bool),P),topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real)))) ) ).
% eventually_at_top_to_right
tff(fact_8132_tendsto__arcosh__strong,axiom,
! [B: $tType,F2: fun(B,real),A2: real,F4: filter(B)] :
( filterlim(B,real,F2,topolo7230453075368039082e_nhds(real,A2),F4)
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),A2))
=> ( eventually(B,aTP_Lamp_agw(fun(B,real),fun(B,bool),F2),F4)
=> filterlim(B,real,aTP_Lamp_yx(fun(B,real),fun(B,real),F2),topolo7230453075368039082e_nhds(real,aa(real,real,arcosh(real),A2)),F4) ) ) ) ).
% tendsto_arcosh_strong
tff(fact_8133_filterlim__at__top__at__left,axiom,
! [B: $tType,A: $tType] :
( ( topolo1944317154257567458pology(A)
& linorder(B) )
=> ! [Q: fun(A,bool),F2: fun(A,B),P: fun(B,bool),G: fun(B,A),A2: A] :
( ! [X3: A,Y3: A] :
( pp(aa(A,bool,Q,X3))
=> ( pp(aa(A,bool,Q,Y3))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),Y3))
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),aa(A,B,F2,X3)),aa(A,B,F2,Y3))) ) ) )
=> ( ! [X3: B] :
( pp(aa(B,bool,P,X3))
=> ( aa(A,B,F2,aa(B,A,G,X3)) = X3 ) )
=> ( ! [X3: B] :
( pp(aa(B,bool,P,X3))
=> pp(aa(A,bool,Q,aa(B,A,G,X3))) )
=> ( eventually(A,Q,topolo174197925503356063within(A,A2,aa(A,set(A),set_ord_lessThan(A),A2)))
=> ( ! [B3: A] :
( pp(aa(A,bool,Q,B3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),B3),A2)) )
=> ( eventually(B,P,at_top(B))
=> filterlim(A,B,F2,at_top(B),topolo174197925503356063within(A,A2,aa(A,set(A),set_ord_lessThan(A),A2))) ) ) ) ) ) ) ) ).
% filterlim_at_top_at_left
tff(fact_8134_eventually__INF__base,axiom,
! [B: $tType,A: $tType,B4: set(A),F4: fun(A,filter(B)),P: fun(B,bool)] :
( ( B4 != bot_bot(set(A)) )
=> ( ! [A4: A] :
( pp(member(A,A4,B4))
=> ! [B3: A] :
( pp(member(A,B3,B4))
=> ? [X: A] :
( pp(member(A,X,B4))
& pp(aa(filter(B),bool,aa(filter(B),fun(filter(B),bool),ord_less_eq(filter(B)),aa(A,filter(B),F4,X)),aa(filter(B),filter(B),aa(filter(B),fun(filter(B),filter(B)),inf_inf(filter(B)),aa(A,filter(B),F4,A4)),aa(A,filter(B),F4,B3)))) ) ) )
=> ( eventually(B,P,complete_Inf_Inf(filter(B),aa(set(A),set(filter(B)),image(A,filter(B),F4),B4)))
<=> ? [X4: A] :
( pp(member(A,X4,B4))
& eventually(B,P,aa(A,filter(B),F4,X4)) ) ) ) ) ).
% eventually_INF_base
tff(fact_8135_filterlim__at__bot__at__right,axiom,
! [B: $tType,A: $tType] :
( ( topolo1944317154257567458pology(A)
& linorder(B) )
=> ! [Q: fun(A,bool),F2: fun(A,B),P: fun(B,bool),G: fun(B,A),A2: A] :
( ! [X3: A,Y3: A] :
( pp(aa(A,bool,Q,X3))
=> ( pp(aa(A,bool,Q,Y3))
=> ( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),X3),Y3))
=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),aa(A,B,F2,X3)),aa(A,B,F2,Y3))) ) ) )
=> ( ! [X3: B] :
( pp(aa(B,bool,P,X3))
=> ( aa(A,B,F2,aa(B,A,G,X3)) = X3 ) )
=> ( ! [X3: B] :
( pp(aa(B,bool,P,X3))
=> pp(aa(A,bool,Q,aa(B,A,G,X3))) )
=> ( eventually(A,Q,topolo174197925503356063within(A,A2,aa(A,set(A),set_ord_greaterThan(A),A2)))
=> ( ! [B3: A] :
( pp(aa(A,bool,Q,B3))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),A2),B3)) )
=> ( eventually(B,P,at_bot(B))
=> filterlim(A,B,F2,at_bot(B),topolo174197925503356063within(A,A2,aa(A,set(A),set_ord_greaterThan(A),A2))) ) ) ) ) ) ) ) ).
% filterlim_at_bot_at_right
tff(fact_8136_tendsto__0__le,axiom,
! [B: $tType,C: $tType,A: $tType] :
( ( real_V822414075346904944vector(C)
& real_V822414075346904944vector(B) )
=> ! [F2: fun(A,B),F4: filter(A),G: fun(A,C),K5: real] :
( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,zero_zero(B)),F4)
=> ( eventually(A,aa(real,fun(A,bool),aa(fun(A,C),fun(real,fun(A,bool)),aTP_Lamp_agx(fun(A,B),fun(fun(A,C),fun(real,fun(A,bool))),F2),G),K5),F4)
=> filterlim(A,C,G,topolo7230453075368039082e_nhds(C,zero_zero(C)),F4) ) ) ) ).
% tendsto_0_le
tff(fact_8137_filterlim__at__withinI,axiom,
! [A: $tType,B: $tType] :
( topolo4958980785337419405_space(A)
=> ! [F2: fun(B,A),C2: A,F4: filter(B),A3: set(A)] :
( filterlim(B,A,F2,topolo7230453075368039082e_nhds(A,C2),F4)
=> ( eventually(B,aa(set(A),fun(B,bool),aa(A,fun(set(A),fun(B,bool)),aTP_Lamp_agy(fun(B,A),fun(A,fun(set(A),fun(B,bool))),F2),C2),A3),F4)
=> filterlim(B,A,F2,topolo174197925503356063within(A,C2,A3),F4) ) ) ) ).
% filterlim_at_withinI
tff(fact_8138_filterlim__at__infinity,axiom,
! [A: $tType,C: $tType] :
( real_V822414075346904944vector(A)
=> ! [C2: real,F2: fun(C,A),F4: filter(C)] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),C2))
=> ( filterlim(C,A,F2,at_infinity(A),F4)
<=> ! [R5: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),C2),R5))
=> eventually(C,aa(real,fun(C,bool),aTP_Lamp_agz(fun(C,A),fun(real,fun(C,bool)),F2),R5),F4) ) ) ) ) ).
% filterlim_at_infinity
tff(fact_8139_tendsto__zero__powrI,axiom,
! [A: $tType,F2: fun(A,real),F4: filter(A),G: fun(A,real),B2: real] :
( filterlim(A,real,F2,topolo7230453075368039082e_nhds(real,zero_zero(real)),F4)
=> ( filterlim(A,real,G,topolo7230453075368039082e_nhds(real,B2),F4)
=> ( eventually(A,aTP_Lamp_aha(fun(A,real),fun(A,bool),F2),F4)
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),B2))
=> filterlim(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_zz(fun(A,real),fun(fun(A,real),fun(A,real)),F2),G),topolo7230453075368039082e_nhds(real,zero_zero(real)),F4) ) ) ) ) ).
% tendsto_zero_powrI
tff(fact_8140_tendsto__powr2,axiom,
! [A: $tType,F2: fun(A,real),A2: real,F4: filter(A),G: fun(A,real),B2: real] :
( filterlim(A,real,F2,topolo7230453075368039082e_nhds(real,A2),F4)
=> ( filterlim(A,real,G,topolo7230453075368039082e_nhds(real,B2),F4)
=> ( eventually(A,aTP_Lamp_aha(fun(A,real),fun(A,bool),F2),F4)
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),B2))
=> filterlim(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_zz(fun(A,real),fun(fun(A,real),fun(A,real)),F2),G),topolo7230453075368039082e_nhds(real,powr(real,A2,B2)),F4) ) ) ) ) ).
% tendsto_powr2
tff(fact_8141_tendsto__powr_H,axiom,
! [A: $tType,F2: fun(A,real),A2: real,F4: filter(A),G: fun(A,real),B2: real] :
( filterlim(A,real,F2,topolo7230453075368039082e_nhds(real,A2),F4)
=> ( filterlim(A,real,G,topolo7230453075368039082e_nhds(real,B2),F4)
=> ( ( ( A2 != zero_zero(real) )
| ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),B2))
& eventually(A,aTP_Lamp_aha(fun(A,real),fun(A,bool),F2),F4) ) )
=> filterlim(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_zz(fun(A,real),fun(fun(A,real),fun(A,real)),F2),G),topolo7230453075368039082e_nhds(real,powr(real,A2,B2)),F4) ) ) ) ).
% tendsto_powr'
tff(fact_8142_eventually__floor__less,axiom,
! [B: $tType,A: $tType] :
( ( archim2362893244070406136eiling(B)
& topolo2564578578187576103pology(B) )
=> ! [F2: fun(A,B),L: B,F4: filter(A)] :
( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,L),F4)
=> ( ~ pp(member(B,L,ring_1_Ints(B)))
=> eventually(A,aa(B,fun(A,bool),aTP_Lamp_ahb(fun(A,B),fun(B,fun(A,bool)),F2),L),F4) ) ) ) ).
% eventually_floor_less
tff(fact_8143_LIM__at__top__divide,axiom,
! [A: $tType,F2: fun(A,real),A2: real,F4: filter(A),G: fun(A,real)] :
( filterlim(A,real,F2,topolo7230453075368039082e_nhds(real,A2),F4)
=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),A2))
=> ( filterlim(A,real,G,topolo7230453075368039082e_nhds(real,zero_zero(real)),F4)
=> ( eventually(A,aTP_Lamp_agl(fun(A,real),fun(A,bool),G),F4)
=> filterlim(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_aej(fun(A,real),fun(fun(A,real),fun(A,real)),F2),G),at_top(real),F4) ) ) ) ) ).
% LIM_at_top_divide
tff(fact_8144_eventually__less__ceiling,axiom,
! [B: $tType,A: $tType] :
( ( archim2362893244070406136eiling(B)
& topolo2564578578187576103pology(B) )
=> ! [F2: fun(A,B),L: B,F4: filter(A)] :
( filterlim(A,B,F2,topolo7230453075368039082e_nhds(B,L),F4)
=> ( ~ pp(member(B,L,ring_1_Ints(B)))
=> eventually(A,aa(B,fun(A,bool),aTP_Lamp_ahc(fun(A,B),fun(B,fun(A,bool)),F2),L),F4) ) ) ) ).
% eventually_less_ceiling
tff(fact_8145_filterlim__inverse__at__top,axiom,
! [A: $tType,F2: fun(A,real),F4: filter(A)] :
( filterlim(A,real,F2,topolo7230453075368039082e_nhds(real,zero_zero(real)),F4)
=> ( eventually(A,aTP_Lamp_agl(fun(A,real),fun(A,bool),F2),F4)
=> filterlim(A,real,aTP_Lamp_aek(fun(A,real),fun(A,real),F2),at_top(real),F4) ) ) ).
% filterlim_inverse_at_top
tff(fact_8146_filterlim__inverse__at__top__iff,axiom,
! [A: $tType,F2: fun(A,real),F4: filter(A)] :
( eventually(A,aTP_Lamp_agl(fun(A,real),fun(A,bool),F2),F4)
=> ( filterlim(A,real,aTP_Lamp_aek(fun(A,real),fun(A,real),F2),at_top(real),F4)
<=> filterlim(A,real,F2,topolo7230453075368039082e_nhds(real,zero_zero(real)),F4) ) ) ).
% filterlim_inverse_at_top_iff
tff(fact_8147_filterlim__at__top__iff__inverse__0,axiom,
! [A: $tType,F2: fun(A,real),F4: filter(A)] :
( eventually(A,aTP_Lamp_agl(fun(A,real),fun(A,bool),F2),F4)
=> ( filterlim(A,real,F2,at_top(real),F4)
<=> filterlim(A,real,aa(fun(A,real),fun(A,real),comp(real,real,A,inverse_inverse(real)),F2),topolo7230453075368039082e_nhds(real,zero_zero(real)),F4) ) ) ).
% filterlim_at_top_iff_inverse_0
tff(fact_8148_filterlim__inverse__at__bot,axiom,
! [A: $tType,F2: fun(A,real),F4: filter(A)] :
( filterlim(A,real,F2,topolo7230453075368039082e_nhds(real,zero_zero(real)),F4)
=> ( eventually(A,aTP_Lamp_agm(fun(A,real),fun(A,bool),F2),F4)
=> filterlim(A,real,aTP_Lamp_aek(fun(A,real),fun(A,real),F2),at_bot(real),F4) ) ) ).
% filterlim_inverse_at_bot
tff(fact_8149_lhopital__at__top__at__top,axiom,
! [F2: fun(real,real),A2: real,G: fun(real,real),F8: fun(real,real),G5: fun(real,real)] :
( filterlim(real,real,F2,at_top(real),topolo174197925503356063within(real,A2,top_top(set(real))))
=> ( filterlim(real,real,G,at_top(real),topolo174197925503356063within(real,A2,top_top(set(real))))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),F2),F8),topolo174197925503356063within(real,A2,top_top(set(real))))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),G),G5),topolo174197925503356063within(real,A2,top_top(set(real))))
=> ( filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_ahd(fun(real,real),fun(fun(real,real),fun(real,real)),F8),G5),at_top(real),topolo174197925503356063within(real,A2,top_top(set(real))))
=> filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_ahd(fun(real,real),fun(fun(real,real),fun(real,real)),F2),G),at_top(real),topolo174197925503356063within(real,A2,top_top(set(real)))) ) ) ) ) ) ).
% lhopital_at_top_at_top
tff(fact_8150_lhopital,axiom,
! [F2: fun(real,real),X2: real,G: fun(real,real),G5: fun(real,real),F8: fun(real,real),F4: filter(real)] :
( filterlim(real,real,F2,topolo7230453075368039082e_nhds(real,zero_zero(real)),topolo174197925503356063within(real,X2,top_top(set(real))))
=> ( filterlim(real,real,G,topolo7230453075368039082e_nhds(real,zero_zero(real)),topolo174197925503356063within(real,X2,top_top(set(real))))
=> ( eventually(real,aTP_Lamp_afg(fun(real,real),fun(real,bool),G),topolo174197925503356063within(real,X2,top_top(set(real))))
=> ( eventually(real,aTP_Lamp_afg(fun(real,real),fun(real,bool),G5),topolo174197925503356063within(real,X2,top_top(set(real))))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),F2),F8),topolo174197925503356063within(real,X2,top_top(set(real))))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),G),G5),topolo174197925503356063within(real,X2,top_top(set(real))))
=> ( filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_afi(fun(real,real),fun(fun(real,real),fun(real,real)),G5),F8),F4,topolo174197925503356063within(real,X2,top_top(set(real))))
=> filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_ahd(fun(real,real),fun(fun(real,real),fun(real,real)),F2),G),F4,topolo174197925503356063within(real,X2,top_top(set(real)))) ) ) ) ) ) ) ) ).
% lhopital
tff(fact_8151_lhopital__right__at__top__at__top,axiom,
! [F2: fun(real,real),A2: real,G: fun(real,real),F8: fun(real,real),G5: fun(real,real)] :
( filterlim(real,real,F2,at_top(real),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_greaterThan(real),A2)))
=> ( filterlim(real,real,G,at_top(real),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_greaterThan(real),A2)))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),F2),F8),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_greaterThan(real),A2)))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),G),G5),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_greaterThan(real),A2)))
=> ( filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_ahd(fun(real,real),fun(fun(real,real),fun(real,real)),F8),G5),at_top(real),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_greaterThan(real),A2)))
=> filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_ahd(fun(real,real),fun(fun(real,real),fun(real,real)),F2),G),at_top(real),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_greaterThan(real),A2))) ) ) ) ) ) ).
% lhopital_right_at_top_at_top
tff(fact_8152_lhopital__at__top__at__bot,axiom,
! [F2: fun(real,real),A2: real,G: fun(real,real),F8: fun(real,real),G5: fun(real,real)] :
( filterlim(real,real,F2,at_top(real),topolo174197925503356063within(real,A2,top_top(set(real))))
=> ( filterlim(real,real,G,at_bot(real),topolo174197925503356063within(real,A2,top_top(set(real))))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),F2),F8),topolo174197925503356063within(real,A2,top_top(set(real))))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),G),G5),topolo174197925503356063within(real,A2,top_top(set(real))))
=> ( filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_ahd(fun(real,real),fun(fun(real,real),fun(real,real)),F8),G5),at_bot(real),topolo174197925503356063within(real,A2,top_top(set(real))))
=> filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_ahd(fun(real,real),fun(fun(real,real),fun(real,real)),F2),G),at_bot(real),topolo174197925503356063within(real,A2,top_top(set(real)))) ) ) ) ) ) ).
% lhopital_at_top_at_bot
tff(fact_8153_lhopital__left__at__top__at__top,axiom,
! [F2: fun(real,real),A2: real,G: fun(real,real),F8: fun(real,real),G5: fun(real,real)] :
( filterlim(real,real,F2,at_top(real),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_lessThan(real),A2)))
=> ( filterlim(real,real,G,at_top(real),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_lessThan(real),A2)))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),F2),F8),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_lessThan(real),A2)))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),G),G5),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_lessThan(real),A2)))
=> ( filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_ahd(fun(real,real),fun(fun(real,real),fun(real,real)),F8),G5),at_top(real),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_lessThan(real),A2)))
=> filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_ahd(fun(real,real),fun(fun(real,real),fun(real,real)),F2),G),at_top(real),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_lessThan(real),A2))) ) ) ) ) ) ).
% lhopital_left_at_top_at_top
tff(fact_8154_lhospital__at__top__at__top,axiom,
! [G: fun(real,real),G5: fun(real,real),F2: fun(real,real),F8: fun(real,real),X2: real] :
( filterlim(real,real,G,at_top(real),at_top(real))
=> ( eventually(real,aTP_Lamp_afg(fun(real,real),fun(real,bool),G5),at_top(real))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),F2),F8),at_top(real))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),G),G5),at_top(real))
=> ( filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_afi(fun(real,real),fun(fun(real,real),fun(real,real)),G5),F8),topolo7230453075368039082e_nhds(real,X2),at_top(real))
=> filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_afi(fun(real,real),fun(fun(real,real),fun(real,real)),G),F2),topolo7230453075368039082e_nhds(real,X2),at_top(real)) ) ) ) ) ) ).
% lhospital_at_top_at_top
tff(fact_8155_lhopital__at__top,axiom,
! [G: fun(real,real),X2: real,G5: fun(real,real),F2: fun(real,real),F8: fun(real,real),Y: real] :
( filterlim(real,real,G,at_top(real),topolo174197925503356063within(real,X2,top_top(set(real))))
=> ( eventually(real,aTP_Lamp_afg(fun(real,real),fun(real,bool),G5),topolo174197925503356063within(real,X2,top_top(set(real))))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),F2),F8),topolo174197925503356063within(real,X2,top_top(set(real))))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),G),G5),topolo174197925503356063within(real,X2,top_top(set(real))))
=> ( filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_afi(fun(real,real),fun(fun(real,real),fun(real,real)),G5),F8),topolo7230453075368039082e_nhds(real,Y),topolo174197925503356063within(real,X2,top_top(set(real))))
=> filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_afi(fun(real,real),fun(fun(real,real),fun(real,real)),G),F2),topolo7230453075368039082e_nhds(real,Y),topolo174197925503356063within(real,X2,top_top(set(real)))) ) ) ) ) ) ).
% lhopital_at_top
tff(fact_8156_lhopital__right__0,axiom,
! [F0: fun(real,real),G0: fun(real,real),G5: fun(real,real),F8: fun(real,real),F4: filter(real)] :
( filterlim(real,real,F0,topolo7230453075368039082e_nhds(real,zero_zero(real)),topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real))))
=> ( filterlim(real,real,G0,topolo7230453075368039082e_nhds(real,zero_zero(real)),topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real))))
=> ( eventually(real,aTP_Lamp_afg(fun(real,real),fun(real,bool),G0),topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real))))
=> ( eventually(real,aTP_Lamp_afg(fun(real,real),fun(real,bool),G5),topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real))))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),F0),F8),topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real))))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),G0),G5),topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real))))
=> ( filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_afi(fun(real,real),fun(fun(real,real),fun(real,real)),G5),F8),F4,topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real))))
=> filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_ahd(fun(real,real),fun(fun(real,real),fun(real,real)),F0),G0),F4,topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real)))) ) ) ) ) ) ) ) ).
% lhopital_right_0
tff(fact_8157_lhopital__right,axiom,
! [F2: fun(real,real),X2: real,G: fun(real,real),G5: fun(real,real),F8: fun(real,real),F4: filter(real)] :
( filterlim(real,real,F2,topolo7230453075368039082e_nhds(real,zero_zero(real)),topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_greaterThan(real),X2)))
=> ( filterlim(real,real,G,topolo7230453075368039082e_nhds(real,zero_zero(real)),topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_greaterThan(real),X2)))
=> ( eventually(real,aTP_Lamp_afg(fun(real,real),fun(real,bool),G),topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_greaterThan(real),X2)))
=> ( eventually(real,aTP_Lamp_afg(fun(real,real),fun(real,bool),G5),topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_greaterThan(real),X2)))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),F2),F8),topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_greaterThan(real),X2)))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),G),G5),topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_greaterThan(real),X2)))
=> ( filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_afi(fun(real,real),fun(fun(real,real),fun(real,real)),G5),F8),F4,topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_greaterThan(real),X2)))
=> filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_ahd(fun(real,real),fun(fun(real,real),fun(real,real)),F2),G),F4,topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_greaterThan(real),X2))) ) ) ) ) ) ) ) ).
% lhopital_right
tff(fact_8158_lhopital__left,axiom,
! [F2: fun(real,real),X2: real,G: fun(real,real),G5: fun(real,real),F8: fun(real,real),F4: filter(real)] :
( filterlim(real,real,F2,topolo7230453075368039082e_nhds(real,zero_zero(real)),topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_lessThan(real),X2)))
=> ( filterlim(real,real,G,topolo7230453075368039082e_nhds(real,zero_zero(real)),topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_lessThan(real),X2)))
=> ( eventually(real,aTP_Lamp_afg(fun(real,real),fun(real,bool),G),topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_lessThan(real),X2)))
=> ( eventually(real,aTP_Lamp_afg(fun(real,real),fun(real,bool),G5),topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_lessThan(real),X2)))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),F2),F8),topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_lessThan(real),X2)))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),G),G5),topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_lessThan(real),X2)))
=> ( filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_afi(fun(real,real),fun(fun(real,real),fun(real,real)),G5),F8),F4,topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_lessThan(real),X2)))
=> filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_ahd(fun(real,real),fun(fun(real,real),fun(real,real)),F2),G),F4,topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_lessThan(real),X2))) ) ) ) ) ) ) ) ).
% lhopital_left
tff(fact_8159_lhopital__right__at__top__at__bot,axiom,
! [F2: fun(real,real),A2: real,G: fun(real,real),F8: fun(real,real),G5: fun(real,real)] :
( filterlim(real,real,F2,at_top(real),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_greaterThan(real),A2)))
=> ( filterlim(real,real,G,at_bot(real),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_greaterThan(real),A2)))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),F2),F8),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_greaterThan(real),A2)))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),G),G5),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_greaterThan(real),A2)))
=> ( filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_ahd(fun(real,real),fun(fun(real,real),fun(real,real)),F8),G5),at_bot(real),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_greaterThan(real),A2)))
=> filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_ahd(fun(real,real),fun(fun(real,real),fun(real,real)),F2),G),at_bot(real),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_greaterThan(real),A2))) ) ) ) ) ) ).
% lhopital_right_at_top_at_bot
tff(fact_8160_lhopital__left__at__top__at__bot,axiom,
! [F2: fun(real,real),A2: real,G: fun(real,real),F8: fun(real,real),G5: fun(real,real)] :
( filterlim(real,real,F2,at_top(real),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_lessThan(real),A2)))
=> ( filterlim(real,real,G,at_bot(real),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_lessThan(real),A2)))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),F2),F8),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_lessThan(real),A2)))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),G),G5),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_lessThan(real),A2)))
=> ( filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_ahd(fun(real,real),fun(fun(real,real),fun(real,real)),F8),G5),at_bot(real),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_lessThan(real),A2)))
=> filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_ahd(fun(real,real),fun(fun(real,real),fun(real,real)),F2),G),at_bot(real),topolo174197925503356063within(real,A2,aa(real,set(real),set_ord_lessThan(real),A2))) ) ) ) ) ) ).
% lhopital_left_at_top_at_bot
tff(fact_8161_lhopital__right__0__at__top,axiom,
! [G: fun(real,real),G5: fun(real,real),F2: fun(real,real),F8: fun(real,real),X2: real] :
( filterlim(real,real,G,at_top(real),topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real))))
=> ( eventually(real,aTP_Lamp_afg(fun(real,real),fun(real,bool),G5),topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real))))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),F2),F8),topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real))))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),G),G5),topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real))))
=> ( filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_afi(fun(real,real),fun(fun(real,real),fun(real,real)),G5),F8),topolo7230453075368039082e_nhds(real,X2),topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real))))
=> filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_afi(fun(real,real),fun(fun(real,real),fun(real,real)),G),F2),topolo7230453075368039082e_nhds(real,X2),topolo174197925503356063within(real,zero_zero(real),aa(real,set(real),set_ord_greaterThan(real),zero_zero(real)))) ) ) ) ) ) ).
% lhopital_right_0_at_top
tff(fact_8162_lhopital__right__at__top,axiom,
! [G: fun(real,real),X2: real,G5: fun(real,real),F2: fun(real,real),F8: fun(real,real),Y: real] :
( filterlim(real,real,G,at_top(real),topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_greaterThan(real),X2)))
=> ( eventually(real,aTP_Lamp_afg(fun(real,real),fun(real,bool),G5),topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_greaterThan(real),X2)))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),F2),F8),topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_greaterThan(real),X2)))
=> ( eventually(real,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),G),G5),topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_greaterThan(real),X2)))
=> ( filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_afi(fun(real,real),fun(fun(real,real),fun(real,real)),G5),F8),topolo7230453075368039082e_nhds(real,Y),topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_greaterThan(real),X2)))
=> filterlim(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_afi(fun(real,real),fun(fun(real,real),fun(real,real)),G),F2),topolo7230453075368039082e_nhds(real,Y),topolo174197925503356063within(real,X2,aa(real,set(real),set_ord_greaterThan(real),X2))) ) ) ) ) ) ).
% lhopital_right_at_top
tff(fact_8163_summable__bounded__partials,axiom,
! [A: $tType] :
( ( real_V8037385150606011577_space(A)
& real_V822414075346904944vector(A) )
=> ! [F2: fun(nat,A),G: fun(nat,real)] :
( eventually(nat,aa(fun(nat,real),fun(nat,bool),aTP_Lamp_ahe(fun(nat,A),fun(fun(nat,real),fun(nat,bool)),F2),G),at_top(nat))
=> ( filterlim(nat,real,G,topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(nat))
=> summable(A,F2) ) ) ) ).
% summable_bounded_partials
tff(fact_8164_summable__Cauchy_H,axiom,
! [A: $tType] :
( real_Vector_banach(A)
=> ! [F2: fun(nat,A),G: fun(nat,real)] :
( eventually(nat,aa(fun(nat,real),fun(nat,bool),aTP_Lamp_ahf(fun(nat,A),fun(fun(nat,real),fun(nat,bool)),F2),G),at_top(nat))
=> ( filterlim(nat,real,G,topolo7230453075368039082e_nhds(real,zero_zero(real)),at_top(nat))
=> summable(A,F2) ) ) ) ).
% summable_Cauchy'
tff(fact_8165_eventually__all__ge__at__top,axiom,
! [A: $tType] :
( linorder(A)
=> ! [P: fun(A,bool)] :
( eventually(A,P,at_top(A))
=> eventually(A,aTP_Lamp_ahg(fun(A,bool),fun(A,bool),P),at_top(A)) ) ) ).
% eventually_all_ge_at_top
tff(fact_8166_filterlim__int__sequentially,axiom,
filterlim(nat,int,semiring_1_of_nat(int),at_top(int),at_top(nat)) ).
% filterlim_int_sequentially
tff(fact_8167_filterlim__int__of__nat__at__topD,axiom,
! [A: $tType,F2: fun(int,A),F4: filter(A)] :
( filterlim(nat,A,aTP_Lamp_ahh(fun(int,A),fun(nat,A),F2),F4,at_top(nat))
=> filterlim(int,A,F2,F4,at_top(int)) ) ).
% filterlim_int_of_nat_at_topD
tff(fact_8168_Greatest__def,axiom,
! [A: $tType] :
( order(A)
=> ! [P: fun(A,bool)] : ( order_Greatest(A,P) = the(A,aTP_Lamp_ahi(fun(A,bool),fun(A,bool),P)) ) ) ).
% Greatest_def
tff(fact_8169_Bfun__metric__def,axiom,
! [B: $tType,A: $tType] :
( real_V7819770556892013058_space(B)
=> ! [F2: fun(A,B),F4: filter(A)] :
( bfun(A,B,F2,F4)
<=> ? [Y2: B,K6: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),K6))
& eventually(A,aa(real,fun(A,bool),aa(B,fun(real,fun(A,bool)),aTP_Lamp_ahj(fun(A,B),fun(B,fun(real,fun(A,bool))),F2),Y2),K6),F4) ) ) ) ).
% Bfun_metric_def
tff(fact_8170_GreatestI__ex__nat,axiom,
! [P: fun(nat,bool),B2: nat] :
( ? [X_1: nat] : pp(aa(nat,bool,P,X_1))
=> ( ! [Y3: nat] :
( pp(aa(nat,bool,P,Y3))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Y3),B2)) )
=> pp(aa(nat,bool,P,order_Greatest(nat,P))) ) ) ).
% GreatestI_ex_nat
tff(fact_8171_Greatest__le__nat,axiom,
! [P: fun(nat,bool),K: nat,B2: nat] :
( pp(aa(nat,bool,P,K))
=> ( ! [Y3: nat] :
( pp(aa(nat,bool,P,Y3))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Y3),B2)) )
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),K),order_Greatest(nat,P))) ) ) ).
% Greatest_le_nat
tff(fact_8172_GreatestI__nat,axiom,
! [P: fun(nat,bool),K: nat,B2: nat] :
( pp(aa(nat,bool,P,K))
=> ( ! [Y3: nat] :
( pp(aa(nat,bool,P,Y3))
=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Y3),B2)) )
=> pp(aa(nat,bool,P,order_Greatest(nat,P))) ) ) ).
% GreatestI_nat
tff(fact_8173_BseqI_H,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X6: fun(nat,A),K5: real] :
( ! [N3: nat] : pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(nat,A,X6,N3))),K5))
=> bfun(nat,A,X6,at_top(nat)) ) ) ).
% BseqI'
tff(fact_8174_Bseq__minus__iff,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [X6: fun(nat,A)] :
( bfun(nat,A,aTP_Lamp_ay(fun(nat,A),fun(nat,A),X6),at_top(nat))
<=> bfun(nat,A,X6,at_top(nat)) ) ) ).
% Bseq_minus_iff
tff(fact_8175_Bseq__mult,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [F2: fun(nat,A),G: fun(nat,A)] :
( bfun(nat,A,F2,at_top(nat))
=> ( bfun(nat,A,G,at_top(nat))
=> bfun(nat,A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_ahk(fun(nat,A),fun(fun(nat,A),fun(nat,A)),F2),G),at_top(nat)) ) ) ) ).
% Bseq_mult
tff(fact_8176_Bseq__Suc__iff,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A)] :
( bfun(nat,A,aTP_Lamp_bd(fun(nat,A),fun(nat,A),F2),at_top(nat))
<=> bfun(nat,A,F2,at_top(nat)) ) ) ).
% Bseq_Suc_iff
tff(fact_8177_Bseq__add,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A),C2: A] :
( bfun(nat,A,F2,at_top(nat))
=> bfun(nat,A,aa(A,fun(nat,A),aTP_Lamp_ahl(fun(nat,A),fun(A,fun(nat,A)),F2),C2),at_top(nat)) ) ) ).
% Bseq_add
tff(fact_8178_Bseq__offset,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [X6: fun(nat,A),K: nat] :
( bfun(nat,A,aa(nat,fun(nat,A),aTP_Lamp_ahm(fun(nat,A),fun(nat,fun(nat,A)),X6),K),at_top(nat))
=> bfun(nat,A,X6,at_top(nat)) ) ) ).
% Bseq_offset
tff(fact_8179_Bseq__add__iff,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [F2: fun(nat,A),C2: A] :
( bfun(nat,A,aa(A,fun(nat,A),aTP_Lamp_ahl(fun(nat,A),fun(A,fun(nat,A)),F2),C2),at_top(nat))
<=> bfun(nat,A,F2,at_top(nat)) ) ) ).
% Bseq_add_iff
tff(fact_8180_ATP_Olambda__1,axiom,
! [Uu2: nat] : ( aa(nat,real,aTP_Lamp_ao(nat,real),Uu2) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,power_power(real,aa(real,real,uminus_uminus(real),one_one(real))),Uu2)),one_one(real))),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Uu2),aa(num,nat,numeral_numeral(nat),bit0(one2)))),one_one(nat)))) ) ).
% ATP.lambda_1
tff(fact_8181_ATP_Olambda__2,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: A] : ( aa(A,A,aTP_Lamp_aas(A,A),Uu2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,exp(A),Uu2)),one_one(A))),Uu2) ) ) ).
% ATP.lambda_2
tff(fact_8182_ATP_Olambda__3,axiom,
! [A: $tType,Uu2: set(set(A))] : ( aa(set(set(A)),int,aTP_Lamp_oj(set(set(A)),int),Uu2) = aa(int,int,aa(int,fun(int,int),times_times(int),aa(nat,int,power_power(int,aa(int,int,uminus_uminus(int),one_one(int))),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(set(set(A)),nat,finite_card(set(A)),Uu2)),one_one(nat)))),aa(nat,int,semiring_1_of_nat(int),aa(set(A),nat,finite_card(A),complete_Inf_Inf(set(A),Uu2)))) ) ).
% ATP.lambda_3
tff(fact_8183_ATP_Olambda__4,axiom,
! [A: $tType,Uu2: A] : ( aa(A,set(product_prod(A,A)),aTP_Lamp_tf(A,set(product_prod(A,A))),Uu2) = aa(set(product_prod(A,A)),set(product_prod(A,A)),insert(product_prod(A,A),aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),Uu2),Uu2)),bot_bot(set(product_prod(A,A)))) ) ).
% ATP.lambda_4
tff(fact_8184_ATP_Olambda__5,axiom,
! [Uu2: nat] : ( aa(nat,real,aTP_Lamp_ca(nat,real),Uu2) = aa(nat,real,power_power(real,aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(num,real,numeral_numeral(real),bit0(one2)))),aa(nat,nat,suc,Uu2)) ) ).
% ATP.lambda_5
tff(fact_8185_ATP_Olambda__6,axiom,
! [Uu2: real] :
( pp(aa(real,bool,aTP_Lamp_iu(real,bool),Uu2))
<=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Uu2))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Uu2),aa(num,real,numeral_numeral(real),bit0(one2))))
& ( aa(real,real,cos(real),Uu2) = zero_zero(real) ) ) ) ).
% ATP.lambda_6
tff(fact_8186_ATP_Olambda__7,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: nat] : ( aa(nat,A,aTP_Lamp_acc(nat,A),Uu2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,suc,Uu2))),aa(nat,A,semiring_1_of_nat(A),Uu2)) ) ) ).
% ATP.lambda_7
tff(fact_8187_ATP_Olambda__8,axiom,
! [Uu2: nat] : ( aa(nat,real,aTP_Lamp_fs(nat,real),Uu2) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,cos_coeff,Uu2)),aa(nat,real,power_power(real,zero_zero(real)),Uu2)) ) ).
% ATP.lambda_8
tff(fact_8188_ATP_Olambda__9,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: nat] : ( aa(nat,A,aTP_Lamp_acd(nat,A),Uu2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(nat,A,semiring_1_of_nat(A),Uu2)),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,suc,Uu2))) ) ) ).
% ATP.lambda_9
tff(fact_8189_ATP_Olambda__10,axiom,
! [Uu2: real] : ( aa(real,real,aTP_Lamp_aaw(real,real),Uu2) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,cos(real),Uu2)),sin(real,Uu2)) ) ).
% ATP.lambda_10
tff(fact_8190_ATP_Olambda__11,axiom,
! [Uu2: real] : ( aa(real,real,aTP_Lamp_aen(real,real),Uu2) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,ln_ln(real),Uu2)),Uu2) ) ).
% ATP.lambda_11
tff(fact_8191_ATP_Olambda__12,axiom,
! [A: $tType] :
( semiring_1(A)
=> ! [Uu2: nat] :
( pp(aa(nat,bool,aTP_Lamp_py(nat,bool),Uu2))
<=> ( aa(nat,A,semiring_1_of_nat(A),Uu2) = zero_zero(A) ) ) ) ).
% ATP.lambda_12
tff(fact_8192_ATP_Olambda__13,axiom,
! [Uu2: nat] : ( aa(nat,real,aTP_Lamp_abo(nat,real),Uu2) = aa(real,real,root(Uu2),aa(nat,real,semiring_1_of_nat(real),Uu2)) ) ).
% ATP.lambda_13
tff(fact_8193_ATP_Olambda__14,axiom,
! [Uu2: nat] : ( aa(nat,nat,aTP_Lamp_je(nat,nat),Uu2) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uu2),aa(nat,nat,suc,zero_zero(nat))) ) ).
% ATP.lambda_14
tff(fact_8194_ATP_Olambda__15,axiom,
! [B: $tType,Uu2: B] : ( aa(B,product_prod(B,B),aTP_Lamp_ns(B,product_prod(B,B)),Uu2) = aa(B,product_prod(B,B),aa(B,fun(B,product_prod(B,B)),product_Pair(B,B),Uu2),Uu2) ) ).
% ATP.lambda_15
tff(fact_8195_ATP_Olambda__16,axiom,
! [A: $tType,Uu2: A] : ( aa(A,product_prod(A,A),aTP_Lamp_nr(A,product_prod(A,A)),Uu2) = aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),Uu2),Uu2) ) ).
% ATP.lambda_16
tff(fact_8196_ATP_Olambda__17,axiom,
! [A: $tType] :
( semiring_1(A)
=> ! [Uu2: A] : ( aa(A,A,aTP_Lamp_cy(A,A),Uu2) = aa(A,A,aa(A,fun(A,A),plus_plus(A),Uu2),one_one(A)) ) ) ).
% ATP.lambda_17
tff(fact_8197_ATP_Olambda__18,axiom,
! [A: $tType,Uu2: A] : ( aa(A,list(A),aTP_Lamp_sj(A,list(A)),Uu2) = aa(list(A),list(A),cons(A,Uu2),nil(A)) ) ).
% ATP.lambda_18
tff(fact_8198_ATP_Olambda__19,axiom,
! [Uu2: nat] : ( aa(nat,real,aTP_Lamp_abw(nat,real),Uu2) = aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(nat,real,semiring_1_of_nat(real),Uu2)) ) ).
% ATP.lambda_19
tff(fact_8199_ATP_Olambda__20,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: nat] : ( aa(nat,A,aTP_Lamp_acb(nat,A),Uu2) = aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),aa(nat,A,semiring_1_of_nat(A),Uu2)) ) ) ).
% ATP.lambda_20
tff(fact_8200_ATP_Olambda__21,axiom,
! [B: $tType,Uu2: list(B)] : ( aa(list(B),fun(nat,nat),aTP_Lamp_pe(list(B),fun(nat,nat)),Uu2) = aa(nat,fun(nat,nat),ord_max(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(list(B),nat,size_size(list(B)),Uu2)),aa(nat,nat,suc,zero_zero(nat)))) ) ).
% ATP.lambda_21
tff(fact_8201_ATP_Olambda__22,axiom,
! [B: $tType,Uu2: list(B)] :
( pp(aa(list(B),bool,aTP_Lamp_pf(list(B),bool),Uu2))
<=> ( Uu2 != nil(B) ) ) ).
% ATP.lambda_22
tff(fact_8202_ATP_Olambda__23,axiom,
! [A: $tType,Uu2: list(A)] :
( pp(aa(list(A),bool,aTP_Lamp_pg(list(A),bool),Uu2))
<=> ( Uu2 != nil(A) ) ) ).
% ATP.lambda_23
tff(fact_8203_ATP_Olambda__24,axiom,
! [A: $tType,C: $tType,B: $tType,Uu2: B] : ( aa(B,fun(product_prod(A,C),product_prod(A,product_prod(B,C))),aTP_Lamp_qh(B,fun(product_prod(A,C),product_prod(A,product_prod(B,C)))),Uu2) = aa(fun(A,fun(C,product_prod(A,product_prod(B,C)))),fun(product_prod(A,C),product_prod(A,product_prod(B,C))),product_case_prod(A,C,product_prod(A,product_prod(B,C))),aTP_Lamp_qg(B,fun(A,fun(C,product_prod(A,product_prod(B,C)))),Uu2)) ) ).
% ATP.lambda_24
tff(fact_8204_ATP_Olambda__25,axiom,
! [Uu2: real] : ( aa(real,real,aTP_Lamp_vq(real,real),Uu2) = suminf(real,aTP_Lamp_ap(real,fun(nat,real),Uu2)) ) ).
% ATP.lambda_25
tff(fact_8205_ATP_Olambda__26,axiom,
! [Uu2: nat] : ( aa(nat,set(nat),aTP_Lamp_aer(nat,set(nat)),Uu2) = aa(fun(nat,bool),set(nat),collect(nat),aTP_Lamp_lr(nat,fun(nat,bool),Uu2)) ) ).
% ATP.lambda_26
tff(fact_8206_ATP_Olambda__27,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: real] : ( aa(real,filter(A),aTP_Lamp_aet(real,filter(A)),Uu2) = principal(A,aa(fun(A,bool),set(A),collect(A),aTP_Lamp_aes(real,fun(A,bool),Uu2))) ) ) ).
% ATP.lambda_27
tff(fact_8207_ATP_Olambda__28,axiom,
! [Uu2: nat] : ( aa(nat,real,aTP_Lamp_aby(nat,real),Uu2) = aa(real,real,inverse_inverse(real),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,suc,Uu2))) ) ).
% ATP.lambda_28
tff(fact_8208_ATP_Olambda__29,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: nat] : ( aa(nat,A,aTP_Lamp_abq(nat,A),Uu2) = aa(A,A,inverse_inverse(A),aa(nat,A,semiring_1_of_nat(A),Uu2)) ) ) ).
% ATP.lambda_29
tff(fact_8209_ATP_Olambda__30,axiom,
! [B: $tType,Uu2: list(B)] : ( aa(list(B),fun(nat,nat),aTP_Lamp_pd(list(B),fun(nat,nat)),Uu2) = aa(nat,fun(nat,nat),ord_max(nat),aa(list(B),nat,size_size(list(B)),Uu2)) ) ).
% ATP.lambda_30
tff(fact_8210_ATP_Olambda__31,axiom,
! [A: $tType,Uu2: list(A)] : ( aa(list(A),fun(nat,nat),aTP_Lamp_oo(list(A),fun(nat,nat)),Uu2) = aa(nat,fun(nat,nat),ord_max(nat),aa(list(A),nat,size_size(list(A)),Uu2)) ) ).
% ATP.lambda_31
tff(fact_8211_ATP_Olambda__32,axiom,
! [Uu2: num] : ( aa(num,option(num),aTP_Lamp_tp(num,option(num)),Uu2) = aa(num,option(num),some(num),aa(num,num,bit1,Uu2)) ) ).
% ATP.lambda_32
tff(fact_8212_ATP_Olambda__33,axiom,
! [Uu2: num] : ( aa(num,option(num),aTP_Lamp_tl(num,option(num)),Uu2) = aa(num,option(num),some(num),bit0(Uu2)) ) ).
% ATP.lambda_33
tff(fact_8213_ATP_Olambda__34,axiom,
! [Uu2: int] : ( aa(int,fun(int,product_prod(int,int)),aTP_Lamp_kr(int,fun(int,product_prod(int,int))),Uu2) = aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(int,int,uminus_uminus(int),Uu2)) ) ).
% ATP.lambda_34
tff(fact_8214_ATP_Olambda__35,axiom,
! [Uu2: int] : ( aa(int,fun(int,product_prod(int,int)),aTP_Lamp_ks(int,fun(int,product_prod(int,int))),Uu2) = aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(int,int,abs_abs(int),Uu2)) ) ).
% ATP.lambda_35
tff(fact_8215_ATP_Olambda__36,axiom,
! [Uu2: nat] : ( aa(nat,fun(nat,product_prod(nat,nat)),aTP_Lamp_ii(nat,fun(nat,product_prod(nat,nat))),Uu2) = aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),aa(nat,nat,suc,Uu2)) ) ).
% ATP.lambda_36
tff(fact_8216_ATP_Olambda__37,axiom,
! [Uu2: nat] : ( aa(nat,option(num),aTP_Lamp_tn(nat,option(num)),Uu2) = aa(num,option(num),some(num),one2) ) ).
% ATP.lambda_37
tff(fact_8217_ATP_Olambda__38,axiom,
! [Uu2: num,Uua: nat] : ( aa(nat,option(num),aTP_Lamp_ts(num,fun(nat,option(num)),Uu2),Uua) = case_num(option(num),aa(num,option(num),some(num),one2),aTP_Lamp_tq(nat,fun(num,option(num)),Uua),aTP_Lamp_tr(nat,fun(num,option(num)),Uua),Uu2) ) ).
% ATP.lambda_38
tff(fact_8218_ATP_Olambda__39,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_cw(A,fun(nat,A),Uu2),Uua) = if(A,aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uua),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),semiring_char_0_fact(real,Uua))),aa(nat,A,power_power(A,Uu2),Uua)),zero_zero(A)) ) ) ).
% ATP.lambda_39
tff(fact_8219_ATP_Olambda__40,axiom,
! [A: $tType] :
( comm_ring_1(A)
=> ! [Uu2: nat,Uua: nat] : ( aa(nat,A,aTP_Lamp_et(nat,fun(nat,A),Uu2),Uua) = if(A,aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uua),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,binomial(Uu2),Uua)),zero_zero(A)) ) ) ).
% ATP.lambda_40
tff(fact_8220_ATP_Olambda__41,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_cx(A,fun(nat,A),Uu2),Uua) = if(A,aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uua),zero_zero(A),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),semiring_char_0_fact(real,Uua))),aa(nat,A,power_power(A,Uu2),Uua))) ) ) ).
% ATP.lambda_41
tff(fact_8221_ATP_Olambda__42,axiom,
! [Uu2: fun(nat,real),Uua: nat] : ( aa(nat,real,aTP_Lamp_cb(fun(nat,real),fun(nat,real),Uu2),Uua) = if(real,aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uua),zero_zero(real),aa(nat,real,Uu2,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uua),one_one(nat))),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ).
% ATP.lambda_42
tff(fact_8222_ATP_Olambda__43,axiom,
! [C: $tType,B: $tType,A: $tType,Uu2: product_prod(A,C),Uua: product_prod(C,B)] : ( aa(product_prod(C,B),list(product_prod(A,B)),aTP_Lamp_sy(product_prod(A,C),fun(product_prod(C,B),list(product_prod(A,B))),Uu2),Uua) = if(list(product_prod(A,B)),aa(C,bool,aa(C,fun(C,bool),fequal(C),aa(product_prod(A,C),C,product_snd(A,C),Uu2)),aa(product_prod(C,B),C,product_fst(C,B),Uua)),aa(list(product_prod(A,B)),list(product_prod(A,B)),cons(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),aa(product_prod(A,C),A,product_fst(A,C),Uu2)),aa(product_prod(C,B),B,product_snd(C,B),Uua))),nil(product_prod(A,B))),nil(product_prod(A,B))) ) ).
% ATP.lambda_43
tff(fact_8223_ATP_Olambda__44,axiom,
! [Uu2: code_integer,Uua: code_integer] : ( aa(code_integer,int,aa(code_integer,fun(code_integer,int),aTP_Lamp_jx(code_integer,fun(code_integer,int)),Uu2),Uua) = if(int,aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),fequal(code_integer),Uua),zero_zero(code_integer)),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),code_int_of_integer(Uu2)),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),code_int_of_integer(Uu2))),one_one(int))) ) ).
% ATP.lambda_44
tff(fact_8224_ATP_Olambda__45,axiom,
! [A: $tType] :
( semiring_1(A)
=> ! [Uu2: nat,Uua: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_iv(nat,fun(nat,A)),Uu2),Uua) = if(A,aa(nat,bool,aa(nat,fun(nat,bool),fequal(nat),Uua),zero_zero(nat)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(nat,A,semiring_1_of_nat(A),Uu2)),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(nat,A,semiring_1_of_nat(A),Uu2))),one_one(A))) ) ) ).
% ATP.lambda_45
tff(fact_8225_ATP_Olambda__46,axiom,
! [Uu2: code_integer,Uua: code_integer] : ( aa(code_integer,num,aa(code_integer,fun(code_integer,num),aTP_Lamp_jy(code_integer,fun(code_integer,num)),Uu2),Uua) = if(num,aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),fequal(code_integer),Uua),zero_zero(code_integer)),aa(num,num,aa(num,fun(num,num),plus_plus(num),aa(code_integer,num,code_num_of_integer,Uu2)),aa(code_integer,num,code_num_of_integer,Uu2)),aa(num,num,aa(num,fun(num,num),plus_plus(num),aa(num,num,aa(num,fun(num,num),plus_plus(num),aa(code_integer,num,code_num_of_integer,Uu2)),aa(code_integer,num,code_num_of_integer,Uu2))),one2)) ) ).
% ATP.lambda_46
tff(fact_8226_ATP_Olambda__47,axiom,
! [Uu2: code_integer,Uua: code_integer] : ( aa(code_integer,nat,aa(code_integer,fun(code_integer,nat),aTP_Lamp_ka(code_integer,fun(code_integer,nat)),Uu2),Uua) = if(nat,aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),fequal(code_integer),Uua),zero_zero(code_integer)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),code_nat_of_integer(Uu2)),code_nat_of_integer(Uu2)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),code_nat_of_integer(Uu2)),code_nat_of_integer(Uu2))),one_one(nat))) ) ).
% ATP.lambda_47
tff(fact_8227_ATP_Olambda__48,axiom,
! [Uu2: int,Uua: int] : ( aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),aTP_Lamp_ki(int,fun(int,product_prod(int,int))),Uu2),Uua) = if(product_prod(int,int),aa(int,bool,aa(int,fun(int,bool),fequal(int),Uu2),zero_zero(int)),aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),zero_zero(int)),one_one(int)),aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(int,int,sgn_sgn(int),Uu2)),Uua)),aa(int,int,abs_abs(int),Uu2))) ) ).
% ATP.lambda_48
tff(fact_8228_ATP_Olambda__49,axiom,
! [A: $tType] :
( comm_ring_1(A)
=> ! [Uu2: nat,Uua: nat] : ( aa(nat,A,aTP_Lamp_eu(nat,fun(nat,A),Uu2),Uua) = if(A,aa(bool,bool,fNot,aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uua)),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,binomial(Uu2),Uua)),zero_zero(A)) ) ) ).
% ATP.lambda_49
tff(fact_8229_ATP_Olambda__50,axiom,
! [Uu2: nat,Uua: num] : ( aa(num,option(num),aa(nat,fun(num,option(num)),aTP_Lamp_tt(nat,fun(num,option(num))),Uu2),Uua) = case_nat(option(num),none(num),aTP_Lamp_ts(num,fun(nat,option(num)),Uua),Uu2) ) ).
% ATP.lambda_50
tff(fact_8230_ATP_Olambda__51,axiom,
! [Uu2: nat,Uua: num] : ( aa(num,option(num),aTP_Lamp_tq(nat,fun(num,option(num)),Uu2),Uua) = case_option(option(num),num,none(num),aTP_Lamp_tl(num,option(num)),bit_take_bit_num(Uu2,Uua)) ) ).
% ATP.lambda_51
tff(fact_8231_ATP_Olambda__52,axiom,
! [Uu2: num,Uua: nat] : ( aa(nat,option(num),aTP_Lamp_tm(num,fun(nat,option(num)),Uu2),Uua) = case_option(option(num),num,none(num),aTP_Lamp_tl(num,option(num)),bit_take_bit_num(Uua,Uu2)) ) ).
% ATP.lambda_52
tff(fact_8232_ATP_Olambda__53,axiom,
! [A: $tType,Uu2: list(list(A)),Uua: nat] : ( aa(nat,list(A),aTP_Lamp_on(list(list(A)),fun(nat,list(A)),Uu2),Uua) = aa(list(nat),list(A),map(nat,A,aa(nat,fun(nat,A),aTP_Lamp_om(list(list(A)),fun(nat,fun(nat,A)),Uu2),Uua)),upt(zero_zero(nat),aa(list(list(A)),nat,size_size(list(list(A))),Uu2))) ) ).
% ATP.lambda_53
tff(fact_8233_ATP_Olambda__54,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: fun(nat,fun(nat,A)),Uua: nat] : ( aa(nat,A,aTP_Lamp_in(fun(nat,fun(nat,A)),fun(nat,A),Uu2),Uua) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(nat,fun(nat,A),aTP_Lamp_im(fun(nat,fun(nat,A)),fun(nat,fun(nat,A)),Uu2),Uua)),aa(nat,set(nat),set_ord_atMost(nat),Uua)) ) ) ).
% ATP.lambda_54
tff(fact_8234_ATP_Olambda__55,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: fun(nat,fun(nat,A)),Uua: nat] : ( aa(nat,A,aTP_Lamp_iq(fun(nat,fun(nat,A)),fun(nat,A),Uu2),Uua) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aTP_Lamp_ip(fun(nat,fun(nat,A)),fun(nat,fun(nat,A)),Uu2),Uua)),aa(nat,set(nat),set_ord_atMost(nat),Uua)) ) ) ).
% ATP.lambda_55
tff(fact_8235_ATP_Olambda__56,axiom,
! [Uu2: real,Uua: nat] : ( aa(nat,real,aTP_Lamp_al(real,fun(nat,real),Uu2),Uua) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,power_power(real,aa(real,real,uminus_uminus(real),one_one(real))),Uua)),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uua),one_one(nat)))))),aa(nat,real,power_power(real,aa(real,real,aa(real,fun(real,real),minus_minus(real),Uu2),one_one(real))),aa(nat,nat,suc,Uua))) ) ).
% ATP.lambda_56
tff(fact_8236_ATP_Olambda__57,axiom,
! [Uu2: real,Uua: nat] : ( aa(nat,real,aTP_Lamp_bu(real,fun(nat,real),Uu2),Uua) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(nat,real,power_power(real,aa(real,real,uminus_uminus(real),one_one(real))),Uua)),semiring_char_0_fact(real,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uua)),one_one(nat))))),aa(nat,real,power_power(real,Uu2),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uua)),one_one(nat)))) ) ).
% ATP.lambda_57
tff(fact_8237_ATP_Olambda__58,axiom,
! [Uu2: real,Uua: nat] : ( aa(nat,real,aTP_Lamp_cd(real,fun(nat,real),Uu2),Uua) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(nat,real,power_power(real,aa(real,real,uminus_uminus(real),one_one(real))),Uua)),semiring_char_0_fact(real,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uua)))),aa(nat,real,power_power(real,Uu2),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uua))) ) ).
% ATP.lambda_58
tff(fact_8238_ATP_Olambda__59,axiom,
! [A: $tType] :
( comm_ring_1(A)
=> ! [Uu2: nat,Uua: nat] : ( aa(nat,A,aTP_Lamp_eo(nat,fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),Uua)),aa(nat,A,semiring_1_of_nat(A),Uua))),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,binomial(Uu2),Uua))) ) ) ).
% ATP.lambda_59
tff(fact_8239_ATP_Olambda__60,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [Uu2: nat,Uua: nat] : ( aa(nat,A,aTP_Lamp_ep(nat,fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(nat,A,gbinomial(A,aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uu2),Uua))),Uua)),aa(nat,A,power_power(A,aa(num,A,numeral_numeral(A),bit0(one2))),Uua)) ) ) ).
% ATP.lambda_60
tff(fact_8240_ATP_Olambda__61,axiom,
! [Uu2: real,Uua: real] :
( pp(aa(real,bool,aTP_Lamp_ik(real,fun(real,bool),Uu2),Uua))
<=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),Uua))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Uua),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
& ( sin(real,Uua) = Uu2 ) ) ) ).
% ATP.lambda_61
tff(fact_8241_ATP_Olambda__62,axiom,
! [Uu2: real,Uua: real] :
( pp(aa(real,bool,aTP_Lamp_ij(real,fun(real,bool),Uu2),Uua))
<=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2))))),Uua))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Uua),aa(real,real,aa(real,fun(real,real),divide_divide(real),pi),aa(num,real,numeral_numeral(real),bit0(one2)))))
& ( aa(real,real,tan(real),Uua) = Uu2 ) ) ) ).
% ATP.lambda_62
tff(fact_8242_ATP_Olambda__63,axiom,
! [Uu2: complex,Uua: real] :
( pp(aa(real,bool,aTP_Lamp_cz(complex,fun(real,bool),Uu2),Uua))
<=> ( ( aa(complex,complex,sgn_sgn(complex),Uu2) = cis(Uua) )
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(real,real,uminus_uminus(real),pi)),Uua))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Uua),pi)) ) ) ).
% ATP.lambda_63
tff(fact_8243_ATP_Olambda__64,axiom,
! [Uu2: real,Uua: int] :
( pp(aa(int,bool,aTP_Lamp_ke(real,fun(int,bool),Uu2),Uua))
<=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(int,real,ring_1_of_int(real),Uua)),Uu2))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),Uu2),aa(int,real,ring_1_of_int(real),aa(int,int,aa(int,fun(int,int),plus_plus(int),Uua),one_one(int))))) ) ) ).
% ATP.lambda_64
tff(fact_8244_ATP_Olambda__65,axiom,
! [Uu2: rat,Uua: int] :
( pp(aa(int,bool,aTP_Lamp_kf(rat,fun(int,bool),Uu2),Uua))
<=> ( pp(aa(rat,bool,aa(rat,fun(rat,bool),ord_less_eq(rat),aa(int,rat,ring_1_of_int(rat),Uua)),Uu2))
& pp(aa(rat,bool,aa(rat,fun(rat,bool),ord_less(rat),Uu2),aa(int,rat,ring_1_of_int(rat),aa(int,int,aa(int,fun(int,int),plus_plus(int),Uua),one_one(int))))) ) ) ).
% ATP.lambda_65
tff(fact_8245_ATP_Olambda__66,axiom,
! [Uu2: real,Uua: nat] : ( aa(nat,real,aTP_Lamp_ap(real,fun(nat,real),Uu2),Uua) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,power_power(real,aa(real,real,uminus_uminus(real),one_one(real))),Uua)),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Uua),aa(num,nat,numeral_numeral(nat),bit0(one2)))),one_one(nat))))),aa(nat,real,power_power(real,Uu2),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Uua),aa(num,nat,numeral_numeral(nat),bit0(one2)))),one_one(nat))))) ) ).
% ATP.lambda_66
tff(fact_8246_ATP_Olambda__67,axiom,
! [Uu2: real,Uua: nat] : ( aa(nat,real,aTP_Lamp_vr(real,fun(nat,real),Uu2),Uua) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,power_power(real,aa(real,real,uminus_uminus(real),one_one(real))),Uua)),aa(nat,real,power_power(real,Uu2),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Uua),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ).
% ATP.lambda_67
tff(fact_8247_ATP_Olambda__68,axiom,
! [Uu2: fun(nat,real),Uua: nat] : ( aa(nat,real,aTP_Lamp_abc(fun(nat,real),fun(nat,real),Uu2),Uua) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,power_power(real,aa(real,real,uminus_uminus(real),one_one(real))),Uua)),aa(nat,real,Uu2,Uua)) ) ).
% ATP.lambda_68
tff(fact_8248_ATP_Olambda__69,axiom,
! [A: $tType] :
( comm_ring_1(A)
=> ! [Uu2: nat,Uua: nat] : ( aa(nat,A,aTP_Lamp_es(nat,fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),Uua)),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,binomial(Uu2),Uua))) ) ) ).
% ATP.lambda_69
tff(fact_8249_ATP_Olambda__70,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_dp(A,fun(nat,A),Uu2),Uua) = aa(nat,A,gbinomial(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),Uu2),aa(nat,A,semiring_1_of_nat(A),Uua))),Uua) ) ) ).
% ATP.lambda_70
tff(fact_8250_ATP_Olambda__71,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_ev(A,fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,gbinomial(A,Uu2),Uua)),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),Uu2),aa(num,A,numeral_numeral(A),bit0(one2)))),aa(nat,A,semiring_1_of_nat(A),Uua))) ) ) ).
% ATP.lambda_71
tff(fact_8251_ATP_Olambda__72,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_ea(A,fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,gbinomial(A,Uu2),Uua)),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),one_one(A))),Uua)) ) ) ).
% ATP.lambda_72
tff(fact_8252_ATP_Olambda__73,axiom,
! [Uu2: nat,Uua: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),aTP_Lamp_oi(nat,fun(nat,bool)),Uu2),Uua))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),Uu2),Uua))
& ( Uu2 != Uua ) ) ) ).
% ATP.lambda_73
tff(fact_8253_ATP_Olambda__74,axiom,
! [A: $tType,Uu2: set(set(A)),Uua: set(set(A))] :
( pp(aa(set(set(A)),bool,aTP_Lamp_ok(set(set(A)),fun(set(set(A)),bool),Uu2),Uua))
<=> ( pp(aa(set(set(A)),bool,aa(set(set(A)),fun(set(set(A)),bool),ord_less_eq(set(set(A))),Uua),Uu2))
& ( Uua != bot_bot(set(set(A))) ) ) ) ).
% ATP.lambda_74
tff(fact_8254_ATP_Olambda__75,axiom,
! [A: $tType,Uu2: set(option(A)),Uua: option(A)] :
( pp(aa(option(A),bool,aTP_Lamp_sx(set(option(A)),fun(option(A),bool),Uu2),Uua))
<=> ( pp(member(option(A),Uua,Uu2))
& ( Uua != none(A) ) ) ) ).
% ATP.lambda_75
tff(fact_8255_ATP_Olambda__76,axiom,
! [Uu2: nat,Uua: nat] : ( aa(nat,nat,aTP_Lamp_ef(nat,fun(nat,nat),Uu2),Uua) = aa(nat,nat,power_power(nat,aa(nat,nat,binomial(Uu2),Uua)),aa(num,nat,numeral_numeral(nat),bit0(one2))) ) ).
% ATP.lambda_76
tff(fact_8256_ATP_Olambda__77,axiom,
! [Uu2: real,Uua: nat] : ( aa(nat,real,aTP_Lamp_gi(real,fun(nat,real),Uu2),Uua) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(nat,real,power_power(real,Uu2),Uua)),semiring_char_0_fact(real,Uua)) ) ).
% ATP.lambda_77
tff(fact_8257_ATP_Olambda__78,axiom,
! [Uu2: nat,Uua: real] : ( aa(real,real,aTP_Lamp_aep(nat,fun(real,real),Uu2),Uua) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(nat,real,power_power(real,Uua),Uu2)),aa(real,real,exp(real),Uua)) ) ).
% ATP.lambda_78
tff(fact_8258_ATP_Olambda__79,axiom,
! [Uu2: nat,Uua: nat] : ( aa(nat,nat,aTP_Lamp_dn(nat,fun(nat,nat),Uu2),Uua) = aa(nat,nat,binomial(aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uu2),Uua)),Uu2) ) ).
% ATP.lambda_79
tff(fact_8259_ATP_Olambda__80,axiom,
! [Uu2: nat,Uua: nat] : ( aa(nat,nat,aTP_Lamp_dm(nat,fun(nat,nat),Uu2),Uua) = aa(nat,nat,binomial(aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uu2),Uua)),Uua) ) ).
% ATP.lambda_80
tff(fact_8260_ATP_Olambda__81,axiom,
! [Uu2: nat,Uua: complex] :
( pp(aa(complex,bool,aTP_Lamp_fh(nat,fun(complex,bool),Uu2),Uua))
<=> ( aa(nat,complex,power_power(complex,Uua),Uu2) = one_one(complex) ) ) ).
% ATP.lambda_81
tff(fact_8261_ATP_Olambda__82,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra(A)
& idom(A) )
=> ! [Uu2: nat,Uua: A] :
( pp(aa(A,bool,aTP_Lamp_lt(nat,fun(A,bool),Uu2),Uua))
<=> ( aa(nat,A,power_power(A,Uua),Uu2) = one_one(A) ) ) ) ).
% ATP.lambda_82
tff(fact_8262_ATP_Olambda__83,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [Uu2: A,Uua: A] :
( pp(aa(A,bool,aTP_Lamp_ls(A,fun(A,bool),Uu2),Uua))
<=> ( pp(member(A,Uua,ring_1_Ints(A)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(A,A,abs_abs(A),Uua)),Uu2)) ) ) ) ).
% ATP.lambda_83
tff(fact_8263_ATP_Olambda__84,axiom,
! [Uu2: real,Uua: nat] : ( aa(nat,real,aTP_Lamp_acj(real,fun(nat,real),Uu2),Uua) = aa(nat,real,power_power(real,aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),aa(real,real,aa(real,fun(real,real),divide_divide(real),Uu2),aa(nat,real,semiring_1_of_nat(real),Uua)))),Uua) ) ).
% ATP.lambda_84
tff(fact_8264_ATP_Olambda__85,axiom,
! [Uu2: real,Uua: real] : ( aa(real,real,aTP_Lamp_ads(real,fun(real,real),Uu2),Uua) = powr(real,aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),aa(real,real,aa(real,fun(real,real),times_times(real),Uu2),Uua)),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),Uua)) ) ).
% ATP.lambda_85
tff(fact_8265_ATP_Olambda__86,axiom,
! [Uu2: real,Uua: real] : ( aa(real,real,aTP_Lamp_aeq(real,fun(real,real),Uu2),Uua) = powr(real,aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),aa(real,real,aa(real,fun(real,real),divide_divide(real),Uu2),Uua)),Uua) ) ).
% ATP.lambda_86
tff(fact_8266_ATP_Olambda__87,axiom,
! [Uu2: real,Uua: nat] : ( aa(nat,real,aTP_Lamp_aj(real,fun(nat,real),Uu2),Uua) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Uua),aa(num,nat,numeral_numeral(nat),bit0(one2)))),one_one(nat))))),aa(nat,real,power_power(real,Uu2),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Uua),aa(num,nat,numeral_numeral(nat),bit0(one2)))),one_one(nat)))) ) ).
% ATP.lambda_87
tff(fact_8267_ATP_Olambda__88,axiom,
! [Uu2: real,Uua: real] :
( pp(aa(real,bool,aTP_Lamp_it(real,fun(real,bool),Uu2),Uua))
<=> ( pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),Uua))
& pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Uua),pi))
& ( aa(real,real,cos(real),Uua) = Uu2 ) ) ) ).
% ATP.lambda_88
tff(fact_8268_ATP_Olambda__89,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_ia(fun(nat,A),fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uua))),aa(nat,A,Uu2,aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uua)))) ) ) ).
% ATP.lambda_89
tff(fact_8269_ATP_Olambda__90,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_dw(fun(nat,A),fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,Uu2,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uua))),aa(nat,A,Uu2,aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uua)))) ) ) ).
% ATP.lambda_90
tff(fact_8270_ATP_Olambda__91,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_abs(fun(nat,A),fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,Uu2,aa(nat,nat,suc,Uua))),aa(nat,A,Uu2,Uua)) ) ) ).
% ATP.lambda_91
tff(fact_8271_ATP_Olambda__92,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_fx(fun(nat,A),fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,Uu2,aa(nat,nat,suc,Uua))),aa(nat,A,Uu2,Uua)) ) ) ).
% ATP.lambda_92
tff(fact_8272_ATP_Olambda__93,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: fun(nat,fun(nat,A)),Uua: nat] : ( aa(nat,A,aTP_Lamp_ji(fun(nat,fun(nat,A)),fun(nat,A),Uu2),Uua) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(nat,fun(nat,A),Uu2,Uua)),set_or7035219750837199246ssThan(nat,zero_zero(nat),Uua)) ) ) ).
% ATP.lambda_93
tff(fact_8273_ATP_Olambda__94,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: fun(nat,fun(nat,A)),Uua: nat] : ( aa(nat,A,aTP_Lamp_jg(fun(nat,fun(nat,A)),fun(nat,A),Uu2),Uua) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),Uu2,Uua)),set_or7035219750837199246ssThan(nat,zero_zero(nat),Uua)) ) ) ).
% ATP.lambda_94
tff(fact_8274_ATP_Olambda__95,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_bi(fun(nat,A),fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,Uua)),aa(nat,A,power_power(A,zero_zero(A)),Uua)) ) ) ).
% ATP.lambda_95
tff(fact_8275_ATP_Olambda__96,axiom,
! [A: $tType] :
( real_V2822296259951069270ebra_1(A)
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_an(fun(nat,A),fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,Uua)),aa(nat,A,power_power(A,zero_zero(A)),Uua)) ) ) ).
% ATP.lambda_96
tff(fact_8276_ATP_Olambda__97,axiom,
! [A: $tType] :
( division_ring(A)
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_lc(fun(nat,A),fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,Uua)),aa(nat,A,power_power(A,zero_zero(A)),Uua)) ) ) ).
% ATP.lambda_97
tff(fact_8277_ATP_Olambda__98,axiom,
! [A: $tType] :
( ( ring_1(A)
& topolo4958980785337419405_space(A) )
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_bj(fun(nat,A),fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,Uua)),aa(nat,A,power_power(A,zero_zero(A)),Uua)) ) ) ).
% ATP.lambda_98
tff(fact_8278_ATP_Olambda__99,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_gw(fun(nat,A),fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,Uu2,Uua)),aa(nat,A,Uu2,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uua),one_one(nat)))) ) ) ).
% ATP.lambda_99
tff(fact_8279_ATP_Olambda__100,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_gv(fun(nat,A),fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,Uu2,Uua)),aa(nat,A,Uu2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uua),one_one(nat)))) ) ) ).
% ATP.lambda_100
tff(fact_8280_ATP_Olambda__101,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_abt(fun(nat,A),fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,Uu2,Uua)),aa(nat,A,Uu2,aa(nat,nat,suc,Uua))) ) ) ).
% ATP.lambda_101
tff(fact_8281_ATP_Olambda__102,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_dg(fun(nat,A),fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,Uu2,Uua)),aa(nat,A,Uu2,aa(nat,nat,suc,Uua))) ) ) ).
% ATP.lambda_102
tff(fact_8282_ATP_Olambda__103,axiom,
! [A: $tType] :
( order(A)
=> ! [Uu2: fun(A,bool),Uua: A] :
( pp(aa(A,bool,aTP_Lamp_ahi(fun(A,bool),fun(A,bool),Uu2),Uua))
<=> ( pp(aa(A,bool,Uu2,Uua))
& ! [Y2: A] :
( pp(aa(A,bool,Uu2,Y2))
=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Y2),Uua)) ) ) ) ) ).
% ATP.lambda_103
tff(fact_8283_ATP_Olambda__104,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: fun(nat,fun(nat,A)),Uua: nat] : ( aa(nat,A,aTP_Lamp_ht(fun(nat,fun(nat,A)),fun(nat,A),Uu2),Uua) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(nat,fun(nat,A),Uu2,Uua)),aa(nat,set(nat),set_ord_lessThan(nat),Uua)) ) ) ).
% ATP.lambda_104
tff(fact_8284_ATP_Olambda__105,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: fun(nat,fun(nat,A)),Uua: nat] : ( aa(nat,A,aTP_Lamp_gr(fun(nat,fun(nat,A)),fun(nat,A),Uu2),Uua) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),Uu2,Uua)),aa(nat,set(nat),set_ord_lessThan(nat),Uua)) ) ) ).
% ATP.lambda_105
tff(fact_8285_ATP_Olambda__106,axiom,
! [A: $tType,Uu2: fun(A,real),Uua: A] :
( pp(aa(A,bool,aTP_Lamp_agm(fun(A,real),fun(A,bool),Uu2),Uua))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),aa(A,real,Uu2,Uua)),zero_zero(real))) ) ).
% ATP.lambda_106
tff(fact_8286_ATP_Olambda__107,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(A,real),Uua: A] : ( aa(A,real,aTP_Lamp_xy(fun(A,real),fun(A,real),Uu2),Uua) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(A,real,Uu2,Uua)),zero_zero(real)) ) ) ).
% ATP.lambda_107
tff(fact_8287_ATP_Olambda__108,axiom,
! [A: $tType,Uu2: fun(A,real),Uua: A] : ( aa(A,complex,aTP_Lamp_fd(fun(A,real),fun(A,complex),Uu2),Uua) = complex2(aa(A,real,Uu2,Uua),zero_zero(real)) ) ).
% ATP.lambda_108
tff(fact_8288_ATP_Olambda__109,axiom,
! [B: $tType,A: $tType,Uu2: fun(B,A),Uua: B] : ( aa(B,list(A),aTP_Lamp_sd(fun(B,A),fun(B,list(A)),Uu2),Uua) = aa(list(A),list(A),cons(A,aa(B,A,Uu2,Uua)),nil(A)) ) ).
% ATP.lambda_109
tff(fact_8289_ATP_Olambda__110,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: fun(B,A),Uua: B] :
( pp(aa(B,bool,aTP_Lamp_lp(fun(B,A),fun(B,bool),Uu2),Uua))
<=> ( aa(B,A,Uu2,Uua) = zero_zero(A) ) ) ) ).
% ATP.lambda_110
tff(fact_8290_ATP_Olambda__111,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: fun(B,A),Uua: B] :
( pp(aa(B,bool,aTP_Lamp_lq(fun(B,A),fun(B,bool),Uu2),Uua))
<=> ( aa(B,A,Uu2,Uua) = one_one(A) ) ) ) ).
% ATP.lambda_111
tff(fact_8291_ATP_Olambda__112,axiom,
! [Uu2: fun(nat,real),Uua: nat] : ( aa(nat,real,aTP_Lamp_act(fun(nat,real),fun(nat,real),Uu2),Uua) = aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aTP_Lamp_abc(fun(nat,real),fun(nat,real),Uu2)),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uua)),one_one(nat)))) ) ).
% ATP.lambda_112
tff(fact_8292_ATP_Olambda__113,axiom,
! [Uu2: fun(nat,real),Uua: nat] : ( aa(nat,real,aTP_Lamp_acs(fun(nat,real),fun(nat,real),Uu2),Uua) = aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aTP_Lamp_abc(fun(nat,real),fun(nat,real),Uu2)),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uua))) ) ).
% ATP.lambda_113
tff(fact_8293_ATP_Olambda__114,axiom,
! [A: $tType,Uu2: list(A),Uua: list(A)] : ( aa(list(A),list(list(A)),aTP_Lamp_sh(list(A),fun(list(A),list(list(A))),Uu2),Uua) = aa(list(A),list(list(A)),map(A,list(A),aTP_Lamp_sg(list(A),fun(A,list(A)),Uua)),Uu2) ) ).
% ATP.lambda_114
tff(fact_8294_ATP_Olambda__115,axiom,
! [Uu2: nat,Uua: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),aTP_Lamp_qb(nat,fun(nat,nat)),Uu2),Uua) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),nat_triangle(aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uu2),Uua))),Uu2) ) ).
% ATP.lambda_115
tff(fact_8295_ATP_Olambda__116,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [Uu2: fun(A,B),Uua: A] : ( aa(A,real,aTP_Lamp_adc(fun(A,B),fun(A,real),Uu2),Uua) = aa(real,real,aa(real,fun(real,real),divide_divide(real),real_V7770717601297561774m_norm(B,aa(A,B,Uu2,Uua))),real_V7770717601297561774m_norm(A,Uua)) ) ) ).
% ATP.lambda_116
tff(fact_8296_ATP_Olambda__117,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_cl(A,fun(nat,A),Uu2),Uua) = aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),semiring_char_0_fact(real,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uua),aa(num,nat,numeral_numeral(nat),bit0(one2)))))),aa(nat,A,power_power(A,Uu2),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uua),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ) ).
% ATP.lambda_117
tff(fact_8297_ATP_Olambda__118,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_cu(A,fun(nat,A),Uu2),Uua) = aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),semiring_char_0_fact(real,aa(nat,nat,suc,Uua)))),aa(nat,A,power_power(A,Uu2),aa(nat,nat,suc,Uua))) ) ) ).
% ATP.lambda_118
tff(fact_8298_ATP_Olambda__119,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_cm(A,fun(nat,A),Uu2),Uua) = aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),semiring_char_0_fact(real,Uua))),aa(nat,A,power_power(A,Uu2),Uua)) ) ) ).
% ATP.lambda_119
tff(fact_8299_ATP_Olambda__120,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_bq(A,fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,inverse_inverse(A),semiring_char_0_fact(A,Uua))),aa(nat,A,power_power(A,Uu2),Uua)) ) ) ).
% ATP.lambda_120
tff(fact_8300_ATP_Olambda__121,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_ce(A,fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,suc,Uua))),aa(nat,A,power_power(A,Uu2),Uua)) ) ) ).
% ATP.lambda_121
tff(fact_8301_ATP_Olambda__122,axiom,
! [Uu2: num,Uua: num] : ( aa(num,int,aTP_Lamp_tj(num,fun(num,int),Uu2),Uua) = aa(int,int,bit_se2584673776208193580ke_bit(int,aa(num,nat,numeral_numeral(nat),Uu2)),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(nat,int,power_power(int,aa(num,int,numeral_numeral(int),bit0(one2))),aa(num,nat,numeral_numeral(nat),Uu2))),aa(num,int,numeral_numeral(int),Uua))) ) ).
% ATP.lambda_122
tff(fact_8302_ATP_Olambda__123,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_ct(A,fun(nat,A),Uu2),Uua) = aa(A,A,real_V8093663219630862766scaleR(A,aa(nat,real,cos_coeff,Uua)),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),Uu2)),Uua)) ) ) ).
% ATP.lambda_123
tff(fact_8303_ATP_Olambda__124,axiom,
! [Uu2: nat,Uua: real] : ( aa(real,real,aTP_Lamp_sc(nat,fun(real,real),Uu2),Uua) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,sgn_sgn(real),Uua)),aa(nat,real,power_power(real,aa(real,real,abs_abs(real),Uua)),Uu2)) ) ).
% ATP.lambda_124
tff(fact_8304_ATP_Olambda__125,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_cn(A,fun(nat,A),Uu2),Uua) = aa(A,A,real_V8093663219630862766scaleR(A,sin_coeff(Uua)),aa(nat,A,power_power(A,Uu2),Uua)) ) ) ).
% ATP.lambda_125
tff(fact_8305_ATP_Olambda__126,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_co(A,fun(nat,A),Uu2),Uua) = aa(A,A,real_V8093663219630862766scaleR(A,aa(nat,real,cos_coeff,Uua)),aa(nat,A,power_power(A,Uu2),Uua)) ) ) ).
% ATP.lambda_126
tff(fact_8306_ATP_Olambda__127,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_aco(A,fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(nat,A,semiring_1_of_nat(A),Uua)),aa(nat,A,power_power(A,Uu2),Uua)) ) ) ).
% ATP.lambda_127
tff(fact_8307_ATP_Olambda__128,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V8999393235501362500lgebra(A) )
=> ! [Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_acn(A,fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),Uua)),aa(nat,A,power_power(A,Uu2),Uua)) ) ) ).
% ATP.lambda_128
tff(fact_8308_ATP_Olambda__129,axiom,
! [Uu2: real,Uua: nat] : ( aa(nat,real,aTP_Lamp_fr(real,fun(nat,real),Uu2),Uua) = aa(real,real,aa(real,fun(real,real),times_times(real),sin_coeff(Uua)),aa(nat,real,power_power(real,Uu2),Uua)) ) ).
% ATP.lambda_129
tff(fact_8309_ATP_Olambda__130,axiom,
! [Uu2: real,Uua: nat] : ( aa(nat,real,aTP_Lamp_fq(real,fun(nat,real),Uu2),Uua) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,cos_coeff,Uua)),aa(nat,real,power_power(real,Uu2),Uua)) ) ).
% ATP.lambda_130
tff(fact_8310_ATP_Olambda__131,axiom,
! [A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [Uu2: A,Uua: set(A)] :
( pp(aa(set(A),bool,aTP_Lamp_aeg(A,fun(set(A),bool),Uu2),Uua))
<=> ( topolo1002775350975398744n_open(A,Uua)
& pp(member(A,Uu2,Uua)) ) ) ) ).
% ATP.lambda_131
tff(fact_8311_ATP_Olambda__132,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [Uu2: nat,Uua: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_pn(nat,fun(nat,A)),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,semiring_1_of_nat(A),Uu2)),aa(nat,A,semiring_1_of_nat(A),Uua)) ) ) ).
% ATP.lambda_132
tff(fact_8312_ATP_Olambda__133,axiom,
! [A: $tType,Uu2: list(list(A)),Uua: A] : ( aa(A,list(list(A)),aTP_Lamp_se(list(list(A)),fun(A,list(list(A))),Uu2),Uua) = aa(list(list(A)),list(list(A)),map(list(A),list(A),cons(A,Uua)),product_lists(A,Uu2)) ) ).
% ATP.lambda_133
tff(fact_8313_ATP_Olambda__134,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [Uu2: nat,Uua: nat] : ( aa(nat,A,aTP_Lamp_gx(nat,fun(nat,A),Uu2),Uua) = aa(nat,A,gbinomial(A,aa(nat,A,semiring_1_of_nat(A),Uua)),Uu2) ) ) ).
% ATP.lambda_134
tff(fact_8314_ATP_Olambda__135,axiom,
! [A: $tType,B: $tType,Uu2: list(B),Uua: A] : ( aa(A,list(product_prod(A,B)),aTP_Lamp_as(list(B),fun(A,list(product_prod(A,B))),Uu2),Uua) = aa(list(B),list(product_prod(A,B)),map(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),Uua)),Uu2) ) ).
% ATP.lambda_135
tff(fact_8315_ATP_Olambda__136,axiom,
! [A: $tType,Uu2: set(nat),Uua: product_prod(A,nat)] :
( pp(aa(product_prod(A,nat),bool,aTP_Lamp_qd(set(nat),fun(product_prod(A,nat),bool),Uu2),Uua))
<=> pp(member(nat,aa(product_prod(A,nat),nat,product_snd(A,nat),Uua),Uu2)) ) ).
% ATP.lambda_136
tff(fact_8316_ATP_Olambda__137,axiom,
! [Uu2: set(nat),Uua: nat] :
( pp(aa(nat,bool,aTP_Lamp_sw(set(nat),fun(nat,bool),Uu2),Uua))
<=> pp(member(nat,aa(nat,nat,suc,Uua),Uu2)) ) ).
% ATP.lambda_137
tff(fact_8317_ATP_Olambda__138,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [Uu2: A,Uua: A] : ( aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),aTP_Lamp_hf(A,fun(A,product_prod(A,A))),Uu2),Uua) = aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),Uu2),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),Uua)),one_one(A))) ) ) ).
% ATP.lambda_138
tff(fact_8318_ATP_Olambda__139,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [Uu2: A,Uua: A] : ( aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),aTP_Lamp_hi(A,fun(A,product_prod(A,A))),Uu2),Uua) = aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),Uu2),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),Uua)) ) ) ).
% ATP.lambda_139
tff(fact_8319_ATP_Olambda__140,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_he(A,fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),plus_plus(A),Uu2),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(nat,A,semiring_1_of_nat(A),Uua)),aa(num,A,numeral_numeral(A),bit0(one2)))) ) ) ).
% ATP.lambda_140
tff(fact_8320_ATP_Olambda__141,axiom,
! [Uu2: nat,Uua: nat] : ( aa(nat,nat,aTP_Lamp_er(nat,fun(nat,nat),Uu2),Uua) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Uua),aa(nat,nat,binomial(Uu2),Uua)) ) ).
% ATP.lambda_141
tff(fact_8321_ATP_Olambda__142,axiom,
! [Uu2: real,Uua: nat] : ( aa(nat,real,aTP_Lamp_acl(real,fun(nat,real),Uu2),Uua) = aa(real,real,aa(real,fun(real,real),times_times(real),Uu2),aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),aa(real,real,uminus_uminus(real),aa(real,real,inverse_inverse(real),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,suc,Uua)))))) ) ).
% ATP.lambda_142
tff(fact_8322_ATP_Olambda__143,axiom,
! [A: $tType] :
( ( comm_monoid_add(A)
& topolo4958980785337419405_space(A) )
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_acg(fun(nat,A),fun(nat,A),Uu2),Uua) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),Uu2),set_or1337092689740270186AtMost(nat,zero_zero(nat),Uua)) ) ) ).
% ATP.lambda_143
tff(fact_8323_ATP_Olambda__144,axiom,
! [A: $tType,Uu2: fun(nat,A),Uua: nat] : ( aa(nat,product_prod(nat,A),aTP_Lamp_nn(fun(nat,A),fun(nat,product_prod(nat,A)),Uu2),Uua) = aa(A,product_prod(nat,A),aa(nat,fun(A,product_prod(nat,A)),product_Pair(nat,A),Uua),aa(nat,A,Uu2,Uua)) ) ).
% ATP.lambda_144
tff(fact_8324_ATP_Olambda__145,axiom,
! [B: $tType,A: $tType,Uu2: fun(A,B),Uua: A] : ( aa(A,product_prod(A,B),aTP_Lamp_qt(fun(A,B),fun(A,product_prod(A,B)),Uu2),Uua) = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),Uua),aa(A,B,Uu2,Uua)) ) ).
% ATP.lambda_145
tff(fact_8325_ATP_Olambda__146,axiom,
! [A: $tType] :
( bit_un5681908812861735899ations(A)
=> ! [Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_jm(A,fun(nat,A),Uu2),Uua) = bit_se4730199178511100633sh_bit(A,Uua,aa(bool,A,zero_neq_one_of_bool(A),aa(nat,bool,bit_se5641148757651400278ts_bit(A,Uu2),Uua))) ) ) ).
% ATP.lambda_146
tff(fact_8326_ATP_Olambda__147,axiom,
! [A: $tType] :
( real_Vector_banach(A)
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,real,aTP_Lamp_ach(fun(nat,A),fun(nat,real),Uu2),Uua) = aa(real,real,root(Uua),real_V7770717601297561774m_norm(A,aa(nat,A,Uu2,Uua))) ) ) ).
% ATP.lambda_147
tff(fact_8327_ATP_Olambda__148,axiom,
! [Uu2: int,Uua: int] : ( aa(int,int,aa(int,fun(int,int),aTP_Lamp_is(int,fun(int,int)),Uu2),Uua) = aa(int,int,aa(int,fun(int,int),plus_plus(int),Uu2),aa(bool,int,zero_neq_one_of_bool(int),aa(bool,bool,fNot,aa(int,bool,aa(int,fun(int,bool),fequal(int),Uua),zero_zero(int))))) ) ).
% ATP.lambda_148
tff(fact_8328_ATP_Olambda__149,axiom,
! [Uu2: real,Uua: nat] : ( aa(nat,real,aTP_Lamp_aci(real,fun(nat,real),Uu2),Uua) = aa(real,real,aa(real,fun(real,real),plus_plus(real),Uu2),aa(real,real,uminus_uminus(real),aa(real,real,inverse_inverse(real),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,suc,Uua))))) ) ).
% ATP.lambda_149
tff(fact_8329_ATP_Olambda__150,axiom,
! [Uu2: real,Uua: nat] : ( aa(nat,real,aTP_Lamp_abz(real,fun(nat,real),Uu2),Uua) = aa(real,real,aa(real,fun(real,real),plus_plus(real),Uu2),aa(real,real,inverse_inverse(real),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,suc,Uua)))) ) ).
% ATP.lambda_150
tff(fact_8330_ATP_Olambda__151,axiom,
! [Uu2: fun(nat,real),Uua: nat] : ( aa(nat,real,aTP_Lamp_ru(fun(nat,real),fun(nat,real),Uu2),Uua) = aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),Uu2),aa(nat,set(nat),set_ord_lessThan(nat),Uua)) ) ).
% ATP.lambda_151
tff(fact_8331_ATP_Olambda__152,axiom,
! [A: $tType] :
( ( comple5582772986160207858norder(A)
& canoni5634975068530333245id_add(A)
& topolo1944317154257567458pology(A) )
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_rn(fun(nat,A),fun(nat,A),Uu2),Uua) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),Uu2),aa(nat,set(nat),set_ord_lessThan(nat),Uua)) ) ) ).
% ATP.lambda_152
tff(fact_8332_ATP_Olambda__153,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: real,Uua: A] :
( pp(aa(A,bool,aTP_Lamp_aes(real,fun(A,bool),Uu2),Uua))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Uu2),real_V7770717601297561774m_norm(A,Uua))) ) ) ).
% ATP.lambda_153
tff(fact_8333_ATP_Olambda__154,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_abp(A,fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),divide_divide(A),Uu2),aa(nat,A,semiring_1_of_nat(A),Uua)) ) ) ).
% ATP.lambda_154
tff(fact_8334_ATP_Olambda__155,axiom,
! [A: $tType,Uu2: nat,Uua: list(A)] :
( pp(aa(list(A),bool,aTP_Lamp_oq(nat,fun(list(A),bool),Uu2),Uua))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Uu2),aa(list(A),nat,size_size(list(A)),Uua))) ) ).
% ATP.lambda_155
tff(fact_8335_ATP_Olambda__156,axiom,
! [A: $tType] :
( ( semiring_char_0(A)
& semidom_divide(A) )
=> ! [Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_id(A,fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),minus_minus(A),Uu2),aa(nat,A,semiring_1_of_nat(A),Uua)) ) ) ).
% ATP.lambda_156
tff(fact_8336_ATP_Olambda__157,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_jp(A,fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),minus_minus(A),Uu2),aa(nat,A,semiring_1_of_nat(A),Uua)) ) ) ).
% ATP.lambda_157
tff(fact_8337_ATP_Olambda__158,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_hy(A,fun(nat,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),plus_plus(A),Uu2),aa(nat,A,semiring_1_of_nat(A),Uua)) ) ) ).
% ATP.lambda_158
tff(fact_8338_ATP_Olambda__159,axiom,
! [A: $tType,Uu2: list(A),Uua: A] :
( pp(aa(A,bool,aTP_Lamp_pa(list(A),fun(A,bool),Uu2),Uua))
<=> pp(member(A,Uua,aa(list(A),set(A),set2(A),Uu2))) ) ).
% ATP.lambda_159
tff(fact_8339_ATP_Olambda__160,axiom,
! [Uu2: nat,Uua: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),aTP_Lamp_qc(nat,fun(nat,bool)),Uu2),Uua))
<=> ( Uua = aa(nat,nat,suc,Uu2) ) ) ).
% ATP.lambda_160
tff(fact_8340_ATP_Olambda__161,axiom,
! [A: $tType,Uu2: set(A),Uua: set(A)] :
( pp(aa(set(A),bool,aTP_Lamp_mb(set(A),fun(set(A),bool),Uu2),Uua))
<=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),Uua),Uu2)) ) ).
% ATP.lambda_161
tff(fact_8341_ATP_Olambda__162,axiom,
! [Uu2: nat,Uua: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),aTP_Lamp_ma(nat,fun(nat,bool)),Uu2),Uua))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Uua),Uu2)) ) ).
% ATP.lambda_162
tff(fact_8342_ATP_Olambda__163,axiom,
! [A: $tType] :
( bounde4967611905675639751up_bot(A)
=> ! [Uu2: A,Uua: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),aTP_Lamp_ss(A,fun(A,bool)),Uu2),Uua))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Uua),Uu2)) ) ) ).
% ATP.lambda_163
tff(fact_8343_ATP_Olambda__164,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Uu2: A,Uua: A] :
( pp(aa(A,bool,aTP_Lamp_aft(A,fun(A,bool),Uu2),Uua))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Uua),Uu2)) ) ) ).
% ATP.lambda_164
tff(fact_8344_ATP_Olambda__165,axiom,
! [A: $tType] :
( ord(A)
=> ! [Uu2: A,Uua: A] :
( pp(aa(A,bool,aTP_Lamp_dl(A,fun(A,bool),Uu2),Uua))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Uua),Uu2)) ) ) ).
% ATP.lambda_165
tff(fact_8345_ATP_Olambda__166,axiom,
! [Uu2: nat,Uua: nat] : ( aa(nat,nat,aTP_Lamp_rz(nat,fun(nat,nat),Uu2),Uua) = modulo_modulo(nat,Uua,Uu2) ) ).
% ATP.lambda_166
tff(fact_8346_ATP_Olambda__167,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: A,Uua: A] : ( aa(A,A,aTP_Lamp_acx(A,fun(A,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),divide_divide(A),Uua),Uu2) ) ) ).
% ATP.lambda_167
tff(fact_8347_ATP_Olambda__168,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [Uu2: A,Uua: A] : ( aa(A,A,aTP_Lamp_qy(A,fun(A,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),divide_divide(A),Uua),Uu2) ) ) ).
% ATP.lambda_168
tff(fact_8348_ATP_Olambda__169,axiom,
! [Uu2: nat,Uua: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),aTP_Lamp_ew(nat,fun(nat,bool)),Uu2),Uua))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Uua),Uu2)) ) ).
% ATP.lambda_169
tff(fact_8349_ATP_Olambda__170,axiom,
! [A: $tType] :
( bounde4967611905675639751up_bot(A)
=> ! [Uu2: A,Uua: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),aTP_Lamp_st(A,fun(A,bool)),Uu2),Uua))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Uua),Uu2)) ) ) ).
% ATP.lambda_170
tff(fact_8350_ATP_Olambda__171,axiom,
! [A: $tType] :
( unboun7993243217541854897norder(A)
=> ! [Uu2: A,Uua: A] :
( pp(aa(A,bool,aTP_Lamp_afs(A,fun(A,bool),Uu2),Uua))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Uua),Uu2)) ) ) ).
% ATP.lambda_171
tff(fact_8351_ATP_Olambda__172,axiom,
! [A: $tType] :
( ord(A)
=> ! [Uu2: A,Uua: A] :
( pp(aa(A,bool,aTP_Lamp_ft(A,fun(A,bool),Uu2),Uua))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Uua),Uu2)) ) ) ).
% ATP.lambda_172
tff(fact_8352_ATP_Olambda__173,axiom,
! [Uu2: nat,Uua: nat] : ( aa(nat,nat,aTP_Lamp_abn(nat,fun(nat,nat),Uu2),Uua) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Uua),Uu2) ) ).
% ATP.lambda_173
tff(fact_8353_ATP_Olambda__174,axiom,
! [A: $tType] :
( real_V4412858255891104859lgebra(A)
=> ! [Uu2: A,Uua: A] : ( aa(A,A,aTP_Lamp_acy(A,fun(A,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),times_times(A),Uua),Uu2) ) ) ).
% ATP.lambda_174
tff(fact_8354_ATP_Olambda__175,axiom,
! [A: $tType] :
( ab_semigroup_mult(A)
=> ! [Uu2: A,Uua: A] : ( aa(A,A,aTP_Lamp_ad(A,fun(A,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),times_times(A),Uua),Uu2) ) ) ).
% ATP.lambda_175
tff(fact_8355_ATP_Olambda__176,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [Uu2: A,Uua: A] : ( aa(A,A,aTP_Lamp_re(A,fun(A,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),times_times(A),Uua),Uu2) ) ) ).
% ATP.lambda_176
tff(fact_8356_ATP_Olambda__177,axiom,
! [Uu2: nat,Uua: nat] : ( aa(nat,nat,aTP_Lamp_qv(nat,fun(nat,nat),Uu2),Uua) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uua),Uu2) ) ).
% ATP.lambda_177
tff(fact_8357_ATP_Olambda__178,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [Uu2: A,Uua: A] : ( aa(A,A,aTP_Lamp_qx(A,fun(A,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),minus_minus(A),Uua),Uu2) ) ) ).
% ATP.lambda_178
tff(fact_8358_ATP_Olambda__179,axiom,
! [A: $tType] :
( ab_group_add(A)
=> ! [Uu2: A,Uua: A] : ( aa(A,A,aTP_Lamp_qz(A,fun(A,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),minus_minus(A),Uua),Uu2) ) ) ).
% ATP.lambda_179
tff(fact_8359_ATP_Olambda__180,axiom,
! [Uu2: nat,Uua: real] : ( aa(real,real,aTP_Lamp_tx(nat,fun(real,real),Uu2),Uua) = aa(nat,real,power_power(real,Uua),Uu2) ) ).
% ATP.lambda_180
tff(fact_8360_ATP_Olambda__181,axiom,
! [Uu2: nat,Uua: nat] : ( aa(nat,nat,aTP_Lamp_jc(nat,fun(nat,nat),Uu2),Uua) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uua),Uu2) ) ).
% ATP.lambda_181
tff(fact_8361_ATP_Olambda__182,axiom,
! [Uu2: int,Uua: int] : ( aa(int,int,aTP_Lamp_rx(int,fun(int,int),Uu2),Uua) = aa(int,int,aa(int,fun(int,int),plus_plus(int),Uua),Uu2) ) ).
% ATP.lambda_182
tff(fact_8362_ATP_Olambda__183,axiom,
! [A: $tType] :
( linordered_semidom(A)
=> ! [Uu2: A,Uua: A] : ( aa(A,A,aTP_Lamp_qw(A,fun(A,A),Uu2),Uua) = aa(A,A,aa(A,fun(A,A),plus_plus(A),Uua),Uu2) ) ) ).
% ATP.lambda_183
tff(fact_8363_ATP_Olambda__184,axiom,
! [Uu2: real,Uua: real] : ( aa(real,real,aTP_Lamp_uz(real,fun(real,real),Uu2),Uua) = powr(real,Uua,Uu2) ) ).
% ATP.lambda_184
tff(fact_8364_ATP_Olambda__185,axiom,
! [Uu2: nat,Uua: nat] :
( pp(aa(nat,bool,aTP_Lamp_lr(nat,fun(nat,bool),Uu2),Uua))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),Uua),Uu2)) ) ).
% ATP.lambda_185
tff(fact_8365_ATP_Olambda__186,axiom,
! [Uu2: int,Uua: int] :
( pp(aa(int,bool,aTP_Lamp_mf(int,fun(int,bool),Uu2),Uua))
<=> pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),Uua),Uu2)) ) ).
% ATP.lambda_186
tff(fact_8366_ATP_Olambda__187,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: A,Uua: A] :
( pp(aa(A,bool,aTP_Lamp_af(A,fun(A,bool),Uu2),Uua))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),Uua),Uu2)) ) ) ).
% ATP.lambda_187
tff(fact_8367_ATP_Olambda__188,axiom,
! [Uu2: nat,Uua: nat] : ( aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),aTP_Lamp_pm(nat,fun(nat,product_prod(nat,nat))),Uu2),Uua) = aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),Uua),Uu2) ) ).
% ATP.lambda_188
tff(fact_8368_ATP_Olambda__189,axiom,
! [A: $tType,B: $tType,Uu2: B,Uua: A] : ( aa(A,product_prod(A,B),aa(B,fun(A,product_prod(A,B)),aTP_Lamp_nu(B,fun(A,product_prod(A,B))),Uu2),Uua) = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),Uua),Uu2) ) ).
% ATP.lambda_189
tff(fact_8369_ATP_Olambda__190,axiom,
! [A: $tType,Uu2: A,Uua: nat] : ( aa(nat,product_prod(nat,A),aTP_Lamp_no(A,fun(nat,product_prod(nat,A)),Uu2),Uua) = aa(A,product_prod(nat,A),aa(nat,fun(A,product_prod(nat,A)),product_Pair(nat,A),Uua),Uu2) ) ).
% ATP.lambda_190
tff(fact_8370_ATP_Olambda__191,axiom,
! [B: $tType,A: $tType,Uu2: A,Uua: B] : ( aa(B,product_prod(B,A),aa(A,fun(B,product_prod(B,A)),aTP_Lamp_nv(A,fun(B,product_prod(B,A))),Uu2),Uua) = aa(A,product_prod(B,A),aa(B,fun(A,product_prod(B,A)),product_Pair(B,A),Uua),Uu2) ) ).
% ATP.lambda_191
tff(fact_8371_ATP_Olambda__192,axiom,
! [Uu2: nat,Uua: nat] : ( aa(nat,nat,aTP_Lamp_dj(nat,fun(nat,nat),Uu2),Uua) = aa(nat,nat,binomial(Uua),Uu2) ) ).
% ATP.lambda_192
tff(fact_8372_ATP_Olambda__193,axiom,
! [A: $tType,Uu2: list(A),Uua: A] : ( aa(A,list(A),aTP_Lamp_sg(list(A),fun(A,list(A)),Uu2),Uua) = aa(list(A),list(A),cons(A,Uua),Uu2) ) ).
% ATP.lambda_193
tff(fact_8373_ATP_Olambda__194,axiom,
! [Uu2: real,Uua: nat] : ( aa(nat,real,aTP_Lamp_abx(real,fun(nat,real),Uu2),Uua) = aa(real,real,root(Uua),Uu2) ) ).
% ATP.lambda_194
tff(fact_8374_ATP_Olambda__195,axiom,
! [A: $tType,Uu2: set(A),Uua: A] :
( pp(aa(A,bool,aTP_Lamp_a(set(A),fun(A,bool),Uu2),Uua))
<=> pp(member(A,Uua,Uu2)) ) ).
% ATP.lambda_195
tff(fact_8375_ATP_Olambda__196,axiom,
! [A: $tType,Uu2: nat,Uua: list(A)] : ( aa(list(A),A,aTP_Lamp_or(nat,fun(list(A),A),Uu2),Uua) = aa(nat,A,nth(A,Uua),Uu2) ) ).
% ATP.lambda_196
tff(fact_8376_ATP_Olambda__197,axiom,
! [A: $tType,Uu2: A,Uua: list(A)] : ( aa(list(A),list(A),aa(A,fun(list(A),list(A)),aTP_Lamp_sk(A,fun(list(A),list(A))),Uu2),Uua) = aa(list(A),list(A),cons(A,Uu2),nil(A)) ) ).
% ATP.lambda_197
tff(fact_8377_ATP_Olambda__198,axiom,
! [A: $tType,Uu2: A,Uua: list(A)] : ( aa(list(A),list(list(A)),aa(A,fun(list(A),list(list(A))),aTP_Lamp_sm(A,fun(list(A),list(list(A)))),Uu2),Uua) = aa(list(list(A)),list(list(A)),cons(list(A),Uua),nil(list(A))) ) ).
% ATP.lambda_198
tff(fact_8378_ATP_Olambda__199,axiom,
! [A: $tType,Uu2: fun(A,real),Uua: A] :
( pp(aa(A,bool,aTP_Lamp_aha(fun(A,real),fun(A,bool),Uu2),Uua))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),zero_zero(real)),aa(A,real,Uu2,Uua))) ) ).
% ATP.lambda_199
tff(fact_8379_ATP_Olambda__200,axiom,
! [B: $tType,Uu2: fun(B,real),Uua: B] :
( pp(aa(B,bool,aTP_Lamp_agw(fun(B,real),fun(B,bool),Uu2),Uua))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),aa(B,real,Uu2,Uua))) ) ).
% ATP.lambda_200
tff(fact_8380_ATP_Olambda__201,axiom,
! [A: $tType] :
( topological_t2_space(A)
=> ! [Uu2: fun(A,real),Uua: A] :
( pp(aa(A,bool,aTP_Lamp_agp(fun(A,real),fun(A,bool),Uu2),Uua))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),one_one(real)),aa(A,real,Uu2,Uua))) ) ) ).
% ATP.lambda_201
tff(fact_8381_ATP_Olambda__202,axiom,
! [A: $tType,Uu2: fun(A,real),Uua: A] :
( pp(aa(A,bool,aTP_Lamp_agl(fun(A,real),fun(A,bool),Uu2),Uua))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),zero_zero(real)),aa(A,real,Uu2,Uua))) ) ).
% ATP.lambda_202
tff(fact_8382_ATP_Olambda__203,axiom,
! [Uu2: fun(nat,real),Uua: nat] : ( aa(nat,real,aTP_Lamp_gh(fun(nat,real),fun(nat,real),Uu2),Uua) = aa(nat,real,Uu2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uua)),one_one(nat))) ) ).
% ATP.lambda_203
tff(fact_8383_ATP_Olambda__204,axiom,
! [Uu2: fun(nat,real),Uua: nat] : ( aa(nat,real,aTP_Lamp_gg(fun(nat,real),fun(nat,real),Uu2),Uua) = aa(nat,real,Uu2,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uua)) ) ).
% ATP.lambda_204
tff(fact_8384_ATP_Olambda__205,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(A,A),Uua: A] : ( aa(A,A,aTP_Lamp_afe(fun(A,A),fun(A,A),Uu2),Uua) = aa(A,A,Uu2,aa(A,A,aa(A,fun(A,A),divide_divide(A),one_one(A)),Uua)) ) ) ).
% ATP.lambda_205
tff(fact_8385_ATP_Olambda__206,axiom,
! [A: $tType,Uu2: fun(nat,bool),Uua: product_prod(A,nat)] :
( pp(aa(product_prod(A,nat),bool,aTP_Lamp_qo(fun(nat,bool),fun(product_prod(A,nat),bool),Uu2),Uua))
<=> pp(aa(nat,bool,Uu2,aa(nat,nat,suc,aa(product_prod(A,nat),nat,product_snd(A,nat),Uua)))) ) ).
% ATP.lambda_206
tff(fact_8386_ATP_Olambda__207,axiom,
! [Uu2: fun(real,bool),Uua: real] :
( pp(aa(real,bool,aTP_Lamp_agv(fun(real,bool),fun(real,bool),Uu2),Uua))
<=> pp(aa(real,bool,Uu2,aa(real,real,inverse_inverse(real),Uua))) ) ).
% ATP.lambda_207
tff(fact_8387_ATP_Olambda__208,axiom,
! [A: $tType,Uu2: fun(real,A),Uua: real] : ( aa(real,A,aTP_Lamp_aeo(fun(real,A),fun(real,A),Uu2),Uua) = aa(real,A,Uu2,aa(real,real,inverse_inverse(real),Uua)) ) ).
% ATP.lambda_208
tff(fact_8388_ATP_Olambda__209,axiom,
! [A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [Uu2: fun(real,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_afc(fun(real,A),fun(nat,A),Uu2),Uua) = aa(real,A,Uu2,aa(nat,real,semiring_1_of_nat(real),Uua)) ) ) ).
% ATP.lambda_209
tff(fact_8389_ATP_Olambda__210,axiom,
! [A: $tType,Uu2: fun(int,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_ahh(fun(int,A),fun(nat,A),Uu2),Uua) = aa(int,A,Uu2,aa(nat,int,semiring_1_of_nat(int),Uua)) ) ).
% ATP.lambda_210
tff(fact_8390_ATP_Olambda__211,axiom,
! [Uu2: fun(real,real),Uua: real] : ( aa(real,real,aTP_Lamp_tz(fun(real,real),fun(real,real),Uu2),Uua) = aa(real,real,Uu2,aa(real,real,uminus_uminus(real),Uua)) ) ).
% ATP.lambda_211
tff(fact_8391_ATP_Olambda__212,axiom,
! [Uu2: fun(real,bool),Uua: real] :
( pp(aa(real,bool,aTP_Lamp_ago(fun(real,bool),fun(real,bool),Uu2),Uua))
<=> pp(aa(real,bool,Uu2,aa(real,real,uminus_uminus(real),Uua))) ) ).
% ATP.lambda_212
tff(fact_8392_ATP_Olambda__213,axiom,
! [A: $tType,Uu2: fun(real,A),Uua: real] : ( aa(real,A,aTP_Lamp_adt(fun(real,A),fun(real,A),Uu2),Uua) = aa(real,A,Uu2,aa(real,real,uminus_uminus(real),Uua)) ) ).
% ATP.lambda_213
tff(fact_8393_ATP_Olambda__214,axiom,
! [A: $tType,Uu2: fun(nat,bool),Uua: product_prod(A,nat)] :
( pp(aa(product_prod(A,nat),bool,aTP_Lamp_qp(fun(nat,bool),fun(product_prod(A,nat),bool),Uu2),Uua))
<=> pp(aa(nat,bool,Uu2,aa(product_prod(A,nat),nat,product_snd(A,nat),Uua))) ) ).
% ATP.lambda_214
tff(fact_8394_ATP_Olambda__215,axiom,
! [Uu2: fun(nat,bool),Uua: nat] :
( pp(aa(nat,bool,aTP_Lamp_afj(fun(nat,bool),fun(nat,bool),Uu2),Uua))
<=> pp(aa(nat,bool,Uu2,aa(nat,nat,suc,Uua))) ) ).
% ATP.lambda_215
tff(fact_8395_ATP_Olambda__216,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_bd(fun(nat,A),fun(nat,A),Uu2),Uua) = aa(nat,A,Uu2,aa(nat,nat,suc,Uua)) ) ) ).
% ATP.lambda_216
tff(fact_8396_ATP_Olambda__217,axiom,
! [A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_abi(fun(nat,A),fun(nat,A),Uu2),Uua) = aa(nat,A,Uu2,aa(nat,nat,suc,Uua)) ) ) ).
% ATP.lambda_217
tff(fact_8397_ATP_Olambda__218,axiom,
! [A: $tType] :
( ( topolo5987344860129210374id_add(A)
& topological_t2_space(A) )
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_bx(fun(nat,A),fun(nat,A),Uu2),Uua) = aa(nat,A,Uu2,aa(nat,nat,suc,Uua)) ) ) ).
% ATP.lambda_218
tff(fact_8398_ATP_Olambda__219,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_ho(fun(nat,A),fun(nat,A),Uu2),Uua) = aa(nat,A,Uu2,aa(nat,nat,suc,Uua)) ) ) ).
% ATP.lambda_219
tff(fact_8399_ATP_Olambda__220,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_df(fun(nat,A),fun(nat,A),Uu2),Uua) = aa(nat,A,Uu2,aa(nat,nat,suc,Uua)) ) ) ).
% ATP.lambda_220
tff(fact_8400_ATP_Olambda__221,axiom,
! [A: $tType,Uu2: fun(nat,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_si(fun(nat,A),fun(nat,A),Uu2),Uua) = aa(nat,A,Uu2,aa(nat,nat,suc,Uua)) ) ).
% ATP.lambda_221
tff(fact_8401_ATP_Olambda__222,axiom,
! [Uu2: nat,Uua: num] : ( aa(num,option(num),aTP_Lamp_tr(nat,fun(num,option(num)),Uu2),Uua) = aa(num,option(num),some(num),case_option(num,num,one2,bit1,bit_take_bit_num(Uu2,Uua))) ) ).
% ATP.lambda_222
tff(fact_8402_ATP_Olambda__223,axiom,
! [Uu2: num,Uua: nat] : ( aa(nat,option(num),aTP_Lamp_to(num,fun(nat,option(num)),Uu2),Uua) = aa(num,option(num),some(num),case_option(num,num,one2,bit1,bit_take_bit_num(Uua,Uu2))) ) ).
% ATP.lambda_223
tff(fact_8403_ATP_Olambda__224,axiom,
! [A: $tType,Uu2: A,Uua: list(A)] : ( aa(list(A),fun(product_prod(A,list(A)),option(product_prod(list(A),product_prod(A,list(A))))),aTP_Lamp_tc(A,fun(list(A),fun(product_prod(A,list(A)),option(product_prod(list(A),product_prod(A,list(A)))))),Uu2),Uua) = aa(fun(A,fun(list(A),option(product_prod(list(A),product_prod(A,list(A)))))),fun(product_prod(A,list(A)),option(product_prod(list(A),product_prod(A,list(A))))),product_case_prod(A,list(A),option(product_prod(list(A),product_prod(A,list(A))))),aa(list(A),fun(A,fun(list(A),option(product_prod(list(A),product_prod(A,list(A)))))),aTP_Lamp_tb(A,fun(list(A),fun(A,fun(list(A),option(product_prod(list(A),product_prod(A,list(A))))))),Uu2),Uua)) ) ).
% ATP.lambda_224
tff(fact_8404_ATP_Olambda__225,axiom,
! [Uu2: nat,Uua: nat] : ( aa(nat,fun(product_prod(nat,nat),product_prod(nat,nat)),aa(nat,fun(nat,fun(product_prod(nat,nat),product_prod(nat,nat))),aTP_Lamp_pv(nat,fun(nat,fun(product_prod(nat,nat),product_prod(nat,nat)))),Uu2),Uua) = aa(fun(nat,fun(nat,product_prod(nat,nat))),fun(product_prod(nat,nat),product_prod(nat,nat)),product_case_prod(nat,nat,product_prod(nat,nat)),aa(nat,fun(nat,fun(nat,product_prod(nat,nat))),aTP_Lamp_pu(nat,fun(nat,fun(nat,fun(nat,product_prod(nat,nat)))),Uu2),Uua)) ) ).
% ATP.lambda_225
tff(fact_8405_ATP_Olambda__226,axiom,
! [Uu2: nat,Uua: nat] : ( aa(nat,fun(product_prod(nat,nat),product_prod(nat,nat)),aa(nat,fun(nat,fun(product_prod(nat,nat),product_prod(nat,nat))),aTP_Lamp_pt(nat,fun(nat,fun(product_prod(nat,nat),product_prod(nat,nat)))),Uu2),Uua) = aa(fun(nat,fun(nat,product_prod(nat,nat))),fun(product_prod(nat,nat),product_prod(nat,nat)),product_case_prod(nat,nat,product_prod(nat,nat)),aa(nat,fun(nat,fun(nat,product_prod(nat,nat))),aTP_Lamp_ps(nat,fun(nat,fun(nat,fun(nat,product_prod(nat,nat)))),Uu2),Uua)) ) ).
% ATP.lambda_226
tff(fact_8406_ATP_Olambda__227,axiom,
! [Uu2: nat,Uua: nat] : ( aa(nat,fun(product_prod(nat,nat),bool),aa(nat,fun(nat,fun(product_prod(nat,nat),bool)),aTP_Lamp_pr(nat,fun(nat,fun(product_prod(nat,nat),bool))),Uu2),Uua) = aa(fun(nat,fun(nat,bool)),fun(product_prod(nat,nat),bool),product_case_prod(nat,nat,bool),aa(nat,fun(nat,fun(nat,bool)),aTP_Lamp_pq(nat,fun(nat,fun(nat,fun(nat,bool))),Uu2),Uua)) ) ).
% ATP.lambda_227
tff(fact_8407_ATP_Olambda__228,axiom,
! [Uu2: nat,Uua: nat] : ( aa(nat,fun(product_prod(nat,nat),bool),aa(nat,fun(nat,fun(product_prod(nat,nat),bool)),aTP_Lamp_pp(nat,fun(nat,fun(product_prod(nat,nat),bool))),Uu2),Uua) = aa(fun(nat,fun(nat,bool)),fun(product_prod(nat,nat),bool),product_case_prod(nat,nat,bool),aa(nat,fun(nat,fun(nat,bool)),aTP_Lamp_po(nat,fun(nat,fun(nat,fun(nat,bool))),Uu2),Uua)) ) ).
% ATP.lambda_228
tff(fact_8408_ATP_Olambda__229,axiom,
! [Uu2: nat,Uua: nat] : ( aa(nat,fun(product_prod(nat,nat),product_prod(nat,nat)),aa(nat,fun(nat,fun(product_prod(nat,nat),product_prod(nat,nat))),aTP_Lamp_pl(nat,fun(nat,fun(product_prod(nat,nat),product_prod(nat,nat)))),Uu2),Uua) = aa(fun(nat,fun(nat,product_prod(nat,nat))),fun(product_prod(nat,nat),product_prod(nat,nat)),product_case_prod(nat,nat,product_prod(nat,nat)),aa(nat,fun(nat,fun(nat,product_prod(nat,nat))),aTP_Lamp_pk(nat,fun(nat,fun(nat,fun(nat,product_prod(nat,nat)))),Uu2),Uua)) ) ).
% ATP.lambda_229
tff(fact_8409_ATP_Olambda__230,axiom,
! [Uu2: fun(nat,real),Uua: real] : ( aa(real,real,aTP_Lamp_vi(fun(nat,real),fun(real,real),Uu2),Uua) = suminf(real,aa(real,fun(nat,real),aTP_Lamp_vh(fun(nat,real),fun(real,fun(nat,real)),Uu2),Uua)) ) ).
% ATP.lambda_230
tff(fact_8410_ATP_Olambda__231,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: fun(nat,A),Uua: A] : ( aa(A,A,aTP_Lamp_tw(fun(nat,A),fun(A,A),Uu2),Uua) = suminf(A,aa(A,fun(nat,A),aTP_Lamp_ci(fun(nat,A),fun(A,fun(nat,A)),Uu2),Uua)) ) ) ).
% ATP.lambda_231
tff(fact_8411_ATP_Olambda__232,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [Uu2: real,Uua: A] : ( aa(A,set(A),aTP_Lamp_adr(real,fun(A,set(A)),Uu2),Uua) = aa(fun(A,bool),set(A),collect(A),aa(A,fun(A,bool),aTP_Lamp_adq(real,fun(A,fun(A,bool)),Uu2),Uua)) ) ) ).
% ATP.lambda_232
tff(fact_8412_ATP_Olambda__233,axiom,
! [Uu2: nat,Uua: nat] : ( aa(nat,complex,aTP_Lamp_go(nat,fun(nat,complex),Uu2),Uua) = cis(aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),pi)),aa(nat,real,semiring_1_of_nat(real),Uua))),aa(nat,real,semiring_1_of_nat(real),Uu2))) ) ).
% ATP.lambda_233
tff(fact_8413_ATP_Olambda__234,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [Uu2: A,Uua: A] : ( aa(A,A,aTP_Lamp_xa(A,fun(A,A),Uu2),Uua) = aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,inverse_inverse(A),Uu2)),Uua)),aa(A,A,inverse_inverse(A),Uu2))) ) ) ).
% ATP.lambda_234
tff(fact_8414_ATP_Olambda__235,axiom,
! [Uu2: fun(real,real),Uua: real] :
( pp(aa(real,bool,aTP_Lamp_afg(fun(real,real),fun(real,bool),Uu2),Uua))
<=> ( aa(real,real,Uu2,Uua) != zero_zero(real) ) ) ).
% ATP.lambda_235
tff(fact_8415_ATP_Olambda__236,axiom,
! [A: $tType,B: $tType,C: $tType,Uu2: list(product_prod(C,B)),Uua: product_prod(A,C)] : ( aa(product_prod(A,C),list(product_prod(A,B)),aTP_Lamp_sz(list(product_prod(C,B)),fun(product_prod(A,C),list(product_prod(A,B))),Uu2),Uua) = concat(product_prod(A,B),aa(list(product_prod(C,B)),list(list(product_prod(A,B))),map(product_prod(C,B),list(product_prod(A,B)),aTP_Lamp_sy(product_prod(A,C),fun(product_prod(C,B),list(product_prod(A,B))),Uua)),Uu2)) ) ).
% ATP.lambda_236
tff(fact_8416_ATP_Olambda__237,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [Uu2: A,Uua: nat] : ( aa(nat,real,aTP_Lamp_cr(A,fun(nat,real),Uu2),Uua) = real_V7770717601297561774m_norm(A,aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),semiring_char_0_fact(real,Uua))),aa(nat,A,power_power(A,Uu2),Uua))) ) ) ).
% ATP.lambda_237
tff(fact_8417_ATP_Olambda__238,axiom,
! [Uu2: nat,Uua: nat] :
( pp(aa(nat,bool,aTP_Lamp_ag(nat,fun(nat,bool),Uu2),Uua))
<=> ~ pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),Uu2),aa(nat,nat,power_power(nat,aa(num,nat,numeral_numeral(nat),bit0(one2))),Uua)))) ) ).
% ATP.lambda_238
tff(fact_8418_ATP_Olambda__239,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_cs(A,fun(nat,A),Uu2),Uua) = aa(A,A,uminus_uminus(A),aa(A,A,real_V8093663219630862766scaleR(A,sin_coeff(Uua)),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),Uu2)),Uua))) ) ) ).
% ATP.lambda_239
tff(fact_8419_ATP_Olambda__240,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [Uu2: A,Uua: nat] : ( aa(nat,real,aTP_Lamp_cp(A,fun(nat,real),Uu2),Uua) = real_V7770717601297561774m_norm(A,aa(A,A,real_V8093663219630862766scaleR(A,sin_coeff(Uua)),aa(nat,A,power_power(A,Uu2),Uua))) ) ) ).
% ATP.lambda_240
tff(fact_8420_ATP_Olambda__241,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [Uu2: A,Uua: nat] : ( aa(nat,real,aTP_Lamp_cq(A,fun(nat,real),Uu2),Uua) = real_V7770717601297561774m_norm(A,aa(A,A,real_V8093663219630862766scaleR(A,aa(nat,real,cos_coeff,Uua)),aa(nat,A,power_power(A,Uu2),Uua))) ) ) ).
% ATP.lambda_241
tff(fact_8421_ATP_Olambda__242,axiom,
! [A: $tType,Uu2: fun(nat,set(A)),Uua: nat] : ( aa(nat,set(A),aTP_Lamp_rs(fun(nat,set(A)),fun(nat,set(A)),Uu2),Uua) = complete_Sup_Sup(set(A),aa(set(nat),set(set(A)),image(nat,set(A),Uu2),set_or7035219750837199246ssThan(nat,zero_zero(nat),Uua))) ) ).
% ATP.lambda_242
tff(fact_8422_ATP_Olambda__243,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [Uu2: A,Uua: nat] : ( aa(nat,fun(A,A),aTP_Lamp_ai(A,fun(nat,fun(A,A)),Uu2),Uua) = aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),Uu2),aa(nat,A,semiring_1_of_nat(A),Uua))) ) ) ).
% ATP.lambda_243
tff(fact_8423_ATP_Olambda__244,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [Uu2: A,Uua: nat] : ( aa(nat,fun(A,A),aTP_Lamp_ah(A,fun(nat,fun(A,A)),Uu2),Uua) = aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),Uu2),aa(nat,A,semiring_1_of_nat(A),Uua))) ) ) ).
% ATP.lambda_244
tff(fact_8424_ATP_Olambda__245,axiom,
! [A: $tType,Uu2: list(A),Uua: A] :
( pp(aa(A,bool,aTP_Lamp_pb(list(A),fun(A,bool),Uu2),Uua))
<=> ~ pp(member(A,Uua,aa(list(A),set(A),set2(A),Uu2))) ) ).
% ATP.lambda_245
tff(fact_8425_ATP_Olambda__246,axiom,
! [Uu2: real,Uua: nat] : ( aa(nat,real,aTP_Lamp_acf(real,fun(nat,real),Uu2),Uua) = aa(real,real,inverse_inverse(real),aa(nat,real,power_power(real,Uu2),Uua)) ) ).
% ATP.lambda_246
tff(fact_8426_ATP_Olambda__247,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: A,Uua: A] : ( aa(A,A,aTP_Lamp_ua(A,fun(A,A),Uu2),Uua) = aa(A,A,cos(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),Uua),Uu2)) ) ) ).
% ATP.lambda_247
tff(fact_8427_ATP_Olambda__248,axiom,
! [A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [Uu2: A,Uua: A] : ( aa(A,filter(A),aTP_Lamp_aee(A,fun(A,filter(A)),Uu2),Uua) = principal(A,set_or5935395276787703475ssThan(A,Uu2,Uua)) ) ) ).
% ATP.lambda_248
tff(fact_8428_ATP_Olambda__249,axiom,
! [A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [Uu2: A,Uua: A] : ( aa(A,filter(A),aTP_Lamp_aed(A,fun(A,filter(A)),Uu2),Uua) = principal(A,set_or5935395276787703475ssThan(A,Uua,Uu2)) ) ) ).
% ATP.lambda_249
tff(fact_8429_ATP_Olambda__250,axiom,
! [Uu2: nat,Uua: nat] : ( aa(nat,nat,aTP_Lamp_kg(nat,fun(nat,nat),Uu2),Uua) = aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),Uu2),Uua)) ) ).
% ATP.lambda_250
tff(fact_8430_ATP_Olambda__251,axiom,
! [Uu2: nat,Uua: nat] : ( aa(nat,nat,aTP_Lamp_kh(nat,fun(nat,nat),Uu2),Uua) = aa(nat,nat,suc,aa(nat,nat,aa(nat,fun(nat,nat),ord_max(nat),Uua),Uu2)) ) ).
% ATP.lambda_251
tff(fact_8431_ATP_Olambda__252,axiom,
! [A: $tType,Uu2: A,Uua: A] :
( pp(aa(A,bool,aTP_Lamp_ou(A,fun(A,bool),Uu2),Uua))
<=> ( Uu2 != Uua ) ) ).
% ATP.lambda_252
tff(fact_8432_ATP_Olambda__253,axiom,
! [A: $tType,Uu2: A,Uua: A] :
( pp(aa(A,bool,aTP_Lamp_oz(A,fun(A,bool),Uu2),Uua))
<=> ( Uua != Uu2 ) ) ).
% ATP.lambda_253
tff(fact_8433_ATP_Olambda__254,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,real,aTP_Lamp_bo(fun(nat,A),fun(nat,real),Uu2),Uua) = real_V7770717601297561774m_norm(A,aa(nat,A,Uu2,Uua)) ) ) ).
% ATP.lambda_254
tff(fact_8434_ATP_Olambda__255,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V4412858255891104859lgebra(A) )
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,real,aTP_Lamp_dt(fun(nat,A),fun(nat,real),Uu2),Uua) = real_V7770717601297561774m_norm(A,aa(nat,A,Uu2,Uua)) ) ) ).
% ATP.lambda_255
tff(fact_8435_ATP_Olambda__256,axiom,
! [A: $tType] :
( real_Vector_banach(A)
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,real,aTP_Lamp_br(fun(nat,A),fun(nat,real),Uu2),Uua) = real_V7770717601297561774m_norm(A,aa(nat,A,Uu2,Uua)) ) ) ).
% ATP.lambda_256
tff(fact_8436_ATP_Olambda__257,axiom,
! [A: $tType,B: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(B,A),Uua: B] : ( aa(B,real,aTP_Lamp_dk(fun(B,A),fun(B,real),Uu2),Uua) = real_V7770717601297561774m_norm(A,aa(B,A,Uu2,Uua)) ) ) ).
% ATP.lambda_257
tff(fact_8437_ATP_Olambda__258,axiom,
! [A: $tType,B: $tType] :
( ( comm_monoid_mult(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [Uu2: fun(B,A),Uua: B] : ( aa(B,real,aTP_Lamp_hn(fun(B,A),fun(B,real),Uu2),Uua) = real_V7770717601297561774m_norm(A,aa(B,A,Uu2,Uua)) ) ) ).
% ATP.lambda_258
tff(fact_8438_ATP_Olambda__259,axiom,
! [B: $tType,A: $tType] :
( real_V822414075346904944vector(B)
=> ! [Uu2: fun(A,B),Uua: A] : ( aa(A,real,aTP_Lamp_aaa(fun(A,B),fun(A,real),Uu2),Uua) = real_V7770717601297561774m_norm(B,aa(A,B,Uu2,Uua)) ) ) ).
% ATP.lambda_259
tff(fact_8439_ATP_Olambda__260,axiom,
! [A: $tType,B: $tType] :
( semiring_1(A)
=> ! [Uu2: fun(B,bool),Uua: B] : ( aa(B,A,aTP_Lamp_oa(fun(B,bool),fun(B,A),Uu2),Uua) = aa(bool,A,zero_neq_one_of_bool(A),aa(B,bool,Uu2,Uua)) ) ) ).
% ATP.lambda_260
tff(fact_8440_ATP_Olambda__261,axiom,
! [Uu2: fun(nat,real),Uua: nat] : ( aa(nat,real,aTP_Lamp_abv(fun(nat,real),fun(nat,real),Uu2),Uua) = aa(real,real,inverse_inverse(real),aa(nat,real,Uu2,Uua)) ) ).
% ATP.lambda_261
tff(fact_8441_ATP_Olambda__262,axiom,
! [A: $tType,C: $tType] :
( ( real_V822414075346904944vector(C)
& real_V8999393235501362500lgebra(A) )
=> ! [Uu2: fun(C,A),Uua: C] : ( aa(C,A,aTP_Lamp_wy(fun(C,A),fun(C,A),Uu2),Uua) = aa(A,A,inverse_inverse(A),aa(C,A,Uu2,Uua)) ) ) ).
% ATP.lambda_262
tff(fact_8442_ATP_Olambda__263,axiom,
! [A: $tType,B: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [Uu2: fun(B,A),Uua: B] : ( aa(B,A,aTP_Lamp_aab(fun(B,A),fun(B,A),Uu2),Uua) = aa(A,A,inverse_inverse(A),aa(B,A,Uu2,Uua)) ) ) ).
% ATP.lambda_263
tff(fact_8443_ATP_Olambda__264,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(A,A),Uua: A] : ( aa(A,A,aTP_Lamp_ut(fun(A,A),fun(A,A),Uu2),Uua) = aa(A,A,inverse_inverse(A),aa(A,A,Uu2,Uua)) ) ) ).
% ATP.lambda_264
tff(fact_8444_ATP_Olambda__265,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space(A)
& real_V8999393235501362500lgebra(B) )
=> ! [Uu2: fun(A,B),Uua: A] : ( aa(A,B,aTP_Lamp_yu(fun(A,B),fun(A,B),Uu2),Uua) = aa(B,B,inverse_inverse(B),aa(A,B,Uu2,Uua)) ) ) ).
% ATP.lambda_265
tff(fact_8445_ATP_Olambda__266,axiom,
! [A: $tType,Uu2: fun(A,real),Uua: A] : ( aa(A,real,aTP_Lamp_aek(fun(A,real),fun(A,real),Uu2),Uua) = aa(real,real,inverse_inverse(real),aa(A,real,Uu2,Uua)) ) ).
% ATP.lambda_266
tff(fact_8446_ATP_Olambda__267,axiom,
! [B: $tType,A: $tType] :
( real_V8999393235501362500lgebra(B)
=> ! [Uu2: fun(A,B),Uua: A] : ( aa(A,B,aTP_Lamp_afd(fun(A,B),fun(A,B),Uu2),Uua) = aa(B,B,inverse_inverse(B),aa(A,B,Uu2,Uua)) ) ) ).
% ATP.lambda_267
tff(fact_8447_ATP_Olambda__268,axiom,
! [B: $tType,Uu2: fun(B,nat),Uua: B] : ( aa(B,int,aTP_Lamp_fe(fun(B,nat),fun(B,int),Uu2),Uua) = aa(nat,int,semiring_1_of_nat(int),aa(B,nat,Uu2,Uua)) ) ).
% ATP.lambda_268
tff(fact_8448_ATP_Olambda__269,axiom,
! [A: $tType,B: $tType] :
( comm_semiring_1(A)
=> ! [Uu2: fun(B,nat),Uua: B] : ( aa(B,A,aTP_Lamp_hh(fun(B,nat),fun(B,A),Uu2),Uua) = aa(nat,A,semiring_1_of_nat(A),aa(B,nat,Uu2,Uua)) ) ) ).
% ATP.lambda_269
tff(fact_8449_ATP_Olambda__270,axiom,
! [A: $tType,B: $tType] :
( semiring_1(A)
=> ! [Uu2: fun(B,nat),Uua: B] : ( aa(B,A,aTP_Lamp_de(fun(B,nat),fun(B,A),Uu2),Uua) = aa(nat,A,semiring_1_of_nat(A),aa(B,nat,Uu2,Uua)) ) ) ).
% ATP.lambda_270
tff(fact_8450_ATP_Olambda__271,axiom,
! [A: $tType,Uu2: fun(A,nat),Uua: A] : ( aa(A,real,aTP_Lamp_ar(fun(A,nat),fun(A,real),Uu2),Uua) = aa(nat,real,semiring_1_of_nat(real),aa(A,nat,Uu2,Uua)) ) ).
% ATP.lambda_271
tff(fact_8451_ATP_Olambda__272,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(A,real),Uua: A] : ( aa(A,real,aTP_Lamp_xh(fun(A,real),fun(A,real),Uu2),Uua) = aa(real,real,ln_ln(real),aa(A,real,Uu2,Uua)) ) ) ).
% ATP.lambda_272
tff(fact_8452_ATP_Olambda__273,axiom,
! [A: $tType] :
( topological_t2_space(A)
=> ! [Uu2: fun(A,real),Uua: A] : ( aa(A,real,aTP_Lamp_abm(fun(A,real),fun(A,real),Uu2),Uua) = aa(real,real,ln_ln(real),aa(A,real,Uu2,Uua)) ) ) ).
% ATP.lambda_273
tff(fact_8453_ATP_Olambda__274,axiom,
! [A: $tType,Uu2: fun(A,real),Uua: A] : ( aa(A,real,aTP_Lamp_ly(fun(A,real),fun(A,real),Uu2),Uua) = aa(real,real,ln_ln(real),aa(A,real,Uu2,Uua)) ) ).
% ATP.lambda_274
tff(fact_8454_ATP_Olambda__275,axiom,
! [A: $tType,C: $tType] :
( ( real_V822414075346904944vector(C)
& real_V2191834092415804123ebra_1(A)
& real_V822414075346904944vector(A) )
=> ! [Uu2: fun(C,real),Uua: C] : ( aa(C,A,aTP_Lamp_wh(fun(C,real),fun(C,A),Uu2),Uua) = real_Vector_of_real(A,aa(C,real,Uu2,Uua)) ) ) ).
% ATP.lambda_275
tff(fact_8455_ATP_Olambda__276,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_ay(fun(nat,A),fun(nat,A),Uu2),Uua) = aa(A,A,uminus_uminus(A),aa(nat,A,Uu2,Uua)) ) ) ).
% ATP.lambda_276
tff(fact_8456_ATP_Olambda__277,axiom,
! [A: $tType] :
( ordered_ab_group_add(A)
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_cv(fun(nat,A),fun(nat,A),Uu2),Uua) = aa(A,A,uminus_uminus(A),aa(nat,A,Uu2,Uua)) ) ) ).
% ATP.lambda_277
tff(fact_8457_ATP_Olambda__278,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,A,aTP_Lamp_ch(fun(nat,A),fun(nat,A),Uu2),Uua) = aa(A,A,uminus_uminus(A),aa(nat,A,Uu2,Uua)) ) ) ).
% ATP.lambda_278
tff(fact_8458_ATP_Olambda__279,axiom,
! [A: $tType,B: $tType] :
( comple489889107523837845lgebra(A)
=> ! [Uu2: fun(B,A),Uua: B] : ( aa(B,A,aTP_Lamp_rc(fun(B,A),fun(B,A),Uu2),Uua) = aa(A,A,uminus_uminus(A),aa(B,A,Uu2,Uua)) ) ) ).
% ATP.lambda_279
tff(fact_8459_ATP_Olambda__280,axiom,
! [A: $tType,B: $tType] :
( topolo1633459387980952147up_add(A)
=> ! [Uu2: fun(B,A),Uua: B] : ( aa(B,A,aTP_Lamp_ze(fun(B,A),fun(B,A),Uu2),Uua) = aa(A,A,uminus_uminus(A),aa(B,A,Uu2,Uua)) ) ) ).
% ATP.lambda_280
tff(fact_8460_ATP_Olambda__281,axiom,
! [A: $tType,B: $tType] :
( ab_group_add(A)
=> ! [Uu2: fun(B,A),Uua: B] : ( aa(B,A,aTP_Lamp_fp(fun(B,A),fun(B,A),Uu2),Uua) = aa(A,A,uminus_uminus(A),aa(B,A,Uu2,Uua)) ) ) ).
% ATP.lambda_281
tff(fact_8461_ATP_Olambda__282,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [Uu2: fun(A,B),Uua: A] : ( aa(A,B,aTP_Lamp_wn(fun(A,B),fun(A,B),Uu2),Uua) = aa(B,B,uminus_uminus(B),aa(A,B,Uu2,Uua)) ) ) ).
% ATP.lambda_282
tff(fact_8462_ATP_Olambda__283,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(A,A),Uua: A] : ( aa(A,A,aTP_Lamp_uj(fun(A,A),fun(A,A),Uu2),Uua) = aa(A,A,uminus_uminus(A),aa(A,A,Uu2,Uua)) ) ) ).
% ATP.lambda_283
tff(fact_8463_ATP_Olambda__284,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space(A)
& real_V822414075346904944vector(B) )
=> ! [Uu2: fun(A,B),Uua: A] : ( aa(A,B,aTP_Lamp_ys(fun(A,B),fun(A,B),Uu2),Uua) = aa(B,B,uminus_uminus(B),aa(A,B,Uu2,Uua)) ) ) ).
% ATP.lambda_284
tff(fact_8464_ATP_Olambda__285,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space(A)
& topolo1633459387980952147up_add(B) )
=> ! [Uu2: fun(A,B),Uua: A] : ( aa(A,B,aTP_Lamp_zf(fun(A,B),fun(A,B),Uu2),Uua) = aa(B,B,uminus_uminus(B),aa(A,B,Uu2,Uua)) ) ) ).
% ATP.lambda_285
tff(fact_8465_ATP_Olambda__286,axiom,
! [A: $tType,Uu2: fun(A,real),Uua: A] : ( aa(A,real,aTP_Lamp_aei(fun(A,real),fun(A,real),Uu2),Uua) = aa(real,real,uminus_uminus(real),aa(A,real,Uu2,Uua)) ) ).
% ATP.lambda_286
tff(fact_8466_ATP_Olambda__287,axiom,
! [B: $tType,A: $tType] :
( topolo1633459387980952147up_add(B)
=> ! [Uu2: fun(A,B),Uua: A] : ( aa(A,B,aTP_Lamp_zd(fun(A,B),fun(A,B),Uu2),Uua) = aa(B,B,uminus_uminus(B),aa(A,B,Uu2,Uua)) ) ) ).
% ATP.lambda_287
tff(fact_8467_ATP_Olambda__288,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,fun(A,A),aTP_Lamp_hw(fun(nat,A),fun(nat,fun(A,A)),Uu2),Uua) = aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,Uua)) ) ) ).
% ATP.lambda_288
tff(fact_8468_ATP_Olambda__289,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: fun(nat,A),Uua: nat] : ( aa(nat,fun(A,A),aTP_Lamp_gu(fun(nat,A),fun(nat,fun(A,A)),Uu2),Uua) = aa(A,fun(A,A),plus_plus(A),aa(nat,A,Uu2,Uua)) ) ) ).
% ATP.lambda_289
tff(fact_8469_ATP_Olambda__290,axiom,
! [A: $tType] :
( topological_t2_space(A)
=> ! [Uu2: fun(A,real),Uua: A] : ( aa(A,real,aTP_Lamp_adj(fun(A,real),fun(A,real),Uu2),Uua) = aa(real,real,artanh(real),aa(A,real,Uu2,Uua)) ) ) ).
% ATP.lambda_290
tff(fact_8470_ATP_Olambda__291,axiom,
! [A: $tType,Uu2: fun(A,real),Uua: A] : ( aa(A,real,aTP_Lamp_yz(fun(A,real),fun(A,real),Uu2),Uua) = aa(real,real,artanh(real),aa(A,real,Uu2,Uua)) ) ).
% ATP.lambda_291
tff(fact_8471_ATP_Olambda__292,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(A,real),Uua: A] : ( aa(A,real,aTP_Lamp_xt(fun(A,real),fun(A,real),Uu2),Uua) = aa(real,real,arctan,aa(A,real,Uu2,Uua)) ) ) ).
% ATP.lambda_292
tff(fact_8472_ATP_Olambda__293,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(A,real),Uua: A] : ( aa(A,real,aTP_Lamp_vs(fun(A,real),fun(A,real),Uu2),Uua) = aa(real,real,arcsin,aa(A,real,Uu2,Uua)) ) ) ).
% ATP.lambda_293
tff(fact_8473_ATP_Olambda__294,axiom,
! [B: $tType,Uu2: fun(B,real),Uua: B] : ( aa(B,real,aTP_Lamp_yx(fun(B,real),fun(B,real),Uu2),Uua) = aa(real,real,arcosh(real),aa(B,real,Uu2,Uua)) ) ).
% ATP.lambda_294
tff(fact_8474_ATP_Olambda__295,axiom,
! [A: $tType] :
( topological_t2_space(A)
=> ! [Uu2: fun(A,real),Uua: A] : ( aa(A,real,aTP_Lamp_adi(fun(A,real),fun(A,real),Uu2),Uua) = aa(real,real,arcosh(real),aa(A,real,Uu2,Uua)) ) ) ).
% ATP.lambda_295
tff(fact_8475_ATP_Olambda__296,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(A,real),Uua: A] : ( aa(A,real,aTP_Lamp_vu(fun(A,real),fun(A,real),Uu2),Uua) = aa(real,real,arccos,aa(A,real,Uu2,Uua)) ) ) ).
% ATP.lambda_296
tff(fact_8476_ATP_Olambda__297,axiom,
! [A: $tType,B: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(B,A),Uua: B] : ( aa(B,A,aTP_Lamp_zy(fun(B,A),fun(B,A),Uu2),Uua) = aa(A,A,sgn_sgn(A),aa(B,A,Uu2,Uua)) ) ) ).
% ATP.lambda_297
tff(fact_8477_ATP_Olambda__298,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space(A)
& real_V822414075346904944vector(B) )
=> ! [Uu2: fun(A,B),Uua: A] : ( aa(A,B,aTP_Lamp_aaq(fun(A,B),fun(A,B),Uu2),Uua) = aa(B,B,sgn_sgn(B),aa(A,B,Uu2,Uua)) ) ) ).
% ATP.lambda_298
tff(fact_8478_ATP_Olambda__299,axiom,
! [Uu2: fun(nat,real),Uua: nat] : ( aa(nat,real,aTP_Lamp_bp(fun(nat,real),fun(nat,real),Uu2),Uua) = aa(real,real,abs_abs(real),aa(nat,real,Uu2,Uua)) ) ).
% ATP.lambda_299
tff(fact_8479_ATP_Olambda__300,axiom,
! [A: $tType,Uu2: fun(A,real),Uua: A] : ( aa(A,real,aTP_Lamp_aai(fun(A,real),fun(A,real),Uu2),Uua) = aa(real,real,abs_abs(real),aa(A,real,Uu2,Uua)) ) ).
% ATP.lambda_300
tff(fact_8480_ATP_Olambda__301,axiom,
! [B: $tType,A: $tType] :
( ordere166539214618696060dd_abs(B)
=> ! [Uu2: fun(A,B),Uua: A] : ( aa(A,B,aTP_Lamp_ez(fun(A,B),fun(A,B),Uu2),Uua) = aa(B,B,abs_abs(B),aa(A,B,Uu2,Uua)) ) ) ).
% ATP.lambda_301
tff(fact_8481_ATP_Olambda__302,axiom,
! [A11: $tType] :
( ( real_Vector_banach(A11)
& real_V3459762299906320749_field(A11) )
=> ! [Uu2: fun(A11,A11),Uua: A11] : ( aa(A11,A11,aTP_Lamp_vf(fun(A11,A11),fun(A11,A11),Uu2),Uua) = aa(A11,A11,tanh(A11),aa(A11,A11,Uu2,Uua)) ) ) ).
% ATP.lambda_302
tff(fact_8482_ATP_Olambda__303,axiom,
! [A: $tType,C: $tType] :
( ( topological_t2_space(C)
& real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: fun(C,A),Uua: C] : ( aa(C,A,aTP_Lamp_aau(fun(C,A),fun(C,A),Uu2),Uua) = aa(A,A,tanh(A),aa(C,A,Uu2,Uua)) ) ) ).
% ATP.lambda_303
tff(fact_8483_ATP_Olambda__304,axiom,
! [A: $tType,C: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: fun(C,A),Uua: C] : ( aa(C,A,aTP_Lamp_aad(fun(C,A),fun(C,A),Uu2),Uua) = aa(A,A,tanh(A),aa(C,A,Uu2,Uua)) ) ) ).
% ATP.lambda_304
tff(fact_8484_ATP_Olambda__305,axiom,
! [A11: $tType] :
( ( real_Vector_banach(A11)
& real_V3459762299906320749_field(A11) )
=> ! [Uu2: fun(A11,A11),Uua: A11] : ( aa(A11,A11,aTP_Lamp_uo(fun(A11,A11),fun(A11,A11),Uu2),Uua) = sinh(A11,aa(A11,A11,Uu2,Uua)) ) ) ).
% ATP.lambda_305
tff(fact_8485_ATP_Olambda__306,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: fun(A,A),Uua: A] : ( aa(A,A,aTP_Lamp_wv(fun(A,A),fun(A,A),Uu2),Uua) = sinh(A,aa(A,A,Uu2,Uua)) ) ) ).
% ATP.lambda_306
tff(fact_8486_ATP_Olambda__307,axiom,
! [A11: $tType] :
( ( real_Vector_banach(A11)
& real_V3459762299906320749_field(A11) )
=> ! [Uu2: fun(A11,A11),Uua: A11] : ( aa(A11,A11,aTP_Lamp_up(fun(A11,A11),fun(A11,A11),Uu2),Uua) = cosh(A11,aa(A11,A11,Uu2,Uua)) ) ) ).
% ATP.lambda_307
tff(fact_8487_ATP_Olambda__308,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: fun(A,A),Uua: A] : ( aa(A,A,aTP_Lamp_wu(fun(A,A),fun(A,A),Uu2),Uua) = cosh(A,aa(A,A,Uu2,Uua)) ) ) ).
% ATP.lambda_308
tff(fact_8488_ATP_Olambda__309,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(A,real),Uua: A] : ( aa(A,real,aTP_Lamp_xv(fun(A,real),fun(A,real),Uu2),Uua) = aa(real,real,tan(real),aa(A,real,Uu2,Uua)) ) ) ).
% ATP.lambda_309
tff(fact_8489_ATP_Olambda__310,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: fun(A,A),Uua: A] : ( aa(A,A,aTP_Lamp_aac(fun(A,A),fun(A,A),Uu2),Uua) = aa(A,A,tan(A),aa(A,A,Uu2,Uua)) ) ) ).
% ATP.lambda_310
tff(fact_8490_ATP_Olambda__311,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(A,real),Uua: A] : ( aa(A,real,aTP_Lamp_ws(fun(A,real),fun(A,real),Uu2),Uua) = sin(real,aa(A,real,Uu2,Uua)) ) ) ).
% ATP.lambda_311
tff(fact_8491_ATP_Olambda__312,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: fun(A,A),Uua: A] : ( aa(A,A,aTP_Lamp_uc(fun(A,A),fun(A,A),Uu2),Uua) = sin(A,aa(A,A,Uu2,Uua)) ) ) ).
% ATP.lambda_312
tff(fact_8492_ATP_Olambda__313,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(A,real),Uua: A] : ( aa(A,real,aTP_Lamp_wq(fun(A,real),fun(A,real),Uu2),Uua) = aa(real,real,exp(real),aa(A,real,Uu2,Uua)) ) ) ).
% ATP.lambda_313
tff(fact_8493_ATP_Olambda__314,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: fun(A,A),Uua: A] : ( aa(A,A,aTP_Lamp_uf(fun(A,A),fun(A,A),Uu2),Uua) = aa(A,A,exp(A),aa(A,A,Uu2,Uua)) ) ) ).
% ATP.lambda_314
tff(fact_8494_ATP_Olambda__315,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: fun(A,A),Uua: A] : ( aa(A,A,aTP_Lamp_aae(fun(A,A),fun(A,A),Uu2),Uua) = aa(A,A,cot(A),aa(A,A,Uu2,Uua)) ) ) ).
% ATP.lambda_315
tff(fact_8495_ATP_Olambda__316,axiom,
! [Uu2: fun(nat,real),Uua: nat] : ( aa(nat,real,aTP_Lamp_acr(fun(nat,real),fun(nat,real),Uu2),Uua) = aa(real,real,cos(real),aa(nat,real,Uu2,Uua)) ) ).
% ATP.lambda_316
tff(fact_8496_ATP_Olambda__317,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(A,real),Uua: A] : ( aa(A,real,aTP_Lamp_xd(fun(A,real),fun(A,real),Uu2),Uua) = aa(real,real,cos(real),aa(A,real,Uu2,Uua)) ) ) ).
% ATP.lambda_317
tff(fact_8497_ATP_Olambda__318,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: fun(A,A),Uua: A] : ( aa(A,A,aTP_Lamp_ub(fun(A,A),fun(A,A),Uu2),Uua) = aa(A,A,cos(A),aa(A,A,Uu2,Uua)) ) ) ).
% ATP.lambda_318
tff(fact_8498_ATP_Olambda__319,axiom,
! [B: $tType,A: $tType,C: $tType,Uu2: fun(C,A),Uua: C] : ( aa(C,fun(B,product_prod(A,B)),aTP_Lamp_ql(fun(C,A),fun(C,fun(B,product_prod(A,B))),Uu2),Uua) = aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),aa(C,A,Uu2,Uua)) ) ).
% ATP.lambda_319
tff(fact_8499_ATP_Olambda__320,axiom,
! [C: $tType,D: $tType,Uu2: fun(D,set(C)),Uua: D] : ( aa(D,filter(C),aTP_Lamp_adz(fun(D,set(C)),fun(D,filter(C)),Uu2),Uua) = principal(C,aa(D,set(C),Uu2,Uua)) ) ).
% ATP.lambda_320
tff(fact_8500_ATP_Olambda__321,axiom,
! [B: $tType,A: $tType,Uu2: fun(A,set(B)),Uua: A] : ( aa(A,filter(B),aTP_Lamp_aea(fun(A,set(B)),fun(A,filter(B)),Uu2),Uua) = principal(B,aa(A,set(B),Uu2,Uua)) ) ).
% ATP.lambda_321
tff(fact_8501_ATP_Olambda__322,axiom,
! [B: $tType,A: $tType,Uu2: fun(A,set(B)),Uua: A] : ( aa(A,nat,aTP_Lamp_ry(fun(A,set(B)),fun(A,nat),Uu2),Uua) = aa(set(B),nat,finite_card(B),aa(A,set(B),Uu2,Uua)) ) ).
% ATP.lambda_322
tff(fact_8502_ATP_Olambda__323,axiom,
! [Uu2: fun(real,fun(nat,real)),Uua: real] : ( aa(real,real,aTP_Lamp_ve(fun(real,fun(nat,real)),fun(real,real),Uu2),Uua) = suminf(real,aa(real,fun(nat,real),Uu2,Uua)) ) ).
% ATP.lambda_323
tff(fact_8503_ATP_Olambda__324,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_Vector_banach(B) )
=> ! [Uu2: fun(A,fun(nat,B)),Uua: A] : ( aa(A,B,aTP_Lamp_aav(fun(A,fun(nat,B)),fun(A,B),Uu2),Uua) = suminf(B,aa(A,fun(nat,B),Uu2,Uua)) ) ) ).
% ATP.lambda_324
tff(fact_8504_ATP_Olambda__325,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(A,real),Uua: A] : ( aa(A,real,aTP_Lamp_xr(fun(A,real),fun(A,real),Uu2),Uua) = aa(real,real,sqrt,aa(A,real,Uu2,Uua)) ) ) ).
% ATP.lambda_325
tff(fact_8505_ATP_Olambda__326,axiom,
! [A: $tType] :
( topological_t2_space(A)
=> ! [Uu2: fun(A,real),Uua: A] : ( aa(A,real,aTP_Lamp_abh(fun(A,real),fun(A,real),Uu2),Uua) = aa(real,real,sqrt,aa(A,real,Uu2,Uua)) ) ) ).
% ATP.lambda_326
tff(fact_8506_ATP_Olambda__327,axiom,
! [A: $tType,Uu2: fun(A,real),Uua: A] : ( aa(A,real,aTP_Lamp_zw(fun(A,real),fun(A,real),Uu2),Uua) = aa(real,real,sqrt,aa(A,real,Uu2,Uua)) ) ).
% ATP.lambda_327
tff(fact_8507_ATP_Olambda__328,axiom,
! [A: $tType,B: $tType,Uu2: fun(B,set(A)),Uua: B] : ( aa(B,set(set(A)),aTP_Lamp_rq(fun(B,set(A)),fun(B,set(set(A))),Uu2),Uua) = pow2(A,aa(B,set(A),Uu2,Uua)) ) ).
% ATP.lambda_328
tff(fact_8508_ATP_Olambda__329,axiom,
! [A: $tType,Uu2: fun(A,nat),Uua: A] : ( aa(A,nat,aTP_Lamp_mu(fun(A,nat),fun(A,nat),Uu2),Uua) = aa(nat,nat,suc,aa(A,nat,Uu2,Uua)) ) ).
% ATP.lambda_329
tff(fact_8509_ATP_Olambda__330,axiom,
! [A: $tType,Uu2: fun(A,bool),Uua: A] :
( pp(aa(A,bool,aTP_Lamp_ov(fun(A,bool),fun(A,bool),Uu2),Uua))
<=> ~ pp(aa(A,bool,Uu2,Uua)) ) ).
% ATP.lambda_330
tff(fact_8510_ATP_Olambda__331,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [Uu2: A,Uua: real] : ( aa(real,filter(A),aTP_Lamp_aec(A,fun(real,filter(A)),Uu2),Uua) = principal(A,aa(fun(A,bool),set(A),collect(A),aa(real,fun(A,bool),aTP_Lamp_aeb(A,fun(real,fun(A,bool)),Uu2),Uua))) ) ) ).
% ATP.lambda_331
tff(fact_8511_ATP_Olambda__332,axiom,
! [A: $tType] :
( ( archim2362893244070406136eiling(A)
& topolo2564578578187576103pology(A) )
=> ! [Uu2: fun(real,A),Uua: real] : ( aa(real,real,aTP_Lamp_aay(fun(real,A),fun(real,real),Uu2),Uua) = aa(int,real,ring_1_of_int(real),aa(A,int,archim6421214686448440834_floor(A),aa(real,A,Uu2,Uua))) ) ) ).
% ATP.lambda_332
tff(fact_8512_ATP_Olambda__333,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Uu2: fun(A,bool),Uua: A] :
( pp(aa(A,bool,aTP_Lamp_ahg(fun(A,bool),fun(A,bool),Uu2),Uua))
<=> ! [Y2: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Uua),Y2))
=> pp(aa(A,bool,Uu2,Y2)) ) ) ) ).
% ATP.lambda_333
tff(fact_8513_ATP_Olambda__334,axiom,
! [A: $tType,Uu2: A,Uua: list(A)] : ( aa(list(A),option(A),aa(A,fun(list(A),option(A)),aTP_Lamp_tk(A,fun(list(A),option(A))),Uu2),Uua) = aa(A,option(A),some(A),Uu2) ) ).
% ATP.lambda_334
tff(fact_8514_ATP_Olambda__335,axiom,
! [Uu2: fun(nat,real),Uua: fun(nat,real),Uub: nat] : ( aa(nat,real,aa(fun(nat,real),fun(nat,real),aTP_Lamp_cc(fun(nat,real),fun(fun(nat,real),fun(nat,real)),Uu2),Uua),Uub) = if(real,aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uub),aa(nat,real,Uua,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),Uub),aa(num,nat,numeral_numeral(nat),bit0(one2)))),aa(nat,real,Uu2,aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uub),one_one(nat))),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ).
% ATP.lambda_335
tff(fact_8515_ATP_Olambda__336,axiom,
! [Uu2: fun(nat,real),Uua: fun(nat,real),Uub: nat] : ( aa(nat,real,aa(fun(nat,real),fun(nat,real),aTP_Lamp_gf(fun(nat,real),fun(fun(nat,real),fun(nat,real)),Uu2),Uua),Uub) = if(real,aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uub),aa(nat,real,Uu2,Uub),aa(nat,real,Uua,Uub)) ) ).
% ATP.lambda_336
tff(fact_8516_ATP_Olambda__337,axiom,
! [Uu2: num,Uua: code_integer,Uub: code_integer] : ( aa(code_integer,product_prod(code_integer,code_integer),aa(code_integer,fun(code_integer,product_prod(code_integer,code_integer)),aTP_Lamp_jt(num,fun(code_integer,fun(code_integer,product_prod(code_integer,code_integer))),Uu2),Uua),Uub) = if(product_prod(code_integer,code_integer),aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),ord_less_eq(code_integer),aa(num,code_integer,numeral_numeral(code_integer),Uu2)),Uub),aa(code_integer,product_prod(code_integer,code_integer),aa(code_integer,fun(code_integer,product_prod(code_integer,code_integer)),product_Pair(code_integer,code_integer),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),plus_plus(code_integer),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),times_times(code_integer),aa(num,code_integer,numeral_numeral(code_integer),bit0(one2))),Uua)),one_one(code_integer))),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),minus_minus(code_integer),Uub),aa(num,code_integer,numeral_numeral(code_integer),Uu2))),aa(code_integer,product_prod(code_integer,code_integer),aa(code_integer,fun(code_integer,product_prod(code_integer,code_integer)),product_Pair(code_integer,code_integer),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),times_times(code_integer),aa(num,code_integer,numeral_numeral(code_integer),bit0(one2))),Uua)),Uub)) ) ).
% ATP.lambda_337
tff(fact_8517_ATP_Olambda__338,axiom,
! [Uu2: num,Uua: nat,Uub: nat] : ( aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),aTP_Lamp_ie(num,fun(nat,fun(nat,product_prod(nat,nat))),Uu2),Uua),Uub) = if(product_prod(nat,nat),aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(num,nat,numeral_numeral(nat),Uu2)),Uub),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uua)),one_one(nat))),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uub),aa(num,nat,numeral_numeral(nat),Uu2))),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uua)),Uub)) ) ).
% ATP.lambda_338
tff(fact_8518_ATP_Olambda__339,axiom,
! [Uu2: num,Uua: int,Uub: int] : ( aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),aTP_Lamp_if(num,fun(int,fun(int,product_prod(int,int))),Uu2),Uua),Uub) = if(product_prod(int,int),aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(num,int,numeral_numeral(int),Uu2)),Uub),aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),Uua)),one_one(int))),aa(int,int,aa(int,fun(int,int),minus_minus(int),Uub),aa(num,int,numeral_numeral(int),Uu2))),aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(int,int,aa(int,fun(int,int),times_times(int),aa(num,int,numeral_numeral(int),bit0(one2))),Uua)),Uub)) ) ).
% ATP.lambda_339
tff(fact_8519_ATP_Olambda__340,axiom,
! [A: $tType] :
( unique1627219031080169319umeral(A)
=> ! [Uu2: num,Uua: A,Uub: A] : ( aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),aTP_Lamp_ih(num,fun(A,fun(A,product_prod(A,A))),Uu2),Uua),Uub) = if(product_prod(A,A),aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(num,A,numeral_numeral(A),Uu2)),Uub),aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),Uua)),one_one(A))),aa(A,A,aa(A,fun(A,A),minus_minus(A),Uub),aa(num,A,numeral_numeral(A),Uu2))),aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(num,A,numeral_numeral(A),bit0(one2))),Uua)),Uub)) ) ) ).
% ATP.lambda_340
tff(fact_8520_ATP_Olambda__341,axiom,
! [A: $tType] :
( ( comm_monoid_add(A)
& topolo4958980785337419405_space(A) )
=> ! [Uu2: set(nat),Uua: fun(nat,A),Uub: nat] : ( aa(nat,A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_la(set(nat),fun(fun(nat,A),fun(nat,A)),Uu2),Uua),Uub) = if(A,member(nat,Uub,Uu2),aa(nat,A,Uua,Uub),zero_zero(A)) ) ) ).
% ATP.lambda_341
tff(fact_8521_ATP_Olambda__342,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: fun(B,A),Uua: set(B),Uub: B] : ( aa(B,A,aa(set(B),fun(B,A),aTP_Lamp_ob(fun(B,A),fun(set(B),fun(B,A)),Uu2),Uua),Uub) = if(A,member(B,Uub,Uua),aa(B,A,Uu2,Uub),zero_zero(A)) ) ) ).
% ATP.lambda_342
tff(fact_8522_ATP_Olambda__343,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: fun(B,A),Uua: set(B),Uub: B] : ( aa(B,A,aa(set(B),fun(B,A),aTP_Lamp_oc(fun(B,A),fun(set(B),fun(B,A)),Uu2),Uua),Uub) = if(A,member(B,Uub,Uua),aa(B,A,Uu2,Uub),one_one(A)) ) ) ).
% ATP.lambda_343
tff(fact_8523_ATP_Olambda__344,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: B,Uua: fun(B,A),Uub: B] : ( aa(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_kx(B,fun(fun(B,A),fun(B,A)),Uu2),Uua),Uub) = if(A,aa(B,bool,aa(B,fun(B,bool),fequal(B),Uu2),Uub),aa(B,A,Uua,Uub),zero_zero(A)) ) ) ).
% ATP.lambda_344
tff(fact_8524_ATP_Olambda__345,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: B,Uua: fun(B,A),Uub: B] : ( aa(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_ky(B,fun(fun(B,A),fun(B,A)),Uu2),Uua),Uub) = if(A,aa(B,bool,aa(B,fun(B,bool),fequal(B),Uu2),Uub),aa(B,A,Uua,Uub),one_one(A)) ) ) ).
% ATP.lambda_345
tff(fact_8525_ATP_Olambda__346,axiom,
! [A: $tType] :
( ( comm_monoid_add(A)
& topolo4958980785337419405_space(A) )
=> ! [Uu2: nat,Uua: fun(nat,A),Uub: nat] : ( aa(nat,A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_au(nat,fun(fun(nat,A),fun(nat,A)),Uu2),Uua),Uub) = if(A,aa(nat,bool,aa(nat,fun(nat,bool),fequal(nat),Uub),Uu2),aa(nat,A,Uua,Uub),zero_zero(A)) ) ) ).
% ATP.lambda_346
tff(fact_8526_ATP_Olambda__347,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: B,Uua: fun(B,A),Uub: B] : ( aa(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_kw(B,fun(fun(B,A),fun(B,A)),Uu2),Uua),Uub) = if(A,aa(B,bool,aa(B,fun(B,bool),fequal(B),Uub),Uu2),aa(B,A,Uua,Uub),zero_zero(A)) ) ) ).
% ATP.lambda_347
tff(fact_8527_ATP_Olambda__348,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: B,Uua: fun(B,A),Uub: B] : ( aa(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_kz(B,fun(fun(B,A),fun(B,A)),Uu2),Uua),Uub) = if(A,aa(B,bool,aa(B,fun(B,bool),fequal(B),Uub),Uu2),aa(B,A,Uua,Uub),one_one(A)) ) ) ).
% ATP.lambda_348
tff(fact_8528_ATP_Olambda__349,axiom,
! [Uu2: code_integer,Uua: code_integer,Uub: code_integer] : ( aa(code_integer,product_prod(code_integer,code_integer),aa(code_integer,fun(code_integer,product_prod(code_integer,code_integer)),aTP_Lamp_kc(code_integer,fun(code_integer,fun(code_integer,product_prod(code_integer,code_integer))),Uu2),Uua),Uub) = if(product_prod(code_integer,code_integer),aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),fequal(code_integer),Uub),zero_zero(code_integer)),aa(code_integer,product_prod(code_integer,code_integer),aa(code_integer,fun(code_integer,product_prod(code_integer,code_integer)),product_Pair(code_integer,code_integer),aa(code_integer,code_integer,uminus_uminus(code_integer),Uua)),zero_zero(code_integer)),aa(code_integer,product_prod(code_integer,code_integer),aa(code_integer,fun(code_integer,product_prod(code_integer,code_integer)),product_Pair(code_integer,code_integer),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),minus_minus(code_integer),aa(code_integer,code_integer,uminus_uminus(code_integer),Uua)),one_one(code_integer))),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),minus_minus(code_integer),aa(code_integer,code_integer,uminus_uminus(code_integer),Uu2)),Uub))) ) ).
% ATP.lambda_349
tff(fact_8529_ATP_Olambda__350,axiom,
! [Uu2: code_integer,Uua: code_integer,Uub: code_integer] : ( aa(code_integer,product_prod(code_integer,code_integer),aa(code_integer,fun(code_integer,product_prod(code_integer,code_integer)),aTP_Lamp_nq(code_integer,fun(code_integer,fun(code_integer,product_prod(code_integer,code_integer))),Uu2),Uua),Uub) = if(product_prod(code_integer,code_integer),aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),fequal(code_integer),Uub),zero_zero(code_integer)),aa(code_integer,product_prod(code_integer,code_integer),aa(code_integer,fun(code_integer,product_prod(code_integer,code_integer)),product_Pair(code_integer,code_integer),aa(code_integer,code_integer,uminus_uminus(code_integer),Uua)),zero_zero(code_integer)),aa(code_integer,product_prod(code_integer,code_integer),aa(code_integer,fun(code_integer,product_prod(code_integer,code_integer)),product_Pair(code_integer,code_integer),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),minus_minus(code_integer),aa(code_integer,code_integer,uminus_uminus(code_integer),Uua)),one_one(code_integer))),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),minus_minus(code_integer),aa(code_integer,code_integer,abs_abs(code_integer),Uu2)),Uub))) ) ).
% ATP.lambda_350
tff(fact_8530_ATP_Olambda__351,axiom,
! [Uu2: code_integer,Uua: code_integer,Uub: code_integer] : ( aa(code_integer,product_prod(code_integer,code_integer),aa(code_integer,fun(code_integer,product_prod(code_integer,code_integer)),aTP_Lamp_kb(code_integer,fun(code_integer,fun(code_integer,product_prod(code_integer,code_integer))),Uu2),Uua),Uub) = if(product_prod(code_integer,code_integer),aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),fequal(code_integer),Uub),zero_zero(code_integer)),aa(code_integer,product_prod(code_integer,code_integer),aa(code_integer,fun(code_integer,product_prod(code_integer,code_integer)),product_Pair(code_integer,code_integer),aa(code_integer,code_integer,uminus_uminus(code_integer),Uua)),zero_zero(code_integer)),aa(code_integer,product_prod(code_integer,code_integer),aa(code_integer,fun(code_integer,product_prod(code_integer,code_integer)),product_Pair(code_integer,code_integer),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),minus_minus(code_integer),aa(code_integer,code_integer,uminus_uminus(code_integer),Uua)),one_one(code_integer))),aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),minus_minus(code_integer),Uu2),Uub))) ) ).
% ATP.lambda_351
tff(fact_8531_ATP_Olambda__352,axiom,
! [A: $tType] :
( ( comm_monoid_add(A)
& topolo4958980785337419405_space(A) )
=> ! [Uu2: fun(nat,bool),Uua: fun(nat,A),Uub: nat] : ( aa(nat,A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_lb(fun(nat,bool),fun(fun(nat,A),fun(nat,A)),Uu2),Uua),Uub) = if(A,aa(nat,bool,Uu2,Uub),aa(nat,A,Uua,Uub),zero_zero(A)) ) ) ).
% ATP.lambda_352
tff(fact_8532_ATP_Olambda__353,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: fun(B,A),Uua: fun(B,bool),Uub: B] : ( aa(B,A,aa(fun(B,bool),fun(B,A),aTP_Lamp_lm(fun(B,A),fun(fun(B,bool),fun(B,A)),Uu2),Uua),Uub) = if(A,aa(B,bool,Uua,Uub),aa(B,A,Uu2,Uub),zero_zero(A)) ) ) ).
% ATP.lambda_353
tff(fact_8533_ATP_Olambda__354,axiom,
! [B: $tType,A: $tType] :
( monoid_add(A)
=> ! [Uu2: fun(B,A),Uua: fun(B,bool),Uub: B] : ( aa(B,A,aa(fun(B,bool),fun(B,A),aTP_Lamp_oy(fun(B,A),fun(fun(B,bool),fun(B,A)),Uu2),Uua),Uub) = if(A,aa(B,bool,Uua,Uub),aa(B,A,Uu2,Uub),zero_zero(A)) ) ) ).
% ATP.lambda_354
tff(fact_8534_ATP_Olambda__355,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: fun(B,A),Uua: fun(B,bool),Uub: B] : ( aa(B,A,aa(fun(B,bool),fun(B,A),aTP_Lamp_ln(fun(B,A),fun(fun(B,bool),fun(B,A)),Uu2),Uua),Uub) = if(A,aa(B,bool,Uua,Uub),aa(B,A,Uu2,Uub),one_one(A)) ) ) ).
% ATP.lambda_355
tff(fact_8535_ATP_Olambda__356,axiom,
! [B: $tType,A: $tType,Uu2: fun(B,A),Uua: fun(B,bool),Uub: B] : ( aa(B,option(A),aa(fun(B,bool),fun(B,option(A)),aTP_Lamp_ph(fun(B,A),fun(fun(B,bool),fun(B,option(A))),Uu2),Uua),Uub) = if(option(A),aa(B,bool,Uua,Uub),aa(A,option(A),some(A),aa(B,A,Uu2,Uub)),none(A)) ) ).
% ATP.lambda_356
tff(fact_8536_ATP_Olambda__357,axiom,
! [Uu2: fun(real,real),Uua: fun(real,real),Uub: real] :
( pp(aa(real,bool,aa(fun(real,real),fun(real,bool),aTP_Lamp_afh(fun(real,real),fun(fun(real,real),fun(real,bool)),Uu2),Uua),Uub))
<=> has_field_derivative(real,Uu2,aa(real,real,Uua,Uub),topolo174197925503356063within(real,Uub,top_top(set(real)))) ) ).
% ATP.lambda_357
tff(fact_8537_ATP_Olambda__358,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: fun(nat,fun(nat,A)),Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_im(fun(nat,fun(nat,A)),fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(nat,A,aa(nat,fun(nat,A),Uu2,Uub),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uua),Uub)) ) ) ).
% ATP.lambda_358
tff(fact_8538_ATP_Olambda__359,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: fun(nat,fun(nat,A)),Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_ip(fun(nat,fun(nat,A)),fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(nat,A,aa(nat,fun(nat,A),Uu2,Uub),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uua),Uub)) ) ) ).
% ATP.lambda_359
tff(fact_8539_ATP_Olambda__360,axiom,
! [Uu2: fun(real,fun(nat,real)),Uua: nat,Uub: real] : ( aa(real,real,aa(nat,fun(real,real),aTP_Lamp_vd(fun(real,fun(nat,real)),fun(nat,fun(real,real)),Uu2),Uua),Uub) = aa(nat,real,aa(real,fun(nat,real),Uu2,Uub),Uua) ) ).
% ATP.lambda_360
tff(fact_8540_ATP_Olambda__361,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: fun(nat,fun(nat,A)),Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_hu(fun(nat,fun(nat,A)),fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(nat,A,aa(nat,fun(nat,A),Uu2,Uub),Uua) ) ) ).
% ATP.lambda_361
tff(fact_8541_ATP_Olambda__362,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: fun(nat,fun(nat,A)),Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_gs(fun(nat,fun(nat,A)),fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(nat,A,aa(nat,fun(nat,A),Uu2,Uub),Uua) ) ) ).
% ATP.lambda_362
tff(fact_8542_ATP_Olambda__363,axiom,
! [I6: $tType,B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V3459762299906320749_field(B) )
=> ! [Uu2: fun(I6,fun(A,B)),Uua: A,Uub: I6] : ( aa(I6,B,aa(A,fun(I6,B),aTP_Lamp_xl(fun(I6,fun(A,B)),fun(A,fun(I6,B)),Uu2),Uua),Uub) = aa(A,B,aa(I6,fun(A,B),Uu2,Uub),Uua) ) ) ).
% ATP.lambda_363
tff(fact_8543_ATP_Olambda__364,axiom,
! [B: $tType,A: $tType] :
( real_V3459762299906320749_field(B)
=> ! [Uu2: fun(B,fun(A,B)),Uua: A,Uub: B] : ( aa(B,B,aa(A,fun(B,B),aTP_Lamp_uh(fun(B,fun(A,B)),fun(A,fun(B,B)),Uu2),Uua),Uub) = aa(A,B,aa(B,fun(A,B),Uu2,Uub),Uua) ) ) ).
% ATP.lambda_364
tff(fact_8544_ATP_Olambda__365,axiom,
! [A: $tType,C: $tType,B: $tType] :
( ( real_V822414075346904944vector(B)
& real_V822414075346904944vector(C) )
=> ! [Uu2: fun(A,fun(B,C)),Uua: B,Uub: A] : ( aa(A,C,aa(B,fun(A,C),aTP_Lamp_wo(fun(A,fun(B,C)),fun(B,fun(A,C)),Uu2),Uua),Uub) = aa(B,C,aa(A,fun(B,C),Uu2,Uub),Uua) ) ) ).
% ATP.lambda_365
tff(fact_8545_ATP_Olambda__366,axiom,
! [A: $tType,C: $tType,B: $tType] :
( topolo4987421752381908075d_mult(C)
=> ! [Uu2: fun(A,fun(B,C)),Uua: B,Uub: A] : ( aa(A,C,aa(B,fun(A,C),aTP_Lamp_aao(fun(A,fun(B,C)),fun(B,fun(A,C)),Uu2),Uua),Uub) = aa(B,C,aa(A,fun(B,C),Uu2,Uub),Uua) ) ) ).
% ATP.lambda_366
tff(fact_8546_ATP_Olambda__367,axiom,
! [A: $tType,C: $tType,B: $tType] :
( topolo5987344860129210374id_add(C)
=> ! [Uu2: fun(A,fun(B,C)),Uua: B,Uub: A] : ( aa(A,C,aa(B,fun(A,C),aTP_Lamp_za(fun(A,fun(B,C)),fun(B,fun(A,C)),Uu2),Uua),Uub) = aa(B,C,aa(A,fun(B,C),Uu2,Uub),Uua) ) ) ).
% ATP.lambda_367
tff(fact_8547_ATP_Olambda__368,axiom,
! [A: $tType,Uu2: fun(A,fun(A,bool)),Uua: A,Uub: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),aTP_Lamp_op(fun(A,fun(A,bool)),fun(A,fun(A,bool)),Uu2),Uua),Uub))
<=> pp(aa(A,bool,aa(A,fun(A,bool),Uu2,Uub),Uua)) ) ).
% ATP.lambda_368
tff(fact_8548_ATP_Olambda__369,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: A,Uua: A,Uub: nat] : ( aa(nat,A,aa(A,fun(nat,A),aTP_Lamp_ey(A,fun(A,fun(nat,A)),Uu2),Uua),Uub) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aa(A,fun(nat,fun(nat,A)),aTP_Lamp_ex(A,fun(A,fun(nat,fun(nat,A))),Uu2),Uua),Uub)),aa(nat,set(nat),set_ord_atMost(nat),Uub)) ) ) ).
% ATP.lambda_369
tff(fact_8549_ATP_Olambda__370,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V4412858255891104859lgebra(A) )
=> ! [Uu2: fun(nat,A),Uua: fun(nat,A),Uub: nat] : ( aa(nat,A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_dv(fun(nat,A),fun(fun(nat,A),fun(nat,A)),Uu2),Uua),Uub) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aa(fun(nat,A),fun(nat,fun(nat,A)),aTP_Lamp_du(fun(nat,A),fun(fun(nat,A),fun(nat,fun(nat,A))),Uu2),Uua),Uub)),aa(nat,set(nat),set_ord_atMost(nat),Uub)) ) ) ).
% ATP.lambda_370
tff(fact_8550_ATP_Olambda__371,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: A,Uua: A,Uub: nat] : ( aa(nat,A,aa(A,fun(nat,A),aTP_Lamp_dd(A,fun(A,fun(nat,A)),Uu2),Uua),Uub) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aa(A,fun(nat,fun(nat,A)),aTP_Lamp_dc(A,fun(A,fun(nat,fun(nat,A))),Uu2),Uua),Uub)),aa(nat,set(nat),set_ord_atMost(nat),Uub)) ) ) ).
% ATP.lambda_371
tff(fact_8551_ATP_Olambda__372,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: A,Uua: A,Uub: nat] : ( aa(nat,A,aa(A,fun(nat,A),aTP_Lamp_db(A,fun(A,fun(nat,A)),Uu2),Uua),Uub) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aa(A,fun(nat,fun(nat,A)),aTP_Lamp_da(A,fun(A,fun(nat,fun(nat,A))),Uu2),Uua),Uub)),aa(nat,set(nat),set_ord_atMost(nat),Uub)) ) ) ).
% ATP.lambda_372
tff(fact_8552_ATP_Olambda__373,axiom,
! [A: $tType] :
( ( ring_1(A)
& topolo4958980785337419405_space(A) )
=> ! [Uu2: nat,Uua: A,Uub: nat] : ( aa(nat,A,aa(A,fun(nat,A),aTP_Lamp_bz(nat,fun(A,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),if(A,aa(nat,bool,aa(nat,fun(nat,bool),fequal(nat),Uub),Uu2),one_one(A),zero_zero(A))),aa(nat,A,power_power(A,Uua),Uub)) ) ) ).
% ATP.lambda_373
tff(fact_8553_ATP_Olambda__374,axiom,
! [Uu2: code_integer,Uua: code_integer,Uub: code_integer] : ( aa(code_integer,product_prod(code_integer,bool),aa(code_integer,fun(code_integer,product_prod(code_integer,bool)),aTP_Lamp_jz(code_integer,fun(code_integer,fun(code_integer,product_prod(code_integer,bool))),Uu2),Uua),Uub) = aa(bool,product_prod(code_integer,bool),aa(code_integer,fun(bool,product_prod(code_integer,bool)),product_Pair(code_integer,bool),if(code_integer,aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),ord_less(code_integer),zero_zero(code_integer)),Uu2),Uua,aa(code_integer,code_integer,aa(code_integer,fun(code_integer,code_integer),minus_minus(code_integer),aa(code_integer,code_integer,uminus_uminus(code_integer),Uua)),Uub))),aa(code_integer,bool,aa(code_integer,fun(code_integer,bool),fequal(code_integer),Uub),one_one(code_integer))) ) ).
% ATP.lambda_374
tff(fact_8554_ATP_Olambda__375,axiom,
! [A: $tType,Uu2: fun(A,fun(A,bool)),Uua: A,Uub: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),aTP_Lamp_iz(fun(A,fun(A,bool)),fun(A,fun(A,bool)),Uu2),Uua),Uub))
<=> ( pp(aa(A,bool,aa(A,fun(A,bool),Uu2,Uua),Uub))
| ( Uua = Uub ) ) ) ).
% ATP.lambda_375
tff(fact_8555_ATP_Olambda__376,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: fun(nat,fun(nat,A)),Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_hv(fun(nat,fun(nat,A)),fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),aa(nat,fun(nat,A),aTP_Lamp_hu(fun(nat,fun(nat,A)),fun(nat,fun(nat,A)),Uu2),Uub)),set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,Uub),Uua)) ) ) ).
% ATP.lambda_376
tff(fact_8556_ATP_Olambda__377,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: fun(nat,fun(nat,A)),Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_gt(fun(nat,fun(nat,A)),fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aTP_Lamp_gs(fun(nat,fun(nat,A)),fun(nat,fun(nat,A)),Uu2),Uub)),set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,Uub),Uua)) ) ) ).
% ATP.lambda_377
tff(fact_8557_ATP_Olambda__378,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [Uu2: fun(nat,A),Uua: nat,Uub: A] : ( aa(A,A,aa(nat,fun(A,A),aTP_Lamp_aax(fun(nat,A),fun(nat,fun(A,A)),Uu2),Uua),Uub) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aTP_Lamp_bf(fun(nat,A),fun(A,fun(nat,A)),Uu2),Uub)),aa(nat,set(nat),set_ord_atMost(nat),Uua)) ) ) ).
% ATP.lambda_378
tff(fact_8558_ATP_Olambda__379,axiom,
! [Uu2: rat,Uua: int,Uub: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),aTP_Lamp_ku(rat,fun(int,fun(int,bool)),Uu2),Uua),Uub))
<=> pp(aa(product_prod(int,int),bool,aa(fun(int,fun(int,bool)),fun(product_prod(int,int),bool),product_case_prod(int,int,bool),aa(int,fun(int,fun(int,bool)),aTP_Lamp_kt(int,fun(int,fun(int,fun(int,bool))),Uua),Uub)),quotient_of(Uu2))) ) ).
% ATP.lambda_379
tff(fact_8559_ATP_Olambda__380,axiom,
! [Uu2: rat,Uua: int,Uub: int] : ( aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),aTP_Lamp_kq(rat,fun(int,fun(int,product_prod(int,int))),Uu2),Uua),Uub) = aa(product_prod(int,int),product_prod(int,int),aa(fun(int,fun(int,product_prod(int,int))),fun(product_prod(int,int),product_prod(int,int)),product_case_prod(int,int,product_prod(int,int)),aa(int,fun(int,fun(int,product_prod(int,int))),aTP_Lamp_kp(int,fun(int,fun(int,fun(int,product_prod(int,int)))),Uua),Uub)),quotient_of(Uu2)) ) ).
% ATP.lambda_380
tff(fact_8560_ATP_Olambda__381,axiom,
! [Uu2: rat,Uua: int,Uub: int] : ( aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),aTP_Lamp_ko(rat,fun(int,fun(int,product_prod(int,int))),Uu2),Uua),Uub) = aa(product_prod(int,int),product_prod(int,int),aa(fun(int,fun(int,product_prod(int,int))),fun(product_prod(int,int),product_prod(int,int)),product_case_prod(int,int,product_prod(int,int)),aa(int,fun(int,fun(int,product_prod(int,int))),aTP_Lamp_kn(int,fun(int,fun(int,fun(int,product_prod(int,int)))),Uua),Uub)),quotient_of(Uu2)) ) ).
% ATP.lambda_381
tff(fact_8561_ATP_Olambda__382,axiom,
! [Uu2: rat,Uua: int,Uub: int] : ( aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),aTP_Lamp_km(rat,fun(int,fun(int,product_prod(int,int))),Uu2),Uua),Uub) = aa(product_prod(int,int),product_prod(int,int),aa(fun(int,fun(int,product_prod(int,int))),fun(product_prod(int,int),product_prod(int,int)),product_case_prod(int,int,product_prod(int,int)),aa(int,fun(int,fun(int,product_prod(int,int))),aTP_Lamp_kl(int,fun(int,fun(int,fun(int,product_prod(int,int)))),Uua),Uub)),quotient_of(Uu2)) ) ).
% ATP.lambda_382
tff(fact_8562_ATP_Olambda__383,axiom,
! [Uu2: rat,Uua: int,Uub: int] : ( aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),aTP_Lamp_kk(rat,fun(int,fun(int,product_prod(int,int))),Uu2),Uua),Uub) = aa(product_prod(int,int),product_prod(int,int),aa(fun(int,fun(int,product_prod(int,int))),fun(product_prod(int,int),product_prod(int,int)),product_case_prod(int,int,product_prod(int,int)),aa(int,fun(int,fun(int,product_prod(int,int))),aTP_Lamp_kj(int,fun(int,fun(int,fun(int,product_prod(int,int)))),Uua),Uub)),quotient_of(Uu2)) ) ).
% ATP.lambda_383
tff(fact_8563_ATP_Olambda__384,axiom,
! [A: $tType,B: $tType,I6: $tType] :
( ( real_V3459762299906320749_field(B)
& real_V822414075346904944vector(A) )
=> ! [Uu2: set(I6),Uua: fun(I6,fun(A,B)),Uub: A] : ( aa(A,B,aa(fun(I6,fun(A,B)),fun(A,B),aTP_Lamp_xm(set(I6),fun(fun(I6,fun(A,B)),fun(A,B)),Uu2),Uua),Uub) = aa(set(I6),B,aa(fun(I6,B),fun(set(I6),B),groups7121269368397514597t_prod(I6,B),aa(A,fun(I6,B),aTP_Lamp_xl(fun(I6,fun(A,B)),fun(A,fun(I6,B)),Uua),Uub)),Uu2) ) ) ).
% ATP.lambda_384
tff(fact_8564_ATP_Olambda__385,axiom,
! [B: $tType,C: $tType,A: $tType] :
( ( real_V822414075346904944vector(C)
& real_V822414075346904944vector(B) )
=> ! [Uu2: set(A),Uua: fun(A,fun(B,C)),Uub: B] : ( aa(B,C,aa(fun(A,fun(B,C)),fun(B,C),aTP_Lamp_wp(set(A),fun(fun(A,fun(B,C)),fun(B,C)),Uu2),Uua),Uub) = aa(set(A),C,aa(fun(A,C),fun(set(A),C),groups7311177749621191930dd_sum(A,C),aa(B,fun(A,C),aTP_Lamp_wo(fun(A,fun(B,C)),fun(B,fun(A,C)),Uua),Uub)),Uu2) ) ) ).
% ATP.lambda_385
tff(fact_8565_ATP_Olambda__386,axiom,
! [Uu2: fun(nat,fun(real,real)),Uua: real,Uub: nat] : ( aa(nat,real,aa(real,fun(nat,real),aTP_Lamp_vj(fun(nat,fun(real,real)),fun(real,fun(nat,real)),Uu2),Uua),Uub) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(nat,fun(real,real),Uu2,Uub),zero_zero(real))),semiring_char_0_fact(real,Uub))),aa(nat,real,power_power(real,Uua),Uub)) ) ).
% ATP.lambda_386
tff(fact_8566_ATP_Olambda__387,axiom,
! [Uu2: real,Uua: fun(nat,fun(real,real)),Uub: nat] : ( aa(nat,real,aa(fun(nat,fun(real,real)),fun(nat,real),aTP_Lamp_vk(real,fun(fun(nat,fun(real,real)),fun(nat,real)),Uu2),Uua),Uub) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(nat,fun(real,real),Uua,Uub),zero_zero(real))),semiring_char_0_fact(real,Uub))),aa(nat,real,power_power(real,Uu2),Uub)) ) ).
% ATP.lambda_387
tff(fact_8567_ATP_Olambda__388,axiom,
! [A: $tType] :
( zero(A)
=> ! [Uu2: real,Uua: fun(nat,fun(A,real)),Uub: nat] : ( aa(nat,real,aa(fun(nat,fun(A,real)),fun(nat,real),aTP_Lamp_gd(real,fun(fun(nat,fun(A,real)),fun(nat,real)),Uu2),Uua),Uub) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(A,real,aa(nat,fun(A,real),Uua,Uub),zero_zero(A))),semiring_char_0_fact(real,Uub))),aa(nat,real,power_power(real,Uu2),Uub)) ) ) ).
% ATP.lambda_388
tff(fact_8568_ATP_Olambda__389,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra(A)
& idom(A) )
=> ! [Uu2: fun(nat,A),Uua: nat,Uub: A] :
( pp(aa(A,bool,aa(nat,fun(A,bool),aTP_Lamp_lz(fun(nat,A),fun(nat,fun(A,bool)),Uu2),Uua),Uub))
<=> ( aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aTP_Lamp_dh(fun(nat,A),fun(A,fun(nat,A)),Uu2),Uub)),aa(nat,set(nat),set_ord_atMost(nat),Uua)) = zero_zero(A) ) ) ) ).
% ATP.lambda_389
tff(fact_8569_ATP_Olambda__390,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(A,A),Uua: A,Uub: A] : ( aa(A,A,aa(A,fun(A,A),aTP_Lamp_aar(fun(A,A),fun(A,fun(A,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,Uu2,aa(A,A,aa(A,fun(A,A),plus_plus(A),Uua),Uub))),aa(A,A,Uu2,Uua))),Uub) ) ) ).
% ATP.lambda_390
tff(fact_8570_ATP_Olambda__391,axiom,
! [A: $tType] :
( ( inverse(A)
& real_V822414075346904944vector(A) )
=> ! [Uu2: fun(A,A),Uua: A,Uub: A] : ( aa(A,A,aa(A,fun(A,A),aTP_Lamp_yj(fun(A,A),fun(A,fun(A,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,Uu2,aa(A,A,aa(A,fun(A,A),plus_plus(A),Uua),Uub))),aa(A,A,Uu2,Uua))),Uub) ) ) ).
% ATP.lambda_391
tff(fact_8571_ATP_Olambda__392,axiom,
! [A: $tType] :
( field(A)
=> ! [Uu2: fun(nat,A),Uua: fun(nat,A),Uub: nat] : ( aa(nat,A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_kv(fun(nat,A),fun(fun(nat,A),fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,Uub)),aa(nat,A,power_power(A,zero_zero(A)),Uub))),aa(nat,A,Uua,Uub)) ) ) ).
% ATP.lambda_392
tff(fact_8572_ATP_Olambda__393,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(A,A),Uua: A,Uub: A] : ( aa(A,A,aa(A,fun(A,A),aTP_Lamp_yo(fun(A,A),fun(A,fun(A,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,Uu2,Uub)),aa(A,A,Uu2,Uua))),aa(A,A,aa(A,fun(A,A),minus_minus(A),Uub),Uua)) ) ) ).
% ATP.lambda_393
tff(fact_8573_ATP_Olambda__394,axiom,
! [A: $tType] :
( ( inverse(A)
& real_V822414075346904944vector(A) )
=> ! [Uu2: fun(A,A),Uua: A,Uub: A] : ( aa(A,A,aa(A,fun(A,A),aTP_Lamp_yk(fun(A,A),fun(A,fun(A,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,Uu2,Uub)),aa(A,A,Uu2,Uua))),aa(A,A,aa(A,fun(A,A),minus_minus(A),Uub),Uua)) ) ) ).
% ATP.lambda_394
tff(fact_8574_ATP_Olambda__395,axiom,
! [Uu2: fun(nat,real),Uua: real,Uub: nat] : ( aa(nat,real,aa(real,fun(nat,real),aTP_Lamp_vg(fun(nat,real),fun(real,fun(nat,real)),Uu2),Uua),Uub) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,Uu2,Uub)),aa(nat,real,semiring_1_of_nat(real),aa(nat,nat,suc,Uub)))),aa(nat,real,power_power(real,Uua),Uub)) ) ).
% ATP.lambda_395
tff(fact_8575_ATP_Olambda__396,axiom,
! [Uu2: real,Uua: fun(nat,real),Uub: nat] : ( aa(nat,real,aa(fun(nat,real),fun(nat,real),aTP_Lamp_ge(real,fun(fun(nat,real),fun(nat,real)),Uu2),Uua),Uub) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(nat,real,Uua,Uub)),semiring_char_0_fact(real,Uub))),aa(nat,real,power_power(real,Uu2),Uub)) ) ).
% ATP.lambda_396
tff(fact_8576_ATP_Olambda__397,axiom,
! [Uu2: nat,Uua: nat,Uub: list(nat)] :
( pp(aa(list(nat),bool,aa(nat,fun(list(nat),bool),aTP_Lamp_mp(nat,fun(nat,fun(list(nat),bool)),Uu2),Uua),Uub))
<=> ( ( aa(list(nat),nat,size_size(list(nat)),Uub) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uu2),one_one(nat)) )
& ( groups8242544230860333062m_list(nat,Uub) = Uua ) ) ) ).
% ATP.lambda_397
tff(fact_8577_ATP_Olambda__398,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector(A)
& ring_1(A) )
=> ! [Uu2: fun(nat,A),Uua: A,Uub: nat] : ( aa(nat,A,aa(A,fun(nat,A),aTP_Lamp_cg(fun(nat,A),fun(A,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),Uub)),aa(nat,A,Uu2,Uub))),aa(nat,A,power_power(A,Uua),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uub),aa(nat,nat,suc,zero_zero(nat))))) ) ) ).
% ATP.lambda_398
tff(fact_8578_ATP_Olambda__399,axiom,
! [Uu2: nat,Uua: nat,Uub: list(nat)] :
( pp(aa(list(nat),bool,aa(nat,fun(list(nat),bool),aTP_Lamp_mq(nat,fun(nat,fun(list(nat),bool)),Uu2),Uua),Uub))
<=> ( ( aa(list(nat),nat,size_size(list(nat)),Uub) = Uu2 )
& ( aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),groups8242544230860333062m_list(nat,Uub)),one_one(nat)) = Uua ) ) ) ).
% ATP.lambda_399
tff(fact_8579_ATP_Olambda__400,axiom,
! [A: $tType,Uu2: nat,Uua: set(A),Uub: list(A)] :
( pp(aa(list(A),bool,aa(set(A),fun(list(A),bool),aTP_Lamp_nd(nat,fun(set(A),fun(list(A),bool)),Uu2),Uua),Uub))
<=> ( ( aa(list(A),nat,size_size(list(A)),Uub) = Uu2 )
& distinct(A,Uub)
& pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(list(A),set(A),set2(A),Uub)),Uua)) ) ) ).
% ATP.lambda_400
tff(fact_8580_ATP_Olambda__401,axiom,
! [A: $tType,Uu2: set(A),Uua: nat,Uub: list(A)] :
( pp(aa(list(A),bool,aa(nat,fun(list(A),bool),aTP_Lamp_nc(set(A),fun(nat,fun(list(A),bool)),Uu2),Uua),Uub))
<=> ( ( aa(list(A),nat,size_size(list(A)),Uub) = Uua )
& distinct(A,Uub)
& pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(list(A),set(A),set2(A),Uub)),Uu2)) ) ) ).
% ATP.lambda_401
tff(fact_8581_ATP_Olambda__402,axiom,
! [A: $tType,Uu2: nat,Uua: list(A),Uub: list(A)] :
( pp(aa(list(A),bool,aa(list(A),fun(list(A),bool),aTP_Lamp_iy(nat,fun(list(A),fun(list(A),bool)),Uu2),Uua),Uub))
<=> ( ( aa(list(A),nat,size_size(list(A)),Uub) = Uu2 )
& pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(list(A),set(A),set2(A),Uub)),aa(list(A),set(A),set2(A),Uua))) ) ) ).
% ATP.lambda_402
tff(fact_8582_ATP_Olambda__403,axiom,
! [A: $tType,Uu2: set(A),Uua: nat,Uub: list(A)] :
( pp(aa(list(A),bool,aa(nat,fun(list(A),bool),aTP_Lamp_lg(set(A),fun(nat,fun(list(A),bool)),Uu2),Uua),Uub))
<=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(list(A),set(A),set2(A),Uub)),Uu2))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(list(A),nat,size_size(list(A)),Uub)),Uua)) ) ) ).
% ATP.lambda_403
tff(fact_8583_ATP_Olambda__404,axiom,
! [A: $tType,Uu2: set(A),Uua: nat,Uub: list(A)] :
( pp(aa(list(A),bool,aa(nat,fun(list(A),bool),aTP_Lamp_le(set(A),fun(nat,fun(list(A),bool)),Uu2),Uua),Uub))
<=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(list(A),set(A),set2(A),Uub)),Uu2))
& ( aa(list(A),nat,size_size(list(A)),Uub) = Uua ) ) ) ).
% ATP.lambda_404
tff(fact_8584_ATP_Olambda__405,axiom,
! [Uu2: nat,Uua: nat,Uub: list(nat)] :
( pp(aa(list(nat),bool,aa(nat,fun(list(nat),bool),aTP_Lamp_mo(nat,fun(nat,fun(list(nat),bool)),Uu2),Uua),Uub))
<=> ( ( aa(list(nat),nat,size_size(list(nat)),Uub) = Uu2 )
& ( groups8242544230860333062m_list(nat,Uub) = Uua ) ) ) ).
% ATP.lambda_405
tff(fact_8585_ATP_Olambda__406,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: fun(nat,A),Uua: A,Uub: nat] : ( aa(nat,A,aa(A,fun(nat,A),aTP_Lamp_va(fun(nat,A),fun(A,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,diffs(A,diffs(A,Uu2)),Uub)),aa(nat,A,power_power(A,Uua),Uub)) ) ) ).
% ATP.lambda_406
tff(fact_8586_ATP_Olambda__407,axiom,
! [Uu2: set(nat),Uua: nat,Uub: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),aTP_Lamp_mr(set(nat),fun(nat,fun(nat,bool)),Uu2),Uua),Uub))
<=> ( pp(member(nat,aa(nat,nat,suc,Uub),Uu2))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Uub),Uua)) ) ) ).
% ATP.lambda_407
tff(fact_8587_ATP_Olambda__408,axiom,
! [A: $tType,Uu2: set(nat),Uua: nat,Uub: product_prod(A,nat)] :
( pp(aa(product_prod(A,nat),bool,aa(nat,fun(product_prod(A,nat),bool),aTP_Lamp_qe(set(nat),fun(nat,fun(product_prod(A,nat),bool)),Uu2),Uua),Uub))
<=> pp(member(nat,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(product_prod(A,nat),nat,product_snd(A,nat),Uub)),Uua),Uu2)) ) ).
% ATP.lambda_408
tff(fact_8588_ATP_Olambda__409,axiom,
! [Uu2: nat,Uua: nat,Uub: set(nat)] :
( pp(aa(set(nat),bool,aa(nat,fun(set(nat),bool),aTP_Lamp_nm(nat,fun(nat,fun(set(nat),bool)),Uu2),Uua),Uub))
<=> ( pp(member(set(nat),Uub,pow2(nat,set_or7035219750837199246ssThan(nat,zero_zero(nat),Uu2))))
& ( aa(set(nat),nat,finite_card(nat),Uub) = Uua ) ) ) ).
% ATP.lambda_409
tff(fact_8589_ATP_Olambda__410,axiom,
! [A: $tType,Uu2: list(A),Uua: set(nat),Uub: nat] :
( pp(aa(nat,bool,aa(set(nat),fun(nat,bool),aTP_Lamp_qs(list(A),fun(set(nat),fun(nat,bool)),Uu2),Uua),Uub))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Uub),aa(list(A),nat,size_size(list(A)),Uu2)))
& pp(member(nat,Uub,Uua)) ) ) ).
% ATP.lambda_410
tff(fact_8590_ATP_Olambda__411,axiom,
! [A: $tType,Uu2: fun(A,bool),Uua: list(A),Uub: nat] :
( pp(aa(nat,bool,aa(list(A),fun(nat,bool),aTP_Lamp_pc(fun(A,bool),fun(list(A),fun(nat,bool)),Uu2),Uua),Uub))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Uub),aa(list(A),nat,size_size(list(A)),Uua)))
& pp(aa(A,bool,Uu2,aa(nat,A,nth(A,Uua),Uub))) ) ) ).
% ATP.lambda_411
tff(fact_8591_ATP_Olambda__412,axiom,
! [A: $tType,Uu2: fun(A,bool),Uua: list(A),Uub: A] :
( pp(aa(A,bool,aa(list(A),fun(A,bool),aTP_Lamp_ot(fun(A,bool),fun(list(A),fun(A,bool)),Uu2),Uua),Uub))
<=> ( pp(member(A,Uub,aa(list(A),set(A),set2(A),Uua)))
& pp(aa(A,bool,Uu2,Uub)) ) ) ).
% ATP.lambda_412
tff(fact_8592_ATP_Olambda__413,axiom,
! [B: $tType,A: $tType,Uu2: fun(A,option(B)),Uua: A,Uub: product_prod(A,B)] :
( pp(aa(product_prod(A,B),bool,aa(A,fun(product_prod(A,B),bool),aTP_Lamp_ta(fun(A,option(B)),fun(A,fun(product_prod(A,B),bool)),Uu2),Uua),Uub))
<=> ( pp(member(product_prod(A,B),Uub,graph(A,B,Uu2)))
& ( aa(product_prod(A,B),A,product_fst(A,B),Uub) != Uua ) ) ) ).
% ATP.lambda_413
tff(fact_8593_ATP_Olambda__414,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [Uu2: A,Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_jo(A,fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),Uu2),aa(nat,A,semiring_1_of_nat(A),Uub))),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uua),Uub))) ) ) ).
% ATP.lambda_414
tff(fact_8594_ATP_Olambda__415,axiom,
! [A: $tType,Uu2: list(A),Uua: set(nat),Uub: nat] :
( pp(aa(nat,bool,aa(set(nat),fun(nat,bool),aTP_Lamp_sv(list(A),fun(set(nat),fun(nat,bool)),Uu2),Uua),Uub))
<=> pp(member(nat,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uub),aa(list(A),nat,size_size(list(A)),Uu2)),Uua)) ) ).
% ATP.lambda_415
tff(fact_8595_ATP_Olambda__416,axiom,
! [A: $tType,Uu2: set(A),Uua: nat,Uub: set(A)] :
( pp(aa(set(A),bool,aa(nat,fun(set(A),bool),aTP_Lamp_mm(set(A),fun(nat,fun(set(A),bool)),Uu2),Uua),Uub))
<=> ( pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),Uub),Uu2))
& ( aa(set(A),nat,finite_card(A),Uub) = Uua ) ) ) ).
% ATP.lambda_416
tff(fact_8596_ATP_Olambda__417,axiom,
! [Uu2: set(nat),Uua: nat,Uub: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),aTP_Lamp_ms(set(nat),fun(nat,fun(nat,bool)),Uu2),Uua),Uub))
<=> ( pp(member(nat,Uub,Uu2))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Uub),aa(nat,nat,suc,Uua))) ) ) ).
% ATP.lambda_417
tff(fact_8597_ATP_Olambda__418,axiom,
! [A: $tType] :
( ( real_V822414075346904944vector(A)
& ring_1(A) )
=> ! [Uu2: fun(nat,A),Uua: A,Uub: nat] : ( aa(nat,A,aa(A,fun(nat,A),aTP_Lamp_cf(fun(nat,A),fun(A,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,diffs(A,Uu2),Uub)),aa(nat,A,power_power(A,Uua),Uub)) ) ) ).
% ATP.lambda_418
tff(fact_8598_ATP_Olambda__419,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: fun(nat,A),Uua: A,Uub: nat] : ( aa(nat,A,aa(A,fun(nat,A),aTP_Lamp_cj(fun(nat,A),fun(A,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,diffs(A,Uu2),Uub)),aa(nat,A,power_power(A,Uua),Uub)) ) ) ).
% ATP.lambda_419
tff(fact_8599_ATP_Olambda__420,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: A,Uua: fun(nat,A),Uub: nat] : ( aa(nat,A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_ck(A,fun(fun(nat,A),fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,diffs(A,Uua),Uub)),aa(nat,A,power_power(A,Uu2),Uub)) ) ) ).
% ATP.lambda_420
tff(fact_8600_ATP_Olambda__421,axiom,
! [Uu2: nat,Uua: nat,Uub: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),aTP_Lamp_dq(nat,fun(nat,fun(nat,nat)),Uu2),Uua),Uub) = aa(nat,nat,binomial(aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uua),Uub)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uu2),Uub)) ) ).
% ATP.lambda_421
tff(fact_8601_ATP_Olambda__422,axiom,
! [Uu2: int,Uua: int,Uub: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),aTP_Lamp_ix(int,fun(int,fun(int,bool)),Uu2),Uua),Uub))
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),Uu2),Uua))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),Uua),Uub)) ) ) ).
% ATP.lambda_422
tff(fact_8602_ATP_Olambda__423,axiom,
! [Uu2: int,Uua: int,Uub: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),aTP_Lamp_mc(int,fun(int,fun(int,bool)),Uu2),Uua),Uub))
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),Uu2),Uub))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),Uub),Uua)) ) ) ).
% ATP.lambda_423
tff(fact_8603_ATP_Olambda__424,axiom,
! [Uu2: int,Uua: int,Uub: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),aTP_Lamp_iw(int,fun(int,fun(int,bool)),Uu2),Uua),Uub))
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),Uu2),Uub))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),Uua),Uub)) ) ) ).
% ATP.lambda_424
tff(fact_8604_ATP_Olambda__425,axiom,
! [Uu2: int,Uua: int,Uub: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),aTP_Lamp_md(int,fun(int,fun(int,bool)),Uu2),Uua),Uub))
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),Uu2),Uub))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),Uub),Uua)) ) ) ).
% ATP.lambda_425
tff(fact_8605_ATP_Olambda__426,axiom,
! [Uu2: int,Uua: int,Uub: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),aTP_Lamp_me(int,fun(int,fun(int,bool)),Uu2),Uua),Uub))
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),ord_less(int),Uu2),Uub))
& pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),Uub),Uua)) ) ) ).
% ATP.lambda_426
tff(fact_8606_ATP_Olambda__427,axiom,
! [Uu2: nat,Uua: nat,Uub: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),aTP_Lamp_aey(nat,fun(nat,fun(nat,bool)),Uu2),Uua),Uub))
<=> ( pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),Uub),Uua))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),Uub),Uu2)) ) ) ).
% ATP.lambda_427
tff(fact_8607_ATP_Olambda__428,axiom,
! [Uu2: int,Uua: int,Uub: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),aTP_Lamp_agb(int,fun(int,fun(int,bool)),Uu2),Uua),Uub))
<=> ( pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),Uub),Uua))
& pp(aa(int,bool,aa(int,fun(int,bool),dvd_dvd(int),Uub),Uu2)) ) ) ).
% ATP.lambda_428
tff(fact_8608_ATP_Olambda__429,axiom,
! [A: $tType,Uu2: list(A),Uua: fun(A,nat),Uub: A] : ( aa(A,nat,aa(fun(A,nat),fun(A,nat),aTP_Lamp_mh(list(A),fun(fun(A,nat),fun(A,nat)),Uu2),Uua),Uub) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(A,nat,count_list(A,Uu2),Uub)),aa(A,nat,Uua,Uub)) ) ).
% ATP.lambda_429
tff(fact_8609_ATP_Olambda__430,axiom,
! [A: $tType,Uu2: fun(A,nat),Uua: list(A),Uub: A] : ( aa(A,nat,aa(list(A),fun(A,nat),aTP_Lamp_na(fun(A,nat),fun(list(A),fun(A,nat)),Uu2),Uua),Uub) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(A,nat,count_list(A,Uua),Uub)),aa(A,nat,Uu2,Uub)) ) ).
% ATP.lambda_430
tff(fact_8610_ATP_Olambda__431,axiom,
! [B: $tType,Uu2: set(B),Uua: fun(B,bool),Uub: B] :
( pp(aa(B,bool,aa(fun(B,bool),fun(B,bool),aTP_Lamp_ll(set(B),fun(fun(B,bool),fun(B,bool)),Uu2),Uua),Uub))
<=> ( pp(member(B,Uub,Uu2))
& pp(aa(B,bool,Uua,Uub)) ) ) ).
% ATP.lambda_431
tff(fact_8611_ATP_Olambda__432,axiom,
! [A: $tType,Uu2: set(A),Uua: fun(A,bool),Uub: A] :
( pp(aa(A,bool,aa(fun(A,bool),fun(A,bool),aTP_Lamp_ab(set(A),fun(fun(A,bool),fun(A,bool)),Uu2),Uua),Uub))
<=> ( pp(member(A,Uub,Uu2))
& pp(aa(A,bool,Uua,Uub)) ) ) ).
% ATP.lambda_432
tff(fact_8612_ATP_Olambda__433,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: set(B),Uua: fun(B,A),Uub: B] :
( pp(aa(B,bool,aa(fun(B,A),fun(B,bool),aTP_Lamp_lh(set(B),fun(fun(B,A),fun(B,bool)),Uu2),Uua),Uub))
<=> ( pp(member(B,Uub,Uu2))
& ( aa(B,A,Uua,Uub) != zero_zero(A) ) ) ) ) ).
% ATP.lambda_433
tff(fact_8613_ATP_Olambda__434,axiom,
! [A: $tType,B: $tType] :
( ab_group_add(B)
=> ! [Uu2: set(A),Uua: fun(A,B),Uub: A] :
( pp(aa(A,bool,aa(fun(A,B),fun(A,bool),aTP_Lamp_nk(set(A),fun(fun(A,B),fun(A,bool)),Uu2),Uua),Uub))
<=> ( pp(member(A,Uub,Uu2))
& ( aa(A,B,Uua,Uub) != zero_zero(B) ) ) ) ) ).
% ATP.lambda_434
tff(fact_8614_ATP_Olambda__435,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: set(B),Uua: fun(B,A),Uub: B] :
( pp(aa(B,bool,aa(fun(B,A),fun(B,bool),aTP_Lamp_lj(set(B),fun(fun(B,A),fun(B,bool)),Uu2),Uua),Uub))
<=> ( pp(member(B,Uub,Uu2))
& ( aa(B,A,Uua,Uub) != one_one(A) ) ) ) ) ).
% ATP.lambda_435
tff(fact_8615_ATP_Olambda__436,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: fun(B,A),Uua: set(B),Uub: B] :
( pp(aa(B,bool,aa(set(B),fun(B,bool),aTP_Lamp_nl(fun(B,A),fun(set(B),fun(B,bool)),Uu2),Uua),Uub))
<=> ( pp(member(B,Uub,Uua))
& ( aa(B,A,Uu2,Uub) != zero_zero(A) ) ) ) ) ).
% ATP.lambda_436
tff(fact_8616_ATP_Olambda__437,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: fun(B,A),Uua: set(B),Uub: B] :
( pp(aa(B,bool,aa(set(B),fun(B,bool),aTP_Lamp_qu(fun(B,A),fun(set(B),fun(B,bool)),Uu2),Uua),Uub))
<=> ( pp(member(B,Uub,Uua))
& ( aa(B,A,Uu2,Uub) != one_one(A) ) ) ) ) ).
% ATP.lambda_437
tff(fact_8617_ATP_Olambda__438,axiom,
! [A: $tType,B: $tType] :
( semiring_parity(A)
=> ! [Uu2: set(B),Uua: fun(B,A),Uub: B] :
( pp(aa(B,bool,aa(fun(B,A),fun(B,bool),aTP_Lamp_mi(set(B),fun(fun(B,A),fun(B,bool)),Uu2),Uua),Uub))
<=> ( pp(member(B,Uub,Uu2))
& ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),aa(num,A,numeral_numeral(A),bit0(one2))),aa(B,A,Uua,Uub))) ) ) ) ).
% ATP.lambda_438
tff(fact_8618_ATP_Olambda__439,axiom,
! [A: $tType,Uu2: set(A),Uua: set(A),Uub: A] :
( pp(aa(A,bool,aa(set(A),fun(A,bool),aTP_Lamp_aa(set(A),fun(set(A),fun(A,bool)),Uu2),Uua),Uub))
<=> ( pp(member(A,Uub,Uu2))
& ~ pp(member(A,Uub,Uua)) ) ) ).
% ATP.lambda_439
tff(fact_8619_ATP_Olambda__440,axiom,
! [A: $tType,B: $tType,Uu2: list(product_prod(A,B)),Uua: A,Uub: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),aTP_Lamp_np(list(product_prod(A,B)),fun(A,fun(B,bool)),Uu2),Uua),Uub))
<=> ( aa(A,option(B),map_of(A,B,Uu2),Uua) = aa(B,option(B),some(B),Uub) ) ) ).
% ATP.lambda_440
tff(fact_8620_ATP_Olambda__441,axiom,
! [Uu2: nat,Uua: nat,Uub: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),aTP_Lamp_aew(nat,fun(nat,fun(nat,bool)),Uu2),Uua),Uub))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Uub),Uu2)),Uua)) ) ).
% ATP.lambda_441
tff(fact_8621_ATP_Olambda__442,axiom,
! [Uu2: nat,Uua: nat,Uub: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),aTP_Lamp_il(nat,fun(nat,fun(nat,bool)),Uu2),Uua),Uub))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uua),Uub)),Uu2)) ) ).
% ATP.lambda_442
tff(fact_8622_ATP_Olambda__443,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [Uu2: A,Uua: real,Uub: A] :
( pp(aa(A,bool,aa(real,fun(A,bool),aTP_Lamp_adk(A,fun(real,fun(A,bool)),Uu2),Uua),Uub))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,Uu2,Uub)),Uua)) ) ) ).
% ATP.lambda_443
tff(fact_8623_ATP_Olambda__444,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [Uu2: real,Uua: A,Uub: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),aTP_Lamp_adq(real,fun(A,fun(A,bool)),Uu2),Uua),Uub))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,Uua,Uub)),Uu2)) ) ) ).
% ATP.lambda_444
tff(fact_8624_ATP_Olambda__445,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [Uu2: A,Uua: real,Uub: A] :
( pp(aa(A,bool,aa(real,fun(A,bool),aTP_Lamp_aeb(A,fun(real,fun(A,bool)),Uu2),Uua),Uub))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,Uub,Uu2)),Uua)) ) ) ).
% ATP.lambda_445
tff(fact_8625_ATP_Olambda__446,axiom,
! [Uu2: nat,Uua: nat,Uub: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),aTP_Lamp_io(nat,fun(nat,fun(nat,bool)),Uu2),Uua),Uub))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uua),Uub)),Uu2)) ) ).
% ATP.lambda_446
tff(fact_8626_ATP_Olambda__447,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [Uu2: A,Uua: A,Uub: A] : ( aa(A,A,aa(A,fun(A,A),aTP_Lamp_ri(A,fun(A,fun(A,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),Uub),Uu2)),Uua) ) ) ).
% ATP.lambda_447
tff(fact_8627_ATP_Olambda__448,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [Uu2: A,Uua: A,Uub: A] : ( aa(A,A,aa(A,fun(A,A),aTP_Lamp_rg(A,fun(A,fun(A,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),Uu2),Uub)),Uua) ) ) ).
% ATP.lambda_448
tff(fact_8628_ATP_Olambda__449,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [Uu2: A,Uua: A,Uub: A] : ( aa(A,A,aa(A,fun(A,A),aTP_Lamp_rh(A,fun(A,fun(A,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),Uub),Uu2)),Uua) ) ) ).
% ATP.lambda_449
tff(fact_8629_ATP_Olambda__450,axiom,
! [A: $tType] :
( linordered_field(A)
=> ! [Uu2: A,Uua: A,Uub: A] : ( aa(A,A,aa(A,fun(A,A),aTP_Lamp_rf(A,fun(A,fun(A,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),Uu2),Uub)),Uua) ) ) ).
% ATP.lambda_450
tff(fact_8630_ATP_Olambda__451,axiom,
! [B: $tType,A: $tType,Uu2: set(product_prod(A,B)),Uua: A,Uub: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),aa(set(product_prod(A,B)),fun(A,fun(B,bool)),aTP_Lamp_jb(set(product_prod(A,B)),fun(A,fun(B,bool))),Uu2),Uua),Uub))
<=> pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),Uua),Uub),Uu2)) ) ).
% ATP.lambda_451
tff(fact_8631_ATP_Olambda__452,axiom,
! [A: $tType,Uu2: list(list(A)),Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_om(list(list(A)),fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(nat,A,nth(A,aa(nat,list(A),nth(list(A),Uu2),Uub)),Uua) ) ).
% ATP.lambda_452
tff(fact_8632_ATP_Olambda__453,axiom,
! [Uu2: nat,Uua: complex,Uub: complex] :
( pp(aa(complex,bool,aa(complex,fun(complex,bool),aTP_Lamp_fg(nat,fun(complex,fun(complex,bool)),Uu2),Uua),Uub))
<=> ( aa(nat,complex,power_power(complex,Uub),Uu2) = Uua ) ) ).
% ATP.lambda_453
tff(fact_8633_ATP_Olambda__454,axiom,
! [Uu2: complex,Uua: nat,Uub: complex] :
( pp(aa(complex,bool,aa(nat,fun(complex,bool),aTP_Lamp_mg(complex,fun(nat,fun(complex,bool)),Uu2),Uua),Uub))
<=> ( aa(nat,complex,power_power(complex,Uub),Uua) = Uu2 ) ) ).
% ATP.lambda_454
tff(fact_8634_ATP_Olambda__455,axiom,
! [A: $tType] :
( archim2362893244070406136eiling(A)
=> ! [Uu2: A,Uua: A,Uub: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),aTP_Lamp_lo(A,fun(A,fun(A,bool)),Uu2),Uua),Uub))
<=> ( pp(member(A,Uub,ring_1_Ints(A)))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Uu2),Uub))
& pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Uub),Uua)) ) ) ) ).
% ATP.lambda_455
tff(fact_8635_ATP_Olambda__456,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [Uu2: fun(nat,A),Uua: A,Uub: nat] : ( aa(nat,A,aa(A,fun(nat,A),aTP_Lamp_bk(fun(nat,A),fun(A,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,aa(nat,nat,suc,Uub))),aa(nat,A,power_power(A,Uua),Uub)) ) ) ).
% ATP.lambda_456
tff(fact_8636_ATP_Olambda__457,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V8999393235501362500lgebra(A) )
=> ! [Uu2: fun(nat,A),Uua: A,Uub: nat] : ( aa(nat,A,aa(A,fun(nat,A),aTP_Lamp_bm(fun(nat,A),fun(A,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,aa(nat,nat,suc,Uub))),aa(nat,A,power_power(A,Uua),Uub)) ) ) ).
% ATP.lambda_457
tff(fact_8637_ATP_Olambda__458,axiom,
! [Uu2: fun(nat,real),Uua: fun(nat,int),Uub: nat] : ( aa(nat,real,aa(fun(nat,int),fun(nat,real),aTP_Lamp_acq(fun(nat,real),fun(fun(nat,int),fun(nat,real)),Uu2),Uua),Uub) = aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(nat,real,Uu2,Uub)),aa(real,real,aa(real,fun(real,real),times_times(real),aa(int,real,ring_1_of_int(real),aa(nat,int,Uua,Uub))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),pi))) ) ).
% ATP.lambda_458
tff(fact_8638_ATP_Olambda__459,axiom,
! [Uu2: fun(nat,real),Uua: real,Uub: nat] : ( aa(nat,real,aa(real,fun(nat,real),aTP_Lamp_vh(fun(nat,real),fun(real,fun(nat,real)),Uu2),Uua),Uub) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,Uu2,Uub)),aa(nat,real,power_power(real,Uua),aa(nat,nat,suc,Uub))) ) ).
% ATP.lambda_459
tff(fact_8639_ATP_Olambda__460,axiom,
! [Uu2: fun(nat,real),Uua: real,Uub: nat] : ( aa(nat,real,aa(real,fun(nat,real),aTP_Lamp_bs(fun(nat,real),fun(real,fun(nat,real)),Uu2),Uua),Uub) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(nat,real,Uu2,Uub)),aa(nat,real,power_power(real,Uua),Uub)) ) ).
% ATP.lambda_460
tff(fact_8640_ATP_Olambda__461,axiom,
! [Uu2: fun(nat,nat),Uua: nat,Uub: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),aTP_Lamp_ec(fun(nat,nat),fun(nat,fun(nat,nat)),Uu2),Uua),Uub) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,Uu2,Uub)),aa(nat,nat,power_power(nat,Uua),Uub)) ) ).
% ATP.lambda_461
tff(fact_8641_ATP_Olambda__462,axiom,
! [Aa: $tType] :
( ( real_Vector_banach(Aa)
& real_V3459762299906320749_field(Aa) )
=> ! [Uu2: fun(nat,Aa),Uua: Aa,Uub: nat] : ( aa(nat,Aa,aa(Aa,fun(nat,Aa),aTP_Lamp_aaz(fun(nat,Aa),fun(Aa,fun(nat,Aa)),Uu2),Uua),Uub) = aa(Aa,Aa,aa(Aa,fun(Aa,Aa),times_times(Aa),aa(nat,Aa,Uu2,Uub)),aa(nat,Aa,power_power(Aa,Uua),Uub)) ) ) ).
% ATP.lambda_462
tff(fact_8642_ATP_Olambda__463,axiom,
! [A: $tType] :
( ( real_V8999393235501362500lgebra(A)
& idom(A) )
=> ! [Uu2: fun(nat,A),Uua: A,Uub: nat] : ( aa(nat,A,aa(A,fun(nat,A),aTP_Lamp_dh(fun(nat,A),fun(A,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,Uub)),aa(nat,A,power_power(A,Uua),Uub)) ) ) ).
% ATP.lambda_463
tff(fact_8643_ATP_Olambda__464,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [Uu2: fun(nat,A),Uua: A,Uub: nat] : ( aa(nat,A,aa(A,fun(nat,A),aTP_Lamp_bf(fun(nat,A),fun(A,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,Uub)),aa(nat,A,power_power(A,Uua),Uub)) ) ) ).
% ATP.lambda_464
tff(fact_8644_ATP_Olambda__465,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V8999393235501362500lgebra(A) )
=> ! [Uu2: fun(nat,A),Uua: A,Uub: nat] : ( aa(nat,A,aa(A,fun(nat,A),aTP_Lamp_bl(fun(nat,A),fun(A,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,Uub)),aa(nat,A,power_power(A,Uua),Uub)) ) ) ).
% ATP.lambda_465
tff(fact_8645_ATP_Olambda__466,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: fun(nat,A),Uua: A,Uub: nat] : ( aa(nat,A,aa(A,fun(nat,A),aTP_Lamp_ci(fun(nat,A),fun(A,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,Uub)),aa(nat,A,power_power(A,Uua),Uub)) ) ) ).
% ATP.lambda_466
tff(fact_8646_ATP_Olambda__467,axiom,
! [A: $tType] :
( ( ab_semigroup_mult(A)
& real_V8999393235501362500lgebra(A) )
=> ! [Uu2: fun(nat,A),Uua: A,Uub: nat] : ( aa(nat,A,aa(A,fun(nat,A),aTP_Lamp_do(fun(nat,A),fun(A,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,Uub)),aa(nat,A,power_power(A,Uua),Uub)) ) ) ).
% ATP.lambda_467
tff(fact_8647_ATP_Olambda__468,axiom,
! [A: $tType] :
( idom(A)
=> ! [Uu2: fun(nat,A),Uua: A,Uub: nat] : ( aa(nat,A,aa(A,fun(nat,A),aTP_Lamp_dx(fun(nat,A),fun(A,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,Uub)),aa(nat,A,power_power(A,Uua),Uub)) ) ) ).
% ATP.lambda_468
tff(fact_8648_ATP_Olambda__469,axiom,
! [Uu2: fun(nat,bool),Uua: nat,Uub: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),aTP_Lamp_ld(fun(nat,bool),fun(nat,fun(nat,bool)),Uu2),Uua),Uub))
<=> ( pp(aa(nat,bool,Uu2,Uub))
& pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Uub),Uua)) ) ) ).
% ATP.lambda_469
tff(fact_8649_ATP_Olambda__470,axiom,
! [C: $tType,D: $tType] :
( ( real_V822414075346904944vector(D)
& real_V822414075346904944vector(C) )
=> ! [Uu2: fun(D,real),Uua: fun(D,C),Uub: D] : ( aa(D,C,aa(fun(D,C),fun(D,C),aTP_Lamp_wa(fun(D,real),fun(fun(D,C),fun(D,C)),Uu2),Uua),Uub) = aa(C,C,real_V8093663219630862766scaleR(C,aa(D,real,Uu2,Uub)),aa(D,C,Uua,Uub)) ) ) ).
% ATP.lambda_470
tff(fact_8650_ATP_Olambda__471,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [Uu2: fun(B,A),Uua: B,Uub: B] :
( pp(aa(B,bool,aa(B,fun(B,bool),aTP_Lamp_ng(fun(B,A),fun(B,fun(B,bool)),Uu2),Uua),Uub))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,Uu2,Uua)),aa(B,A,Uu2,Uub))) ) ) ).
% ATP.lambda_471
tff(fact_8651_ATP_Olambda__472,axiom,
! [B: $tType,Uu2: fun(B,real),Uua: fun(B,real),Uub: B] :
( pp(aa(B,bool,aa(fun(B,real),fun(B,bool),aTP_Lamp_afl(fun(B,real),fun(fun(B,real),fun(B,bool)),Uu2),Uua),Uub))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(B,real,Uu2,Uub)),aa(B,real,Uua,Uub))) ) ).
% ATP.lambda_472
tff(fact_8652_ATP_Olambda__473,axiom,
! [A: $tType,B: $tType] :
( topolo2564578578187576103pology(A)
=> ! [Uu2: fun(B,A),Uua: fun(B,A),Uub: B] :
( pp(aa(B,bool,aa(fun(B,A),fun(B,bool),aTP_Lamp_afp(fun(B,A),fun(fun(B,A),fun(B,bool)),Uu2),Uua),Uub))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,Uu2,Uub)),aa(B,A,Uua,Uub))) ) ) ).
% ATP.lambda_473
tff(fact_8653_ATP_Olambda__474,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [Uu2: fun(B,A),Uua: fun(B,A),Uub: B] :
( pp(aa(B,bool,aa(fun(B,A),fun(B,bool),aTP_Lamp_aga(fun(B,A),fun(fun(B,A),fun(B,bool)),Uu2),Uua),Uub))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,Uu2,Uub)),aa(B,A,Uua,Uub))) ) ) ).
% ATP.lambda_474
tff(fact_8654_ATP_Olambda__475,axiom,
! [A: $tType,B: $tType] :
( topolo1944317154257567458pology(A)
=> ! [Uu2: fun(B,A),Uua: fun(B,A),Uub: B] :
( pp(aa(B,bool,aa(fun(B,A),fun(B,bool),aTP_Lamp_agj(fun(B,A),fun(fun(B,A),fun(B,bool)),Uu2),Uua),Uub))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,Uua,Uub)),aa(B,A,Uu2,Uub))) ) ) ).
% ATP.lambda_475
tff(fact_8655_ATP_Olambda__476,axiom,
! [Uu2: fun(real,real),Uua: fun(real,real),Uub: real] : ( aa(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_ahd(fun(real,real),fun(fun(real,real),fun(real,real)),Uu2),Uua),Uub) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,Uu2,Uub)),aa(real,real,Uua,Uub)) ) ).
% ATP.lambda_476
tff(fact_8656_ATP_Olambda__477,axiom,
! [A: $tType,C: $tType] :
( ( real_V822414075346904944vector(C)
& real_V8999393235501362500lgebra(A) )
=> ! [Uu2: fun(C,A),Uua: fun(C,A),Uub: C] : ( aa(C,A,aa(fun(C,A),fun(C,A),aTP_Lamp_xj(fun(C,A),fun(fun(C,A),fun(C,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(C,A,Uu2,Uub)),aa(C,A,Uua,Uub)) ) ) ).
% ATP.lambda_477
tff(fact_8657_ATP_Olambda__478,axiom,
! [A: $tType,C: $tType] :
( ( real_V822414075346904944vector(C)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: fun(C,A),Uua: fun(C,A),Uub: C] : ( aa(C,A,aa(fun(C,A),fun(C,A),aTP_Lamp_ww(fun(C,A),fun(fun(C,A),fun(C,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(C,A,Uu2,Uub)),aa(C,A,Uua,Uub)) ) ) ).
% ATP.lambda_478
tff(fact_8658_ATP_Olambda__479,axiom,
! [A: $tType,C: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [Uu2: fun(C,A),Uua: fun(C,A),Uub: C] : ( aa(C,A,aa(fun(C,A),fun(C,A),aTP_Lamp_afa(fun(C,A),fun(fun(C,A),fun(C,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(C,A,Uu2,Uub)),aa(C,A,Uua,Uub)) ) ) ).
% ATP.lambda_479
tff(fact_8659_ATP_Olambda__480,axiom,
! [A: $tType,B: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(B,A),Uua: fun(B,A),Uub: B] : ( aa(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_zi(fun(B,A),fun(fun(B,A),fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(B,A,Uu2,Uub)),aa(B,A,Uua,Uub)) ) ) ).
% ATP.lambda_480
tff(fact_8660_ATP_Olambda__481,axiom,
! [A: $tType,B: $tType] :
( field(A)
=> ! [Uu2: fun(B,A),Uua: fun(B,A),Uub: B] : ( aa(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_hl(fun(B,A),fun(fun(B,A),fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(B,A,Uu2,Uub)),aa(B,A,Uua,Uub)) ) ) ).
% ATP.lambda_481
tff(fact_8661_ATP_Olambda__482,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(A,A),Uua: fun(A,A),Uub: A] : ( aa(A,A,aa(fun(A,A),fun(A,A),aTP_Lamp_uu(fun(A,A),fun(fun(A,A),fun(A,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,Uu2,Uub)),aa(A,A,Uua,Uub)) ) ) ).
% ATP.lambda_482
tff(fact_8662_ATP_Olambda__483,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space(A)
& real_V3459762299906320749_field(B) )
=> ! [Uu2: fun(A,B),Uua: fun(A,B),Uub: A] : ( aa(A,B,aa(fun(A,B),fun(A,B),aTP_Lamp_yn(fun(A,B),fun(fun(A,B),fun(A,B)),Uu2),Uua),Uub) = aa(B,B,aa(B,fun(B,B),divide_divide(B),aa(A,B,Uu2,Uub)),aa(A,B,Uua,Uub)) ) ) ).
% ATP.lambda_483
tff(fact_8663_ATP_Olambda__484,axiom,
! [A: $tType,Uu2: fun(A,real),Uua: fun(A,real),Uub: A] : ( aa(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_aej(fun(A,real),fun(fun(A,real),fun(A,real)),Uu2),Uua),Uub) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(A,real,Uu2,Uub)),aa(A,real,Uua,Uub)) ) ).
% ATP.lambda_484
tff(fact_8664_ATP_Olambda__485,axiom,
! [Uu2: fun(real,real),Uua: fun(real,real),Uub: real] : ( aa(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_afi(fun(real,real),fun(fun(real,real),fun(real,real)),Uu2),Uua),Uub) = aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,Uua,Uub)),aa(real,real,Uu2,Uub)) ) ).
% ATP.lambda_485
tff(fact_8665_ATP_Olambda__486,axiom,
! [Uu2: fun(nat,nat),Uua: fun(nat,nat),Uub: nat] : ( aa(nat,nat,aa(fun(nat,nat),fun(nat,nat),aTP_Lamp_js(fun(nat,nat),fun(fun(nat,nat),fun(nat,nat)),Uu2),Uua),Uub) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,Uu2,Uub)),aa(nat,nat,Uua,Uub)) ) ).
% ATP.lambda_486
tff(fact_8666_ATP_Olambda__487,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(nat,A),Uua: fun(nat,A),Uub: nat] : ( aa(nat,A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_ahk(fun(nat,A),fun(fun(nat,A),fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,Uub)),aa(nat,A,Uua,Uub)) ) ) ).
% ATP.lambda_487
tff(fact_8667_ATP_Olambda__488,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [Uu2: fun(nat,A),Uua: fun(nat,A),Uub: nat] : ( aa(nat,A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_jr(fun(nat,A),fun(fun(nat,A),fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,Uub)),aa(nat,A,Uua,Uub)) ) ) ).
% ATP.lambda_488
tff(fact_8668_ATP_Olambda__489,axiom,
! [A: $tType,D: $tType] :
( ( real_V822414075346904944vector(D)
& real_V4412858255891104859lgebra(A) )
=> ! [Uu2: fun(D,A),Uua: fun(D,A),Uub: D] : ( aa(D,A,aa(fun(D,A),fun(D,A),aTP_Lamp_vy(fun(D,A),fun(fun(D,A),fun(D,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(D,A,Uu2,Uub)),aa(D,A,Uua,Uub)) ) ) ).
% ATP.lambda_489
tff(fact_8669_ATP_Olambda__490,axiom,
! [B: $tType,D: $tType] :
( ( topological_t2_space(D)
& topolo4211221413907600880p_mult(B) )
=> ! [Uu2: fun(D,B),Uua: fun(D,B),Uub: D] : ( aa(D,B,aa(fun(D,B),fun(D,B),aTP_Lamp_zq(fun(D,B),fun(fun(D,B),fun(D,B)),Uu2),Uua),Uub) = aa(B,B,aa(B,fun(B,B),times_times(B),aa(D,B,Uu2,Uub)),aa(D,B,Uua,Uub)) ) ) ).
% ATP.lambda_490
tff(fact_8670_ATP_Olambda__491,axiom,
! [A: $tType,D: $tType] :
( ( topological_t2_space(D)
& real_V4412858255891104859lgebra(A) )
=> ! [Uu2: fun(D,A),Uua: fun(D,A),Uub: D] : ( aa(D,A,aa(fun(D,A),fun(D,A),aTP_Lamp_zr(fun(D,A),fun(fun(D,A),fun(D,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(D,A,Uu2,Uub)),aa(D,A,Uua,Uub)) ) ) ).
% ATP.lambda_491
tff(fact_8671_ATP_Olambda__492,axiom,
! [B: $tType,D: $tType] :
( topolo1898628316856586783d_mult(B)
=> ! [Uu2: fun(D,B),Uua: fun(D,B),Uub: D] : ( aa(D,B,aa(fun(D,B),fun(D,B),aTP_Lamp_zg(fun(D,B),fun(fun(D,B),fun(D,B)),Uu2),Uua),Uub) = aa(B,B,aa(B,fun(B,B),times_times(B),aa(D,B,Uu2,Uub)),aa(D,B,Uua,Uub)) ) ) ).
% ATP.lambda_492
tff(fact_8672_ATP_Olambda__493,axiom,
! [A: $tType,D: $tType] :
( real_V4412858255891104859lgebra(A)
=> ! [Uu2: fun(D,A),Uua: fun(D,A),Uub: D] : ( aa(D,A,aa(fun(D,A),fun(D,A),aTP_Lamp_zl(fun(D,A),fun(fun(D,A),fun(D,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(D,A,Uu2,Uub)),aa(D,A,Uua,Uub)) ) ) ).
% ATP.lambda_493
tff(fact_8673_ATP_Olambda__494,axiom,
! [A: $tType,B: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(B,A),Uua: fun(B,A),Uub: B] : ( aa(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_aez(fun(B,A),fun(fun(B,A),fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(B,A,Uu2,Uub)),aa(B,A,Uua,Uub)) ) ) ).
% ATP.lambda_494
tff(fact_8674_ATP_Olambda__495,axiom,
! [A: $tType,B: $tType] :
( topolo4211221413907600880p_mult(A)
=> ! [Uu2: fun(B,A),Uua: fun(B,A),Uub: B] : ( aa(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_zs(fun(B,A),fun(fun(B,A),fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(B,A,Uu2,Uub)),aa(B,A,Uua,Uub)) ) ) ).
% ATP.lambda_495
tff(fact_8675_ATP_Olambda__496,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: fun(B,A),Uua: fun(B,A),Uub: B] : ( aa(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_hj(fun(B,A),fun(fun(B,A),fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(B,A,Uu2,Uub)),aa(B,A,Uua,Uub)) ) ) ).
% ATP.lambda_496
tff(fact_8676_ATP_Olambda__497,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(A,A),Uua: fun(A,A),Uub: A] : ( aa(A,A,aa(fun(A,A),fun(A,A),aTP_Lamp_uk(fun(A,A),fun(fun(A,A),fun(A,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,Uu2,Uub)),aa(A,A,Uua,Uub)) ) ) ).
% ATP.lambda_497
tff(fact_8677_ATP_Olambda__498,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space(A)
& real_V4412858255891104859lgebra(B) )
=> ! [Uu2: fun(A,B),Uua: fun(A,B),Uub: A] : ( aa(A,B,aa(fun(A,B),fun(A,B),aTP_Lamp_yp(fun(A,B),fun(fun(A,B),fun(A,B)),Uu2),Uua),Uub) = aa(B,B,aa(B,fun(B,B),times_times(B),aa(A,B,Uu2,Uub)),aa(A,B,Uua,Uub)) ) ) ).
% ATP.lambda_498
tff(fact_8678_ATP_Olambda__499,axiom,
! [A: $tType,Uu2: fun(A,real),Uua: fun(A,real),Uub: A] : ( aa(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_adn(fun(A,real),fun(fun(A,real),fun(A,real)),Uu2),Uua),Uub) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(A,real,Uu2,Uub)),aa(A,real,Uua,Uub)) ) ).
% ATP.lambda_499
tff(fact_8679_ATP_Olambda__500,axiom,
! [A: $tType,Uu2: fun(A,real),Uua: fun(A,real),Uub: A] : ( aa(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_ael(fun(A,real),fun(fun(A,real),fun(A,real)),Uu2),Uua),Uub) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(A,real,Uua,Uub)),aa(A,real,Uu2,Uub)) ) ).
% ATP.lambda_500
tff(fact_8680_ATP_Olambda__501,axiom,
! [B: $tType,A: $tType] :
( linordered_idom(B)
=> ! [Uu2: fun(A,B),Uua: fun(A,B),Uub: A] : ( aa(A,B,aa(fun(A,B),fun(A,B),aTP_Lamp_fa(fun(A,B),fun(fun(A,B),fun(A,B)),Uu2),Uua),Uub) = aa(B,B,aa(B,fun(B,B),times_times(B),aa(A,B,Uua,Uub)),aa(A,B,Uu2,Uub)) ) ) ).
% ATP.lambda_501
tff(fact_8681_ATP_Olambda__502,axiom,
! [Uu2: fun(nat,real),Uua: fun(nat,real),Uub: nat] : ( aa(nat,real,aa(fun(nat,real),fun(nat,real),aTP_Lamp_abu(fun(nat,real),fun(fun(nat,real),fun(nat,real)),Uu2),Uua),Uub) = aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(nat,real,Uu2,Uub)),aa(nat,real,Uua,Uub)) ) ).
% ATP.lambda_502
tff(fact_8682_ATP_Olambda__503,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(nat,A),Uua: fun(nat,A),Uub: nat] : ( aa(nat,A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_be(fun(nat,A),fun(fun(nat,A),fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,Uu2,Uub)),aa(nat,A,Uua,Uub)) ) ) ).
% ATP.lambda_503
tff(fact_8683_ATP_Olambda__504,axiom,
! [A: $tType,B: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(B,A),Uua: fun(B,A),Uub: B] : ( aa(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_aal(fun(B,A),fun(fun(B,A),fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(B,A,Uu2,Uub)),aa(B,A,Uua,Uub)) ) ) ).
% ATP.lambda_504
tff(fact_8684_ATP_Olambda__505,axiom,
! [A: $tType,B: $tType] :
( topolo1633459387980952147up_add(A)
=> ! [Uu2: fun(B,A),Uua: fun(B,A),Uub: B] : ( aa(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_aak(fun(B,A),fun(fun(B,A),fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(B,A,Uu2,Uub)),aa(B,A,Uua,Uub)) ) ) ).
% ATP.lambda_505
tff(fact_8685_ATP_Olambda__506,axiom,
! [A: $tType,B: $tType] :
( ab_group_add(A)
=> ! [Uu2: fun(B,A),Uua: fun(B,A),Uub: B] : ( aa(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_fn(fun(B,A),fun(fun(B,A),fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(B,A,Uu2,Uub)),aa(B,A,Uua,Uub)) ) ) ).
% ATP.lambda_506
tff(fact_8686_ATP_Olambda__507,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [Uu2: fun(A,B),Uua: fun(A,B),Uub: A] : ( aa(A,B,aa(fun(A,B),fun(A,B),aTP_Lamp_we(fun(A,B),fun(fun(A,B),fun(A,B)),Uu2),Uua),Uub) = aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(A,B,Uu2,Uub)),aa(A,B,Uua,Uub)) ) ) ).
% ATP.lambda_507
tff(fact_8687_ATP_Olambda__508,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(A,A),Uua: fun(A,A),Uub: A] : ( aa(A,A,aa(fun(A,A),fun(A,A),aTP_Lamp_uv(fun(A,A),fun(fun(A,A),fun(A,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,Uu2,Uub)),aa(A,A,Uua,Uub)) ) ) ).
% ATP.lambda_508
tff(fact_8688_ATP_Olambda__509,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space(A)
& real_V822414075346904944vector(B) )
=> ! [Uu2: fun(A,B),Uua: fun(A,B),Uub: A] : ( aa(A,B,aa(fun(A,B),fun(A,B),aTP_Lamp_yr(fun(A,B),fun(fun(A,B),fun(A,B)),Uu2),Uua),Uub) = aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(A,B,Uu2,Uub)),aa(A,B,Uua,Uub)) ) ) ).
% ATP.lambda_509
tff(fact_8689_ATP_Olambda__510,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space(A)
& topolo1633459387980952147up_add(B) )
=> ! [Uu2: fun(A,B),Uua: fun(A,B),Uub: A] : ( aa(A,B,aa(fun(A,B),fun(A,B),aTP_Lamp_aaj(fun(A,B),fun(fun(A,B),fun(A,B)),Uu2),Uua),Uub) = aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(A,B,Uu2,Uub)),aa(A,B,Uua,Uub)) ) ) ).
% ATP.lambda_510
tff(fact_8690_ATP_Olambda__511,axiom,
! [A: $tType] :
( ( topolo1287966508704411220up_add(A)
& topological_t2_space(A) )
=> ! [Uu2: fun(nat,A),Uua: fun(nat,A),Uub: nat] : ( aa(nat,A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_lv(fun(nat,A),fun(fun(nat,A),fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,Uua,Uub)),aa(nat,A,Uu2,Uub)) ) ) ).
% ATP.lambda_511
tff(fact_8691_ATP_Olambda__512,axiom,
! [A: $tType,B: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(B,A),Uua: fun(B,A),Uub: B] : ( aa(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_aan(fun(B,A),fun(fun(B,A),fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(B,A,Uua,Uub)),aa(B,A,Uu2,Uub)) ) ) ).
% ATP.lambda_512
tff(fact_8692_ATP_Olambda__513,axiom,
! [A: $tType] :
( ord(A)
=> ! [Uu2: fun(A,nat),Uua: fun(A,nat),Uub: A] : ( aa(A,nat,aa(fun(A,nat),fun(A,nat),aTP_Lamp_fv(fun(A,nat),fun(fun(A,nat),fun(A,nat)),Uu2),Uua),Uub) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(A,nat,Uua,Uub)),aa(A,nat,Uu2,Uub)) ) ) ).
% ATP.lambda_513
tff(fact_8693_ATP_Olambda__514,axiom,
! [A: $tType,Uu2: fun(A,nat),Uua: fun(A,nat),Uub: A] : ( aa(A,nat,aa(fun(A,nat),fun(A,nat),aTP_Lamp_fc(fun(A,nat),fun(fun(A,nat),fun(A,nat)),Uu2),Uua),Uub) = aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(A,nat,Uua,Uub)),aa(A,nat,Uu2,Uub)) ) ).
% ATP.lambda_514
tff(fact_8694_ATP_Olambda__515,axiom,
! [B: $tType,C: $tType] :
( ( topological_t2_space(C)
& topolo1898628316856586783d_mult(B) )
=> ! [Uu2: fun(C,B),Uua: fun(C,nat),Uub: C] : ( aa(C,B,aa(fun(C,nat),fun(C,B),aTP_Lamp_zu(fun(C,B),fun(fun(C,nat),fun(C,B)),Uu2),Uua),Uub) = aa(nat,B,power_power(B,aa(C,B,Uu2,Uub)),aa(C,nat,Uua,Uub)) ) ) ).
% ATP.lambda_515
tff(fact_8695_ATP_Olambda__516,axiom,
! [B: $tType,C: $tType] :
( topolo1898628316856586783d_mult(B)
=> ! [Uu2: fun(C,B),Uua: fun(C,nat),Uub: C] : ( aa(C,B,aa(fun(C,nat),fun(C,B),aTP_Lamp_zv(fun(C,B),fun(fun(C,nat),fun(C,B)),Uu2),Uua),Uub) = aa(nat,B,power_power(B,aa(C,B,Uu2,Uub)),aa(C,nat,Uua,Uub)) ) ) ).
% ATP.lambda_516
tff(fact_8696_ATP_Olambda__517,axiom,
! [A: $tType] :
( ( topolo5987344860129210374id_add(A)
& topological_t2_space(A) )
=> ! [Uu2: fun(nat,A),Uua: fun(nat,A),Uub: nat] : ( aa(nat,A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_bc(fun(nat,A),fun(fun(nat,A),fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,Uu2,Uub)),aa(nat,A,Uua,Uub)) ) ) ).
% ATP.lambda_517
tff(fact_8697_ATP_Olambda__518,axiom,
! [B: $tType,D: $tType] :
( ( topological_t2_space(D)
& topolo6943815403480290642id_add(B) )
=> ! [Uu2: fun(D,B),Uua: fun(D,B),Uub: D] : ( aa(D,B,aa(fun(D,B),fun(D,B),aTP_Lamp_aag(fun(D,B),fun(fun(D,B),fun(D,B)),Uu2),Uua),Uub) = aa(B,B,aa(B,fun(B,B),plus_plus(B),aa(D,B,Uu2,Uub)),aa(D,B,Uua,Uub)) ) ) ).
% ATP.lambda_518
tff(fact_8698_ATP_Olambda__519,axiom,
! [B: $tType,D: $tType] :
( topolo6943815403480290642id_add(B)
=> ! [Uu2: fun(D,B),Uua: fun(D,B),Uub: D] : ( aa(D,B,aa(fun(D,B),fun(D,B),aTP_Lamp_zx(fun(D,B),fun(fun(D,B),fun(D,B)),Uu2),Uua),Uub) = aa(B,B,aa(B,fun(B,B),plus_plus(B),aa(D,B,Uu2,Uub)),aa(D,B,Uua,Uub)) ) ) ).
% ATP.lambda_519
tff(fact_8699_ATP_Olambda__520,axiom,
! [A: $tType,B: $tType] :
( topolo6943815403480290642id_add(A)
=> ! [Uu2: fun(B,A),Uua: fun(B,A),Uub: B] : ( aa(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_aaf(fun(B,A),fun(fun(B,A),fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(B,A,Uu2,Uub)),aa(B,A,Uua,Uub)) ) ) ).
% ATP.lambda_520
tff(fact_8700_ATP_Olambda__521,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: fun(B,A),Uua: fun(B,A),Uub: B] : ( aa(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_fm(fun(B,A),fun(fun(B,A),fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(B,A,Uu2,Uub)),aa(B,A,Uua,Uub)) ) ) ).
% ATP.lambda_521
tff(fact_8701_ATP_Olambda__522,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [Uu2: fun(A,B),Uua: fun(A,B),Uub: A] : ( aa(A,B,aa(fun(A,B),fun(A,B),aTP_Lamp_wf(fun(A,B),fun(fun(A,B),fun(A,B)),Uu2),Uua),Uub) = aa(B,B,aa(B,fun(B,B),plus_plus(B),aa(A,B,Uu2,Uub)),aa(A,B,Uua,Uub)) ) ) ).
% ATP.lambda_522
tff(fact_8702_ATP_Olambda__523,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(A,A),Uua: fun(A,A),Uub: A] : ( aa(A,A,aa(fun(A,A),fun(A,A),aTP_Lamp_us(fun(A,A),fun(fun(A,A),fun(A,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,Uu2,Uub)),aa(A,A,Uua,Uub)) ) ) ).
% ATP.lambda_523
tff(fact_8703_ATP_Olambda__524,axiom,
! [B: $tType,A: $tType] :
( ( topological_t2_space(A)
& topolo6943815403480290642id_add(B) )
=> ! [Uu2: fun(A,B),Uua: fun(A,B),Uub: A] : ( aa(A,B,aa(fun(A,B),fun(A,B),aTP_Lamp_yq(fun(A,B),fun(fun(A,B),fun(A,B)),Uu2),Uua),Uub) = aa(B,B,aa(B,fun(B,B),plus_plus(B),aa(A,B,Uu2,Uub)),aa(A,B,Uua,Uub)) ) ) ).
% ATP.lambda_524
tff(fact_8704_ATP_Olambda__525,axiom,
! [A: $tType,Uu2: fun(A,real),Uua: fun(A,real),Uub: A] : ( aa(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_aeh(fun(A,real),fun(fun(A,real),fun(A,real)),Uu2),Uua),Uub) = aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(A,real,Uu2,Uub)),aa(A,real,Uua,Uub)) ) ).
% ATP.lambda_525
tff(fact_8705_ATP_Olambda__526,axiom,
! [B: $tType,A: $tType] :
( real_V822414075346904944vector(B)
=> ! [Uu2: fun(A,B),Uua: fun(A,B),Uub: A] : ( aa(A,B,aa(fun(A,B),fun(A,B),aTP_Lamp_aev(fun(A,B),fun(fun(A,B),fun(A,B)),Uu2),Uua),Uub) = aa(B,B,aa(B,fun(B,B),plus_plus(B),aa(A,B,Uu2,Uub)),aa(A,B,Uua,Uub)) ) ) ).
% ATP.lambda_526
tff(fact_8706_ATP_Olambda__527,axiom,
! [Uu2: fun(real,real),Uua: fun(real,real),Uub: real] : ( aa(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_vc(fun(real,real),fun(fun(real,real),fun(real,real)),Uu2),Uua),Uub) = powr(real,aa(real,real,Uu2,Uub),aa(real,real,Uua,Uub)) ) ).
% ATP.lambda_527
tff(fact_8707_ATP_Olambda__528,axiom,
! [C: $tType] :
( topological_t2_space(C)
=> ! [Uu2: fun(C,real),Uua: fun(C,real),Uub: C] : ( aa(C,real,aa(fun(C,real),fun(C,real),aTP_Lamp_abl(fun(C,real),fun(fun(C,real),fun(C,real)),Uu2),Uua),Uub) = powr(real,aa(C,real,Uu2,Uub),aa(C,real,Uua,Uub)) ) ) ).
% ATP.lambda_528
tff(fact_8708_ATP_Olambda__529,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(A,real),Uua: fun(A,real),Uub: A] : ( aa(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_xp(fun(A,real),fun(fun(A,real),fun(A,real)),Uu2),Uua),Uub) = powr(real,aa(A,real,Uu2,Uub),aa(A,real,Uua,Uub)) ) ) ).
% ATP.lambda_529
tff(fact_8709_ATP_Olambda__530,axiom,
! [A: $tType] :
( topological_t2_space(A)
=> ! [Uu2: fun(A,real),Uua: fun(A,real),Uub: A] : ( aa(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_adf(fun(A,real),fun(fun(A,real),fun(A,real)),Uu2),Uua),Uub) = powr(real,aa(A,real,Uu2,Uub),aa(A,real,Uua,Uub)) ) ) ).
% ATP.lambda_530
tff(fact_8710_ATP_Olambda__531,axiom,
! [A: $tType,Uu2: fun(A,real),Uua: fun(A,real),Uub: A] : ( aa(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_zz(fun(A,real),fun(fun(A,real),fun(A,real)),Uu2),Uua),Uub) = powr(real,aa(A,real,Uu2,Uub),aa(A,real,Uua,Uub)) ) ).
% ATP.lambda_531
tff(fact_8711_ATP_Olambda__532,axiom,
! [A: $tType] :
( topological_t2_space(A)
=> ! [Uu2: fun(A,real),Uua: fun(A,real),Uub: A] : ( aa(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_aca(fun(A,real),fun(fun(A,real),fun(A,real)),Uu2),Uua),Uub) = aa(real,real,log(aa(A,real,Uu2,Uub)),aa(A,real,Uua,Uub)) ) ) ).
% ATP.lambda_532
tff(fact_8712_ATP_Olambda__533,axiom,
! [A: $tType,Uu2: fun(A,real),Uua: fun(A,real),Uub: A] : ( aa(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_yw(fun(A,real),fun(fun(A,real),fun(A,real)),Uu2),Uua),Uub) = aa(real,real,log(aa(A,real,Uu2,Uub)),aa(A,real,Uua,Uub)) ) ).
% ATP.lambda_533
tff(fact_8713_ATP_Olambda__534,axiom,
! [B: $tType,C: $tType,A: $tType] :
( ( topological_t2_space(A)
& topolo4958980785337419405_space(C)
& topolo4958980785337419405_space(B) )
=> ! [Uu2: fun(A,B),Uua: fun(A,C),Uub: A] : ( aa(A,product_prod(B,C),aa(fun(A,C),fun(A,product_prod(B,C)),aTP_Lamp_ye(fun(A,B),fun(fun(A,C),fun(A,product_prod(B,C))),Uu2),Uua),Uub) = aa(C,product_prod(B,C),aa(B,fun(C,product_prod(B,C)),product_Pair(B,C),aa(A,B,Uu2,Uub)),aa(A,C,Uua,Uub)) ) ) ).
% ATP.lambda_534
tff(fact_8714_ATP_Olambda__535,axiom,
! [B: $tType,C: $tType,A: $tType] :
( ( topolo4958980785337419405_space(C)
& topolo4958980785337419405_space(B) )
=> ! [Uu2: fun(A,B),Uua: fun(A,C),Uub: A] : ( aa(A,product_prod(B,C),aa(fun(A,C),fun(A,product_prod(B,C)),aTP_Lamp_yv(fun(A,B),fun(fun(A,C),fun(A,product_prod(B,C))),Uu2),Uua),Uub) = aa(C,product_prod(B,C),aa(B,fun(C,product_prod(B,C)),product_Pair(B,C),aa(A,B,Uu2,Uub)),aa(A,C,Uua,Uub)) ) ) ).
% ATP.lambda_535
tff(fact_8715_ATP_Olambda__536,axiom,
! [A: $tType,Uu2: fun(A,bool),Uua: fun(A,bool),Uub: A] :
( pp(aa(A,bool,aa(fun(A,bool),fun(A,bool),aTP_Lamp_sb(fun(A,bool),fun(fun(A,bool),fun(A,bool)),Uu2),Uua),Uub))
<=> ( pp(aa(A,bool,Uu2,Uub))
& pp(aa(A,bool,Uua,Uub)) ) ) ).
% ATP.lambda_536
tff(fact_8716_ATP_Olambda__537,axiom,
! [A: $tType,Uu2: fun(A,bool),Uua: fun(A,bool),Uub: A] :
( pp(aa(A,bool,aa(fun(A,bool),fun(A,bool),aTP_Lamp_os(fun(A,bool),fun(fun(A,bool),fun(A,bool)),Uu2),Uua),Uub))
<=> ( pp(aa(A,bool,Uua,Uub))
& pp(aa(A,bool,Uu2,Uub)) ) ) ).
% ATP.lambda_537
tff(fact_8717_ATP_Olambda__538,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [Uu2: fun(A,B),Uua: fun(A,B),Uub: A] :
( pp(aa(A,bool,aa(fun(A,B),fun(A,bool),aTP_Lamp_afu(fun(A,B),fun(fun(A,B),fun(A,bool)),Uu2),Uua),Uub))
<=> ( aa(A,B,Uu2,Uub) = aa(A,B,Uua,Uub) ) ) ) ).
% ATP.lambda_538
tff(fact_8718_ATP_Olambda__539,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(A,A),Uua: fun(A,A),Uub: A] :
( pp(aa(A,bool,aa(fun(A,A),fun(A,bool),aTP_Lamp_afv(fun(A,A),fun(fun(A,A),fun(A,bool)),Uu2),Uua),Uub))
<=> ( aa(A,A,Uu2,Uub) = aa(A,A,Uua,Uub) ) ) ) ).
% ATP.lambda_539
tff(fact_8719_ATP_Olambda__540,axiom,
! [B: $tType,A: $tType,Uu2: fun(A,B),Uua: fun(A,B),Uub: A] :
( pp(aa(A,bool,aa(fun(A,B),fun(A,bool),aTP_Lamp_afo(fun(A,B),fun(fun(A,B),fun(A,bool)),Uu2),Uua),Uub))
<=> ( aa(A,B,Uu2,Uub) = aa(A,B,Uua,Uub) ) ) ).
% ATP.lambda_540
tff(fact_8720_ATP_Olambda__541,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [Uu2: B,Uua: fun(B,A),Uub: B] :
( pp(aa(B,bool,aa(fun(B,A),fun(B,bool),aTP_Lamp_pj(B,fun(fun(B,A),fun(B,bool)),Uu2),Uua),Uub))
<=> ( aa(B,A,Uua,Uu2) = aa(B,A,Uua,Uub) ) ) ) ).
% ATP.lambda_541
tff(fact_8721_ATP_Olambda__542,axiom,
! [A: $tType,B: $tType] :
( semiring_1(A)
=> ! [Uu2: fun(B,A),Uua: fun(B,bool),Uub: B] : ( aa(B,A,aa(fun(B,bool),fun(B,A),aTP_Lamp_nz(fun(B,A),fun(fun(B,bool),fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(B,A,Uu2,Uub)),aa(bool,A,zero_neq_one_of_bool(A),aa(B,bool,Uua,Uub))) ) ) ).
% ATP.lambda_542
tff(fact_8722_ATP_Olambda__543,axiom,
! [A: $tType,B: $tType] :
( ( archim2362893244070406136eiling(B)
& topolo2564578578187576103pology(B) )
=> ! [Uu2: fun(A,B),Uua: B,Uub: A] :
( pp(aa(A,bool,aa(B,fun(A,bool),aTP_Lamp_ahc(fun(A,B),fun(B,fun(A,bool)),Uu2),Uua),Uub))
<=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),aa(A,B,Uu2,Uub)),aa(int,B,ring_1_of_int(B),archimedean_ceiling(B,Uua)))) ) ) ).
% ATP.lambda_543
tff(fact_8723_ATP_Olambda__544,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(A,A),Uua: nat,Uub: A] : ( aa(A,A,aa(nat,fun(A,A),aTP_Lamp_ux(fun(A,A),fun(nat,fun(A,A)),Uu2),Uua),Uub) = aa(nat,A,power_power(A,aa(A,A,Uu2,Uub)),aa(nat,nat,suc,Uua)) ) ) ).
% ATP.lambda_544
tff(fact_8724_ATP_Olambda__545,axiom,
! [C: $tType,B: $tType] :
( ( real_V822414075346904944vector(B)
& real_V822414075346904944vector(C) )
=> ! [Uu2: fun(C,real),Uua: B,Uub: C] : ( aa(C,B,aa(B,fun(C,B),aTP_Lamp_wk(fun(C,real),fun(B,fun(C,B)),Uu2),Uua),Uub) = aa(B,B,real_V8093663219630862766scaleR(B,aa(C,real,Uu2,Uub)),Uua) ) ) ).
% ATP.lambda_545
tff(fact_8725_ATP_Olambda__546,axiom,
! [A: $tType,C: $tType,B: $tType] :
( topolo4987421752381908075d_mult(C)
=> ! [Uu2: set(B),Uua: fun(A,fun(B,C)),Uub: A] : ( aa(A,C,aa(fun(A,fun(B,C)),fun(A,C),aTP_Lamp_aap(set(B),fun(fun(A,fun(B,C)),fun(A,C)),Uu2),Uua),Uub) = aa(set(B),C,aa(fun(B,C),fun(set(B),C),groups7121269368397514597t_prod(B,C),aa(A,fun(B,C),Uua,Uub)),Uu2) ) ) ).
% ATP.lambda_546
tff(fact_8726_ATP_Olambda__547,axiom,
! [A: $tType,C: $tType,B: $tType] :
( topolo5987344860129210374id_add(C)
=> ! [Uu2: set(B),Uua: fun(A,fun(B,C)),Uub: A] : ( aa(A,C,aa(fun(A,fun(B,C)),fun(A,C),aTP_Lamp_zb(set(B),fun(fun(A,fun(B,C)),fun(A,C)),Uu2),Uua),Uub) = aa(set(B),C,aa(fun(B,C),fun(set(B),C),groups7311177749621191930dd_sum(B,C),aa(A,fun(B,C),Uua,Uub)),Uu2) ) ) ).
% ATP.lambda_547
tff(fact_8727_ATP_Olambda__548,axiom,
! [B: $tType,A: $tType] :
( real_V3459762299906320749_field(B)
=> ! [Uu2: set(A),Uua: fun(B,fun(A,B)),Uub: B] : ( aa(B,B,aa(fun(B,fun(A,B)),fun(B,B),aTP_Lamp_ui(set(A),fun(fun(B,fun(A,B)),fun(B,B)),Uu2),Uua),Uub) = aa(set(A),B,aa(fun(A,B),fun(set(A),B),groups7311177749621191930dd_sum(A,B),aa(B,fun(A,B),Uua,Uub)),Uu2) ) ) ).
% ATP.lambda_548
tff(fact_8728_ATP_Olambda__549,axiom,
! [A: $tType,B: $tType] :
( real_V7819770556892013058_space(B)
=> ! [Uu2: fun(A,B),Uua: B,Uub: A] : ( aa(A,real,aa(B,fun(A,real),aTP_Lamp_adl(fun(A,B),fun(B,fun(A,real)),Uu2),Uua),Uub) = real_V557655796197034286t_dist(B,aa(A,B,Uu2,Uub),Uua) ) ) ).
% ATP.lambda_549
tff(fact_8729_ATP_Olambda__550,axiom,
! [A: $tType] :
( topolo3112930676232923870pology(A)
=> ! [Uu2: fun(nat,set(A)),Uua: set(A),Uub: nat] :
( pp(aa(nat,bool,aa(set(A),fun(nat,bool),aTP_Lamp_afx(fun(nat,set(A)),fun(set(A),fun(nat,bool)),Uu2),Uua),Uub))
<=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(nat,set(A),Uu2,Uub)),Uua)) ) ) ).
% ATP.lambda_550
tff(fact_8730_ATP_Olambda__551,axiom,
! [Uu2: fun(nat,nat),Uua: nat,Uub: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),aTP_Lamp_lf(fun(nat,nat),fun(nat,fun(nat,bool)),Uu2),Uua),Uub))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,Uu2,Uub)),Uua)) ) ).
% ATP.lambda_551
tff(fact_8731_ATP_Olambda__552,axiom,
! [B: $tType,A: $tType,Uu2: fun(B,set(A)),Uua: set(A),Uub: B] :
( pp(aa(B,bool,aa(set(A),fun(B,bool),aTP_Lamp_sa(fun(B,set(A)),fun(set(A),fun(B,bool)),Uu2),Uua),Uub))
<=> pp(aa(set(A),bool,aa(set(A),fun(set(A),bool),ord_less_eq(set(A)),aa(B,set(A),Uu2,Uub)),Uua)) ) ).
% ATP.lambda_552
tff(fact_8732_ATP_Olambda__553,axiom,
! [B: $tType,A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [Uu2: fun(B,A),Uua: A,Uub: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),aTP_Lamp_agh(fun(B,A),fun(A,fun(B,bool)),Uu2),Uua),Uub))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,Uu2,Uub)),Uua)) ) ) ).
% ATP.lambda_553
tff(fact_8733_ATP_Olambda__554,axiom,
! [B: $tType,A: $tType] :
( topolo2564578578187576103pology(A)
=> ! [Uu2: fun(B,A),Uua: A,Uub: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),aTP_Lamp_agd(fun(B,A),fun(A,fun(B,bool)),Uu2),Uua),Uub))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),aa(B,A,Uu2,Uub)),Uua)) ) ) ).
% ATP.lambda_554
tff(fact_8734_ATP_Olambda__555,axiom,
! [A: $tType,B: $tType] :
( unboun7993243217541854897norder(B)
=> ! [Uu2: fun(A,B),Uua: B,Uub: A] :
( pp(aa(A,bool,aa(B,fun(A,bool),aTP_Lamp_agg(fun(A,B),fun(B,fun(A,bool)),Uu2),Uua),Uub))
<=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),aa(A,B,Uu2,Uub)),Uua)) ) ) ).
% ATP.lambda_555
tff(fact_8735_ATP_Olambda__556,axiom,
! [A: $tType,B: $tType] :
( linorder(B)
=> ! [Uu2: fun(A,B),Uua: B,Uub: A] :
( pp(aa(A,bool,aa(B,fun(A,bool),aTP_Lamp_afr(fun(A,B),fun(B,fun(A,bool)),Uu2),Uua),Uub))
<=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),aa(A,B,Uu2,Uub)),Uua)) ) ) ).
% ATP.lambda_556
tff(fact_8736_ATP_Olambda__557,axiom,
! [B: $tType,A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [Uu2: fun(B,A),Uua: A,Uub: B] : ( aa(B,A,aa(A,fun(B,A),aTP_Lamp_di(fun(B,A),fun(A,fun(B,A)),Uu2),Uua),Uub) = modulo_modulo(A,aa(B,A,Uu2,Uub),Uua) ) ) ).
% ATP.lambda_557
tff(fact_8737_ATP_Olambda__558,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(nat,A),Uua: A,Uub: nat] : ( aa(nat,A,aa(A,fun(nat,A),aTP_Lamp_ax(fun(nat,A),fun(A,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(nat,A,Uu2,Uub)),Uua) ) ) ).
% ATP.lambda_558
tff(fact_8738_ATP_Olambda__559,axiom,
! [B: $tType,A: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [Uu2: fun(B,A),Uua: A,Uub: B] : ( aa(B,A,aa(A,fun(B,A),aTP_Lamp_of(fun(B,A),fun(A,fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(B,A,Uu2,Uub)),Uua) ) ) ).
% ATP.lambda_559
tff(fact_8739_ATP_Olambda__560,axiom,
! [B: $tType,A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(B,A),Uua: A,Uub: B] : ( aa(B,A,aa(A,fun(B,A),aTP_Lamp_zh(fun(B,A),fun(A,fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(B,A,Uu2,Uub)),Uua) ) ) ).
% ATP.lambda_560
tff(fact_8740_ATP_Olambda__561,axiom,
! [B: $tType,A: $tType] :
( field(A)
=> ! [Uu2: fun(B,A),Uua: A,Uub: B] : ( aa(B,A,aa(A,fun(B,A),aTP_Lamp_fo(fun(B,A),fun(A,fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(B,A,Uu2,Uub)),Uua) ) ) ).
% ATP.lambda_561
tff(fact_8741_ATP_Olambda__562,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(A,A),Uua: A,Uub: A] : ( aa(A,A,aa(A,fun(A,A),aTP_Lamp_ul(fun(A,A),fun(A,fun(A,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,Uu2,Uub)),Uua) ) ) ).
% ATP.lambda_562
tff(fact_8742_ATP_Olambda__563,axiom,
! [A: $tType] :
( ( field(A)
& topolo4211221413907600880p_mult(A) )
=> ! [Uu2: A,Uua: fun(nat,A),Uub: nat] : ( aa(nat,A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_abf(A,fun(fun(nat,A),fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(nat,A,Uua,Uub)),Uu2) ) ) ).
% ATP.lambda_563
tff(fact_8743_ATP_Olambda__564,axiom,
! [B: $tType,A: $tType] :
( topolo2564578578187576103pology(A)
=> ! [Uu2: fun(B,A),Uua: A,Uub: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),aTP_Lamp_afn(fun(B,A),fun(A,fun(B,bool)),Uu2),Uua),Uub))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),aa(B,A,Uu2,Uub)),Uua)) ) ) ).
% ATP.lambda_564
tff(fact_8744_ATP_Olambda__565,axiom,
! [A: $tType,B: $tType] :
( topolo2564578578187576103pology(B)
=> ! [Uu2: fun(A,B),Uua: B,Uub: A] :
( pp(aa(A,bool,aa(B,fun(A,bool),aTP_Lamp_agr(fun(A,B),fun(B,fun(A,bool)),Uu2),Uua),Uub))
<=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),aa(A,B,Uu2,Uub)),Uua)) ) ) ).
% ATP.lambda_565
tff(fact_8745_ATP_Olambda__566,axiom,
! [A: $tType,B: $tType] :
( ( dense_linorder(B)
& no_bot(B) )
=> ! [Uu2: fun(A,B),Uua: B,Uub: A] :
( pp(aa(A,bool,aa(B,fun(A,bool),aTP_Lamp_afq(fun(A,B),fun(B,fun(A,bool)),Uu2),Uua),Uub))
<=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),aa(A,B,Uu2,Uub)),Uua)) ) ) ).
% ATP.lambda_566
tff(fact_8746_ATP_Olambda__567,axiom,
! [A: $tType] :
( real_V4412858255891104859lgebra(A)
=> ! [Uu2: fun(nat,A),Uua: A,Uub: nat] : ( aa(nat,A,aa(A,fun(nat,A),aTP_Lamp_az(fun(nat,A),fun(A,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,Uub)),Uua) ) ) ).
% ATP.lambda_567
tff(fact_8747_ATP_Olambda__568,axiom,
! [D: $tType,A: $tType] :
( real_V4412858255891104859lgebra(A)
=> ! [Uu2: fun(D,A),Uua: A,Uub: D] : ( aa(D,A,aa(A,fun(D,A),aTP_Lamp_zk(fun(D,A),fun(A,fun(D,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(D,A,Uu2,Uub)),Uua) ) ) ).
% ATP.lambda_568
tff(fact_8748_ATP_Olambda__569,axiom,
! [C: $tType,A: $tType] :
( ( real_V4412858255891104859lgebra(A)
& real_V822414075346904944vector(C) )
=> ! [Uu2: fun(C,A),Uua: A,Uub: C] : ( aa(C,A,aa(A,fun(C,A),aTP_Lamp_wl(fun(C,A),fun(A,fun(C,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(C,A,Uu2,Uub)),Uua) ) ) ).
% ATP.lambda_569
tff(fact_8749_ATP_Olambda__570,axiom,
! [B: $tType,A: $tType] :
( ( real_V4412858255891104859lgebra(A)
& topological_t2_space(B) )
=> ! [Uu2: fun(B,A),Uua: A,Uub: B] : ( aa(B,A,aa(A,fun(B,A),aTP_Lamp_zm(fun(B,A),fun(A,fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(B,A,Uu2,Uub)),Uua) ) ) ).
% ATP.lambda_570
tff(fact_8750_ATP_Olambda__571,axiom,
! [B: $tType,A: $tType] :
( topolo4211221413907600880p_mult(A)
=> ! [Uu2: fun(B,A),Uua: A,Uub: B] : ( aa(B,A,aa(A,fun(B,A),aTP_Lamp_zo(fun(B,A),fun(A,fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(B,A,Uu2,Uub)),Uua) ) ) ).
% ATP.lambda_571
tff(fact_8751_ATP_Olambda__572,axiom,
! [B: $tType,A: $tType] :
( semiring_0(A)
=> ! [Uu2: fun(B,A),Uua: A,Uub: B] : ( aa(B,A,aa(A,fun(B,A),aTP_Lamp_fj(fun(B,A),fun(A,fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(B,A,Uu2,Uub)),Uua) ) ) ).
% ATP.lambda_572
tff(fact_8752_ATP_Olambda__573,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(A,A),Uua: A,Uub: A] : ( aa(A,A,aa(A,fun(A,A),aTP_Lamp_um(fun(A,A),fun(A,fun(A,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,Uu2,Uub)),Uua) ) ) ).
% ATP.lambda_573
tff(fact_8753_ATP_Olambda__574,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: real,Uua: fun(A,real),Uub: A] : ( aa(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_xc(real,fun(fun(A,real),fun(A,real)),Uu2),Uua),Uub) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(A,real,Uua,Uub)),Uu2) ) ) ).
% ATP.lambda_574
tff(fact_8754_ATP_Olambda__575,axiom,
! [A: $tType] :
( ( field(A)
& real_V4412858255891104859lgebra(A) )
=> ! [Uu2: A,Uua: fun(nat,A),Uub: nat] : ( aa(nat,A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_bv(A,fun(fun(nat,A),fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uua,Uub)),Uu2) ) ) ).
% ATP.lambda_575
tff(fact_8755_ATP_Olambda__576,axiom,
! [A: $tType] :
( ( field(A)
& topolo4211221413907600880p_mult(A) )
=> ! [Uu2: A,Uua: fun(nat,A),Uub: nat] : ( aa(nat,A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_abe(A,fun(fun(nat,A),fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uua,Uub)),Uu2) ) ) ).
% ATP.lambda_576
tff(fact_8756_ATP_Olambda__577,axiom,
! [B: $tType,A: $tType] :
( ( field(A)
& topolo4211221413907600880p_mult(A) )
=> ! [Uu2: A,Uua: fun(B,A),Uub: B] : ( aa(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_yb(A,fun(fun(B,A),fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(B,A,Uua,Uub)),Uu2) ) ) ).
% ATP.lambda_577
tff(fact_8757_ATP_Olambda__578,axiom,
! [A: $tType] :
( ring_1(A)
=> ! [Uu2: fun(nat,A),Uua: A,Uub: nat] : ( aa(nat,A,aa(A,fun(nat,A),aTP_Lamp_fw(fun(nat,A),fun(A,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,Uu2,Uub)),Uua) ) ) ).
% ATP.lambda_578
tff(fact_8758_ATP_Olambda__579,axiom,
! [K9: $tType,L5: $tType,Uu2: fun(K9,set(L5)),Uua: set(L5),Uub: K9] : ( aa(K9,set(L5),aa(set(L5),fun(K9,set(L5)),aTP_Lamp_rr(fun(K9,set(L5)),fun(set(L5),fun(K9,set(L5))),Uu2),Uua),Uub) = aa(set(L5),set(L5),aa(set(L5),fun(set(L5),set(L5)),minus_minus(set(L5)),aa(K9,set(L5),Uu2,Uub)),Uua) ) ).
% ATP.lambda_579
tff(fact_8759_ATP_Olambda__580,axiom,
! [E3: $tType,F: $tType,Uu2: fun(E3,set(F)),Uua: set(F),Uub: E3] : ( aa(E3,set(F),aa(set(F),fun(E3,set(F)),aTP_Lamp_ro(fun(E3,set(F)),fun(set(F),fun(E3,set(F))),Uu2),Uua),Uub) = aa(set(F),set(F),aa(set(F),fun(set(F),set(F)),minus_minus(set(F)),aa(E3,set(F),Uu2,Uub)),Uua) ) ).
% ATP.lambda_580
tff(fact_8760_ATP_Olambda__581,axiom,
! [A: $tType,B: $tType] :
( real_V822414075346904944vector(B)
=> ! [Uu2: fun(A,B),Uua: B,Uub: A] : ( aa(A,B,aa(B,fun(A,B),aTP_Lamp_aam(fun(A,B),fun(B,fun(A,B)),Uu2),Uua),Uub) = aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(A,B,Uu2,Uub)),Uua) ) ) ).
% ATP.lambda_581
tff(fact_8761_ATP_Olambda__582,axiom,
! [Uu2: fun(real,real),Uua: nat,Uub: real] : ( aa(real,real,aa(nat,fun(real,real),aTP_Lamp_uy(fun(real,real),fun(nat,fun(real,real)),Uu2),Uua),Uub) = aa(nat,real,power_power(real,aa(real,real,Uu2,Uub)),Uua) ) ).
% ATP.lambda_582
tff(fact_8762_ATP_Olambda__583,axiom,
! [A: $tType,B: $tType] :
( ( real_V3459762299906320749_field(B)
& real_V822414075346904944vector(A) )
=> ! [Uu2: fun(A,B),Uua: nat,Uub: A] : ( aa(A,B,aa(nat,fun(A,B),aTP_Lamp_xf(fun(A,B),fun(nat,fun(A,B)),Uu2),Uua),Uub) = aa(nat,B,power_power(B,aa(A,B,Uu2,Uub)),Uua) ) ) ).
% ATP.lambda_583
tff(fact_8763_ATP_Olambda__584,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(A,A),Uua: nat,Uub: A] : ( aa(A,A,aa(nat,fun(A,A),aTP_Lamp_uw(fun(A,A),fun(nat,fun(A,A)),Uu2),Uua),Uub) = aa(nat,A,power_power(A,aa(A,A,Uu2,Uub)),Uua) ) ) ).
% ATP.lambda_584
tff(fact_8764_ATP_Olambda__585,axiom,
! [A: $tType,B: $tType] :
( ( power(B)
& real_V4412858255891104859lgebra(B)
& topological_t2_space(A) )
=> ! [Uu2: fun(A,B),Uua: nat,Uub: A] : ( aa(A,B,aa(nat,fun(A,B),aTP_Lamp_yt(fun(A,B),fun(nat,fun(A,B)),Uu2),Uua),Uub) = aa(nat,B,power_power(B,aa(A,B,Uu2,Uub)),Uua) ) ) ).
% ATP.lambda_585
tff(fact_8765_ATP_Olambda__586,axiom,
! [A: $tType,B: $tType] :
( real_V8999393235501362500lgebra(B)
=> ! [Uu2: fun(A,B),Uua: nat,Uub: A] : ( aa(A,B,aa(nat,fun(A,B),aTP_Lamp_afb(fun(A,B),fun(nat,fun(A,B)),Uu2),Uua),Uub) = aa(nat,B,power_power(B,aa(A,B,Uu2,Uub)),Uua) ) ) ).
% ATP.lambda_586
tff(fact_8766_ATP_Olambda__587,axiom,
! [A: $tType,B: $tType] :
( real_V2822296259951069270ebra_1(B)
=> ! [Uu2: fun(A,B),Uua: nat,Uub: A] : ( aa(A,B,aa(nat,fun(A,B),aTP_Lamp_yy(fun(A,B),fun(nat,fun(A,B)),Uu2),Uua),Uub) = aa(nat,B,power_power(B,aa(A,B,Uu2,Uub)),Uua) ) ) ).
% ATP.lambda_587
tff(fact_8767_ATP_Olambda__588,axiom,
! [A: $tType,B: $tType] :
( comm_semiring_1(B)
=> ! [Uu2: fun(A,B),Uua: nat,Uub: A] : ( aa(A,B,aa(nat,fun(A,B),aTP_Lamp_hk(fun(A,B),fun(nat,fun(A,B)),Uu2),Uua),Uub) = aa(nat,B,power_power(B,aa(A,B,Uu2,Uub)),Uua) ) ) ).
% ATP.lambda_588
tff(fact_8768_ATP_Olambda__589,axiom,
! [A: $tType,B: $tType] :
( ( power(B)
& real_V4412858255891104859lgebra(B) )
=> ! [Uu2: fun(A,B),Uua: nat,Uub: A] : ( aa(A,B,aa(nat,fun(A,B),aTP_Lamp_zt(fun(A,B),fun(nat,fun(A,B)),Uu2),Uua),Uub) = aa(nat,B,power_power(B,aa(A,B,Uu2,Uub)),Uua) ) ) ).
% ATP.lambda_589
tff(fact_8769_ATP_Olambda__590,axiom,
! [Uu2: nat,Uua: fun(real,real),Uub: real] : ( aa(real,real,aa(fun(real,real),fun(real,real),aTP_Lamp_adp(nat,fun(fun(real,real),fun(real,real)),Uu2),Uua),Uub) = aa(nat,real,power_power(real,aa(real,real,Uua,Uub)),Uu2) ) ).
% ATP.lambda_590
tff(fact_8770_ATP_Olambda__591,axiom,
! [A: $tType,Uu2: nat,Uua: fun(A,real),Uub: A] : ( aa(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_yd(nat,fun(fun(A,real),fun(A,real)),Uu2),Uua),Uub) = aa(nat,real,power_power(real,aa(A,real,Uua,Uub)),Uu2) ) ).
% ATP.lambda_591
tff(fact_8771_ATP_Olambda__592,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(nat,A),Uua: A,Uub: nat] : ( aa(nat,A,aa(A,fun(nat,A),aTP_Lamp_ahl(fun(nat,A),fun(A,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,Uu2,Uub)),Uua) ) ) ).
% ATP.lambda_592
tff(fact_8772_ATP_Olambda__593,axiom,
! [B: $tType,A: $tType] :
( linord4140545234300271783up_add(A)
=> ! [Uu2: fun(B,A),Uua: A,Uub: B] : ( aa(B,A,aa(A,fun(B,A),aTP_Lamp_aex(fun(B,A),fun(A,fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(B,A,Uu2,Uub)),Uua) ) ) ).
% ATP.lambda_593
tff(fact_8773_ATP_Olambda__594,axiom,
! [Uu2: fun(real,real),Uua: real,Uub: real] : ( aa(real,real,aa(real,fun(real,real),aTP_Lamp_vb(fun(real,real),fun(real,fun(real,real)),Uu2),Uua),Uub) = powr(real,aa(real,real,Uu2,Uub),Uua) ) ).
% ATP.lambda_594
tff(fact_8774_ATP_Olambda__595,axiom,
! [A: $tType,Uu2: real,Uua: fun(A,real),Uub: A] : ( aa(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_aem(real,fun(fun(A,real),fun(A,real)),Uu2),Uua),Uub) = powr(real,aa(A,real,Uua,Uub),Uu2) ) ).
% ATP.lambda_595
tff(fact_8775_ATP_Olambda__596,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [Uu2: nat,Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_jn(nat,fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uua),Uub))),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uu2),Uub))) ) ) ).
% ATP.lambda_596
tff(fact_8776_ATP_Olambda__597,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: real,Uua: fun(nat,A),Uub: nat] : ( aa(nat,real,aa(fun(nat,A),fun(nat,real),aTP_Lamp_bt(real,fun(fun(nat,A),fun(nat,real)),Uu2),Uua),Uub) = aa(real,real,aa(real,fun(real,real),times_times(real),real_V7770717601297561774m_norm(A,aa(nat,A,Uua,Uub))),aa(nat,real,power_power(real,Uu2),Uub)) ) ) ).
% ATP.lambda_597
tff(fact_8777_ATP_Olambda__598,axiom,
! [A: $tType] :
( real_Vector_banach(A)
=> ! [Uu2: fun(nat,A),Uua: fun(nat,real),Uub: nat] :
( pp(aa(nat,bool,aa(fun(nat,real),fun(nat,bool),aTP_Lamp_agu(fun(nat,A),fun(fun(nat,real),fun(nat,bool)),Uu2),Uua),Uub))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(nat,A,Uu2,Uub))),aa(nat,real,Uua,Uub))) ) ) ).
% ATP.lambda_598
tff(fact_8778_ATP_Olambda__599,axiom,
! [A: $tType,B: $tType] :
( semiring_1(A)
=> ! [Uu2: fun(B,bool),Uua: fun(B,A),Uub: B] : ( aa(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_ny(fun(B,bool),fun(fun(B,A),fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(bool,A,zero_neq_one_of_bool(A),aa(B,bool,Uu2,Uub))),aa(B,A,Uua,Uub)) ) ) ).
% ATP.lambda_599
tff(fact_8779_ATP_Olambda__600,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [Uu2: A,Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_gl(A,fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),semiring_char_0_fact(real,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uub),Uua)))),aa(nat,A,power_power(A,Uu2),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uub),Uua))) ) ) ).
% ATP.lambda_600
tff(fact_8780_ATP_Olambda__601,axiom,
! [B: $tType,A: $tType] :
( ( archim2362893244070406136eiling(B)
& topolo2564578578187576103pology(B) )
=> ! [Uu2: fun(A,B),Uua: B,Uub: A] :
( pp(aa(A,bool,aa(B,fun(A,bool),aTP_Lamp_ahb(fun(A,B),fun(B,fun(A,bool)),Uu2),Uua),Uub))
<=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),aa(int,B,ring_1_of_int(B),aa(B,int,archim6421214686448440834_floor(B),Uua))),aa(A,B,Uu2,Uub))) ) ) ).
% ATP.lambda_601
tff(fact_8781_ATP_Olambda__602,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: fun(nat,A),Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_jk(fun(nat,A),fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7121269368397514597t_prod(nat,A),Uu2),set_or7035219750837199246ssThan(nat,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Uub),Uua),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Uub),Uua)),Uua))) ) ) ).
% ATP.lambda_602
tff(fact_8782_ATP_Olambda__603,axiom,
! [A: $tType] :
( ( comm_monoid_add(A)
& topolo4958980785337419405_space(A) )
=> ! [Uu2: fun(nat,A),Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_jl(fun(nat,A),fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),Uu2),set_or7035219750837199246ssThan(nat,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Uub),Uua),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Uub),Uua)),Uua))) ) ) ).
% ATP.lambda_603
tff(fact_8783_ATP_Olambda__604,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: fun(nat,A),Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_jj(fun(nat,A),fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),Uu2),set_or7035219750837199246ssThan(nat,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Uub),Uua),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Uub),Uua)),Uua))) ) ) ).
% ATP.lambda_604
tff(fact_8784_ATP_Olambda__605,axiom,
! [A: $tType] :
( euclid5411537665997757685th_nat(A)
=> ! [Uu2: A,Uua: A,Uub: nat] : ( aa(nat,A,aa(A,fun(nat,A),aTP_Lamp_hb(A,fun(A,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),plus_plus(A),Uu2),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),Uub)),Uua)) ) ) ).
% ATP.lambda_605
tff(fact_8785_ATP_Olambda__606,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [Uu2: A,Uua: A,Uub: nat] : ( aa(nat,A,aa(A,fun(nat,A),aTP_Lamp_gz(A,fun(A,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),plus_plus(A),Uu2),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),Uub)),Uua)) ) ) ).
% ATP.lambda_606
tff(fact_8786_ATP_Olambda__607,axiom,
! [A: $tType] :
( ( monoid_mult(A)
& comm_ring(A) )
=> ! [Uu2: A,Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_gc(A,fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(nat,A,power_power(A,Uu2),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uua),aa(nat,nat,suc,Uub))) ) ) ).
% ATP.lambda_607
tff(fact_8787_ATP_Olambda__608,axiom,
! [Uu2: real,Uua: real,Uub: nat] : ( aa(nat,real,aa(real,fun(nat,real),aTP_Lamp_ace(real,fun(real,fun(nat,real)),Uu2),Uua),Uub) = aa(real,real,aa(real,fun(real,real),divide_divide(real),Uua),aa(nat,real,power_power(real,Uu2),Uub)) ) ).
% ATP.lambda_608
tff(fact_8788_ATP_Olambda__609,axiom,
! [A: $tType] :
( ( monoid_mult(A)
& comm_ring(A) )
=> ! [Uu2: A,Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_eh(A,fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(nat,A,power_power(A,Uu2),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uua),Uub)) ) ) ).
% ATP.lambda_609
tff(fact_8789_ATP_Olambda__610,axiom,
! [Uu2: nat,Uua: nat,Uub: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),aTP_Lamp_ha(nat,fun(nat,fun(nat,nat)),Uu2),Uua),Uub) = aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uu2),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Uub),Uua)) ) ).
% ATP.lambda_610
tff(fact_8790_ATP_Olambda__611,axiom,
! [A: $tType,B: $tType,C: $tType,Uu2: A,Uua: B,Uub: C] : ( aa(C,product_prod(A,product_prod(B,C)),aa(B,fun(C,product_prod(A,product_prod(B,C))),aa(A,fun(B,fun(C,product_prod(A,product_prod(B,C)))),aTP_Lamp_qf(A,fun(B,fun(C,product_prod(A,product_prod(B,C))))),Uu2),Uua),Uub) = aa(product_prod(B,C),product_prod(A,product_prod(B,C)),aa(A,fun(product_prod(B,C),product_prod(A,product_prod(B,C))),product_Pair(A,product_prod(B,C)),Uu2),aa(C,product_prod(B,C),aa(B,fun(C,product_prod(B,C)),product_Pair(B,C),Uua),Uub)) ) ).
% ATP.lambda_611
tff(fact_8791_ATP_Olambda__612,axiom,
! [A: $tType,B: $tType,C: $tType,Uu2: B,Uua: A,Uub: C] : ( aa(C,product_prod(A,product_prod(B,C)),aa(A,fun(C,product_prod(A,product_prod(B,C))),aTP_Lamp_qg(B,fun(A,fun(C,product_prod(A,product_prod(B,C)))),Uu2),Uua),Uub) = aa(product_prod(B,C),product_prod(A,product_prod(B,C)),aa(A,fun(product_prod(B,C),product_prod(A,product_prod(B,C))),product_Pair(A,product_prod(B,C)),Uua),aa(C,product_prod(B,C),aa(B,fun(C,product_prod(B,C)),product_Pair(B,C),Uu2),Uub)) ) ).
% ATP.lambda_612
tff(fact_8792_ATP_Olambda__613,axiom,
! [A: $tType,B: $tType,Uu2: fun(B,option(A)),Uua: list(B),Uub: A] : ( aa(A,list(A),aa(list(B),fun(A,list(A)),aTP_Lamp_ti(fun(B,option(A)),fun(list(B),fun(A,list(A))),Uu2),Uua),Uub) = aa(list(A),list(A),cons(A,Uub),map_filter(B,A,Uu2,Uua)) ) ).
% ATP.lambda_613
tff(fact_8793_ATP_Olambda__614,axiom,
! [Uu2: real,Uua: real,Uub: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),aTP_Lamp_agq(real,fun(real,fun(real,bool)),Uu2),Uua),Uub))
<=> pp(member(real,Uub,set_or5935395276787703475ssThan(real,Uu2,Uua))) ) ).
% ATP.lambda_614
tff(fact_8794_ATP_Olambda__615,axiom,
! [B: $tType,C: $tType] :
( ( real_V822414075346904944vector(C)
& real_V822414075346904944vector(B) )
=> ! [Uu2: fun(C,B),Uua: real,Uub: C] : ( aa(C,B,aa(real,fun(C,B),aTP_Lamp_wj(fun(C,B),fun(real,fun(C,B)),Uu2),Uua),Uub) = aa(B,B,real_V8093663219630862766scaleR(B,Uua),aa(C,B,Uu2,Uub)) ) ) ).
% ATP.lambda_615
tff(fact_8795_ATP_Olambda__616,axiom,
! [A: $tType,B: $tType] :
( topolo2564578578187576103pology(A)
=> ! [Uu2: A,Uua: fun(B,A),Uub: B] :
( pp(aa(B,bool,aa(fun(B,A),fun(B,bool),aTP_Lamp_age(A,fun(fun(B,A),fun(B,bool)),Uu2),Uua),Uub))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Uu2),aa(B,A,Uua,Uub))) ) ) ).
% ATP.lambda_616
tff(fact_8796_ATP_Olambda__617,axiom,
! [A: $tType,B: $tType] :
( topolo1944317154257567458pology(A)
=> ! [Uu2: fun(B,A),Uua: A,Uub: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),aTP_Lamp_agi(fun(B,A),fun(A,fun(B,bool)),Uu2),Uua),Uub))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Uua),aa(B,A,Uu2,Uub))) ) ) ).
% ATP.lambda_617
tff(fact_8797_ATP_Olambda__618,axiom,
! [B: $tType,A: $tType] :
( unboun7993243217541854897norder(B)
=> ! [Uu2: fun(A,B),Uua: B,Uub: A] :
( pp(aa(A,bool,aa(B,fun(A,bool),aTP_Lamp_agf(fun(A,B),fun(B,fun(A,bool)),Uu2),Uua),Uub))
<=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),Uua),aa(A,B,Uu2,Uub))) ) ) ).
% ATP.lambda_618
tff(fact_8798_ATP_Olambda__619,axiom,
! [B: $tType,A: $tType] :
( linorder(B)
=> ! [Uu2: fun(A,B),Uua: B,Uub: A] :
( pp(aa(A,bool,aa(B,fun(A,bool),aTP_Lamp_afz(fun(A,B),fun(B,fun(A,bool)),Uu2),Uua),Uub))
<=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less_eq(B),Uua),aa(A,B,Uu2,Uub))) ) ) ).
% ATP.lambda_619
tff(fact_8799_ATP_Olambda__620,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(nat,A),Uua: A,Uub: nat] : ( aa(nat,A,aa(A,fun(nat,A),aTP_Lamp_nt(fun(nat,A),fun(A,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),divide_divide(A),Uua),aa(nat,A,Uu2,Uub)) ) ) ).
% ATP.lambda_620
tff(fact_8800_ATP_Olambda__621,axiom,
! [A: $tType,B: $tType] :
( topolo2564578578187576103pology(A)
=> ! [Uu2: fun(B,A),Uua: A,Uub: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),aTP_Lamp_afm(fun(B,A),fun(A,fun(B,bool)),Uu2),Uua),Uub))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Uua),aa(B,A,Uu2,Uub))) ) ) ).
% ATP.lambda_621
tff(fact_8801_ATP_Olambda__622,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [Uu2: fun(B,A),Uua: A,Uub: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),aTP_Lamp_pi(fun(B,A),fun(A,fun(B,bool)),Uu2),Uua),Uub))
<=> pp(aa(A,bool,aa(A,fun(A,bool),ord_less(A),Uua),aa(B,A,Uu2,Uub))) ) ) ).
% ATP.lambda_622
tff(fact_8802_ATP_Olambda__623,axiom,
! [B: $tType,A: $tType] :
( unboun7993243217541854897norder(B)
=> ! [Uu2: fun(A,B),Uua: B,Uub: A] :
( pp(aa(A,bool,aa(B,fun(A,bool),aTP_Lamp_afy(fun(A,B),fun(B,fun(A,bool)),Uu2),Uua),Uub))
<=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),Uua),aa(A,B,Uu2,Uub))) ) ) ).
% ATP.lambda_623
tff(fact_8803_ATP_Olambda__624,axiom,
! [B: $tType,A: $tType] :
( topolo2564578578187576103pology(B)
=> ! [Uu2: fun(A,B),Uua: B,Uub: A] :
( pp(aa(A,bool,aa(B,fun(A,bool),aTP_Lamp_ags(fun(A,B),fun(B,fun(A,bool)),Uu2),Uua),Uub))
<=> pp(aa(B,bool,aa(B,fun(B,bool),ord_less(B),Uua),aa(A,B,Uu2,Uub))) ) ) ).
% ATP.lambda_624
tff(fact_8804_ATP_Olambda__625,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: A,Uua: fun(nat,A),Uub: nat] : ( aa(nat,A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_aw(A,fun(fun(nat,A),fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),Uu2),aa(nat,A,Uua,Uub)) ) ) ).
% ATP.lambda_625
tff(fact_8805_ATP_Olambda__626,axiom,
! [A: $tType,B: $tType] :
( semiring_0(A)
=> ! [Uu2: A,Uua: fun(B,A),Uub: B] : ( aa(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_fi(A,fun(fun(B,A),fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),Uu2),aa(B,A,Uua,Uub)) ) ) ).
% ATP.lambda_626
tff(fact_8806_ATP_Olambda__627,axiom,
! [A: $tType] :
( ( field(A)
& real_V4412858255891104859lgebra(A) )
=> ! [Uu2: A,Uua: fun(nat,A),Uub: nat] : ( aa(nat,A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_bw(A,fun(fun(nat,A),fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),Uu2),aa(nat,A,Uua,Uub)) ) ) ).
% ATP.lambda_627
tff(fact_8807_ATP_Olambda__628,axiom,
! [A: $tType] :
( ( field(A)
& topolo4211221413907600880p_mult(A) )
=> ! [Uu2: A,Uua: fun(nat,A),Uub: nat] : ( aa(nat,A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_abd(A,fun(fun(nat,A),fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),Uu2),aa(nat,A,Uua,Uub)) ) ) ).
% ATP.lambda_628
tff(fact_8808_ATP_Olambda__629,axiom,
! [A: $tType,B: $tType] :
( ( field(A)
& topolo4211221413907600880p_mult(A) )
=> ! [Uu2: A,Uua: fun(B,A),Uub: B] : ( aa(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_yc(A,fun(fun(B,A),fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),Uu2),aa(B,A,Uua,Uub)) ) ) ).
% ATP.lambda_629
tff(fact_8809_ATP_Olambda__630,axiom,
! [A: $tType] :
( real_V4412858255891104859lgebra(A)
=> ! [Uu2: fun(nat,A),Uua: A,Uub: nat] : ( aa(nat,A,aa(A,fun(nat,A),aTP_Lamp_ba(fun(nat,A),fun(A,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),Uua),aa(nat,A,Uu2,Uub)) ) ) ).
% ATP.lambda_630
tff(fact_8810_ATP_Olambda__631,axiom,
! [A: $tType,D: $tType] :
( real_V4412858255891104859lgebra(A)
=> ! [Uu2: fun(D,A),Uua: A,Uub: D] : ( aa(D,A,aa(A,fun(D,A),aTP_Lamp_zj(fun(D,A),fun(A,fun(D,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),Uua),aa(D,A,Uu2,Uub)) ) ) ).
% ATP.lambda_631
tff(fact_8811_ATP_Olambda__632,axiom,
! [A: $tType,C: $tType] :
( ( real_V822414075346904944vector(C)
& real_V4412858255891104859lgebra(A) )
=> ! [Uu2: fun(C,A),Uua: A,Uub: C] : ( aa(C,A,aa(A,fun(C,A),aTP_Lamp_wm(fun(C,A),fun(A,fun(C,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),Uua),aa(C,A,Uu2,Uub)) ) ) ).
% ATP.lambda_632
tff(fact_8812_ATP_Olambda__633,axiom,
! [A: $tType,B: $tType] :
( ( topological_t2_space(B)
& real_V4412858255891104859lgebra(A) )
=> ! [Uu2: fun(B,A),Uua: A,Uub: B] : ( aa(B,A,aa(A,fun(B,A),aTP_Lamp_zn(fun(B,A),fun(A,fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),Uua),aa(B,A,Uu2,Uub)) ) ) ).
% ATP.lambda_633
tff(fact_8813_ATP_Olambda__634,axiom,
! [A: $tType,B: $tType] :
( topolo4211221413907600880p_mult(A)
=> ! [Uu2: fun(B,A),Uua: A,Uub: B] : ( aa(B,A,aa(A,fun(B,A),aTP_Lamp_zp(fun(B,A),fun(A,fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),Uua),aa(B,A,Uu2,Uub)) ) ) ).
% ATP.lambda_634
tff(fact_8814_ATP_Olambda__635,axiom,
! [A: $tType,B: $tType] :
( ( linordered_field(A)
& topolo1944317154257567458pology(A) )
=> ! [Uu2: fun(B,A),Uua: A,Uub: B] : ( aa(B,A,aa(A,fun(B,A),aTP_Lamp_adv(fun(B,A),fun(A,fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),Uua),aa(B,A,Uu2,Uub)) ) ) ).
% ATP.lambda_635
tff(fact_8815_ATP_Olambda__636,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(A,A),Uua: A,Uub: A] : ( aa(A,A,aa(A,fun(A,A),aTP_Lamp_un(fun(A,A),fun(A,fun(A,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),times_times(A),Uua),aa(A,A,Uu2,Uub)) ) ) ).
% ATP.lambda_636
tff(fact_8816_ATP_Olambda__637,axiom,
! [M11: $tType,N10: $tType,Uu2: set(M11),Uua: fun(N10,set(M11)),Uub: N10] : ( aa(N10,set(M11),aa(fun(N10,set(M11)),fun(N10,set(M11)),aTP_Lamp_rv(set(M11),fun(fun(N10,set(M11)),fun(N10,set(M11))),Uu2),Uua),Uub) = aa(set(M11),set(M11),aa(set(M11),fun(set(M11),set(M11)),minus_minus(set(M11)),Uu2),aa(N10,set(M11),Uua,Uub)) ) ).
% ATP.lambda_637
tff(fact_8817_ATP_Olambda__638,axiom,
! [G2: $tType,H4: $tType,Uu2: set(G2),Uua: fun(H4,set(G2)),Uub: H4] : ( aa(H4,set(G2),aa(fun(H4,set(G2)),fun(H4,set(G2)),aTP_Lamp_rp(set(G2),fun(fun(H4,set(G2)),fun(H4,set(G2))),Uu2),Uua),Uub) = aa(set(G2),set(G2),aa(set(G2),fun(set(G2),set(G2)),minus_minus(set(G2)),Uu2),aa(H4,set(G2),Uua,Uub)) ) ).
% ATP.lambda_638
tff(fact_8818_ATP_Olambda__639,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: A,Uua: fun(B,nat),Uub: B] : ( aa(B,A,aa(fun(B,nat),fun(B,A),aTP_Lamp_hp(A,fun(fun(B,nat),fun(B,A)),Uu2),Uua),Uub) = aa(nat,A,power_power(A,Uu2),aa(B,nat,Uua,Uub)) ) ) ).
% ATP.lambda_639
tff(fact_8819_ATP_Olambda__640,axiom,
! [A: $tType,B: $tType] :
( real_V2822296259951069270ebra_1(A)
=> ! [Uu2: fun(B,nat),Uua: A,Uub: B] : ( aa(B,A,aa(A,fun(B,A),aTP_Lamp_ack(fun(B,nat),fun(A,fun(B,A)),Uu2),Uua),Uub) = aa(nat,A,power_power(A,Uua),aa(B,nat,Uu2,Uub)) ) ) ).
% ATP.lambda_640
tff(fact_8820_ATP_Olambda__641,axiom,
! [A: $tType,B: $tType] :
( topolo1633459387980952147up_add(A)
=> ! [Uu2: A,Uua: fun(B,A),Uub: B] : ( aa(B,A,aa(fun(B,A),fun(B,A),aTP_Lamp_aah(A,fun(fun(B,A),fun(B,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),plus_plus(A),Uu2),aa(B,A,Uua,Uub)) ) ) ).
% ATP.lambda_641
tff(fact_8821_ATP_Olambda__642,axiom,
! [A: $tType,B: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [Uu2: fun(B,A),Uua: A,Uub: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),aTP_Lamp_og(fun(B,A),fun(A,fun(B,bool)),Uu2),Uua),Uub))
<=> pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),Uua),aa(B,A,Uu2,Uub))) ) ) ).
% ATP.lambda_642
tff(fact_8822_ATP_Olambda__643,axiom,
! [A: $tType,B: $tType,C: $tType,Uu2: fun(C,B),Uua: A,Uub: C] : ( aa(C,product_prod(A,B),aa(A,fun(C,product_prod(A,B)),aTP_Lamp_qm(fun(C,B),fun(A,fun(C,product_prod(A,B))),Uu2),Uua),Uub) = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),Uua),aa(C,B,Uu2,Uub)) ) ).
% ATP.lambda_643
tff(fact_8823_ATP_Olambda__644,axiom,
! [A: $tType] :
( topological_t2_space(A)
=> ! [Uu2: fun(A,real),Uua: nat,Uub: A] : ( aa(A,real,aa(nat,fun(A,real),aTP_Lamp_abg(fun(A,real),fun(nat,fun(A,real)),Uu2),Uua),Uub) = aa(real,real,root(Uua),aa(A,real,Uu2,Uub)) ) ) ).
% ATP.lambda_644
tff(fact_8824_ATP_Olambda__645,axiom,
! [A: $tType,Uu2: fun(A,real),Uua: nat,Uub: A] : ( aa(A,real,aa(nat,fun(A,real),aTP_Lamp_zc(fun(A,real),fun(nat,fun(A,real)),Uu2),Uua),Uub) = aa(real,real,root(Uua),aa(A,real,Uu2,Uub)) ) ).
% ATP.lambda_645
tff(fact_8825_ATP_Olambda__646,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Uu2: fun(list(A),A),Uua: list(A),Uub: A] :
( pp(aa(A,bool,aa(list(A),fun(A,bool),aTP_Lamp_ow(fun(list(A),A),fun(list(A),fun(A,bool)),Uu2),Uua),Uub))
<=> ( Uub = aa(list(A),A,Uu2,Uua) ) ) ) ).
% ATP.lambda_646
tff(fact_8826_ATP_Olambda__647,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [Uu2: A,Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_hz(A,fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(A,A,aa(A,fun(A,A),plus_plus(A),Uu2),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uua),Uub))) ) ) ).
% ATP.lambda_647
tff(fact_8827_ATP_Olambda__648,axiom,
! [A: $tType,Uu2: list(A),Uua: set(nat),Uub: A] :
( pp(aa(A,bool,aa(set(nat),fun(A,bool),aTP_Lamp_qr(list(A),fun(set(nat),fun(A,bool)),Uu2),Uua),Uub))
<=> pp(member(A,Uub,aa(list(A),set(A),set2(A),nths(A,Uu2,Uua)))) ) ).
% ATP.lambda_648
tff(fact_8828_ATP_Olambda__649,axiom,
! [A: $tType,C: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(C,A),Uua: real,Uub: C] :
( pp(aa(C,bool,aa(real,fun(C,bool),aTP_Lamp_agz(fun(C,A),fun(real,fun(C,bool)),Uu2),Uua),Uub))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Uua),real_V7770717601297561774m_norm(A,aa(C,A,Uu2,Uub)))) ) ) ).
% ATP.lambda_649
tff(fact_8829_ATP_Olambda__650,axiom,
! [A: $tType,Uu2: list(A),Uua: A,Uub: list(A)] : ( aa(list(A),list(A),aa(A,fun(list(A),list(A)),aTP_Lamp_su(list(A),fun(A,fun(list(A),list(A))),Uu2),Uua),Uub) = aa(list(A),list(A),aa(list(A),fun(list(A),list(A)),append(A),Uub),Uu2) ) ).
% ATP.lambda_650
tff(fact_8830_ATP_Olambda__651,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: fun(nat,A),Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_hr(fun(nat,A),fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(nat,A,Uu2,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uua),aa(nat,nat,suc,Uub))) ) ) ).
% ATP.lambda_651
tff(fact_8831_ATP_Olambda__652,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: fun(nat,A),Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_fu(fun(nat,A),fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(nat,A,Uu2,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uua),aa(nat,nat,suc,Uub))) ) ) ).
% ATP.lambda_652
tff(fact_8832_ATP_Olambda__653,axiom,
! [A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [Uu2: fun(nat,A),Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_abr(fun(nat,A),fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(nat,A,Uu2,aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Uub),Uua)) ) ) ).
% ATP.lambda_653
tff(fact_8833_ATP_Olambda__654,axiom,
! [A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [Uu2: fun(nat,A),Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_abk(fun(nat,A),fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(nat,A,Uu2,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uub),Uua)) ) ) ).
% ATP.lambda_654
tff(fact_8834_ATP_Olambda__655,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& topolo4958980785337419405_space(B) )
=> ! [Uu2: fun(A,B),Uua: A,Uub: A] : ( aa(A,B,aa(A,fun(A,B),aTP_Lamp_yg(fun(A,B),fun(A,fun(A,B)),Uu2),Uua),Uub) = aa(A,B,Uu2,aa(A,A,aa(A,fun(A,A),plus_plus(A),Uua),Uub)) ) ) ).
% ATP.lambda_655
tff(fact_8835_ATP_Olambda__656,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(A,A),Uua: A,Uub: A] : ( aa(A,A,aa(A,fun(A,A),aTP_Lamp_ty(fun(A,A),fun(A,fun(A,A)),Uu2),Uua),Uub) = aa(A,A,Uu2,aa(A,A,aa(A,fun(A,A),plus_plus(A),Uua),Uub)) ) ) ).
% ATP.lambda_656
tff(fact_8836_ATP_Olambda__657,axiom,
! [Uu2: fun(real,bool),Uua: real,Uub: real] :
( pp(aa(real,bool,aa(real,fun(real,bool),aTP_Lamp_agn(fun(real,bool),fun(real,fun(real,bool)),Uu2),Uua),Uub))
<=> pp(aa(real,bool,Uu2,aa(real,real,aa(real,fun(real,real),plus_plus(real),Uub),Uua))) ) ).
% ATP.lambda_657
tff(fact_8837_ATP_Olambda__658,axiom,
! [A: $tType,Uu2: fun(real,A),Uua: real,Uub: real] : ( aa(real,A,aa(real,fun(real,A),aTP_Lamp_adu(fun(real,A),fun(real,fun(real,A)),Uu2),Uua),Uub) = aa(real,A,Uu2,aa(real,real,aa(real,fun(real,real),plus_plus(real),Uub),Uua)) ) ).
% ATP.lambda_658
tff(fact_8838_ATP_Olambda__659,axiom,
! [Uu2: fun(nat,bool),Uua: nat,Uub: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),aTP_Lamp_afk(fun(nat,bool),fun(nat,fun(nat,bool)),Uu2),Uua),Uub))
<=> pp(aa(nat,bool,Uu2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uub),Uua))) ) ).
% ATP.lambda_659
tff(fact_8839_ATP_Olambda__660,axiom,
! [A: $tType,Uu2: fun(nat,set(A)),Uua: nat,Uub: nat] : ( aa(nat,set(A),aa(nat,fun(nat,set(A)),aTP_Lamp_rw(fun(nat,set(A)),fun(nat,fun(nat,set(A))),Uu2),Uua),Uub) = aa(nat,set(A),Uu2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uub),Uua)) ) ).
% ATP.lambda_660
tff(fact_8840_ATP_Olambda__661,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(nat,A),Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_av(fun(nat,A),fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(nat,A,Uu2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uub),Uua)) ) ) ).
% ATP.lambda_661
tff(fact_8841_ATP_Olambda__662,axiom,
! [A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [Uu2: fun(nat,A),Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_abj(fun(nat,A),fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(nat,A,Uu2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uub),Uua)) ) ) ).
% ATP.lambda_662
tff(fact_8842_ATP_Olambda__663,axiom,
! [A: $tType] :
( real_V7819770556892013058_space(A)
=> ! [Uu2: fun(nat,A),Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_ahm(fun(nat,A),fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(nat,A,Uu2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uub),Uua)) ) ) ).
% ATP.lambda_663
tff(fact_8843_ATP_Olambda__664,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: fun(nat,A),Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_hq(fun(nat,A),fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(nat,A,Uu2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uub),Uua)) ) ) ).
% ATP.lambda_664
tff(fact_8844_ATP_Olambda__665,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: fun(nat,A),Uua: nat,Uub: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aTP_Lamp_gp(fun(nat,A),fun(nat,fun(nat,A)),Uu2),Uua),Uub) = aa(nat,A,Uu2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uub),Uua)) ) ) ).
% ATP.lambda_665
tff(fact_8845_ATP_Olambda__666,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(A,bool),Uua: A,Uub: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),aTP_Lamp_agc(fun(A,bool),fun(A,fun(A,bool)),Uu2),Uua),Uub))
<=> pp(aa(A,bool,Uu2,aa(A,A,aa(A,fun(A,A),plus_plus(A),Uub),Uua))) ) ) ).
% ATP.lambda_666
tff(fact_8846_ATP_Olambda__667,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& topolo4958980785337419405_space(B) )
=> ! [Uu2: fun(A,B),Uua: A,Uub: A] : ( aa(A,B,aa(A,fun(A,B),aTP_Lamp_yl(fun(A,B),fun(A,fun(A,B)),Uu2),Uua),Uub) = aa(A,B,Uu2,aa(A,A,aa(A,fun(A,A),plus_plus(A),Uub),Uua)) ) ) ).
% ATP.lambda_667
tff(fact_8847_ATP_Olambda__668,axiom,
! [B: $tType,A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(A,B),Uua: A,Uub: A] : ( aa(A,B,aa(A,fun(A,B),aTP_Lamp_aat(fun(A,B),fun(A,fun(A,B)),Uu2),Uua),Uub) = aa(A,B,Uu2,aa(A,A,aa(A,fun(A,A),plus_plus(A),Uub),Uua)) ) ) ).
% ATP.lambda_668
tff(fact_8848_ATP_Olambda__669,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(A,A),Uua: A,Uub: A] : ( aa(A,A,aa(A,fun(A,A),aTP_Lamp_ug(fun(A,A),fun(A,fun(A,A)),Uu2),Uua),Uub) = aa(A,A,Uu2,aa(A,A,aa(A,fun(A,A),plus_plus(A),Uub),Uua)) ) ) ).
% ATP.lambda_669
tff(fact_8849_ATP_Olambda__670,axiom,
! [C: $tType,A: $tType,B: $tType,Uu2: fun(product_prod(A,B),C),Uua: A,Uub: B] : ( aa(B,C,aa(A,fun(B,C),aTP_Lamp_hm(fun(product_prod(A,B),C),fun(A,fun(B,C)),Uu2),Uua),Uub) = aa(product_prod(A,B),C,Uu2,aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),Uua),Uub)) ) ).
% ATP.lambda_670
tff(fact_8850_ATP_Olambda__671,axiom,
! [D: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& topolo4958980785337419405_space(D) )
=> ! [Uu2: A,Uua: fun(A,D),Uub: A] : ( aa(A,D,aa(fun(A,D),fun(A,D),aTP_Lamp_ym(A,fun(fun(A,D),fun(A,D)),Uu2),Uua),Uub) = aa(A,D,Uua,aa(A,A,aa(A,fun(A,A),plus_plus(A),Uu2),Uub)) ) ) ).
% ATP.lambda_671
tff(fact_8851_ATP_Olambda__672,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& topolo4958980785337419405_space(B) )
=> ! [Uu2: A,Uua: fun(A,B),Uub: A] : ( aa(A,B,aa(fun(A,B),fun(A,B),aTP_Lamp_yh(A,fun(fun(A,B),fun(A,B)),Uu2),Uua),Uub) = aa(A,B,Uua,aa(A,A,aa(A,fun(A,A),plus_plus(A),Uu2),Uub)) ) ) ).
% ATP.lambda_672
tff(fact_8852_ATP_Olambda__673,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: nat,Uua: fun(nat,A),Uub: nat] : ( aa(nat,A,aa(fun(nat,A),fun(nat,A),aTP_Lamp_by(nat,fun(fun(nat,A),fun(nat,A)),Uu2),Uua),Uub) = aa(nat,A,Uua,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uub),Uu2)) ) ) ).
% ATP.lambda_673
tff(fact_8853_ATP_Olambda__674,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(real,real),Uua: fun(A,real),Uub: A] : ( aa(A,real,aa(fun(A,real),fun(A,real),aTP_Lamp_xb(fun(real,real),fun(fun(A,real),fun(A,real)),Uu2),Uua),Uub) = aa(real,real,Uu2,aa(A,real,Uua,Uub)) ) ) ).
% ATP.lambda_674
tff(fact_8854_ATP_Olambda__675,axiom,
! [C: $tType,B: $tType,A: $tType,Uu2: fun(B,C),Uua: fun(A,B),Uub: A] : ( aa(A,C,aa(fun(A,B),fun(A,C),aTP_Lamp_td(fun(B,C),fun(fun(A,B),fun(A,C)),Uu2),Uua),Uub) = aa(B,C,Uu2,aa(A,B,Uua,Uub)) ) ).
% ATP.lambda_675
tff(fact_8855_ATP_Olambda__676,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( real_V822414075346904944vector(C)
& real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [Uu2: fun(A,B),Uua: fun(C,A),Uub: C] : ( aa(C,B,aa(fun(C,A),fun(C,B),aTP_Lamp_wc(fun(A,B),fun(fun(C,A),fun(C,B)),Uu2),Uua),Uub) = aa(A,B,Uu2,aa(C,A,Uua,Uub)) ) ) ).
% ATP.lambda_676
tff(fact_8856_ATP_Olambda__677,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [Uu2: fun(A,B),Uua: fun(C,A),Uub: C] : ( aa(C,B,aa(fun(C,A),fun(C,B),aTP_Lamp_acw(fun(A,B),fun(fun(C,A),fun(C,B)),Uu2),Uua),Uub) = aa(A,B,Uu2,aa(C,A,Uua,Uub)) ) ) ).
% ATP.lambda_677
tff(fact_8857_ATP_Olambda__678,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(A,A),Uua: fun(A,A),Uub: A] : ( aa(A,A,aa(fun(A,A),fun(A,A),aTP_Lamp_ud(fun(A,A),fun(fun(A,A),fun(A,A)),Uu2),Uua),Uub) = aa(A,A,Uu2,aa(A,A,Uua,Uub)) ) ) ).
% ATP.lambda_678
tff(fact_8858_ATP_Olambda__679,axiom,
! [B: $tType,A: $tType,Uu2: fun(A,B),Uua: fun(num,A),Uub: num] : ( aa(num,B,aa(fun(num,A),fun(num,B),aTP_Lamp_tu(fun(A,B),fun(fun(num,A),fun(num,B)),Uu2),Uua),Uub) = aa(A,B,Uu2,aa(num,A,Uua,Uub)) ) ).
% ATP.lambda_679
tff(fact_8859_ATP_Olambda__680,axiom,
! [B: $tType,A: $tType,Uu2: fun(A,B),Uua: fun(nat,A),Uub: nat] : ( aa(nat,B,aa(fun(nat,A),fun(nat,B),aTP_Lamp_ju(fun(A,B),fun(fun(nat,A),fun(nat,B)),Uu2),Uua),Uub) = aa(A,B,Uu2,aa(nat,A,Uua,Uub)) ) ).
% ATP.lambda_680
tff(fact_8860_ATP_Olambda__681,axiom,
! [A: $tType,C: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: fun(B,C),Uua: fun(C,A),Uub: B] : ( aa(B,A,aa(fun(C,A),fun(B,A),aTP_Lamp_lx(fun(B,C),fun(fun(C,A),fun(B,A)),Uu2),Uua),Uub) = aa(C,A,Uua,aa(B,C,Uu2,Uub)) ) ) ).
% ATP.lambda_681
tff(fact_8861_ATP_Olambda__682,axiom,
! [A: $tType,C: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: fun(B,C),Uua: fun(C,A),Uub: B] : ( aa(B,A,aa(fun(C,A),fun(B,A),aTP_Lamp_lu(fun(B,C),fun(fun(C,A),fun(B,A)),Uu2),Uua),Uub) = aa(C,A,Uua,aa(B,C,Uu2,Uub)) ) ) ).
% ATP.lambda_682
tff(fact_8862_ATP_Olambda__683,axiom,
! [C: $tType,B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B)
& real_V822414075346904944vector(C) )
=> ! [Uu2: fun(A,B),Uua: fun(B,C),Uub: A] : ( aa(A,C,aa(fun(B,C),fun(A,C),aTP_Lamp_vw(fun(A,B),fun(fun(B,C),fun(A,C)),Uu2),Uua),Uub) = aa(B,C,Uua,aa(A,B,Uu2,Uub)) ) ) ).
% ATP.lambda_683
tff(fact_8863_ATP_Olambda__684,axiom,
! [C: $tType,B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& topolo4958980785337419405_space(B)
& topolo4958980785337419405_space(C) )
=> ! [Uu2: fun(A,B),Uua: fun(B,C),Uub: A] : ( aa(A,C,aa(fun(B,C),fun(A,C),aTP_Lamp_yf(fun(A,B),fun(fun(B,C),fun(A,C)),Uu2),Uua),Uub) = aa(B,C,Uua,aa(A,B,Uu2,Uub)) ) ) ).
% ATP.lambda_684
tff(fact_8864_ATP_Olambda__685,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(A,A),Uua: fun(A,A),Uub: A] : ( aa(A,A,aa(fun(A,A),fun(A,A),aTP_Lamp_ue(fun(A,A),fun(fun(A,A),fun(A,A)),Uu2),Uua),Uub) = aa(A,A,Uua,aa(A,A,Uu2,Uub)) ) ) ).
% ATP.lambda_685
tff(fact_8865_ATP_Olambda__686,axiom,
! [D: $tType,C: $tType,A: $tType] :
( ( real_V7819770556892013058_space(A)
& topolo4958980785337419405_space(C)
& topolo4958980785337419405_space(D) )
=> ! [Uu2: fun(A,C),Uua: fun(C,D),Uub: A] : ( aa(A,D,aa(fun(C,D),fun(A,D),aTP_Lamp_ado(fun(A,C),fun(fun(C,D),fun(A,D)),Uu2),Uua),Uub) = aa(C,D,Uua,aa(A,C,Uu2,Uub)) ) ) ).
% ATP.lambda_686
tff(fact_8866_ATP_Olambda__687,axiom,
! [C: $tType,B: $tType,A: $tType] :
( ( real_V7819770556892013058_space(A)
& topolo4958980785337419405_space(B)
& topolo4958980785337419405_space(C) )
=> ! [Uu2: fun(A,B),Uua: fun(B,C),Uub: A] : ( aa(A,C,aa(fun(B,C),fun(A,C),aTP_Lamp_adm(fun(A,B),fun(fun(B,C),fun(A,C)),Uu2),Uua),Uub) = aa(B,C,Uua,aa(A,B,Uu2,Uub)) ) ) ).
% ATP.lambda_687
tff(fact_8867_ATP_Olambda__688,axiom,
! [C: $tType,B: $tType,A: $tType] :
( semiring_1(C)
=> ! [Uu2: fun(A,B),Uua: fun(B,C),Uub: A] : ( aa(A,C,aa(fun(B,C),fun(A,C),aTP_Lamp_rj(fun(A,B),fun(fun(B,C),fun(A,C)),Uu2),Uua),Uub) = aa(B,C,Uua,aa(A,B,Uu2,Uub)) ) ) ).
% ATP.lambda_688
tff(fact_8868_ATP_Olambda__689,axiom,
! [Aa: $tType,A: $tType] :
( ( topological_t2_space(A)
& real_Vector_banach(Aa)
& real_V3459762299906320749_field(Aa) )
=> ! [Uu2: fun(A,Aa),Uua: fun(nat,Aa),Uub: A] : ( aa(A,Aa,aa(fun(nat,Aa),fun(A,Aa),aTP_Lamp_abb(fun(A,Aa),fun(fun(nat,Aa),fun(A,Aa)),Uu2),Uua),Uub) = suminf(Aa,aa(A,fun(nat,Aa),aa(fun(nat,Aa),fun(A,fun(nat,Aa)),aTP_Lamp_aba(fun(A,Aa),fun(fun(nat,Aa),fun(A,fun(nat,Aa))),Uu2),Uua),Uub)) ) ) ).
% ATP.lambda_689
tff(fact_8869_ATP_Olambda__690,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: fun(nat,A),Uua: A,Uub: A] : ( aa(A,A,aa(A,fun(A,A),aTP_Lamp_ya(fun(nat,A),fun(A,fun(A,A)),Uu2),Uua),Uub) = suminf(A,aa(A,fun(nat,A),aa(A,fun(A,fun(nat,A)),aTP_Lamp_xz(fun(nat,A),fun(A,fun(A,fun(nat,A))),Uu2),Uua),Uub)) ) ) ).
% ATP.lambda_690
tff(fact_8870_ATP_Olambda__691,axiom,
! [A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [Uu2: A,Uua: set(A),Uub: A] : ( aa(A,filter(A),aa(set(A),fun(A,filter(A)),aTP_Lamp_ady(A,fun(set(A),fun(A,filter(A))),Uu2),Uua),Uub) = principal(A,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(A,set(A),set_ord_greaterThan(A),Uub)),Uua)),aa(set(A),set(A),insert(A,Uu2),bot_bot(set(A))))) ) ) ).
% ATP.lambda_691
tff(fact_8871_ATP_Olambda__692,axiom,
! [A: $tType] :
( topolo1944317154257567458pology(A)
=> ! [Uu2: A,Uua: set(A),Uub: A] : ( aa(A,filter(A),aa(set(A),fun(A,filter(A)),aTP_Lamp_adx(A,fun(set(A),fun(A,filter(A))),Uu2),Uua),Uub) = principal(A,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),aa(A,set(A),set_ord_lessThan(A),Uub)),Uua)),aa(set(A),set(A),insert(A,Uu2),bot_bot(set(A))))) ) ) ).
% ATP.lambda_692
tff(fact_8872_ATP_Olambda__693,axiom,
! [A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [Uu2: A,Uua: set(A),Uub: set(A)] : ( aa(set(A),filter(A),aa(set(A),fun(set(A),filter(A)),aTP_Lamp_aef(A,fun(set(A),fun(set(A),filter(A))),Uu2),Uua),Uub) = principal(A,aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),inf_inf(set(A)),Uub),Uua)),aa(set(A),set(A),insert(A,Uu2),bot_bot(set(A))))) ) ) ).
% ATP.lambda_693
tff(fact_8873_ATP_Olambda__694,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [Uu2: fun(nat,A),Uua: A,Uub: nat] : ( aa(nat,real,aa(A,fun(nat,real),aTP_Lamp_bg(fun(nat,A),fun(A,fun(nat,real)),Uu2),Uua),Uub) = real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,Uub)),aa(nat,A,power_power(A,Uua),Uub))) ) ) ).
% ATP.lambda_694
tff(fact_8874_ATP_Olambda__695,axiom,
! [A: $tType,I6: $tType] :
( ( comm_monoid_mult(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [Uu2: fun(I6,A),Uua: fun(I6,A),Uub: I6] : ( aa(I6,real,aa(fun(I6,A),fun(I6,real),aTP_Lamp_hx(fun(I6,A),fun(fun(I6,A),fun(I6,real)),Uu2),Uua),Uub) = real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(I6,A,Uu2,Uub)),aa(I6,A,Uua,Uub))) ) ) ).
% ATP.lambda_695
tff(fact_8875_ATP_Olambda__696,axiom,
! [Uu2: fun(nat,real),Uua: real,Uub: nat] : ( aa(nat,real,aa(real,fun(nat,real),aTP_Lamp_acp(fun(nat,real),fun(real,fun(nat,real)),Uu2),Uua),Uub) = aa(real,real,cos(real),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(nat,real,Uu2,Uub)),Uua)) ) ).
% ATP.lambda_696
tff(fact_8876_ATP_Olambda__697,axiom,
! [A: $tType,B: $tType] :
( euclid4440199948858584721cancel(A)
=> ! [Uu2: fun(B,A),Uua: A,Uub: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),aTP_Lamp_oh(fun(B,A),fun(A,fun(B,bool)),Uu2),Uua),Uub))
<=> ~ pp(aa(A,bool,aa(A,fun(A,bool),dvd_dvd(A),Uua),aa(B,A,Uu2,Uub))) ) ) ).
% ATP.lambda_697
tff(fact_8877_ATP_Olambda__698,axiom,
! [B: $tType,A: $tType,Uu2: set(B),Uua: fun(A,fun(B,bool)),Uub: A] : ( aa(A,nat,aa(fun(A,fun(B,bool)),fun(A,nat),aTP_Lamp_mx(set(B),fun(fun(A,fun(B,bool)),fun(A,nat)),Uu2),Uua),Uub) = aa(set(B),nat,finite_card(B),aa(fun(B,bool),set(B),collect(B),aa(A,fun(B,bool),aa(fun(A,fun(B,bool)),fun(A,fun(B,bool)),aTP_Lamp_mw(set(B),fun(fun(A,fun(B,bool)),fun(A,fun(B,bool))),Uu2),Uua),Uub))) ) ).
% ATP.lambda_698
tff(fact_8878_ATP_Olambda__699,axiom,
! [Aa: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& archim2362893244070406136eiling(Aa)
& topolo2564578578187576103pology(Aa) )
=> ! [Uu2: fun(A,real),Uua: fun(real,Aa),Uub: A] : ( aa(A,real,aa(fun(real,Aa),fun(A,real),aTP_Lamp_xx(fun(A,real),fun(fun(real,Aa),fun(A,real)),Uu2),Uua),Uub) = aa(int,real,ring_1_of_int(real),aa(Aa,int,archim6421214686448440834_floor(Aa),aa(real,Aa,Uua,aa(A,real,Uu2,Uub)))) ) ) ).
% ATP.lambda_699
tff(fact_8879_ATP_Olambda__700,axiom,
! [A: $tType] :
( real_Vector_banach(A)
=> ! [Uu2: fun(nat,A),Uua: fun(nat,real),Uub: nat] :
( pp(aa(nat,bool,aa(fun(nat,real),fun(nat,bool),aTP_Lamp_ahf(fun(nat,A),fun(fun(nat,real),fun(nat,bool)),Uu2),Uua),Uub))
<=> ! [N5: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Uub),N5))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),Uu2),set_or7035219750837199246ssThan(nat,Uub,N5)))),aa(nat,real,Uua,Uub))) ) ) ) ).
% ATP.lambda_700
tff(fact_8880_ATP_Olambda__701,axiom,
! [A: $tType] :
( ( real_V8037385150606011577_space(A)
& real_V822414075346904944vector(A) )
=> ! [Uu2: fun(nat,A),Uua: fun(nat,real),Uub: nat] :
( pp(aa(nat,bool,aa(fun(nat,real),fun(nat,bool),aTP_Lamp_ahe(fun(nat,A),fun(fun(nat,real),fun(nat,bool)),Uu2),Uua),Uub))
<=> ! [A5: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),Uub),A5))
=> ! [B5: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),A5),B5))
=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(A,aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),Uu2),set_or3652927894154168847AtMost(nat,A5,B5)))),aa(nat,real,Uua,A5))) ) ) ) ) ).
% ATP.lambda_701
tff(fact_8881_ATP_Olambda__702,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: A,Uua: A,Uub: nat,Uuc: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aa(A,fun(nat,fun(nat,A)),aTP_Lamp_ex(A,fun(A,fun(nat,fun(nat,A))),Uu2),Uua),Uub),Uuc) = if(A,fconj(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uub),aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uuc)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(int,real,ring_1_of_int(real),aa(int,int,aa(int,fun(int,int),times_times(int),aa(nat,int,power_power(int,aa(int,int,uminus_uminus(int),one_one(int))),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),Uub),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,binomial(Uub),Uuc))))),semiring_char_0_fact(real,Uub))),aa(nat,A,power_power(A,Uu2),Uuc))),aa(nat,A,power_power(A,Uua),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uub),Uuc))),zero_zero(A)) ) ) ).
% ATP.lambda_702
tff(fact_8882_ATP_Olambda__703,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: A,Uua: A,Uub: nat,Uuc: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aa(A,fun(nat,fun(nat,A)),aTP_Lamp_da(A,fun(A,fun(nat,fun(nat,A))),Uu2),Uua),Uub),Uuc) = if(A,fconj(aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uub),aa(bool,bool,fNot,aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uuc))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,uminus_uminus(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(int,real,ring_1_of_int(real),aa(int,int,aa(int,fun(int,int),times_times(int),aa(nat,int,power_power(int,aa(int,int,uminus_uminus(int),one_one(int))),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),Uub),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,binomial(Uub),Uuc))))),semiring_char_0_fact(real,Uub)))),aa(nat,A,power_power(A,Uu2),Uuc))),aa(nat,A,power_power(A,Uua),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uub),Uuc))),zero_zero(A)) ) ) ).
% ATP.lambda_703
tff(fact_8883_ATP_Olambda__704,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: A,Uua: A,Uub: nat,Uuc: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aa(A,fun(nat,fun(nat,A)),aTP_Lamp_dc(A,fun(A,fun(nat,fun(nat,A))),Uu2),Uua),Uub),Uuc) = if(A,aa(nat,bool,aa(nat,fun(nat,bool),dvd_dvd(nat),aa(num,nat,numeral_numeral(nat),bit0(one2))),Uub),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(int,real,ring_1_of_int(real),aa(int,int,aa(int,fun(int,int),times_times(int),aa(nat,int,power_power(int,aa(int,int,uminus_uminus(int),one_one(int))),aa(nat,nat,aa(nat,fun(nat,nat),divide_divide(nat),Uub),aa(num,nat,numeral_numeral(nat),bit0(one2))))),aa(nat,int,semiring_1_of_nat(int),aa(nat,nat,binomial(Uub),Uuc))))),semiring_char_0_fact(real,Uub))),aa(nat,A,power_power(A,Uu2),Uuc))),aa(nat,A,power_power(A,Uua),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uub),Uuc))),zero_zero(A)) ) ) ).
% ATP.lambda_704
tff(fact_8884_ATP_Olambda__705,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: nat,Uua: fun(nat,A),Uub: fun(nat,A),Uuc: nat] : ( aa(nat,A,aa(fun(nat,A),fun(nat,A),aa(fun(nat,A),fun(fun(nat,A),fun(nat,A)),aTP_Lamp_ei(nat,fun(fun(nat,A),fun(fun(nat,A),fun(nat,A))),Uu2),Uua),Uub),Uuc) = if(A,aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Uuc),Uu2),aa(nat,A,Uua,Uuc),if(A,aa(nat,bool,aa(nat,fun(nat,bool),fequal(nat),Uuc),Uu2),zero_zero(A),aa(nat,A,Uub,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uuc),aa(nat,nat,suc,zero_zero(nat)))))) ) ) ).
% ATP.lambda_705
tff(fact_8885_ATP_Olambda__706,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: nat,Uua: fun(nat,A),Uub: fun(nat,A),Uuc: nat] : ( aa(nat,A,aa(fun(nat,A),fun(nat,A),aa(fun(nat,A),fun(fun(nat,A),fun(nat,A)),aTP_Lamp_ib(nat,fun(fun(nat,A),fun(fun(nat,A),fun(nat,A))),Uu2),Uua),Uub),Uuc) = if(A,aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Uuc),Uu2),aa(nat,A,Uua,Uuc),if(A,aa(nat,bool,aa(nat,fun(nat,bool),fequal(nat),Uuc),Uu2),one_one(A),aa(nat,A,Uub,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uuc),aa(nat,nat,suc,zero_zero(nat)))))) ) ) ).
% ATP.lambda_706
tff(fact_8886_ATP_Olambda__707,axiom,
! [B: $tType,A: $tType] :
( ( topolo1944317154257567458pology(A)
& topolo4958980785337419405_space(B) )
=> ! [Uu2: A,Uua: fun(A,B),Uub: fun(A,B),Uuc: A] : ( aa(A,B,aa(fun(A,B),fun(A,B),aa(fun(A,B),fun(fun(A,B),fun(A,B)),aTP_Lamp_adw(A,fun(fun(A,B),fun(fun(A,B),fun(A,B))),Uu2),Uua),Uub),Uuc) = if(B,aa(A,bool,aa(A,fun(A,bool),ord_less_eq(A),Uuc),Uu2),aa(A,B,Uua,Uuc),aa(A,B,Uub,Uuc)) ) ) ).
% ATP.lambda_707
tff(fact_8887_ATP_Olambda__708,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: nat,Uua: fun(nat,A),Uub: fun(nat,A),Uuc: nat] : ( aa(nat,A,aa(fun(nat,A),fun(nat,A),aa(fun(nat,A),fun(fun(nat,A),fun(nat,A)),aTP_Lamp_ic(nat,fun(fun(nat,A),fun(fun(nat,A),fun(nat,A))),Uu2),Uua),Uub),Uuc) = if(A,aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Uuc),Uu2),aa(nat,A,Uua,Uuc),aa(nat,A,Uub,Uuc)) ) ) ).
% ATP.lambda_708
tff(fact_8888_ATP_Olambda__709,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: nat,Uua: fun(nat,A),Uub: fun(nat,A),Uuc: nat] : ( aa(nat,A,aa(fun(nat,A),fun(nat,A),aa(fun(nat,A),fun(fun(nat,A),fun(nat,A)),aTP_Lamp_ej(nat,fun(fun(nat,A),fun(fun(nat,A),fun(nat,A))),Uu2),Uua),Uub),Uuc) = if(A,aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),Uuc),Uu2),aa(nat,A,Uua,Uuc),aa(nat,A,Uub,Uuc)) ) ) ).
% ATP.lambda_709
tff(fact_8889_ATP_Olambda__710,axiom,
! [A: $tType] :
( ( topolo1287966508704411220up_add(A)
& topological_t2_space(A) )
=> ! [Uu2: fun(nat,A),Uua: set(nat),Uub: fun(nat,A),Uuc: nat] : ( aa(nat,A,aa(fun(nat,A),fun(nat,A),aa(set(nat),fun(fun(nat,A),fun(nat,A)),aTP_Lamp_lw(fun(nat,A),fun(set(nat),fun(fun(nat,A),fun(nat,A))),Uu2),Uua),Uub),Uuc) = if(A,member(nat,Uuc,Uua),aa(nat,A,Uub,Uuc),aa(nat,A,Uu2,Uuc)) ) ) ).
% ATP.lambda_710
tff(fact_8890_ATP_Olambda__711,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: B,Uua: fun(B,A),Uub: fun(B,A),Uuc: B] : ( aa(B,A,aa(fun(B,A),fun(B,A),aa(fun(B,A),fun(fun(B,A),fun(B,A)),aTP_Lamp_nj(B,fun(fun(B,A),fun(fun(B,A),fun(B,A))),Uu2),Uua),Uub),Uuc) = if(A,aa(B,bool,aa(B,fun(B,bool),fequal(B),Uuc),Uu2),aa(B,A,Uua,Uuc),aa(B,A,Uub,Uuc)) ) ) ).
% ATP.lambda_711
tff(fact_8891_ATP_Olambda__712,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: B,Uua: fun(B,A),Uub: fun(B,A),Uuc: B] : ( aa(B,A,aa(fun(B,A),fun(B,A),aa(fun(B,A),fun(fun(B,A),fun(B,A)),aTP_Lamp_ni(B,fun(fun(B,A),fun(fun(B,A),fun(B,A))),Uu2),Uua),Uub),Uuc) = if(A,aa(B,bool,aa(B,fun(B,bool),fequal(B),Uuc),Uu2),aa(B,A,Uua,Uuc),aa(B,A,Uub,Uuc)) ) ) ).
% ATP.lambda_712
tff(fact_8892_ATP_Olambda__713,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: B,Uua: fun(B,A),Uub: A,Uuc: B] : ( aa(B,A,aa(A,fun(B,A),aa(fun(B,A),fun(A,fun(B,A)),aTP_Lamp_nb(B,fun(fun(B,A),fun(A,fun(B,A))),Uu2),Uua),Uub),Uuc) = if(A,aa(B,bool,aa(B,fun(B,bool),fequal(B),Uuc),Uu2),aa(B,A,Uua,Uuc),Uub) ) ) ).
% ATP.lambda_713
tff(fact_8893_ATP_Olambda__714,axiom,
! [A: $tType,Uu2: fun(A,bool),Uua: A,Uub: list(A),Uuc: list(A)] : ( aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),aa(A,fun(list(A),fun(list(A),product_prod(list(A),list(A)))),aTP_Lamp_tv(fun(A,bool),fun(A,fun(list(A),fun(list(A),product_prod(list(A),list(A))))),Uu2),Uua),Uub),Uuc) = if(product_prod(list(A),list(A)),aa(A,bool,Uu2,Uua),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),aa(list(A),list(A),cons(A,Uua),Uub)),Uuc),aa(list(A),product_prod(list(A),list(A)),aa(list(A),fun(list(A),product_prod(list(A),list(A))),product_Pair(list(A),list(A)),Uub),aa(list(A),list(A),cons(A,Uua),Uuc))) ) ).
% ATP.lambda_714
tff(fact_8894_ATP_Olambda__715,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: fun(B,bool),Uua: fun(B,A),Uub: fun(B,A),Uuc: B] : ( aa(B,A,aa(fun(B,A),fun(B,A),aa(fun(B,A),fun(fun(B,A),fun(B,A)),aTP_Lamp_oe(fun(B,bool),fun(fun(B,A),fun(fun(B,A),fun(B,A))),Uu2),Uua),Uub),Uuc) = if(A,aa(B,bool,Uu2,Uuc),aa(B,A,Uua,Uuc),aa(B,A,Uub,Uuc)) ) ) ).
% ATP.lambda_715
tff(fact_8895_ATP_Olambda__716,axiom,
! [A: $tType,B: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: fun(B,bool),Uua: fun(B,A),Uub: fun(B,A),Uuc: B] : ( aa(B,A,aa(fun(B,A),fun(B,A),aa(fun(B,A),fun(fun(B,A),fun(B,A)),aTP_Lamp_od(fun(B,bool),fun(fun(B,A),fun(fun(B,A),fun(B,A))),Uu2),Uua),Uub),Uuc) = if(A,aa(B,bool,Uu2,Uuc),aa(B,A,Uua,Uuc),aa(B,A,Uub,Uuc)) ) ) ).
% ATP.lambda_716
tff(fact_8896_ATP_Olambda__717,axiom,
! [A: $tType,B: $tType] :
( comm_semiring_0(A)
=> ! [Uu2: fun(B,A),Uua: A,Uub: list(B),Uuc: nat] : ( aa(nat,A,aa(list(B),fun(nat,A),aa(A,fun(list(B),fun(nat,A)),aTP_Lamp_nw(fun(B,A),fun(A,fun(list(B),fun(nat,A))),Uu2),Uua),Uub),Uuc) = aa(A,A,aa(fun(A,A),fun(A,A),aa(nat,fun(fun(A,A),fun(A,A)),compow(fun(A,A)),Uuc),aa(A,fun(A,A),times_times(A),Uua)),aa(B,A,Uu2,aa(nat,B,nth(B,Uub),Uuc))) ) ) ).
% ATP.lambda_717
tff(fact_8897_ATP_Olambda__718,axiom,
! [A: $tType,B: $tType,Uu2: fun(A,fun(A,bool)),Uua: fun(B,A),Uub: B,Uuc: B] :
( pp(aa(B,bool,aa(B,fun(B,bool),aa(fun(B,A),fun(B,fun(B,bool)),aTP_Lamp_nf(fun(A,fun(A,bool)),fun(fun(B,A),fun(B,fun(B,bool))),Uu2),Uua),Uub),Uuc))
<=> pp(aa(A,bool,aa(A,fun(A,bool),Uu2,aa(B,A,Uua,Uub)),aa(B,A,Uua,Uuc))) ) ).
% ATP.lambda_718
tff(fact_8898_ATP_Olambda__719,axiom,
! [B: $tType,A: $tType,C: $tType,D: $tType,Uu2: fun(B,fun(C,A)),Uua: fun(D,B),Uub: fun(D,C),Uuc: D] : ( aa(D,A,aa(fun(D,C),fun(D,A),aa(fun(D,B),fun(fun(D,C),fun(D,A)),aTP_Lamp_qi(fun(B,fun(C,A)),fun(fun(D,B),fun(fun(D,C),fun(D,A))),Uu2),Uua),Uub),Uuc) = aa(C,A,aa(B,fun(C,A),Uu2,aa(D,B,Uua,Uuc)),aa(D,C,Uub,Uuc)) ) ).
% ATP.lambda_719
tff(fact_8899_ATP_Olambda__720,axiom,
! [A: $tType] :
( field(A)
=> ! [Uu2: A,Uua: A,Uub: nat,Uuc: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aa(A,fun(nat,fun(nat,A)),aTP_Lamp_gn(A,fun(A,fun(nat,fun(nat,A))),Uu2),Uua),Uub),Uuc) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aa(A,fun(nat,fun(nat,A)),aTP_Lamp_gm(A,fun(A,fun(nat,fun(nat,A))),Uu2),Uua),Uub)),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uub),aa(nat,nat,suc,zero_zero(nat)))),Uuc))) ) ) ).
% ATP.lambda_720
tff(fact_8900_ATP_Olambda__721,axiom,
! [A: $tType,B: $tType,C: $tType] :
( semiring_0(B)
=> ! [Uu2: fun(A,B),Uua: fun(C,B),Uub: set(C),Uuc: A] : ( aa(A,B,aa(set(C),fun(A,B),aa(fun(C,B),fun(set(C),fun(A,B)),aTP_Lamp_fl(fun(A,B),fun(fun(C,B),fun(set(C),fun(A,B))),Uu2),Uua),Uub),Uuc) = aa(set(C),B,aa(fun(C,B),fun(set(C),B),groups7311177749621191930dd_sum(C,B),aa(A,fun(C,B),aa(fun(C,B),fun(A,fun(C,B)),aTP_Lamp_fk(fun(A,B),fun(fun(C,B),fun(A,fun(C,B))),Uu2),Uua),Uuc)),Uub) ) ) ).
% ATP.lambda_721
tff(fact_8901_ATP_Olambda__722,axiom,
! [A: $tType] :
( idom(A)
=> ! [Uu2: nat,Uua: A,Uub: A,Uuc: nat] : ( aa(nat,A,aa(A,fun(nat,A),aa(A,fun(A,fun(nat,A)),aTP_Lamp_en(nat,fun(A,fun(A,fun(nat,A))),Uu2),Uua),Uub),Uuc) = aa(A,A,aa(A,fun(A,A),times_times(A),if(A,aa(nat,bool,aa(nat,fun(nat,bool),fequal(nat),Uuc),zero_zero(nat)),aa(A,A,uminus_uminus(A),Uub),if(A,aa(nat,bool,aa(nat,fun(nat,bool),fequal(nat),Uuc),Uu2),one_one(A),zero_zero(A)))),aa(nat,A,power_power(A,Uua),Uuc)) ) ) ).
% ATP.lambda_722
tff(fact_8902_ATP_Olambda__723,axiom,
! [Uu2: fun(nat,nat),Uua: fun(nat,nat),Uub: nat,Uuc: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),aa(fun(nat,nat),fun(nat,fun(nat,nat)),aTP_Lamp_ee(fun(nat,nat),fun(fun(nat,nat),fun(nat,fun(nat,nat))),Uu2),Uua),Uub),Uuc) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(set(nat),nat,aa(fun(nat,nat),fun(set(nat),nat),groups7311177749621191930dd_sum(nat,nat),aa(nat,fun(nat,nat),aa(fun(nat,nat),fun(nat,fun(nat,nat)),aTP_Lamp_ed(fun(nat,nat),fun(fun(nat,nat),fun(nat,fun(nat,nat))),Uu2),Uua),Uuc)),aa(nat,set(nat),set_ord_atMost(nat),Uuc))),aa(nat,nat,power_power(nat,Uub),Uuc)) ) ).
% ATP.lambda_723
tff(fact_8903_ATP_Olambda__724,axiom,
! [A: $tType] :
( idom(A)
=> ! [Uu2: fun(nat,A),Uua: fun(nat,A),Uub: A,Uuc: nat] : ( aa(nat,A,aa(A,fun(nat,A),aa(fun(nat,A),fun(A,fun(nat,A)),aTP_Lamp_dz(fun(nat,A),fun(fun(nat,A),fun(A,fun(nat,A))),Uu2),Uua),Uub),Uuc) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aa(fun(nat,A),fun(nat,fun(nat,A)),aTP_Lamp_dy(fun(nat,A),fun(fun(nat,A),fun(nat,fun(nat,A))),Uu2),Uua),Uuc)),aa(nat,set(nat),set_ord_atMost(nat),Uuc))),aa(nat,A,power_power(A,Uub),Uuc)) ) ) ).
% ATP.lambda_724
tff(fact_8904_ATP_Olambda__725,axiom,
! [Uu2: fun(nat,fun(real,real)),Uua: nat,Uub: real,Uuc: nat] : ( aa(nat,real,aa(real,fun(nat,real),aa(nat,fun(real,fun(nat,real)),aTP_Lamp_vp(fun(nat,fun(real,real)),fun(nat,fun(real,fun(nat,real))),Uu2),Uua),Uub),Uuc) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(nat,fun(real,real),Uu2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,suc,Uua)),Uuc)),zero_zero(real))),semiring_char_0_fact(real,Uuc))),aa(nat,real,power_power(real,Uub),Uuc)) ) ).
% ATP.lambda_725
tff(fact_8905_ATP_Olambda__726,axiom,
! [Uu2: fun(nat,fun(real,real)),Uua: nat,Uub: real,Uuc: nat] : ( aa(nat,real,aa(real,fun(nat,real),aa(nat,fun(real,fun(nat,real)),aTP_Lamp_vn(fun(nat,fun(real,real)),fun(nat,fun(real,fun(nat,real))),Uu2),Uua),Uub),Uuc) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(nat,fun(real,real),Uu2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uua),Uuc)),zero_zero(real))),semiring_char_0_fact(real,Uuc))),aa(nat,real,power_power(real,Uub),Uuc)) ) ).
% ATP.lambda_726
tff(fact_8906_ATP_Olambda__727,axiom,
! [Uu2: fun(nat,fun(real,real)),Uua: real,Uub: real,Uuc: nat] : ( aa(nat,real,aa(real,fun(nat,real),aa(real,fun(real,fun(nat,real)),aTP_Lamp_vl(fun(nat,fun(real,real)),fun(real,fun(real,fun(nat,real))),Uu2),Uua),Uub),Uuc) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(nat,fun(real,real),Uu2,Uuc),Uua)),semiring_char_0_fact(real,Uuc))),aa(nat,real,power_power(real,aa(real,real,aa(real,fun(real,real),minus_minus(real),Uub),Uua)),Uuc)) ) ).
% ATP.lambda_727
tff(fact_8907_ATP_Olambda__728,axiom,
! [Uu2: fun(nat,fun(real,real)),Uua: real,Uub: real,Uuc: nat] : ( aa(nat,real,aa(real,fun(nat,real),aa(real,fun(real,fun(nat,real)),aTP_Lamp_vm(fun(nat,fun(real,real)),fun(real,fun(real,fun(nat,real))),Uu2),Uua),Uub),Uuc) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(nat,fun(real,real),Uu2,Uuc),Uub)),semiring_char_0_fact(real,Uuc))),aa(nat,real,power_power(real,aa(real,real,aa(real,fun(real,real),minus_minus(real),Uua),Uub)),Uuc)) ) ).
% ATP.lambda_728
tff(fact_8908_ATP_Olambda__729,axiom,
! [A: $tType] :
( ( monoid_mult(A)
& comm_ring(A) )
=> ! [Uu2: A,Uua: A,Uub: nat,Uuc: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aa(A,fun(nat,fun(nat,A)),aTP_Lamp_fy(A,fun(A,fun(nat,fun(nat,A))),Uu2),Uua),Uub),Uuc) = aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),Uu2),Uua)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uub),Uuc))),aa(nat,A,power_power(A,Uu2),Uuc))),aa(nat,A,power_power(A,Uu2),Uub)) ) ) ).
% ATP.lambda_729
tff(fact_8909_ATP_Olambda__730,axiom,
! [Uu2: nat,Uua: nat,Uub: nat,Uuc: nat] : ( aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),aa(nat,fun(nat,fun(nat,product_prod(nat,nat))),aTP_Lamp_pk(nat,fun(nat,fun(nat,fun(nat,product_prod(nat,nat)))),Uu2),Uua),Uub),Uuc) = aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Uu2),Uub)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Uua),Uuc))),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Uu2),Uuc)),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),Uua),Uub))) ) ).
% ATP.lambda_730
tff(fact_8910_ATP_Olambda__731,axiom,
! [A: $tType] :
( field(A)
=> ! [Uu2: A,Uua: A,Uub: nat,Uuc: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aa(A,fun(nat,fun(nat,A)),aTP_Lamp_gm(A,fun(A,fun(nat,fun(nat,A))),Uu2),Uua),Uub),Uuc) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),Uua),Uu2)),Uuc)),aa(nat,A,power_power(A,Uua),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uub),aa(num,nat,numeral_numeral(nat),bit0(one2)))),Uuc))) ) ) ).
% ATP.lambda_731
tff(fact_8911_ATP_Olambda__732,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: fun(A,A),Uua: A,Uub: fun(nat,A),Uuc: nat] : ( aa(nat,A,aa(fun(nat,A),fun(nat,A),aa(A,fun(fun(nat,A),fun(nat,A)),aTP_Lamp_acm(fun(A,A),fun(A,fun(fun(nat,A),fun(nat,A))),Uu2),Uua),Uub),Uuc) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,Uu2,aa(A,A,aa(A,fun(A,A),plus_plus(A),Uua),aa(nat,A,Uub,Uuc)))),aa(A,A,Uu2,Uua))),aa(nat,A,Uub,Uuc)) ) ) ).
% ATP.lambda_732
tff(fact_8912_ATP_Olambda__733,axiom,
! [B: $tType,A: $tType] :
( real_V7819770556892013058_space(B)
=> ! [Uu2: fun(A,B),Uua: B,Uub: real,Uuc: A] :
( pp(aa(A,bool,aa(real,fun(A,bool),aa(B,fun(real,fun(A,bool)),aTP_Lamp_ahj(fun(A,B),fun(B,fun(real,fun(A,bool))),Uu2),Uua),Uub),Uuc))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V557655796197034286t_dist(B,aa(A,B,Uu2,Uuc),Uua)),Uub)) ) ) ).
% ATP.lambda_733
tff(fact_8913_ATP_Olambda__734,axiom,
! [A: $tType,B: $tType] :
( real_V7819770556892013058_space(A)
=> ! [Uu2: fun(B,A),Uua: A,Uub: real,Uuc: B] :
( pp(aa(B,bool,aa(real,fun(B,bool),aa(A,fun(real,fun(B,bool)),aTP_Lamp_agt(fun(B,A),fun(A,fun(real,fun(B,bool))),Uu2),Uua),Uub),Uuc))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less(real),real_V557655796197034286t_dist(A,aa(B,A,Uu2,Uuc),Uua)),Uub)) ) ) ).
% ATP.lambda_734
tff(fact_8914_ATP_Olambda__735,axiom,
! [A: $tType] :
( comm_ring_1(A)
=> ! [Uu2: A,Uua: A,Uub: nat,Uuc: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aa(A,fun(nat,fun(nat,A)),aTP_Lamp_eg(A,fun(A,fun(nat,fun(nat,A))),Uu2),Uua),Uub),Uuc) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,binomial(Uub),Uuc))),comm_s3205402744901411588hammer(A,Uu2,Uuc))),comm_s3205402744901411588hammer(A,Uua,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uub),Uuc))) ) ) ).
% ATP.lambda_735
tff(fact_8915_ATP_Olambda__736,axiom,
! [Uu2: nat,Uua: nat,Uub: nat,Uuc: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),aa(nat,fun(nat,fun(nat,nat)),aTP_Lamp_ds(nat,fun(nat,fun(nat,fun(nat,nat))),Uu2),Uua),Uub),Uuc) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,semiring_1_of_nat(nat),aa(nat,nat,binomial(Uub),Uuc))),aa(nat,nat,power_power(nat,Uu2),Uuc))),aa(nat,nat,power_power(nat,Uua),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uub),Uuc))) ) ).
% ATP.lambda_736
tff(fact_8916_ATP_Olambda__737,axiom,
! [A: $tType] :
( comm_semiring_1(A)
=> ! [Uu2: A,Uua: A,Uub: nat,Uuc: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aa(A,fun(nat,fun(nat,A)),aTP_Lamp_eb(A,fun(A,fun(nat,fun(nat,A))),Uu2),Uua),Uub),Uuc) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),aa(nat,nat,binomial(Uub),Uuc))),aa(nat,A,power_power(A,Uu2),Uuc))),aa(nat,A,power_power(A,Uua),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uub),Uuc))) ) ) ).
% ATP.lambda_737
tff(fact_8917_ATP_Olambda__738,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V2822296259951069270ebra_1(A) )
=> ! [Uu2: A,Uua: A,Uub: nat,Uuc: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aa(A,fun(nat,fun(nat,A)),aTP_Lamp_em(A,fun(A,fun(nat,fun(nat,A))),Uu2),Uua),Uub),Uuc) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),semiring_char_0_fact(real,Uuc))),aa(nat,A,power_power(A,Uu2),Uuc))),aa(A,A,real_V8093663219630862766scaleR(A,aa(real,real,inverse_inverse(real),semiring_char_0_fact(real,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uub),Uuc)))),aa(nat,A,power_power(A,Uua),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uub),Uuc)))) ) ) ).
% ATP.lambda_738
tff(fact_8918_ATP_Olambda__739,axiom,
! [A: $tType] :
( ( monoid_mult(A)
& comm_ring(A) )
=> ! [Uu2: A,Uua: nat,Uub: A,Uuc: nat] : ( aa(nat,A,aa(A,fun(nat,A),aa(nat,fun(A,fun(nat,A)),aTP_Lamp_ga(A,fun(nat,fun(A,fun(nat,A))),Uu2),Uua),Uub),Uuc) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,Uub),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uua),aa(nat,nat,suc,Uuc)))),aa(nat,A,power_power(A,Uu2),Uuc)) ) ) ).
% ATP.lambda_739
tff(fact_8919_ATP_Olambda__740,axiom,
! [A: $tType,B: $tType,Uu2: set(B),Uua: fun(A,fun(B,bool)),Uub: A,Uuc: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),aa(fun(A,fun(B,bool)),fun(A,fun(B,bool)),aTP_Lamp_mw(set(B),fun(fun(A,fun(B,bool)),fun(A,fun(B,bool))),Uu2),Uua),Uub),Uuc))
<=> ( pp(member(B,Uuc,Uu2))
& pp(aa(B,bool,aa(A,fun(B,bool),Uua,Uub),Uuc)) ) ) ).
% ATP.lambda_740
tff(fact_8920_ATP_Olambda__741,axiom,
! [A: $tType,B: $tType,Uu2: set(A),Uua: fun(A,fun(B,bool)),Uub: B,Uuc: A] :
( pp(aa(A,bool,aa(B,fun(A,bool),aa(fun(A,fun(B,bool)),fun(B,fun(A,bool)),aTP_Lamp_mv(set(A),fun(fun(A,fun(B,bool)),fun(B,fun(A,bool))),Uu2),Uua),Uub),Uuc))
<=> ( pp(member(A,Uuc,Uu2))
& pp(aa(B,bool,aa(A,fun(B,bool),Uua,Uuc),Uub)) ) ) ).
% ATP.lambda_741
tff(fact_8921_ATP_Olambda__742,axiom,
! [A: $tType] :
( ( monoid_mult(A)
& comm_ring(A) )
=> ! [Uu2: A,Uua: A,Uub: nat,Uuc: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aa(A,fun(nat,fun(nat,A)),aTP_Lamp_fz(A,fun(A,fun(nat,fun(nat,A))),Uu2),Uua),Uub),Uuc) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,Uu2),Uuc)),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,power_power(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),Uu2),Uua)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uub),Uuc))),aa(nat,A,power_power(A,Uu2),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uub),Uuc)))) ) ) ).
% ATP.lambda_742
tff(fact_8922_ATP_Olambda__743,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: set(A),Uua: fun(A,A),Uub: fun(A,A),Uuc: A] :
( pp(aa(A,bool,aa(fun(A,A),fun(A,bool),aa(fun(A,A),fun(fun(A,A),fun(A,bool)),aTP_Lamp_afw(set(A),fun(fun(A,A),fun(fun(A,A),fun(A,bool))),Uu2),Uua),Uub),Uuc))
<=> ( pp(member(A,Uuc,Uu2))
=> ( aa(A,A,Uua,Uuc) = aa(A,A,Uub,Uuc) ) ) ) ) ).
% ATP.lambda_743
tff(fact_8923_ATP_Olambda__744,axiom,
! [B: $tType,C: $tType,Uu2: set(B),Uua: fun(B,C),Uub: C,Uuc: B] :
( pp(aa(B,bool,aa(C,fun(B,bool),aa(fun(B,C),fun(C,fun(B,bool)),aTP_Lamp_ra(set(B),fun(fun(B,C),fun(C,fun(B,bool))),Uu2),Uua),Uub),Uuc))
<=> ( pp(member(B,Uuc,Uu2))
& ( aa(B,C,Uua,Uuc) = Uub ) ) ) ).
% ATP.lambda_744
tff(fact_8924_ATP_Olambda__745,axiom,
! [A: $tType,B: $tType,Uu2: set(A),Uua: fun(A,B),Uub: B,Uuc: A] :
( pp(aa(A,bool,aa(B,fun(A,bool),aa(fun(A,B),fun(B,fun(A,bool)),aTP_Lamp_rk(set(A),fun(fun(A,B),fun(B,fun(A,bool))),Uu2),Uua),Uub),Uuc))
<=> ( pp(member(A,Uuc,Uu2))
& ( aa(A,B,Uua,Uuc) = Uub ) ) ) ).
% ATP.lambda_745
tff(fact_8925_ATP_Olambda__746,axiom,
! [A: $tType] :
( ( monoid_mult(A)
& comm_ring(A) )
=> ! [Uu2: A,Uua: nat,Uub: A,Uuc: nat] : ( aa(nat,A,aa(A,fun(nat,A),aa(nat,fun(A,fun(nat,A)),aTP_Lamp_gb(A,fun(nat,fun(A,fun(nat,A))),Uu2),Uua),Uub),Uuc) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,power_power(A,Uu2),Uuc)),aa(nat,A,power_power(A,Uub),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uua),Uuc))) ) ) ).
% ATP.lambda_746
tff(fact_8926_ATP_Olambda__747,axiom,
! [Uu2: nat,Uua: nat,Uub: nat,Uuc: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),aa(nat,fun(nat,fun(nat,nat)),aTP_Lamp_dr(nat,fun(nat,fun(nat,fun(nat,nat))),Uu2),Uua),Uub),Uuc) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,binomial(Uu2),Uuc)),aa(nat,nat,binomial(Uua),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uub),Uuc))) ) ).
% ATP.lambda_747
tff(fact_8927_ATP_Olambda__748,axiom,
! [Uu2: int,Uua: int,Uub: int,Uuc: int] :
( pp(aa(int,bool,aa(int,fun(int,bool),aa(int,fun(int,fun(int,bool)),aTP_Lamp_kt(int,fun(int,fun(int,fun(int,bool))),Uu2),Uua),Uub),Uuc))
<=> pp(aa(int,bool,aa(int,fun(int,bool),ord_less_eq(int),aa(int,int,aa(int,fun(int,int),times_times(int),Uu2),Uuc)),aa(int,int,aa(int,fun(int,int),times_times(int),Uua),Uub))) ) ).
% ATP.lambda_748
tff(fact_8928_ATP_Olambda__749,axiom,
! [Uu2: nat,Uua: nat,Uub: nat,Uuc: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),aa(nat,fun(nat,fun(nat,bool)),aTP_Lamp_pq(nat,fun(nat,fun(nat,fun(nat,bool))),Uu2),Uua),Uub),Uuc))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less_eq(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uu2),Uuc)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uub),Uua))) ) ).
% ATP.lambda_749
tff(fact_8929_ATP_Olambda__750,axiom,
! [Uu2: nat,Uua: nat,Uub: nat,Uuc: nat] :
( pp(aa(nat,bool,aa(nat,fun(nat,bool),aa(nat,fun(nat,fun(nat,bool)),aTP_Lamp_po(nat,fun(nat,fun(nat,fun(nat,bool))),Uu2),Uua),Uub),Uuc))
<=> pp(aa(nat,bool,aa(nat,fun(nat,bool),ord_less(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uu2),Uuc)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uub),Uua))) ) ).
% ATP.lambda_750
tff(fact_8930_ATP_Olambda__751,axiom,
! [Uu2: nat,Uua: nat,Uub: nat,Uuc: nat] : ( aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),aa(nat,fun(nat,fun(nat,product_prod(nat,nat))),aTP_Lamp_ps(nat,fun(nat,fun(nat,fun(nat,product_prod(nat,nat)))),Uu2),Uua),Uub),Uuc) = aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uu2),Uub)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uua),Uuc)) ) ).
% ATP.lambda_751
tff(fact_8931_ATP_Olambda__752,axiom,
! [Uu2: nat,Uua: nat,Uub: nat,Uuc: nat] : ( aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),aa(nat,fun(nat,fun(nat,product_prod(nat,nat))),aTP_Lamp_pu(nat,fun(nat,fun(nat,fun(nat,product_prod(nat,nat)))),Uu2),Uua),Uub),Uuc) = aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uu2),Uuc)),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uua),Uub)) ) ).
% ATP.lambda_752
tff(fact_8932_ATP_Olambda__753,axiom,
! [A: $tType,B: $tType,Uu2: A,Uua: list(A),Uub: B,Uuc: list(B)] : ( aa(list(B),list(product_prod(A,B)),aa(B,fun(list(B),list(product_prod(A,B))),aa(list(A),fun(B,fun(list(B),list(product_prod(A,B)))),aTP_Lamp_sn(A,fun(list(A),fun(B,fun(list(B),list(product_prod(A,B))))),Uu2),Uua),Uub),Uuc) = aa(list(product_prod(A,B)),list(product_prod(A,B)),cons(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),Uu2),Uub)),zip(A,B,Uua,Uuc)) ) ).
% ATP.lambda_753
tff(fact_8933_ATP_Olambda__754,axiom,
! [A: $tType,B: $tType,Uu2: B,Uua: list(B),Uub: A,Uuc: list(A)] : ( aa(list(A),list(product_prod(A,B)),aa(A,fun(list(A),list(product_prod(A,B))),aa(list(B),fun(A,fun(list(A),list(product_prod(A,B)))),aTP_Lamp_so(B,fun(list(B),fun(A,fun(list(A),list(product_prod(A,B))))),Uu2),Uua),Uub),Uuc) = aa(list(product_prod(A,B)),list(product_prod(A,B)),cons(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),Uub),Uu2)),zip(A,B,Uuc,Uua)) ) ).
% ATP.lambda_754
tff(fact_8934_ATP_Olambda__755,axiom,
! [A: $tType,B: $tType,Uu2: A,Uua: B,Uub: A,Uuc: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),aa(B,fun(A,fun(B,bool)),aTP_Lamp_kd(A,fun(B,fun(A,fun(B,bool))),Uu2),Uua),Uub),Uuc))
<=> ( ( Uu2 = Uub )
& ( Uua = Uuc ) ) ) ).
% ATP.lambda_755
tff(fact_8935_ATP_Olambda__756,axiom,
! [A: $tType,B: $tType,C: $tType,Uu2: fun(C,set(product_prod(A,B))),Uua: C,Uub: A,Uuc: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),aa(C,fun(A,fun(B,bool)),aTP_Lamp_rt(fun(C,set(product_prod(A,B))),fun(C,fun(A,fun(B,bool))),Uu2),Uua),Uub),Uuc))
<=> pp(member(product_prod(A,B),aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),Uub),Uuc),aa(C,set(product_prod(A,B)),Uu2,Uua))) ) ).
% ATP.lambda_756
tff(fact_8936_ATP_Olambda__757,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: set(B),Uua: fun(B,A),Uub: fun(B,A),Uuc: B] :
( pp(aa(B,bool,aa(fun(B,A),fun(B,bool),aa(fun(B,A),fun(fun(B,A),fun(B,bool)),aTP_Lamp_lk(set(B),fun(fun(B,A),fun(fun(B,A),fun(B,bool))),Uu2),Uua),Uub),Uuc))
<=> ( pp(member(B,Uuc,Uu2))
& ( aa(A,A,aa(A,fun(A,A),times_times(A),aa(B,A,Uua,Uuc)),aa(B,A,Uub,Uuc)) != one_one(A) ) ) ) ) ).
% ATP.lambda_757
tff(fact_8937_ATP_Olambda__758,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: set(B),Uua: fun(B,A),Uub: fun(B,A),Uuc: B] :
( pp(aa(B,bool,aa(fun(B,A),fun(B,bool),aa(fun(B,A),fun(fun(B,A),fun(B,bool)),aTP_Lamp_li(set(B),fun(fun(B,A),fun(fun(B,A),fun(B,bool))),Uu2),Uua),Uub),Uuc))
<=> ( pp(member(B,Uuc,Uu2))
& ( aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(B,A,Uua,Uuc)),aa(B,A,Uub,Uuc)) != zero_zero(A) ) ) ) ) ).
% ATP.lambda_758
tff(fact_8938_ATP_Olambda__759,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [Uu2: fun(A,B),Uua: fun(A,B),Uub: A,Uuc: A] : ( aa(A,B,aa(A,fun(A,B),aa(fun(A,B),fun(A,fun(A,B)),aTP_Lamp_acu(fun(A,B),fun(fun(A,B),fun(A,fun(A,B))),Uu2),Uua),Uub),Uuc) = aa(B,B,real_V8093663219630862766scaleR(B,aa(real,real,aa(real,fun(real,real),divide_divide(real),one_one(real)),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),Uuc),Uub)))),aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(A,B,Uu2,Uuc)),aa(B,B,aa(B,fun(B,B),plus_plus(B),aa(A,B,Uu2,Uub)),aa(A,B,Uua,aa(A,A,aa(A,fun(A,A),minus_minus(A),Uuc),Uub))))) ) ) ).
% ATP.lambda_759
tff(fact_8939_ATP_Olambda__760,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [Uu2: fun(nat,A),Uua: nat,Uub: A,Uuc: nat] : ( aa(nat,A,aa(A,fun(nat,A),aa(nat,fun(A,fun(nat,A)),aTP_Lamp_bn(fun(nat,A),fun(nat,fun(A,fun(nat,A))),Uu2),Uua),Uub),Uuc) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uuc),Uua))),aa(nat,A,power_power(A,Uub),Uuc)) ) ) ).
% ATP.lambda_760
tff(fact_8940_ATP_Olambda__761,axiom,
! [B: $tType,A: $tType] :
( comm_semiring_1(A)
=> ! [Uu2: fun(B,A),Uua: A,Uub: list(B),Uuc: nat] : ( aa(nat,A,aa(list(B),fun(nat,A),aa(A,fun(list(B),fun(nat,A)),aTP_Lamp_jq(fun(B,A),fun(A,fun(list(B),fun(nat,A))),Uu2),Uua),Uub),Uuc) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(B,A,Uu2,aa(nat,B,nth(B,Uub),Uuc))),aa(nat,A,power_power(A,Uua),Uuc)) ) ) ).
% ATP.lambda_761
tff(fact_8941_ATP_Olambda__762,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: fun(nat,A),Uua: A,Uub: A,Uuc: nat] : ( aa(nat,A,aa(A,fun(nat,A),aa(A,fun(A,fun(nat,A)),aTP_Lamp_xz(fun(nat,A),fun(A,fun(A,fun(nat,A))),Uu2),Uua),Uub),Uuc) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,Uuc)),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(nat,A,power_power(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),Uua),Uub)),Uuc)),aa(nat,A,power_power(A,Uua),Uuc))),Uub)),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,semiring_1_of_nat(A),Uuc)),aa(nat,A,power_power(A,Uua),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uuc),aa(nat,nat,suc,zero_zero(nat))))))) ) ) ).
% ATP.lambda_762
tff(fact_8942_ATP_Olambda__763,axiom,
! [A: $tType,Aa: $tType] :
( ( real_Vector_banach(Aa)
& real_V3459762299906320749_field(Aa)
& topological_t2_space(A) )
=> ! [Uu2: fun(A,Aa),Uua: fun(nat,Aa),Uub: A,Uuc: nat] : ( aa(nat,Aa,aa(A,fun(nat,Aa),aa(fun(nat,Aa),fun(A,fun(nat,Aa)),aTP_Lamp_aba(fun(A,Aa),fun(fun(nat,Aa),fun(A,fun(nat,Aa))),Uu2),Uua),Uub),Uuc) = aa(Aa,Aa,aa(Aa,fun(Aa,Aa),times_times(Aa),aa(nat,Aa,Uua,Uuc)),aa(nat,Aa,power_power(Aa,aa(A,Aa,Uu2,Uub)),Uuc)) ) ) ).
% ATP.lambda_763
tff(fact_8943_ATP_Olambda__764,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(A,real),Uua: A,Uub: fun(A,real),Uuc: A] : ( aa(A,real,aa(fun(A,real),fun(A,real),aa(A,fun(fun(A,real),fun(A,real)),aTP_Lamp_xs(fun(A,real),fun(A,fun(fun(A,real),fun(A,real))),Uu2),Uua),Uub),Uuc) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(A,real,Uub,Uuc)),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,inverse_inverse(real),aa(real,real,sqrt,aa(A,real,Uu2,Uua)))),aa(num,real,numeral_numeral(real),bit0(one2)))) ) ) ).
% ATP.lambda_764
tff(fact_8944_ATP_Olambda__765,axiom,
! [A: $tType] :
( idom(A)
=> ! [Uu2: fun(nat,A),Uua: A,Uub: nat,Uuc: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aa(A,fun(nat,fun(nat,A)),aTP_Lamp_hc(fun(nat,A),fun(A,fun(nat,fun(nat,A))),Uu2),Uua),Uub),Uuc) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,Uuc)),aa(nat,A,power_power(A,Uua),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uuc),Uub)),one_one(nat)))) ) ) ).
% ATP.lambda_765
tff(fact_8945_ATP_Olambda__766,axiom,
! [B: $tType,A: $tType] :
( topolo4958980785337419405_space(A)
=> ! [Uu2: fun(B,A),Uua: A,Uub: set(A),Uuc: B] :
( pp(aa(B,bool,aa(set(A),fun(B,bool),aa(A,fun(set(A),fun(B,bool)),aTP_Lamp_agy(fun(B,A),fun(A,fun(set(A),fun(B,bool))),Uu2),Uua),Uub),Uuc))
<=> pp(member(A,aa(B,A,Uu2,Uuc),aa(set(A),set(A),aa(set(A),fun(set(A),set(A)),minus_minus(set(A)),Uub),aa(set(A),set(A),insert(A,Uua),bot_bot(set(A)))))) ) ) ).
% ATP.lambda_766
tff(fact_8946_ATP_Olambda__767,axiom,
! [B: $tType,A: $tType] :
( comm_semiring_0(A)
=> ! [Uu2: fun(B,A),Uua: A,Uub: B,Uuc: A] : ( aa(A,A,aa(B,fun(A,A),aa(A,fun(B,fun(A,A)),aTP_Lamp_ak(fun(B,A),fun(A,fun(B,fun(A,A))),Uu2),Uua),Uub),Uuc) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(B,A,Uu2,Uub)),aa(A,A,aa(A,fun(A,A),times_times(A),Uua),Uuc)) ) ) ).
% ATP.lambda_767
tff(fact_8947_ATP_Olambda__768,axiom,
! [Uu2: fun(nat,nat),Uua: fun(nat,nat),Uub: nat,Uuc: nat] : ( aa(nat,nat,aa(nat,fun(nat,nat),aa(fun(nat,nat),fun(nat,fun(nat,nat)),aTP_Lamp_ed(fun(nat,nat),fun(fun(nat,nat),fun(nat,fun(nat,nat))),Uu2),Uua),Uub),Uuc) = aa(nat,nat,aa(nat,fun(nat,nat),times_times(nat),aa(nat,nat,Uu2,Uuc)),aa(nat,nat,Uua,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uub),Uuc))) ) ).
% ATP.lambda_768
tff(fact_8948_ATP_Olambda__769,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V4412858255891104859lgebra(A) )
=> ! [Uu2: fun(nat,A),Uua: fun(nat,A),Uub: nat,Uuc: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aa(fun(nat,A),fun(nat,fun(nat,A)),aTP_Lamp_du(fun(nat,A),fun(fun(nat,A),fun(nat,fun(nat,A))),Uu2),Uua),Uub),Uuc) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,Uuc)),aa(nat,A,Uua,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uub),Uuc))) ) ) ).
% ATP.lambda_769
tff(fact_8949_ATP_Olambda__770,axiom,
! [A: $tType] :
( idom(A)
=> ! [Uu2: fun(nat,A),Uua: fun(nat,A),Uub: nat,Uuc: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aa(fun(nat,A),fun(nat,fun(nat,A)),aTP_Lamp_dy(fun(nat,A),fun(fun(nat,A),fun(nat,fun(nat,A))),Uu2),Uua),Uub),Uuc) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,Uuc)),aa(nat,A,Uua,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uub),Uuc))) ) ) ).
% ATP.lambda_770
tff(fact_8950_ATP_Olambda__771,axiom,
! [A: $tType,B: $tType,C: $tType] :
( semiring_0(B)
=> ! [Uu2: fun(A,B),Uua: fun(C,B),Uub: A,Uuc: C] : ( aa(C,B,aa(A,fun(C,B),aa(fun(C,B),fun(A,fun(C,B)),aTP_Lamp_fk(fun(A,B),fun(fun(C,B),fun(A,fun(C,B))),Uu2),Uua),Uub),Uuc) = aa(B,B,aa(B,fun(B,B),times_times(B),aa(A,B,Uu2,Uub)),aa(C,B,Uua,Uuc)) ) ) ).
% ATP.lambda_771
tff(fact_8951_ATP_Olambda__772,axiom,
! [C: $tType,A: $tType,B: $tType,D: $tType,Uu2: fun(C,A),Uua: fun(D,B),Uub: C,Uuc: D] : ( aa(D,product_prod(A,B),aa(C,fun(D,product_prod(A,B)),aa(fun(D,B),fun(C,fun(D,product_prod(A,B))),aTP_Lamp_qn(fun(C,A),fun(fun(D,B),fun(C,fun(D,product_prod(A,B)))),Uu2),Uua),Uub),Uuc) = aa(B,product_prod(A,B),aa(A,fun(B,product_prod(A,B)),product_Pair(A,B),aa(C,A,Uu2,Uub)),aa(D,B,Uua,Uuc)) ) ).
% ATP.lambda_772
tff(fact_8952_ATP_Olambda__773,axiom,
! [A: $tType,B: $tType] :
( linorder(A)
=> ! [Uu2: fun(B,A),Uua: fun(list(B),A),Uub: list(B),Uuc: B] :
( pp(aa(B,bool,aa(list(B),fun(B,bool),aa(fun(list(B),A),fun(list(B),fun(B,bool)),aTP_Lamp_ox(fun(B,A),fun(fun(list(B),A),fun(list(B),fun(B,bool))),Uu2),Uua),Uub),Uuc))
<=> ( aa(B,A,Uu2,Uuc) = aa(list(B),A,Uua,Uub) ) ) ) ).
% ATP.lambda_773
tff(fact_8953_ATP_Olambda__774,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(A,real),Uua: A,Uub: fun(A,real),Uuc: A] : ( aa(A,real,aa(fun(A,real),fun(A,real),aa(A,fun(fun(A,real),fun(A,real)),aTP_Lamp_xw(fun(A,real),fun(A,fun(fun(A,real),fun(A,real))),Uu2),Uua),Uub),Uuc) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(A,real,Uub,Uuc)),aa(real,real,inverse_inverse(real),aa(nat,real,power_power(real,aa(real,real,cos(real),aa(A,real,Uu2,Uua))),aa(num,nat,numeral_numeral(nat),bit0(one2))))) ) ) ).
% ATP.lambda_774
tff(fact_8954_ATP_Olambda__775,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(A,real),Uua: fun(A,real),Uub: A,Uuc: A] : ( aa(A,real,aa(A,fun(A,real),aa(fun(A,real),fun(A,fun(A,real)),aTP_Lamp_xu(fun(A,real),fun(fun(A,real),fun(A,fun(A,real))),Uu2),Uua),Uub),Uuc) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(A,real,Uua,Uuc)),aa(real,real,inverse_inverse(real),aa(real,real,aa(real,fun(real,real),plus_plus(real),one_one(real)),aa(nat,real,power_power(real,aa(A,real,Uu2,Uub)),aa(num,nat,numeral_numeral(nat),bit0(one2)))))) ) ) ).
% ATP.lambda_775
tff(fact_8955_ATP_Olambda__776,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(A,real),Uua: fun(A,real),Uub: A,Uuc: A] : ( aa(A,real,aa(A,fun(A,real),aa(fun(A,real),fun(A,fun(A,real)),aTP_Lamp_wr(fun(A,real),fun(fun(A,real),fun(A,fun(A,real))),Uu2),Uua),Uub),Uuc) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(A,real,Uua,Uuc)),aa(real,real,exp(real),aa(A,real,Uu2,Uub))) ) ) ).
% ATP.lambda_776
tff(fact_8956_ATP_Olambda__777,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(A,real),Uua: fun(A,real),Uub: A,Uuc: A] : ( aa(A,real,aa(A,fun(A,real),aa(fun(A,real),fun(A,fun(A,real)),aTP_Lamp_wt(fun(A,real),fun(fun(A,real),fun(A,fun(A,real))),Uu2),Uua),Uub),Uuc) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(A,real,Uua,Uuc)),aa(real,real,cos(real),aa(A,real,Uu2,Uub))) ) ) ).
% ATP.lambda_777
tff(fact_8957_ATP_Olambda__778,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(A,real),Uua: A,Uub: fun(A,real),Uuc: A] : ( aa(A,real,aa(fun(A,real),fun(A,real),aa(A,fun(fun(A,real),fun(A,real)),aTP_Lamp_xi(fun(A,real),fun(A,fun(fun(A,real),fun(A,real))),Uu2),Uua),Uub),Uuc) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(A,real,Uub,Uuc)),aa(real,real,inverse_inverse(real),aa(A,real,Uu2,Uua))) ) ) ).
% ATP.lambda_778
tff(fact_8958_ATP_Olambda__779,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(A,real),Uua: A,Uub: fun(A,real),Uuc: A] : ( aa(A,real,aa(fun(A,real),fun(A,real),aa(A,fun(fun(A,real),fun(A,real)),aTP_Lamp_vt(fun(A,real),fun(A,fun(fun(A,real),fun(A,real))),Uu2),Uua),Uub),Uuc) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(A,real,Uub,Uuc)),aa(real,real,inverse_inverse(real),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),minus_minus(real),one_one(real)),aa(nat,real,power_power(real,aa(A,real,Uu2,Uua)),aa(num,nat,numeral_numeral(nat),bit0(one2))))))) ) ) ).
% ATP.lambda_779
tff(fact_8959_ATP_Olambda__780,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(A,real),Uua: fun(A,real),Uub: A,Uuc: A] : ( aa(A,real,aa(A,fun(A,real),aa(fun(A,real),fun(A,fun(A,real)),aTP_Lamp_xe(fun(A,real),fun(fun(A,real),fun(A,fun(A,real))),Uu2),Uua),Uub),Uuc) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(A,real,Uua,Uuc)),aa(real,real,uminus_uminus(real),sin(real,aa(A,real,Uu2,Uub)))) ) ) ).
% ATP.lambda_780
tff(fact_8960_ATP_Olambda__781,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(A,real),Uua: A,Uub: fun(A,real),Uuc: A] : ( aa(A,real,aa(fun(A,real),fun(A,real),aa(A,fun(fun(A,real),fun(A,real)),aTP_Lamp_vv(fun(A,real),fun(A,fun(fun(A,real),fun(A,real))),Uu2),Uua),Uub),Uuc) = aa(real,real,aa(real,fun(real,real),times_times(real),aa(A,real,Uub,Uuc)),aa(real,real,inverse_inverse(real),aa(real,real,uminus_uminus(real),aa(real,real,sqrt,aa(real,real,aa(real,fun(real,real),minus_minus(real),one_one(real)),aa(nat,real,power_power(real,aa(A,real,Uu2,Uua)),aa(num,nat,numeral_numeral(nat),bit0(one2)))))))) ) ) ).
% ATP.lambda_781
tff(fact_8961_ATP_Olambda__782,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [Uu2: fun(A,B),Uua: fun(A,B),Uub: A,Uuc: A] : ( aa(A,real,aa(A,fun(A,real),aa(fun(A,B),fun(A,fun(A,real)),aTP_Lamp_acv(fun(A,B),fun(fun(A,B),fun(A,fun(A,real))),Uu2),Uua),Uub),Uuc) = aa(real,real,aa(real,fun(real,real),divide_divide(real),real_V7770717601297561774m_norm(B,aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(A,B,Uu2,aa(A,A,aa(A,fun(A,A),plus_plus(A),Uub),Uuc))),aa(A,B,Uu2,Uub))),aa(A,B,Uua,Uuc)))),real_V7770717601297561774m_norm(A,Uuc)) ) ) ).
% ATP.lambda_782
tff(fact_8962_ATP_Olambda__783,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [Uu2: fun(A,B),Uua: fun(A,B),Uub: A,Uuc: A] : ( aa(A,real,aa(A,fun(A,real),aa(fun(A,B),fun(A,fun(A,real)),aTP_Lamp_acz(fun(A,B),fun(fun(A,B),fun(A,fun(A,real))),Uu2),Uua),Uub),Uuc) = aa(real,real,aa(real,fun(real,real),divide_divide(real),real_V7770717601297561774m_norm(B,aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(A,B,Uu2,Uuc)),aa(A,B,Uu2,Uub))),aa(A,B,Uua,aa(A,A,aa(A,fun(A,A),minus_minus(A),Uuc),Uub))))),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),Uuc),Uub))) ) ) ).
% ATP.lambda_783
tff(fact_8963_ATP_Olambda__784,axiom,
! [C: $tType,A: $tType,B: $tType] :
( ( real_V822414075346904944vector(B)
& real_V822414075346904944vector(C) )
=> ! [Uu2: fun(A,B),Uua: fun(A,C),Uub: real,Uuc: A] :
( pp(aa(A,bool,aa(real,fun(A,bool),aa(fun(A,C),fun(real,fun(A,bool)),aTP_Lamp_agx(fun(A,B),fun(fun(A,C),fun(real,fun(A,bool))),Uu2),Uua),Uub),Uuc))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V7770717601297561774m_norm(C,aa(A,C,Uua,Uuc))),aa(real,real,aa(real,fun(real,real),times_times(real),real_V7770717601297561774m_norm(B,aa(A,B,Uu2,Uuc))),Uub))) ) ) ).
% ATP.lambda_784
tff(fact_8964_ATP_Olambda__785,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [Uu2: fun(A,B),Uua: fun(A,B),Uub: filter(A),Uuc: A] : ( aa(A,B,aa(filter(A),fun(A,B),aa(fun(A,B),fun(filter(A),fun(A,B)),aTP_Lamp_add(fun(A,B),fun(fun(A,B),fun(filter(A),fun(A,B))),Uu2),Uua),Uub),Uuc) = aa(B,B,real_V8093663219630862766scaleR(B,aa(real,real,inverse_inverse(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),Uuc),topolo3827282254853284352ce_Lim(A,A,Uub,aTP_Lamp_wi(A,A)))))),aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(A,B,Uu2,Uuc)),aa(A,B,Uu2,topolo3827282254853284352ce_Lim(A,A,Uub,aTP_Lamp_wi(A,A))))),aa(A,B,Uua,aa(A,A,aa(A,fun(A,A),minus_minus(A),Uuc),topolo3827282254853284352ce_Lim(A,A,Uub,aTP_Lamp_wi(A,A)))))) ) ) ).
% ATP.lambda_785
tff(fact_8965_ATP_Olambda__786,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [Uu2: fun(A,B),Uua: A,Uub: fun(A,B),Uuc: A] : ( aa(A,B,aa(fun(A,B),fun(A,B),aa(A,fun(fun(A,B),fun(A,B)),aTP_Lamp_ada(fun(A,B),fun(A,fun(fun(A,B),fun(A,B))),Uu2),Uua),Uub),Uuc) = aa(B,B,real_V8093663219630862766scaleR(B,aa(real,real,inverse_inverse(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),Uuc),Uua)))),aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(A,B,Uub,Uuc)),aa(A,B,Uub,Uua))),aa(A,B,Uu2,aa(A,A,aa(A,fun(A,A),minus_minus(A),Uuc),Uua)))) ) ) ).
% ATP.lambda_786
tff(fact_8966_ATP_Olambda__787,axiom,
! [B: $tType,A: $tType] :
( ( real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [Uu2: fun(A,B),Uua: fun(A,B),Uub: A,Uuc: A] : ( aa(A,B,aa(A,fun(A,B),aa(fun(A,B),fun(A,fun(A,B)),aTP_Lamp_adb(fun(A,B),fun(fun(A,B),fun(A,fun(A,B))),Uu2),Uua),Uub),Uuc) = aa(B,B,real_V8093663219630862766scaleR(B,aa(real,real,inverse_inverse(real),real_V7770717601297561774m_norm(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),Uuc),Uub)))),aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(B,B,aa(B,fun(B,B),minus_minus(B),aa(A,B,Uu2,Uuc)),aa(A,B,Uu2,Uub))),aa(A,B,Uua,aa(A,A,aa(A,fun(A,A),minus_minus(A),Uuc),Uub)))) ) ) ).
% ATP.lambda_787
tff(fact_8967_ATP_Olambda__788,axiom,
! [A: $tType,C: $tType,B: $tType] :
( semiring_1(C)
=> ! [Uu2: set(A),Uua: fun(A,B),Uub: fun(B,C),Uuc: B] : ( aa(B,C,aa(fun(B,C),fun(B,C),aa(fun(A,B),fun(fun(B,C),fun(B,C)),aTP_Lamp_rl(set(A),fun(fun(A,B),fun(fun(B,C),fun(B,C))),Uu2),Uua),Uub),Uuc) = aa(C,C,aa(C,fun(C,C),times_times(C),aa(nat,C,semiring_1_of_nat(C),aa(set(A),nat,finite_card(A),aa(fun(A,bool),set(A),collect(A),aa(B,fun(A,bool),aa(fun(A,B),fun(B,fun(A,bool)),aTP_Lamp_rk(set(A),fun(fun(A,B),fun(B,fun(A,bool))),Uu2),Uua),Uuc))))),aa(B,C,Uub,Uuc)) ) ) ).
% ATP.lambda_788
tff(fact_8968_ATP_Olambda__789,axiom,
! [A: $tType,Uu2: A,Uua: list(A),Uub: A,Uuc: nat] : ( aa(nat,list(A),aa(A,fun(nat,list(A)),aa(list(A),fun(A,fun(nat,list(A))),aTP_Lamp_sf(A,fun(list(A),fun(A,fun(nat,list(A)))),Uu2),Uua),Uub),Uuc) = aa(list(A),list(A),cons(A,Uu2),list_update(A,Uua,Uuc,Uub)) ) ).
% ATP.lambda_789
tff(fact_8969_ATP_Olambda__790,axiom,
! [A: $tType,B: $tType,C: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: set(B),Uua: fun(B,C),Uub: fun(B,A),Uuc: C] : ( aa(C,A,aa(fun(B,A),fun(C,A),aa(fun(B,C),fun(fun(B,A),fun(C,A)),aTP_Lamp_rd(set(B),fun(fun(B,C),fun(fun(B,A),fun(C,A))),Uu2),Uua),Uub),Uuc) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7121269368397514597t_prod(B,A),Uub),aa(fun(B,bool),set(B),collect(B),aa(C,fun(B,bool),aa(fun(B,C),fun(C,fun(B,bool)),aTP_Lamp_ra(set(B),fun(fun(B,C),fun(C,fun(B,bool))),Uu2),Uua),Uuc))) ) ) ).
% ATP.lambda_790
tff(fact_8970_ATP_Olambda__791,axiom,
! [A: $tType,B: $tType,C: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: set(B),Uua: fun(B,C),Uub: fun(B,A),Uuc: C] : ( aa(C,A,aa(fun(B,A),fun(C,A),aa(fun(B,C),fun(fun(B,A),fun(C,A)),aTP_Lamp_rb(set(B),fun(fun(B,C),fun(fun(B,A),fun(C,A))),Uu2),Uua),Uub),Uuc) = aa(set(B),A,aa(fun(B,A),fun(set(B),A),groups7311177749621191930dd_sum(B,A),Uub),aa(fun(B,bool),set(B),collect(B),aa(C,fun(B,bool),aa(fun(B,C),fun(C,fun(B,bool)),aTP_Lamp_ra(set(B),fun(fun(B,C),fun(C,fun(B,bool))),Uu2),Uua),Uuc))) ) ) ).
% ATP.lambda_791
tff(fact_8971_ATP_Olambda__792,axiom,
! [A: $tType] :
( real_V8999393235501362500lgebra(A)
=> ! [Uu2: fun(nat,A),Uua: nat,Uub: real,Uuc: A] :
( pp(aa(A,bool,aa(real,fun(A,bool),aa(nat,fun(real,fun(A,bool)),aTP_Lamp_aff(fun(nat,A),fun(nat,fun(real,fun(A,bool))),Uu2),Uua),Uub),Uuc))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),Uub),real_V7770717601297561774m_norm(A,aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(A,fun(nat,A),aTP_Lamp_bf(fun(nat,A),fun(A,fun(nat,A)),Uu2),Uuc)),aa(nat,set(nat),set_ord_atMost(nat),Uua))))) ) ) ).
% ATP.lambda_792
tff(fact_8972_ATP_Olambda__793,axiom,
! [C: $tType,B: $tType,A: $tType,Uu2: fun(B,C),Uua: fun(A,fun(list(A),B)),Uub: A,Uuc: list(A)] : ( aa(list(A),C,aa(A,fun(list(A),C),aa(fun(A,fun(list(A),B)),fun(A,fun(list(A),C)),aTP_Lamp_sl(fun(B,C),fun(fun(A,fun(list(A),B)),fun(A,fun(list(A),C))),Uu2),Uua),Uub),Uuc) = aa(B,C,Uu2,aa(list(A),B,aa(A,fun(list(A),B),Uua,Uub),Uuc)) ) ).
% ATP.lambda_793
tff(fact_8973_ATP_Olambda__794,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: fun(nat,A),Uua: nat,Uub: nat,Uuc: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aa(nat,fun(nat,fun(nat,A)),aTP_Lamp_jh(fun(nat,A),fun(nat,fun(nat,fun(nat,A))),Uu2),Uua),Uub),Uuc) = aa(nat,A,Uu2,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uub),Uua)),aa(nat,nat,suc,Uuc))) ) ) ).
% ATP.lambda_794
tff(fact_8974_ATP_Olambda__795,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: fun(nat,A),Uua: nat,Uub: nat,Uuc: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aa(nat,fun(nat,fun(nat,A)),aTP_Lamp_jf(fun(nat,A),fun(nat,fun(nat,fun(nat,A))),Uu2),Uua),Uub),Uuc) = aa(nat,A,Uu2,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uub),Uua)),aa(nat,nat,suc,Uuc))) ) ) ).
% ATP.lambda_795
tff(fact_8975_ATP_Olambda__796,axiom,
! [A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: fun(nat,A),Uua: nat,Uub: nat,Uuc: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aa(nat,fun(nat,fun(nat,A)),aTP_Lamp_hs(fun(nat,A),fun(nat,fun(nat,fun(nat,A))),Uu2),Uua),Uub),Uuc) = aa(nat,A,Uu2,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uub),Uua)),Uuc)) ) ) ).
% ATP.lambda_796
tff(fact_8976_ATP_Olambda__797,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: fun(nat,A),Uua: nat,Uub: nat,Uuc: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aa(nat,fun(nat,fun(nat,A)),aTP_Lamp_gq(fun(nat,A),fun(nat,fun(nat,fun(nat,A))),Uu2),Uua),Uub),Uuc) = aa(nat,A,Uu2,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uub),Uua)),Uuc)) ) ) ).
% ATP.lambda_797
tff(fact_8977_ATP_Olambda__798,axiom,
! [A: $tType,D: $tType,B: $tType,C: $tType,Uu2: fun(product_prod(B,C),A),Uua: fun(D,B),Uub: D,Uuc: C] : ( aa(C,A,aa(D,fun(C,A),aa(fun(D,B),fun(D,fun(C,A)),aTP_Lamp_qj(fun(product_prod(B,C),A),fun(fun(D,B),fun(D,fun(C,A))),Uu2),Uua),Uub),Uuc) = aa(product_prod(B,C),A,Uu2,aa(C,product_prod(B,C),aa(B,fun(C,product_prod(B,C)),product_Pair(B,C),aa(D,B,Uua,Uub)),Uuc)) ) ).
% ATP.lambda_798
tff(fact_8978_ATP_Olambda__799,axiom,
! [A: $tType,B: $tType,C: $tType,D: $tType,Uu2: fun(product_prod(B,C),A),Uua: fun(D,C),Uub: B,Uuc: D] : ( aa(D,A,aa(B,fun(D,A),aa(fun(D,C),fun(B,fun(D,A)),aTP_Lamp_qk(fun(product_prod(B,C),A),fun(fun(D,C),fun(B,fun(D,A))),Uu2),Uua),Uub),Uuc) = aa(product_prod(B,C),A,Uu2,aa(C,product_prod(B,C),aa(B,fun(C,product_prod(B,C)),product_Pair(B,C),Uub),aa(D,C,Uua,Uuc))) ) ).
% ATP.lambda_799
tff(fact_8979_ATP_Olambda__800,axiom,
! [A: $tType,B: $tType,Uu2: fun(A,bool),Uua: fun(A,set(product_prod(B,B))),Uub: A,Uuc: B] : ( aa(B,fun(product_prod(A,B),bool),aa(A,fun(B,fun(product_prod(A,B),bool)),aa(fun(A,set(product_prod(B,B))),fun(A,fun(B,fun(product_prod(A,B),bool))),aTP_Lamp_qa(fun(A,bool),fun(fun(A,set(product_prod(B,B))),fun(A,fun(B,fun(product_prod(A,B),bool)))),Uu2),Uua),Uub),Uuc) = aa(fun(A,fun(B,bool)),fun(product_prod(A,B),bool),product_case_prod(A,B,bool),aa(B,fun(A,fun(B,bool)),aa(A,fun(B,fun(A,fun(B,bool))),aa(fun(A,set(product_prod(B,B))),fun(A,fun(B,fun(A,fun(B,bool)))),aTP_Lamp_pz(fun(A,bool),fun(fun(A,set(product_prod(B,B))),fun(A,fun(B,fun(A,fun(B,bool))))),Uu2),Uua),Uub),Uuc)) ) ).
% ATP.lambda_800
tff(fact_8980_ATP_Olambda__801,axiom,
! [A: $tType,B: $tType,Uu2: set(product_prod(A,A)),Uua: set(product_prod(B,B)),Uub: A,Uuc: B] : ( aa(B,fun(product_prod(A,B),bool),aa(A,fun(B,fun(product_prod(A,B),bool)),aa(set(product_prod(B,B)),fun(A,fun(B,fun(product_prod(A,B),bool))),aTP_Lamp_px(set(product_prod(A,A)),fun(set(product_prod(B,B)),fun(A,fun(B,fun(product_prod(A,B),bool)))),Uu2),Uua),Uub),Uuc) = aa(fun(A,fun(B,bool)),fun(product_prod(A,B),bool),product_case_prod(A,B,bool),aa(B,fun(A,fun(B,bool)),aa(A,fun(B,fun(A,fun(B,bool))),aa(set(product_prod(B,B)),fun(A,fun(B,fun(A,fun(B,bool)))),aTP_Lamp_pw(set(product_prod(A,A)),fun(set(product_prod(B,B)),fun(A,fun(B,fun(A,fun(B,bool))))),Uu2),Uua),Uub),Uuc)) ) ).
% ATP.lambda_801
tff(fact_8981_ATP_Olambda__802,axiom,
! [Uu2: int,Uua: int,Uub: int,Uuc: int] : ( aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),aa(int,fun(int,fun(int,product_prod(int,int))),aTP_Lamp_kp(int,fun(int,fun(int,fun(int,product_prod(int,int)))),Uu2),Uua),Uub),Uuc) = normalize(aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(int,int,aa(int,fun(int,int),minus_minus(int),aa(int,int,aa(int,fun(int,int),times_times(int),Uu2),Uuc)),aa(int,int,aa(int,fun(int,int),times_times(int),Uub),Uua))),aa(int,int,aa(int,fun(int,int),times_times(int),Uua),Uuc))) ) ).
% ATP.lambda_802
tff(fact_8982_ATP_Olambda__803,axiom,
! [Uu2: int,Uua: int,Uub: int,Uuc: int] : ( aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),aa(int,fun(int,fun(int,product_prod(int,int))),aTP_Lamp_kn(int,fun(int,fun(int,fun(int,product_prod(int,int)))),Uu2),Uua),Uub),Uuc) = normalize(aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(int,int,aa(int,fun(int,int),plus_plus(int),aa(int,int,aa(int,fun(int,int),times_times(int),Uu2),Uuc)),aa(int,int,aa(int,fun(int,int),times_times(int),Uub),Uua))),aa(int,int,aa(int,fun(int,int),times_times(int),Uua),Uuc))) ) ).
% ATP.lambda_803
tff(fact_8983_ATP_Olambda__804,axiom,
! [A: $tType,Uu2: fun(A,bool),Uua: list(A),Uub: A,Uuc: list(A)] : ( aa(list(A),option(product_prod(list(A),product_prod(A,list(A)))),aa(A,fun(list(A),option(product_prod(list(A),product_prod(A,list(A))))),aa(list(A),fun(A,fun(list(A),option(product_prod(list(A),product_prod(A,list(A)))))),aTP_Lamp_te(fun(A,bool),fun(list(A),fun(A,fun(list(A),option(product_prod(list(A),product_prod(A,list(A))))))),Uu2),Uua),Uub),Uuc) = aa(product_prod(list(A),product_prod(A,list(A))),option(product_prod(list(A),product_prod(A,list(A)))),some(product_prod(list(A),product_prod(A,list(A)))),aa(product_prod(A,list(A)),product_prod(list(A),product_prod(A,list(A))),aa(list(A),fun(product_prod(A,list(A)),product_prod(list(A),product_prod(A,list(A)))),product_Pair(list(A),product_prod(A,list(A))),takeWhile(A,aa(fun(A,bool),fun(A,bool),comp(bool,bool,A,fNot),Uu2),Uua)),aa(list(A),product_prod(A,list(A)),aa(A,fun(list(A),product_prod(A,list(A))),product_Pair(A,list(A)),Uub),Uuc))) ) ).
% ATP.lambda_804
tff(fact_8984_ATP_Olambda__805,axiom,
! [A: $tType,C: $tType] :
( ( real_V822414075346904944vector(C)
& real_V8999393235501362500lgebra(A) )
=> ! [Uu2: fun(C,A),Uua: C,Uub: fun(C,A),Uuc: C] : ( aa(C,A,aa(fun(C,A),fun(C,A),aa(C,fun(fun(C,A),fun(C,A)),aTP_Lamp_wz(fun(C,A),fun(C,fun(fun(C,A),fun(C,A))),Uu2),Uua),Uub),Uuc) = aa(A,A,uminus_uminus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,inverse_inverse(A),aa(C,A,Uu2,Uua))),aa(C,A,Uub,Uuc))),aa(A,A,inverse_inverse(A),aa(C,A,Uu2,Uua)))) ) ) ).
% ATP.lambda_805
tff(fact_8985_ATP_Olambda__806,axiom,
! [A: $tType,Uu2: A,Uua: list(A),Uub: A,Uuc: list(A)] : ( aa(list(A),option(product_prod(list(A),product_prod(A,list(A)))),aa(A,fun(list(A),option(product_prod(list(A),product_prod(A,list(A))))),aa(list(A),fun(A,fun(list(A),option(product_prod(list(A),product_prod(A,list(A)))))),aTP_Lamp_tb(A,fun(list(A),fun(A,fun(list(A),option(product_prod(list(A),product_prod(A,list(A))))))),Uu2),Uua),Uub),Uuc) = aa(product_prod(list(A),product_prod(A,list(A))),option(product_prod(list(A),product_prod(A,list(A)))),some(product_prod(list(A),product_prod(A,list(A)))),aa(product_prod(A,list(A)),product_prod(list(A),product_prod(A,list(A))),aa(list(A),fun(product_prod(A,list(A)),product_prod(list(A),product_prod(A,list(A)))),product_Pair(list(A),product_prod(A,list(A))),aa(list(A),list(A),cons(A,Uu2),Uua)),aa(list(A),product_prod(A,list(A)),aa(A,fun(list(A),product_prod(A,list(A))),product_Pair(A,list(A)),Uub),Uuc))) ) ).
% ATP.lambda_806
tff(fact_8986_ATP_Olambda__807,axiom,
! [Uu2: int,Uua: int,Uub: int,Uuc: int] : ( aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),aa(int,fun(int,fun(int,product_prod(int,int))),aTP_Lamp_kl(int,fun(int,fun(int,fun(int,product_prod(int,int)))),Uu2),Uua),Uub),Uuc) = normalize(aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(int,int,aa(int,fun(int,int),times_times(int),Uu2),Uub)),aa(int,int,aa(int,fun(int,int),times_times(int),Uua),Uuc))) ) ).
% ATP.lambda_807
tff(fact_8987_ATP_Olambda__808,axiom,
! [Uu2: int,Uua: int,Uub: int,Uuc: int] : ( aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),aa(int,fun(int,fun(int,product_prod(int,int))),aTP_Lamp_kj(int,fun(int,fun(int,fun(int,product_prod(int,int)))),Uu2),Uua),Uub),Uuc) = normalize(aa(int,product_prod(int,int),aa(int,fun(int,product_prod(int,int)),product_Pair(int,int),aa(int,int,aa(int,fun(int,int),times_times(int),Uu2),Uuc)),aa(int,int,aa(int,fun(int,int),times_times(int),Uua),Uub))) ) ).
% ATP.lambda_808
tff(fact_8988_ATP_Olambda__809,axiom,
! [B: $tType,A: $tType,C: $tType] :
( ( real_V822414075346904944vector(C)
& real_V822414075346904944vector(A)
& real_V822414075346904944vector(B) )
=> ! [Uu2: fun(A,fun(A,B)),Uua: fun(C,A),Uub: C,Uuc: fun(C,A),Uud: C] : ( aa(C,B,aa(fun(C,A),fun(C,B),aa(C,fun(fun(C,A),fun(C,B)),aa(fun(C,A),fun(C,fun(fun(C,A),fun(C,B))),aTP_Lamp_wd(fun(A,fun(A,B)),fun(fun(C,A),fun(C,fun(fun(C,A),fun(C,B)))),Uu2),Uua),Uub),Uuc),Uud) = aa(A,B,aa(A,fun(A,B),Uu2,aa(C,A,Uua,Uub)),aa(C,A,Uuc,Uud)) ) ) ).
% ATP.lambda_809
tff(fact_8989_ATP_Olambda__810,axiom,
! [A: $tType,B: $tType,I6: $tType] :
( ( real_V3459762299906320749_field(B)
& real_V822414075346904944vector(A) )
=> ! [Uu2: set(I6),Uua: fun(I6,fun(A,B)),Uub: fun(I6,fun(A,B)),Uuc: A,Uud: A] : ( aa(A,B,aa(A,fun(A,B),aa(fun(I6,fun(A,B)),fun(A,fun(A,B)),aa(fun(I6,fun(A,B)),fun(fun(I6,fun(A,B)),fun(A,fun(A,B))),aTP_Lamp_xo(set(I6),fun(fun(I6,fun(A,B)),fun(fun(I6,fun(A,B)),fun(A,fun(A,B)))),Uu2),Uua),Uub),Uuc),Uud) = aa(set(I6),B,aa(fun(I6,B),fun(set(I6),B),groups7311177749621191930dd_sum(I6,B),aa(A,fun(I6,B),aa(A,fun(A,fun(I6,B)),aa(fun(I6,fun(A,B)),fun(A,fun(A,fun(I6,B))),aa(fun(I6,fun(A,B)),fun(fun(I6,fun(A,B)),fun(A,fun(A,fun(I6,B)))),aTP_Lamp_xn(set(I6),fun(fun(I6,fun(A,B)),fun(fun(I6,fun(A,B)),fun(A,fun(A,fun(I6,B))))),Uu2),Uua),Uub),Uuc),Uud)),Uu2) ) ) ).
% ATP.lambda_810
tff(fact_8990_ATP_Olambda__811,axiom,
! [A: $tType] :
( idom(A)
=> ! [Uu2: nat,Uua: fun(nat,A),Uub: A,Uuc: A,Uud: nat] : ( aa(nat,A,aa(A,fun(nat,A),aa(A,fun(A,fun(nat,A)),aa(fun(nat,A),fun(A,fun(A,fun(nat,A))),aTP_Lamp_gk(nat,fun(fun(nat,A),fun(A,fun(A,fun(nat,A)))),Uu2),Uua),Uub),Uuc),Uud) = aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aa(A,fun(nat,fun(nat,A)),aa(A,fun(A,fun(nat,fun(nat,A))),aTP_Lamp_gj(fun(nat,A),fun(A,fun(A,fun(nat,fun(nat,A)))),Uua),Uub),Uuc),Uud)),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uu2),Uud))) ) ) ).
% ATP.lambda_811
tff(fact_8991_ATP_Olambda__812,axiom,
! [Uu2: nat,Uua: fun(nat,fun(real,real)),Uub: real,Uuc: nat,Uud: real] : ( aa(real,real,aa(nat,fun(real,real),aa(real,fun(nat,fun(real,real)),aa(fun(nat,fun(real,real)),fun(real,fun(nat,fun(real,real))),aTP_Lamp_vo(nat,fun(fun(nat,fun(real,real)),fun(real,fun(nat,fun(real,real)))),Uu2),Uua),Uub),Uuc),Uud) = aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(real,real,aa(nat,fun(real,real),Uua,Uuc),Uud)),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(set(nat),real,aa(fun(nat,real),fun(set(nat),real),groups7311177749621191930dd_sum(nat,real),aa(real,fun(nat,real),aa(nat,fun(real,fun(nat,real)),aTP_Lamp_vn(fun(nat,fun(real,real)),fun(nat,fun(real,fun(nat,real))),Uua),Uuc),Uud)),aa(nat,set(nat),set_ord_lessThan(nat),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uu2),Uuc)))),aa(real,real,aa(real,fun(real,real),times_times(real),Uub),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(nat,real,power_power(real,Uud),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uu2),Uuc))),semiring_char_0_fact(real,aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uu2),Uuc)))))) ) ).
% ATP.lambda_812
tff(fact_8992_ATP_Olambda__813,axiom,
! [A: $tType] :
( idom(A)
=> ! [Uu2: nat,Uua: fun(nat,A),Uub: A,Uuc: A,Uud: nat] : ( aa(nat,A,aa(A,fun(nat,A),aa(A,fun(A,fun(nat,A)),aa(fun(nat,A),fun(A,fun(A,fun(nat,A))),aTP_Lamp_hd(nat,fun(fun(nat,A),fun(A,fun(A,fun(nat,A)))),Uu2),Uua),Uub),Uuc),Uud) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(set(nat),A,aa(fun(nat,A),fun(set(nat),A),groups7311177749621191930dd_sum(nat,A),aa(nat,fun(nat,A),aa(A,fun(nat,fun(nat,A)),aTP_Lamp_hc(fun(nat,A),fun(A,fun(nat,fun(nat,A))),Uua),Uuc),Uud)),set_or1337092689740270186AtMost(nat,aa(nat,nat,suc,Uud),Uu2))),aa(nat,A,power_power(A,Uub),Uud)) ) ) ).
% ATP.lambda_813
tff(fact_8993_ATP_Olambda__814,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [Uu2: nat,Uua: A,Uub: A,Uuc: A,Uud: nat] : ( aa(nat,A,aa(A,fun(nat,A),aa(A,fun(A,fun(nat,A)),aa(A,fun(A,fun(A,fun(nat,A))),aTP_Lamp_eq(nat,fun(A,fun(A,fun(A,fun(nat,A)))),Uu2),Uua),Uub),Uuc),Uud) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,gbinomial(A,aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,semiring_1_of_nat(A),Uud)),Uua)),one_one(A))),Uud)),aa(nat,A,power_power(A,Uub),Uud))),aa(nat,A,power_power(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),Uub),Uuc)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uu2),Uud))) ) ) ).
% ATP.lambda_814
tff(fact_8994_ATP_Olambda__815,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [Uu2: nat,Uua: A,Uub: A,Uuc: A,Uud: nat] : ( aa(nat,A,aa(A,fun(nat,A),aa(A,fun(A,fun(nat,A)),aa(A,fun(A,fun(A,fun(nat,A))),aTP_Lamp_ek(nat,fun(A,fun(A,fun(A,fun(nat,A)))),Uu2),Uua),Uub),Uuc),Uud) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,gbinomial(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(nat,A,semiring_1_of_nat(A),Uu2)),Uua)),Uud)),aa(nat,A,power_power(A,Uub),Uud))),aa(nat,A,power_power(A,Uuc),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uu2),Uud))) ) ) ).
% ATP.lambda_815
tff(fact_8995_ATP_Olambda__816,axiom,
! [A: $tType] :
( field_char_0(A)
=> ! [Uu2: nat,Uua: A,Uub: A,Uuc: A,Uud: nat] : ( aa(nat,A,aa(A,fun(nat,A),aa(A,fun(A,fun(nat,A)),aa(A,fun(A,fun(A,fun(nat,A))),aTP_Lamp_el(nat,fun(A,fun(A,fun(A,fun(nat,A)))),Uu2),Uua),Uub),Uuc),Uud) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,gbinomial(A,aa(A,A,uminus_uminus(A),Uua)),Uud)),aa(nat,A,power_power(A,aa(A,A,uminus_uminus(A),Uub)),Uud))),aa(nat,A,power_power(A,aa(A,A,aa(A,fun(A,A),plus_plus(A),Uub),Uuc)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uu2),Uud))) ) ) ).
% ATP.lambda_816
tff(fact_8996_ATP_Olambda__817,axiom,
! [A: $tType] :
( idom(A)
=> ! [Uu2: fun(nat,A),Uua: A,Uub: A,Uuc: nat,Uud: nat] : ( aa(nat,A,aa(nat,fun(nat,A),aa(A,fun(nat,fun(nat,A)),aa(A,fun(A,fun(nat,fun(nat,A))),aTP_Lamp_gj(fun(nat,A),fun(A,fun(A,fun(nat,fun(nat,A)))),Uu2),Uua),Uub),Uuc),Uud) = aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(nat,A,Uu2,aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),aa(nat,nat,aa(nat,fun(nat,nat),plus_plus(nat),Uuc),Uud)),one_one(nat)))),aa(nat,A,power_power(A,Uub),Uud))),aa(nat,A,power_power(A,Uua),Uuc)) ) ) ).
% ATP.lambda_817
tff(fact_8997_ATP_Olambda__818,axiom,
! [B: $tType,C: $tType,A: $tType] :
( ( real_V7819770556892013058_space(A)
& real_V7819770556892013058_space(B) )
=> ! [Uu2: fun(C,A),Uua: A,Uub: fun(C,B),Uuc: B,Uud: C] :
( pp(aa(C,bool,aa(B,fun(C,bool),aa(fun(C,B),fun(B,fun(C,bool)),aa(A,fun(fun(C,B),fun(B,fun(C,bool))),aTP_Lamp_agk(fun(C,A),fun(A,fun(fun(C,B),fun(B,fun(C,bool)))),Uu2),Uua),Uub),Uuc),Uud))
<=> pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),real_V557655796197034286t_dist(B,aa(C,B,Uub,Uud),Uuc)),real_V557655796197034286t_dist(A,aa(C,A,Uu2,Uud),Uua))) ) ) ).
% ATP.lambda_818
tff(fact_8998_ATP_Olambda__819,axiom,
! [A: $tType,B: $tType] :
( ( real_V3459762299906320749_field(B)
& real_V822414075346904944vector(A) )
=> ! [Uu2: fun(A,B),Uua: fun(A,B),Uub: A,Uuc: nat,Uud: A] : ( aa(A,B,aa(nat,fun(A,B),aa(A,fun(nat,fun(A,B)),aa(fun(A,B),fun(A,fun(nat,fun(A,B))),aTP_Lamp_xg(fun(A,B),fun(fun(A,B),fun(A,fun(nat,fun(A,B)))),Uu2),Uua),Uub),Uuc),Uud) = aa(B,B,aa(B,fun(B,B),times_times(B),aa(B,B,aa(B,fun(B,B),times_times(B),aa(nat,B,semiring_1_of_nat(B),Uuc)),aa(A,B,Uua,Uud))),aa(nat,B,power_power(B,aa(A,B,Uu2,Uub)),aa(nat,nat,aa(nat,fun(nat,nat),minus_minus(nat),Uuc),one_one(nat)))) ) ) ).
% ATP.lambda_819
tff(fact_8999_ATP_Olambda__820,axiom,
! [A: $tType,B: $tType,I6: $tType] :
( ( real_V3459762299906320749_field(B)
& real_V822414075346904944vector(A) )
=> ! [Uu2: set(I6),Uua: fun(I6,fun(A,B)),Uub: fun(I6,fun(A,B)),Uuc: A,Uud: A,Uue: I6] : ( aa(I6,B,aa(A,fun(I6,B),aa(A,fun(A,fun(I6,B)),aa(fun(I6,fun(A,B)),fun(A,fun(A,fun(I6,B))),aa(fun(I6,fun(A,B)),fun(fun(I6,fun(A,B)),fun(A,fun(A,fun(I6,B)))),aTP_Lamp_xn(set(I6),fun(fun(I6,fun(A,B)),fun(fun(I6,fun(A,B)),fun(A,fun(A,fun(I6,B))))),Uu2),Uua),Uub),Uuc),Uud),Uue) = aa(B,B,aa(B,fun(B,B),times_times(B),aa(A,B,aa(I6,fun(A,B),Uub,Uue),Uud)),aa(set(I6),B,aa(fun(I6,B),fun(set(I6),B),groups7121269368397514597t_prod(I6,B),aa(A,fun(I6,B),aTP_Lamp_xl(fun(I6,fun(A,B)),fun(A,fun(I6,B)),Uua),Uuc)),aa(set(I6),set(I6),aa(set(I6),fun(set(I6),set(I6)),minus_minus(set(I6)),Uu2),aa(set(I6),set(I6),insert(I6,Uue),bot_bot(set(I6)))))) ) ) ).
% ATP.lambda_820
tff(fact_9000_ATP_Olambda__821,axiom,
! [A: $tType,C: $tType] :
( ( real_V822414075346904944vector(C)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: fun(C,A),Uua: fun(C,A),Uub: C,Uuc: fun(C,A),Uud: fun(C,A),Uue: C] : ( aa(C,A,aa(fun(C,A),fun(C,A),aa(fun(C,A),fun(fun(C,A),fun(C,A)),aa(C,fun(fun(C,A),fun(fun(C,A),fun(C,A))),aa(fun(C,A),fun(C,fun(fun(C,A),fun(fun(C,A),fun(C,A)))),aTP_Lamp_wx(fun(C,A),fun(fun(C,A),fun(C,fun(fun(C,A),fun(fun(C,A),fun(C,A))))),Uu2),Uua),Uub),Uuc),Uud),Uue) = aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(A,A,aa(A,fun(A,A),minus_minus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(C,A,Uua,Uue)),aa(C,A,Uuc,Uub))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(C,A,Uu2,Uub)),aa(C,A,Uud,Uue)))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(C,A,Uuc,Uub)),aa(C,A,Uuc,Uub))) ) ) ).
% ATP.lambda_821
tff(fact_9001_ATP_Olambda__822,axiom,
! [A: $tType,B: $tType,Uu2: set(product_prod(A,A)),Uua: set(product_prod(B,B)),Uub: A,Uuc: B,Uud: A,Uue: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),aa(B,fun(A,fun(B,bool)),aa(A,fun(B,fun(A,fun(B,bool))),aa(set(product_prod(B,B)),fun(A,fun(B,fun(A,fun(B,bool)))),aTP_Lamp_pw(set(product_prod(A,A)),fun(set(product_prod(B,B)),fun(A,fun(B,fun(A,fun(B,bool))))),Uu2),Uua),Uub),Uuc),Uud),Uue))
<=> ( pp(member(product_prod(A,A),aa(A,product_prod(A,A),aa(A,fun(A,product_prod(A,A)),product_Pair(A,A),Uub),Uud),Uu2))
| ( ( Uub = Uud )
& pp(member(product_prod(B,B),aa(B,product_prod(B,B),aa(B,fun(B,product_prod(B,B)),product_Pair(B,B),Uuc),Uue),Uua)) ) ) ) ).
% ATP.lambda_822
tff(fact_9002_ATP_Olambda__823,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: fun(A,real),Uua: fun(A,real),Uub: A,Uuc: fun(A,real),Uud: fun(A,real),Uue: A] : ( aa(A,real,aa(fun(A,real),fun(A,real),aa(fun(A,real),fun(fun(A,real),fun(A,real)),aa(A,fun(fun(A,real),fun(fun(A,real),fun(A,real))),aa(fun(A,real),fun(A,fun(fun(A,real),fun(fun(A,real),fun(A,real)))),aTP_Lamp_xq(fun(A,real),fun(fun(A,real),fun(A,fun(fun(A,real),fun(fun(A,real),fun(A,real))))),Uu2),Uua),Uub),Uuc),Uud),Uue) = aa(real,real,aa(real,fun(real,real),times_times(real),powr(real,aa(A,real,Uu2,Uub),aa(A,real,Uuc,Uub))),aa(real,real,aa(real,fun(real,real),plus_plus(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(A,real,Uud,Uue)),aa(real,real,ln_ln(real),aa(A,real,Uu2,Uub)))),aa(real,real,aa(real,fun(real,real),divide_divide(real),aa(real,real,aa(real,fun(real,real),times_times(real),aa(A,real,Uua,Uue)),aa(A,real,Uuc,Uub))),aa(A,real,Uu2,Uub)))) ) ) ).
% ATP.lambda_823
tff(fact_9003_ATP_Olambda__824,axiom,
! [C: $tType,D: $tType] :
( ( real_V822414075346904944vector(D)
& real_V822414075346904944vector(C) )
=> ! [Uu2: fun(D,real),Uua: fun(D,real),Uub: D,Uuc: fun(D,C),Uud: fun(D,C),Uue: D] : ( aa(D,C,aa(fun(D,C),fun(D,C),aa(fun(D,C),fun(fun(D,C),fun(D,C)),aa(D,fun(fun(D,C),fun(fun(D,C),fun(D,C))),aa(fun(D,real),fun(D,fun(fun(D,C),fun(fun(D,C),fun(D,C)))),aTP_Lamp_wb(fun(D,real),fun(fun(D,real),fun(D,fun(fun(D,C),fun(fun(D,C),fun(D,C))))),Uu2),Uua),Uub),Uuc),Uud),Uue) = aa(C,C,aa(C,fun(C,C),plus_plus(C),aa(C,C,real_V8093663219630862766scaleR(C,aa(D,real,Uu2,Uub)),aa(D,C,Uud,Uue))),aa(C,C,real_V8093663219630862766scaleR(C,aa(D,real,Uua,Uue)),aa(D,C,Uuc,Uub))) ) ) ).
% ATP.lambda_824
tff(fact_9004_ATP_Olambda__825,axiom,
! [A: $tType,D: $tType] :
( ( real_V822414075346904944vector(D)
& real_V4412858255891104859lgebra(A) )
=> ! [Uu2: fun(D,A),Uua: fun(D,A),Uub: D,Uuc: fun(D,A),Uud: fun(D,A),Uue: D] : ( aa(D,A,aa(fun(D,A),fun(D,A),aa(fun(D,A),fun(fun(D,A),fun(D,A)),aa(D,fun(fun(D,A),fun(fun(D,A),fun(D,A))),aa(fun(D,A),fun(D,fun(fun(D,A),fun(fun(D,A),fun(D,A)))),aTP_Lamp_vz(fun(D,A),fun(fun(D,A),fun(D,fun(fun(D,A),fun(fun(D,A),fun(D,A))))),Uu2),Uua),Uub),Uuc),Uud),Uue) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(D,A,Uu2,Uub)),aa(D,A,Uud,Uue))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(D,A,Uua,Uue)),aa(D,A,Uuc,Uub))) ) ) ).
% ATP.lambda_825
tff(fact_9005_ATP_Olambda__826,axiom,
! [A: $tType,C: $tType] :
( ( real_V822414075346904944vector(C)
& real_V8999393235501362500lgebra(A) )
=> ! [Uu2: fun(C,A),Uua: fun(C,A),Uub: C,Uuc: fun(C,A),Uud: fun(C,A),Uue: C] : ( aa(C,A,aa(fun(C,A),fun(C,A),aa(fun(C,A),fun(fun(C,A),fun(C,A)),aa(C,fun(fun(C,A),fun(fun(C,A),fun(C,A))),aa(fun(C,A),fun(C,fun(fun(C,A),fun(fun(C,A),fun(C,A)))),aTP_Lamp_xk(fun(C,A),fun(fun(C,A),fun(C,fun(fun(C,A),fun(fun(C,A),fun(C,A))))),Uu2),Uua),Uub),Uuc),Uud),Uue) = aa(A,A,aa(A,fun(A,A),plus_plus(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,uminus_uminus(A),aa(C,A,Uu2,Uub))),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,aa(A,fun(A,A),times_times(A),aa(A,A,inverse_inverse(A),aa(C,A,Uuc,Uub))),aa(C,A,Uud,Uue))),aa(A,A,inverse_inverse(A),aa(C,A,Uuc,Uub))))),aa(A,A,aa(A,fun(A,A),divide_divide(A),aa(C,A,Uua,Uue)),aa(C,A,Uuc,Uub))) ) ) ).
% ATP.lambda_826
tff(fact_9006_ATP_Olambda__827,axiom,
! [B: $tType,A: $tType,Uu2: fun(A,bool),Uua: fun(A,set(product_prod(B,B))),Uub: A,Uuc: B,Uud: A,Uue: B] :
( pp(aa(B,bool,aa(A,fun(B,bool),aa(B,fun(A,fun(B,bool)),aa(A,fun(B,fun(A,fun(B,bool))),aa(fun(A,set(product_prod(B,B))),fun(A,fun(B,fun(A,fun(B,bool)))),aTP_Lamp_pz(fun(A,bool),fun(fun(A,set(product_prod(B,B))),fun(A,fun(B,fun(A,fun(B,bool))))),Uu2),Uua),Uub),Uuc),Uud),Uue))
<=> ( ( Uub = Uud )
& pp(aa(A,bool,Uu2,Uud))
& pp(member(product_prod(B,B),aa(B,product_prod(B,B),aa(B,fun(B,product_prod(B,B)),product_Pair(B,B),Uuc),Uue),aa(A,set(product_prod(B,B)),Uua,Uud))) ) ) ).
% ATP.lambda_827
tff(fact_9007_ATP_Olambda__828,axiom,
! [A: $tType,Aa: $tType] :
( ( zero(Aa)
& topological_t2_space(Aa)
& topolo8386298272705272623_space(A) )
=> ! [Uu2: Aa,Uua: A] : ( aa(A,Aa,aTP_Lamp_yi(Aa,fun(A,Aa),Uu2),Uua) = Uu2 ) ) ).
% ATP.lambda_828
tff(fact_9008_ATP_Olambda__829,axiom,
! [A: $tType,B: $tType] :
( ( real_V822414075346904944vector(B)
& real_V822414075346904944vector(A) )
=> ! [Uu2: B,Uua: A] : ( aa(A,B,aTP_Lamp_wg(B,fun(A,B),Uu2),Uua) = Uu2 ) ) ).
% ATP.lambda_829
tff(fact_9009_ATP_Olambda__830,axiom,
! [C: $tType,B: $tType] :
( semiring_1(B)
=> ! [Uu2: B,Uua: C] : ( aa(C,B,aTP_Lamp_mz(B,fun(C,B),Uu2),Uua) = Uu2 ) ) ).
% ATP.lambda_830
tff(fact_9010_ATP_Olambda__831,axiom,
! [A: $tType] :
( counta3822494911875563373attice(A)
=> ! [Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_rm(A,fun(nat,A),Uu2),Uua) = Uu2 ) ) ).
% ATP.lambda_831
tff(fact_9011_ATP_Olambda__832,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_bb(A,fun(nat,A),Uu2),Uua) = Uu2 ) ) ).
% ATP.lambda_832
tff(fact_9012_ATP_Olambda__833,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: A,Uua: A] : ( aa(A,A,aTP_Lamp_uq(A,fun(A,A),Uu2),Uua) = Uu2 ) ) ).
% ATP.lambda_833
tff(fact_9013_ATP_Olambda__834,axiom,
! [C: $tType,A: $tType] :
( real_V4867850818363320053vector(A)
=> ! [Uu2: A,Uua: C] : ( aa(C,A,aTP_Lamp_mt(A,fun(C,A),Uu2),Uua) = Uu2 ) ) ).
% ATP.lambda_834
tff(fact_9014_ATP_Olambda__835,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: A,Uua: B] : ( aa(B,A,aTP_Lamp_mj(A,fun(B,A),Uu2),Uua) = Uu2 ) ) ).
% ATP.lambda_835
tff(fact_9015_ATP_Olambda__836,axiom,
! [B: $tType,A: $tType] :
( linorder(A)
=> ! [Uu2: A,Uua: B] : ( aa(B,A,aTP_Lamp_aeu(A,fun(B,A),Uu2),Uua) = Uu2 ) ) ).
% ATP.lambda_836
tff(fact_9016_ATP_Olambda__837,axiom,
! [B: $tType,A: $tType] :
( semiring_1(A)
=> ! [Uu2: A,Uua: B] : ( aa(B,A,aTP_Lamp_ml(A,fun(B,A),Uu2),Uua) = Uu2 ) ) ).
% ATP.lambda_837
tff(fact_9017_ATP_Olambda__838,axiom,
! [A: $tType,Uu2: A,Uua: nat] : ( aa(nat,A,aTP_Lamp_jd(A,fun(nat,A),Uu2),Uua) = Uu2 ) ).
% ATP.lambda_838
tff(fact_9018_ATP_Olambda__839,axiom,
! [B: $tType,A: $tType,Uu2: A,Uua: B] : ( aa(B,A,aTP_Lamp_bh(A,fun(B,A),Uu2),Uua) = Uu2 ) ).
% ATP.lambda_839
tff(fact_9019_ATP_Olambda__840,axiom,
! [A: $tType,Uu2: A,Uua: list(A)] : ( aa(list(A),list(A),aa(A,fun(list(A),list(A)),aTP_Lamp_sr(A,fun(list(A),list(A))),Uu2),Uua) = Uua ) ).
% ATP.lambda_840
tff(fact_9020_ATP_Olambda__841,axiom,
! [A: $tType,Uu2: A,Uua: list(A)] :
( pp(aa(list(A),bool,aa(A,fun(list(A),bool),aTP_Lamp_sq(A,fun(list(A),bool)),Uu2),Uua))
<=> $false ) ).
% ATP.lambda_841
tff(fact_9021_ATP_Olambda__842,axiom,
! [A: $tType,Uu2: A,Uua: list(A)] :
( pp(aa(list(A),bool,aa(A,fun(list(A),bool),aTP_Lamp_sp(A,fun(list(A),bool)),Uu2),Uua))
<=> $true ) ).
% ATP.lambda_842
tff(fact_9022_ATP_Olambda__843,axiom,
! [A: $tType,Uu2: A,Uua: A] :
( pp(aa(A,bool,aa(A,fun(A,bool),aTP_Lamp_ne(A,fun(A,bool)),Uu2),Uua))
<=> $true ) ).
% ATP.lambda_843
tff(fact_9023_ATP_Olambda__844,axiom,
! [Uu2: complex] : ( aa(complex,complex,aTP_Lamp_ff(complex,complex),Uu2) = Uu2 ) ).
% ATP.lambda_844
tff(fact_9024_ATP_Olambda__845,axiom,
! [Uu2: nat] : ( aa(nat,nat,aTP_Lamp_gy(nat,nat),Uu2) = Uu2 ) ).
% ATP.lambda_845
tff(fact_9025_ATP_Olambda__846,axiom,
! [Uu2: int] : ( aa(int,int,aTP_Lamp_ig(int,int),Uu2) = Uu2 ) ).
% ATP.lambda_846
tff(fact_9026_ATP_Olambda__847,axiom,
! [C: $tType] :
( topological_t2_space(C)
=> ! [Uu2: C] : ( aa(C,C,aTP_Lamp_adh(C,C),Uu2) = Uu2 ) ) ).
% ATP.lambda_847
tff(fact_9027_ATP_Olambda__848,axiom,
! [A: $tType] :
( real_V822414075346904944vector(A)
=> ! [Uu2: A] : ( aa(A,A,aTP_Lamp_wi(A,A),Uu2) = Uu2 ) ) ).
% ATP.lambda_848
tff(fact_9028_ATP_Olambda__849,axiom,
! [A: $tType] :
( real_V3459762299906320749_field(A)
=> ! [Uu2: A] : ( aa(A,A,aTP_Lamp_ur(A,A),Uu2) = Uu2 ) ) ).
% ATP.lambda_849
tff(fact_9029_ATP_Olambda__850,axiom,
! [A: $tType] :
( topological_t2_space(A)
=> ! [Uu2: A] : ( aa(A,A,aTP_Lamp_ade(A,A),Uu2) = Uu2 ) ) ).
% ATP.lambda_850
tff(fact_9030_ATP_Olambda__851,axiom,
! [A: $tType] :
( ( real_Vector_banach(A)
& real_V3459762299906320749_field(A) )
=> ! [Uu2: A] : ( aa(A,A,aTP_Lamp_adg(A,A),Uu2) = Uu2 ) ) ).
% ATP.lambda_851
tff(fact_9031_ATP_Olambda__852,axiom,
! [A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: A] : ( aa(A,A,aTP_Lamp_nh(A,A),Uu2) = Uu2 ) ) ).
% ATP.lambda_852
tff(fact_9032_ATP_Olambda__853,axiom,
! [A: $tType] :
( linorder(A)
=> ! [Uu2: A] : ( aa(A,A,aTP_Lamp_nx(A,A),Uu2) = Uu2 ) ) ).
% ATP.lambda_853
tff(fact_9033_ATP_Olambda__854,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [Uu2: A] : ( aa(A,A,aTP_Lamp_ae(A,A),Uu2) = Uu2 ) ) ).
% ATP.lambda_854
tff(fact_9034_ATP_Olambda__855,axiom,
! [A: $tType,Uu2: A] : ( aa(A,A,aTP_Lamp_am(A,A),Uu2) = Uu2 ) ).
% ATP.lambda_855
tff(fact_9035_ATP_Olambda__856,axiom,
! [A: $tType] :
( ( comm_monoid_add(A)
& topolo4958980785337419405_space(A) )
=> ! [Uu2: nat] : ( aa(nat,A,aTP_Lamp_at(nat,A),Uu2) = zero_zero(A) ) ) ).
% ATP.lambda_856
tff(fact_9036_ATP_Olambda__857,axiom,
! [A: $tType] :
( ( comm_monoid_add(A)
& topological_t2_space(A) )
=> ! [Uu2: nat] : ( aa(nat,A,aTP_Lamp_aq(nat,A),Uu2) = zero_zero(A) ) ) ).
% ATP.lambda_857
tff(fact_9037_ATP_Olambda__858,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_add(A)
=> ! [Uu2: B] : ( aa(B,A,aTP_Lamp_fb(B,A),Uu2) = zero_zero(A) ) ) ).
% ATP.lambda_858
tff(fact_9038_ATP_Olambda__859,axiom,
! [B: $tType,A: $tType] :
( monoid_add(A)
=> ! [Uu2: B] : ( aa(B,A,aTP_Lamp_mk(B,A),Uu2) = zero_zero(A) ) ) ).
% ATP.lambda_859
tff(fact_9039_ATP_Olambda__860,axiom,
! [A: $tType,B: $tType] :
( ( real_V822414075346904944vector(B)
& real_V822414075346904944vector(A) )
=> ! [Uu2: A] : ( aa(A,B,aTP_Lamp_vx(A,B),Uu2) = zero_zero(B) ) ) ).
% ATP.lambda_860
tff(fact_9040_ATP_Olambda__861,axiom,
! [A: $tType] :
( mult_zero(A)
=> ! [Uu2: A] : ( aa(A,A,aTP_Lamp_ac(A,A),Uu2) = zero_zero(A) ) ) ).
% ATP.lambda_861
tff(fact_9041_ATP_Olambda__862,axiom,
! [A: $tType,B: $tType] :
( zero(B)
=> ! [Uu2: A] : ( aa(A,B,aTP_Lamp_ja(A,B),Uu2) = zero_zero(B) ) ) ).
% ATP.lambda_862
tff(fact_9042_ATP_Olambda__863,axiom,
! [B: $tType,A: $tType] :
( comm_monoid_mult(A)
=> ! [Uu2: B] : ( aa(B,A,aTP_Lamp_hg(B,A),Uu2) = one_one(A) ) ) ).
% ATP.lambda_863
tff(fact_9043_ATP_Olambda__864,axiom,
! [A: $tType,Uu2: A] : ( aa(A,real,aTP_Lamp_my(A,real),Uu2) = one_one(real) ) ).
% ATP.lambda_864
tff(fact_9044_ATP_Olambda__865,axiom,
! [A: $tType,Uu2: A] : ( aa(A,nat,aTP_Lamp_mn(A,nat),Uu2) = one_one(nat) ) ).
% ATP.lambda_865
tff(fact_9045_ATP_Olambda__866,axiom,
! [B: $tType,A: $tType,Uu2: B] : ( aa(B,option(A),aTP_Lamp_qq(B,option(A)),Uu2) = none(A) ) ).
% ATP.lambda_866
tff(fact_9046_ATP_Olambda__867,axiom,
! [A: $tType,B: $tType,Uu2: A] : ( aa(A,option(B),aTP_Lamp_ol(A,option(B)),Uu2) = none(B) ) ).
% ATP.lambda_867
tff(fact_9047_ATP_Olambda__868,axiom,
! [Uu2: real] :
( pp(aa(real,bool,aTP_Lamp_ir(real,bool),Uu2))
<=> $false ) ).
% ATP.lambda_868
tff(fact_9048_ATP_Olambda__869,axiom,
! [Uu2: nat] :
( pp(aa(nat,bool,aTP_Lamp_jw(nat,bool),Uu2))
<=> $false ) ).
% ATP.lambda_869
tff(fact_9049_ATP_Olambda__870,axiom,
! [A: $tType,Uu2: A] :
( pp(aa(A,bool,aTP_Lamp_tg(A,bool),Uu2))
<=> $false ) ).
% ATP.lambda_870
tff(fact_9050_ATP_Olambda__871,axiom,
! [Uu2: nat] :
( pp(aa(nat,bool,aTP_Lamp_jv(nat,bool),Uu2))
<=> $true ) ).
% ATP.lambda_871
tff(fact_9051_ATP_Olambda__872,axiom,
! [A: $tType,Uu2: A] :
( pp(aa(A,bool,aTP_Lamp_th(A,bool),Uu2))
<=> $true ) ).
% ATP.lambda_872
% Type constructors (783)
tff(tcon_fun___Conditionally__Complete__Lattices_Oconditionally__complete__lattice,axiom,
! [A11: $tType,A15: $tType] :
( comple6319245703460814977attice(A15)
=> condit1219197933456340205attice(fun(A11,A15)) ) ).
tff(tcon_fun___Countable__Complete__Lattices_Ocountable__complete__lattice,axiom,
! [A11: $tType,A15: $tType] :
( counta3822494911875563373attice(A15)
=> counta3822494911875563373attice(fun(A11,A15)) ) ).
tff(tcon_fun___Complete__Lattices_Ocomplete__boolean__algebra,axiom,
! [A11: $tType,A15: $tType] :
( comple489889107523837845lgebra(A15)
=> comple489889107523837845lgebra(fun(A11,A15)) ) ).
tff(tcon_fun___Lattices_Obounded__semilattice__sup__bot,axiom,
! [A11: $tType,A15: $tType] :
( bounded_lattice(A15)
=> bounde4967611905675639751up_bot(fun(A11,A15)) ) ).
tff(tcon_fun___Lattices_Obounded__semilattice__inf__top,axiom,
! [A11: $tType,A15: $tType] :
( bounded_lattice(A15)
=> bounde4346867609351753570nf_top(fun(A11,A15)) ) ).
tff(tcon_fun___Complete__Lattices_Ocomplete__lattice,axiom,
! [A11: $tType,A15: $tType] :
( comple6319245703460814977attice(A15)
=> comple6319245703460814977attice(fun(A11,A15)) ) ).
tff(tcon_fun___Boolean__Algebras_Oboolean__algebra,axiom,
! [A11: $tType,A15: $tType] :
( boolea8198339166811842893lgebra(A15)
=> boolea8198339166811842893lgebra(fun(A11,A15)) ) ).
tff(tcon_fun___Lattices_Osemilattice__sup,axiom,
! [A11: $tType,A15: $tType] :
( semilattice_sup(A15)
=> semilattice_sup(fun(A11,A15)) ) ).
tff(tcon_fun___Lattices_Osemilattice__inf,axiom,
! [A11: $tType,A15: $tType] :
( semilattice_inf(A15)
=> semilattice_inf(fun(A11,A15)) ) ).
tff(tcon_fun___Lattices_Obounded__lattice,axiom,
! [A11: $tType,A15: $tType] :
( bounded_lattice(A15)
=> bounded_lattice(fun(A11,A15)) ) ).
tff(tcon_fun___Orderings_Oorder__top,axiom,
! [A11: $tType,A15: $tType] :
( order_top(A15)
=> order_top(fun(A11,A15)) ) ).
tff(tcon_fun___Orderings_Oorder__bot,axiom,
! [A11: $tType,A15: $tType] :
( order_bot(A15)
=> order_bot(fun(A11,A15)) ) ).
tff(tcon_fun___Orderings_Opreorder,axiom,
! [A11: $tType,A15: $tType] :
( preorder(A15)
=> preorder(fun(A11,A15)) ) ).
tff(tcon_fun___Lattices_Olattice,axiom,
! [A11: $tType,A15: $tType] :
( lattice(A15)
=> lattice(fun(A11,A15)) ) ).
tff(tcon_fun___Orderings_Oorder,axiom,
! [A11: $tType,A15: $tType] :
( order(A15)
=> order(fun(A11,A15)) ) ).
tff(tcon_fun___Orderings_Oord,axiom,
! [A11: $tType,A15: $tType] :
( ord(A15)
=> ord(fun(A11,A15)) ) ).
tff(tcon_fun___Groups_Ouminus,axiom,
! [A11: $tType,A15: $tType] :
( uminus(A15)
=> uminus(fun(A11,A15)) ) ).
tff(tcon_fun___Groups_Ominus,axiom,
! [A11: $tType,A15: $tType] :
( minus(A15)
=> minus(fun(A11,A15)) ) ).
tff(tcon_Int_Oint___Conditionally__Complete__Lattices_Oconditionally__complete__linorder,axiom,
condit6923001295902523014norder(int) ).
tff(tcon_Int_Oint___Conditionally__Complete__Lattices_Oconditionally__complete__lattice_1,axiom,
condit1219197933456340205attice(int) ).
tff(tcon_Int_Oint___Bit__Operations_Ounique__euclidean__semiring__with__bit__operations,axiom,
bit_un5681908812861735899ations(int) ).
tff(tcon_Int_Oint___Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct,axiom,
semiri1453513574482234551roduct(int) ).
tff(tcon_Int_Oint___Euclidean__Division_Ounique__euclidean__semiring__with__nat,axiom,
euclid5411537665997757685th_nat(int) ).
tff(tcon_Int_Oint___Euclidean__Division_Ounique__euclidean__ring__with__nat,axiom,
euclid8789492081693882211th_nat(int) ).
tff(tcon_Int_Oint___Groups_Oordered__ab__semigroup__monoid__add__imp__le,axiom,
ordere1937475149494474687imp_le(int) ).
tff(tcon_Int_Oint___Euclidean__Division_Ounique__euclidean__semiring,axiom,
euclid3128863361964157862miring(int) ).
tff(tcon_Int_Oint___Euclidean__Division_Oeuclidean__semiring__cancel,axiom,
euclid4440199948858584721cancel(int) ).
tff(tcon_Int_Oint___Divides_Ounique__euclidean__semiring__numeral,axiom,
unique1627219031080169319umeral(int) ).
tff(tcon_Int_Oint___Euclidean__Division_Oeuclidean__ring__cancel,axiom,
euclid8851590272496341667cancel(int) ).
tff(tcon_Int_Oint___Rings_Osemiring__no__zero__divisors__cancel,axiom,
semiri6575147826004484403cancel(int) ).
tff(tcon_Int_Oint___Groups_Ostrict__ordered__ab__semigroup__add,axiom,
strict9044650504122735259up_add(int) ).
tff(tcon_Int_Oint___Groups_Oordered__cancel__ab__semigroup__add,axiom,
ordere580206878836729694up_add(int) ).
tff(tcon_Int_Oint___Groups_Oordered__ab__semigroup__add__imp__le,axiom,
ordere2412721322843649153imp_le(int) ).
tff(tcon_Int_Oint___Bit__Operations_Osemiring__bit__operations,axiom,
bit_se359711467146920520ations(int) ).
tff(tcon_Int_Oint___Rings_Olinordered__comm__semiring__strict,axiom,
linord2810124833399127020strict(int) ).
tff(tcon_Int_Oint___Groups_Ostrict__ordered__comm__monoid__add,axiom,
strict7427464778891057005id_add(int) ).
tff(tcon_Int_Oint___Groups_Oordered__cancel__comm__monoid__add,axiom,
ordere8940638589300402666id_add(int) ).
tff(tcon_Int_Oint___Euclidean__Division_Oeuclidean__semiring,axiom,
euclid3725896446679973847miring(int) ).
tff(tcon_Int_Oint___Topological__Spaces_Otopological__space,axiom,
topolo4958980785337419405_space(int) ).
tff(tcon_Int_Oint___Topological__Spaces_Olinorder__topology,axiom,
topolo1944317154257567458pology(int) ).
tff(tcon_Int_Oint___Limits_Otopological__comm__monoid__mult,axiom,
topolo4987421752381908075d_mult(int) ).
tff(tcon_Int_Oint___Rings_Olinordered__semiring__1__strict,axiom,
linord715952674999750819strict(int) ).
tff(tcon_Int_Oint___Limits_Otopological__comm__monoid__add,axiom,
topolo5987344860129210374id_add(int) ).
tff(tcon_Int_Oint___Groups_Olinordered__ab__semigroup__add,axiom,
linord4140545234300271783up_add(int) ).
tff(tcon_Int_Oint___Bit__Operations_Oring__bit__operations,axiom,
bit_ri3973907225187159222ations(int) ).
tff(tcon_Int_Oint___Topological__Spaces_Oorder__topology,axiom,
topolo2564578578187576103pology(int) ).
tff(tcon_Int_Oint___Rings_Osemiring__1__no__zero__divisors,axiom,
semiri2026040879449505780visors(int) ).
tff(tcon_Int_Oint___Rings_Olinordered__nonzero__semiring,axiom,
linord181362715937106298miring(int) ).
tff(tcon_Int_Oint___Limits_Otopological__semigroup__mult,axiom,
topolo4211221413907600880p_mult(int) ).
tff(tcon_Int_Oint___Euclidean__Division_Oeuclidean__ring,axiom,
euclid5891614535332579305n_ring(int) ).
tff(tcon_Int_Oint___Rings_Olinordered__semiring__strict,axiom,
linord8928482502909563296strict(int) ).
tff(tcon_Int_Oint___Rings_Osemiring__no__zero__divisors,axiom,
semiri3467727345109120633visors(int) ).
tff(tcon_Int_Oint___Groups_Oordered__ab__semigroup__add,axiom,
ordere6658533253407199908up_add(int) ).
tff(tcon_Int_Oint___Groups_Oordered__ab__group__add__abs,axiom,
ordere166539214618696060dd_abs(int) ).
tff(tcon_Int_Oint___GCD_Osemiring__gcd__mult__normalize,axiom,
semiri6843258321239162965malize(int) ).
tff(tcon_Int_Oint___Limits_Otopological__monoid__mult,axiom,
topolo1898628316856586783d_mult(int) ).
tff(tcon_Int_Oint___Groups_Oordered__comm__monoid__add,axiom,
ordere6911136660526730532id_add(int) ).
tff(tcon_Int_Oint___Groups_Olinordered__ab__group__add,axiom,
linord5086331880401160121up_add(int) ).
tff(tcon_Int_Oint___Groups_Ocancel__ab__semigroup__add,axiom,
cancel2418104881723323429up_add(int) ).
tff(tcon_Int_Oint___Rings_Oring__1__no__zero__divisors,axiom,
ring_15535105094025558882visors(int) ).
tff(tcon_Int_Oint___Limits_Otopological__monoid__add,axiom,
topolo6943815403480290642id_add(int) ).
tff(tcon_Int_Oint___Groups_Ocancel__comm__monoid__add,axiom,
cancel1802427076303600483id_add(int) ).
tff(tcon_Int_Oint___Rings_Olinordered__ring__strict,axiom,
linord4710134922213307826strict(int) ).
tff(tcon_Int_Oint___Rings_Ocomm__semiring__1__cancel,axiom,
comm_s4317794764714335236cancel(int) ).
tff(tcon_Int_Oint___Bit__Operations_Osemiring__bits,axiom,
bit_semiring_bits(int) ).
tff(tcon_Int_Oint___Topological__Spaces_Ot2__space,axiom,
topological_t2_space(int) ).
tff(tcon_Int_Oint___Rings_Oordered__comm__semiring,axiom,
ordere2520102378445227354miring(int) ).
tff(tcon_Int_Oint___Rings_Olinordered__semiring__1,axiom,
linord6961819062388156250ring_1(int) ).
tff(tcon_Int_Oint___Groups_Oordered__ab__group__add,axiom,
ordered_ab_group_add(int) ).
tff(tcon_Int_Oint___Groups_Ocancel__semigroup__add,axiom,
cancel_semigroup_add(int) ).
tff(tcon_Int_Oint___Rings_Olinordered__semiring,axiom,
linordered_semiring(int) ).
tff(tcon_Int_Oint___Rings_Oordered__semiring__0,axiom,
ordered_semiring_0(int) ).
tff(tcon_Int_Oint___Rings_Olinordered__semidom,axiom,
linordered_semidom(int) ).
tff(tcon_Int_Oint___Lattices_Osemilattice__sup_2,axiom,
semilattice_sup(int) ).
tff(tcon_Int_Oint___Lattices_Osemilattice__inf_3,axiom,
semilattice_inf(int) ).
tff(tcon_Int_Oint___Groups_Oab__semigroup__mult,axiom,
ab_semigroup_mult(int) ).
tff(tcon_Int_Oint___Rings_Osemiring__1__cancel,axiom,
semiring_1_cancel(int) ).
tff(tcon_Int_Oint___Rings_Oalgebraic__semidom,axiom,
algebraic_semidom(int) ).
tff(tcon_Int_Oint___Groups_Ocomm__monoid__mult,axiom,
comm_monoid_mult(int) ).
tff(tcon_Int_Oint___Groups_Oab__semigroup__add,axiom,
ab_semigroup_add(int) ).
tff(tcon_Int_Oint___Rings_Oordered__semiring,axiom,
ordered_semiring(int) ).
tff(tcon_Int_Oint___Rings_Oordered__ring__abs,axiom,
ordered_ring_abs(int) ).
tff(tcon_Int_Oint___Parity_Osemiring__parity,axiom,
semiring_parity(int) ).
tff(tcon_Int_Oint___Groups_Ocomm__monoid__add,axiom,
comm_monoid_add(int) ).
tff(tcon_Int_Oint___Rings_Osemiring__modulo,axiom,
semiring_modulo(int) ).
tff(tcon_Int_Oint___Rings_Olinordered__ring,axiom,
linordered_ring(int) ).
tff(tcon_Int_Oint___Rings_Olinordered__idom,axiom,
linordered_idom(int) ).
tff(tcon_Int_Oint___Rings_Ocomm__semiring__1,axiom,
comm_semiring_1(int) ).
tff(tcon_Int_Oint___Rings_Ocomm__semiring__0,axiom,
comm_semiring_0(int) ).
tff(tcon_Int_Oint___Groups_Osemigroup__mult,axiom,
semigroup_mult(int) ).
tff(tcon_Int_Oint___Rings_Osemidom__modulo,axiom,
semidom_modulo(int) ).
tff(tcon_Int_Oint___Rings_Osemidom__divide,axiom,
semidom_divide(int) ).
tff(tcon_Int_Oint___Num_Osemiring__numeral,axiom,
semiring_numeral(int) ).
tff(tcon_Int_Oint___Groups_Osemigroup__add,axiom,
semigroup_add(int) ).
tff(tcon_Int_Oint___Rings_Ozero__less__one,axiom,
zero_less_one(int) ).
tff(tcon_Int_Oint___Rings_Ocomm__semiring,axiom,
comm_semiring(int) ).
tff(tcon_Int_Oint___Nat_Osemiring__char__0,axiom,
semiring_char_0(int) ).
tff(tcon_Int_Oint___Groups_Oab__group__add,axiom,
ab_group_add(int) ).
tff(tcon_Int_Oint___Rings_Ozero__neq__one,axiom,
zero_neq_one(int) ).
tff(tcon_Int_Oint___Rings_Oordered__ring,axiom,
ordered_ring(int) ).
tff(tcon_Int_Oint___Rings_Oidom__abs__sgn,axiom,
idom_abs_sgn(int) ).
tff(tcon_Int_Oint___Parity_Oring__parity,axiom,
ring_parity(int) ).
tff(tcon_Int_Oint___Orderings_Opreorder_4,axiom,
preorder(int) ).
tff(tcon_Int_Oint___Orderings_Olinorder,axiom,
linorder(int) ).
tff(tcon_Int_Oint___Groups_Omonoid__mult,axiom,
monoid_mult(int) ).
tff(tcon_Int_Oint___Rings_Oidom__modulo,axiom,
idom_modulo(int) ).
tff(tcon_Int_Oint___Rings_Oidom__divide,axiom,
idom_divide(int) ).
tff(tcon_Int_Oint___Rings_Ocomm__ring__1,axiom,
comm_ring_1(int) ).
tff(tcon_Int_Oint___Groups_Omonoid__add,axiom,
monoid_add(int) ).
tff(tcon_Int_Oint___Rings_Osemiring__1,axiom,
semiring_1(int) ).
tff(tcon_Int_Oint___Rings_Osemiring__0,axiom,
semiring_0(int) ).
tff(tcon_Int_Oint___Orderings_Ono__top,axiom,
no_top(int) ).
tff(tcon_Int_Oint___Orderings_Ono__bot,axiom,
no_bot(int) ).
tff(tcon_Int_Oint___Lattices_Olattice_5,axiom,
lattice(int) ).
tff(tcon_Int_Oint___Groups_Ogroup__add,axiom,
group_add(int) ).
tff(tcon_Int_Oint___GCD_Osemiring__gcd,axiom,
semiring_gcd(int) ).
tff(tcon_Int_Oint___GCD_Osemiring__Gcd,axiom,
semiring_Gcd(int) ).
tff(tcon_Int_Oint___Rings_Omult__zero,axiom,
mult_zero(int) ).
tff(tcon_Int_Oint___Rings_Ocomm__ring,axiom,
comm_ring(int) ).
tff(tcon_Int_Oint___Orderings_Oorder_6,axiom,
order(int) ).
tff(tcon_Int_Oint___Num_Oneg__numeral,axiom,
neg_numeral(int) ).
tff(tcon_Int_Oint___Nat_Oring__char__0,axiom,
ring_char_0(int) ).
tff(tcon_Int_Oint___Rings_Osemiring,axiom,
semiring(int) ).
tff(tcon_Int_Oint___Rings_Osemidom,axiom,
semidom(int) ).
tff(tcon_Int_Oint___Orderings_Oord_7,axiom,
ord(int) ).
tff(tcon_Int_Oint___Groups_Ouminus_8,axiom,
uminus(int) ).
tff(tcon_Int_Oint___Rings_Oring__1,axiom,
ring_1(int) ).
tff(tcon_Int_Oint___Rings_Oabs__if,axiom,
abs_if(int) ).
tff(tcon_Int_Oint___Groups_Ominus_9,axiom,
minus(int) ).
tff(tcon_Int_Oint___GCD_Oring__gcd,axiom,
ring_gcd(int) ).
tff(tcon_Int_Oint___Power_Opower,axiom,
power(int) ).
tff(tcon_Int_Oint___Num_Onumeral,axiom,
numeral(int) ).
tff(tcon_Int_Oint___Groups_Ozero,axiom,
zero(int) ).
tff(tcon_Int_Oint___Groups_Oplus,axiom,
plus(int) ).
tff(tcon_Int_Oint___Rings_Oring,axiom,
ring(int) ).
tff(tcon_Int_Oint___Rings_Oidom,axiom,
idom(int) ).
tff(tcon_Int_Oint___Groups_Oone,axiom,
one(int) ).
tff(tcon_Int_Oint___Rings_Odvd,axiom,
dvd(int) ).
tff(tcon_Nat_Onat___Conditionally__Complete__Lattices_Oconditionally__complete__linorder_10,axiom,
condit6923001295902523014norder(nat) ).
tff(tcon_Nat_Onat___Conditionally__Complete__Lattices_Oconditionally__complete__lattice_11,axiom,
condit1219197933456340205attice(nat) ).
tff(tcon_Nat_Onat___Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_12,axiom,
bit_un5681908812861735899ations(nat) ).
tff(tcon_Nat_Onat___Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct_13,axiom,
semiri1453513574482234551roduct(nat) ).
tff(tcon_Nat_Onat___Euclidean__Division_Ounique__euclidean__semiring__with__nat_14,axiom,
euclid5411537665997757685th_nat(nat) ).
tff(tcon_Nat_Onat___Groups_Oordered__ab__semigroup__monoid__add__imp__le_15,axiom,
ordere1937475149494474687imp_le(nat) ).
tff(tcon_Nat_Onat___Euclidean__Division_Ounique__euclidean__semiring_16,axiom,
euclid3128863361964157862miring(nat) ).
tff(tcon_Nat_Onat___Euclidean__Division_Oeuclidean__semiring__cancel_17,axiom,
euclid4440199948858584721cancel(nat) ).
tff(tcon_Nat_Onat___Divides_Ounique__euclidean__semiring__numeral_18,axiom,
unique1627219031080169319umeral(nat) ).
tff(tcon_Nat_Onat___Rings_Osemiring__no__zero__divisors__cancel_19,axiom,
semiri6575147826004484403cancel(nat) ).
tff(tcon_Nat_Onat___Groups_Ostrict__ordered__ab__semigroup__add_20,axiom,
strict9044650504122735259up_add(nat) ).
tff(tcon_Nat_Onat___Groups_Oordered__cancel__comm__monoid__diff,axiom,
ordere1170586879665033532d_diff(nat) ).
tff(tcon_Nat_Onat___Groups_Oordered__cancel__ab__semigroup__add_21,axiom,
ordere580206878836729694up_add(nat) ).
tff(tcon_Nat_Onat___Groups_Oordered__ab__semigroup__add__imp__le_22,axiom,
ordere2412721322843649153imp_le(nat) ).
tff(tcon_Nat_Onat___Bit__Operations_Osemiring__bit__operations_23,axiom,
bit_se359711467146920520ations(nat) ).
tff(tcon_Nat_Onat___Rings_Olinordered__comm__semiring__strict_24,axiom,
linord2810124833399127020strict(nat) ).
tff(tcon_Nat_Onat___Groups_Ostrict__ordered__comm__monoid__add_25,axiom,
strict7427464778891057005id_add(nat) ).
tff(tcon_Nat_Onat___Groups_Oordered__cancel__comm__monoid__add_26,axiom,
ordere8940638589300402666id_add(nat) ).
tff(tcon_Nat_Onat___Groups_Ocanonically__ordered__monoid__add,axiom,
canoni5634975068530333245id_add(nat) ).
tff(tcon_Nat_Onat___Euclidean__Division_Oeuclidean__semiring_27,axiom,
euclid3725896446679973847miring(nat) ).
tff(tcon_Nat_Onat___Topological__Spaces_Otopological__space_28,axiom,
topolo4958980785337419405_space(nat) ).
tff(tcon_Nat_Onat___Topological__Spaces_Olinorder__topology_29,axiom,
topolo1944317154257567458pology(nat) ).
tff(tcon_Nat_Onat___Limits_Otopological__comm__monoid__mult_30,axiom,
topolo4987421752381908075d_mult(nat) ).
tff(tcon_Nat_Onat___Limits_Otopological__comm__monoid__add_31,axiom,
topolo5987344860129210374id_add(nat) ).
tff(tcon_Nat_Onat___Groups_Olinordered__ab__semigroup__add_32,axiom,
linord4140545234300271783up_add(nat) ).
tff(tcon_Nat_Onat___Topological__Spaces_Oorder__topology_33,axiom,
topolo2564578578187576103pology(nat) ).
tff(tcon_Nat_Onat___Rings_Osemiring__1__no__zero__divisors_34,axiom,
semiri2026040879449505780visors(nat) ).
tff(tcon_Nat_Onat___Rings_Olinordered__nonzero__semiring_35,axiom,
linord181362715937106298miring(nat) ).
tff(tcon_Nat_Onat___Limits_Otopological__semigroup__mult_36,axiom,
topolo4211221413907600880p_mult(nat) ).
tff(tcon_Nat_Onat___Rings_Olinordered__semiring__strict_37,axiom,
linord8928482502909563296strict(nat) ).
tff(tcon_Nat_Onat___Rings_Osemiring__no__zero__divisors_38,axiom,
semiri3467727345109120633visors(nat) ).
tff(tcon_Nat_Onat___Groups_Oordered__ab__semigroup__add_39,axiom,
ordere6658533253407199908up_add(nat) ).
tff(tcon_Nat_Onat___GCD_Osemiring__gcd__mult__normalize_40,axiom,
semiri6843258321239162965malize(nat) ).
tff(tcon_Nat_Onat___Limits_Otopological__monoid__mult_41,axiom,
topolo1898628316856586783d_mult(nat) ).
tff(tcon_Nat_Onat___Groups_Oordered__comm__monoid__add_42,axiom,
ordere6911136660526730532id_add(nat) ).
tff(tcon_Nat_Onat___Groups_Ocancel__ab__semigroup__add_43,axiom,
cancel2418104881723323429up_add(nat) ).
tff(tcon_Nat_Onat___Limits_Otopological__monoid__add_44,axiom,
topolo6943815403480290642id_add(nat) ).
tff(tcon_Nat_Onat___Groups_Ocancel__comm__monoid__add_45,axiom,
cancel1802427076303600483id_add(nat) ).
tff(tcon_Nat_Onat___Rings_Ocomm__semiring__1__cancel_46,axiom,
comm_s4317794764714335236cancel(nat) ).
tff(tcon_Nat_Onat___Bit__Operations_Osemiring__bits_47,axiom,
bit_semiring_bits(nat) ).
tff(tcon_Nat_Onat___Topological__Spaces_Ot2__space_48,axiom,
topological_t2_space(nat) ).
tff(tcon_Nat_Onat___Rings_Oordered__comm__semiring_49,axiom,
ordere2520102378445227354miring(nat) ).
tff(tcon_Nat_Onat___Groups_Ocancel__semigroup__add_50,axiom,
cancel_semigroup_add(nat) ).
tff(tcon_Nat_Onat___Rings_Olinordered__semiring_51,axiom,
linordered_semiring(nat) ).
tff(tcon_Nat_Onat___Rings_Oordered__semiring__0_52,axiom,
ordered_semiring_0(nat) ).
tff(tcon_Nat_Onat___Rings_Olinordered__semidom_53,axiom,
linordered_semidom(nat) ).
tff(tcon_Nat_Onat___Lattices_Osemilattice__sup_54,axiom,
semilattice_sup(nat) ).
tff(tcon_Nat_Onat___Lattices_Osemilattice__inf_55,axiom,
semilattice_inf(nat) ).
tff(tcon_Nat_Onat___Groups_Oab__semigroup__mult_56,axiom,
ab_semigroup_mult(nat) ).
tff(tcon_Nat_Onat___Rings_Osemiring__1__cancel_57,axiom,
semiring_1_cancel(nat) ).
tff(tcon_Nat_Onat___Rings_Oalgebraic__semidom_58,axiom,
algebraic_semidom(nat) ).
tff(tcon_Nat_Onat___Groups_Ocomm__monoid__mult_59,axiom,
comm_monoid_mult(nat) ).
tff(tcon_Nat_Onat___Groups_Ocomm__monoid__diff,axiom,
comm_monoid_diff(nat) ).
tff(tcon_Nat_Onat___Groups_Oab__semigroup__add_60,axiom,
ab_semigroup_add(nat) ).
tff(tcon_Nat_Onat___Rings_Oordered__semiring_61,axiom,
ordered_semiring(nat) ).
tff(tcon_Nat_Onat___Parity_Osemiring__parity_62,axiom,
semiring_parity(nat) ).
tff(tcon_Nat_Onat___Groups_Ocomm__monoid__add_63,axiom,
comm_monoid_add(nat) ).
tff(tcon_Nat_Onat___Rings_Osemiring__modulo_64,axiom,
semiring_modulo(nat) ).
tff(tcon_Nat_Onat___Rings_Ocomm__semiring__1_65,axiom,
comm_semiring_1(nat) ).
tff(tcon_Nat_Onat___Rings_Ocomm__semiring__0_66,axiom,
comm_semiring_0(nat) ).
tff(tcon_Nat_Onat___Groups_Osemigroup__mult_67,axiom,
semigroup_mult(nat) ).
tff(tcon_Nat_Onat___Rings_Osemidom__modulo_68,axiom,
semidom_modulo(nat) ).
tff(tcon_Nat_Onat___Rings_Osemidom__divide_69,axiom,
semidom_divide(nat) ).
tff(tcon_Nat_Onat___Num_Osemiring__numeral_70,axiom,
semiring_numeral(nat) ).
tff(tcon_Nat_Onat___Groups_Osemigroup__add_71,axiom,
semigroup_add(nat) ).
tff(tcon_Nat_Onat___Rings_Ozero__less__one_72,axiom,
zero_less_one(nat) ).
tff(tcon_Nat_Onat___Rings_Ocomm__semiring_73,axiom,
comm_semiring(nat) ).
tff(tcon_Nat_Onat___Orderings_Owellorder,axiom,
wellorder(nat) ).
tff(tcon_Nat_Onat___Orderings_Oorder__bot_74,axiom,
order_bot(nat) ).
tff(tcon_Nat_Onat___Nat_Osemiring__char__0_75,axiom,
semiring_char_0(nat) ).
tff(tcon_Nat_Onat___Rings_Ozero__neq__one_76,axiom,
zero_neq_one(nat) ).
tff(tcon_Nat_Onat___Orderings_Opreorder_77,axiom,
preorder(nat) ).
tff(tcon_Nat_Onat___Orderings_Olinorder_78,axiom,
linorder(nat) ).
tff(tcon_Nat_Onat___Groups_Omonoid__mult_79,axiom,
monoid_mult(nat) ).
tff(tcon_Nat_Onat___Groups_Omonoid__add_80,axiom,
monoid_add(nat) ).
tff(tcon_Nat_Onat___Rings_Osemiring__1_81,axiom,
semiring_1(nat) ).
tff(tcon_Nat_Onat___Rings_Osemiring__0_82,axiom,
semiring_0(nat) ).
tff(tcon_Nat_Onat___Orderings_Ono__top_83,axiom,
no_top(nat) ).
tff(tcon_Nat_Onat___Lattices_Olattice_84,axiom,
lattice(nat) ).
tff(tcon_Nat_Onat___GCD_Osemiring__gcd_85,axiom,
semiring_gcd(nat) ).
tff(tcon_Nat_Onat___GCD_Osemiring__Gcd_86,axiom,
semiring_Gcd(nat) ).
tff(tcon_Nat_Onat___Rings_Omult__zero_87,axiom,
mult_zero(nat) ).
tff(tcon_Nat_Onat___Orderings_Oorder_88,axiom,
order(nat) ).
tff(tcon_Nat_Onat___Rings_Osemiring_89,axiom,
semiring(nat) ).
tff(tcon_Nat_Onat___Rings_Osemidom_90,axiom,
semidom(nat) ).
tff(tcon_Nat_Onat___Orderings_Oord_91,axiom,
ord(nat) ).
tff(tcon_Nat_Onat___Groups_Ominus_92,axiom,
minus(nat) ).
tff(tcon_Nat_Onat___Power_Opower_93,axiom,
power(nat) ).
tff(tcon_Nat_Onat___Num_Onumeral_94,axiom,
numeral(nat) ).
tff(tcon_Nat_Onat___Groups_Ozero_95,axiom,
zero(nat) ).
tff(tcon_Nat_Onat___Groups_Oplus_96,axiom,
plus(nat) ).
tff(tcon_Nat_Onat___Groups_Oone_97,axiom,
one(nat) ).
tff(tcon_Nat_Onat___Rings_Odvd_98,axiom,
dvd(nat) ).
tff(tcon_Nat_Onat___Nat_Osize,axiom,
size(nat) ).
tff(tcon_Num_Onum___Orderings_Opreorder_99,axiom,
preorder(num) ).
tff(tcon_Num_Onum___Orderings_Olinorder_100,axiom,
linorder(num) ).
tff(tcon_Num_Onum___Orderings_Oorder_101,axiom,
order(num) ).
tff(tcon_Num_Onum___Orderings_Oord_102,axiom,
ord(num) ).
tff(tcon_Num_Onum___Groups_Oplus_103,axiom,
plus(num) ).
tff(tcon_Num_Onum___Nat_Osize_104,axiom,
size(num) ).
tff(tcon_Rat_Orat___Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct_105,axiom,
semiri1453513574482234551roduct(rat) ).
tff(tcon_Rat_Orat___Groups_Oordered__ab__semigroup__monoid__add__imp__le_106,axiom,
ordere1937475149494474687imp_le(rat) ).
tff(tcon_Rat_Orat___Rings_Osemiring__no__zero__divisors__cancel_107,axiom,
semiri6575147826004484403cancel(rat) ).
tff(tcon_Rat_Orat___Groups_Ostrict__ordered__ab__semigroup__add_108,axiom,
strict9044650504122735259up_add(rat) ).
tff(tcon_Rat_Orat___Groups_Oordered__cancel__ab__semigroup__add_109,axiom,
ordere580206878836729694up_add(rat) ).
tff(tcon_Rat_Orat___Groups_Oordered__ab__semigroup__add__imp__le_110,axiom,
ordere2412721322843649153imp_le(rat) ).
tff(tcon_Rat_Orat___Rings_Olinordered__comm__semiring__strict_111,axiom,
linord2810124833399127020strict(rat) ).
tff(tcon_Rat_Orat___Groups_Ostrict__ordered__comm__monoid__add_112,axiom,
strict7427464778891057005id_add(rat) ).
tff(tcon_Rat_Orat___Groups_Oordered__cancel__comm__monoid__add_113,axiom,
ordere8940638589300402666id_add(rat) ).
tff(tcon_Rat_Orat___Archimedean__Field_Oarchimedean__field,axiom,
archim462609752435547400_field(rat) ).
tff(tcon_Rat_Orat___Rings_Olinordered__semiring__1__strict_114,axiom,
linord715952674999750819strict(rat) ).
tff(tcon_Rat_Orat___Orderings_Ounbounded__dense__linorder,axiom,
unboun7993243217541854897norder(rat) ).
tff(tcon_Rat_Orat___Groups_Olinordered__ab__semigroup__add_115,axiom,
linord4140545234300271783up_add(rat) ).
tff(tcon_Rat_Orat___Rings_Osemiring__1__no__zero__divisors_116,axiom,
semiri2026040879449505780visors(rat) ).
tff(tcon_Rat_Orat___Rings_Olinordered__nonzero__semiring_117,axiom,
linord181362715937106298miring(rat) ).
tff(tcon_Rat_Orat___Rings_Olinordered__semiring__strict_118,axiom,
linord8928482502909563296strict(rat) ).
tff(tcon_Rat_Orat___Rings_Osemiring__no__zero__divisors_119,axiom,
semiri3467727345109120633visors(rat) ).
tff(tcon_Rat_Orat___Groups_Oordered__ab__semigroup__add_120,axiom,
ordere6658533253407199908up_add(rat) ).
tff(tcon_Rat_Orat___Groups_Oordered__ab__group__add__abs_121,axiom,
ordere166539214618696060dd_abs(rat) ).
tff(tcon_Rat_Orat___Archimedean__Field_Ofloor__ceiling,axiom,
archim2362893244070406136eiling(rat) ).
tff(tcon_Rat_Orat___Groups_Oordered__comm__monoid__add_122,axiom,
ordere6911136660526730532id_add(rat) ).
tff(tcon_Rat_Orat___Groups_Olinordered__ab__group__add_123,axiom,
linord5086331880401160121up_add(rat) ).
tff(tcon_Rat_Orat___Groups_Ocancel__ab__semigroup__add_124,axiom,
cancel2418104881723323429up_add(rat) ).
tff(tcon_Rat_Orat___Rings_Oring__1__no__zero__divisors_125,axiom,
ring_15535105094025558882visors(rat) ).
tff(tcon_Rat_Orat___Groups_Ocancel__comm__monoid__add_126,axiom,
cancel1802427076303600483id_add(rat) ).
tff(tcon_Rat_Orat___Rings_Olinordered__ring__strict_127,axiom,
linord4710134922213307826strict(rat) ).
tff(tcon_Rat_Orat___Rings_Ocomm__semiring__1__cancel_128,axiom,
comm_s4317794764714335236cancel(rat) ).
tff(tcon_Rat_Orat___Rings_Oordered__comm__semiring_129,axiom,
ordere2520102378445227354miring(rat) ).
tff(tcon_Rat_Orat___Rings_Olinordered__semiring__1_130,axiom,
linord6961819062388156250ring_1(rat) ).
tff(tcon_Rat_Orat___Groups_Oordered__ab__group__add_131,axiom,
ordered_ab_group_add(rat) ).
tff(tcon_Rat_Orat___Groups_Ocancel__semigroup__add_132,axiom,
cancel_semigroup_add(rat) ).
tff(tcon_Rat_Orat___Rings_Olinordered__semiring_133,axiom,
linordered_semiring(rat) ).
tff(tcon_Rat_Orat___Rings_Oordered__semiring__0_134,axiom,
ordered_semiring_0(rat) ).
tff(tcon_Rat_Orat___Rings_Olinordered__semidom_135,axiom,
linordered_semidom(rat) ).
tff(tcon_Rat_Orat___Orderings_Odense__linorder,axiom,
dense_linorder(rat) ).
tff(tcon_Rat_Orat___Lattices_Osemilattice__sup_136,axiom,
semilattice_sup(rat) ).
tff(tcon_Rat_Orat___Lattices_Osemilattice__inf_137,axiom,
semilattice_inf(rat) ).
tff(tcon_Rat_Orat___Groups_Oab__semigroup__mult_138,axiom,
ab_semigroup_mult(rat) ).
tff(tcon_Rat_Orat___Rings_Osemiring__1__cancel_139,axiom,
semiring_1_cancel(rat) ).
tff(tcon_Rat_Orat___Groups_Ocomm__monoid__mult_140,axiom,
comm_monoid_mult(rat) ).
tff(tcon_Rat_Orat___Groups_Oab__semigroup__add_141,axiom,
ab_semigroup_add(rat) ).
tff(tcon_Rat_Orat___Fields_Olinordered__field,axiom,
linordered_field(rat) ).
tff(tcon_Rat_Orat___Rings_Oordered__semiring_142,axiom,
ordered_semiring(rat) ).
tff(tcon_Rat_Orat___Rings_Oordered__ring__abs_143,axiom,
ordered_ring_abs(rat) ).
tff(tcon_Rat_Orat___Groups_Ocomm__monoid__add_144,axiom,
comm_monoid_add(rat) ).
tff(tcon_Rat_Orat___Rings_Olinordered__ring_145,axiom,
linordered_ring(rat) ).
tff(tcon_Rat_Orat___Rings_Olinordered__idom_146,axiom,
linordered_idom(rat) ).
tff(tcon_Rat_Orat___Rings_Ocomm__semiring__1_147,axiom,
comm_semiring_1(rat) ).
tff(tcon_Rat_Orat___Rings_Ocomm__semiring__0_148,axiom,
comm_semiring_0(rat) ).
tff(tcon_Rat_Orat___Orderings_Odense__order,axiom,
dense_order(rat) ).
tff(tcon_Rat_Orat___Groups_Osemigroup__mult_149,axiom,
semigroup_mult(rat) ).
tff(tcon_Rat_Orat___Rings_Osemidom__divide_150,axiom,
semidom_divide(rat) ).
tff(tcon_Rat_Orat___Num_Osemiring__numeral_151,axiom,
semiring_numeral(rat) ).
tff(tcon_Rat_Orat___Groups_Osemigroup__add_152,axiom,
semigroup_add(rat) ).
tff(tcon_Rat_Orat___Fields_Ofield__abs__sgn,axiom,
field_abs_sgn(rat) ).
tff(tcon_Rat_Orat___Fields_Odivision__ring,axiom,
division_ring(rat) ).
tff(tcon_Rat_Orat___Rings_Ozero__less__one_153,axiom,
zero_less_one(rat) ).
tff(tcon_Rat_Orat___Rings_Ocomm__semiring_154,axiom,
comm_semiring(rat) ).
tff(tcon_Rat_Orat___Nat_Osemiring__char__0_155,axiom,
semiring_char_0(rat) ).
tff(tcon_Rat_Orat___Groups_Oab__group__add_156,axiom,
ab_group_add(rat) ).
tff(tcon_Rat_Orat___Fields_Ofield__char__0,axiom,
field_char_0(rat) ).
tff(tcon_Rat_Orat___Rings_Ozero__neq__one_157,axiom,
zero_neq_one(rat) ).
tff(tcon_Rat_Orat___Rings_Oordered__ring_158,axiom,
ordered_ring(rat) ).
tff(tcon_Rat_Orat___Rings_Oidom__abs__sgn_159,axiom,
idom_abs_sgn(rat) ).
tff(tcon_Rat_Orat___Orderings_Opreorder_160,axiom,
preorder(rat) ).
tff(tcon_Rat_Orat___Orderings_Olinorder_161,axiom,
linorder(rat) ).
tff(tcon_Rat_Orat___Groups_Omonoid__mult_162,axiom,
monoid_mult(rat) ).
tff(tcon_Rat_Orat___Rings_Oidom__divide_163,axiom,
idom_divide(rat) ).
tff(tcon_Rat_Orat___Rings_Ocomm__ring__1_164,axiom,
comm_ring_1(rat) ).
tff(tcon_Rat_Orat___Groups_Omonoid__add_165,axiom,
monoid_add(rat) ).
tff(tcon_Rat_Orat___Rings_Osemiring__1_166,axiom,
semiring_1(rat) ).
tff(tcon_Rat_Orat___Rings_Osemiring__0_167,axiom,
semiring_0(rat) ).
tff(tcon_Rat_Orat___Orderings_Ono__top_168,axiom,
no_top(rat) ).
tff(tcon_Rat_Orat___Orderings_Ono__bot_169,axiom,
no_bot(rat) ).
tff(tcon_Rat_Orat___Lattices_Olattice_170,axiom,
lattice(rat) ).
tff(tcon_Rat_Orat___Groups_Ogroup__add_171,axiom,
group_add(rat) ).
tff(tcon_Rat_Orat___Rings_Omult__zero_172,axiom,
mult_zero(rat) ).
tff(tcon_Rat_Orat___Rings_Ocomm__ring_173,axiom,
comm_ring(rat) ).
tff(tcon_Rat_Orat___Orderings_Oorder_174,axiom,
order(rat) ).
tff(tcon_Rat_Orat___Num_Oneg__numeral_175,axiom,
neg_numeral(rat) ).
tff(tcon_Rat_Orat___Nat_Oring__char__0_176,axiom,
ring_char_0(rat) ).
tff(tcon_Rat_Orat___Rings_Osemiring_177,axiom,
semiring(rat) ).
tff(tcon_Rat_Orat___Fields_Oinverse,axiom,
inverse(rat) ).
tff(tcon_Rat_Orat___Rings_Osemidom_178,axiom,
semidom(rat) ).
tff(tcon_Rat_Orat___Orderings_Oord_179,axiom,
ord(rat) ).
tff(tcon_Rat_Orat___Groups_Ouminus_180,axiom,
uminus(rat) ).
tff(tcon_Rat_Orat___Rings_Oring__1_181,axiom,
ring_1(rat) ).
tff(tcon_Rat_Orat___Rings_Oabs__if_182,axiom,
abs_if(rat) ).
tff(tcon_Rat_Orat___Groups_Ominus_183,axiom,
minus(rat) ).
tff(tcon_Rat_Orat___Fields_Ofield,axiom,
field(rat) ).
tff(tcon_Rat_Orat___Power_Opower_184,axiom,
power(rat) ).
tff(tcon_Rat_Orat___Num_Onumeral_185,axiom,
numeral(rat) ).
tff(tcon_Rat_Orat___Groups_Ozero_186,axiom,
zero(rat) ).
tff(tcon_Rat_Orat___Groups_Oplus_187,axiom,
plus(rat) ).
tff(tcon_Rat_Orat___Rings_Oring_188,axiom,
ring(rat) ).
tff(tcon_Rat_Orat___Rings_Oidom_189,axiom,
idom(rat) ).
tff(tcon_Rat_Orat___Groups_Oone_190,axiom,
one(rat) ).
tff(tcon_Rat_Orat___Rings_Odvd_191,axiom,
dvd(rat) ).
tff(tcon_Set_Oset___Conditionally__Complete__Lattices_Oconditionally__complete__lattice_192,axiom,
! [A11: $tType] : condit1219197933456340205attice(set(A11)) ).
tff(tcon_Set_Oset___Countable__Complete__Lattices_Ocountable__complete__lattice_193,axiom,
! [A11: $tType] : counta3822494911875563373attice(set(A11)) ).
tff(tcon_Set_Oset___Complete__Lattices_Ocomplete__boolean__algebra_194,axiom,
! [A11: $tType] : comple489889107523837845lgebra(set(A11)) ).
tff(tcon_Set_Oset___Lattices_Obounded__semilattice__sup__bot_195,axiom,
! [A11: $tType] : bounde4967611905675639751up_bot(set(A11)) ).
tff(tcon_Set_Oset___Lattices_Obounded__semilattice__inf__top_196,axiom,
! [A11: $tType] : bounde4346867609351753570nf_top(set(A11)) ).
tff(tcon_Set_Oset___Complete__Lattices_Ocomplete__lattice_197,axiom,
! [A11: $tType] : comple6319245703460814977attice(set(A11)) ).
tff(tcon_Set_Oset___Boolean__Algebras_Oboolean__algebra_198,axiom,
! [A11: $tType] : boolea8198339166811842893lgebra(set(A11)) ).
tff(tcon_Set_Oset___Lattices_Osemilattice__sup_199,axiom,
! [A11: $tType] : semilattice_sup(set(A11)) ).
tff(tcon_Set_Oset___Lattices_Osemilattice__inf_200,axiom,
! [A11: $tType] : semilattice_inf(set(A11)) ).
tff(tcon_Set_Oset___Lattices_Obounded__lattice_201,axiom,
! [A11: $tType] : bounded_lattice(set(A11)) ).
tff(tcon_Set_Oset___Orderings_Oorder__top_202,axiom,
! [A11: $tType] : order_top(set(A11)) ).
tff(tcon_Set_Oset___Orderings_Oorder__bot_203,axiom,
! [A11: $tType] : order_bot(set(A11)) ).
tff(tcon_Set_Oset___Orderings_Opreorder_204,axiom,
! [A11: $tType] : preorder(set(A11)) ).
tff(tcon_Set_Oset___Lattices_Olattice_205,axiom,
! [A11: $tType] : lattice(set(A11)) ).
tff(tcon_Set_Oset___Orderings_Oorder_206,axiom,
! [A11: $tType] : order(set(A11)) ).
tff(tcon_Set_Oset___Orderings_Oord_207,axiom,
! [A11: $tType] : ord(set(A11)) ).
tff(tcon_Set_Oset___Groups_Ouminus_208,axiom,
! [A11: $tType] : uminus(set(A11)) ).
tff(tcon_Set_Oset___Groups_Ominus_209,axiom,
! [A11: $tType] : minus(set(A11)) ).
tff(tcon_HOL_Obool___Conditionally__Complete__Lattices_Oconditionally__complete__lattice_210,axiom,
condit1219197933456340205attice(bool) ).
tff(tcon_HOL_Obool___Countable__Complete__Lattices_Ocountable__complete__lattice_211,axiom,
counta3822494911875563373attice(bool) ).
tff(tcon_HOL_Obool___Complete__Lattices_Ocomplete__boolean__algebra_212,axiom,
comple489889107523837845lgebra(bool) ).
tff(tcon_HOL_Obool___Topological__Spaces_Otopological__space_213,axiom,
topolo4958980785337419405_space(bool) ).
tff(tcon_HOL_Obool___Topological__Spaces_Olinorder__topology_214,axiom,
topolo1944317154257567458pology(bool) ).
tff(tcon_HOL_Obool___Lattices_Obounded__semilattice__sup__bot_215,axiom,
bounde4967611905675639751up_bot(bool) ).
tff(tcon_HOL_Obool___Lattices_Obounded__semilattice__inf__top_216,axiom,
bounde4346867609351753570nf_top(bool) ).
tff(tcon_HOL_Obool___Complete__Lattices_Ocomplete__lattice_217,axiom,
comple6319245703460814977attice(bool) ).
tff(tcon_HOL_Obool___Topological__Spaces_Oorder__topology_218,axiom,
topolo2564578578187576103pology(bool) ).
tff(tcon_HOL_Obool___Boolean__Algebras_Oboolean__algebra_219,axiom,
boolea8198339166811842893lgebra(bool) ).
tff(tcon_HOL_Obool___Topological__Spaces_Ot2__space_220,axiom,
topological_t2_space(bool) ).
tff(tcon_HOL_Obool___Lattices_Osemilattice__sup_221,axiom,
semilattice_sup(bool) ).
tff(tcon_HOL_Obool___Lattices_Osemilattice__inf_222,axiom,
semilattice_inf(bool) ).
tff(tcon_HOL_Obool___Lattices_Obounded__lattice_223,axiom,
bounded_lattice(bool) ).
tff(tcon_HOL_Obool___Orderings_Oorder__top_224,axiom,
order_top(bool) ).
tff(tcon_HOL_Obool___Orderings_Oorder__bot_225,axiom,
order_bot(bool) ).
tff(tcon_HOL_Obool___Orderings_Opreorder_226,axiom,
preorder(bool) ).
tff(tcon_HOL_Obool___Orderings_Olinorder_227,axiom,
linorder(bool) ).
tff(tcon_HOL_Obool___Lattices_Olattice_228,axiom,
lattice(bool) ).
tff(tcon_HOL_Obool___Orderings_Oorder_229,axiom,
order(bool) ).
tff(tcon_HOL_Obool___Orderings_Oord_230,axiom,
ord(bool) ).
tff(tcon_HOL_Obool___Groups_Ouminus_231,axiom,
uminus(bool) ).
tff(tcon_HOL_Obool___Groups_Ominus_232,axiom,
minus(bool) ).
tff(tcon_List_Olist___Nat_Osize_233,axiom,
! [A11: $tType] : size(list(A11)) ).
tff(tcon_Real_Oreal___Conditionally__Complete__Lattices_Oconditionally__complete__linorder_234,axiom,
condit6923001295902523014norder(real) ).
tff(tcon_Real_Oreal___Conditionally__Complete__Lattices_Oconditionally__complete__lattice_235,axiom,
condit1219197933456340205attice(real) ).
tff(tcon_Real_Oreal___Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct_236,axiom,
semiri1453513574482234551roduct(real) ).
tff(tcon_Real_Oreal___Conditionally__Complete__Lattices_Olinear__continuum,axiom,
condit5016429287641298734tinuum(real) ).
tff(tcon_Real_Oreal___Groups_Oordered__ab__semigroup__monoid__add__imp__le_237,axiom,
ordere1937475149494474687imp_le(real) ).
tff(tcon_Real_Oreal___Topological__Spaces_Olinear__continuum__topology,axiom,
topolo8458572112393995274pology(real) ).
tff(tcon_Real_Oreal___Topological__Spaces_Ofirst__countable__topology,axiom,
topolo3112930676232923870pology(real) ).
tff(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__normed__div__algebra,axiom,
real_V8999393235501362500lgebra(real) ).
tff(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__normed__algebra__1,axiom,
real_V2822296259951069270ebra_1(real) ).
tff(tcon_Real_Oreal___Rings_Osemiring__no__zero__divisors__cancel_238,axiom,
semiri6575147826004484403cancel(real) ).
tff(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__normed__algebra,axiom,
real_V4412858255891104859lgebra(real) ).
tff(tcon_Real_Oreal___Real__Vector__Spaces_Oordered__real__vector,axiom,
real_V5355595471888546746vector(real) ).
tff(tcon_Real_Oreal___Groups_Ostrict__ordered__ab__semigroup__add_239,axiom,
strict9044650504122735259up_add(real) ).
tff(tcon_Real_Oreal___Groups_Oordered__cancel__ab__semigroup__add_240,axiom,
ordere580206878836729694up_add(real) ).
tff(tcon_Real_Oreal___Groups_Oordered__ab__semigroup__add__imp__le_241,axiom,
ordere2412721322843649153imp_le(real) ).
tff(tcon_Real_Oreal___Rings_Olinordered__comm__semiring__strict_242,axiom,
linord2810124833399127020strict(real) ).
tff(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__normed__vector,axiom,
real_V822414075346904944vector(real) ).
tff(tcon_Real_Oreal___Groups_Ostrict__ordered__comm__monoid__add_243,axiom,
strict7427464778891057005id_add(real) ).
tff(tcon_Real_Oreal___Groups_Oordered__cancel__comm__monoid__add_244,axiom,
ordere8940638589300402666id_add(real) ).
tff(tcon_Real_Oreal___Topological__Spaces_Otopological__space_245,axiom,
topolo4958980785337419405_space(real) ).
tff(tcon_Real_Oreal___Topological__Spaces_Olinorder__topology_246,axiom,
topolo1944317154257567458pology(real) ).
tff(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__normed__field,axiom,
real_V3459762299906320749_field(real) ).
tff(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__div__algebra,axiom,
real_V5047593784448816457lgebra(real) ).
tff(tcon_Real_Oreal___Archimedean__Field_Oarchimedean__field_247,axiom,
archim462609752435547400_field(real) ).
tff(tcon_Real_Oreal___Rings_Olinordered__semiring__1__strict_248,axiom,
linord715952674999750819strict(real) ).
tff(tcon_Real_Oreal___Orderings_Ounbounded__dense__linorder_249,axiom,
unboun7993243217541854897norder(real) ).
tff(tcon_Real_Oreal___Limits_Otopological__comm__monoid__add_250,axiom,
topolo5987344860129210374id_add(real) ).
tff(tcon_Real_Oreal___Groups_Olinordered__ab__semigroup__add_251,axiom,
linord4140545234300271783up_add(real) ).
tff(tcon_Real_Oreal___Topological__Spaces_Oorder__topology_252,axiom,
topolo2564578578187576103pology(real) ).
tff(tcon_Real_Oreal___Rings_Osemiring__1__no__zero__divisors_253,axiom,
semiri2026040879449505780visors(real) ).
tff(tcon_Real_Oreal___Rings_Olinordered__nonzero__semiring_254,axiom,
linord181362715937106298miring(real) ).
tff(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__algebra__1,axiom,
real_V2191834092415804123ebra_1(real) ).
tff(tcon_Real_Oreal___Real__Vector__Spaces_Ocomplete__space,axiom,
real_V8037385150606011577_space(real) ).
tff(tcon_Real_Oreal___Limits_Otopological__semigroup__mult_255,axiom,
topolo4211221413907600880p_mult(real) ).
tff(tcon_Real_Oreal___Topological__Spaces_Ouniform__space,axiom,
topolo7287701948861334536_space(real) ).
tff(tcon_Real_Oreal___Topological__Spaces_Operfect__space,axiom,
topolo8386298272705272623_space(real) ).
tff(tcon_Real_Oreal___Rings_Olinordered__semiring__strict_256,axiom,
linord8928482502909563296strict(real) ).
tff(tcon_Real_Oreal___Rings_Osemiring__no__zero__divisors_257,axiom,
semiri3467727345109120633visors(real) ).
tff(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__algebra,axiom,
real_V6157519004096292374lgebra(real) ).
tff(tcon_Real_Oreal___Real__Vector__Spaces_Ometric__space,axiom,
real_V7819770556892013058_space(real) ).
tff(tcon_Real_Oreal___Limits_Otopological__ab__group__add,axiom,
topolo1287966508704411220up_add(real) ).
tff(tcon_Real_Oreal___Groups_Oordered__ab__semigroup__add_258,axiom,
ordere6658533253407199908up_add(real) ).
tff(tcon_Real_Oreal___Groups_Oordered__ab__group__add__abs_259,axiom,
ordere166539214618696060dd_abs(real) ).
tff(tcon_Real_Oreal___Archimedean__Field_Ofloor__ceiling_260,axiom,
archim2362893244070406136eiling(real) ).
tff(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__vector,axiom,
real_V4867850818363320053vector(real) ).
tff(tcon_Real_Oreal___Groups_Oordered__comm__monoid__add_261,axiom,
ordere6911136660526730532id_add(real) ).
tff(tcon_Real_Oreal___Groups_Olinordered__ab__group__add_262,axiom,
linord5086331880401160121up_add(real) ).
tff(tcon_Real_Oreal___Groups_Ocancel__ab__semigroup__add_263,axiom,
cancel2418104881723323429up_add(real) ).
tff(tcon_Real_Oreal___Rings_Oring__1__no__zero__divisors_264,axiom,
ring_15535105094025558882visors(real) ).
tff(tcon_Real_Oreal___Real__Vector__Spaces_Oreal__field,axiom,
real_V7773925162809079976_field(real) ).
tff(tcon_Real_Oreal___Limits_Otopological__monoid__add_265,axiom,
topolo6943815403480290642id_add(real) ).
tff(tcon_Real_Oreal___Groups_Ocancel__comm__monoid__add_266,axiom,
cancel1802427076303600483id_add(real) ).
tff(tcon_Real_Oreal___Rings_Olinordered__ring__strict_267,axiom,
linord4710134922213307826strict(real) ).
tff(tcon_Real_Oreal___Rings_Ocomm__semiring__1__cancel_268,axiom,
comm_s4317794764714335236cancel(real) ).
tff(tcon_Real_Oreal___Real__Vector__Spaces_Odist__norm,axiom,
real_V6936659425649961206t_norm(real) ).
tff(tcon_Real_Oreal___Limits_Otopological__group__add,axiom,
topolo1633459387980952147up_add(real) ).
tff(tcon_Real_Oreal___Topological__Spaces_Ot2__space_269,axiom,
topological_t2_space(real) ).
tff(tcon_Real_Oreal___Rings_Oordered__comm__semiring_270,axiom,
ordere2520102378445227354miring(real) ).
tff(tcon_Real_Oreal___Rings_Olinordered__semiring__1_271,axiom,
linord6961819062388156250ring_1(real) ).
tff(tcon_Real_Oreal___Groups_Oordered__ab__group__add_272,axiom,
ordered_ab_group_add(real) ).
tff(tcon_Real_Oreal___Groups_Ocancel__semigroup__add_273,axiom,
cancel_semigroup_add(real) ).
tff(tcon_Real_Oreal___Rings_Olinordered__semiring_274,axiom,
linordered_semiring(real) ).
tff(tcon_Real_Oreal___Real__Vector__Spaces_Obanach,axiom,
real_Vector_banach(real) ).
tff(tcon_Real_Oreal___Rings_Oordered__semiring__0_275,axiom,
ordered_semiring_0(real) ).
tff(tcon_Real_Oreal___Rings_Olinordered__semidom_276,axiom,
linordered_semidom(real) ).
tff(tcon_Real_Oreal___Orderings_Odense__linorder_277,axiom,
dense_linorder(real) ).
tff(tcon_Real_Oreal___Lattices_Osemilattice__sup_278,axiom,
semilattice_sup(real) ).
tff(tcon_Real_Oreal___Lattices_Osemilattice__inf_279,axiom,
semilattice_inf(real) ).
tff(tcon_Real_Oreal___Groups_Oab__semigroup__mult_280,axiom,
ab_semigroup_mult(real) ).
tff(tcon_Real_Oreal___Rings_Osemiring__1__cancel_281,axiom,
semiring_1_cancel(real) ).
tff(tcon_Real_Oreal___Groups_Ocomm__monoid__mult_282,axiom,
comm_monoid_mult(real) ).
tff(tcon_Real_Oreal___Groups_Oab__semigroup__add_283,axiom,
ab_semigroup_add(real) ).
tff(tcon_Real_Oreal___Fields_Olinordered__field_284,axiom,
linordered_field(real) ).
tff(tcon_Real_Oreal___Rings_Oordered__semiring_285,axiom,
ordered_semiring(real) ).
tff(tcon_Real_Oreal___Rings_Oordered__ring__abs_286,axiom,
ordered_ring_abs(real) ).
tff(tcon_Real_Oreal___Groups_Ocomm__monoid__add_287,axiom,
comm_monoid_add(real) ).
tff(tcon_Real_Oreal___Rings_Olinordered__ring_288,axiom,
linordered_ring(real) ).
tff(tcon_Real_Oreal___Rings_Olinordered__idom_289,axiom,
linordered_idom(real) ).
tff(tcon_Real_Oreal___Rings_Ocomm__semiring__1_290,axiom,
comm_semiring_1(real) ).
tff(tcon_Real_Oreal___Rings_Ocomm__semiring__0_291,axiom,
comm_semiring_0(real) ).
tff(tcon_Real_Oreal___Orderings_Odense__order_292,axiom,
dense_order(real) ).
tff(tcon_Real_Oreal___Groups_Osemigroup__mult_293,axiom,
semigroup_mult(real) ).
tff(tcon_Real_Oreal___Rings_Osemidom__divide_294,axiom,
semidom_divide(real) ).
tff(tcon_Real_Oreal___Num_Osemiring__numeral_295,axiom,
semiring_numeral(real) ).
tff(tcon_Real_Oreal___Groups_Osemigroup__add_296,axiom,
semigroup_add(real) ).
tff(tcon_Real_Oreal___Fields_Ofield__abs__sgn_297,axiom,
field_abs_sgn(real) ).
tff(tcon_Real_Oreal___Fields_Odivision__ring_298,axiom,
division_ring(real) ).
tff(tcon_Real_Oreal___Rings_Ozero__less__one_299,axiom,
zero_less_one(real) ).
tff(tcon_Real_Oreal___Rings_Ocomm__semiring_300,axiom,
comm_semiring(real) ).
tff(tcon_Real_Oreal___Nat_Osemiring__char__0_301,axiom,
semiring_char_0(real) ).
tff(tcon_Real_Oreal___Groups_Oab__group__add_302,axiom,
ab_group_add(real) ).
tff(tcon_Real_Oreal___Fields_Ofield__char__0_303,axiom,
field_char_0(real) ).
tff(tcon_Real_Oreal___Rings_Ozero__neq__one_304,axiom,
zero_neq_one(real) ).
tff(tcon_Real_Oreal___Rings_Oordered__ring_305,axiom,
ordered_ring(real) ).
tff(tcon_Real_Oreal___Rings_Oidom__abs__sgn_306,axiom,
idom_abs_sgn(real) ).
tff(tcon_Real_Oreal___Orderings_Opreorder_307,axiom,
preorder(real) ).
tff(tcon_Real_Oreal___Orderings_Olinorder_308,axiom,
linorder(real) ).
tff(tcon_Real_Oreal___Groups_Omonoid__mult_309,axiom,
monoid_mult(real) ).
tff(tcon_Real_Oreal___Transcendental_Oln,axiom,
ln(real) ).
tff(tcon_Real_Oreal___Rings_Oidom__divide_310,axiom,
idom_divide(real) ).
tff(tcon_Real_Oreal___Rings_Ocomm__ring__1_311,axiom,
comm_ring_1(real) ).
tff(tcon_Real_Oreal___Groups_Omonoid__add_312,axiom,
monoid_add(real) ).
tff(tcon_Real_Oreal___Rings_Osemiring__1_313,axiom,
semiring_1(real) ).
tff(tcon_Real_Oreal___Rings_Osemiring__0_314,axiom,
semiring_0(real) ).
tff(tcon_Real_Oreal___Orderings_Ono__top_315,axiom,
no_top(real) ).
tff(tcon_Real_Oreal___Orderings_Ono__bot_316,axiom,
no_bot(real) ).
tff(tcon_Real_Oreal___Lattices_Olattice_317,axiom,
lattice(real) ).
tff(tcon_Real_Oreal___Groups_Ogroup__add_318,axiom,
group_add(real) ).
tff(tcon_Real_Oreal___Rings_Omult__zero_319,axiom,
mult_zero(real) ).
tff(tcon_Real_Oreal___Rings_Ocomm__ring_320,axiom,
comm_ring(real) ).
tff(tcon_Real_Oreal___Orderings_Oorder_321,axiom,
order(real) ).
tff(tcon_Real_Oreal___Num_Oneg__numeral_322,axiom,
neg_numeral(real) ).
tff(tcon_Real_Oreal___Nat_Oring__char__0_323,axiom,
ring_char_0(real) ).
tff(tcon_Real_Oreal___Rings_Osemiring_324,axiom,
semiring(real) ).
tff(tcon_Real_Oreal___Fields_Oinverse_325,axiom,
inverse(real) ).
tff(tcon_Real_Oreal___Rings_Osemidom_326,axiom,
semidom(real) ).
tff(tcon_Real_Oreal___Orderings_Oord_327,axiom,
ord(real) ).
tff(tcon_Real_Oreal___Groups_Ouminus_328,axiom,
uminus(real) ).
tff(tcon_Real_Oreal___Rings_Oring__1_329,axiom,
ring_1(real) ).
tff(tcon_Real_Oreal___Rings_Oabs__if_330,axiom,
abs_if(real) ).
tff(tcon_Real_Oreal___Groups_Ominus_331,axiom,
minus(real) ).
tff(tcon_Real_Oreal___Fields_Ofield_332,axiom,
field(real) ).
tff(tcon_Real_Oreal___Power_Opower_333,axiom,
power(real) ).
tff(tcon_Real_Oreal___Num_Onumeral_334,axiom,
numeral(real) ).
tff(tcon_Real_Oreal___Groups_Ozero_335,axiom,
zero(real) ).
tff(tcon_Real_Oreal___Groups_Oplus_336,axiom,
plus(real) ).
tff(tcon_Real_Oreal___Rings_Oring_337,axiom,
ring(real) ).
tff(tcon_Real_Oreal___Rings_Oidom_338,axiom,
idom(real) ).
tff(tcon_Real_Oreal___Groups_Oone_339,axiom,
one(real) ).
tff(tcon_Real_Oreal___Rings_Odvd_340,axiom,
dvd(real) ).
tff(tcon_String_Ochar___Nat_Osize_341,axiom,
size(char) ).
tff(tcon_Sum__Type_Osum___Nat_Osize_342,axiom,
! [A11: $tType,A15: $tType] : size(sum_sum(A11,A15)) ).
tff(tcon_Filter_Ofilter___Conditionally__Complete__Lattices_Oconditionally__complete__lattice_343,axiom,
! [A11: $tType] : condit1219197933456340205attice(filter(A11)) ).
tff(tcon_Filter_Ofilter___Countable__Complete__Lattices_Ocountable__complete__lattice_344,axiom,
! [A11: $tType] : counta3822494911875563373attice(filter(A11)) ).
tff(tcon_Filter_Ofilter___Lattices_Obounded__semilattice__sup__bot_345,axiom,
! [A11: $tType] : bounde4967611905675639751up_bot(filter(A11)) ).
tff(tcon_Filter_Ofilter___Lattices_Obounded__semilattice__inf__top_346,axiom,
! [A11: $tType] : bounde4346867609351753570nf_top(filter(A11)) ).
tff(tcon_Filter_Ofilter___Complete__Lattices_Ocomplete__lattice_347,axiom,
! [A11: $tType] : comple6319245703460814977attice(filter(A11)) ).
tff(tcon_Filter_Ofilter___Lattices_Osemilattice__sup_348,axiom,
! [A11: $tType] : semilattice_sup(filter(A11)) ).
tff(tcon_Filter_Ofilter___Lattices_Osemilattice__inf_349,axiom,
! [A11: $tType] : semilattice_inf(filter(A11)) ).
tff(tcon_Filter_Ofilter___Lattices_Obounded__lattice_350,axiom,
! [A11: $tType] : bounded_lattice(filter(A11)) ).
tff(tcon_Filter_Ofilter___Orderings_Oorder__top_351,axiom,
! [A11: $tType] : order_top(filter(A11)) ).
tff(tcon_Filter_Ofilter___Orderings_Oorder__bot_352,axiom,
! [A11: $tType] : order_bot(filter(A11)) ).
tff(tcon_Filter_Ofilter___Orderings_Opreorder_353,axiom,
! [A11: $tType] : preorder(filter(A11)) ).
tff(tcon_Filter_Ofilter___Lattices_Olattice_354,axiom,
! [A11: $tType] : lattice(filter(A11)) ).
tff(tcon_Filter_Ofilter___Orderings_Oorder_355,axiom,
! [A11: $tType] : order(filter(A11)) ).
tff(tcon_Filter_Ofilter___Orderings_Oord_356,axiom,
! [A11: $tType] : ord(filter(A11)) ).
tff(tcon_Option_Ooption___Nat_Osize_357,axiom,
! [A11: $tType] : size(option(A11)) ).
tff(tcon_Complex_Ocomplex___Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct_358,axiom,
semiri1453513574482234551roduct(complex) ).
tff(tcon_Complex_Ocomplex___Topological__Spaces_Ofirst__countable__topology_359,axiom,
topolo3112930676232923870pology(complex) ).
tff(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__normed__div__algebra_360,axiom,
real_V8999393235501362500lgebra(complex) ).
tff(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__normed__algebra__1_361,axiom,
real_V2822296259951069270ebra_1(complex) ).
tff(tcon_Complex_Ocomplex___Rings_Osemiring__no__zero__divisors__cancel_362,axiom,
semiri6575147826004484403cancel(complex) ).
tff(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__normed__algebra_363,axiom,
real_V4412858255891104859lgebra(complex) ).
tff(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__normed__vector_364,axiom,
real_V822414075346904944vector(complex) ).
tff(tcon_Complex_Ocomplex___Topological__Spaces_Otopological__space_365,axiom,
topolo4958980785337419405_space(complex) ).
tff(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__normed__field_366,axiom,
real_V3459762299906320749_field(complex) ).
tff(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__div__algebra_367,axiom,
real_V5047593784448816457lgebra(complex) ).
tff(tcon_Complex_Ocomplex___Limits_Otopological__comm__monoid__add_368,axiom,
topolo5987344860129210374id_add(complex) ).
tff(tcon_Complex_Ocomplex___Rings_Osemiring__1__no__zero__divisors_369,axiom,
semiri2026040879449505780visors(complex) ).
tff(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__algebra__1_370,axiom,
real_V2191834092415804123ebra_1(complex) ).
tff(tcon_Complex_Ocomplex___Real__Vector__Spaces_Ocomplete__space_371,axiom,
real_V8037385150606011577_space(complex) ).
tff(tcon_Complex_Ocomplex___Limits_Otopological__semigroup__mult_372,axiom,
topolo4211221413907600880p_mult(complex) ).
tff(tcon_Complex_Ocomplex___Topological__Spaces_Ouniform__space_373,axiom,
topolo7287701948861334536_space(complex) ).
tff(tcon_Complex_Ocomplex___Topological__Spaces_Operfect__space_374,axiom,
topolo8386298272705272623_space(complex) ).
tff(tcon_Complex_Ocomplex___Rings_Osemiring__no__zero__divisors_375,axiom,
semiri3467727345109120633visors(complex) ).
tff(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__algebra_376,axiom,
real_V6157519004096292374lgebra(complex) ).
tff(tcon_Complex_Ocomplex___Real__Vector__Spaces_Ometric__space_377,axiom,
real_V7819770556892013058_space(complex) ).
tff(tcon_Complex_Ocomplex___Limits_Otopological__ab__group__add_378,axiom,
topolo1287966508704411220up_add(complex) ).
tff(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__vector_379,axiom,
real_V4867850818363320053vector(complex) ).
tff(tcon_Complex_Ocomplex___Groups_Ocancel__ab__semigroup__add_380,axiom,
cancel2418104881723323429up_add(complex) ).
tff(tcon_Complex_Ocomplex___Rings_Oring__1__no__zero__divisors_381,axiom,
ring_15535105094025558882visors(complex) ).
tff(tcon_Complex_Ocomplex___Real__Vector__Spaces_Oreal__field_382,axiom,
real_V7773925162809079976_field(complex) ).
tff(tcon_Complex_Ocomplex___Limits_Otopological__monoid__add_383,axiom,
topolo6943815403480290642id_add(complex) ).
tff(tcon_Complex_Ocomplex___Groups_Ocancel__comm__monoid__add_384,axiom,
cancel1802427076303600483id_add(complex) ).
tff(tcon_Complex_Ocomplex___Rings_Ocomm__semiring__1__cancel_385,axiom,
comm_s4317794764714335236cancel(complex) ).
tff(tcon_Complex_Ocomplex___Real__Vector__Spaces_Odist__norm_386,axiom,
real_V6936659425649961206t_norm(complex) ).
tff(tcon_Complex_Ocomplex___Limits_Otopological__group__add_387,axiom,
topolo1633459387980952147up_add(complex) ).
tff(tcon_Complex_Ocomplex___Topological__Spaces_Ot2__space_388,axiom,
topological_t2_space(complex) ).
tff(tcon_Complex_Ocomplex___Groups_Ocancel__semigroup__add_389,axiom,
cancel_semigroup_add(complex) ).
tff(tcon_Complex_Ocomplex___Real__Vector__Spaces_Obanach_390,axiom,
real_Vector_banach(complex) ).
tff(tcon_Complex_Ocomplex___Groups_Oab__semigroup__mult_391,axiom,
ab_semigroup_mult(complex) ).
tff(tcon_Complex_Ocomplex___Rings_Osemiring__1__cancel_392,axiom,
semiring_1_cancel(complex) ).
tff(tcon_Complex_Ocomplex___Groups_Ocomm__monoid__mult_393,axiom,
comm_monoid_mult(complex) ).
tff(tcon_Complex_Ocomplex___Groups_Oab__semigroup__add_394,axiom,
ab_semigroup_add(complex) ).
tff(tcon_Complex_Ocomplex___Groups_Ocomm__monoid__add_395,axiom,
comm_monoid_add(complex) ).
tff(tcon_Complex_Ocomplex___Rings_Ocomm__semiring__1_396,axiom,
comm_semiring_1(complex) ).
tff(tcon_Complex_Ocomplex___Rings_Ocomm__semiring__0_397,axiom,
comm_semiring_0(complex) ).
tff(tcon_Complex_Ocomplex___Groups_Osemigroup__mult_398,axiom,
semigroup_mult(complex) ).
tff(tcon_Complex_Ocomplex___Rings_Osemidom__divide_399,axiom,
semidom_divide(complex) ).
tff(tcon_Complex_Ocomplex___Num_Osemiring__numeral_400,axiom,
semiring_numeral(complex) ).
tff(tcon_Complex_Ocomplex___Groups_Osemigroup__add_401,axiom,
semigroup_add(complex) ).
tff(tcon_Complex_Ocomplex___Fields_Ofield__abs__sgn_402,axiom,
field_abs_sgn(complex) ).
tff(tcon_Complex_Ocomplex___Fields_Odivision__ring_403,axiom,
division_ring(complex) ).
tff(tcon_Complex_Ocomplex___Rings_Ocomm__semiring_404,axiom,
comm_semiring(complex) ).
tff(tcon_Complex_Ocomplex___Nat_Osemiring__char__0_405,axiom,
semiring_char_0(complex) ).
tff(tcon_Complex_Ocomplex___Groups_Oab__group__add_406,axiom,
ab_group_add(complex) ).
tff(tcon_Complex_Ocomplex___Fields_Ofield__char__0_407,axiom,
field_char_0(complex) ).
tff(tcon_Complex_Ocomplex___Rings_Ozero__neq__one_408,axiom,
zero_neq_one(complex) ).
tff(tcon_Complex_Ocomplex___Rings_Oidom__abs__sgn_409,axiom,
idom_abs_sgn(complex) ).
tff(tcon_Complex_Ocomplex___Groups_Omonoid__mult_410,axiom,
monoid_mult(complex) ).
tff(tcon_Complex_Ocomplex___Rings_Oidom__divide_411,axiom,
idom_divide(complex) ).
tff(tcon_Complex_Ocomplex___Rings_Ocomm__ring__1_412,axiom,
comm_ring_1(complex) ).
tff(tcon_Complex_Ocomplex___Groups_Omonoid__add_413,axiom,
monoid_add(complex) ).
tff(tcon_Complex_Ocomplex___Rings_Osemiring__1_414,axiom,
semiring_1(complex) ).
tff(tcon_Complex_Ocomplex___Rings_Osemiring__0_415,axiom,
semiring_0(complex) ).
tff(tcon_Complex_Ocomplex___Groups_Ogroup__add_416,axiom,
group_add(complex) ).
tff(tcon_Complex_Ocomplex___Rings_Omult__zero_417,axiom,
mult_zero(complex) ).
tff(tcon_Complex_Ocomplex___Rings_Ocomm__ring_418,axiom,
comm_ring(complex) ).
tff(tcon_Complex_Ocomplex___Num_Oneg__numeral_419,axiom,
neg_numeral(complex) ).
tff(tcon_Complex_Ocomplex___Nat_Oring__char__0_420,axiom,
ring_char_0(complex) ).
tff(tcon_Complex_Ocomplex___Rings_Osemiring_421,axiom,
semiring(complex) ).
tff(tcon_Complex_Ocomplex___Fields_Oinverse_422,axiom,
inverse(complex) ).
tff(tcon_Complex_Ocomplex___Rings_Osemidom_423,axiom,
semidom(complex) ).
tff(tcon_Complex_Ocomplex___Groups_Ouminus_424,axiom,
uminus(complex) ).
tff(tcon_Complex_Ocomplex___Rings_Oring__1_425,axiom,
ring_1(complex) ).
tff(tcon_Complex_Ocomplex___Groups_Ominus_426,axiom,
minus(complex) ).
tff(tcon_Complex_Ocomplex___Fields_Ofield_427,axiom,
field(complex) ).
tff(tcon_Complex_Ocomplex___Power_Opower_428,axiom,
power(complex) ).
tff(tcon_Complex_Ocomplex___Num_Onumeral_429,axiom,
numeral(complex) ).
tff(tcon_Complex_Ocomplex___Groups_Ozero_430,axiom,
zero(complex) ).
tff(tcon_Complex_Ocomplex___Groups_Oplus_431,axiom,
plus(complex) ).
tff(tcon_Complex_Ocomplex___Rings_Oring_432,axiom,
ring(complex) ).
tff(tcon_Complex_Ocomplex___Rings_Oidom_433,axiom,
idom(complex) ).
tff(tcon_Complex_Ocomplex___Groups_Oone_434,axiom,
one(complex) ).
tff(tcon_Complex_Ocomplex___Rings_Odvd_435,axiom,
dvd(complex) ).
tff(tcon_Extended__Nat_Oenat___Conditionally__Complete__Lattices_Oconditionally__complete__linorder_436,axiom,
condit6923001295902523014norder(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Conditionally__Complete__Lattices_Oconditionally__complete__lattice_437,axiom,
condit1219197933456340205attice(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Countable__Complete__Lattices_Ocountable__complete__lattice_438,axiom,
counta3822494911875563373attice(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Groups_Ostrict__ordered__ab__semigroup__add_439,axiom,
strict9044650504122735259up_add(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Groups_Ostrict__ordered__comm__monoid__add_440,axiom,
strict7427464778891057005id_add(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Groups_Ocanonically__ordered__monoid__add_441,axiom,
canoni5634975068530333245id_add(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Lattices_Obounded__semilattice__sup__bot_442,axiom,
bounde4967611905675639751up_bot(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Lattices_Obounded__semilattice__inf__top_443,axiom,
bounde4346867609351753570nf_top(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Complete__Lattices_Ocomplete__linorder,axiom,
comple5582772986160207858norder(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Groups_Olinordered__ab__semigroup__add_444,axiom,
linord4140545234300271783up_add(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Complete__Lattices_Ocomplete__lattice_445,axiom,
comple6319245703460814977attice(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Rings_Olinordered__nonzero__semiring_446,axiom,
linord181362715937106298miring(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Rings_Osemiring__no__zero__divisors_447,axiom,
semiri3467727345109120633visors(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Groups_Oordered__ab__semigroup__add_448,axiom,
ordere6658533253407199908up_add(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Groups_Oordered__comm__monoid__add_449,axiom,
ordere6911136660526730532id_add(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Rings_Oordered__comm__semiring_450,axiom,
ordere2520102378445227354miring(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Lattices_Osemilattice__sup_451,axiom,
semilattice_sup(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Lattices_Osemilattice__inf_452,axiom,
semilattice_inf(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Lattices_Obounded__lattice_453,axiom,
bounded_lattice(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Groups_Oab__semigroup__mult_454,axiom,
ab_semigroup_mult(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Groups_Ocomm__monoid__mult_455,axiom,
comm_monoid_mult(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Groups_Oab__semigroup__add_456,axiom,
ab_semigroup_add(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Rings_Oordered__semiring_457,axiom,
ordered_semiring(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Groups_Ocomm__monoid__add_458,axiom,
comm_monoid_add(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Rings_Ocomm__semiring__1_459,axiom,
comm_semiring_1(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Rings_Ocomm__semiring__0_460,axiom,
comm_semiring_0(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Groups_Osemigroup__mult_461,axiom,
semigroup_mult(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Num_Osemiring__numeral_462,axiom,
semiring_numeral(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Groups_Osemigroup__add_463,axiom,
semigroup_add(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Rings_Ozero__less__one_464,axiom,
zero_less_one(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Rings_Ocomm__semiring_465,axiom,
comm_semiring(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Orderings_Owellorder_466,axiom,
wellorder(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Orderings_Oorder__top_467,axiom,
order_top(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Orderings_Oorder__bot_468,axiom,
order_bot(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Nat_Osemiring__char__0_469,axiom,
semiring_char_0(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Rings_Ozero__neq__one_470,axiom,
zero_neq_one(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Orderings_Opreorder_471,axiom,
preorder(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Orderings_Olinorder_472,axiom,
linorder(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Groups_Omonoid__mult_473,axiom,
monoid_mult(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Groups_Omonoid__add_474,axiom,
monoid_add(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Rings_Osemiring__1_475,axiom,
semiring_1(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Rings_Osemiring__0_476,axiom,
semiring_0(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Lattices_Olattice_477,axiom,
lattice(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Rings_Omult__zero_478,axiom,
mult_zero(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Orderings_Oorder_479,axiom,
order(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Rings_Osemiring_480,axiom,
semiring(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Orderings_Oord_481,axiom,
ord(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Groups_Ominus_482,axiom,
minus(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Power_Opower_483,axiom,
power(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Num_Onumeral_484,axiom,
numeral(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Groups_Ozero_485,axiom,
zero(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Groups_Oplus_486,axiom,
plus(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Groups_Oone_487,axiom,
one(extended_enat) ).
tff(tcon_Extended__Nat_Oenat___Rings_Odvd_488,axiom,
dvd(extended_enat) ).
tff(tcon_Product__Type_Oprod___Topological__Spaces_Otopological__space_489,axiom,
! [A11: $tType,A15: $tType] :
( ( topolo4958980785337419405_space(A11)
& topolo4958980785337419405_space(A15) )
=> topolo4958980785337419405_space(product_prod(A11,A15)) ) ).
tff(tcon_Product__Type_Oprod___Topological__Spaces_Ot2__space_490,axiom,
! [A11: $tType,A15: $tType] :
( ( topological_t2_space(A11)
& topological_t2_space(A15) )
=> topological_t2_space(product_prod(A11,A15)) ) ).
tff(tcon_Product__Type_Oprod___Nat_Osize_491,axiom,
! [A11: $tType,A15: $tType] : size(product_prod(A11,A15)) ).
tff(tcon_Product__Type_Ounit___Conditionally__Complete__Lattices_Oconditionally__complete__linorder_492,axiom,
condit6923001295902523014norder(product_unit) ).
tff(tcon_Product__Type_Ounit___Conditionally__Complete__Lattices_Oconditionally__complete__lattice_493,axiom,
condit1219197933456340205attice(product_unit) ).
tff(tcon_Product__Type_Ounit___Countable__Complete__Lattices_Ocountable__complete__lattice_494,axiom,
counta3822494911875563373attice(product_unit) ).
tff(tcon_Product__Type_Ounit___Complete__Lattices_Ocomplete__boolean__algebra_495,axiom,
comple489889107523837845lgebra(product_unit) ).
tff(tcon_Product__Type_Ounit___Lattices_Obounded__semilattice__sup__bot_496,axiom,
bounde4967611905675639751up_bot(product_unit) ).
tff(tcon_Product__Type_Ounit___Lattices_Obounded__semilattice__inf__top_497,axiom,
bounde4346867609351753570nf_top(product_unit) ).
tff(tcon_Product__Type_Ounit___Complete__Lattices_Ocomplete__linorder_498,axiom,
comple5582772986160207858norder(product_unit) ).
tff(tcon_Product__Type_Ounit___Complete__Lattices_Ocomplete__lattice_499,axiom,
comple6319245703460814977attice(product_unit) ).
tff(tcon_Product__Type_Ounit___Boolean__Algebras_Oboolean__algebra_500,axiom,
boolea8198339166811842893lgebra(product_unit) ).
tff(tcon_Product__Type_Ounit___Lattices_Osemilattice__sup_501,axiom,
semilattice_sup(product_unit) ).
tff(tcon_Product__Type_Ounit___Lattices_Osemilattice__inf_502,axiom,
semilattice_inf(product_unit) ).
tff(tcon_Product__Type_Ounit___Lattices_Obounded__lattice_503,axiom,
bounded_lattice(product_unit) ).
tff(tcon_Product__Type_Ounit___Orderings_Owellorder_504,axiom,
wellorder(product_unit) ).
tff(tcon_Product__Type_Ounit___Orderings_Oorder__top_505,axiom,
order_top(product_unit) ).
tff(tcon_Product__Type_Ounit___Orderings_Oorder__bot_506,axiom,
order_bot(product_unit) ).
tff(tcon_Product__Type_Ounit___Orderings_Opreorder_507,axiom,
preorder(product_unit) ).
tff(tcon_Product__Type_Ounit___Orderings_Olinorder_508,axiom,
linorder(product_unit) ).
tff(tcon_Product__Type_Ounit___Lattices_Olattice_509,axiom,
lattice(product_unit) ).
tff(tcon_Product__Type_Ounit___Orderings_Oorder_510,axiom,
order(product_unit) ).
tff(tcon_Product__Type_Ounit___Orderings_Oord_511,axiom,
ord(product_unit) ).
tff(tcon_Product__Type_Ounit___Groups_Ouminus_512,axiom,
uminus(product_unit) ).
tff(tcon_Product__Type_Ounit___Groups_Ominus_513,axiom,
minus(product_unit) ).
tff(tcon_Code__Numeral_Ointeger___Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_514,axiom,
bit_un5681908812861735899ations(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Semiring__Normalization_Ocomm__semiring__1__cancel__crossproduct_515,axiom,
semiri1453513574482234551roduct(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Euclidean__Division_Ounique__euclidean__semiring__with__nat_516,axiom,
euclid5411537665997757685th_nat(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Euclidean__Division_Ounique__euclidean__ring__with__nat_517,axiom,
euclid8789492081693882211th_nat(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Oordered__ab__semigroup__monoid__add__imp__le_518,axiom,
ordere1937475149494474687imp_le(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Euclidean__Division_Ounique__euclidean__semiring_519,axiom,
euclid3128863361964157862miring(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Euclidean__Division_Oeuclidean__semiring__cancel_520,axiom,
euclid4440199948858584721cancel(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Divides_Ounique__euclidean__semiring__numeral_521,axiom,
unique1627219031080169319umeral(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Euclidean__Division_Oeuclidean__ring__cancel_522,axiom,
euclid8851590272496341667cancel(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Osemiring__no__zero__divisors__cancel_523,axiom,
semiri6575147826004484403cancel(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Ostrict__ordered__ab__semigroup__add_524,axiom,
strict9044650504122735259up_add(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Oordered__cancel__ab__semigroup__add_525,axiom,
ordere580206878836729694up_add(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Oordered__ab__semigroup__add__imp__le_526,axiom,
ordere2412721322843649153imp_le(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Bit__Operations_Osemiring__bit__operations_527,axiom,
bit_se359711467146920520ations(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Olinordered__comm__semiring__strict_528,axiom,
linord2810124833399127020strict(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Ostrict__ordered__comm__monoid__add_529,axiom,
strict7427464778891057005id_add(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Oordered__cancel__comm__monoid__add_530,axiom,
ordere8940638589300402666id_add(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Euclidean__Division_Oeuclidean__semiring_531,axiom,
euclid3725896446679973847miring(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Olinordered__semiring__1__strict_532,axiom,
linord715952674999750819strict(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Olinordered__ab__semigroup__add_533,axiom,
linord4140545234300271783up_add(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Bit__Operations_Oring__bit__operations_534,axiom,
bit_ri3973907225187159222ations(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Osemiring__1__no__zero__divisors_535,axiom,
semiri2026040879449505780visors(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Olinordered__nonzero__semiring_536,axiom,
linord181362715937106298miring(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Euclidean__Division_Oeuclidean__ring_537,axiom,
euclid5891614535332579305n_ring(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Olinordered__semiring__strict_538,axiom,
linord8928482502909563296strict(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Osemiring__no__zero__divisors_539,axiom,
semiri3467727345109120633visors(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Oordered__ab__semigroup__add_540,axiom,
ordere6658533253407199908up_add(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Oordered__ab__group__add__abs_541,axiom,
ordere166539214618696060dd_abs(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Oordered__comm__monoid__add_542,axiom,
ordere6911136660526730532id_add(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Olinordered__ab__group__add_543,axiom,
linord5086331880401160121up_add(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Ocancel__ab__semigroup__add_544,axiom,
cancel2418104881723323429up_add(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Oring__1__no__zero__divisors_545,axiom,
ring_15535105094025558882visors(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Ocancel__comm__monoid__add_546,axiom,
cancel1802427076303600483id_add(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Olinordered__ring__strict_547,axiom,
linord4710134922213307826strict(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Ocomm__semiring__1__cancel_548,axiom,
comm_s4317794764714335236cancel(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Bit__Operations_Osemiring__bits_549,axiom,
bit_semiring_bits(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Oordered__comm__semiring_550,axiom,
ordere2520102378445227354miring(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Olinordered__semiring__1_551,axiom,
linord6961819062388156250ring_1(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Oordered__ab__group__add_552,axiom,
ordered_ab_group_add(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Ocancel__semigroup__add_553,axiom,
cancel_semigroup_add(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Olinordered__semiring_554,axiom,
linordered_semiring(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Oordered__semiring__0_555,axiom,
ordered_semiring_0(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Olinordered__semidom_556,axiom,
linordered_semidom(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Oab__semigroup__mult_557,axiom,
ab_semigroup_mult(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Osemiring__1__cancel_558,axiom,
semiring_1_cancel(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Oalgebraic__semidom_559,axiom,
algebraic_semidom(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Ocomm__monoid__mult_560,axiom,
comm_monoid_mult(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Oab__semigroup__add_561,axiom,
ab_semigroup_add(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Oordered__semiring_562,axiom,
ordered_semiring(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Oordered__ring__abs_563,axiom,
ordered_ring_abs(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Parity_Osemiring__parity_564,axiom,
semiring_parity(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Ocomm__monoid__add_565,axiom,
comm_monoid_add(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Osemiring__modulo_566,axiom,
semiring_modulo(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Olinordered__ring_567,axiom,
linordered_ring(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Olinordered__idom_568,axiom,
linordered_idom(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Ocomm__semiring__1_569,axiom,
comm_semiring_1(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Ocomm__semiring__0_570,axiom,
comm_semiring_0(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Osemigroup__mult_571,axiom,
semigroup_mult(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Osemidom__modulo_572,axiom,
semidom_modulo(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Osemidom__divide_573,axiom,
semidom_divide(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Num_Osemiring__numeral_574,axiom,
semiring_numeral(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Osemigroup__add_575,axiom,
semigroup_add(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Ozero__less__one_576,axiom,
zero_less_one(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Ocomm__semiring_577,axiom,
comm_semiring(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Nat_Osemiring__char__0_578,axiom,
semiring_char_0(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Oab__group__add_579,axiom,
ab_group_add(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Ozero__neq__one_580,axiom,
zero_neq_one(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Oordered__ring_581,axiom,
ordered_ring(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Oidom__abs__sgn_582,axiom,
idom_abs_sgn(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Parity_Oring__parity_583,axiom,
ring_parity(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Orderings_Opreorder_584,axiom,
preorder(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Orderings_Olinorder_585,axiom,
linorder(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Omonoid__mult_586,axiom,
monoid_mult(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Oidom__modulo_587,axiom,
idom_modulo(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Oidom__divide_588,axiom,
idom_divide(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Ocomm__ring__1_589,axiom,
comm_ring_1(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Omonoid__add_590,axiom,
monoid_add(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Osemiring__1_591,axiom,
semiring_1(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Osemiring__0_592,axiom,
semiring_0(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Ogroup__add_593,axiom,
group_add(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Omult__zero_594,axiom,
mult_zero(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Ocomm__ring_595,axiom,
comm_ring(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Orderings_Oorder_596,axiom,
order(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Num_Oneg__numeral_597,axiom,
neg_numeral(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Nat_Oring__char__0_598,axiom,
ring_char_0(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Osemiring_599,axiom,
semiring(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Osemidom_600,axiom,
semidom(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Orderings_Oord_601,axiom,
ord(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Ouminus_602,axiom,
uminus(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Oring__1_603,axiom,
ring_1(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Oabs__if_604,axiom,
abs_if(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Ominus_605,axiom,
minus(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Power_Opower_606,axiom,
power(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Num_Onumeral_607,axiom,
numeral(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Ozero_608,axiom,
zero(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Oplus_609,axiom,
plus(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Oring_610,axiom,
ring(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Oidom_611,axiom,
idom(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Groups_Oone_612,axiom,
one(code_integer) ).
tff(tcon_Code__Numeral_Ointeger___Rings_Odvd_613,axiom,
dvd(code_integer) ).
tff(tcon_VEBT__Definitions_OVEBT___Nat_Osize_614,axiom,
size(vEBT_VEBT) ).
% Helper facts (16)
tff(help_If_2_1_T,axiom,
! [A: $tType,X2: A,Y: A] : ( if(A,fFalse,X2,Y) = Y ) ).
tff(help_If_1_1_T,axiom,
! [A: $tType,X2: A,Y: A] : ( if(A,fTrue,X2,Y) = X2 ) ).
tff(help_fNot_2_1_U,axiom,
! [P: bool] :
( pp(P)
| pp(aa(bool,bool,fNot,P)) ) ).
tff(help_fNot_1_1_U,axiom,
! [P: bool] :
( ~ pp(aa(bool,bool,fNot,P))
| ~ pp(P) ) ).
tff(help_fTrue_1_1_U,axiom,
pp(fTrue) ).
tff(help_fconj_3_1_U,axiom,
! [P: bool,Q: bool] :
( ~ pp(fconj(P,Q))
| pp(Q) ) ).
tff(help_fconj_2_1_U,axiom,
! [P: bool,Q: bool] :
( ~ pp(fconj(P,Q))
| pp(P) ) ).
tff(help_fconj_1_1_U,axiom,
! [P: bool,Q: bool] :
( ~ pp(P)
| ~ pp(Q)
| pp(fconj(P,Q)) ) ).
tff(help_fdisj_3_1_U,axiom,
! [P: bool,Q: bool] :
( ~ pp(fdisj(P,Q))
| pp(P)
| pp(Q) ) ).
tff(help_fdisj_2_1_U,axiom,
! [Q: bool,P: bool] :
( ~ pp(Q)
| pp(fdisj(P,Q)) ) ).
tff(help_fdisj_1_1_U,axiom,
! [P: bool,Q: bool] :
( ~ pp(P)
| pp(fdisj(P,Q)) ) ).
tff(help_fFalse_1_1_T,axiom,
! [P: bool] :
( ( P = fTrue )
| ( P = fFalse ) ) ).
tff(help_fFalse_1_1_U,axiom,
~ pp(fFalse) ).
tff(help_fequal_2_1_T,axiom,
! [A: $tType,X2: A,Y: A] :
( ( X2 != Y )
| pp(aa(A,bool,aa(A,fun(A,bool),fequal(A),X2),Y)) ) ).
tff(help_fequal_1_1_T,axiom,
! [A: $tType,X2: A,Y: A] :
( ~ pp(aa(A,bool,aa(A,fun(A,bool),fequal(A),X2),Y))
| ( X2 = Y ) ) ).
tff(help_fChoice_1_1_T,axiom,
! [A: $tType,P: fun(A,bool)] : ( aa(A,bool,P,fChoice(A,P)) = aa(fun(A,bool),bool,fEx(A),P) ) ).
% Conjectures (1)
tff(conj_0,conjecture,
pp(aa(real,bool,aa(real,fun(real,bool),ord_less_eq(real),aa(vEBT_VEBT,real,vEBT_VEBT_cnt,vEBT_Node(aa(product_prod(nat,nat),option(product_prod(nat,nat)),some(product_prod(nat,nat)),aa(nat,product_prod(nat,nat),aa(nat,fun(nat,product_prod(nat,nat)),product_Pair(nat,nat),mi),ma)),deg,treeList,summary))),aa(real,real,aa(real,fun(real,real),times_times(real),aa(num,real,numeral_numeral(real),bit0(one2))),aa(real,real,aa(real,fun(real,real),minus_minus(real),aa(nat,real,power_power(real,aa(num,real,numeral_numeral(real),bit0(one2))),deg)),c)))) ).
%------------------------------------------------------------------------------